
Higher-Order Constrained Dependency Pairs for
(Universal) Computability
Liye Guo #

Radboud University, Nijmegen, The Netherlands

Kasper Hagens #

Radboud University, Nijmegen, The Netherlands

Cynthia Kop #

Radboud University, Nijmegen, The Netherlands

Deivid Vale #

Radboud University, Nijmegen, The Netherlands

Abstract
Dependency pairs constitute a series of very effective techniques for the termination analysis of
term rewriting systems. In this paper, we adapt the static dependency pair framework to logically
constrained simply-typed term rewriting systems (LCSTRSs), a higher-order formalism with logical
constraints built in. We also propose the concept of universal computability, which enables a form
of open-world termination analysis through the use of static dependency pairs.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Higher-order term rewriting, constrained rewriting, dependency pairs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.57

Related Version Full Version: https://doi.org/10.48550/arXiv.2406.19379 [11]

Supplementary Material Software (Source Code): https://github.com/hezzel/cora [20]
Software (Source Code): https://zenodo.org/records/12551027 [21]

Funding The authors are supported by NWO VI.Vidi.193.075, project “CHORPE”.

1 Introduction

Logically constrained simply-typed term rewriting systems (LCSTRSs) [12] are a formalism of
higher-order term rewriting with logical constraints (built on its first-order counterpart [19]).
Proposed for program analysis, LCSTRSs offer a flexible representation of programs owing to
– in contrast with traditional TRSs – their support for primitive data types such as (arbitrary-
precision or fixed-width) integers and floating-point numbers. Without compromising the
ability to directly reason about these widely used data types, LCSTRSs bridge the gap
between the abundant techniques based on term rewriting and automatic program analysis.

We consider termination analysis in this paper. The termination of LCSTRSs was first
discussed in [12] through a variant of the higher-order recursive path ordering (HORPO) [14].
This paper furthers that discussion by introducing dependency pairs [1] to LCSTRSs. As
a broad framework for termination, this method was initially proposed for unconstrained
first-order term rewriting, and was later generalized in a variety of higher-order settings (see,
e.g., [31, 23, 30, 2]). Modern termination analyzers rely heavily on dependency pairs.

In higher-order termination analysis, dependency pairs take two forms: the dynamic
[31, 23] and the static [30, 2, 24, 7]. This paper concentrates on static dependency pairs, and
is based on the definitions in [7, 24]. First-order dependency pairs with logical constraints
have been informally defined by the third author [15], from which we also take inspiration.

© Liye Guo, Kasper Hagens, Cynthia Kop, and Deivid Vale;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.guo@cs.ru.nl
https://orcid.org/0000-0002-3064-2691
mailto:k.hagens@cs.ru.nl
https://orcid.org/0009-0005-2382-0559
mailto:c.kop@cs.ru.nl
https://orcid.org/0000-0002-6337-2544
mailto:d.vale@cs.ru.nl
https://orcid.org/0000-0003-1350-3478
https://doi.org/10.4230/LIPIcs.MFCS.2024.57
https://doi.org/10.48550/arXiv.2406.19379
https://github.com/hezzel/cora
https://zenodo.org/records/12551027
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Higher-Order Constrained Dependency Pairs for (Universal) Computability

For program analysis, the traditional notion of termination can be inefficient, and arguably
insufficient. It assumes that the whole program is known and analyzed, i.e., closed-world
analysis. This way even small programs that happen to import a large standard library need
sophisticated analysis; local changes in a multipart, previously verified program also require
the entire analysis to be redone. As O’Hearn [26] argues (in a different context), studying
open-world analysis opens up many applications. In particular, it is practically desirable to
analyze the termination of standard libraries – or modules of a larger program in general –
without prior knowledge of how the functions they define may be used.

It is tricky to characterize such a property, especially in the presence of higher-order
arguments. For example, map and fold are usually considered “terminating”, even though
passing a non-terminating function to them can surely result in non-termination. Hence,
we need to narrow our focus to certain “reasonable” calls. On the other hand, the function
app (lam f) → f where app : o → o → o and lam : (o → o) → o would generally be considered
“non-terminating”, because if we define w x → app x x, an infinite rewrite sequence starts
from app (lam w) (lam w) – this encodes the famous Ω in the untyped λ-calculus. The
property we are looking for must distinguish map and fold from app.

To capture this property, we propose a new concept, called universal computability. In
light of information hiding, this concept can be further generalized to public computability.
We will see that static dependency pairs are a natural vehicle for analyzing these properties.

Various modular aspects of term rewriting have been studied by the community. Our
scenario roughly corresponds to hierarchical combinations [27, 28, 29, 6], where different parts
of a program are analyzed separately. We follow this terminology so that it will be easier
to compare our work with the literature. However, our setup – higher-order constrained
rewriting – is separate from the first-order and unconstrained setting in which hierarchical
combinations were initially proposed. Furthermore, our approach has a different focus –
namely, the use of static dependency pairs.

Contributions. We recall the formalism of LCSTRSs and the predicate of computability in
Section 2. Then the contributions of this paper follow:

We propose in Section 3 the first definition of dependency pairs for higher-order logically
constrained TRSs. This is also the first DP approach for constrained rewriting as the prior
work on first-order constrained dependency pairs [15] has never been formally published.
We define in Section 4 the constrained DP framework for termination analysis with five
classes of DP processors, which can be used to simplify termination problems.
We extend the notion of a hierarchical combination [27, 28, 29, 6] to LCSTRSs and define
universal and public computability in Section 5. We also fine-tune the DP framework
to support these properties, and provide extra DP processors for public computability.
This allows the DP framework to be used for open-world analysis. We base Section 5 on
LCSTRSs to emphasize those notions in real-world programming, but they are new and
of theoretical interest in higher-order term rewriting even without logical constraints.
We have implemented the DP framework for both termination and public computability
in our open-source analyzer Cora. We describe the experimental evaluation in Section 6.

2 Preliminaries

In this section, we collect the preliminary definitions and results we need from the literature.
First, we recall the definition of an LCSTRS [12]. In this paper, we put a restriction on
rewrite rules: ℓ is always a pattern in ℓ → r [φ]. Next, we recall the definition of computability
(with accessibility) from [7]. This version is particularly tailored for static dependency pairs.

L. Guo, K. Hagens, C. Kop, and D. Vale 57:3

2.1 Logically Constrained STRSs
Terms Modulo Theories. Given a non-empty set S of sorts (or base types), the set T of
simple types over S is generated by the grammar T ::= S | (T → T). Right-associativity
is assigned to → so we can omit some parentheses. Given disjoint sets F and V, whose
elements we call function symbols and variables, respectively, the set T of pre-terms over F
and V is generated by the grammar T ::= F | V | (T T). Left-associativity is assigned to the
juxtaposition operation, called application, so t0 t1 t2 stands for ((t0 t1) t2), for example.

We assume every function symbol and variable is assigned a unique type. Typing works
as expected: if pre-terms t0 and t1 have types A → B and A, respectively, t0 t1 has type B.
The set T (F , V) of terms over F and V consists of pre-terms that have a type. We write
t : A if a term t has type A. We assume there are infinitely many variables of each type.

