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Abstract
We study a variation of the cops and robber game characterising treewidth, where in each round at
most one cop may be placed and in each play at most q rounds are played, where q is a parameter of
the game. We prove that if k cops have a winning strategy in this game, then k cops have a monotone
winning strategy. As a corollary we obtain a new characterisation of bounded depth treewidth, and
we give a positive answer to an open question by Fluck, Seppelt and Spitzer (2024), thus showing
that graph classes of bounded depth treewidth are homomorphism distinguishing closed.

Our proof of monotonicity substantially reorganises a winning strategy by first transforming it
into a pre-tree decomposition, which is inspired by decompositions of matroids, and then applying
an intricate breadth-first “cleaning up” procedure along the pre-tree decomposition (which may
temporarily lose the property of representing a strategy), in order to achieve monotonicity while
controlling the number of rounds simultaneously across all branches of the decomposition via a
vertex exchange argument. We believe this can be useful in future research.
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1 Introduction

Search games were introduced by Parsons and Petrov in [36, 37, 38] and since then gained
much interest in many (applied and theoretical) areas of computer science and in discrete
mathematics [6, 10, 9, 28, 17, 35, 25, 15, 24, 21]. In search games on graphs, a fugitive
and a set of searchers move on a graph, according to given rules. The searchers’ goal is to
capture the fugitive, and the fugitive tries to escape. Here the interest lies in minimising
the resources needed to guarantee capture. Typically this means minimising the number of
searchers, but we also seek to bound the number of rounds of the game, if the searchers
can only move one by one. Search games have proven very useful for providing a deep
understanding of structural and algorithmic properties of width parameters of graphs, such
as treewidth [8, 43], pathwidth [9], cutwidth [30], directed treewidth [26], treedepth [33], and
b-branched treewidth [14, 32].

The crux in relating a given variant of a search game to a width parameter often lies
in the question of whether the game is monotone, i. e. whether the searchers always have
a winning strategy in which a previously cleared area never needs to be searched again –
without needing additional resources. Furthermore, monotonicity of a search game provides
a polynomial space certificate for proving that determining the winner is in NP.

In their classic paper [43], Seymour and Thomas proved monotonicity of the cops and
robber game characterising treewidth. They use a very elegant inductive argument via the
dual concept of brambles. In this paper we study a variation of this game, where k cops try
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6:2 Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

to capture a robber, but they are limited to placing at most one cop per round and playing
at most q rounds, for a fixed number q ∈ N. It is an open question from [13], whether this
game is monotone. We give a positive answer to this question.

The notion of treedepth was first introduced by Nešetřil and Ossona de Mendes [33]. They
exhibit a number of equivalent parameters, and a characterisation by a monotone game is
implicitely given. This was subsequently made more explicit in [19]. In [18], a characterisation
by a different game called lifo game is given for which monotonicity is proven. The game
we study can be seen as generalising the monotone game implicit in [33]. However, it also
captures treewidth and it is not monotone by definition.

Recently, width parameters received a renewed interest in the context of counting ho-
momorphisms and the expressive power of logics [12, 20, 11, 41, 13]. In this context a
non-monotone search game characterisation of the width parameter is useful to ensure that
there are no graphs of higher width that can be added to the graph class without changing the
expressive power of the logic [34, 13]. The main obstacle then is to find such a non-monotone
characterisation, as the natural characterisation as a search-game of many graph parameters
is inherently monotone. Bounded depth treewidth and the game studied in this paper were first
defined in [13]. An equivalent characterisation of these graph classes by so-called k-pebble
forest covers of depth q, which is bounded width treedepth, was already given in [1].

Homomorphism Counts. Homomorphism counts are an emerging tool to study equivalence
relations between graphs. Many equivalence relations between graphs can be characterized
as homomorphism indistinguishability relations, these include graph isomorphism [29], graph
isomorphism relaxations [31, 22, 40], cospectrality (folklore) and equivalence with respect to
first-order logic with counting quantifiers [12, 20, 11, 13]. In order to study the expressiveness
of such equivalence relations, it is crucial to know under which circumstances distinct graph
classes yield distinct equivalence relations. Towards this question one considers the closure
of a graph class under homomorphism indistinguishability. Let F be a graph class. Two
graphs G, H are homomorphism indistinguishable over F , if for all F ∈ F the number of
homomorphisms from F to H equals the number of homomorphisms from F to G. The graph
class F is homomorphism distinguishing closed, if for every graph F /∈ F there exists two
graphs G, H, that are homomorphism indistinguishable over F but that do not have the
same number of homomorphisms from F . It has been conjectured by Roberson [39], that all
graph classes that are closed under taking minors and disjoint unions are homomorphism
distinguishing closed. So far the list of graph classes for which the conjecture is confirmed
is short: the class of all planar graphs [39], graph classes that are essentially finite [42], the
classes of all graphs of treewidth at most k − 1 [34] and the classes of all graphs of treedepth
at most q [13]. The latter two results rely on characterisations of the graph classes in terms
of non-monotone cops-and-robber games. We study bounded depth treewidth, which bounds
both the width and the depth simultaneously. We give a game characterisation that does
not rely on monotonicity, and as a consequence we obtain that the classes of all graphs of
bounded depth treewidth are also homomorphism distinguishing closed.

Our Contribution. We show the following (cf. Theorem 27).

Fix integers k, q ≥ 1. For every graph G the following are equivalent.
G has a tree decomposition of width at most k − 1 and depth at most q.
k cops have a monotone winning strategy in the cops and robber game on G with at most
q placements.
k cops have a winning strategy in the cops and robber game on G with at most q placements.
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The equivalence between the last two statements gives a positive answer to an open question
from [13]. Our proof of monotonicity gives both a proof of monotonicity for the classical cops
and robber game characterising treewidth as well as for the game characterising treedepth as
special cases, by removing the bound on the number of rounds or respectively the number of
cops. As a corollary, we obtain the following (cf. Theorem 18).

Let k, q ≥ 0 be integers. The class of all graphs having a tree decomposition of width at most
k − 1 and depth at most q is homomorphism distinguishing closed.

Proof Techniques. In contrast to the proof of monotonicity of the classic cops and robber
game [43], our proof does not use a dual concept such as brambles. Instead, we modify
a (possibly non-monotone) winning strategy, turning it first into what we call a pre-tree
decomposition, and then cleaning it up while keeping track of width and depth, thus finally
transforming the pre-tree decomposition into a monotone winning strategy. Our concept of
pre-tree decomposition is inspired by decompositions of matroids and it is based on ideas
from [3, 7]. Our cleaning-up technique is similar to the proof of monotonicity of the game
for b-branching treewidth [32]. However, the cleaning-up technique in [32] loses track of the
number of cop movements, as local modifications may have non-local effects that are not
controlled. We need to keep track in order to control the depth.

