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Abstract
We are interested in the following validation problem for computational reductions: for algorithmic
problems P and P ⋆, is a given candidate reduction indeed a reduction from P to P ⋆? Unsurprisingly,
this problem is undecidable even for very restricted classes of reductions. This leads to the
question: Is there a natural, expressive class of reductions for which the validation problem can
be attacked algorithmically? We answer this question positively by introducing an easy-to-use
graphical specification mechanism for computational reductions, called cookbook reductions. We
show that cookbook reductions are sufficiently expressive to cover many classical graph reductions and
expressive enough so that SAT remains NP-complete (in the presence of a linear order). Surprisingly,
the validation problem is decidable for natural and expressive subclasses of cookbook reductions.
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1 Introduction

Computational reductions are one of the most powerful concepts in theoretical computer
science. They are used, among others, to establish undecidability in computability theory
and hardness of algorithmic problems in computational complexity theory. In practical
applications, reductions help to harness the power of modern SAT solvers for other problems.

For teaching reductions in introductory courses, instructors often design learning tasks
for (i) understanding the computational problems involved, (ii) exploring existing reductions
via examples, and (iii) designing reductions between computational problems. Technological
teaching support so far is only provided for (i) and (ii), likely because these tasks are typically
easy to illustrate and checking student solutions is algorithmically straightforward.

Providing teaching support for (iii) requires to address the foundational question: Is there
a language for specifying reductions that can express a variety of reductions, but is also
algorithmically accessible? In particular, it should be possible to test whether a candidate
for a reduction provided by a student is indeed a valid reduction, preferably also providing a
counterexample in case a submitted answer is incorrect.
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In this paper, we propose such a specification language for reductions and study variants
of the following algorithmic problem, parameterized by a class R of reductions and complexity
classes C and C∗:

Problem: Reduction?(C, C⋆, R)
Input: Algorithmic problems P ∈ C, P ⋆ ∈ C⋆, and a reduction ρ ∈ R.

Question: Is ρ a reduction from P to P ⋆?

More precisely, our contributions are twofold:
We propose a graphical and modular specification language for reductions, which we
call cookbook reductions (Section 3). Its design is inspired by “building blocks” such as
local replacement of nodes, edges, . . . [6] that are used in the context of many standard
reductions. Cookbook reductions allow these building blocks to be combined in a simple,
stepwise fashion. We compare the expressive power of cookbook reductions with standard
methods of specifying reductions. Specifically, we relate cookbook reductions to quantifier-
free first-order interpretations (Section 4.2) and observe that SAT remains NP-hard under
cookbook reductions, assuming the presence of a linear order (Corollary 3).
We study variants of the decision problem Reduction?, obtained by choosing different
classes of reduction candidates and by either fixing the algorithmic problems P, P ⋆ or by
fixing complexity classes C, C⋆ and letting P ∈ C, P ⋆ ∈ C⋆ be part of the input (Section 5).
Not surprisingly, Reduction? is undecidable for many restricted variants (Theorem 4).
To our surprise, several interesting variants remain decidable: for example, Reduction?
is decidable for an arbitrary fixed problem P and fixed P ⋆ expressible in monadic second-
order logic1, if reduction candidates are from the subclass of cookbook reductions that
allows local replacements of edges by a gadget graph (Theorem 10). Also, for some
concrete choices of problems P, P ⋆, we characterize valid reductions; the characterizations
can be used to generate counterexamples for invalid candidates, which is particularly
relevant in teaching contexts.

Related work. Restricted specification languages have also been used in [3, 9] in the context
of learning reductions algorithmically. Reductions that are similar in spirit to cookbook
reductions due to their stepwise fashion are pp-constructions and gadget reductions in the
realm of (finite) constraint satisfaction problems [1, 5, 2].

2 Preliminaries

We assume familiarity with basic notions from finite model theory [10].
A (purely relational) schema σ = {R1, . . . , Rm} is a set of relation symbols Ri with

associated arities Ar(Ri). A (finite) σ-structure S = (U, RS
1 , . . . , RS

m) consists of a finite
set U , called the universe or the domain of S, and relations RS

i ⊆ UAr(Ri). If clear from the
context, we sometimes omit the superscript S. We also refer to the domain of S as dom(S).
We write FOk for the set of all first-order formulas with quantifier depth at most k. The
FOk-type of a σ-structure S is the set of all FOk formulas over schema σ that S satisfies.
Two structures S1, S2 are FO-similar up to quantifier depth k, written S1 ≡FO

k S2, if they
have the same FOk-type.

An isomorphism type of σ-structures is an equivalence class of the equivalence relation
“is isomorphic to”. We represent an isomorphism type by an arbitrarily fixed σ-structure t

with universe {1, . . . , k}, for the appropriate number k, from that equivalence class. The

1 This logic extends first-order logic with quantification over sets and can express for example the
NP-complete problem 3-Colorability.



J. Grange, F. Vehlken, N. Vortmeier, and T. Zeume 56:3

Problem: Clique
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size k with
(u, v) ∈ E for all u, v ∈ U?

Problem: IndependentSet
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size k with
(u, v) /∈ E for all u, v ∈ U?

Problem: VertexCover
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size at most
k such that u ∈ U or v ∈ U for all
(u, v) ∈ E?

Problem: FeedbackVertexSet
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size at most k
such that removing U from G yields
a cycle-free graph?