The set Var(t) of variables in t ∈ T (F , V) is defined by Var(f) = ∅ for f ∈ F , Var(x) =
{ x } for x ∈ V and Var(t0 t1) = Var(t0) ∪ Var(t1). A term t is called ground if Var(t) = ∅.

For constrained rewriting, we make further assumptions. First, we assume that there is a
distinguished subset Sϑ of S, called the set of theory sorts. The grammar Tϑ ::= Sϑ | (Sϑ → Tϑ)
generates the set Tϑ of theory types over Sϑ. Note that a theory type is essentially a non-empty
list of theory sorts. Next, we assume that there is a distinguished subset Fϑ of F , called the
set of theory symbols, and that the type of every theory symbol is in Tϑ, which means that
the type of any argument passed to a theory symbol is a theory sort. Theory symbols whose
type is a theory sort are called values. Elements of T (Fϑ, V) are called theory terms.

Theory symbols are interpreted in an underlying theory: given an Sϑ-indexed family of
sets (XA)A∈Sϑ

, we extend it to a Tϑ-indexed family by letting XA→B be the set of mappings
from XA to XB; an interpretation of theory symbols is a Tϑ-indexed family of mappings
([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory symbol of type A an element of XA and is
bijective if A ∈ Sϑ. Given an interpretation of theory symbols ([[·]]A)A∈Tϑ

, we extend each
indexed mapping [[·]]B to one that assigns to each ground theory term of type B an element of
XB by letting [[t0 t1]]B be [[t0]]A→B([[t1]]A). We write just [[·]] when the type can be deduced.

▶ Example 1. Let Sϑ be { int }. Then int → int → int is a theory type over Sϑ while
(int → int) → int is not. Let Fϑ be { − } ∪ Z where − : int → int → int and n : int for all
n ∈ Z. The values are the elements of Z. Let Xint be Z, [[·]]int be the identity mapping and
[[−]] be the mapping λm. λn. m − n. The interpretation of (−) 1 is the mapping λn. 1 − n.

Substitutions, Contexts and Subterms. Type-preserving mappings from V to T (F , V) are
called substitutions. Every substitution σ extends to a type-preserving mapping σ̄ from
T (F , V) to T (F , V). We write tσ for σ̄(t) and define it as follows: fσ = f for f ∈ F ,
xσ = σ(x) for x ∈ V and (t0 t1)σ = (t0σ) (t1σ). Let [x1 := t1, . . . , xn := tn] denote the
substitution σ such that σ(xi) = ti for all i, and σ(y) = y for all y ∈ V \ { x1, . . . , xn }.

A context is a term containing a hole. Let □ be a special terminal symbol and assign to
it a type A; a context C[] is an element of T (F , V ∪ {□ }) such that □ occurs in C[] exactly
once. Given a term t : A, let C[t] denote the term produced by replacing □ in C[] with t.

A term t is called a (maximally applied) subterm of a term s, written as s ⊵ t, if either
s = t, s = s0 s1 where s1 ⊵ t, or s = s0 s1 where s0 ⊵ t and s0 ̸= t; i.e., s = C[t] for C[] that
is not of form C ′[□ t1]. We write s ▷ t and call t a proper subterm of s if s ⊵ t and s ̸= t.

Constrained Rewriting. Constrained rewriting requires the theory sort bool: we henceforth
assume that bool ∈ Sϑ, { f, t } ⊆ Fϑ, Xbool = { 0, 1 }, [[f]]bool = 0 and [[t]]bool = 1. A logical
constraint is a theory term φ such that φ has type bool and the type of each variable in Var(φ)

MFCS 2024

57:4 Higher-Order Constrained Dependency Pairs for (Universal) Computability

is a theory sort. A (constrained) rewrite rule is a triple ℓ → r [φ] where ℓ and r are terms
which have the same type, φ is a logical constraint, the type of each variable in Var(r)\Var(ℓ)
is a theory sort and ℓ is a pattern that takes the form f t1 · · · tn for some function symbol f

and contains at least one function symbol in F \Fϑ. Here a pattern is a term whose subterms
are either f t1 · · · tn for some function symbol f or a variable. A substitution σ is said to
respect ℓ → r [φ] if σ(x) is a value for all x ∈ Var(φ) ∪ (Var(r) \ Var(ℓ)) and [[φσ]] = 1.

A logically constrained simply-typed term rewriting system (LCSTRS) collects the above
data – S, Sϑ, F , Fϑ, V, (XA) and [[·]] – along with a set R of rewrite rules. We usually
let R alone stand for the system. The set R induces the rewrite relation →R over terms:
t →R t′ if and only if there exists a context C[] such that either (1) t = C[ℓσ] and t′ = C[rσ]
for some rewrite rule ℓ → r [φ] ∈ R and some substitution σ which respects ℓ → r [φ], or
(2) t = C[f v1 · · · vn] and t′ = C[v′] for some theory symbol f and some values v1, . . . , vn, v′

with n > 0 and [[f v1 · · · vn]] = [[v′]]. When no ambiguity arises, we may write → for →R.
If t →R t′ due to the second condition above, we also write t →κ t′ and call it a calculation

step. Theory symbols that are not a value are called calculation symbols. Let t ↓κ denote the
(unique) κ-normal form of t, i.e., the term t′ such that t →∗

κ t′ and t′ ̸→κ t′′ for any t′′. For
example, (f (7 ∗ (3 ∗ 2))) ↓κ = f 42 if f is not a calculation symbol, or if f : int → A → B.

A rewrite rule ℓ → r [φ] is said to define a function symbol f if ℓ = f t1 · · · tn. Given an
LCSTRS R, f is called a defined symbol if some rewrite rule in R defines f . Let D denote the
set of defined symbols. Values and function symbols in F \ (Fϑ ∪ D) are called constructors.

▶ Example 2. Below is the factorial function in continuation-passing style as an LCSTRS:

fact n k → k 1 [n ≤ 0] comp g f x → g (f x)
fact n k → fact (n − 1) (comp k ((∗) n)) [n > 0] id x → x

We use infix notation for some binary operators, and omit the logical constraint of a rewrite
rule when it is t. An example rewrite sequence is fact 1 id → fact (1 − 1) (comp id ((∗) 1)) →κ

fact 0 (comp id ((∗) 1)) → comp id ((∗) 1) 1 → id ((∗) 1 1) →κ id 1 → 1.

2.2 Accessibility and Computability
We recall the notion of computability with accessibility – which originates from [3] and is
reformulated in [7] to couple with static dependency pairs – and adapt the notion of accessible
function passing [7] to LCSTRSs.