This poses a major challenge which we resolve in our proof by a fine grained cleaning-up
technique in our pre-tree decomposition based on a careful decision of which vertices to “push
up and through the tree” and which to “push down”. The vertices “pushed up” may have an
effect on the part of the pre-tree decomposition that was processed in previous steps, which
we manage to control by a vertex exchange argument. Additionally we keep track of how the
first modification at some node in the pre-tree decomposition relates back to the original
strategy. We believe that our techniques will also help in future research.

Our proof provides an independent proof of monotonicity of the classic game characterising
treewidth as a special case, namely when q is greater than or equal to the number of vertices
of the graph. Our proof strategy is entirely different of the original proof of [43], as it does
not use an equivalence via a dual object such as brambles. Instead, we provide a more direct
transformation of a (possibly non-monotone) winning strategy.

Further Related Research. Search games are used to model a variety of real-world problems
such as searching a lost person in a system of caves [36], clearing contaminated tunnels [28],
searching environments in robotics [24], and modelling bugs in distributed environments [17],
cf. [16] for a survey.

There is a fine line between games that are monotone and those that are not. For example,
the marshalls and robber game played on a hypergraph is a natural generalisation of the
cops and robber game, it is related to hypertreewidth, but it is not monotone [2]. However,
the monotone and the non-monotone variants are strongly related [5] to each other. In a
directed graph setting the games are also not monotone [27].

Structure of the Paper. In Section 2 we fix our notation and we define tree decompositions
of bounded depth and width. Section 3 introduces pre-tree decomposition, relevant properties,
and establishes a relation to tree decompositions. The game is introduced in Section 4, and
in Section 5 we give the main construction, showing how to make a strategy tree exact while
maintaining the bounds on width and depth. The insights given by our answer to the open
question in the area of homomorphism counts are briefly discussed in Section 6. Due to space
restrictions all proofs are deferred to the appendix.

MFCS 2024
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2 Preliminaries

Sets and Partitions. Let A be a finite set. We write 2A to denote the power-set of A and,
for k ∈ N,

(
A

≤k

)
to denote all subsets of A of size ≤ k. Part(A) is the set of all ordered

partitions of A, where we allow partitions to contain multiple (but finitely many) copies of
the empty set. Let π = {X1, . . . , Xd} ∈ Part(A) and F ⊆ A. For i ∈ [d], the partition

iXi→F := {X1 \ F, . . . , Xi−1 \ F, Xi ∪ F, Xi+1 \ F, . . . , Xd \ F},

is called the F -extension in Xi of π. A function w : Part(A) → N is submodular if, for all
π, π′ ∈ Part(A), for all sets X ∈ π and Y ∈ π′ with X ∪ Y ̸= A, it holds that

w(π) + w(π′) ≥ w(πX→Y ) + w(π′
Y →X

).

Let f : A → B be a function and C ⊆ A. By f |C we denote the restriction of f to C,
i. e. f |C : C → B and f |C(c) = f(c), for all c ∈ C.

Graphs. A graph G is a tuple (V (G), E(G)), where V (G) is a finite set of vertices and
E(G) ⊆

(
V (G)

≤2
)

is the set of edges. We usually write uv or vu to denote the edge {u, v} ∈ E(G).
We write

−−−→
E(G), when we orient the edges of G, that is

−−−→
E(G) := {(u, v), (v, u) | uv ∈ E(G)},

and call (u, v) ∈
−−−→
E(G) an arc. If G is clear from the context we write V, E instead of

V (G), E(G). By G◦ we denote the graph obtained from G by adding all self-loops that
are not present in G, that is V (G◦) := V (G) and E(G◦) := E(G) ∪ {vv | v ∈ V (G)}. For
U ⊆ V we write G[U ] to denote the subgraph of G induced by U . For v ∈ V we write
EG(v) := {uv | uv ∈ E(G)} for the edges incident to v and NG(v) := {u | uv ∈ E(G)} for its
neighbours.

A tree is a graph where any two vertices are connected by exactly one path. A rooted
tree (T, r) is a tree T together with some designated vertex r ∈ V (T ), the root of T . At
times, the following alternative definition is more convenient. We can view a rooted tree
(T, r) as a pair (V (T ), ⪯), where ⪯ is a partial order on V (T ) and for every v ∈ V (T ) the
elements of the set {u ∈ V (T ) | u ⪯ v} are pairwise comparable: The minimal element
of ⪯ is precisely the root of T , and we let v ⪯ w if v is on the unique path from r to w.
Let t, t′ ∈ V (T ), we call t∗ ∈ V (T ) the greatest common ancestor if t∗ ⪯ t, t′ but for all
t′′ ∈ V (T ) with t∗ ≺ t′′ either t′′ ̸⪯ t or t′′ ̸⪯ t′. By L(T ) we denote the set of all leaves of T ,
that is L(T ) := {ℓ ∈ V (T ) | there is no s ∈ V (T ) such that ℓ ≺ s} is the set of all maximal
elements of ⪯. All vertices that are not leafs are called inner vertices.
▶ Definition 1. Let G be a graph, let (T, r) be a rooted tree and let β : V (T ) → 2V (G) be a
function from the nodes of T to sets of vertices of G. We call (T, r, β) a tree decomposition
of G, if
(T1)

⋃
t∈V (T ) G[β(t)] = G, and

(T2) for every vertex v ∈ G, the graph Tv := T [{t ∈ V (T ) | v ∈ β(t)}] is connected.
The sets β(t) are called the bags of this tree decomposition.

The width of a tree decomposition (T, r, β) is wd(T, r, β) := maxt∈V (T ) |β(t)| − 1, the
depth is dp(T, r, β) := maxℓ∈L(T ) |

⋃
t⪯ℓ β(t)|. The treewidth of a graph G is the minimum

width of any tree decomposition of G, the treedepth of a graph G is the minimum depth
of any tree decomposition (see [13]). For k, q ≥ 1 we define the class T k

q to be all graphs
that have a tree decomposition (T, r, β) with wd(T, r, β) ≤ k − 1 and dp(T, r, β) ≤ q. The
following lemma is a well known consequence from (T2).
▶ Lemma 2. Let G be a graph and U ⊆ V (G) connected in G. Let (T, r, β) be a tree
decomposition of G, then TU := T [{t ∈ V (T ) | U ∩ β(t) ̸= ∅}] is connected.
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3 Pre-Tree Decomposition, Exactness and Submodularity

Here we consider a definition of tree decompositions that is inspired by matroid tree decom-
positions [23]. We relax this definition into what we call a pre-tree decomposition.

▶ Definition 3. Let G = (V (G), E(G)) be a graph. Let X ⊆ E(G). We define the boundary
of a set of edges δ(X) := {v ∈ V (G) | ∃e ∈ X, e′ ∈ E(G) \ X, v ∈ e ∩ e′}. Let π be a partition
of E(G). We define the boundary of a partition

δ(π) :=
⋃

X∈π

δ(X).