Problem: HamCycleu

Input: Undirected graph G = (V, E)
Question: Is there an undirected cycle in G that

passes each node exactly once?

Problem: HamCycled

Input: Directed graph G = (V, E)
Question: Is there a directed cycle in G that

passes each node exactly once?

Figure 1 Collection of algorithmic problems considered in the paper.

arity of an isomorphism type is the universe size of its representative. Often, we identify
an isomorphism type with its representative t. Given a structure S and a subset A of its
universe, we write tpS(A) for the isomorphism type of S[A], so, the isomorphism type of the
substructure of S that is induced by A. We write tp(A) if S is clear from the context and
call tp(A) the isomorphism type of A.

An embedding π of a structure S into a structure S⋆ is an injective mapping from the
domain of S into the domain of S⋆ that is an isomorphism between S and the substructure
of S⋆ that is induced by the image of π. So, an embedding π witnesses that S⋆ contains an
isomorphic copy of S as an induced substructure.

An (algorithmic) problem P is an isomorphism-closed set of σ-structures, for some
schema σ. A reduction ρ from a problem P over schema σ to a problem P ⋆ over schema σ⋆

is a mapping from σ-structures to σ⋆-structures such that S ∈ P ⇔ ρ(S) ∈ P ⋆, for every
σ-structure S. A d-dimensional first-order interpretation from σ-structures to σ⋆-structures
is a tuple Ψ = (φU (x̄), φ∼(x̄1, x̄2), (φR(x̄1, . . . , x̄Ar(R)))R∈σ⋆) of first-order formulas over
schema σ, where each tuple x̄ = (x1, . . . , xd), x̄i = (xi,1, . . . , xi,d) consists of d variables.
For a given σ-structure S with universe U , let Ψ̂(S) be the σ⋆-structure with universe
Û = {ā ∈ Ud | S |= φU (ā)} and relations RΨ̂(S) = {(ā1, . . . , āAr(R)) ∈ ÛAr(R) | S |=
φR(ā1, . . . , āAr(R))} for each R ∈ σ⋆. We demand that for every σ-structure S, the binary
relation ∼Ψ̂(S)= {(ā1, ā2) ∈ Û2 | S |= φ∼(ā1, ā2)} is a congruence relation on Ψ̂(S), that is,
an equivalence relation on the universe that is compatible with the relations of the structure.
For a given σ-structure S, the interpretation Ψ defines the σ⋆-structure Ψ(S) that is the
quotient structure of Ψ̂(S) with respect to ∼Ψ̂(S), that is, the structure that results from
Ψ̂(S) by restricting the universe to only one element for every equivalence class of ∼Ψ̂(S).

Most of our examples will be drawn from the algorithmic problems from Figure 1. We
also consider variants of some of these problems where k is a fixed parameter, e.g. k-Clique
asks, given a graph G, whether there is a k-clique in G.

For a natural number n, we sometimes write [n] for the set {1, . . . , n}.

3 Cookbook reductions: A specification language for reductions

When looking for a reduction, one approach by typical experts is to subsequently try building
blocks that they have encountered in the context of other reductions before. For example,
Garey and Johnson [6, Section 3.2] discuss common proof techniques like local replacements
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that occur in many standard reductions. An example is the standard reduction from the
problem of finding a directed Hamiltonian cycle to finding an undirected Hamiltonian cycle
that transforms a directed graph into an undirected graph by mapping each node

v
to

a small gadget
vin v vout

. Constructing such node gadgets is one of the typical building
blocks when designing reductions.

Our approach towards constructing a specification language for reductions is to (1) identify
common building blocks used in computational reductions between graph problems, and to
(2) abstract these building blocks into a more general specification language. The resulting
language is reasonably broad and, due to its modular and graphical nature, easy to use.

3.1 Building blocks and recipes

Many computational reductions can be crafted from a small set of common building blocks.
For reductions between graph problems, some such building blocks are the following:

Edge gadgets replace each edge (u, v) of the source instance uniformly by a graph. For
example, in the standard reduction from VertexCover to FeedbackVertexSet,
every edge

u v
in the source instance is replaced by a triangle

u v
.

Node gadgets replace each node of the source instance uniformly by a graph and specify how
these graphs are connected. For example, in the standard reduction from HamCycled

to HamCycleu, every node
v

in the source instance is replaced by a path
vin v vout

and
if there is an edge (u, v) in the source instance, then the paths for u and v are connected
via

uin u uout

vin v vout

.

Global gadgets introduce a (global) graph and specify how each node of this graph is
connected to the nodes of the source instance. For example, in the simple reduction from
3-Clique to 4-Clique, a single node

g
is introduced as global graph and each node v of

the source instance is connected to g via an edge
g v

.

These building blocks have in common that target instances of reductions are obtained
from source instances by following simple, recipe-like steps of the form “for every occurrence
of a substructure t in the source instance, create a copy of the substructure t⋆ in the target
structure”. For example, the recipes for the above reductions are as follows:

Reducing k-VertexCover to k-FeedbackVertexSet: For every node v in the source
instance, create a node v⋆ in the target instance. For every edge (u, v) in the source
instance, create a node w⋆

uv and edges (u⋆, v⋆), (v⋆, w⋆
uv), (w⋆

uv, u⋆) in the target instance.
Reducing HamCycled to HamCycleu: For every node v in the source instance, create
nodes v⋆

in, v⋆, v⋆
out in the target instance and connect them as a path. For every directed

edge (u, v) in the source instance, create the undirected edge (u⋆
out, v⋆

in) in the target
instance.
Reducing 3-Clique to 4-Clique: Create a node g⋆ in the target instance. For every node
v of the source instance, create a node v⋆ in the target instance and add the edge (v⋆, g⋆).
Copy all edges (u, v) of the source instance as edges (u⋆, v⋆) to the target instance.

