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Abstract
In the NP-hard Π-Network Sparsification problem, we are given an edge-weighted graph G, a
collection C of c subsets of V (G), called communities, and two numbers ℓ and b, and the question is
whether there exists a spanning subgraph G′ of G with at most ℓ edges of total weight at most b

such that G′[C] fulfills Π for each community C ∈ C. We study the fine-grained and parameterized
complexity of two special cases of this problem: Connectivity NWS where Π is the connectivity
property and Stars NWS, where Π is the property of having a spanning star.

First, we provide a tight 2Ω(n2+c)-time running time lower bound based on the ETH for both
problems, where n is the number of vertices in G even if all communities have size at most 4, G is a
clique, and every edge has unit weight. For the connectivity property, the unit weight case with G

being a clique is the well-studied problem of computing a hypergraph support with a minimum
number of edges. We then study the complexity of both problems parameterized by the feedback
edge number t of the solution graph G′. For Stars NWS, we present an XP-algorithm for t

answering an open question by Korach and Stern [Discret. Appl. Math. ’08] who asked for the
existence of polynomial-time algorithms for t = 0. In contrast, we show for Connectivity NWS
that known polynomial-time algorithms for t = 0 [Korach and Stern, Math. Program. ’03; Klemz et
al., SWAT ’14] cannot be extended to larger values of t by showing NP-hardness for t = 1.
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1 Introduction

A common goal in network analysis is to decrease the size of a given network to speed up
downstream analysis algorithms or to decrease the memory footprint of the graphs. This
leads to the task of network sparsification where one wants to reduce the number of edges
of a network while preserving some important property Π [6, 31, 35]. Similarly, in network
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60:2 On the Complexity of Community-Aware Network Sparsification

a) b) c)

Figure 1 a) The communities (blue) and input graph of a Π-NWS instance. b) and c) Optimal
solutions (red) for Unweighted Connectivity NWS, and Unweighted Stars NWS, respectively.

design the task is often to construct a minimum-size or minimum-weight network fulfilling a
given property, the most famous example being Minimum-Weight Spanning Tree.

In many applications the input contains, in addition to a network, a hypergraph on the
same vertex set [17, 24, 32]. The hyperedges of this hypergraph represent, for example,
communities that are formed within the network. In presence of such community data, the
sparsified network should preserve a property not for the whole network but instead for each
community, that is, for each hyperedge of the hypergraph. Gionis et al. [19] called this task
community-aware network sparsification and formalized it as follows.

Π-Network Sparsification (Π-NWS)
Input: A graph G, a collection C of c subsets of V (G), called communities, an
edge-weight function ω : E(G)→ R+, an integer ℓ, and a positive real number b.
Question: Is there a graph G′ = (V (G), E′) with E′ ⊆ E(G), |E′| ≤ ℓ, and total edge
weight at most b such that for each community Ci ∈ C the subgraph of G′ induced
by Ci satisfies Π?

We say that a graph G′ fulfilling the requirements is a solution for the instance I. A
very well-studied property Π, considered by Gionis et al. [19] but also in many previous
works [2, 7, 13, 15, 28] is that every community should induce a connected subgraph. A
graph G that has this property for some hypergraph H, is called a support for H [4, 5, 28]. We
denote the corresponding special case of Π-NWS as Connectivity NWS. Another variant
of Π-NWS, also studied by Gionis et al. [19], is to demand that every community not only
induces a connected subgraph but more strongly that it contains a spanning star. In other
words, in the solution graph G′, every community must be contained in the neighborhood of
at least one of its vertices, called a center vertex. We refer to this variant as Stars NWS.
An example instance and solutions for both problems are given in Figure 1.

Connectivity NWS and Stars NWS are both NP-hard [13, 10, 9, 19]. Motivated by
this, we study both problems in terms of their parameterized and fine-grained complexity.
We also investigate the versions of both problems where each edge has unit weight and refer
to them as Unweighted Connectivity NWS and Unweighted Stars NWS.

