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Abstract
Often regarded as the study of how order emerges from randomness, Ramsey theory has played
an important role in mathematics and computer science, giving rise to applications in numerous
domains such as logic, parallel processing, and number theory. The core of graph Ramsey theory is
arrowing: For fixed graphs F and H, the (F, H)-Arrowing problem asks whether a given graph, G,
has a red/blue coloring of the edges of G such that there are no red copies of F and no blue copies
of H. For some cases, the problem has been shown to be coNP-complete, or solvable in polynomial
time. However, a more systematic approach is needed to categorize the complexity of all cases.

We focus on (P3, H)-Arrowing as F = P3 is the simplest meaningful case for which the complexity
question remains open, and the hardness for this case likely extends to general (F, H)-Arrowing
for nontrivial F . In this pursuit, we also gain insight into the complexity of a class of matching
removal problems, since (P3, H)-Arrowing is equivalent to H-free Matching Removal. We show that
(P3, H)-Arrowing is coNP-complete for all 2-connected H except when H = K3, in which case the
problem is in P. We introduce a new graph invariant to help us carefully combine graphs when
constructing the gadgets for our reductions. Moreover, we show how (P3, H)-Arrowing hardness
results can be extended to other (F, H)-Arrowing problems. This allows for more intuitive and
palatable hardness proofs instead of ad-hoc constructions of SAT gadgets, bringing us closer to
categorizing the complexity of all (F, H)-Arrowing problems.
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1 Introduction and related work

At what point, if ever, does a system get large enough so that certain patterns become
unavoidable? This question lies at the heart of Ramsey theory, which, since its inception in
the 1930s, aims to find these thresholds for various combinatorial objects. Ramsey theory
has played an important role in mathematics and computer science, finding applications in
fields such as cryptography, algorithms, game theory, and more [11]. A key operator within
Ramsey theory is the arrowing operator, which is defined for graphs like so: given graphs
F, G, and H, we say that G → (F, H) (read, G arrows F, H) if every red/blue coloring of G’s
edges contains a red F or a blue H. In this work, we analyze the complexity of computing
this operator when F and H are fixed graphs. The general problem is defined as follows.

▶ Problem 1 ((F, H)-Arrowing). For fixed F and H, given a graph G, does G → (F, H)?

The problem is clearly in coNP; a red/blue coloring of G’s edges with no red F and
no blue H forms a certificate that can be verified in polynomial time since F and H are
fixed graphs. Such a coloring is referred to as an (F, H)-good coloring. The computational
complexity of (F, H)-Arrowing has been categorized for several – but not all – pairs (F, H).
For instance, (P2, H)-Arrowing is in P for all H, where P2 is the path graph on 2 vertices.
This is because any coloring of an input graph G that does not contain a red P2 must
be entirely blue, and thereby (P2, H)-Arrowing is equivalent to determining whether G is
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H-free. Burr showed that (F, H)-Arrowing is coNP-complete when F and H are 3-connected
graphs – these are graphs which remain connected after the removal of any two vertices, e.g.,
(K5, K6)-Arrowing [3]. More results of this type are discussed in Section 2.

In this work, we explore the simplest nontrival case for F , F = P3, and provide a
complete classification of the complexity when H is a 2-connected graph – a graph that
remains connected after the removal of any one vertex. In particular, we prove:

▶ Theorem 1. (P3, H)-Arrowing is coNP-complete for all 2-connected H except when
H = K3, in which case the problem is in P.

We do this by reducing an NP-complete SAT variant to (P3, H)-Arrowing’s complement,
(P3, H)-Nonarrowing (for fixed H, does there exist a (P3, H)-good coloring of a given graph?),
and showing how to construct gadgets for any 2-connected H. It is important to note that
combining different copies of H can be troublesome; it is possible to combine graphs in a
way so that we end up with more copies of it than before, e.g., combining two Pn’s by their
endpoints makes several new Pn’s across the vertices of both paths. Results such as Burr’s
which assume 3-connectivity avoid such problems, in that we can combine several copies
of 3-connected graphs without worrying about forming new ones. If G is 3-connected with
vertices u, v ∈ V (G) and we construct a graph F by taking two copies of G and identifying u

across both copies, then identifying v across both copies, no new copies of G are constructed
in this process; if a new G is created then it must be disconnected by the removal of the
two identified vertices, contradicting F ’s 3-connectivity. This makes it easier to construct
gadgets for reductions. To work with 2-connected graphs and show how to combine them
carefully, we present a new measure of intra-graph connectivity called edge pair linkage,
and use it to prove sufficient conditions under which two copies of a 2-connected graph G

can be combined without forming new copies of G.
By targeting the (P3, H) case we gain new insight and tools for the hardness of (F, H)-

Arrowing in the general case since F = P3 is the simplest case for F . We conjecture that if
(P3, H)-Arrowing is hard, then (F, H)-Arrowing is also hard for all nontrivial F , but this
does not at all follow immediately. Towards the goal of categorizing the complexity of all
(F, H)-Arrowing problems, we show how to extend the hardness results of (P3, H)-Arrowing
to other (F, H)-Arrowing problems in Section 5. These extensions are more intuitive and the
resulting reductions are more palatable compared to constructing SAT gadgets. We believe
that techniques similar to the ones shown in this paper can be used to eventually categorize
the complexity of (F, H)-Arrowing for all (F, H) pairs.

The rest of the paper is organized as follows. Related work is discussed in Section 2. We
present preliminaries in Section 3, wherein we also define and analyze edge pair linkage. Our
complexity results for (P3, H)-Arrowing are proven in Section 4. We show how our hardness
results extend to other arrowing problems in Section 5, and we conclude in Section 6. All
proofs omitted in the main text are provided in the appendix.