Other reductions can also be phrased in this form, for instance:
Reducing k-Clique to k-IndependentSet: First, for every node v of the source instance,
create a node v⋆ in the target instance. Then, for every pair u, v of nodes that are not
connected by an edge in the source instance, create an edge (u⋆, v⋆) in the target instance.
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for every create

v v⋆

u

v

u⋆

v⋆

(a) k-Clique to
k-IndependentSet.

for every create

v v⋆

u

v

u⋆

v⋆
w⋆

uv

(b) k-VertexCover to
k-FeedbackVertexSet.

for every create

v v⋆
in v⋆ v⋆

out

u

v v⋆
in v⋆ v⋆

out

u⋆
in u⋆ u⋆

out

(c) HamCycled to
HamCycleu.

for every create

g⋆

v v⋆ g⋆

v

u

v⋆

u⋆

g⋆

(d) 3-Clique to
4-Clique.

Figure 2 Graphical representations of four reductions. The reductions are applied stepwise, from
the top-most step to the bottom-most step. Nodes and edges coloured blue are created in this step,
grey nodes and edges were created in a previous step.

Reductions specified this way capture building blocks such as the ones from [6] and are
usually easy to understand, often much more than their presentation as algorithms or as
logical interpretations. Such reductions can also easily be specified graphically, see Figure 2.

3.2 Cookbook reductions: Formalization

We now formalize cookbook reductions as such recipe-style descriptions of computational
reductions. In general, graphical representations as in Figure 2 can be used to specify a
cookbook reduction. In this section, we discuss the formal syntax and semantics.

Intuitively, a reduction specified in our formalism builds, based on a source structure,
the target structure in a sequence of stages, starting from an empty structure. At first,
independent of the source structure, some global elements and tuples over these elements
may be introduced to the target structure. Then, for every element of the source structure,
a set of elements may be added, together with tuples that may also incorporate the elements
that were introduced in the step before. The added elements and tuples depend on the
(atomic) type of the respective element of the source structure. In further stages, elements
are analogously introduced for every set of two, three, . . . , elements of the source structure,
depending on the type of these sets.

Syntactically, a cookbook reduction ρ from σ-structures to σ⋆-structures is a finite set
ρ = {(t1,S1), . . . , (tm,Sm)} of pairs which we call instructions. The structures ti are σ-
structures with universe {1, . . . , ki}, for some natural number ki ≥ 0, that represent pairwise
distinct isomorphism types of σ-structures. The set {t1, . . . , tm} is the support of ρ. The
arity of ρ is the maximal arity of an isomorphism type in the support of ρ. The structures
Si are over the schema σ⋆. For (ti,Si) ∈ ρ, we also refer to Si as S(ti). Each instruction
(t,S), where t has the universe [k] = {1, . . . , k}, satisfies the following properties:
(P1) The universe dom(S) of S consists of elements (A, j), where A ⊆ [k] and j ≥ 1. If

(A, j) ∈ dom(S) with j > 1, then also (A, 1), . . . , (A, j − 1) are in dom(S).
(P2) For any (A, j) ∈ dom(S) with A ⊊ [k], the isomorphism type t′ = tpt(A) is in the

support of ρ and ({1, . . . , |A|}, j) is in dom(S(t′)).
(P3) For any tuple ((A1, j1), . . . , (Aℓ, jℓ)) in any relation of S with

⋃
i≤ℓ Ai ⊊ [k], the

isomorphism type tpt(
⋃

i≤ℓ Ai) is in the support of ρ.
(P4) For any (t′,S′) ∈ ρ and any A ⊊ [k] with tpt(A) = t′, there is an isomorphism π from

t′ to t[A] such that the injective mapping π̂ with π̂((A′, j′)) = (π(A′), j′), for all (A′, j′)
in dom(S′), is an embedding from S′ into S.

MFCS 2024
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t S

1 ({1},1)

1

2

({1},1)

({2},1)
({1,2},1)

(a) k-VertexCover to
k-FeedbackVertexSet.

t S

1 ({1},1) ({1},2) ({1},3)

1

2 ({2},1) ({2},2) ({2},3)

({1},1) ({1},2) ({1},3)

(b) HamCycled to HamCycleu.

t S

(∅,1)

1 ({1},1) (∅,1)

2

1

({2},1)

({1},1)
(∅,1)

(c) 3-Clique to 4-Clique.

Figure 3 Three reductions formalized as cookbook reductions. Nodes introduced for type t∅
are coloured green, nodes and edges introduced for type t are coloured grey, and nodes and edges
introduced for types t and t are coloured blue. Compare to Figure 2(b), (c), and (d).

A cookbook reduction has to satisfy a further, semantic property, which we state after
defining the semantics.

