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Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V (G) to V (H). Note
that if H is the triangle, then H-colorings are equivalent to 3-colorings. In this paper we are
interested in the case that H is the five-vertex cycle C5.

A minimal obstruction to C5-coloring is a graph that does not have a C5-coloring, but every
proper induced subgraph thereof has a C5-coloring. In this paper we are interested in minimal
obstructions to C5-coloring in F -free graphs, i.e., graphs that exclude some fixed graph F as an
induced subgraph. Let Pt denote the path on t vertices, and let Sa,b,c denote the graph obtained
from paths Pa+1, Pb+1, Pc+1 by identifying one of their endvertices.

We show that there is only a finite number of minimal obstructions to C5-coloring among F -free
graphs, where F ∈ {P8, S2,2,1, S3,1,1} and explicitly determine all such obstructions. This extends
the results of Kamiński and Pstrucha [Discr. Appl. Math. 261, 2019] who proved that there is only
a finite number of P7-free minimal obstructions to C5-coloring, and of Dębski et al. [ISAAC 2022
Proc.] who showed that the triangle is the unique S2,1,1-free minimal obstruction to C5-coloring.

We complement our results with a construction of an infinite family of minimal obstructions to
C5-coloring, which are simultaneously P13-free and S2,2,2-free. We also discuss infinite families of
F -free minimal obstructions to H-coloring for other graphs H.
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1 Introduction

Out of a great number of interesting and elegant graph problems, the notion of graph coloring
is, arguably, among the most popular and well-studied ones, not only from combinatorial,
but also from algorithmic point of view. For an integer k ≥ 1, a k-coloring of a graph G is a
function c : V (G) → {1, . . . , k} such that for every edge uv ∈ E(G) it holds that c(u) ̸= c(v).
For a fixed integer k ≥ 1, the k-Coloring problem is a computational problem in which an
instance is a graph G and we ask whether there exists a k-coloring of G.

The k-Coloring problem is known to be polynomial-time solvable if k ≤ 2 and NP-
complete for larger values of k. Still, even if k ≥ 3, it is often possible to obtain polynomial-
time algorithms that solve k-Coloring if we somehow restrict the class of input instances,
for example, to perfect graphs [14, 15], bounded-treewidth graphs [1] or intersection graphs
of geometric objects [11].

Observe that these example classes are hereditary, i.e., closed under deleting vertices.
Such a property is very useful in algorithm design, as it combines well with standard
algorithmic techniques, like branching or divide-&-conquer. Therefore, if we want to study
some computational problem in a restricted graph class G, choosing G to be hereditary
appears to be reasonable. For a fixed graph F , we say that a graph G is F -free if it does
not contain F as an induced subgraph. If F is a family of graphs, we say that a graph G is
F-free if G is F -free for every F ∈ F . Each hereditary class of graphs can be characterized
by a (possibly infinite) family F of forbidden induced subgraphs.

Coloring hereditary graph classes. As a first step towards understanding the complexity of
k-Coloring in hereditary classes it is natural to consider classes defined by a single induced
subgraph F . If F contains a cycle or a vertex of degree at least 3, it follows from the classical
results by Emden-Weinert [9], Holyer [20], and Leven and Galil [25] that for every k ≥ 3,
k-Coloring remains NP-complete when restricted to F -free graphs. Thus we are left with
the case that F is a linear forest, i.e., every component of F is a path.

However, if F is a linear forest, the situation becomes more complicated. For simplicity,
let us focus on the case when F is connected, i.e., F is a path on t vertices, denoted
by Pt. Then, k-Coloring is polynomial-time-solvable in Pt-free graphs if t ≤ 5, or if
(k, t) ∈ {(3, 6), (3, 7), (4, 6)} [21, 30, 2, 18]. On the other hand, for any k ≥ 4, the k-
Coloring problem is NP-complete in Pt-free graphs for all other values of t [21]. The
complexity of the remaining cases, i.e., 3-Coloring of Pt-free graphs where t ≥ 8, remains
unknown: we do not know polynomial-time algorithms nor any hardness proofs. The general
belief is that all these cases are in fact tractable, which is supported by the existence of a
quasipolynomial-time algorithm for 3-Coloring in Pt-free graphs, for every fixed t [29]. For
the summary of the results on the complexity of k-Coloring Pt-free graphs see Figure 1. Let
us remark that there are also some results for disconnected forbidden linear forests [24, 6].
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Figure 1 The complexity of k-Coloring Pt-free graphs.