Our two main results are as follows:
We show that, based on the Exponential Time Hypothesis (ETH), Connectivity NWS
and Stars NWS do not admit algorithms with running time 2o(n2)+c, even if the input
graph is a clique with unit weights and each community has size at most 4. This bound
is matched by simple brute-force algorithms.
We show that Stars NWS admits an XP-algorithm when parameterized by t, the
feedback edge number of the solution graph. This positively answers the question of
Korach and Stern [30] who asked whether there is a polynomial-time algorithm for finding
an optimal solution for Stars NWS that is a tree. In fact, our algorithm extends the
polynomial-time solvable cases to solutions that are tree-like.
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We obtain several further results, for example a complexity dichotomy for Stars NWS and
Unweighted Stars NWS parameterized by c, the number of communities.

Known results. Already the most basic variant of Connectivity NWS, where the edges
have unit weights and the input graph G is a clique, appears in many applications, ranging
from explanation of protein complexes [32] to combinatorial auctions [10] to the construction
of P2P overlay networks in publish/subscribe systems [8, 24]. Thus, the problem has
been studied intensively under various names [2, 7, 8, 13, 15, 24] from a parameterized
complexity [7, 15, 24] and an approximation algorithms [2, 8, 24] perspective. For example,
the problem is NP-hard even for instances with maximum community size 3 [13], and admits
FPT-algorithms for the number of communities and for the largest community size plus
the feedback edge number t of a solution [7]. A particular restriction of the problem is to
determine whether there is an acyclic solution, called tree support or clustered spanning tree. It
can be determined in polynomial time whether a hypergraph has a tree support and different
polynomial-time algorithms have been described over the years [3, 10, 14, 16, 20, 27, 33, 34].

Unweighted Connectivity NWS with general input graphs G, has applications in the
context of placing green bridges [17, 22]. Unweighted Connectivity NWS is NP-hard
even when the maximum degree of G is 3 [22] and even for seven communities [17]. On the
positive side, one can construct in polynomial time a tree support if one exists [21, 28, 29].

For Connectivity NWS where we may have arbitrary edge-weights, the distinction
whether or not G is restricted to be a clique vanishes: any non-clique input graph G may
be transformed into a clique by adding the missing edges with a prohibitively large edge
weight. The problem of finding a minimum-weight tree support received attention due to its
applications in network visualization [28]. As shown by Korach and Stern [29] and Klemz
et al. [28], one can compute minimum-weight tree supports in polynomial time. Gioinis et
al. [19] provided approximation algorithms for the general problem.

Stars NWS has received less attention than Connectivity NWS. Gionis et al. [19]
showed NP-hardness and provided approximation algorithms. Korach and Stern [30] studied
a variant of Stars NWS where the input graph is a clique and the solution is constrained to
be a tree T where the closed neighborhood of the center vertex of a community Ci is exactly
the community Ci. This implies that two different communities need to have different center
vertices and thus restricts the allowed set of solution graphs strictly compared to Stars
NWS. Korach and Stern [30] showed that this problem is solvable in polynomial time. As
an open question, they ask whether this positive result can be lifted to Stars NWS.

Cohen et al. [9] studied the Minimum F-Overlay problem which can be viewed as the
following special case of Π-NWS: The input graph G is a clique and all edges have unit
weight; F is a family of graphs and the property Π is to have some spanning subgraph which
is contained in F . Unweighted Connectivity NWS and Unweighted Stars NWS
with clique input graphs are special cases of Minimum F-Overlay. Cohen et al. [9] provide
a complexity dichotomy with respect to properties of F . For most cases of F , Minimum
F-Overlay is NP-hard. In particular, Unweighted Stars NWS is NP-hard even when G

is a clique [9]. Gionis et al. [19] also studied Π being that each community needs to induce
a subgraph exceeding some prespecified density. Fluschnik and Kellerhals [17] considered
further properties Π, for example the property of having small diameter.