See Figure 3 for examples of cookbook reductions.
We give some more explanations for the conditions (P1)–(P4). Intuitively, an instruction

(t,S) ∈ ρ means that for every occurrence of the type t in the source structure, a copy of the
structure S is included in the target structure. The conditions (P1) and (P2) are concerned
with the universe dom(S) of S. If t is an isomorphism type of k elements, the universe
of S partly consists of elements ([k], 1), . . . , ([k], m), for some number m. These elements
are added to the target structure for every occurrence of the type t. We also call these m

elements fresh and write #fresh(t) = m (and #fresh(t) = 0 if no such element exists). The
universe of S also contains further elements of the form (A, j) with A ⊊ [k]. These represent
elements that are added for sets of elements with size k′ < k (in the intuitive explanation: in
previous stages). If such an element (A, j) occurs in the universe of S, there has to be a
corresponding instruction to add this element, that is, the type t′ of the set A in t has to be
in the support of ρ and the element ([k′], j) has to be a fresh element in S(t′).

The conditions (P3) and (P4) concern the relations of S. A tuple ((A1, j1), . . . , (Aℓ, jℓ))
with

⋃
i≤ℓ Ai = [k] in a relation of S says that this tuple is to be added to the target structure

for every set of elements of type t. No further conditions on these tuples are imposed by (P3)
and (P4). If A′ def=

⋃
i≤ℓ Ai is a proper subset of [k], this tuple is added for the subset A′ of

elements (intuitively: in a previous stage). Again, there needs to be another instruction that
adds this tuple, that is, the isomorphism type t′ of A′ needs to be in the support of ρ.

If a subtype t′ of t is in the support of ρ then the corresponding instruction (t′,S′)
needs to be respected: for every occurrence of t′ in t, a copy of the structure S′ needs to
be present in S. Formally, if a set A ⊊ [k] with |A| = k′ has type t′ in t, as witnessed
by some isomorphism π from t′ to t[A], the substructure of S that is induced by the set
{(Ai, ji) | Ai ⊆ π([k′])} is isomorphic to S′.

We now define the semantics of cookbook reductions. A cookbook reduction ρ =
{(t1,S1), . . . , (tm,Sm)} maps a σ-structure S to a set ρ(S) of σ⋆-structures, where σ is the
schema of the isomorphism types ti and σ⋆ is the schema of the structures Si. For some
σ-structure S, the σ⋆-structure S⋆ is in ρ(S) if the following conditions hold:
(S1) The universe dom(S⋆) of S⋆ consists of exactly those elements (A, j) with A ⊆ dom(S)

such that
the isomorphism type t = tpS(A) is in the support of ρ, and
the structure S with (t,S) ∈ ρ has the element ({1, . . . , |A|}, j) in its universe.

(S2) If a tuple ((A1, j1), . . . , (Aℓ, jℓ)) is in some relation RS⋆ of S⋆, for any R ∈ σ⋆, then the
isomorphism type tpS(

⋃
i≤ℓ Ai) is in the support of ρ.
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(S3) For any (t,S) ∈ ρ and any A ⊆ dom(S) with tpS(A) = t, there is an isomorphism π

from t to S[A] such that the injective mapping π̂ with π̂((A′, j′)) = (π(A′), j′), for all
(A′, j′) in the universe of S, is an embedding from S into S⋆.

Intuitively, these conditions state that the elements (S1) and tuples (S3) of S⋆ can be
obtained by transforming occurrences of an isomorphism type t in S into S, for any (t,S) ∈ ρ,
and that no other tuples are present (S2).

A cookbook reduction ρ needs to satisfy the following semantic property2.
(P5) For every σ-structure S, the set ρ(S) is a non-empty set of isomorphic structures.
Abusing notation, we usually write ρ(S) to denote some arbitrary structure S⋆ ∈ ρ(S).

4 The expressive power of cookbook reductions

In this section we study the expressive power of cookbook reductions. First, we explain
how the building blocks from Section 3 are captured by restricted cookbook reductions.
Afterwards, we discuss the expressive power of general cookbook reductions and relate them
to quantifier-free first-order interpretations.

4.1 From building blocks to cookbook reductions
Cookbook reductions are a versatile reduction concept and as we have seen in the examples
depicted in Figure 2 and Figure 3, many reductions have a small and easily understandable
representation as cookbook reductions that have only few isomorphism types in their support.

In fact, the building blocks for graph problems that we discussed as motivation for
cookbook reductions can be recovered as restricted variants of cookbook reductions. For
undirected graphs with only the binary edge relation E and no self-loops, only four isomorph-
ism types of arity at most 2 are relevant: the type t∅ of the graph with 0 nodes, the type t

of a single node, the type t of an undirected edge, and the type t of non-edges.
We obtain the following characterization:
For a global gadget reduction, the inserted global graph S(t∅) is arbitrary. Nodes of the
source instance are copied, so we fix #fresh(t ) = 1, but allow S(t ) to arbitrarily select
nodes from the global graph that are connected to every source node. Edges of the source
are copied, so #fresh(t ) = 0 and S(t ) just adds the edge.
A node gadget reduction replaces every node by some gadget, so S(t ) is arbitrary. The
reduction can define how these gadgets are connected in case there is an edge between
the corresponding nodes in the source instance, resulting in #fresh(t ) = 0 and S(t )
being arbitrary apart from that.
An edge gadget reduction replaces edges by some gadget. As every node from the source
is copied to the target, S(t ) is a single node. We allow any symmetric S(t ).