Accessibility. Assume given a sort ordering – a quasi-ordering ≿ over S whose strict part
≻ = ≿ \ ≾ is well-founded. We inductively define two relations ≿+ and ≻− over S and T :
given a sort A and a type B = B1 → · · · → Bn → C where C is a sort and n ≥ 0, A ≿+ B

if and only if A ≿ C and ∀i. A ≻− Bi, and A ≻− B if and only if A ≻ C and ∀i. A ≿+ Bi.
Given a function symbol f : A1 → · · · → An → B where B is a sort, the set Acc(f) of the

accessible argument positions of f is defined as { 1 ≤ i ≤ n | B ≿+ Ai }. A term t is called an
accessible subterm of a term s, written as s ⊵acc t, if either s = t, or s = f s1 · · · sm for some
f ∈ F and there exists k ∈ Acc(f) such that sk ⊵acc t. An LCSTRS R is called accessible
function passing (AFP) if there exists a sort ordering such that for all f s1 · · · sm → r [φ] ∈ R
and x ∈ Var(f s1 · · · sm) ∩ Var(r) \ Var(φ), there exists k such that sk ⊵acc x.

▶ Example 3. An LCSTRS R is AFP (with ≿ equating all the sorts) if for all f s1 · · · sm →
r [φ] ∈ R and i ∈ { 1, . . . , m }, the type of each proper subterm of si is a sort. Rewrite rules
for common higher-order functions, e.g., map and fold, usually fit this criterion.

L. Guo, K. Hagens, C. Kop, and D. Vale 57:5

Consider { complst fnil x → x, complst (fcons f l) x → complst l (f x) }, where complst :
funlist → int → int composes a list of functions. This system is AFP with funlist ≻ int.

The system { app (lam f) → f } in Section 1 is not AFP since o ≻ o cannot be true.

Computability. A term is called neutral if it takes the form x t1 · · · tn for some variable x.
A set of reducibility candidates, or an RC-set, for the rewrite relation →R of an LCSTRS R is
an S-indexed family of sets (IA)A∈S (let I denote

⋃
A IA) satisfying the following conditions:

(1) Each element of IA is a terminating (with respect to →R) term of type A.
(2) Given terms s and t such that s →R t, if s is in IA, so is t.
(3) Given a neutral term s, if t is in IA for all t such that s →R t, so is s.
Given an RC-set I for →R, a term t0 is called I-computable if either the type of t0 is a sort
and t0 ∈ I, or the type of t0 is A → B and t0 t1 is I-computable for all I-computable t1 : A.

We are interested in a specific RC-set C, whose existence is guaranteed by Theorem 4.

▶ Theorem 4 (see [7]). Given a sort ordering and an RC-set I for →R, let ⇛I be the relation
over terms such that s ⇛I t if and only if both s and t have a base type, s = f s1 · · · sm for
some function symbol f , t = sk t1 · · · tn for some k ∈ Acc(f) and ti is I-computable for all i.

Given an LCSTRS R with a sort ordering, there exists an RC-set C for →R such that
t ∈ CA if and only if t : A is terminating with respect to →R ∪ ⇛C, and for all t′ such that
t →∗

R t′, if t′ = f t1 · · · tn for some function symbol f , ti is C-computable for all i ∈ Acc(f).

Thus, given a C-computable term f t1 · · · tn, all its reducts and the accessible arguments – ti

for i ∈ Acc(f) – are also C-computable. We consider C-computability throughout this paper.

3 Static Dependency Pairs for LCSTRSs

Originally proposed for unconstrained first-order term rewriting, the dependency pair ap-
proach [1] – a methodology that analyzes the recursive structure of function calls – is at the
heart of most modern automatic termination analyzers for various styles of term rewriting.
There follow multiple higher-order generalizations, among which we adopt here the static
branch [24, 7]. As we shall see in Section 5, this approach extends well to open-world analysis.

In this section, we adapt static dependency pairs to LCSTRSs. We start with a notation:

▶ Definition 5. Given an LCSTRS R, let F ♯ be F ∪{ f ♯ | f ∈ D } where D is the set of defined
symbols in R and f ♯ is a fresh function symbol for all f . Let dp be a fresh sort, and for each
defined symbol f : A1 → · · · → An → B where B ∈ S, we assign f ♯ : A1 → · · · → An → dp.
Given a term t = f t1 · · · tn ∈ T (F , V) where f ∈ D, let t♯ denote f ♯ t1 · · · tn ∈ T (F ♯, V).

In the presence of logical constraints, a dependency pair should be more than a pair.
Two extra components – a logical constraint and a set of variables – keep track of what
substitutions are expected by the dependency pair.

▶ Definition 6. A static dependency pair (SDP) is a quadruple s♯ ⇒ t♯ [φ | L] where s♯ and
t♯ are terms of type dp, φ is a logical constraint and L ⊇ Var(φ) is a set of variables whose
types are theory sorts. Given a rewrite rule ℓ → r [φ], let SDP(ℓ → r [φ]) denote the set of
SDPs of form ℓ♯ x1 · · · xm ⇒ g♯ t1 · · · tq yq+1 · · · yn [φ | Var(φ) ∪ (Var(r) \ Var(ℓ))] such that
(1) ℓ♯ : A1 → · · · → Am → dp while xi : Ai is a fresh variable for all i,
(2) r x1 · · · xm ⊵ g t1 · · · tq for g ∈ D, and
(3) g♯ : B1 → · · · → Bn → dp while yi : Bi is a fresh variable for all i > q.
Let SDP(R) be

⋃
ℓ→r [φ]∈R SDP(ℓ → r [φ]). A substitution σ is said to respect an SDP

s♯ ⇒ t♯ [φ | L] if σ(x) is a ground theory term for all x ∈ L and [[φσ]] = 1.

MFCS 2024

57:6 Higher-Order Constrained Dependency Pairs for (Universal) Computability

The component L is new compared to [15]. We shall see its usefulness in Section 4.4, as
it gives us more freedom to manipulate dependency pairs. We introduce two shorthand
notations for SDPs: s♯ ⇒ t♯ [φ] for s♯ ⇒ t♯ [φ | Var(φ)], and s♯ ⇒ t♯ for s♯ ⇒ t♯ [t | ∅].

▶ Example 7. Consider the system R consisting of the following rewrite rules, in which
gcdlist : intlist → int, fold : (int → int → int) → int → intlist → int and gcd : int → int → int.

gcdlist → fold gcd 0 fold f y nil → y fold f y (cons x l) → f x (fold f y l)
gcd m n → gcd (−m) n [m < 0] gcd m n → gcd m (−n) [n < 0]
gcd m 0 → m [m ≥ 0] gcd m n → gcd n (m mod n) [m ≥ 0 ∧ n > 0]

The set SDP(R) consists of (1) gcdlist♯ l′ ⇒ gcd♯ m′ n′, (2) gcdlist♯ l′ ⇒ fold♯ gcd 0 l′,
(3) fold♯ f y (cons x l) ⇒ fold♯ f y l, (4) gcd♯ m n ⇒ gcd♯ (−m) n [m < 0], (5) gcd♯ m n ⇒
gcd♯ m (−n) [n < 0], and (6) gcd♯ m n ⇒ gcd♯ n (m mod n) [m ≥ 0 ∧ n > 0]. Note that
in (1), m′ and n′ occur on the right-hand side of ⇒ but not on the left while they are not
required to be instantiated to ground theory terms (L = ∅). This is normal for SDPs [7, 24].