2 Related work

Complexity of (F, H)-Arrowing. Burr showed that (F, H)-Arrowing is in P when F and
H are both star graphs, or when F is a matching [3]. Hassan et al. showed that (P3, P3)- and
(P3, P4)-Arrowing are also in P [6]. For hardness results, Burr showed that (F, H)-Arrowing
is coNP-complete when F and H are members of Γ3, the family of all 3-connected graphs
and K3. The generalized (F, H)-Arrowing problem, where F and H are also part of the
input, was shown to be Πp

2-complete by Schaefer, who focused on constructions where F is a
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tree and H is a complete graph [13].1 Hassan et al. recently showed that (Pk, Pℓ)-Arrowing
is coNP-complete for all k and ℓ aside from the exceptions listed above [6]. We note that
(P4, P4)-Arrowing was shown to be coNP-complete by Rutenburg much earlier [12].

Matching removal. A matching is a collection of disjoint edges in a graph. Interestingly,
there is an overlap between matching removal problems, defined below, and (P3, H)-Arrowing.

▶ Problem 2 (Π-Matching Removal [9]). Let Π be a fixed graph property. For a given graph
G, does there exist a matching M such that G′ = (V (G), E(G) − M) has property Π?

Let Π be the property that G is H-free for some fixed graph H. Then, this problem is
equivalent to (P3, H)-Nonarrowing; a lack of red P3’s implies that only disjoint edges can
be red, as in a matching, and the remaining (blue) subgraph must be H-free. Lima et al.
showed that the problem is NP-complete when Π is the property that G is acyclic [7], or
that G contains no odd cycles [8, 9].

Ramsey and Folkman numbers. The major research avenue involving arrowing is that of
finding Ramsey and Folkman numbers. Ramsey numbers are concerned with the smallest
complete graphs with arrowing properties, whereas Folkman numbers allow for any graph
with some extra structural constraints. We refer the reader to surveys by Radziszowski [10]
and Bikov [2] for more information on Ramsey and Folkman numbers, respectively.

3 Preliminaries

3.1 Notation and terminology
All graphs discussed in this work are simple and undirected. V (G) and E(G) denote the vertex
and edge set of a graph G, respectively. We denote an edge in E(G) between u, v ∈ V (G) as
(u, v). For two disjoint subsets A, B ⊊ V (G), EG(A, B) refers to the edges with one vertex
in A and one vertex in B. For a subset A ⊆ V (G), G[A] denotes the induced subgraph on A.
The neighborhood of a vertex v ∈ V (G) is denoted as NG(v) = {u | (u, v) ∈ E(G)} and its
degree as dG(v) := |NG(v)|. A connected graph is called k-connected if it has more than k

vertices and remains connected whenever fewer than k vertices are removed.
Vertex identification is the process of replacing two vertices u and v with a new vertex w

such that w is adjacent to all remaining neighbors N(u) ∪ N(v). For edges (u, v) and (p, q),
edge identification is the process of identifying u with p, and v with q.

The path, cycle, and complete graphs on n vertices are denoted as Pn, Cn, and Kn,
respectively. The complete graph on n vertices missing an edge is denoted as Jn. K1,n is the
star graph on n + 1 vertices. For n ≥ 3, we define TKn (tailed Kn) as the graph obtained by
identifying a vertex of a K2 and any vertex in Kn. The vertex of degree one in a TKn is
called the tail vertex of TKn.

We introduce a new notion, defined below, to measure how “connected” a pair of edges in
a graph is, which will be useful when identifying edges between multiple copies of the same
graph. Examples have been shown in Figure 1.

▶ Definition 2. For a pair of edges e, f ∈ E(G), we define its edge pair linkage, eplG(e, f),
as the number of edges adjacent to both e and f . It is infinity if e and f share at least one
vertex. Note that eplG(e, f) ≤ 4 when e and f share no vertices. For a graph G, we define
mepl(G) := mine,f∈E(G) epl(e, f) as the minimum edge pair linkage across all edge pairs.

1 Πp
2 = coNPNP, the class of all problems whose complements are solvable by a nondeterministic

polynomial-time Turing machine having access to an NP oracle.

MFCS 2024
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Figure 1 Graphs with different mepl(G) values. Bold edges have eplG = mepl(G).

Figure 2 Proof for Lemma 3 when |V (H)| = 4. It is easy to see that AH,e for H ∈ {C4, K4}
has exactly two copies of H for arbitrary e. Moreover, constructing AJ4,e introduces a new J4

(highlighted in red) for both nonisomorphic choices of e ∈ E(J4). Identified edges are bolded.

It is easy to see that the only graphs with mepl(G) = ∞ are the star graphs, K1,n, and
K3 since these are the only graphs that do not have disjoint edges. When the context is
clear, the subscript G for eplG(·), dG(·), etc. will be omitted.

An (F, H)-good coloring of a graph G is a red/blue coloring of E(G) where the red
subgraph is F -free, and the blue subgraph is H-free. We say that G is (F, H)-good if it has
at least one (F, H)-good coloring. When the context is clear, we will omit (F, H) and refer
to the coloring as a good coloring.

3.2 Combining graphs
Suppose H is a 3-connected graph. Consider the graph AH,e, obtained by taking two disjoint
copies of H and identifying some arbitrary e ∈ E(H) from each copy. Observe that no new
copy of H – referred to as a rogue copy of H in AH,e – is constructed during this process; if a
new H is created then it must be disconnected by the removal of the two identified vertices,
contradicting H’s 3-connectivity. This is especially useful when proving the existence of good
colorings; to show that a coloring of AH,e has no blue H, we know that only two copies of
H need to be looked at, without worrying about any other rogue H. Unfortunately, this
property does not hold for all 2-connected graphs. Instead, we use minimum edge pair linkage
to explore sufficient conditions that allow us to combine multiple copies of graphs without
concerning ourselves with any potential rogue copies.