Minimal obstructions to k-coloring. One can look at k-Coloring from another, purely
combinatorial perspective. Instead of asking whether a graph G admits a k-coloring, we can
ask whether it contains a dual object, i.e., some structure that forces the chromatic number
to be at least k + 1. For example, 2-Coloring can be equivalently expressed as a question
whether a graph contains an odd cycle. As another example, k-Coloring restricted to
perfect graphs is equivalent to the question of the existence of a (k + 1)-clique, i.e., the
complete graph on k + 1 vertices, denoted by Kk+1.

In other words, odd cycles are minimal non-2-colorable graphs and (k + 1)-cliques are
minimal non-k-colorable perfect graphs (where minimality is defined with respect to the
induced subgraph relation). Formally, if a graph G is not k-colorable, but every proper
induced subgraph of it is k-colorable, we say that G is vertex-(k + 1)-critical or is a minimal
obstruction to k-coloring. We denote by Obstructions(k) the set of all minimal obstructions
to k-coloring. Note that Obstructions(k) naturally forms a family of dual objects – a graph
is k-colorable if and only if it does not contain any graph from Obstructions(k) as an induced
subgraph.

Suppose that, for some k, there is a polynomial-time algorithm Algk that takes as an
input a graph G and answers whether it contains any graph from Obstructions(k) as an
induced subgraph (i.e., whether G is not Obstructions(k)-free). From the discussion above it
follows that the existence of Algk yields a polynomial-time algorithm for k-Coloring. Thus
it is unlikely that Algk exists for any k ≥ 3. However, it is still possible when we restrict
the input graphs to a certain class G (like perfect graphs in the example above). Recall
that we are interested in the case that G = F -free, where F is a path. Let us denote such a
restriction Algk to F -free graphs by Algk,F .

Note that the existence of Algk,F is trivial if (Obstructions(k) ∩ F -free) is finite; indeed,
brute force works in this case. This line of arguments allows us to further refine cases that
are polynomial-time solvable: into pairs (k, F ), where (Obstructions(k) ∩ F -free) is finite, and
the others. Recall that the algorithm for k-Coloring obtained for the former ones is able
to produce a negative certificate: a small (constant-size) witness that the input graph is not
k-colorable. We refer the reader to the survey of McConnell et al. [27] for more information
about certifying algorithms.

It turns out that we can fully characterize all pairs (k, F ) for which Obstructions(k)∩F -free
is finite. It is well-known that P4-free graphs (also known as cographs) are perfect and thus
the only minimal obstruction to k-coloring is the (k + 1)-clique. Bruce et al. [3] proved that
there is a finite number of minimal obstructions to 3-coloring among P5-free graphs. The
result was later extended by Chudnovsky et al. [4] who showed that the family of P6-free
minimal obstructions to 3-coloring is is also finite, and that this is no longer true among
P7-free graphs (and thus for Pt-free graphs for every t ≥ 7). If the number of colors is larger,
things get more difficult faster: Hoàng et al. [19] showed that for each k ≥ 4 there exists an
infinite family of P5-free minimal obstructions to k-coloring. See also Figure 1.

MFCS 2024
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H-coloring F -free graphs and minimal obstructions to H-colorings. Graph colorings
can be seen as a special case of graph homomorphisms. For graphs G and H, an H-coloring
of G is a function c : V (G) → V (H) such that for every edge uv ∈ E(G) it holds that
c(u)c(v) ∈ E(H). The graph H is usually called the target graph. It is straightforward to
verify that homomorphisms from G to the k-clique, are in one-to-one correspondence to
k-colorings of G. For this reason one often refers to the vertices of H as colors.

For a fixed graph H, by H-Coloring we denote the computational problem that takes
as an input a graph G and asks whether G admits a homomorphism to H. The complexity
dichotomy for H-Coloring was proven by Hell and Nešetřil [16]: the problem is polynomial-
time solvable if H is bipartite, and NP-complete otherwise.

The complexity landscape of H-Coloring in F -free graphs for non-complete target
graphs is far from being fully understood. Chudnovsky et al. [5] proved that if H is an
odd cycle on at least 5 vertices, then H-Coloring is polynomial-time solvable in P9-free
graphs; they also showed a number of hardness results for more general variants of the
homomorphism problem. Feder and Hell [10] and Dębski et al. [8] studied the case when H

is an odd wheel, i.e., an odd cycle with universal vertex added. The most general algorithmic
results were provided by Okrasa and Rzążewski [28] who showed that
(OR1) if H does not contain C4 as a subgraph, then H-Coloring can be solved in quasi-

polynomial time in Pt-free graphs for any fixed t (note that a better running time
here would also mean progress for 3-Coloring Pt-free graphs),

(OR2) if H is of girth at least 5, then H-Coloring can be solved in subexponential time in
F -free graphs, where F is any fixed subdivided claw, i.e., any graph obtained from
the three-leaf star by subdividing edges.