Termination analysis via SDPs is based on the notion of a chain:

▶ Definition 8. Given a set P of SDPs and a set R of rewrite rules, a (P, R)-chain is a
(finite or infinite) sequence (s0

♯ ⇒ t0
♯ [φ0 | L0], σ0), (s1

♯ ⇒ t1
♯ [φ1 | L1], σ1), . . . such that

for all i, si
♯ ⇒ ti

♯ [φi | Li] ∈ P, σi is a substitution which respects si
♯ ⇒ ti

♯ [φi | Li],
and ti−1

♯σi−1 →∗
R si

♯σi if i > 0. The above (P, R)-chain is called computable if uσi is
C-computable for all i and u such that ti ▷ u.

▶ Example 9. Following Example 7, (1, [l := nil, m := 42, n := 24]), (6, [m := 42, n :=
24]), (6, [m := 24, n := 18]), (6, [m := 18, n := 6]) is a computable (SDP(R), R)-chain.

The key to establishing termination is the following result:

▶ Theorem 10. An AFP system R is terminating if there exists no infinite computable
(SDP(R), R)-chain.

The proof (see [11, Appendix A.1]) is very similar to that for unconstrained SDPs [24, 7].

4 The Constrained DP Framework

In this section, we present several techniques based on SDPs, each as a class of DP processors;
formally, we call this collection of DP processors the constrained (static) DP framework.
In general, a DP framework [9, 7] constitutes a broad method for termination and non-
termination. The presentation here is not complete – for example, we do not consider
non-termination – and a complete one is beyond the scope of this paper. We rather focus on
the most essential DP processors and those newly designed to handle logical constraints.

For presentation, we fix an LCSTRS R.

▶ Definition 11. A DP problem is a set P of SDPs. A DP problem P is called finite if
there exists no infinite computable (P, R)-chain. A DP processor is a partial mapping which
possibly assigns to a DP problem a set of DP problems. A DP processor ρ is called sound if
a DP problem P is finite whenever ρ(P) consists only of finite DP problems.

Following Theorem 10, in order to establish the termination of an AFP system R, it
suffices to show that SDP(R) is a finite DP problem. Given a collection of sound DP
processors, we have the following procedure: (1) Q := { SDP(R) }; (2) while Q contains a
DP problem P to which some sound DP processor ρ is applicable, Q := (Q \ { P }) ∪ ρ(P).
If this procedure ends with Q = ∅, we can conclude that R is terminating.

L. Guo, K. Hagens, C. Kop, and D. Vale 57:7

4.1 The DP Graph and Its Approximations
The interconnection of SDPs via chains gives rise to a graph, namely, the DP graph [1],
which models the reachability between dependency pairs. Since this graph is not computable
in general, we follow the usual convention and consider its (over-)approximations:

▶ Definition 12. Given a set P of SDPs, a graph approximation (Gθ, θ) for P consists of a
finite directed graph Gθ and a mapping θ which assigns to each SDP in P a vertex of Gθ

so that there is an edge from θ(p0) to θ(p1) whenever (p0, σ0), (p1, σ1) is a (P, R)-chain for
some substitutions σ0 and σ1.

Here (Gθ, θ) approximates the true DP graph by allowing θ to assign a single vertex to
multiple (possibly, infinitely many) SDPs, and by allowing Gθ to contain an edge from θ(p0)
to θ(p1) even if p0 and p1 are not connected by any (P, R)-chain. In practice, we typically
deal with only a finite set P of SDPs, in which case we usually take a bijection for θ.

This graph structure is useful because we can leverage it to decompose the DP problem.

▶ Definition 13. Given a DP problem P, a graph processor computes a graph approximation
(Gθ, θ) for P and the strongly connected components (SCCs) of Gθ, then returns { { p ∈
P | θ(p) belongs to S } | S is a non-trivial SCC of Gθ }.

▶ Example 14. Following Example 7, a (tight) graph approximation for SDP(R) is in
Figure 1. If a graph processor produces this graph as the graph approximation, it will return
the set of DP problems { { 3 }, { 4, 5 }, { 6 } }.

1 2 3

54 6

Figure 1 A graph approximation for SDP(R) from Example 7.

Implementation. To compute a graph approximation, we adapt the common Cap approach
[10, 33] and take theories into account. Considering theories allows us, for example, not to
have an edge from (6) to (4) in Figure 1.

We assume given a finite set of SDPs and let θ be a bijection. Whether there is an edge
from θ(s0

♯ ⇒ t0
♯ [φ0 | L0]) to θ(s1

♯ ⇒ t1
♯ [φ1 | L1]) – we rename variables if necessary to

avoid name collisions between the two SDPs – is determined by the satisfiability (which we
check by an SMT solver) of φ0 ∧ φ1 ∧ ζ(t0

♯, s1
♯) where ζ(u, v) is defined as follows:

If u = f u1 · · · un where f ∈ F ♯ and no rewrite rule in R takes the form f ℓ1 · · · ℓk → r [φ]
for k ≤ n, we define ζ(u, v) in two cases:

(1) ζ(u, v) = ζ(u1, v1) ∧ · · · ∧ ζ(un, vn) if v = f v1 · · · vn.
(2) ζ(u, v) = f if v = g v1 · · · vm for some function symbol g other than f , and either f is

not a theory symbol or g is not a value.
Suppose ζ(u, v) is not defined above; ζ(u, v) = (u ≡ v) if u ∈ T (Fϑ, L0) has a base type
and v is a theory term in which the type of each variable is a theory sort, and ζ(u, v) = t

otherwise.

MFCS 2024

57:8 Higher-Order Constrained Dependency Pairs for (Universal) Computability

See [11, Appendix A.2] for the proof that this approach produces a graph approximation.
Then strongly connected components can be computed by Tarjan’s algorithm [32].

▶ Example 15. In Figure 1, since (m0 ≥ 0∧n0 > 0)∧m1 < 0∧ (n0 ≡ m1 ∧m0 mod n0 ≡ n1)
is unsatisfiable, there is no edge from (6) to (4).

4.2 The Subterm Criterion
The subterm criterion [13, 24] handles structural recursion and allows us to remove decreasing
SDPs without considering rewrite rules in R. We start with defining projections:

▶ Definition 16. Let heads(P) denote the set of function symbols heading either side of an
SDP in P. A projection ν for a set P of SDPs is a mapping from heads(P) to integers such
that 1 ≤ ν(f ♯) ≤ n if f ♯ : A1 → · · · → An → dp. Let ν̄(f ♯ t1 · · · tn) denote tν(f♯).

A projection chooses an argument position for each relevant function symbol so that
arguments at those positions do not increase in a chain.

▶ Definition 17. Given a set P of SDPs, a projection ν is said to ▷-orient a subset P ′ of P
if ν̄(s♯) ▷ ν̄(t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P ′ and ν̄(s♯) = ν̄(t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′.
A subterm criterion processor assigns to a DP problem P the singleton { P \ P ′ } for some
non-empty subset P ′ of P such that there exists a projection for P which ▷-orients P ′.