A tuple (T, r, β, γ), where (T, r) is a (rooted) tree, β : V (T ) → 2V (G) and γ :
−−−→
E(T ) → 2E(G),

is a (rooted) pre-tree decomposition if:
(PT1) β(r) = ∅ and for every connected component C of G, there is a child c of the root

with γ(r, c) = E(C).
(PT2) For every leaf ℓ ∈ L(T ) with neighbour t, it holds that |γ(t, ℓ)| ≤ 1.
(PT3) For every t ∈ V (T ), the tuple πt is a partition of E(G) and δ(πt) ⊆ β(t).

For every internal node t ∈ V (T ) \ L(T ), we define πt := (γ(t, t1), . . . , γ(t, td)), where
N(t) = {t1, . . . , td} is an arbitrary enumeration of the neighbours of t. For a leaf ℓ ∈ L(T )
with parent p we define πℓ := (γ(ℓ, p), γ(ℓ, p)).

(PT4) For every edge st ∈ E(T ), it holds that γ(s, t) ∩ γ(t, s) = ∅.
We call an edge st ∈ E(T ) exact if γ(s, t) ∪ γ(t, s) = E(G), we call (T, r, γ, β) exact, if every
edge is exact and β(t) = δ(πt), for all t ∈ V (T ). We call β(t) the bag at node t and γ(s, t)
the cone at arc (s, t).

The reader may note that the boundary of a set of edges is symmetric, that is for all
X ⊆ E(G) it holds that δ(X) = δ(E(G) \ X). Furthermore it holds that v ∈ δ(X) if and
only if ∅ ≠ EG(v) ∩ X ̸= EG(v), for all v ∈ V (G). The function γ describes a partition of the
edges of the graph at every inner node, whereas the function β gives a vertex separator for
this partition. This separator may contain more vertices than necessary at a certain node,
which is needed to define the depth of a pre-tree decomposition, as seen below. For some edge
st ∈ E(T ) with s ≺ t, we can view γ(s, t) as the set of edges that need to be decomposed in
the subtree below and γ(t, s) as the set of edges that is for sure decomposed somewhere else
within the tree. With this point of view the axioms correspond to the following ideas:
(PT1) We start by separating the different connected components of the graph and assign

one distinct subtree to decompose each component. This way we also ensure that all of
the graph is decomposed in some subtree.

(PT2) We want to decompose the graph into single edges. We do allow empty leafs and
even empty subtrees, to ease our cleaning up procedure in the following sections. The
reader may recall that the root of a rooted tree is never a leaf, by definition.

(PT3) At every node of the tree we make sure that all edges of the original graph are
accounted for and that β is indeed a separator for the given partition.

(PT4) If a parent node assigns an edge to the set that still has to be decomposed, the child
node can not assign this edge to the set that is already decomposed somewhere else.
But the other direction is possible, if the parent node assigns an edge to the set that
is decomposed somewhere else, the child can still assign it to one of its subtrees. If the
latter is also not the case the edge is exact.

Similar to the definition of width and depth for tree decompositions we define the width
and depth of a pre-tree decomposition. We slightly adapt the definition of depth as (T2)
does not hold in pre-tree decompositions.

MFCS 2024



6:6 Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

▶ Definition 4. The width of a partition π of the edges of a graph is

wd(π) := |δ(π)|.

The width of a pre-tree decomposition is

wd(T, r, β, γ) := max
t∈V (T )

|β(t)| − 1.

The depth of a rooted pre-tree decomposition is

dp(T, r, β, γ) := max
t∈V (T )

∑
r≺s⪯t

|β(s) \ β(ps)|,

where ps is the parent of s.

The reader may note that the width of a pre-tree decomposition only gets smaller if one
sets β(t) := δ(πt), for all nodes t ∈ V (T ), but the depth can get larger. We show that the
width of a partition of the edges as defined above is submodular. We need this property to
show that our main construction does not enlarge the width of the pre-tree decomposition.

▶ Lemma 5 ([7]). For every graph G, wd is submodular.

We continue this section with some lemmas, that help us to get comfortable with the
definition of a pre-tree decomposition and are useful to prove that our cleaning up procedure
in the following sections is correct. We start with a lemma about the cones along a path of
exact edges. It is a direct consequence of exactness and the fact that the cones incident to a
node form a partition of the edges.

▶ Lemma 6. Let (T, r, β, γ) be a pre-tree decomposition of a graph G. Let P = t1, . . . , tℓ

be a path in T , such that every edge titi+1, for i ∈ [ℓ − 1], is exact. Then it holds that
γ(t1, t2) ⊇ γ(t2, t3) ⊇ . . . ⊇ γ(tℓ−1, tℓ).

The following lemma shows, that (PT3) spreads over exact edges, that is any subtree of
T that only contains exact edges induces a partition of the edges of the original graph. It is
again a direct consequence of exactness and the partitions at the nodes together with the
previous lemma.

▶ Lemma 7. Let (T, r, β, γ) be a pre-tree decomposition of a graph G and let (T ′, r′)
be a subtree of (T, r), where r′ is the minimal node of T ′ with respect to ⪯, such that
all edges of T ′ are exact. We pick arbitrary enumerations of NT (V (T ′)) := {t1, . . . , ta}
and of L(T ) ∩ L(T ′) := {ℓ1, . . . , ℓb}. We define U := {t1, . . . , ta, ℓ1, . . . , ℓb} and define
s : U → V (T ′) to be the natural mapping to the corresponding neighbour in V (T ′). Then
(γ(s(t1), t1), . . . γ(s(ta), ta), γ(s(ℓ1), ℓ1), . . . , γ(s(ℓ1), ℓ1))) is an ordered partition of E(G).

The next lemma is needed to prove how one can translate exact pre-tree decompositions
into tree-decompositions. Furthermore it will help us bound the depth within our cleaning up
procedure in the following sections. The Lemma follows from the combination of Lemma 6
with the fact that the boundary of the partition is the union of the boundaries of the cones.

▶ Lemma 8. Let (T, r, β, γ) be a pre-tree decomposition of a graph G and let (T ′, r′) be a
subtree of (T, r), where r′ is the minimal node of T ′ with respect to ⪯, such that all edges
of T ′ are exact. It holds that the induced subgraph T ′

v := T [t ∈ V (T ′) | v ∈ δ(πt)], for every
vertex v ∈ V (G), is connected. In particular, if r = r′, for every t ∈ V (T ′) it holds that∑

s⪯t
s̸=r

|δ(πs) \ δ(πps)| = |
⋃
s⪯t

δ(πs)|,

where ps is the parent of s.
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We conclude this section with a lemma that shows that a pre-tree decomposition of a
graph G is indeed a relaxation of a tree-decomposition of G. If every edge is exact and all
bags are exactly the boundary of the partition then we can construct a tree decomposition.
We need to start with a pre-tree decomposition of the graph G◦ with all self-loops added
to ensure that every non-isolated vertex does appear in some bag and that the components
corresponding to isolated vertices are covered by the pre-tree decomposition. If we drop
the cones from the tuple we get a tree decomposition by Lemmas 7 and 8. On the other
hand we can transform a tree-decomposition into a pre-tree decomposition, by copying the
tree-decomposition of each connected component of G and adding leaves that correspond to
the edges of G◦.