Only the mentioned isomorphism types are in the support of the cookbook reduction.
A similar characterization holds if the source graph is directed.
Global, node or edge gadget reductions constitute expressive subclasses of cookbook

reductions that are relatively easy to comprehend. More fragments can be defined by, e.g.,
setting an upper bound for #fresh(t ) in a node gadget reduction, or selecting a different set

2 For global and node gadget reductions as introduced in Section 3.1, this property is trivially satisfied, for
edge gadget reductions it is satisfied if the gadget graph is symmetric. In general, the following syntactic
restriction is necessary: For every (t,S) ∈ ρ and any automorphism π of t there is an automorphism π̂
of S with π̂((A, j)) = (π(A), j′), for any (A, j) in the universe of S.

MFCS 2024
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of isomorphism types t for which S(t) needs to be provided. This modularity of cookbook
reductions helps finding decidable cases of the Reduction? problem. In a teaching context,
instructors can select the degree of freedom students have.

4.2 Relating cookbook reductions to quantifier-free interpretations
Quantifier-free first-order (FO) interpretations constitute a widely-used class of reductions
with very low complexity, see, e.g., [7]. They are still expressive enough to show hardness of
problems: SAT, the satisfiability problem for propositional formulas, is NP-hard even under
quantifier-free FO interpretations [4].

In this section, we show that cookbook reductions can be expressed as quantifier-free
FO interpretations. If we assume a linear order on the input structures, mildly restricted
quantifier-free FO interpretations can be expressed as cookbook reductions. It follows that if
input structures are linearly ordered, SAT is NP-hard under cookbook reductions.

We say that two reductions ρ1 and ρ2 are equivalent for a source structure S over the
appropriate schema, if the target structures ρ1(S) and ρ2(S) are isomorphic.

▶ Theorem 1. For every cookbook reduction ρ there is a d-dimensional quantifier-free first-
order interpretation Ψ, for some number d, such that ρ and Ψ are equivalent for every
structure with at least 2 elements.

Proof idea. Suppose that for a cookbook reduction ρ = {(t1,S1), . . . , (tm,Sm)} the maximal
arity of an isomorphism type ti is k and ℓ is the maximal size of the universe of a structure
Si. The interpretation Ψ intuitively creates for each set of elements of type ti a copy of
the structure Si, so, defines a universe of elements of the form (A, i), where |A| ≤ k and
i ≤ ℓ. Such elements can be encoded by tuples of length d

def= k + ℓ + 1. Quantifier-free
formulas can determine the isomorphism type of a set of elements and, by the properties of a
cookbook reduction, whether a tuple ((A, i1), . . . , (A, ir)) exists in the interpreted structure
only depends on the isomorphism type of A. ◀

We call a first-order interpretation set-respecting if, for the equivalence relation defined
by the formula φ∼(x̄1, x̄2), two tuples ā1, ā2 are only in the same equivalence class if ā1 and
ā2 contain the same set of elements.

▶ Theorem 2. For every set-respecting quantifier-free first-order interpretation Ψ there is
a cookbook reduction ρ such that ρ and Ψ are equivalent for every structure with a linearly
ordered universe.

Proof idea. Let d be the dimension of Ψ. For every isomorphism type t of k ≤ d elements,
the number ℓ of elements ([k], 1), . . . , ([k], ℓ) in the universe of S(t), so, the number of
elements added to the target structure because of a set of elements with isomorphism type
t, is equal to the number of equivalence classes of the congruence defined by φ∼ on the set
of d-tuples that contain exactly the k elements of t and satisfy the formula φU of Ψ. We
identify each of the ℓ elements with a particular d-tuple over the set [k], which is possible as
[k] is linearly ordered. The structure S(t) is then defined as dictated by Ψ. ◀

As SAT is NP-hard under set-respecting quantifier-free FO interpretations [4], we obtain:

▶ Corollary 3. Assuming that input structures are linearly ordered, SAT is NP-hard under
cookbook reductions.
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Note that in descriptive complexity theory one often studies relational input structures
that are not linearly ordered (although Immerman usually assumes a linear order to be present
[7, Proviso 1.14]). However, when considering Turing machines as models of computation in
complexity theory, inputs are binary string encodings and therefore linearly ordered.

5 Towards automated correctness tests and feedback

We now turn to the problem of checking whether a given reduction candidate is a valid
reduction between two computational problems P and P ⋆. In a first variation of this problem,
a corresponding algorithm gets as input the reduction candidate ρ ∈ R as well as the
two problems P ∈ C and P ⋆ ∈ C⋆, for a fixed class R of reductions and fixed complexity
classes C and C⋆. Formally, this corresponds to solving the following algorithmic problem
Reduction?(C, C⋆, R), parameterized by C, C⋆, and R. Also fixing the problems P and P ⋆

yields the special case Reduction?(P, P ⋆, R).

Problem: Reduction?(C, C⋆, R)
Input: Algorithmic problems P ∈ C,

P ⋆ ∈ C⋆, and a reduction ρ ∈ R.
Question: Is ρ a reduction from P to P ⋆?

Problem: Reduction?(P, P ⋆, R)
Input: A reduction ρ ∈ R.

Question: Is ρ a reduction from P to P ⋆?