While these are not polynomial-time algorithms, no NP-hardness proofs for these cases
are known either. To complete the picture, from [28] it also follows that if H is a so-called
projective core that contains C4 as a subgraph, then there exists a t such that H-Coloring is
NP-complete in Pt-free graphs (and thus also in graphs excluding some fixed subdivided claw).
Furthermore, the hardness reductions even exclude any subexponential-time algorithms for
these cases, assuming the Exponential Time Hypothesis (ETH). Let us skip the definition of
a projective core, as it is quite technical and not really relevant for this paper. However, it is
worth pointing out that almost all graphs are projective cores [26, 17].

Since we are interested in a finer classification of polynomial-time-solvable cases, we
should be looking at pairs (H, F ) of graphs such that the H-Coloring problem is not known
to be NP-complete in F -free graphs. From the discussion above it follows that there are two
natural families of such pairs to consider:

(i) when H does not contain C4 as a subgraph and F is a path,
(ii) when H is of girth at least 5 and F is a subdivided claw.

It is straightforward to generalize the notion of minimal obstructions to the setting of
H-colorings. A graph G is called a minimal obstruction to H-coloring if there is no H-coloring
of G, but every proper induced subgraph of G can be H-colored.

The area of minimal obstructions to H-coloring is rather unexplored. In the setting of
(i), Kamiński and Pstrucha [23] showed that for any t ≥ 5, there are finitely many minimal
obstructions to Ct−2-coloring among Pt-free graphs.1 In particular, the family of P7-free

1 While in [23] the authors consider minimality with respect to the subgraph relation, it is not hard to
observe that bounded number of subgraph-minimal obstructions is equivalent to the bounded number
of induced-subgraph-minimal obstructions.
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Figure 2 Graphs Q1, Q2, Q3, and Q4 (left to right).

minimal obstructions to C5-coloring is finite. In the setting of (ii), Dębski et al. [8] showed
that the triangle is the only minimal obstruction to C5-coloring among graphs that exclude
the fork, i.e., the graph obtained from the three-leaf star by subdividing one edge once.

Our contribution. As our first result, we show the following strengthening of the result of
Kamiński and Pstrucha.

▶ Theorem 1. There are 19 minimal obstructions to C5-coloring among P8-free graphs.

Let us sketch the proof of Theorem 1. Note that K3 is a minimal obstruction for C5-
coloring, so from now on we focus on graphs that are {P8, K3}-free. For i ∈ {1, 2, 3, 4}, by
Qi we denote the graph obtained from two copies of C5 by identifying an i-vertex subpath of
one cycle with an i-vertex subpath of the other one, see Figure 2. In the proof we separately
consider minimal obstructions that contain some Qi as an induced subgraph, and those that
are {Q1, Q2, Q3, Q4}-free.

The intuition behind this is as follows. Notice that if G contains an induced 5-vertex cycle,
the vertices of this cycle must be mapped to the vertices of C5 bijectively, respecting the
ordering along the cycle. Consequently, if G contains some Qi, the colorings of the vertices
in Qi are somehow restricted. Combining several Qi’s we might impose some contradictory
constraints and thus build a graph that is not C5-colorable. However, as each Qi already
contains quite long induced paths, we might hope that by combining several Qi we are
either forced to create an induced P8 (if we add only few edges between different Qi’s) or
K3 (if we add too many such edges). Thus the possibilities of building non-C5-colorable
graphs using this approach are somehow limited. It turns out that this intuition is correct:
there are 18 graphs that are {P8, K3}-free and contain Qi, for some i ∈ {1, 2, 3, 4}, as an
induced subgraph. Together with K3, they are shown in Figure 3. This part of the proof is
computer-aided.

For the second step, we assume that our graph does not contain any Qi, i.e., we consider
graphs that are {P8, K3, Q1, Q2, Q3, Q4}-free. We show that such graphs are always C5-
colorable. Consequently, each minimal obstruction to C5-coloring (and, in general, every
graph that is not C5-colorable) was discovered in step 1.

Before we discuss the second result, let us introduce the notation for subdivided claws.
For integers a, b, c ≥ 1, by Sa,b,c we denote the graph obtained from the three-leaf star by
subdividing each edge, respectively, a − 1, b − 1, and c − 1 times. Equivalently, Sa,b,c is
obtained from three paths Pa+1, Pb+1, Pc+1 by identifying one of their endpoints.

As our second result we show the following extension of the result of Dębski et al. [8].

▶ Theorem 2. There are 3 minimal obstructions to C5-coloring among S2,2,1-free graphs,
and 5 minimal obstructions to C5-coloring among S3,1,1-free graphs.