▶ Lemma 9. Let k, q ≥ 1. Let G = (V, E) be a graph. Any tree-decomposition of G of width
≤ k − 1 and depth ≤ q gives rise to an exact pre-tree decomposition of G◦ of width ≤ k − 1
and depth ≤ q and vice versa.

Proof. Let (T, r, β, γ) be an exact pre-tree decomposition of G◦ of width ≤ k − 1 and depth
≤ q. We define β′ : V (T ) → 2V (G) as follows

β′(t) :=
{

{v} if t ∈ L(T ) and r is parent of t and γ(r, t) = {vv},

β(t) otherwise.

▷ Claim 10. (T, β′) is a tree-decomposition of width ≤ k − 1 and depth ≤ q.

Proof. From (PT1), (PT2) and Lemma 7 applied to the complete tree (T, r) we get that for
every edge uv ∈ E(G◦) there is some leaf ℓ with parent p and γ(p, ℓ) = {uv}. Thus if u = v,
then β′(ℓ) = {v} and thus vv ∈ E(G[β′(ℓ)]). Otherwise it holds that uu, vv ∈ E(G◦) \ {uv}
and thus u, v ∈ β′(ℓ) and uv ∈ E(G[β′(ℓ)]). All in all we get that (T1) holds.

By Lemma 8 applied to the complete tree (T, r) we know that all Tv are connected.
Therefore (T2) also holds and (T, β′) is a tree-decomposition.

The width and depth are obvious as k, q ≥ 1. ◁

Now let (T, r, β) be a tree-decomposition of G of width ≤ k − 1 and depth ≤ q. W.l.o.g.
β is tight, that is for all t ∈ V (T ) and v ∈ β(t), that (T, r, β′), where β′(t) := β(t) \ {v}
and β′(s) = β(s), for all s ∈ V (T ) \ {t}, is not a tree-decomposition of G. We construct
a new tree T ′ with root r′ and functions β′ : V (T ′) → 2V (G), γ :

−−−→
E(T ′) → 2E(G◦) and

f : V (T ′) \ (L(T ′) ∪ {r′}) → V (T ) as follows. Let C be a connected component of G and
let VC := {t ∈ V (T ) | V (C) ∩ β(t) ̸= ∅}. By Lemma 2 VC is connected. If C contains only
an isolated vertex v, then VC = {t}, for some t ∈ V (T ). We add a new node tv to T ′ and
connect it to the root. We set β′(tv) = ∅, γ(r′, tv) = {vv} and γ(tv, r′) = E(G◦) \ {vv}.
Otherwise let TC be a copy of the subtree induced by VC with root rC and vertices V ∗

C and
f |V ∗

C
: V ∗

C → VC the natural bijection between the copies and their originals. We attach rC

to the root r′. For every v ∈ V (C), there is some tv ∈ VC such that v ∈ β(tv), as C is not
an isolated vertex. We add a new leaf t′

v that we attach to f |−1
V (TC )(tv) and set β′(t′

v) = {v},
γ(f |−1

V ∗
C

(tv), t′
v) = {vv} and γ(t′

v, f |−1
V ∗

C
(tv)) = E(G◦) \ {vv}. For every e ∈ EG(C) there is

some te ∈ VC such that e ⊆ β(te). We add a new leaf t′
e that we attach to f |−1

V ∗
C

(te) and
set β′(t′

e) = e, γ(f |−1
V ∗

C
(te), t′

e) = {e} and γ(t′
e, f |−1

V ∗
C

(te)) = E(G◦) \ {e}. For every node
t ∈ V ∗

C with parent p we add all edges e ∈ EG(C), where t′
e is a descendant of t, and

all self-loops vv ∈ EG◦(C), where t′
v is a descendant of t, to γ(p, t). Furthermore we set

γ(t, p) := E(G◦) \ γ(p, t) and β′(t) := δ(πt) ⊆ β(f(t)) ∩ V (C). By tightness of β there is some

MFCS 2024



6:8 Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

v ∈ β(f(ℓ)) such that Tv = {f(ℓ)}, for every ℓ ∈ L(TC), thus no leaf of TC is a leaf in T ′, thus
(T ′, r′, β′, γ) satisfies (PT2). (PT1), (PT3) and (PT4) hold by construction. Furthermore
every edge is exact by construction. Thus we get that (T ′, r′, β′, γ) is an exact pre-tree
decomposition of G◦.

The width is obvious as every bag in β′ is a subset of some bag in β. To see that the
depth bound also holds we observe two things. For every leaf ℓ ∈ L(T ′) with parent p we
get that β′(ℓ) \ β′(p) = ∅. For every inner node t ∈ V (T ′) \ L(T ′) with parent p we get
that β′(t) \ β′(p) ⊆ β(f(t)) and, if p ̸= r′, β′(t) \ β′(p) ⊆ β(f(t)) \ β(f(p)), by the tightness
of β. ◀

4 The Game

In the cops and robber game on a graph G, the cops occupy sets X of at most k vertices of
G, and the robber moves on edges of G. In order to make the rules precise, we need edge
components of G that arise when the cops are blocking a set X.

▶ Definition 11. Let G = (V, E) be a graph and X ⊆ V . We let the edge component graph
of G with respect to X be the graph GX obtained as the disjoint union of the following graphs.
(In order to make all graphs disjoint we introduce copies of vertices where needed.)

For every uv ∈ E(G[X]), the graph Guv := ({u, v}, {uv}), and
for every connected component C of G\X, the graph GC , with V (GC) := V (C)∪NG(V (C))
and E(GC) := E(C) ∪ E(V (C), X), where E(V (C), X) is the set of edges of G incident
to both a vertex of C and a vertex in X.

The reader may note that GX may contain multiple copies of the vertices in X, but
exactly one copy of each edge in G.

▶ Observation 12. There is a natural bijection Ψ: E(GX) → E(G) between the edges of GX

and the edges of G.