We are slightly vague here, as for the moment we leave open how algorithmic problems
and reductions are represented. It will be clear how these are represented for all classes
C, C⋆ and R we will consider. For standard classes of reductions, – including reductions
computable in polynomial time or logarithmic space, as well as first-order definable reductions
– already the second, more restricted problem is clearly undecidable for all non-trivial P

and P ⋆. Already testing whether a quantifier-free interpretation or even an edge gadget
reduction reduces from some problem P to another problem P ⋆ is undecidable, for simple P

and P ⋆. As soon as P or P ⋆ are part of the input, the Reduction? problem is undecidable
in most cases in which one of the classes C or C⋆ is defined by an undecidable fragment of
second-order logic, even for very simple classes of reductions.

▶ Theorem 4.
1. Reduction?(P, P ⋆, R) is undecidable for the following parameters:

a. The class R of first-order interpretations, P = ∅ and arbitrary P ⋆ (or vice versa, i.e.
arbitrary P and P ⋆ = ∅).

b. The class R of edge gadget reductions, P = ∅ and some graph problem P ⋆ definable in
first-order logic with arithmetic.

c. The class R of quantifier-free interpretations, P = ∅ and the graph problem P ⋆ defined
by the first-order formula φ⋆ def= ∀x∃yE(x, y).

2. Reduction?(C, C⋆, R) is undecidable for the following parameters:
a. A class R containing the identity mapping, a class C containing the empty problem,

and a class C⋆ defined by a fragment of second-order logic with undecidable finite
satisfiability problem.

b. A class R containing the identity mapping, a class C defined by a fragment of second-
order logic with undecidable finite satisfiability problem, and a class C⋆ containing the
empty problem.

In the rest of this section, we explore how to overcome the undecidability barriers. That is,
we explore for which parameters one can obtain algorithms for solving Reduction?(P, P ⋆, R)
and Reduction?(C, C⋆, R). Our focus is on (restrictions of) cookbook reductions.
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We start by exhibiting toy examples for algorithms for Reduction?(P, P ⋆, R) for concrete
algorithmic problems P and P ⋆ in Section 5.1. For these examples, counterexamples can be
provided if the input is not a correct reduction. A generalized view is taken in Section 5.2,
where we exhibit algorithm templates for Reduction?(P, P ⋆, R) for algorithmic problems
P and P ⋆ selected from classes of problems. Then, in Section 5.3, we consider algorithmic
problems as part of the input by studying Reduction?(C, C⋆, R).

5.1 Warm-up: Reductions between explicit algorithmic problems
In this section we provide toy examples of how Reduction?(P, P ⋆, R) can be decided for
very restricted classes R: (1) for reducing k-Clique to ℓ-Clique via global gadgets, for
k < ℓ, (2) for reducing k-VertexCover to k-FeedbackVertexSet via edge gadgets, and
(3) for reducing HamCycled to HamCycleu via restricted node gadgets. In all cases, the
decision procedures are obtained by characterizing the class of correct gadgets.

While not deep, these characterizations and the algorithms resulting from them are a
first step towards more general results.

We start by characterizing those global gadgets that reduce k-Clique to ℓ-Clique. For
simplicity, we represent global gadget reductions ρ by a global gadget gρ and a distinguished
subset A of its nodes. When applying ρ to a graph G = (V, E), the gadget gρ is disjointly
added to G and edges (u, v) are introduced for all u ∈ A and all v ∈ V .

▶ Proposition 5. Let ρ be a global gadget reduction with global gadget gρ and a distinguished
subset A of its nodes. Let k, ℓ ∈ N with k < ℓ. Then the following are equivalent:
1. ρ is a reduction from k-Clique to ℓ-Clique
2. gρ and A satisfy the following conditions:

a. gρ has no ℓ-clique
b. gρ has an (ℓ − k)-clique contained in A

c. gρ has no (ℓ − k + 1)-clique contained in A

Furthermore, if ρ is not a reduction from k-Clique to ℓ-Clique, then a counterexample can
be computed efficiently.

We next characterize those edge gadgets that constitute a reduction from k-VertexCover
to k-FeedbackVertexSet. We represent edge gadget reductions ρ by an edge gadget gρ

with two distinguished nodes c and d. When applying ρ to a graph G = (V, E), all edges
(u, v) ∈ E are replaced by disjoint copies of gρ, where u, v are identified with c, d, respectively.

▶ Proposition 6. Let ρ be an edge gadget reduction based on the edge gadget gρ with
distinguished nodes c and d. Then the following are equivalent:
1. ρ is a reduction from k-VertexCover to k-FeedbackVertexSet
2. gρ satisfies the following conditions:

a. {c} and {d} are feedback vertex sets of gρ

b. ∅ is not a feedback vertex set of gρ.
Furthermore, if ρ is not a reduction from k-VertexCover to k-FeedbackVertexSet,
then a counterexample can be computed efficiently.

Lastly, we characterize restricted node gadget reductions from the directed Hamiltonian
cycle problem HamCycled to the undirected variant HamCycleu. For simplicity, we
represent node gadget reductions ρ by node gadgets gρ. A node gadget gρ consists of two
copies of a node graph S(t ) and a set of additional edges between these copies. As an
example, the standard reduction from HamCycled to HamCycleu is represented by the
node gadget consisting of two copies of the node graph with one additional edge
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between them (cf. Figures 2(c) and 3(b)). When applying gρ to a graph G = (V, E), all
nodes in V are replaced by a copy of the node graph and two such copies for nodes u, v are
connected accordingly by the additional set of edges, if (u, v) ∈ E.

As a first step towards characterizing node gadget reductions between HamCycled and
HamCycleu, we characterize all correct node gadget reductions whose node graph has at
most three nodes.