These graphs are shown in Figure 4. The proof is similar to the proof of Theorem 1.
First, we consider minimal obstructions that contain an induced C5 and, using the computer
search, we show that there is only a finite number of them. Then, we show that graphs that

MFCS 2024
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Figure 3 All P8-free minimal obstructions to C5-coloring. The graphs in the first row are P6-free.
The graphs in the second row are P7-free, but not P6-free. All other graphs are P8-free, but not
P7-free.

Figure 4 All S2,2,1-free and all S3,1,1-free minimal obstructions to C5-coloring. The graphs in
the first row are both S2,2,1-free and S3,1,1-free, whereas the first three graphs in the second row are
S3,1,1-free, but not S2,2,1-free and the last graph in the second row is S2,2,1-free, but not S3,1,1-free.

exclude K3 (as it is a minimal obstruction by itself), C5, and also one of S2,2,1, S3,1,1, are
either bipartite or are “blown-up cycles” – in both cases C5-colorability is straightforward to
show.

We complement these results with a construction of an infinite family of minimal obstruc-
tions to C5-coloring.

▶ Theorem 3. There is an infinite family of minimal obstructions to C5-coloring, which
simultaneously exclude P13, S2,2,2, S5,5,1, S11,1,1, and S8,2,1 as an induced subgraph.

The construction from Theorem 3 is obtained by generalizing the infinite family of P7-free
minimal obstructions to 3-coloring, provided by Chudnovsky et al. [4]. The idea can be
further generalized. Let the odd girth of H be the length of a shortest odd cycle in H (and
keep it undefined for bipartite graphs).
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▶ Theorem 4. Let q ≥ 3 be odd, and let H be a graph of odd girth q that does not contain
C4 as a subgraph. There is an infinite family of minimal obstructions to H-coloring that are
{P3q−1, S2,2,2, S3(q−1)/2,3(q−1)/2,1}-free.

Note that Theorem 4 gives a bound for every graph H that was discussed in (OR1) and
(OR2). An astute reader might notice that applying Theorem 4 for H = C5, i.e., q = 5,
yields a family of obstructions that are in particular P14-free and S6,6,1-free, which does not
match the bounds from Theorem 3. Indeed, obtaining the refined result from Theorem 3
requires some additional work, which again uses a mixture of combinatorial observations and
computer search.

Organization of the paper. In Section 2 we introduce some notation and preliminary
observations. In Section 3 we explain the algorithm that is later used to generate minimal
obstructions. In Sections 4 and 5 we present, respectively, the overview of the proofs of
Theorems 1 and 2 In Section 6 we provide constructions of infinite families of graphs that
are then used to prove Theorems 3 and 4.

We refer the interested reader to the full version of this paper [12] for the proofs that
were omitted due to space limitations (marked by (♠)), and for implementation details of
our algorithms and how they were tested for correctness.

2 Preliminaries

For an integer n ≥ 1 we denote by [n] the set {1, . . . , n}, and by [n]0 the set [n] ∪ {0}. For a
graph G = (V, E) and a vertex set U ⊆ V , the graph G[U ] denotes the subgraph of G induced
by U . The graph G − U denotes G[V (G) \ U ]. The set NG(u) denotes the neighborhood of
vertex u in the graph G. For U ⊆ V (G) we define NG(U) =

⋃
u∈U NG(u) \ U . If the graph

G is clear from the context, we omit the subscript and write N(u) and N(U).
If there exists an H-coloring of G, we denote this fact by G → H. It is straightforward to

verify that if G → H, then odd-girth(G) ≥ odd-girth(H). In particular, K3 has no C5-coloring
and is actually a minimal obstruction to C5-coloring. Consequently, every other minimal
obstruction to C5-coloring is K3-free.

For any two graphs G and H such that G is H-colorable, the graph hull(G, H) denotes the
graph with vertex set V (G) and edge set {uv : u, v ∈ V (G) and for every H-coloring c

of G, we have c(u)c(v) ∈ E(H)}. Note that hull(G, H) is a supergraph of G that is
H-colorable and that for every induced subgraph G′ of G we have E(hull(G′, H)) ⊆
E(hull(G, H)). Note that hull(G, H) might contain some induced subgraphs that do not
appear in G.

3 Generating F -free minimal obstructions to H-coloring

In this section we describe an algorithm that can be used to generate all F -free minimal
obstructions to H-coloring. We emphasize that this approach is robust in the sense that it
does not assume that H = C5 and F is a path or a subdivided claw, as needed for Theorems 1
and 2.

Throughout the section graphs H and F are fixed. We will use the term minimal
obstruction for minimal obstruction to H-coloring. The algorithm takes as an input “the
current candidate graph” I that it tries to extend to a minimal obstruction by adding a
new vertex x and some edges between x and V (I). In particular, the algorithm can be
used to generate all F -free minimal obstructions by choosing I as the single-vertex graph.