▶ Definition 13 (q-rounds k-cops-and-robber game). Let G be a graph and let k, q ≥ 1. The
q-rounds k-cops-and-robber game CRk

q (G) is defined as follows:
If G does not contain any edges the cop player wins immediately.
The cop positions are sets X ∈ V (G)≤k.
The robber position is an edge uv ∈ E(G).
The initial position (X0, u0v0) of the game is X0 = ∅ and u0v0 ∈ E(G), thus the game
starts with no cops positioned on G and the robber on an arbitrary edge in a connected
component of G of his choice.
For X ⊆ V (G) and uv ∈ E(G), we write esc(X, uv) := Ψ(E(C)) for the component C of
the graph GX , such that uv ∈ E(C). We call this component the robber escape space.
Thus if the cops are at positions X and robber at an edge uv we write (X, esc(X, uv)) for
the position of the game.
In round i the cop player can move from the set Xi−1 to a set Xi, if |Xi \ Xi−1| ≤ 1, that
is the cop player can add at most one new vertex to his position.
In round i the robber player can move along a path with no internal vertex in Xi−1 ∩ Xi.
Thus the robber player can move to some edge uivi, such that the edge Ψ−1(uivi) is in
a connected component of GXi that is contained in Ψ−1(esc(ui−1vi−1, Xi−1 ∩ Xi)) via
a path p = w1, . . . , wℓ where {w1, w2} = {ui−1, vi−1} and {wℓ−1, wℓ} = {ui, vi} and
{w2, . . . , wℓ−1} ∩ Xi ∩ Xi−1 = ∅.
The cop-player wins in round i, if {ui, vi} ⊆ Xi, and we say the cop player captures the
robber in round i. The robber-player wins if the cop player has not won in round q.
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We call the game monotone q-round k-cops-and-robber game, if we further restrict the
movement of the cop player such that always esc(Xi−1, ui−1vi−1) ⊇ esc(Xi−1 ∩ Xi, ui−1vi−1)
and write mon-CRk

q (G).

This notion of monotone is also known as robber-monotone. One can also define the
notion of cop-monotone, that is during a single play, the cop player may never revisit a
vertex they have previously left. This is the stronger notion of monotone as a cop-monotone
play is also robber-monotone. Our construction goes through unchanged with the notion of
cop-monotone as the strategy that is derived from the final decomposition is cop-monotone.
The game played on the graph G◦ corresponds to a game on G, where the robber can hide
both inside a vertex or an edge. It is easy to see that this does not benefit the robber
player, that is he wins the game CRk

q (G) if and only if he wins the game CRk
q (G◦), as the

components that are reachable by the robber player are essentially the same. In [13], the
authors introduce a cops-and-robber game, where the robber player can only hide in the
vertices. Again this does not pose a restriction for the robber player with the same argument
as above. There is a tight connection between the cops and robber game defined above and
tree decompositions of graphs.

▶ Lemma 14 ([13]). Let G be a graph and k, q ∈ N. The cop player wins mon-CRk
q (G) if

and only if G ∈ T k
q .

Towards strengthening the above connection to also include the non-monotone game we
first introduce how to construct a pre-tree decomposition from a winning strategy of the cop
player.

▶ Definition 15 (strategy tree). Let G be a graph without isolated vertices and let k, q ∈ N.
Let σ : V (G)≤k × E(G) → V (G)≤k a cop strategy such that that for all X ∈ V (G)≤k, for
all uv ∈ E(G) and for all u′v′ ∈ esc(X, uv) we have that σ(X, uv) = σ(X, u′v′). We write
σ(X, esc(X, uv)) instead of σ(X, uv).

The strategy tree of σ is a pre-tree decomposition (T, r, β, γ), inductively defined as
follows:

β(r) = ∅,
for every connected component C of G, there is a child c of the root r and γ(r, c) = E(C),
for every node t ∈ V (T ) \ {r} with parent s ∈ V (T ),

if the robber player is caught, we set β(t) = e, where γ(s, t) = {e},
else β(t) = σ(β(s), γ(s, t)) and
for every connected component C of Gβ(t), that has a non-empty intersection with
Ψ−1(γ(s, t)), there is a child c of t and γ(t, c) = Ψ(E(C)),
γ(t, s) := E(G) \

⋃
c child of t γ(t, c), if t /∈ L(T ), and

γ(t, s) := E(G) \ γ(s, t), if t ∈ L(T ).
We call t ∈ V (T ) a branching node if the cop player placed a new cop incident to the robber
escape space.

Observe that if t ∈ V (T ) is a leaf, then the robber is captured and the depth of (T, r, β, γ)
is ≤ q if and only if σ is a winning strategy in CRk

q (G).

Note that w.l.o.g. every child of the root is a branching node, as the cop player w.l.o.g.
only plays positions that are inside the component the robber player chose in the first round.
If the game is played on G◦, then every branching node that does not correspond to the
placement of a cop onto an isolated vertex has more than one child. We observe that the
monotone moves of the cop player correspond to the exact edges in the strategy tree by
construction.
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Ti =
Ti−1

si

ti
1 ti

ai

. . .

. . .

Figure 1 The subtree Ti appearing in the construction.

▶ Lemma 16. For edge st ∈ E(T ), where s ≺ t it holds that the move σ(β(s), γ(s, t)) is
monotone if and only if st is exact.

The following lemma about the self-loops of the graph G◦ is key to prove the construction
in the next section does not enlarge the depth of the pre-tree decomposition. To prove this
one finds the node where the vertex incident to the self-loop was introduced into the bag. At
this node the self-loop either was not in the robber escape space in the first place or gets
removed from the robber escape space. Then as long as the cops occupy the vertex incident
to the self-loop, the self-loop is not reachable by the robber.

▶ Lemma 17. Considering the game on G◦ and some s ∈ V (T ) \ L(T ). For all self-loops
vv incident to β(s) it holds that either vv ∈ γ(s, ps) or there is a child c of s such that
γ(s, c) = {vv}. Furthermore s has a child c with γ(s, c) = {vv}, for some non-isolated vertex
v if and only if s is a branching node and v ∈ β(s) \ β(ps).

5 Making a Strategy Tree Exact

Our goal is to prove the following theorem.

▶ Theorem 18. Let G = (V (G), E(G)) be a graph, let k, q ≥ 1 and let (T, r, β, γ) be a
strategy tree for some cop strategy σ : V (G◦)k × E(G◦) → V (G◦)k. If σ is a winning strategy
in CRk

q (G◦), then there is a tree decomposition of G with width ≤ k − 1 and depth ≤ q.

To prove this we construct an exact pre-tree decomposition of G◦ from the strategy tree,
starting at the root r and traversing the tree nodes in a breadth-first-search. We then use
Lemma 9 to get the desired tree decomposition. When we consider a node we change the
pre-tree decomposition so that all incident edges are exact afterwards. Note that by the
choice of the traversal we only need to consider outgoing edges.

The Construction. Let (T, r, β, γ) be the pre-tree decomposition of G◦ from a winning
strategy as in Theorem 18. Let s1, . . . , snT

be an order of the nodes of T in bfs where s1 = r.
Let β0 := β and γ0 := γ. We construct a sequence (T, r, β0, γ0), . . . , (T, r, βnT

, γnT
) of pre-tree

decompositions, such that (T, r, βnT
, γnT

) is exact. We say si is considered in step i. Let

Ti := T [{s1, . . . , si} ∪ NT ({s1, . . . , si})] = T [V (Ti−1) ∪ NT (si)].