Our results and organization of the work. To put our main results into context, we first
summarize in Section 2 some complexity results that follow from simple observations or from
previous work. They imply in particular that Stars NWS and Connectivity NWS have
an FPT-algorithm for the parameter solution size ℓ and that they are W[1]-hard with respect
to the dual parameter k := m − ℓ even in the unit weight case when G is a clique. Then,

MFCS 2024
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Table 1 An overview of the parameterized complexity results. A ‡ indicates that this result also
holds in the unweighted case and a † indicates that this result only holds in the unweighted case.

Parameter Stars NWS Connectivity NWS
ℓ FPT (Proposition 2.2, [17]), no polynomial kernel‡ (Proposition 2.4, [17])

k := m − ℓ W[1]-hard‡ (Proposition 2.3)

t XP (Theorem 4.1) P for t = 0 ([28])
NP-h for t = 1‡ (Theorem 4.9)

c

FPT† (Theorem 5.2)
NP-h for c = 7‡ ([17])no polynomial kernel‡ (Theorem 5.3)

W[1]-h (Theorem 5.1)
∆ NP-h for ∆ = 6‡ (Corollary 3.3) NP-h for ∆ = 3‡ ([22])

in Section 3 we show that Unweighted Connectivity NWS and Unweighted Stars
NWS do not admit algorithms with running time 2o(n2+c) even when G is a clique unless
the Exponential Time Hypothesis (ETH) [26] is false.

In Section 4, we consider parameterization by t, the feedback edge number of the solution
graph G′. This is the minimum number of edges that need to be deleted to transform the
solution into a forest.1 The study of t is motivated as follows: The solution size ℓ is essentially
at least as large as n− 1, and thus neither small in practice nor particularly interesting from
an algorithmic point of view. Thus, t can be seen as a parameterization above the lower
bound n − 1. Our first main result is an XP-algorithm for Stars NWS. This positively
answers the question of Korach and Stern [30] who asked whether there is a polynomial-time
algorithm for t = 0 and extends the tractability further to every constant value of t. We then
show that, in contrast, Unweighted Connectivity NWS is NP-hard already if t = 1.
Thus, the polynomial-time algorithms for t = 0 [29, 28] cannot be lifted to larger values of t.

Finally, in Section 5 we study Stars NWS parameterized by the number c of input
communities. We obtain the following complexity classification: Unweighted Stars NWS
is FPT with respect to c and Stars NWS is W[1]-hard in the most restricted case when G

is a clique and all edges have weight 1 or 2 and in XP in the most general case.
For an overview of the parameterized complexity results, refer to Table 1.
Due to lack of space several proofs (marked with (⋆)) are deferred to the full version.

2 Preliminaries and Basic Observations

Preliminaries. For a set X, we denote by
(

X
2
)

the collection of all size-two subsets of X.
Moreover, for positive integers i and j with i ≤ j, we denote by [i, j] := {k ∈ N : i ≤ k ≤ j}.

An undirected graph G = (V, E) consists of a set of vertices V and a set of edges E ⊆
(

V
2
)
.

We denote by V (G) and E(G) the vertex and edge set of G, respectively, and let n =
n(G) := |V (G)| and m := |E(G)|. For a vertex set V ′ ⊆ V , we denote by EG(V ′) :=
{{u, v} ∈ E : u, v ∈ V ′} the edges between the vertices of V ′ in G. If G is clear from
the context, we may omit the subscript. A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). Moreover, G′ is spanning if V (G′) = V (G). For a vertex set V ′, we
denote by G[V ′] := (V ′, EG(V ′)) the subgraph of G induced by V ′. A set S ⊆ V (G) with

1 The parameter t can be computed in polynomial time as discussed in Section 2.
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EG(S) =
(