▶ Example 18. Following Example 14, a subterm criterion processor is applicable to { 3 }.
Let ν(fold♯) be 3 so that ν̄(fold♯ f y (cons x l)) = cons x l ▷ l = ν̄(fold♯ f y l). The processor
returns { ∅ }, and the empty DP problem can (trivially) be removed by a graph processor.

Implementation. The search for a suitable projection can be done through SMT and is
standard: we introduce an integer variable Nf♯ that represents ν(f ♯) for each f ♯ ∈ heads(P),
and a boolean variable strictp for each p ∈ P; then we encode the requirement per SDP.

4.3 Integer Mappings
The subterm criterion deals with recursion over the structure of terms, but not recursion
over, say, integers, which requires us to utilize the information in logical constraints. In
this subsection, we assume that int ∈ Sϑ and Fϑ ⊇ { ≥, >, ∧ }, where ≥ : int → int → bool,
> : int → int → bool and ∧ : bool → bool → bool are interpreted in the standard way.

▶ Definition 19. Given a set P of SDPs, for all f ♯ ∈ heads(P) (see Definition 16) where
f ♯ : A1 → · · · → An → dp, let ι(f ♯) be the subset of { 1, . . . , n } such that i ∈ ι(f ♯) if and
only if Ai ∈ Sϑ and the i-th argument of any occurrence of f ♯ in an SDP s♯ ⇒ t♯ [φ | L] ∈ P
is in T (Fϑ, L). Let X (f ♯) be a set of fresh variables { xf♯,i | i ∈ ι(f ♯) } where xf♯,i : Ai for all
i. An integer mapping J for P is a mapping from heads(P) to theory terms such that for all
f ♯, J (f ♯) : int and Var(J (f ♯)) ⊆ X (f ♯). Let J̄ (f ♯ t1 · · · tn) denote J (f ♯)[xf♯,i := ti]i∈ι(f♯).

With integer mappings, we can handle decreasing integer values.

▶ Definition 20. Given a set P of SDPs, an integer mapping J is said to >-orient a subset
P ′ of P if φ |= J̄ (s♯) ≥ 0∧J̄ (s♯) > J̄ (t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P ′, and φ |= J̄ (s♯) ≥ J̄ (t♯)
for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′, where φ |= φ′ denotes that [[φσ]] = 1 implies [[φ′σ]] = 1 for
each substitution σ which maps variables in Var(φ) ∪ Var(φ′) to values. An integer mapping
processor assigns to a DP problem P the singleton { P \ P ′ } for some non-empty subset P ′

of P such that there exists an integer mapping for P which >-orients P ′.

L. Guo, K. Hagens, C. Kop, and D. Vale 57:9

▶ Example 21. Following Example 14, an integer mapping processor is applicable to { 6 }.
Let J (gcd♯) be xgcd♯,2 so that J̄ (gcd♯ m n) = n, J̄ (gcd♯ n (m mod n)) = m mod n and
m ≥ 0 ∧ n > 0 |= n ≥ 0 ∧ n > m mod n. The processor returns { ∅ }, and the empty DP
problem can (trivially) be removed by a graph processor.

Implementation. There are several ways to implement integer mapping processors. In
our implementation, we generate a number of “interpretation candidates” and use an SMT
encoding to select for each f ♯ ∈ heads(P) one candidate that satisfies the requirements.
Candidates include forms such as J (f ♯) = xf♯,i and those that are generated from the
SDPs’ logical constraints – e.g., given f♯ x y ⇒ g♯ x (y + 1) [y < x], we generate J (f♯) =
xf♯,1 − xf♯,2 − 1 because y < x implies x − y − 1 ≥ 0.

4.4 Theory Arguments
Integer mapping processors have a clear limitation: what if some key variables do not occur
in the set L? This is observed in the remaining DP problem { 4, 5 } from Example 7. It is
clearly finite but no integer mapping processor is applicable since ι(gcd♯) = ∅.

This restriction exists for a reason. Variables that are not guaranteed to be instanti-
ated to theory terms may be instantiated to non-deterministic terms – e.g., { f♯ x y z ⇒
f♯ x (x + 1) (x − 1) [y < z] } is not a finite DP problem if R ⊇ { c x y → x, c x y → y }.

The problem of { 4, 5 } arises because each SDP focuses on only one argument: for example,
the logical constraint (with the component L) of (5) only concerns n so in principle we cannot
assume anything about m. Yet, if (5) follows (4) in a chain, we can derive that m must be
instantiated to a ground theory term (we call such an argument a theory argument). We
explore a way of propagating this information.

▶ Definition 22. A theory argument (position) mapping τ for a set P of SDPs is a mapping
from heads(P) (see Definition 16) to subsets of Z such that τ(f ♯) ⊆ { 1 ≤ i ≤ m | Ai ∈ Sϑ }
if f ♯ : A1 → · · · → Am → dp, si is a theory term and the type of each variable in Var(si) is
a theory sort for all f ♯ s1 · · · sm ⇒ t♯ [φ | L] ∈ P and i ∈ τ(f ♯), and tj is a theory term and
Var(tj) ⊆ L ∪

⋃
i∈τ(f♯) Var(si) for all f ♯ s1 · · · sm ⇒ g♯ t1 · · · tn [φ | L] ∈ P and j ∈ τ(g♯).

Let τ̄(f ♯ s1 · · · sm ⇒ t♯ [φ | L]) denote f ♯ s1 · · · sm ⇒ t♯ [φ | L ∪
⋃

i∈τ(f♯) Var(si)].

By a theory argument mapping, we choose a subset of the given set of SDPs from which
the theory argument information is propagated.

▶ Definition 23. Given a set P of SDPs, a theory argument mapping τ is said to fix a subset
P ′ of P if

⋃
i∈τ(f♯) Var(ti) ⊆ L for all s♯ ⇒ f ♯ t1 · · · tn [φ | L] ∈ P ′. A theory argument

processor assigns to a DP problem P the pair { { τ̄(p) | p ∈ P }, P \ P ′ } for some non-empty
subset P ′ of P such that there exists a theory argument mapping for P which fixes P ′.

▶ Example 24. Following Example 14, a theory argument processor is applicable to { 4, 5 }.
Let τ(gcd♯) be { 1 } so that τ fixes { 4 }. The processor returns the pair { { 4, (7) gcd♯ m n ⇒
gcd♯ m (−n) [n < 0 | { m, n }] }, { 5 } }. The integer mapping processor with J (gcd♯) =
−xgcd♯,1 removes (4) from { 4, 7 }. Then { 7 } and { 5 } can be removed by graph processors.

Implementation. To find a valid theory argument mapping, we simply start by setting
τ(f ♯) = { 1, . . . , m } for all f ♯, and choose one SDP to fix. Then we iteratively remove
arguments that do not satisfy the condition until no such argument is left.

MFCS 2024

57:10 Higher-Order Constrained Dependency Pairs for (Universal) Computability

4.5 Reduction Pairs
Although it is not needed by the running example, we present a constrained variant of
reduction pair processors, which are at the heart of most unconstrained termination analyzers.