See Figure 1 for an illustration of Ti. (It will become clear that this is the subtree of all
nodes where the pre-tree decomposition is modified in or before step i. We also point out
that edges from Ti to T \ Ti may become non-exact during our modification process.)

If si is a leaf, there are no outgoing edges that are not exact, and we set βi := βi−1 and
γi := γi−1. Otherwise let ti

1, . . . , ti
ai

∈ NT (si) be all children of si.
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We pick pairwise disjoint F i
1, . . . , F i

ai
⊆ E(G◦), with

F i
j ⊆ γi−1(ti

j , si) ∩ γi−1(si, ti
j),

such that the partition π∗ that results from taking the F i
j -extensions in γi−1(si, ti

j) (in
arbitrary order) has the minimum size boundary. If there are multiple optimal choices
for F i

1, . . . , F i
ai

we select the one that minimizes the size of
⋃

j∈[ai] F i
j , if there are still

several options we break ties arbitrarily.
Let F i :=

⋃
j∈[ai] F i

j and Ri
j :=

((
γi−1(ti

j , si) ∩ γi−1(si, ti
j)

)
∪ F i

)
\ F i

j . For every vertex
p ∈ V (Ti) with child c we set

γi(p, c) :=



(
γi−1(si, ti

j) \ F i
)

∪ F i
j if (p, c) = (si, ti

j), for some j ∈ [ai],
γi−1(p, c) \ Ri

j if p = ti
j , for some j ∈ [ai],

γi−1(p, c) ∪ F i if p ≺ si,

γi−1(p, c) \ F i otherwise,

and

γi(c, p) :=


γi−1(c, p) ∪ Ri

j if (p, c) = (si, ti
j), for some j ∈ [ai],

γi−1(c, p) if p = ti
j , for some j ∈ [ai],

γi−1(c, p) \ F i if p ≺ si,

γi−1(c, p) ∪ F i otherwise,

and all other uv ∈
−−−→
E(T ) we set γi(u, v) := γi−1(u, v). Furthermore we set

βi(t) :=
{

δ(πi
t) if t ∈ V (Ti),

βi−1(t) otherwise.

Intuitively in the construction above we pick F i
j , that is the set of edges that we add to

the cone at the arc pointing towards ti
j , from the set of edges that are not covered by the

cones along the arcs in such a way that the boundary at si is minimized. Ri
j then corresponds

to the edges that we need to remove from all cones at arcs that point away from si at the
child ti

j and in turn add to the cone at the arc pointing towards si to make the edge exact.
Then we push the change at si through Ti−1, that is for all edges in Ti−1 we add F i to the
arc that points towards si and remove F i from the arcs in the other direction. This push can
also be interpreted in terms of extensions.

▶ Lemma 19. Let t ∈ V (Ti) \ {si} and t′ is next node on the path from t to si in T . Then

πi
t =

(
πi−1

t

)
γi−1(t,t′)→γi(t′,t)

and if additionally t ∈ V (Ti−1) also

πi
t =

(
πi−1

t

)
γi−1(t,t′)→F i .

Observe furthermore that if βi(si) = βi−1(si), then there are no changes to the bags at
other nodes than the ti

j by minimality of |F i|, and if βi(si) ̸= βi−1(si), we have |βi(si)| <

|βi−1(si)| again by the minimality of the choice. For every i ∈ [nT ], before step i we only
remove edges from the cones pointing downwards from si, thus we obtain the following
observation.

▶ Lemma 20. Let i, j ∈ [nT ] such that si is the parent of sj . Then γα(si, sj) ⊆ γ(si, sj), for
all α < i.
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The Proof Idea. We prove Theorem 18 in three steps. First we prove that the construction
indeed yields an exact pre-tree decomposition. Next we show that the width can be bounded
as desired and lastly we prove that the construction yields the desired depth.

In step i, every edge incident to si is made exact and for every other edge in Ti we remove
from one arc exactly what we add to the other arc. We get that our construction indeed
yields an exact pre-tree decomposition.
▶ Lemma 21. For all i ∈ [nT ], (T, r, βi, γi) is a pre-tree decomposition. Furthermore all
edges in E(Ti) are exact.

Hence, for i = nT , we get that (T, r, βnT
, γnT

) is an exact pre-tree decomposition. Note
that it is possible that γnT

(s, t) is empty for an arc (s, t) ∈
−−−→
E(T ). By Lemma 9 we obtain a

tree decomposition, from this pre-tree decomposition. We show below that the width and
depth are as stated in the theorem.

Our construction does not change the width of the decomposition. To prove this we
observe that in step i the bound in si is minimal. We then push the change through the
subtree Ti and find that if a change would increase the width, we could push this change
back to the node si and find an even smaller bound there, which contradicts the minimality
of our choice. This argument yields the following lemma.
▶ Lemma 22. wd(T, r, βi, γi) ≤ wd(T, r, β, γ), for all i ∈ [nT ].
Proof. γi(t′, t) We prove the statement for all 0 ≤ i ≤ nT by induction. As (T, r, β0, γ0) =
(T, r, β, γ), the statement clearly holds for i = 0. Next we show that wd(T, r, βi, γi) ≤
wd(T, r, βi−1, γi−1), for all i ∈ [nT ]. Obviously |βi(t)| = |βi−1(t)|, for all t /∈ Ti. Furthermore
by construction |βi(si)| ≤ |βi−1(si)|. Let j ∈ [ai], let X := γi(si, ti

j) and let Y := γi−1(ti
j , si).

By Lemma 19 it holds that

|βi(ti
j)| = wd

((
πi−1

ti
j

)
Y →X

)
≤ wd(πi−1

ti
j

) ≤ |βi−1(ti
j)|

as otherwise by submodularity for the partitions πi−1
ti

j

and πi
si

, we get that

wd
((

πi
si

)
X→Y

)
< wd(πi

si
),

which contradicts the minimality of the bound for F i
1, . . . , F i

ai
.

Lastly assume there is a node t in V (Ti) \ {si, ti
1, . . . , ti

ai
} such that |βi(t)| > |βi−1(t)|.

We assume t is of minimal distance to si with this property. Let x0 = t, x1, . . . , xb = si be
the path from t to si. By minimality of the distance we know that |βi(x1)| ≤ |βi−1(x1)|.
Additionally we know that all edges on the path from si to x1 are exact in γi, as well as
the edge x1t in γi−1. Now let Y := γi−1(t, x1), Xα := γi(xα+1, xα) and Zα := γi(xα, xα+1),
for all 0 ≤ α < b. From Lemma 19 we get

(
πi−1

t

)
Y →F i =

(
πi−1

t

)
Y →X0

. Thus assuming
that wd

((
πi−1

t

)
Y →F i

)
= |βi(t)| > |βi−1(t)| = wd(πi−1

t ) using submodularity we get that
wd(πi

x1
) > wd

((
πi

x1

)
X0→Y

)
. As the edge x1t was exact at step i − 1, we know that

F ′ := Y \ X0 = F i \ Y ⊆ F i.