MFCS 2024
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This algorithm is similar to the algorithm for k-Coloring by [13], but we formulate it in a
more general way. In case there are infinitely many minimal obstructions, the generation
algorithm will never terminate. If there are only finitely many minimal obstructions, then
the algorithm might still not terminate, since the prunning rules might not be strong enough.
However, if the algorithm terminates, it is guaranteed that there are only finitely many
minimal obstructions and that the algorithm outputs all of them.

Let us explain the algorithm, see also the pseudocode in Algorithm 1.

Algorithm 1 Expand.

Constants : target graph H, forbidden graph F

Input : current graph I

Output : exhaustive list of F -free minimal obstructions to H-coloring

1 if I is F -free and not generated before then
2 if I is not H-colorable then
3 if I is a minimal obstruction to H-coloring then output I

4 else
5 if I contains comparable vertices (u, v) then
6 foreach graph I ′ obtained from I by adding a new vertex x and edges between

x and vertices in V (I) in all possible ways, such that ux ∈ E(I ′), but
vx /∈ E(hull(I ′ − u, H)) do

7 Expand(I ′)

8 else if I contains comparable edges (uv, u′v′) then
9 foreach graph I ′ obtained from I by adding a new vertex x and edges between

x and vertices in V (I) in all possible ways, such that rx ∈ E(I ′), but
r′x /∈ E(hull(I ′ − {u, v}, H))) for some r ∈ {u, v} do

10 Expand(I ′)

11 else
12 foreach graph I ′ obtained from I by adding a new vertex x and edges between

x and vertices in V (I) in all possible ways do
13 Expand(I ′)

It starts from a graph I and recursively expands this graph by adding a vertex and edges
between this new vertex and existing vertices in each recursive step. The expansion is based
on expansion rules that aim at reducing the search space while ensuring that no minimal
obstructions are lost in this operation. For example, if an expansion leads to a graph I ′ that
is not F -free, the recursion can be stopped, because all further expansions of I ′ will not be
F -free either (note that we do not add any edges inside V (I) and that the class of F -free
graphs is hereditary). Another way to restrict the search space is based on Lemma 5. This
lemma and its proof follow Lemma 5 from [4] concerning k-Coloring, but generalizing it to
H-Coloring required some adjustments.

▶ Lemma 5 (♠). Let G = (V, E) be a minimal obstruction to H-coloring and let U and
W be two non-empty disjoint vertex subsets of G. Let J := hull(G − U, H). If there
exists a homomorphism ϕ from G[U ] to J [W ], then there exists a vertex u ∈ U for which
NG(u) \ U ⊈ NJ(ϕ(u)).
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As isomorphism is a special type of a homomorphism, Lemma 5 immediately yields the
following corollary.

▶ Corollary 6. Let G be an H-colorable graph that is an induced subgraph of a minimal
obstruction G′. Let U, W ⊆ V (G) be two non-empty disjoint vertex subsets and let J :=
hull(G − U, H). If there exists an isomorphism ϕ : G[U ] → J [W ] such that NG(u) \ U ⊆
NJ (ϕ(u)) for all u ∈ U , then there exists a vertex x ∈ V (G′) \ V (G) such that x is adjacent
to some vertex u ∈ U , but x is not adjacent to ϕ(u) in hull(G′ − U, H) (and thus also not
adjacent to ϕ(u) in hull(G′[V (G) ∪ {x} \ U ], H)).

Actually, we will only use the restricted version of Corollary 6. In what follows we use
the notation and assumptions of the Corollary. In case that |U | = |W | = 1, say U = {u}
and W = {w}, we call the pair (u, w) comparable vertices. In case that G[U ] and J [W ] are
both isomorphic to K2 and, say, U = {u, u′} and W = {w, w′}, we call the pair (uu′, ww′)
comparable edges. The algorithm concentrates on finding comparable vertices and edges for
computational reasons.

We refer the interested reader to the full version of this paper [12] for additional details
about the efficient implementation of this algorithm, independent correctness verifications
and sanity checks.

4 Minimal obstructions to C5-coloring with no long paths

In this section we still only discuss C5-colorings, thus we will keep writing minimal obstructions
for minimal obstructions for C5-coloring.

The algorithm from Section 3 was implemented for H = C5 (the source code is made
publicly available at [22]). We used the algorithm, combined with some purely combinatorial
observations, to generate an exhaustive list of Pt-free minimal obstructions, where t ≤ 8; see
also Figure 3. The minimal obstructions can also be obtained from the database of interesting
graphs at the House of Graphs [7] by searching for the keywords “minimal obstruction to
C5-coloring”.

4.1 Pt-free minimal obstructions for t ∈ {6, 7}
As a warm-up, let us reprove the result of Kamiński and Pstrucha [23] (in a slightly stronger
form, as they did not provide the explicit list of minimal obstructions). It will also serve as a
demonstration of the way how the algorithm from 3 is intended to be used.