▶ Lemma 3. Suppose H is a 2-connected graph such that |V (H)| ≥ 4 and mepl(H) ≥ 2.
Given H and e ∈ E(H), let AH,e be the graph obtained by taking two disjoint copies of H

and identifying e from each copy. For all such H, except J4, there exists e ∈ E(H) such that
AH,e has exactly two copies of H, i.e., no new copy of H is formed after identifying e.

Proof. For |V (H)| = 4, the statement is easily observed as the only cases to consider
are C4, J4, and K4. See Figure 2. Suppose |V (H)| ≥ 5. We will first construct AH,e

using an arbitrary e = (u, v) ∈ E(H) and assume that a new copy of H is constructed
after identifying e. Let X and Y denote the subgraphs of AH,e corresponding to the
two copies of H in AH,e that identify (u, v). It follows that, V (X) ∩ V (Y ) = {u, v} and
V (X) ∪ V (Y ) = V (AH,e). Similarly, E(X) ∩ E(Y ) = {e} and E(X) ∪ E(Y ) = E(AH,e).
Suppose Z is a subgraph corresponding to another copy of H in AH,e, i.e. V (Z) ̸= V (X)
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and V (Z) ̸= V (Y ). Let VZX
= (V (X) − V (Y )) ∩ V (Z) be the vertices of Z only in X, and

EZX
= {(p, q) ∈ E(Z) | p, q ∈ VZX

}. VZY
and EZY

are defined similarly. In the following
claim, we observe the properties of Z and the original graph H with mepl(H) ≥ 2.

▷ Claim 4. If Z exists in AH,e, the following must be true: (1) Both VZX
and VZY

are
nonempty, (2) u ∈ V (Z) and v ∈ V (Z), (3) at least one of EZX

and EZY
is empty, and (4)

there exists w ∈ V (H) with dH(w) = 2.

The proof of Claim 4 is given in Appendix A. Now, let e = (u, v) ∈ E(H) such that
dH(v) = 2. Consider the graph AH,e. Note that since dH(v) = 2, we have dAH,e

(v) =
dH(v) + dH(v) − 1 = 3. Let wX and wY be the neighbors of v in V (X) − V (Y ) and
V (Y ) − V (X), respectively. We know that V (Z) includes u and v from Claim 4(2). We
now show that wX and wY must also belong to V (Z): if neither belong to V (Z), then
dZ(v) = 1, contradicting H’s 2-connectivity (removing u disconnects H). Suppose w.l.o.g.,
that wX ̸∈ V (Z). Since VZX

is nonempty and H is connected, there is at least one vertex
in VZX

connected to u. However, removing u would disconnect Z, again contradicting H’s
2-connectivity. Thus, {u, v, wX , wY } ⊆ V (Z). Using a similar argument, we can also show
that both (v, wX) and (v, wY ) must belong to E(Z).

Let p be a vertex in V (Z) − {u, v, wX , wY }. We know p exists since |V (H)| ≥ 5. W.l.o.g.,
we assume that p ∈ VZX

. Note that p cannot be adjacent to v since NAH,e
(v) = {u, wX , wY }.

We now consider the neighborhood of p in Z. If p has a neighbor q ∈ VZX
− {wX}, then

eplZ ((p, q), (v, wY )) = 0, contradicting our assumption that mepl(H) ≥ 2. Since dZ(p) =
dH(p) ≥ 2 and the only options remaining for p’s neighborhood are u and wX , we must have
that p is connected to both u and wX . In this case, we have that eplZ((p, wX), (v, wY )) ≤ 1,
which is still a contradiction. ◀

4 The complexity of (P3, H)-Arrowing

In this section, we discuss our complexity results stated in Theorem 1. We first show that
(P3, K3)-Arrowing is in P (Theorem 5). The rest of the section is spent setting up our
hardness proofs for all 2-connected H ̸= K3, which we prove formally in Theorems 13 and 14.

▶ Theorem 5. (P3, K3)-Arrowing is in P.

Proof. Let G be the input graph. Let γ : E(G) → Z≥0 be a function that maps each edge to
the number of triangles it belongs to in G. Note that γ can be computed in O(|E(G)|3) time
via brute-force. Let t be the number of triangles in G. Clearly, any (P3, K3)-good coloring
of G corresponds to a matching of total weight ≥ t; otherwise, there would be some K3
in G in the blue subgraph of G. Now, suppose there exists a matching M with weight at
least t that does not correspond to a (P3, K3)-good coloring of G. Then, there must exist a
copy of K3 in G with at least two of its edges in M . However, since K3’s maximal matching
contains only one edge, M must contain a P3, which is a contradiction. Thus, we can solve
(P3, K3)-Arrowing by finding the maximum weight matching of (G, γ), which can be done in
polynomial time [5], and checking if said matching has weight equal t. ◀

To show that (P3, H)-Arrowing is coNP-complete we show that its complement, (P3, H)-
Nonarrowing, is NP-hard. We reduce from the following NP-complete SAT variant:

▶ Problem 3 ((2, 2)-3SAT [1]). Let ϕ be a 3CNF formula where each clause has exactly three
distinct variables, and each variable appears exactly four times: twice unnegated and twice
negated. Does there exist a satisfying assignment for ϕ?

MFCS 2024
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Figure 3 (a) The graph A′ when u and w are adjacent to a red edge. (b) The graph A′ when
either u or w is adjacent to a red edge. (c) The graph B. (d) A zoomed in look at B.

Important definitions and the idea behind our reduction are provided in Section 4.1, while
the formal proofs are presented in Section 4.2.

4.1 Defining special graphs and gadgets for proving hardness
We begin by defining a useful term for specific vertices in a coloring, after which we describe
and prove the existence of some special graphs. We then define the two gadgets necessary
for our reduction and describe how they provide a reduction from (2, 2)-3SAT.