S
2
)

is called a clique. A graph G is a star of size n − 1 with center z ∈ V (G) if
E(G) = {{z, v} : v ∈ V (G) \ {z}}. A graph G contains a spanning star if some subgraph G′

of G is a star of size n− 1. The center of this star is universal for G.
An edge set E′ ⊆ E(G) is a feedback edge set of G, if the graph G′ := (V (G), E(G) \ E′)

is acyclic. Two vertices u and v are connected in G if G contains a path between u and v.
A graph G is connected if each pair of vertices u, v ∈ V (G) is connected. A set S ⊆ V (G)
is a connected component of G, if G[S] is connected and S is maximal with this property.
Connectivity in hypergraphs is defined similarly: Two vertices u and v are connected if there
exists a sequence C1, C2, . . . , Cp of hyperedges such that u ∈ C1, v ∈ Cp, and consecutive
communities have nonempty intersection. A connected component of a hypergraph is a
maximal set of connected vertices. The number x of connected components of a hypergraph
can be computed in polynomial time, for example by BFS. Note that for a minimal solution G′

for Stars NWS and Connectivity NWS, the connected components of G′ are exactly
the connected components of the community hypergraph. Thus, t = ℓ − n + x and the
parameter t can be computed in polynomial time for a given input instance.

For details about parameterized complexity and the ETH refer to [12, 11].

Basic observations. To put our main results for Connectivity NWS and Stars NWS
into context, we state some results that either follow easily from previous work or from
simple observations.

The naive brute-force approach for each Π-NWS is to perform an exhaustive search over
the O(2m) possibilities to select at most ℓ edges from the input graph G. This leads to the
following general statement for Π-NWS problems.

▶ Proposition 2.1. Let Π be a property which can be decided in poly(n) time. Then, Π-NWS
is solvable in 2m · c · poly(n) time.

For the solution size parameter ℓ, one can obtain the following running time.

▶ Proposition 2.2 (⋆). Connectivity NWS and Stars NWS can be solved in ℓO(ℓ) ·
poly(n + c) time.

The fixed-parameter tractability of Unweighted Connectivity NWS with respect to ℓ

was also shown by Fluschnik and Kellerhals via a kernelization [17].
A further natural parameter that can be considered is k := m− ℓ, a lower-bound on the

number of edges of G that any solution must omit.

▶ Proposition 2.3 (⋆).
Connectivity NWS and Stars NWS are NP-hard for k = 0.
Unweighted Connectivity NWS and Unweighted Stars NWS can be solved
in n2k · poly(n) time and are W[1]-hard with respect to k even if G is a clique and if each
community has size at most 3.

For Unweighted Connectivity NWS, Fluschnik and Kellerhals showed that a poly-
nomial kernel for ℓ and (thus for n) is unlikely, even on planar series-parallel graphs [17].
This result can be also given for the case when the input graph G is a clique.

▶ Proposition 2.4 (⋆). Unweighted Connectivity NWS and Unweighted Stars
NWS do not admit a polynomial kernel for n even if G is a clique, unless NP ⊆ coNP/poly.

One can also show that the simple brute-force algorithm that considers all O(2m) subsets
of E(G) cannot be improved substantially.

MFCS 2024
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Figure 2 Sketch of the construction of Theorem 3.1. The communities are blue (solid, dashed
and dotted). We only show edges which are contained in at least one community and only some
fixed edges (red). a) Part of the variable gadget for x1 and x2. b) The variable communities for a
clause q = x1 ∨ x2 ∨ x3. c) The assignment gadget for the first literal x1 of the clause q. Here, the
red edges are the fixed edges with one endpoint in the variable gadget and one in the clause gadget.

▶ Proposition 2.5 (⋆). If the ETH is true, then Unweighted Stars NWS and Un-
weighted Connectivity NWS cannot be solved in 2o(n+m+c) · poly(n + c) time, even if
restricted to instances with community size at most 3.

3 A Stronger ETH-Bound

In Proposition 2.5 we observed that algorithms with running time 2o(n+m+c) for Unweighted
Connectivity NWS and Unweighted Stars NWS would violate the ETH. We now
provide a stronger 2Ω(n2+c)-time lower bound for both problems. Notably, this lower bound
also applies to the case when all communities have constant size.

First, we present the lower bound for Unweighted Stars NWS.

▶ Theorem 3.1. If the ETH is true, then Unweighted Stars NWS cannot be solved in
2o(n2+c) time, even if G is a clique and if each community has size at most 4.