An exhaustive list for t ≤ 6 can be obtained by running the algorithm from Section 3
with parameters (I = K1, H = C5, F = P6).2 This leads to the following observation.

▶ Observation 7. There are four minimal obstructions for C5-coloring among P6-free graphs.
All of these obstructions, except for the triangle K3, are P6-free and not P5-free.

Unfortunately, the same simple strategy already fails for t = 7. Indeed, the algorithm
as presented in Section 3 does not terminate after running for several hours after calling it
with parameters (I = K1, H = C5, F = P7). However, with relatively small adjustments, the
algorithm is able to produce an exhaustive list of minimal obstructions in a few seconds.

The first adjustment has to do with the order in which the expansion rules are used.
Note that the order in which the algorithm checks whether it can find comparable vertices
and comparable edges does not affect the correctness of the algorithm, but it might affect

2 Let us remark that it is a simple exercise to find this list by hand.
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whether the algorithm terminates or not. For example, it could happen that by expanding
in order to get rid of a pair of comparable vertices, a new pair of comparable vertices is
introduced (and this could continue indefinitely). By applying a different expansion rule
first, this can be avoided sometimes. For F = P7, the algorithm was run by first looking for
comparable vertices and then for comparable edges, except when |V (I)| = 10, in which case
the algorithm first looks for comparable edges and then for comparable vertices.

The second adjustment is based on the following observation.

▶ Observation 8 (♠). Every P7-free minimal obstruction to C5-coloring, except for the graph
K3, contains the cycle C5 or the cycle C7 as an induced subgraph.

By Observation 8, the set of P7-free minimal obstructions can be partitioned into three
subsets:

(i) the triangle K3,
(ii) minimal obstructions that are P7-free but contain C5 as an induced subgraph,
(iii) minimal obstructions that are P7-free but contain C7 as an induced subgraph.
Thus, running the algorithm for (I = C5, H = C5, F = P7) and (I = C7, H = C5, F = P7),
respectively, we can generate the families (ii) and (iii). This yields the following result; recall
that the finiteness of the family of minimal obstructions was already shown by Kamiński and
Pstrucha [23].

▶ Observation 9. There are six P7-free minimal obstructions to C5-coloring. Two of these
obstructions are P7-free, but not P6-free.

4.2 P8-free minimal obstructions

This section is devoted to the proof of Theorem 1, which we restate below (see also Figure 3).

▶ Theorem 1. There are 19 minimal obstructions to C5-coloring among P8-free graphs.

Similarly to the P7-free case, the proof uses the algorithm from Section 3, but this time
it requires a lot more purely combinatorial insights. For i ∈ [4], let Qi be the graph obtained
from two disjoint copies of C5 by identifying i pairs of consecutive corresponding vertices of
the cycles (see Figure 2). Let G be a P8-free minimal obstruction; we aim to understand the
structure of G and show that is must be one of 19 graphs in Figure 3. We split the reasoning
into two cases: first, we assume that G contains Qi, for some i ∈ [4], as an induced subgraph.
Then, in the second case, we assume that G is {Q1, Q2, Q3, Q4}-free.

Case 1: G contains Qi for some i ∈ [4] as an induced subgraph. We deal with this case
using the algorithm from Section 3. The algorithm terminates in a few minutes when it is
called with the parameters (I = Qi, H = C5, F = P8) for all i ∈ [4]. All minimal obstructions
obtained this way are listed in Figure 3.

Case 2: G does not contain Qi for any i ∈ [4]. As K3 is a minimal obstruction, from
now on we can assume that G is {P8, K3, Q1, Q2, Q3, Q4}-free. We aim to show that all such
graphs are C5-colorable, i.e., the list obtained in Case 1, plus the triangle, is exhaustive.

▶ Lemma 10 (♠). Let G be a {P8, K3, Q1, Q2, Q3, Q4}-free graph. Then G is C5-colorable.
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5 Minimal obstructions to C5-coloring with no long subdivided claws

This section is devoted to the proof of Theorem 2.
▶ Theorem 2. There are 3 minimal obstructions to C5-coloring among S2,2,1-free graphs,
and 5 minimal obstructions to C5-coloring among S3,1,1-free graphs.

The minimal obstructions are shown in Figure 4 and can also be obtained from the
database of interesting graphs at the House of Graphs [7] by searching for the keywords
“S221-free minimal obstruction to C5-coloring” and “S311-free minimal obstruction to C5-
coloring”, respectively. As in this section the target graph is always C5, we will keep writing
minimal obstructions for minimal obstructions to C5-coloring. We proceed similarly as in the
proof of Theorem 1. Let G be an S2,2,1-free (respectively, S3,1,1-free) minimal obstruction.
We again consider two cases.