▶ Definition 6. For a graph G and a coloring c, a vertex v ∈ V (G) is called a free vertex
if it is not adjacent to any red edge in c. Otherwise, it is called a nonfree vertex.

Note that in any (P3, H)-good coloring, a vertex can be adjacent to at most one red edge,
otherwise, a red P3 is formed. Intuition suggests that, by exploiting this restrictive property,
we could freely force “any” desired blue subgraph if we can “append red edges” to it. This
brings us to our next definition, borrowed from Schaefer’s work on (F, H)-Arrowing [13]:

▶ Definition 7 ([13]). A graph G is called an (F, H)-enforcer with signal vertex v if it
is (F, H)-good and the graph obtained from G by attaching a new edge to v has the property
that this edge is colored blue in all (F, H)-good colorings.

Throughout our text, when the context is clear, we will use the shorthand append
an enforcer to u ∈ V (G) to mean we will add an (F, H)-enforcer to G and identify
its signal vertex with u. We prove the existence of (F, H)-enforcers when F = P3 below.
This proof provides a good example of the role 2-connectivity plays while constructing our
gadgets, showcasing how we combine graphs while avoiding constructing new copies of H.
The arguments made are used frequently in our other proofs as well.

▶ Lemma 8. (P3, H)-enforcers exist for all 2-connected H.

Proof. We extend an idea presented by Burr [3]. Let A be a “minimally bad” graph such that
A → (P3, H), but removing any edge e from A gives a (P3, H)-good graph. Let e = (u, w)
and A′ = A − e. This graph is illustrated in Figure 3. Observe that in any (P3, H)-good
coloring of A′, at least one edge adjacent to u or w must be red; otherwise, such a coloring
and a red (u, w) gives a good coloring for A, contradicting the fact that A → (P3, H). If
both u and w are adjacent to red edges in all good colorings, then A′ is a (P3, H)-enforcer,
and either u or w can be the signal vertex .

If there exists a coloring where only one of {u, w} is adjacent to a red edge, then we can
construct an enforcer, B, as follows. Let n = |V (H)|. Make 2n copies of A′, where ui and
wi refer to the vertex u and w in the ith copy of A′, called A′

i. Now, identify each wi with
ui+1 for i ∈ {1, 2, . . . , 2n − 1}, and identify w2n with u1 (see Figure 3). Although wi and
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Figure 4 (a) The (P3, H)-signal extender described in Lemma 10, where enforcers are labeled
EN and the copy of H is labeled U . Edges whose colors are fixed in all (P3, H)-good colorings have
been pre-colored. The edge (u1, u3) is dashed to signify it may or may not exist in the construction.
(b) At the top, we show how extenders can be connected sequentially to form arbitrarily large
extenders. The enforcers have been removed from the illustration for clarity. The in- and out-vertices
are marked a and b, respectively. At the bottom, we show how signal extenders will be depicted
in our figures, where ℓ is the number of concatenated constructed extenders. (c) At the top, we
show the coloring of the signal extender when vertex a is a free vertex. At the bottom, we show the
corresponding coloring of our representation of signal extenders.

ui+1 are now the same vertex in B, we will use their original names to make the proof easier
to follow. It is easy to see that when w1 is adjacent to a red edge in A′

1, then u2 cannot be
adjacent to any red edge in A′

2, causing w2 to be adjacent to a red edge in A′
2, and so on. A

similar argument holds when considering the case where u1 is adjacent to a red edge in A′
1.

Since every ui and wi is adjacent to a red edge, any of them can be our desired signal vertex.
Note that B must be (P3, H)-good because each A′

i is (P3, H)-good, and no new H is made
during the construction of the graph; since H is 2-connected, H cannot be formed between
two copies of A′

i’s, otherwise there is a single vertex that can be removed to disconnect such
an H, contradicting 2-connectivity. Thus, any new copy of H must go through all Ai’s,
which is not possible since such an H would have ≥ 2|V (H)| vertices. ◀

Using enforcers, we construct another graph that plays an important role in our reductions.

▶ Definition 9. A graph G is called a (P3, H)-signal extender with in-vertex a and
out-vertex b if it is (P3, H)-good and, in all (P3, H)-good colorings, b is nonfree if a is free.

▶ Lemma 10. (P3, H)-signal extenders exist for all 2-connected H.

Proof. Let n = |V (H)|. Construct a graph G like so. Take a copy of H, and let
u1, u2, . . . , un ∈ U be the vertices of H in G, such that (u1, u2) and (u2, u3) are edges
of H. For each ui for i ∈ {4, 5, . . . , n}, append an enforcer to ui. Observe that no “new” H

is constructed during this process since H is 2-connected. Since each vertex except u1, u2,

and u3 is connected to an enforcer, each edge in G[U ], except (u1, u2), (u2, u3), and (u1, u3)
must be blue. However, not all of them can be blue, otherwise G[U ] is a blue H. Therefore,
in any good coloring, if u1 is a free vertex, (u2, u3) must be red, making u3 a nonfree vertex.
Thus, u1 is our in-vertex, and u3 is our out-vertex. We illustrate G in Figure 4(a). ◀

Observe that multiple copies of these extenders can be used to form larger ones (see
Figure 4). With the enforcer and extender graphs defined, we are ready to construct the
gadgets for our reductions. Below, we define variable and clause gadgets and describe how
they are used in our proofs. Recall that we are reducing from (2, 2)-3SAT. We will explain
how our graphs encode clauses and variables after the definitions.