▶ Proposition 7. Let ρ be a node gadget reduction with node gadget gρ whose node graph
has at most three nodes. Then the following are equivalent:
1. ρ is a reduction from HamCycled to HamCycleu

2. gρ is either of the following node gadgets (with the two copies of the node graphs depicted
at top and bottom), up to symmetries:

Furthermore, if ρ is not a reduction from HamCycled to HamCycleu, a counterexample
can be computed efficiently.

5.2 Decidable cases for classes of (fixed) algorithmic problems
In this section, we study the question whether there are classes C and C⋆ of algorithmic
problems as well as classes R of reductions, such that after fixing P ∈ C and P ⋆ ∈ C⋆ there
is an algorithm that tests correctness of inputs ρ ∈ R.

We first give an example that decidability results are possible for non-trivial classes of
reductions and problems. Afterwards, we sketch how the technique employed in the proof
can be generalized.

▶ Theorem 8. Reduction?(P, P ⋆, R) is decidable for the class R of cookbook reductions
with arity bounded by some r > 0, arbitrary P , and P ⋆ definable in first-order logic.

The proof idea is to represent cookbook reductions ρ by “recipe structures” recipe(ρ)
such that ρ(A) can be constructed from the disjoint union A ⊎ recipe(ρ) of A and recipe(ρ)
via an FO-interpretation which depends on the arity and schema of ρ, but is independent
of ρ itself. Then we prove that correctness of reductions in the setting of Theorem 8 only
depends on the FO-similarity type of their recipe.

Intuitively, the recipe of a cookbook reduction ρ is the disjoint union of the structures
S(t) for all relevant isomorphism types t, where additional unary relations indicate the source
structure and an additional binary relation identifies inherited elements (those (A, j) where
A is a strict subset of the domain of t) with their origin. Formally, fix two schemas σ and
σ⋆, an arity r ∈ N, and define T≤r to be the finite set of all isomorphism types t over the
schema σ of arity at most r. The recipe recipe(ρ) of a cookbook reduction ρ of arity at most
r from σ to σ⋆ is a structure over the schema σ⋆ ∪ {≈} ∪ {Ct | t ∈ T≤r}, where ≈ is binary
and all Ct are unary. The restriction of recipe(ρ) to the schema σ⋆ ∪ {Ct | t ∈ T≤r} is the
disjoint union

⊎
t∈T≤r

S(t), where we set S(t) = ρ(t) if t is not in the support of ρ, and each
Ct is interpreted as the universe of S(t). The relation ≈ “identifies” inherited elements and
their original version: for every t, t′ ∈ T≤r such that t is the type of a strict subset of the
elements of t′, if a′ is an element of S(t′) inherited from S(t)’s element a, then a′ ≈ a holds
in recipe(ρ).

The structure recipe(ρ) representing the cookbook reduction ρ from 3-Clique to 4-
Clique given in Figure 3 can be found in Figure 4.
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C∅

C C

C

Figure 4 The recipe recipe(ρ) for the cookbook reduction of arity 2 from 3-Clique to 4-Clique
from Figure 3. There are four unary relations for the types t∅, t , t , and t of loopless undirected
graphs. The dotted edges represent the binary inheritance relation ≈.

There is an FO-interpretation that applies a recipe recipe(ρ) to a structure A by inter-
preting A ⊎ recipe(ρ).

▶ Lemma 9. Fix r > 0 and two schemas σ, σ⋆. There is an FO-interpretation Ir
σ,σ⋆ such

that ρ(A) and Ir
σ,σ⋆(A ⊎ recipe(ρ)) are isomorphic, for every cookbook reduction ρ from σ to

σ⋆ of arity at most r and for every σ-structure A.

As FO-interpretations preserve FO-similarity, there is a function fr
σ,σ⋆ : N → N such that

for every k ∈ N, A ≡FO
fr

σ,σ⋆ (k) A′ entails Ir
σ,σ⋆(A) ≡FO

k Ir
σ,σ⋆(A′) (see, e.g., [8, Section 3.2]).

We now prove Theorem 8.

Proof of Theorem 8. We show that whether a cookbook reduction ρ is a reduction from P

to P ⋆ solely depends on the FOm-type of recipe(ρ), for some large enough m that depends
only on r, P , and P ⋆. As there are only finitely many such FOm-types and because the type
of recipe(ρ) can be determined, the statement follows.

Let k be the quantifier rank of a formula φ⋆ ∈ FO defining P ⋆. If the recipes of two
reductions ρ and ρ′ of arity at most r are fr

σ,σ⋆-similar, then so are A ⊎ recipe(ρ) and
A ⊎ recipe(ρ′) for all σ-structures A (due to a simple Ehrenfeucht-Fraïsse argument). But
then Ir

σ,σ⋆(A⊎ recipe(ρ)) and Ir
σ,σ⋆(A⊎ recipe(ρ′)) – and therefore also ρ(A) and ρ′(A) –, are

k-similar. In particular, the reductions ρ and ρ′ behave in the same way for all σ-structures
A, that is ρ(A) |= φ⋆ if and only if ρ′(A) |= φ⋆.