Case 1: G contains C5 as an induced subgraph. This case is solved using the algorithm
from Section 3. The algorithm is called with the parameters (I = C5, H = C5, F = S2,2,1)
and then with parameters (I = C5, H = C5, F = S3,1,1). Both calls terminate, returning a
finite list of minimal obstructions.

Case 2: G does not contain C5 as an induced subgraph. Similarly as in the proof
of Theorem 1, note that K3 is a minimal {F, C5}-free obstruction for F ∈ {S2,2,1, S3,1,1}.
Thus, from now on, we assume that G is K3-free and prove that there are no more minimal
obstructions satisfying this case, i.e., the following result.
▶ Lemma 11 (♠). Let F ∈ {S2,2,1, S3,1,1} and let G be a {F, C5, K3}-free graph. Then G is
C5-colorable.

Combining the cases, we obtain the statement of Theorem 2.

6 An infinite family of minimal obstructions

In this section we construct infinite families of graphs that will be later used to prove
Theorems 3 and 4. The construction is a generalization of the one designed for 3-Coloring [4];
the authors attribute it to Pokrovskiy.

The construction. For every odd q ≥ 3 and every p ≥ 1, let Gq,p be the graph on vertex
set [qp − 3]0 (all arithmetic operations on [qp − 3]0 here are done modulo qp − 2), such that
for every i ∈ [qp − 3]0 it holds that

N(i) = {i − 1, i + 1} ∪ {i + qj − 1 | j ∈ [p − 1]}.

To simplify the arguments, we partition V (Gq,p) into q sets Vs = {i | i = s mod q}, where
s ∈ [q − 1]0. Next observation follows immediately from the definition of E(Gq,p).
▶ Observation 12. Let q ≥ 3 be odd, and let ij ∈ E(Gq,p) be such that i ∈ Vs for some
s ∈ [q − 1]0. If i < j, then j ∈ Vs−1, or j = i + 1, or i = 0 and j = qp − 3. Analogously, if
j > i, then j ∈ Vs+1, or j = i − 1, or i = qp − 3 and j = 0.

We now show that graphs Gq,p are minimal obstructions to H-coloring for a rich family
of graphs H.
▶ Lemma 13 (♠). Let q ≥ 3 be an odd integer, and let H be graph of odd girth q that does
not contain C4 as a subgraph. For every p ≥ 1 the graph Gq,p is a minimal obstruction to
H-coloring.
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Excluded induced subgraphs of Gq,p. Now let us show an auxiliary lemma that will be
helpful in analyzing induced subgraphs that (do not) appear in Gq,p. In particular, it implies
that in order to prove that for each p, the graph Gq,p is F -free for some graph F , it is
sufficient to show that this statement holds for some small values of p.

▶ Lemma 14. Let q be a fixed constant and F be a graph. Let p ≥ |V (F )| + 2. If Gq,p−1 is
F -free, then Gq,p is F -free.

Proof. Assume otherwise, and let U ⊆ V (Gq,p) induce a copy of F in Gq,p, in particular
|V (F )| = |U |. Since |V (F )| < qp−2, we can assume without loss of generality that the vertex
qp − 3 does not belong to U . Since |V (Gq,p)| = qp − 2 > q(|V (F )| + 1), there exist q + 1
consecutive vertices ℓ, . . . , ℓ + q that do not belong to U . Define R = {j ∈ U | j > ℓ + q},
R′ = {j − q | j ∈ R}, and let L = U \ R.

Now consider U ′ = L ∪ R′, and note that ℓ /∈ U ′. It is straightforward to verify that
U ′ ⊆ V (Gq,p−1). We will show that U ′ induces a copy of F in V (Gq,p−1). Since this is a
contradiction with our assumption, we then conclude that Gq,p is F -free.

Let i, j ∈ U ′, let s ∈ [q − 1]0 be such that i ∈ Vs. Assume without loss of generality that
i < j. Note that it is enough to show that

if i, j < ℓ, then ij ∈ E(Gq,p−1) if and only if ij ∈ E(Gq,p),
if i, j > ℓ, then ij ∈ E(Gq,p−1) if and only if (i + q)(j + q) ∈ E(Gq,p),
if i < ℓ < j, then ij ∈ E(Gq,p−1) if and only if i(j + q) ∈ E(Gq,p).

The first item is straightforward.
For the second item, by Observation 12 we have that ij ∈ E(Gq,p−1) if and only if

j = i + 1 or j ∈ Vs−1. The first is equivalent to j + q = (i + q) + 1, the latter is equivalent to
j + q ∈ Vs−1. Hence again using Observation 12 we obtain that ij ∈ E(Gq,p−1) if and only if
(i + q)(j + q) ∈ E(Gq,p).