MFCS 2024
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Figure 5 On the left, we show the variable gadget constructed using two copies of A as described
in Theorem 13’s proof and signal extenders. The vertices in the square are the vertices of A which
had enforcers appended to them. The edge (b, c) is dashed to signify that it may or may not exist.
Edges have been precolored wherever possible. Note that if (b, c) exists, it must be blue: if (b, c) is
red, the attached signal extenders will force (a′, b′), (b′, c′), and (c′, d′) to be blue, forming a blue H.
By symmetry, (b′, c′) must also be blue. Now, observe that at least one edge in {(a, b), (c, d)} must
be red, otherwise we form a blue H in A. Suppose (a, b) is red: the signal extender forces (a′, b′) to
be blue. To avoid a blue H, (c′, d′) must be red, which forces (c, d) to be blue. In this case, the
vertices marked U are nonfree vertices, and the vertices marked N are free. A similar pattern can
be observed when we color (c, d) red instead, giving us colorings where vertices marked U are free
and vertices marked N are nonfree.

▶ Definition 11. For a fixed H, a clause gadget is a (P3, H)-good graph CG containing
vertices i1, i2, and i3 – referred to as input vertices, such that if vertices outside the gadget,
o1, o2 and o3, are connected to i1, i2, and i3, respectively, then each of the eight possible
combinations of (oj , ij)’s colors should allow a (P3, H)-good coloring for CG, except the
coloring where all (oj , ij)’s are red, which should not allow a good coloring of CG.

▶ Definition 12. For a fixed H, a variable gadget is a (P3, H)-good graph V G containing
four output vertices: two unnegated output vertices, u1 and u2, and two negated
output vertices, n1 and n2, such that:
1. In each (P3, H)-good coloring of V G:

a. If u1 or u2 is a free vertex, then n1 and n2 must be nonfree vertices.
b. If n1 or n2 is a free vertex, then u1 and u2 must be nonfree vertices.

2. There exists at least one (P3, H)-good coloring of V G where u1 and u2 are free vertices.
3. There exists at least one (P3, H)-good coloring of V G where n1 and n2 are free vertices.

Note how clause gadgets and their input vertices correspond to OR gates and their inputs;
the external edges, denoted as (oj , ij)’s in the definition, behave like true or false signals:
blue is true, and red is false. Similarly, output vertices of variable gadgets behave like sources
for these signals. The reduction is now straightforward: for a formula ϕ, construct Gϕ like
so. For each variable and clause, add a corresponding gadget. Then, identify the output
and input vertices according to how they appear in each clause. It is easy to see that any
satisfying assignment of ϕ corresponds to a (P3, H)-good coloring of Gϕ, and vice versa. To
complete the proof we must show that the gadgets described exist and that no new H is
formed while combining the gadgets during the reduction.

Note that it is possible for a variable gadget to have a coloring where both unnegated
and negated output vertices are nonfree. This does not affect the validity of the gadgets. A
necessary restriction is that if variable x appears unnegated in clause L1 and negated in L2,
then x cannot satisfy both clauses. Our gadgets clearly impose that restriction.
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(a) (b) (c) (d)

Figure 6 This figure shows the clause gadget used in the proofs of Theorem 13 and 14. (a) Each
block represents the induced subgraph in a H when: (1) mepl(H) = 2 and H has an induced C4,
(2) mepl(H) = 1, and (3) mepl(H) = 0. (b) Each block represents how a fifth vertex, denoted e

in the proofs of Theorems 13 and 14, may be connected to the induced subgraphs from (a). For
each case, the solid line going from e represents an edge that must exist in E(H) since dH(v) ≥ 2
for all v ∈ H due to 2-connectivity. In the first case, any edge can be chosen w.l.o.g. due to the
symmetry of C4. The dashed edges may or may not exist, but their existence is inconsequential
to the correctness of our gadget. (c) An illustration of the clause gadget, where each vertex of H

attached to an enforcer is in the square. The input vertices have been filled in. (d) We show the
eight possible combinations of inputs that can be given to the gadget. Observe that a (P3, H)-good
coloring is always possible unless the input is three red edges.

4.2 Hardness proofs
Using the ideas and gadgets presented in Section 4.1, we provide our hardness results below.

▶ Theorem 13. (P3, H)-Arrowing is coNP-complete when H is a 2-connected graph on at
least four vertices with mepl(H) ≤ 1.

Proof. We reduce (2, 2)-3SAT to (P3, H)-Nonarrowing as described in the end of Section 4.1;
given a (2, 2)-3SAT formula ϕ, we construct a graph Gϕ such that Gϕ is (P3, H)-good
if and only if ϕ is satisfiable. Since we have mepl(H) ≤ 1, we must have two edges
(a, b), (c, d) ∈ E(H) that have at most one edge adjacent to both. We construct a graph A

like so: take a copy of H and append an enforcer to each vertex of H except a, b, c, and d.
We construct the variable gadget using two copies of A joined by signal extenders, as shown
in Figure 5. The vertices labeled U (resp., N) correspond to unnegated (resp., negated)
output vertices. Note that there are no rogue H’s made during this construction. Recall
that because of 2-connectivity, a copy of H cannot go through a single vertex. Thus, if a
copy of H other than the ones in A and the signal extenders exists, it must go through both
copies of A and the signal extenders. However, this is not possible because by including the
two signal extenders, we would have a copy of H with at least 2|V (H)| vertices.