We now push this change back to si along the path x1, . . . , xb and we again find a contradiction
to the minimality of the bound of F i

1, . . . , F i
ai

. For this, let us assume we have pushed
the change to xα, that is we changed πi

xα
to π∗

xα
=

(
πi

xα

)
Xα−1→F ′ and we know that

wd(π∗
xα

) < wd(πi
xα

). As xαxα+1 is exact in γi, we get that
(
π∗

xα

)
(Zα\F ′)→Xα

= πi
xα

. Let

π∗
xα+1

:=
(

πi
xα+1

)
Xα→(Zα\F ′)

=
(

πi
xα+1

)
Xα→F ′

,

then by submodularity wd(π∗
xα+1

) < wd(πi
xα+1

). When we have pushed the change to α = b,
we find the desired contradiction. ◀



I. Adler and E. Fluck 6:13

To prove that our construction does not increase the depth we show that in every step i the
depth up to the nodes in Ti is bounded by the depth up to these nodes in the original tree. We
prove this by induction on the number of steps. We recall that V (Ti) = V (Ti−1)∪{ti

1, . . . , ti
ai

}
and that si ∈ L(Ti−1). For the nodes t ∈ V (Ti−1) we can directly build upon the induction
hypothesis. But the nodes ti

j , with j ∈ [ai], are added into the subtree. Here we need to
compare directly to the original bags, as we can no longer use that in step i − 1 the depth at
these nodes is bounded by the depth in the original strategy tree. We can prove for these
nodes that every vertex newly placed at one of these nodes in step i is also newly placed in
the original strategy. Then we can show that the difference between depth at these nodes
and their parent in step i can be bounded by the difference in the original strategy tree.

▶ Lemma 23. Every j ∈ [ai] satisfies βi(ti
j) \ βi(si) ⊆ β(ti

j) \ β(si).

Proof. Let v ∈ βi(ti
j) \ βi(si). Since v ∈ βi(ti

j) it holds that EG◦(v) ̸⊆ γi(ti
j , si). As v /∈ βi(si)

we get that v /∈ δ(γi(ti
j , si)) and thus EG◦(v) ∩ γi(ti

j , si) = ∅. By construction we have that
γi(ti

j , si) ⊇ γi−1(ti
j , si) = γ(ti

j , si), and thus vv /∈ γ(ti
j , si). As v ∈ βi(ti

j) = δ(πi
ti

j
), there are

two distinct children c1, c2 of ti
j such that v ∈ δ(γi(ti

j , cℓ)) and thus EG◦(v) ∩ γi(ti
j , cℓ) ̸= ∅,

for ℓ = 1, 2. By construction we have γi(ti
j , cℓ) ⊆ γi−1(ti

j , cℓ) = γ(ti
j , cℓ), for ℓ = 1, 2. And

thus v ∈ δ(πti
j
) ⊆ β(ti

j). By Lemma 17 there thus is a child c of ti
j such that γ(ti

j , c) = {vv}
and, by Lemma 17, v ∈ β(ti

j) \ β(si). ◀

For the nodes t ∈ V (Ti−1) we show that the depth is not only bounded by the depth
within the original pre-tree decomposition, but within the previous step. We do this by a
vertex exchange argument, that is we track all vertices added or removed from any bag within
Ti−1. For the vertices that are added to any bag in V (Ti−1) we get the following lemma.

▶ Lemma 24. Let i ∈ [nT ] and let t ∈ V (Ti−1). If v ∈ βi(t) \ βi−1(t), then v ∈ βi(t∗), for
all t∗ on the path from t to si.

Proof. Let t∗ ≠ t. Let t′ be the next node on the path from t to si. Per definition it
holds that γi(t, t′) = γi−1(t, t′) ∪ F i. As γi(t, t′) is the only set incident to t where edges
are added in step i, we get that v ∈ δ(γi(t, t′)). Combined with v /∈ δ(γi−1(t, t′)) we
get that EG◦(v) ∩ γi−1(t, t′) = ∅ and thus ∅ ≠ EG◦(v) ∩ F i ̸= EG◦(v). Now suppose that
v /∈ βi(t∗), and thus also v /∈ δ(γi(t∗, p)), where p is the next node on the path from t∗ to t. As
∅ ≠ EG◦(v)∩F i ̸= EG◦(v) this implies that EG◦(v)∩γi(t∗, p) = EG◦(v)∩(γi−1(t∗, p) \ Fi) = ∅.
We know from Lemma 21 that all edges in Ti are exact and thus that γi(t′, t) ⊆ γi(t∗, p) by
Lemma 6. Thus we get that EG◦(v) ∩ γi(t′, t) = ∅. This is a contradiction to the assumption
that v ∈ δ(γi(t, t′)) = δ(γi(t′, t)) and thus v ∈ βi(t∗). ◀

The next lemma is used to show that a vertex that disappears from a Observe that
if βi(si) = βi−1(si), then there are no changes to the bags at other nodes than the ti

j

by minimality of |F i|, and if βi(si) ̸= βi−1(si), we have |βi(si)| < |βi−1(si)| again by the
minimality of the choice.bag in V (Ti−1) at step i also disappears from the union of bags that
determine the depth at that bag, especially if a vertex disappears from the bag at si, then it
disappears from every bag in V (Ti).

▶ Lemma 25. Let i ∈ [nT ] and let t ∈ V (Ti−1). If v ∈ βi−1(t) \ βi(t), then v /∈ βi(t∗), for
all t∗ ∈ V (Ti−1) such that t is contained in the path from t∗ to si.
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Proof. We have EG◦(v) ∩ F i ̸= ∅.
Let t = si. Since v ∈ βi−1(si) = δ(πi−1

si
) it holds that EG◦(v) ̸⊆ γi−1(si, psi

). As v /∈ βi(si)
we get that v /∈ δ(γi(si, psi)) and thus EG◦(v) ∩ γi(si, psi) = EG◦(v) ∩ γi−1(si, psi) ∩ F i = ∅.
Now let t∗ ∈ V (Ti−1) and t′ be the next node on the path from t∗ to si. Then by Lemma 21
we get that γi(t∗, t′) ⊇ γi(psi

, si) ⊇ EG◦(v) and thus v /∈ βi(t∗).
Otherwise let t ̸= si Let t′ be the next node on the path from t to si. Since v ∈ δ(πi−1

t ),
we get that EG◦(v) ̸⊆ γi−1(t, t′). As v /∈ δ(γi(t, t′)) and EG◦(v) ∩ F i ̸= ∅ it follows that
EG◦(v) ⊆ γi(t, t′) = γi−1(t, t′) ∪ F i and that EG◦(v) ∩ γi−1(t′, t) ⊆ EG◦(v) ∩ F i. Assume
there is some t∗ ∈ V (Ti−1) such that v ∈ βi(t∗). We observe that due to Lemma 21 and
because all edges incident to v are contained in γi(t, t′), we get that t is not contained in the
path from t∗ to si. ◀

This induction then yields the following lemma.