For the last item, note that i < ℓ < j implies i ∈ L and j ∈ R′. If ij ∈ E(Gq,p−1), then
by Observation 12, either j = i + 1 or vj ∈ Vs−1. Since i < ℓ < j, the first case is not
possible. In the second case, if vj ∈ Vs−1, then j + q ∈ Vs−1, so i(j + q) ∈ E(Gq,p). On the
other hand, if i(j + q) ∈ E(Gq,p), then, since i < ℓ < j, it cannot happen that j + q = i + 1.
If j + q ∈ Vs−1 then j ∈ Vs−1, so we conclude that ij ∈ E(Gq,p−1). That concludes the
proof. ◀

The power of Lemma 14 is that in order to show that Gq,p is F -free for every p, it is
sufficient to prove it for a finite (and small) set of graphs. This is encapsulated in the
following, immediate corollary.

▶ Corollary 15. Let q be a fixed constant and F be a graph. If Gq,p is F -free for every
p ≤ |V (F )| + 1, then Gq,p is F -free for every p.

Consequently, for every fixed q and F , Corollary 15 reduces the problem of showing that
Gq,p is F -free to a constant-size task that can be tackled with a computer.

Proof of Theorem 4 and Theorem 3. Now let us analyze what induced paths and subdivided
claws appear in Gq,p. We start with showing that for every odd q ≥ 3 and every p ≥ 1 the
graph Gq,p is qK2-free, i.e., they exclude an induced matching on q edges. Here, an induced
matching is a set of edges that are not only pairwise disjoint, but also non-adjacent.

▶ Lemma 16 (♠). Let q ≥ 3 be an odd integer. For every p ≥ 1 the graph Gq,p is qK2-free.
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Figure 5 If a graph contains S3(q−1)/2,3(q−1)/2,1 as an induced subgraph, then it also contains qK2.

Let us remark that Lemma 16 is best possible, i.e., if p is large enough, then Gq,p contains
(q − 1)K2 as an induced subgraph. We do not prove it, as later, in Lemma 19, we will show a
stronger result. Let us turn our attention to induced paths and subdivided claws that do not
appear in Gq,p. In particular, using Lemma 16 we can exclude the existence of long paths
and claws (see Figure 5).

▶ Lemma 17 (♠). Let q ≥ 3 be an odd integer. For every p ≥ 1 the graph Gq,p is
{P3q−1, S2,2,2, S3(q−1)/2,3(q−1)/2,1}-free.

Now, as an immediate consequence of Lemma 13 and Lemma 17, we obtain Theorem 4,
which we restate below.

▶ Theorem 4. Let q ≥ 3 be odd, and let H be a graph of odd girth q that does not contain
C4 as a subgraph. There is an infinite family of minimal obstructions to H-coloring that are
{P3q−1, S2,2,2, S3(q−1)/2,3(q−1)/2,1}-free.

Note that for H = C5, i.e., for q = 5, Theorem 4 shows that the constructed graphs are in
particular P14-free and S6,6,1-free. It turns out that they are actually P13-free and S5,5,1-free
(and also exclude some other subdivided claws). Here we will make use of Corollary 15,
combined with computer search.

Let us start with analyzing the length of a longest induced path in G5,p. Thus we are
interested in applying Corollary 15 to the case q = 5 and F = P13. Actually, we can even
exclude F = P10 + P2, i.e., the graph with two components: one isomorphic to P10 and
the other isomorphic to P2. Note that (P10 + P2)-free graphs are in particular P13-free.
Furthermore, the graph G5,p excludes the following subdivided claws: S5,5,1, S11,1,1, and
S8,2,1. These results, together with Lemma 13, give us Theorem 3.

▶ Theorem 3. There is an infinite family of minimal obstructions to C5-coloring, which
simultaneously exclude P13, S2,2,2, S5,5,1, S11,1,1, and S8,2,1 as an induced subgraph.

Longest induced paths in Gq,p. Theorem 3, and the fact that from the result of Chudnovsky
et al. [4] it follows that for every p, the graph G3,p is P7-free (while Lemma 17 only gives P8-
freeness), suggest that the bound on the length of a longest induced path given by Theorem 4
is not optimal also in the other cases. This evidence suggests the following conjecture.

▶ Conjecture 18. Let q ≥ 3 be odd. For every p ≥ 1, the graph Gq,p is P3q−2-free.

We conclude this section by showing that the bound from Conjecture 18, if true, is best
possible.

▶ Lemma 19 (♠). Let q ≥ 3 be odd. If p ≥ 2q + 1, then Gq,p contains P3q−3 as an induced
subgraph.
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