We now describe our clause gadget. As observed in Section 3.2, there is no 2-connected
graph with mepl(·) ≤ 1 on four vertices so we assume |V (H)| ≥ 5. Let (a, b) and (c, d) be the
edges that achieve this epl(·). Let e be a fifth vertex connected to at least one of {a, b, c, d}.
We construct a clause gadget by taking a copy of H and appending an enforcer to each vertex
except a, b, c, d, and e. In Figure 6 – which also includes a special case for mepl(H) = 2
used in Theorem 14 – we show how e and two vertices from {a, b, c, d} can be used as input
vertices so that a blue H is formed if and only if all three input vertices are connected to red
external edges. Observe that we can make the clause gadget arbitrarily large by attaching
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Figure 7 On the top, we show the variable gadget constructed using two copies of F as described
in Theorem 13’s proof and signal extenders. A and B have been marked. The vertices in the square
(resp., triangle) are the vertices of A (resp., B) which had enforcers appended to them. Dashed edges
signify edges that may or may not exist. Edges have been precolored wherever possible. Observe
that (b, e) must be blue: if (b, e) is red, the attached extenders will force (b′, c′), (b′, e′), and (c′, e′)
to be blue, forming a blue H in the copy of B on the right. We show that (a, b), (a, c), (b, d), and
(c, d) must always be blue. Observe that at least one edge in {(b, c), (c, e)} must be red, otherwise
we form a blue H in B. Note that if (b, c) is red, the edges (a, b), (a, c), (b, d), and (c, d) must be
blue. If (b, c) is blue, (c, e) is red. Thus, (c, d) and (a, c) are blue. Moreover, a red (c, e) forces (c′, e′)
to be blue via the extender. Thus, (b′, c′) must be red to avoid a blue H. The extender on the top
will in turn force edge (a, b) and (b, d) to be blue. Therefore, (a, b), (a, c), (b, d), and (c, d) are blue
in all good colorings. By symmetry, (a′, b′), (a′, c′), (b′, d′), (c′, d′), and (b′, e′) must also be blue in
all good colorings. Observe that when a vertex marked U is nonfree, i.e., (a, d) is blue, (b, c) must
be red. Thus, (b′, c′) is blue, and (a′, d′) must be red, making the vertices marked N nonfree. A
similar pattern can be observed when vertices marked N are free, wherein the vertices marked U
are forced to be nonfree. These colorings are shown at the bottom of the figure.

the out-vertex of a signal extender to each input vertex of a clause gadget. We attach a
signal extender with at least |V (H)| vertices to each input vertex. This ensures that no
copies of H other than the ones in each gadget and extender are present in Gϕ. ◀

▶ Theorem 14. (P3, H)-Arrowing is coNP-complete when H is a 2-connected graph on at
least four vertices with mepl(H) ≥ 2.

Proof. We follow the same argument as in the proof of Theorem 13. We first discuss the
variable gadget. Using Lemma 3 and the fact that mepl(H) ≥ 2, we know that we can
construct a graph F with exactly two copies of H that share a single edge, unless H = J4.
The variable gadget for this exception is shown in Appendix A. For now, we assume H ̸= J4.
Let A and B the copies of H in F and let (b, c) be the edge that was identified. Let e ̸= b

be a vertex in B adjacent to c, and let (a, d) be an edge in A where a, d ̸∈ {b, c}. Note that
if such an (a, d) does not exist in H, then (b, c) must be an edge that shares a vertex with
every other edge in H. However, it is easy to see that in this case two copies of H cannot
be identified on (b, c) without forming new copies of H. Thus, (a, d) must exist. We now
append enforcers to each vertex in A and B except a, b, c, d, and e. Our variable gadget is
constructed using two copies of F joined via signal extenders as shown in Figure 7.
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(a) (b) (c)

Figure 8 This figure shows the clause gadget used in Theorem 14 when H contains a T K3. (a)
Each block represents the induced subgraph in a H when: (1) mepl(H) = 4, (2) mepl(H) = 3, and
(3) mepl(H) = 2 and H has an induced T K3. (b) An illustration of the clause gadget, where each
vertex of H attached to an enforcer is in the square. The input vertices have been filled in. Dashed
edges may or may not exist, but their existence is inconsequential to the correctness of our gadget.
(c) We show the eight possible combinations of inputs that can be given to the gadget. Observe
that a (P3, H)-good coloring is always possible unless the input is three red edges.

We use a clause gadget similar to the one used in Theorem 13, but with some modifications.
Since mepl(H) ≥ 2, we know that H must contain a C4 or a TK3. If H contains a TK3, we
can use the gadget shown in Figure 8. However, if mepl(H) = 2 and we only have induced
C4’s, we can use the gadget shown in Figure 6 when |V (H)| ≥ 5 using the induced C4 and
another vertex e. The only case left is H = C4, which is discussed in Appendix A. ◀

5 Extending the hardness of (P3, H)-Arrowing

In this section, we discuss how hardness results for (P3, H)-Arrowing can be extended to
other (F, H)-Arrowing problems. We believe this provides an easier method for proving
hardness compared to constructing SAT gadgets. We discuss two methods in which our
results can be extended: (1) showing that G → (P3, H) ⇐⇒ G → (P3, H ′) for some pairs
of H and H ′ (Section 5.1), and (2) given a graph G, showing how to construct a graph G′

such that G → (P3, H) ⇐⇒ G′ → (F, H) for some F (Section 5.2).

5.1 P3 versus tailed complete graphs
We first observe that edges not belonging to H can be removed while working on (P3, H)-
Arrowing for a graph G; we can always color said edge blue without forming a blue H.

▶ Observation 15. Let G be a graph and e ∈ E(G). If e does not belong to a copy of H in
G, then G → (P3, H) if an only if G − e → (P3, H).

▶ Theorem 16. For n ≥ 3, G → (P3, TKn) if and only if G → (P3, Kn).

Proof. Clearly if G → (P3, TKn) then G → (P3, Kn) since Kn is a subgraph of TKn. For
the other direction, consider a graph G such that G → (P3, Kn) but is (P3, TKn)-good. By
Observation 15, we can assume that each edge in G belongs to a Kn. We can also assume
that G is connected. Let c be a (P3, TKn)-good coloring of G. Since G → (P3, Kn) there
must exist a blue Kn in c. Let U = {u1, u2, . . . , un} be the vertices of said Kn. Let e = (ui, v)
be an edge going from some ui ∈ U to a vertex v ̸∈ U . We know that such an edge exists
otherwise G is just a Kn, and a Kn is (P3, Kn)-good, so this would contradict our assumption.
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W.l.o.g., let ui = u1. Note that (u1, v) must be red, otherwise, we have a blue TKn. Since
(u1, v) is part of a Kn (Observation 15), at least one vertex w must be connected to both u1
and v. Note that (u1, w) and (v, w) must be blue to avoid a red P3. If w ∈ U , then U and
(v, w) form a blue TKn. If w ∈ V (G) − U , then U and (u1, w) form a blue TKn. ◀

▶ Corollary 17. (P3, TKn)-Arrowing is coNP-complete when n ≥ 4 and in P when n = 3.