▶ Lemma 26. For all i ∈ [nT ] and all t ∈ V (Ti), it holds that∑
r≺s⪯t

|βi(s) \ βi(ps)| ≤
∑

r≺s⪯t

|β(s) \ β(ps)|.

Proof. Let ℓ ∈ [nT ]. As by construction βℓ(t) = δ(πℓ
t ), for all t ∈ V (Tℓ), we get from Lemma 8

and Lemma 21 that |
⋃

s⪯t βℓ(s)| =
∑

r≺s⪯t |βℓ(s) \ βℓ(ps)|. Thus it suffices to show that
|
⋃

s⪯t βi(s)| ≤
∑

r≺s⪯t |β(s) \ β(ps)|.
We prove the statement by induction on the steps i. Recall that (T, r, β0, γ0) = (T, r, β, γ),

thus the statement holds for i = 0. Now assume the statement holds for i − 1, thus
for all t ∈ V (Ti−1) it holds that |

⋃
s⪯t βi−1(s)| ≤

∑
r≺s⪯t |β(s) \ β(ps)|. We recall that

V (Ti) = V (Ti−1) ∪ {ti
1, . . . , ti

ai
} and that si ∈ L(Ti−1). We consider all vertices that appear

at a bag at any node in Ti due to the changes in step i.
Let t ∈ V (Ti−1). Let U :=

(⋃
s⪯t βi(s)

)
\

(⋃
s⪯t βi−1(s)

)
. Let t∗ be the greatest common

ancestor of t and si. As t∗ is on every path from some node s ⪯ t to si, from Lemma 24
we know that u ∈ βi(t∗) \ βi−1(t∗), for all u ∈ U . Let W := βi−1(t∗) \ βi(t∗). As by
Lemma 22 |βi(t∗)| ≤ |βi−1(t∗)|, we know that |U | ≤ |W |. Applying Lemma 25 we get
that W ⊆

(⋃
s⪯t βi−1(s)

)
\

(⋃
s⪯t βi(s)

)
and using this vertex exchange we conclude that∣∣∣⋃s⪯t βi(s)

∣∣∣ ≤
∣∣∣⋃s⪯t βi−1(s)

∣∣∣.
Otherwise it holds that t = ti

j for some j ∈ [ai]. By construction we can conclude that⋃
s⪯t βi(s) =

⋃
s⪯si

βi(s)∪βi(t)\βi(si). We know that |
⋃

s⪯si
βi(s)| ≤

∑
r≺s⪯si

|β(s)\β(ps)|
and by Lemma 23 we have βi(t) \ βi(si) ⊆ β(t) \ β(si). Thus we can bound the union
|
⋃

s⪯t βi(s)| ≤
∑

r≺s⪯t |β(s) \ β(ps)|. ◀

Summarising all results we get the following equivalences.

▶ Theorem 27. Let k, q ≥ 1 and G be a graph. The following are equivalent:
(1) G admits a tree decomposition of width at most k − 1 and depth at most q.
(2) G◦ admits a tree decomposition of width at most k − 1 and depth at most q.
(3) G◦ admits an exact pre-tree decomposition of width at most k − 1 and depth at most q.
(4) The cop player wins mon-CRk

q (G◦).
(5) The cop player wins CRk

q (G◦).
(6) The cop player wins mon-CRk

q (G).
(7) The cop player wins CRk

q (G).
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6 Excursion on Counting Homomorphisms

In this section we give an overview over the field of counting homomorphisms and the
equivalence relations on graphs, that can be derived from these counts. We focus ourselves
to the results and open questions regarding the homomorphism counts from graphs in the
class T k

q , for fixed k, q ≥ 0.
We recall the definition of homomorphism distinguishing closed from the introduction.

In [13] the authors have reduced the question whether the class T k
q is homomorphism

distinguishing closed down to the question if monotonicity is a restriction for the cop player.
The following lemma is thus implied in [13].

▶ Lemma 28 ([13]). Let k, q ≥ 1. The graph class C := {G | cop player wins CRk
q (G)} is

homomorphism distinguishing closed.

In this paper we show that the cop player wins CRk
q (G) if and only if G ∈ T k

q , thus the
we get the following.

▶ Theorem 29. Let k, q ≥ 0. The class T k
q is homomorphism distinguishing closed.

7 Conclusion

We gave a new characterisation of bounded depth treewidth by the cops and robber game
with both a bound on the number of cops and on the number of rounds, where the cop
player is allowed to make non-monotone moves. As a corollary we gave a positive answer
to an open question on homomorphism counts. The core of our contribution is a proof of
monotonicity of this game. For this proof we substantially reorganise a winning strategy.
First we transform it into a pre-tree decomposition. Then we apply a breadth-first “cleaning
up” procedure along the pre-tree decomposition (which may temporarily lose the property of
representing a strategy), in order to achieve monotonicity while controlling the number of
cop rounds simultaneously across all branches of the decomposition via a vertex exchange
argument. As an interesting observation we obtain that cop moves onto some vertex not
incident to the robber escape space, i. e. to positions that are not part of the boundary, can
be ignored and the depth of the exact pre-tree decomposition is the number of cops placed
into the robber escape space. To see that consider the proof of Lemma 23 where we compute
how much larger the depth at some node ti

j at step i is than at the considered node si. The
depth increases only if the node ti

j is branching by Lemma 17 as ti
j has a child where the

cone contains only a self-loop and hence this is a move into the robber escape space.

▶ Corollary 30. dp(T, r, βnT
, γnT

) ≤ maxℓ∈L(T ) |{t ∈ V (T ) | t ⪯ ℓ and t is branching}|.

We note that we use a slightly different notion of branching node as [32], as we use a
different game characterisation. On a graph without isolated vertices our branching nodes are
branching nodes in the sense of [32], but not the other way around, as in the non-deterministic
cops and robber game, the cop player can chose if he whats to branch in the strategy tree,
that is if he wants to know the position of the robber or not.

In the future, it would be interesting to know if it is possible to give a proof that entirely
argues with game strategies (not requiring pre-tree decompositions), and we leave this open.
We also leave open whether a dual object similar to brambles can be defined for bounded
depth treewidth. Finally, given a winning strategy for k cops with q rounds, it would be
interesting to know if it is possible to bound the number of cops necessary for winning with
only q − 1 rounds in terms of k and q, given that the cop player still can win.

MFCS 2024
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