We conclude that whether ρ(A) satisfies φ⋆ only depends on the FOfr
σ,σ⋆ (k)-type of

recipe(ρ) for all A. Hence, the recipe of positive instances of Reduction?(P, P ⋆, R) is a
union of equivalence classes for ≡FO

fr
σ,σ⋆ (k). For a reduction ρ it can now be evaluated whether

its recipe satisfies the type of one of these equivalence classes. ◀

In the rest of this section, we explore how the technique used in the proof above can
be generalized to logics beyond FO. Our focus is on monadic-second order logic (MSO),
which extends FO by quantifiers for sets of elements. One of the key ingredients, that
FO-interpretations preserve FO-similarity, does not translate to MSO for interpretations of
dimension greater than one (not even for quantifier-free interpretations). Yet, decidability
is retained for problems P ⋆ ∈ MSO if we restrict ourselves to edge gadget reductions (on
graphs), instead of general cookbook reductions. This generalizes Proposition 6.

▶ Theorem 10. Reduction?(P, P ⋆, R) is decidable for the class R of edge gadget reductions,
arbitrary P , and P ⋆ definable in monadic second-order logic.

The proof exploits compositionality of MSO and can be generalized to other subclasses of
cookbook reductions. A discussion of such subclasses is postponed to the long version of this
paper.
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Proof sketch. An edge gadget reduction ρ is specified as a graph gρ, with two distinguished
nodes. As in the proof of Theorem 8, the idea is to show that there is an integer m such that
whether ρ is a reduction from P to P ⋆ only depends on the MSOm-type of gρ. More precisely,
for all gadget graphs gρ and gρ′ with gρ ≡MSO

m gρ′ , one proves that ρ(G) ≡MSO
k ρ′(G) for all

graphs G, where k is the quantifier rank of an MSO-sentence describing P ⋆.
For proving MSOk-similarity of ρ(G) and ρ′(G), one can use Ehrenfeucht-Fraïssé games

for MSO (see, e.g., [10, Section 7.2]). The graphs ρ(G) and ρ′(G) are a composition of G

with the edge gadgets gρ and gρ′ , respectively. Duplicator has a winning strategy for the
MSO-game played on (G, G) as well as for the MSO-game played on (gρ, gρ′). Her strategy
for the game on ρ(G) and ρ′(G) is to combine these two winning strategies. For instance, if
Spoiler moves on ρ(G) and part of his move is on the edge gadget inserted for an edge (u, v)
of G, then Duplicator’s response for this part of the move is derived from her strategy for
the game on (gρ, gρ′). The partial answers for individual edges are then combined. ◀

For both FO and MSO, the proof uses that the respective classes of reductions can be
finitely partitioned into similarity classes and that all reductions in one class are either correct
or not correct. This provides a basis for characterizations akin to the ones in Section 5.1 for
concrete, arbitrary problems P and concrete P ⋆ definable in FO or MSO.

5.3 Algorithmic problems as input: decidable cases
We now explore decidability when source and/or target problems are part of the input.
We consider classes C and C⋆ captured by logics L and L⋆, respectively, and write, e.g.,
Reduction?(L, L⋆, R) for the algorithmic problem where we ask, given φ ∈ L, φ⋆ ∈ L⋆ and
ρ ∈ R, whether ρ is a reduction from the problem defined by φ to the one defined by φ⋆.

One approach for obtaining decidability for the problem Reduction?(L, L⋆, R) is by
restating it as a satisfiability question for a decidable logic. For a quantifier-free interpretation
I from σ-structures to σ⋆-structures, denote by I−1(φ⋆) the σ-formula obtained from a
σ⋆-formula φ⋆ by replacing atoms in φ⋆ according to their definition in I. Whether a
quantifier-free interpretation I is a reduction from the algorithmic problem defined by φ ∈ L
to the one defined by φ⋆ ∈ L⋆ is equivalent to whether A |= φ if and only if I (A) |= φ⋆, for
all structures A. This in turn is equivalent to checking whether φ ↔ I−1(φ⋆) is a tautology.

These observations yield, for instance, the following decidable variants, some involving
the class QF of quantifier-free first-order interpretations, a class that includes all cookbook
reductions, see Theorem 1. See the full version for the proof.

▶ Theorem 11.
1. Reduction?(∃∗FO, ∃∗FO, QF) is decidable.
2. Reduction?(P, ∃∗FO, QF) is decidable for every fixed algorithmic problem P .
3. Reduction?(∃∗FO, P ⋆, R) is decidable for every fixed algorithmic problem P ⋆ definable

in MSO and the class R of edge gadget reductions.

6 Summary and discussion

We studied variants of the algorithmic problem Reduction? which asks whether a given
mapping is a computational reduction between two algorithmic problems. In addition to
studying this problem for standard classes of reductions, we also proposed a graphical
and compositional language for computational reductions, called cookbook reductions, and
compared their expressive power to quantifier-free first-order interpretations. While Re-
duction? is undecidable in many restricted settings, we identified multiple decidable cases

MFCS 2024



56:14 Specification and Automatic Verification of Computational Reductions

involving (restricted) cookbook reductions and quantifier-free first-order interpretations. Due
to its graphical and compositional nature, cookbook reductions are well-suited to be used in
teaching support systems for learning tasks tackling the design of computational reductions.

A prototype3 of our formal framework has been integrated into the teaching support
system Iltis [11]. Recently it has been used in introductory courses Theoretical Computer
Science with > 300 students at Ruhr University Bochum and TU Dortmund in workflows
covering (i) understanding computational problems, (ii) exploring reductions via examples,
and (iii) designing reductions.
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