With this result, we have categorized the complexity of all (P3, H)-Arrowing problems
for connected H with |V (H)| ≤ 4; the star and path graphs were shown to be in P [4, 6].

5.2 Stars versus 2-connected graphs
Note that P3 = K1,2. Given a graph G, suppose we construct a graph G′ by taking a copy
of G and appending an edge (one for each vertex in G) to each vertex, where each appended
edge is forced to be red in all colorings. It is easy to see that if a coloring of G contains a
red K1,2, then said coloring in G′ contains a red K1,3, using the appended red edge. Thus, if
we can find a (K1,3, H)-good graph F with an edge (u, v) such that, in all good colorings,
(u, v) is red and no other edge adjacent to v is red, we could reduce (K1,2, H)-Arrowing to
(K1,3, H)-Arrowing by appending a copy of F (identifying v) to each vertex of G. Recall
that we do not have to worry about new copies of H due to its 2-connectivity.

Generalizing this argument, if we attach k red edges to each vertex of G, then a coloring
of G with a red K1,ℓ corresponds to a coloring of G′ with a red K1,k+ℓ. In Appendix B, we
show that for all n ≥ 3, there exists some m for which there is a (K1,n, H)-good graph with
a vertex v that is always the center of a K1,m for some 1 ≤ m < n. This allows us to reduce
(K1,n−m, H)-Arrowing to (K1,n, H)-Arrowing. Thus, we can assert the following:

▶ Lemma 18. Suppose H is a 2-connected graph. If (K1,k, H)-Arrowing is coNP-hard for
all 2 ≤ k < n, then (K1,n, H)-Arrowing is also coNP-hard.

Also in Appendix B, we reduce (2, 2)-3SAT to (K1,3, K3)-Nonarrowing and show how
that result can be extended to (K1,n, K3)-Arrowing for n ≥ 4, giving us the following result:

▶ Theorem 19. For all 2-connected H and n ≥ 2, (K1,n, H)-Arrowing is coNP-complete
with the exception of (K1,2, K3)-Arrowing, which is in P.

Finally, recall that (P3, H)-Nonarrowing is equivalent to H-free Matching Removal.
We can assert a similar equivalence between H-free b-Matching Removal and (K1,b+1, H)-
Nonarrowing, giving us the following corollary:

▶ Corollary 20. For all 2-connected H, H-free b-Matching Removal is NP-complete for all
b ≥ 1, except the case where b = 1 and H = K3, which is in P.

6 Conclusion and future work

This paper provided a complete categorization for the complexity of (P3, H)-Arrowing when
H is 2-connected. We provided a polynomial-time algorithm when H = K3, and coNP-
hardness proofs for all other cases. Our gadgets utilized a novel graph invariant, minimum
edge pair linkage, to avoid unwanted copies of H. We showed that our hardness results
can be extended to (P3, TKn)- and (K1,n, H)-Arrowing using easy-to-understand graph
transformations.

Our ultimate goal is to categorize the complexity of all (F, H)-Arrowing problems. Our
first objective is to categorize the complexity of (P3, H)-Arrowing for all H, and to find more
graph transformations to extend hardness proofs between different arrowing problems.
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A Proof of Claim 4 and missing gadgets

▷ Claim 4. If Z exists in AH,e, the following must be true: (1) Both VZX
and VZY

are
nonempty, (2) u ∈ V (Z) and v ∈ V (Z), (3) at least one of EZX

and EZY
is empty, and (4)

there exists w ∈ V (H) with dH(w) = 2.

Proof.
1. This follows from our definition of Z.
2. If at most one vertex in {u, v} were in Z, deleting it would disconnect said copy of H,

contradicting the fact that H is 2-connected.
3. Suppose that both EZX

and EZY
are nonempty. Let f1 ∈ EZX

and f2 ∈ EZY
. We

have eplAH,e
(f1, f2) = 0 since, by construction, EAH,e

(X − Y, Y − X) = ∅. Since both of
these edges belong to Z, which is isomorphic to H, we also have eplH(f1, f2) = 0, which
contradicts our assumption that mepl(H) ≥ 2.

4. Note that k-connected graphs must have minimum degree at least k as a vertex with
fewer neighbors could be disconnected from the rest of the graph with fewer than k

vertex deletions. So, we have dH(w) ≥ 2 for each w ∈ V (H). W.l.o.g., assume that
EZX

= ∅. Then, each vertex in w ∈ ZX can only be connected to u and v. Thus, we have
dH(w) = dZ(w) ≤ 2, and consequently dH(w) = 2. ◁

Missing gadgets for (P3, H)-Nonarrowing. In Figure 9 we show the variable gadget for
(P3, J4)-Nonarrowing. In Figure 10 we show the clause gadget for (P3, C4)-Nonarrowing.
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Figure 9 The variable gadget for (P3, J4)-Nonarrowing is shown on the left. The colorings on the
right show that when vertices marked U (resp., N) are free, those marked N (resp., U) are nonfree.

Figure 10 The clause gadget for (P3, C4)-Nonarrowing is shown on the left. Possible inputs for
the gadget are shown on the right. A good coloring is possible unless the input is three red edges.

B Extending to stars

We first define the following special graph which will be used in our extension proof.

▶ Definition 21. A graph G is called an (F, H)-leaf sender with leaf-signal edge (u, v) if it
is (F, H)-good, (u, v) is red in all good colorings, and there exists a good coloring where (u, v)
is not adjacent to any other red edge.