▶ Definition 25. A constrained relation R is a set of quadruples (s, t, φ, L) where s and t are
terms which have the same type, φ is a logical constraint and L ⊇ Var(φ) is a set of variables
whose types are theory sorts. We write s RL

φ t if (s, t, φ, L) ∈ R. A binary relation R′ over
terms is said to cover a constrained relation R if s RL

φ t implies that (sσ) ↓κ R′ (tσ) ↓κ for
each substitution σ such that σ(x) is a ground theory term for all x ∈ L and [[φσ]] = 1.

A constrained reduction pair (⪰, ≻) is a pair of constrained relations such that ⪰ is
covered by some reflexive relation ⊒ which includes →κ and is monotonic (i.e., s ⊒ t implies
C[s] ⊒ C[t]), ≻ is covered by some well-founded relation ⊐, and ⊒ ; ⊐ ⊆ ⊐+.

▶ Definition 26. A reduction pair processor assigns to a DP problem P the singleton { P\P ′ }
for some non-empty subset P ′ of P such that there exists a constrained reduction pair (⪰, ≻)
where (1) s♯ ≻L

φ t♯ for all s♯ ⇒ t♯ [φ | L] ∈ P ′, (2) s♯ ⪰L
φ t♯ for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′,

and (3) ℓ ⪰Var(φ)∪(Var(r)\Var(ℓ))
φ r for all ℓ → r [φ] ∈ R.

While a variety of reduction pairs have been proposed for unconstrained rewriting, it is
not yet the case in a higher-order and constrained setting: so far the only one is a limited
version of HORPO [12], which is adapted into a weakly monotonic reduction pair [18] and
then implemented in the DP framework. This is still a prototype definition.

We have included reduction pair processors here because their definition allows us to
start designing constrained reduction pairs. In particular, as unconstrained reduction pairs
can be used as the covering pair (⊒,⊐), it is likely that many of them (such as variants of
HORPO and weakly monotonic algebras) can be adapted.

We conclude this section by the following result (see [11, Appendix A.2]):

▶ Theorem 27. All the DP processors defined in Section 4 are sound.

5 Universal Computability

Termination is not a modular property: given terminating systems R0 and R1, we cannot
generally conclude that R0∪R1 is also terminating. As computability is based on termination,
it is not modular either. For example, both { a → b } and { f b → f a } are terminating, and
f : o → o is computable in the second system; yet, combining the two yields f a → f b →
f a → · · ·, which refutes the termination of the combination and the computability of f.

On the other hand, functions like map and fold are prevalently used; the lack of a modular
principle for the termination analysis of higher-order systems involving such functions is
painful. Moreover, if such a system is non-terminating, this is seldom attributed to those
functions, which are generally considered “terminating” regardless of how they may be called.

In this section, we propose universal computability, a concept which corresponds to
the termination of a function in all “reasonable” uses. First, we rephrase the notion of a
hierarchical combination [27, 28, 29, 6] in terms of LCSTRSs:

▶ Definition 28. An LCSTRS R1 is called an extension of a base system R0 if the two
systems’ interpretations of theory symbols coincide over all the theory symbols in common,
and function symbols in R0 are not defined by any rewrite rule in R1. Given a base system
R0 and an extension R1 of R0, the system R0 ∪ R1 is called a hierarchical combination.

L. Guo, K. Hagens, C. Kop, and D. Vale 57:11

In a hierarchical combination, function symbols in the base system can occur in the extension,
but cannot be (re)defined. This forms the basis of the modular programming scenario we are
interested in: think of the base system as a library containing the definitions of, say, map
and fold. We further define a class of extensions to take information hiding into account:

▶ Definition 29. Given an LCSTRS R0 and a set of function symbols – called hidden
symbols – in R0, an extension R1 of R0 is called a public extension if hidden symbols do
not occur in any rewrite rule in R1.

Now we present the central definitions of this section:

▶ Definition 30. Given an LCSTRS R0 with a sort ordering ≿, a term t is called universally
computable if for each extension R1 of R0 and each extension ≿′ of ≿ to sorts in R0 ∪ R1
(i.e., ≿′ coincides with ≿ over sorts in R0), t is C-computable in R0 ∪ R1 with ≿′; if a set of
hidden symbols in R0 is also given and the above universal quantification of R1 is restricted
to public extensions, such a term t is called publicly computable.

The base system R0 is called universally computable if all its terms are; it is called
publicly computable if all its public terms – terms that contain no hidden symbol – are.

With an empty set of hidden symbols, the two notions – universal computability and public
computability – coincide. Below we state common properties in terms of public computability.

In summary, we consider passing C-computable arguments to a defined symbol in R0
the “reasonable” way of calling the function. To establish the universal computability of
higher-order functions such as map and fold – i.e., to prove that they are C-computable in
all relevant hierarchical combinations – we will use SDPs, which are about C-computability.

▶ Example 31. The system { app (lam f) → f } in Section 1 is not universally computable
due to the extension { w x → app x x }.

5.1 The DP Framework Revisited
To use SDPs for universal – or public – computability, we need a more general version of
Theorem 10. We start with defining public chains:

▶ Definition 32. An SDP f ♯ s1 · · · sm ⇒ t♯ [φ | L] is called public if f is not a hidden
symbol. A (P, R)-chain is called public if its first SDP is public.

Now we state the main result of this section:

▶ Theorem 33. An AFP system R0 with sort ordering ≿ is publicly computable with respect
to a set of hidden symbols in R0 if there exists no infinite computable (SDP(R0), R0 ∪ R1)-
chain that is public for each public extension R1 of R0 and each extension ≿′ of ≿ to sorts
in R0 ∪ R1.

While this result is not surprising and its proof (see [11, Appendix A.3]) is standard, it
is not obvious how it can be used. The key observation which enables us to use the DP
framework for public computability is that among the DP processors in Section 4, only
reduction pair processors rely on the rewrite rules of the underlying system R (depending
on how it computes a graph approximation, a graph processor does not have to know all
the rewrite rules). Henceforth, we fix a base system R0, a set of hidden symbols in R0 and
an arbitrary, unknown public extension R1 of R0. Now R is the hierarchical combination
R0 ∪ R1.

First, we generalize the definition of a DP problem:

MFCS 2024

57:12 Higher-Order Constrained Dependency Pairs for (Universal) Computability

▶ Definition 34. A (universal) DP problem (P, p) consists of a set P of SDPs and a flag
p ∈ { an, pu } (for any or public). A DP problem (P, p) is called finite if either (1) p = an

and there exists no infinite computable (P, R0 ∪ R1)-chain, or (2) p = pu and there exists no
infinite computable (P, R0 ∪ R1)-chain which is public.

DP processors are defined in the same way as before, now for universal DP problems. The
goal is to show that (SDP(R0), pu) is finite, and the procedure for termination in Section 4
also works here if we change the initialization of Q accordingly.

Next, we review the DP processors presented in Section 4. For each ρ of the original graph,
subterm criterion and integer mapping processors, the processor ρ′ such that ρ′(P, p) =
{ (P ′, an) | P ′ ∈ ρ(P) } is sound for universal DP problems. For theory argument processors,
we can do better when the input flag is pu (when it is an, we just handle P in the same way
as we do in Section 4 and the output flags are obviously an): if the subset P ′ of P fixed
by a theory argument mapping τ contains all the public SDPs in P, the processor should
return the singleton { ({ p | p ∈ P is public } ∪ { τ̄(p) | p ∈ P is not public }, pu) }; otherwise,
the pair { ({ τ̄(p) | p ∈ P }, an), (P \ P ′, pu) }. Reduction pair processors require knowledge of
the extension R1 so we do not adapt them.

New Processors. Last, we propose two classes of DP processors that are useful for public
computability. Processors of the first class do not actually simplify DP problems; they rather
alter their input to allow other DP processors to be applied subsequently.

▶ Definition 35. Given sets P1 and P2 of SDPs, P2 is said to cover P1 if for each SDP
s♯ ⇒ t♯ [φ1 | L1] ∈ P1 and each substitution σ1 which respects s♯ ⇒ t♯ [φ1 | L1], there exist
an SDP s♯ ⇒ t♯ [φ2 | L2] ∈ P2 and a substitution σ2 such that σ2 respects s♯ ⇒ t♯ [φ2 | L2],
sσ1 = sσ2 and tσ1 = tσ2. A constraint modification processor assigns to a DP problem
(P, p) the singleton { (P ′, p) } for some P ′ which covers P.

Now combined with the information of hidden symbols, the DP graph allows us to remove
SDPs that are unreachable from any public SDP.

▶ Definition 36. A reachability processor assigns to a DP problem (P, pu) the single-
ton { ({ p ∈ P | θ(p) is reachable from θ(p0) for some public SDP p0 }, pu) }, given a graph
approximation (Gθ, θ) for P.

These two classes of DP processors are often used together: a constraint modification
processor can split an SDP into simpler ones, some of which may be removed by a reachability
processor. In our implementation, a constraint modification processor is particularly used to
break an SDP s♯ ⇒ t♯ [u ̸= v | L] into two SDPs with logical constraints u < v and u > v,
respectively (see Example 37); similarly for s♯ ⇒ t♯ [u ∨ v | L].

▶ Example 37. Consider an alternative implementation of the factorial function from
Example 2, which has SDPs (1) fact♯ n k ⇒ comp♯ k ((∗) n) x′ [n ̸= 0], (2) fact♯ n k ⇒
fact♯ (n − 1) (comp k ((∗) n)) [n ̸= 0], and (3) init♯ k ⇒ fact♯ 42 k. Assume that fact is a hid-
den symbol. Note that ({ 1, 2, 3 }, pu) is not finite without this assumption. A constraint mod-
ification processor can replace (2) with (4) fact♯ n k ⇒ fact♯ (n − 1) (comp k ((∗) n)) [n < 0],
and (5) fact♯ n k ⇒ fact♯ (n − 1) (comp k ((∗) n)) [n > 0]. A reachability processor can
then remove (4). The remaining DP problem ({ 1, 3, 5 }, pu) can easily be handled by a graph
processor and an integer mapping processor.

We conclude this section by the following result (see [11, Appendix A.4]):

▶ Theorem 38. All the DP processors defined in Section 5 are sound.

L. Guo, K. Hagens, C. Kop, and D. Vale 57:13

6 Experiments and Future Work

All the results in this paper have been implemented in our open-source analyzer Cora [20].
We have evaluated Cora on three groups of experiments, and the results are in Table 1.

Table 1 Cora experiment results.

Custom STRS ITRS
Termination 20/28 72/140 69/117

Computability 20/28 66/140 68/117
Wanda – 105/140 –

AProVE – – 102/117

The first group contains examples in this paper and several other LC(S)TRS benchmarks
we have collected. The second group contains all the λ-free problems from the higher-order
category of TPDB [5]. The third group contains problems from the first-order “integer TRS
innermost” category. The computability tests analyze public computability; since there are
no hidden symbols in TPDB, the main difference from a termination check is that reduction
pair processors are disabled. A full evaluation page is available through the link:

https://www.cs.ru.nl/~cynthiakop/experiments/mfcs2024

Unsurprisingly, Cora is substantially weaker than Wanda [16] on unconstrained higher-
order TRSs, and AProVE [8] on first-order integer TRSs: this work aims to be a starting
point for combining higher-order term analysis and theory reasoning, and cannot yet compete
with dedicated tools that have had years of development. Nevertheless, we believe that these
results show a solid foundation with only a handful of simple techniques.

Future Work. Many of the existing techniques used in the analyses of integer TRSs and
higher-order TRSs are likely to be extensible to our setting, leaving many encouraging
avenues for further development. We highlight the most important few:

Usable rules with respect to an argument filtering [10, 17]. To effectively use reduction
pairs, being able to discard some rewrite rules is essential (especially for universal
computability, if we can discard the unknown ones). Closely related is the adaptation of
more reduction pairs such as weakly monotonic algebras [36, 34], tuple interpretations [22,
35] and more sophisticated path orderings [4], all of which have higher-order formulations.
Transformation techniques, such as narrowing, and chaining dependency pairs together
(as used for instance for integer transition systems [8, Secion 3.1]). This could also be a
step toward using the constrained DP framework for non-termination.
Handling the innermost or call-by-value strategy. Several functional languages adopt call-
by-value evaluation, and applying this restriction may allow for more powerful analyses.
In the first-order DP framework, there is ample work on the innermost strategy to build
on (see, e.g., [9, 10]).
Theory-specific processors for popular theories other than integers, e.g., bit vectors [25].

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 236(1–

2):133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.
2 F. Blanqui. Higher-order dependency pairs. In A. Geser and H. Søndergaard, editors, Proc.

WST, pages 22–26, 2006. doi:10.48550/arXiv.1804.08855.

MFCS 2024

https://www.cs.ru.nl/~cynthiakop/experiments/mfcs2024
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.48550/arXiv.1804.08855

57:14 Higher-Order Constrained Dependency Pairs for (Universal) Computability

3 F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-data-type systems. TCS, 272(1–2):41–
68, 2002. doi:10.1016/S0304-3975(00)00347-9.

4 F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: the end
of a quest. In M. Kaminski and S. Martini, editors, Proc. CSL, pages 1–14, 2008. doi:
10.1007/978-3-540-87531-4_1.

5 Community. The termination problem database (TPDB). URL: https://github.com/
TermCOMP/TPDB.

6 N. Dershowitz. Hierarchical termination. In N. Dershowitz and N. Lindenstrauss, editors,
Proc. CTRS, pages 89–105, 1995. doi:10.1007/3-540-60381-6_6.

7 C. Fuhs and C. Kop. A static higher-order dependency pair framework. In L. Caires, editor,
Proc. ESOP, pages 752–782, 2019. doi:10.1007/978-3-030-17184-1_27.

8 J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing
program termination and complexity automatically with AProVE. JAR, 58:3–31, 2017.
doi:10.1007/s10817-016-9388-y.