When the context is clear, we will use the shorthand append a leaf sender to u ∈ V (G)
to mean we will add an (F, H)-leaf sender to G and identify a vertex of its leaf-signal edge
with u. This graph essentially simulates “appending a red edge” as described in Section 5.2.

B.1 Proof of Lemma 18
▶ Lemma 18. Suppose H is a 2-connected graph. If (K1,k, H)-Arrowing is coNP-hard for
all 2 ≤ k < n, then (K1,n, H)-Arrowing is also coNP-hard.

Proof. Suppose we are trying to prove the hardness of (K1,n, H)-Arrowing for 2-connected
H and n ≥ 3. Let A be a “minimally bad” graph such that A → (K1,n, H), but removing
any edge e from A gives a (K1,n, H)-good graph. Let e = (u, w) and A′ = A − e. Let C be
the set of all good colorings of A′. For a coloring c ∈ C and vertex v, let rc(v) be the number
of red edges that v is adjacent to in c. Let rC(v) = minc∈C rc(v). We consider different cases
for rC(u). Since c is a good coloring, we know that rC(u) ≤ n − 1.
1. rC(u) = n − 1. In this case, it is easy to see that A′ is a (K1,n, H)-enforcer with signal

vertex u. Let (p, q) ∈ V (H). Construct a graph B like so. Take a copy of H and append
an enforcer to each vertex of H except p and q. It is easy to see that (p, q) must be red
in all good colorings, i.e., B is a (K1,n, H)-leaf sender with leaf-signal edge (p, q). For
any graph G, we append a leaf-sender to each of G’s vertices to obtain a graph G′ such
that G′ → (K1,n, H) ⇐⇒ G → (K1,n−1, H), as discussed in Section 5.2.

2. rC(u) = 0. Let m = |V (H)|. In this case, we can construct a (K1,n, H)-enforcer, B, by
combining 2m copies of A′ as we did in Lemma 8. Note that in any good coloring c of A′,
we have that rc(u) ≥ n − 1 or rc(w) ≥ n − 1; if not, such a coloring and a red (u, w) gives
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Figure 11 The variable gadget for (K1,3, K3)-Nonarrowing is shown on the left. Edges with the
same color in all good colorings have been pre-colored. Both good colorings are shown on the right.

Figure 12 The clause gadget for (K1,3, K3)-Nonarrowing is shown on top. The eight combinations
of inputs that can be given to the gadget are shown on the bottom. Observe that a (K1,3, K3)-good
coloring is always possible unless the input is three red K1,2’s.

a good coloring for A, contradicting the fact that A → (K1,n, H). Make 2m copies of A′,
where ui (resp., wi) refers to the vertex u (resp., w) in the ith copy of A′, referred to as
A′

i. Now, identify each wi with ui+1 for i ∈ {1, 2, . . . , 2m − 1}, and identify w2m with u1.
Observe that when w1 is adjacent to n − 1 red edges in A′

1, then u2 cannot be adjacent to
any red edge in A′

2, causing w2 to be adjacent to n − 1 red edges in A′
2, and so on. Since

every ui and wi is adjacent to n − 1 red edges, any of them can be our signal vertex v.
We can now proceed as we did in the previous case to reduce from (K1,n−1, H)-Arrowing.

3. rC(u) ∈ {1, 2, . . . , n − 2}. For any graph G, we can attach a copy of A′ to each of
G’s vertices – identifying u ∈ V (A′) with each vertex – to obtain a graph G′ such that
G′ → (K1,n, H) ⇐⇒ G → (K1,n−rC(u), H), as discussed in Section 5.2, thereby providing
a reduction from (K1,n−rC(u), H)-Arrowing. ◀

B.2 Hardness of (K1,n, K3)-Nonarrowing for n ≥ 3
To show that (K1,3, K3)-Arrowing is coNP-complete, we provide gadgets as we did for
(P3, H)-Arrowing. We provide gadgets in Figures 11 and 12 to show that (2, 2)-3SAT can be
reduced to (K1,3, K3)-Nonarowing. Note that the output vertices are either attached to a
single red edge or two red edges. When they are attached to a single red edge, they behave
like true output signals. When adjacent to two red edges, they behave like a false output
signal. The clause gadget behaves like an OR gate, in that it has no good coloring when the
three input vertices all have false inputs.

Recall that in the hardness proofs for (P3, H)-Arrowing, we also had to show that no new
H is constructed while combining gadget graphs to construct Gϕ. It is easy to see that no
new K3 is constructed when our gadgets are combined; since each clause has unique literals,
a cycle formed while constructing Gϕ would have to go through at least two clause gadgets
and at least two variable gadgets, but this cycle has more than three vertices (see Figure 13).
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Figure 13 The smallest cycle made when joining (K1,3, K3) variable and clause gadgets is a C6.
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Figure 14 A′
1 and A′

2 are graphs with rC(ui) = n − 2. We show how to construct a new graph
using these in (a). In (b), we show a good coloring where ui’s are now adjacent to n − 1 red edges.
Finally, in (c), we observe that the coloring in (b) is the only good coloring since at most one edge
from outside A′

i that is adjacent to ui can be red.

To show the hardness of (K1,n, K3)-Arrowing for n ≥ 4, we can proceed exactly as we did
in Lemma 18. The only case where the proof fails is when rC(u) = n − 2, because now the
proof says we have to reduce (K1,2, K3)-Arrowing to (K1,n, K3)-Arrowing, which is unhelpful
since (K1,2, K3)-Arrowing is in P. In Figure 14 we show how vertices attached to n − 2 red
edges can be combined to make a (K1,n, K3)-enforcer. Using the enforcer, we can create a
(K1,n, K3)-leaf sender and reduce from (K1,n−1, K3)-Arrowing.
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