9 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: combining
techniques for automated termination proofs. In F. Baader and A. Voronkov, editors, Proc.
LPAR, pages 301–331, 2005. doi:10.1007/978-3-540-32275-7_21.

10 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. JAR, 37:155–203, 2006. doi:10.1007/s10817-006-9057-7.

11 L. Guo, K. Hagens, C. Kop, and D. Vale. Higher-order constrained dependency pairs for
(universal) computability. Technical report, Radboud University, 2024. doi:10.48550/arXiv.
2406.19379.

12 L. Guo and C. Kop. Higher-order LCTRSs and their termination. In S. Weirich, editor, Proc.
ESOP, pages 331–357, 2024. doi:10.1007/978-3-031-57267-8_13.

13 N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In V. van Oostrom, editor, Proc.
RTA, pages 249–268, 2004. doi:10.1007/978-3-540-25979-4_18.

14 J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In G. Longo, editor,
Proc. LICS, pages 402–411, 1999. doi:10.1109/LICS.1999.782635.

15 C. Kop. Termination of LCTRSs. In J. Waldmann, editor, Proc. WST, pages 59–63, 2013.
doi:10.48550/arXiv.1601.03206.

16 C. Kop. WANDA – A higher order termination tool. In Z. M. Ariola, editor, Proc. FSCD,
pages 36:1–36:19, 2020. doi:10.4230/LIPIcs.FSCD.2020.36.

17 C. Kop. Cutting a proof into bite-sized chunks: incrementally proving termination in higher-
order term rewriting. In A. P. Felty, editor, Proc. FSCD, pages 1:1–1:17, 2022. doi:10.4230/
LIPIcs.FSCD.2022.1.

18 C. Kop. A weakly monotonic, logically constrained, HORPO-variant. Technical report,
Radboud University, 2024. doi:10.48550/arXiv.2406.18493.

19 C. Kop and N. Nishida. Term rewriting with logical constraints. In P. Fontaine, C. Ringeis-
sen, and R. A. Schmidt, editors, Proc. FroCoS, pages 343–358, 2013. doi:10.1007/
978-3-642-40885-4_24.

20 C. Kop and D. Vale. The Cora analyzer. URL: https://github.com/hezzel/cora.
21 C. Kop and D. Vale. hezzel/cora: artifact for MFCS 2024. doi:10.5281/zenodo.12551027.
22 C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In N. Kobayashi,

editor, Proc. FSCD, pages 31:1–31:22, 2021. doi:10.4230/LIPIcs.FSCD.2021.31.
23 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems.

LMCS, 8(2):10:1–10:51, 2012. doi:10.2168/lmcs-8(2:10)2012.
24 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong com-

putability in simply-typed term rewriting. AAECC, 18(5):407–431, 2007. doi:10.1007/
s00200-007-0046-9.

https://doi.org/10.1016/S0304-3975(00)00347-9
https://doi.org/10.1007/978-3-540-87531-4_1
https://doi.org/10.1007/978-3-540-87531-4_1
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/3-540-60381-6_6
https://doi.org/10.1007/978-3-030-17184-1_27
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-540-25979-4_18
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.48550/arXiv.1601.03206
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.48550/arXiv.2406.18493
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://github.com/hezzel/cora
https://doi.org/10.5281/zenodo.12551027
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.2168/lmcs-8(2:10)2012
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/s00200-007-0046-9

L. Guo, K. Hagens, C. Kop, and D. Vale 57:15

25 A. Matsumi, N. Nishida, M. Kojima, and D. Shin. On singleton self-loop removal for
termination of LCTRSs with bit-vector arithmetic. In A. Yamada, editor, Proc. WST, 2023.
doi:10.48550/arXiv.2307.14094.

26 P. W. O’Hearn. Continuous reasoning: scaling the impact of formal methods. In A. Dawar
and E. Grädel, editors, Proc. LICS, pages 13–25, 2018. doi:10.1145/3209108.3209109.

27 M. R. K. K. Rao. Completeness of hierarchical combinations of term rewriting systems. In R. K.
Shyamasundar, editor, Proc. FSTTCS, pages 125–138, 1993. doi:10.1007/3-540-57529-4_48.

28 M. R. K. K. Rao. Simple termination of hierarchical combinations of term rewriting systems.
In M. Hagiya and J. C. Mitchell, editors, Proc. TACS, pages 203–223, 1994. doi:10.1007/
3-540-57887-0_97.

29 M. R. K. K. Rao. Semi-completeness of hierarchical and super-hierarchical combinations of
term rewriting systems. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors, Proc.
CAAP, pages 379–393, 1995. doi:10.1007/3-540-59293-8_208.

30 M. Sakai and K. Kusakari. On dependency pair method for proving termination of higher-order
rewrite systems. IEICE Trans. Inf. Syst., E88-D(3):583–593, 2005. doi:10.1093/ietisy/
e88-d.3.583.

31 M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method for
proving termination of higher-order rewrite systems. IEICE Trans. Inf. Syst., E84-D(8):1025–
1032, 2001. URL: https://search.ieice.org/bin/summary.php?id=e84-d_8_1025.

32 R. Tarjan. Depth-first search and linear graph algorithms. SICOMP, 1(2):146–160, 1972.
doi:10.1137/0201010.

33 R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD
thesis, RWTH Aachen University, 2007. URL: http://cl-informatik.uibk.ac.at/users/
thiemann/paper/diss.pdf.

34 J. C. van de Pol. Termination of Higher-Order Rewrite Systems. PhD thesis, Utrecht University,
1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.

35 A. Yamada. Tuple interpretations for termination of term rewriting. JAR, 66:667–688, 2022.
doi:10.1007/s10817-022-09640-4.

36 H. Zantema. Termination of term rewriting: interpretation and type elimination. JSC,
17(1):23–50, 1994. doi:10.1006/jsco.1994.1003.

MFCS 2024

https://doi.org/10.48550/arXiv.2307.14094
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1007/3-540-57529-4_48
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-59293-8_208
https://doi.org/10.1093/ietisy/e88-d.3.583
https://doi.org/10.1093/ietisy/e88-d.3.583
https://search.ieice.org/bin/summary.php?id=e84-d_8_1025
https://doi.org/10.1137/0201010
http://cl-informatik.uibk.ac.at/users/thiemann/paper/diss.pdf
http://cl-informatik.uibk.ac.at/users/thiemann/paper/diss.pdf
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1007/s10817-022-09640-4
https://doi.org/10.1006/jsco.1994.1003

	1 Introduction
	2 Preliminaries
	2.1 Logically Constrained STRSs
	2.2 Accessibility and Computability

	3 Static Dependency Pairs for LCSTRSs
	4 The Constrained DP Framework
	4.1 The DP Graph and Its Approximations
	4.2 The Subterm Criterion
	4.3 Integer Mappings
	4.4 Theory Arguments
	4.5 Reduction Pairs

	5 Universal Computability
	5.1 The DP Framework Revisited

	6 Experiments and Future Work