Proof. We reduce from 3-SAT to Unweighted Stars NWS such that the resulting instance
has O(

√
|ϕ|) vertices and O(|ϕ|) communities, where ϕ denotes the total formula length.

Then, the existence of an 2o(n2+c)-time algorithm for Unweighted Stars NWS implies
the existence of a 2o(|ϕ|)-time algorithm for 3-SAT violating the ETH [25, 26]. The input
formula ϕ is over the variable set X and each clause q ∈ Γ contains exactly three literals.
For a literal y, we denote by y its complement. A visualization of the construction is given
in Figure 2. In all gadgets, we add several communities of size 2. These communities enforce
that each solution has to contain the edge of this community. In the following we call such
edges fixed.

Variable gadget GX . Recall that GX is a clique. The idea is to create for each variable a
community C of size 3 with one fixed edge. The two remaining edges of C are called selection
edges. The idea is that each solution contains exactly one selection edge of C. One selection
edge represents the positive literal, the other one represents the negative literal. The fixed
edge of the triangle is used to model that one literal must be set to true. The selection
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edges are arranged compactly, to guarantee that |V (GX)| ∈ O(
√
|ϕ|). In the following, we

describe the graph GX together with communities fulfilling the above-described properties.
An example of a variable gadget is shown in part a) of Figure 2.

Let V (GX) = U ∪ P where U := {u1, . . . , unx
}, P = P1 ∪ P2, and Pi := {pi

1, . . . , pi
nx
}

for i ∈ [2] consist of nx = ⌈
√
|X|⌉ vertices each. It remains to describe the communities: For

each variable x ∈ X, we add a community Cx := {uj , p1
s, p2

s} for j, s ∈ [ nx ]. This is possible
since nx · nx ≥ |X|. These communities are called the variable communities CX . Afterwards,
we set θ(x) := {uj , p1

s} and θ(x) := {uj , p2
s} to assign the positive and negative literal of x to

an edge of the variable gadget. Now, we fix the edges of G[P ] = G[P1 ∪ P2]. In other words,
for each edge {pi1

j1
, pi2

j2
} having both endpoints in P1 ∪ P2, we add a community {pi1

j1
, pi2

j2
}.

Observe that the sets of selection edges corresponding to two distinct variables are disjoint:

▷ Claim 1 (⋆). Each selection edge of E(GX) is contained in only one subgraph induced by
a variable community in CX .

Clause gadget. We continue by describing the construction of the clause gadget GΓ. The
idea is that each clause is represented by four vertices of V (GΓ) in which a triangle is fixed.
All three remaining edges of this size-4 clique are referred to as free. Note that these free
edges form a star with three leaves. Each free edge represents one literal of the clause. For
each pair containing two of these three edges, we then create a community containing the
three endpoints of these two edges. As in the vertex gadget, these induced subgraphs are
arranged compactly, to achieve a clause gadget with |V (GΓ)| ∈ O(

√
|Γ|).

Let V (GΓ) = Y ∪ Z where Y = {y1, . . . , ync}, Z = Z1 ∪ Z2 ∪ Z3, and Zi = {z1
1 , . . . , zi

nc
}

for i ∈ [3] consist of nc = ⌈
√
|Γ|⌉ vertices each. In the following, we assign each clause to a

clique of GΓ having vertex set yj , z1
s , z2

s , z3
s for j, s ∈ [nc]. This is possible since nc · nc ≥ |Γ|.

In this clique, we fix the triangle having its endpoints in Z1 ∪ Z2 ∪ Z3. Formally, for each
clause q = {q1, q2, q3} ∈ Γ we add three communities C1

q = {yj , z2
s , z3

s}, C2
q = {yj , z1

s , z3
s} and

C3
q = {yj , z1

s , z2
s}. We refer to these communities as the clause communities CΓ. Afterwards,

we set ν(q, q1) := {yj , z1
s}, ν(q, q2) := {yj , z2

s}, and ν(q, q3) := {yj , z3
s} to assign each literal

in clause q to an edge of the clause gadget. These edges are referred to as free. Second, we
fix the edges of the clique Z1 ∪ Z2 ∪ Z3.

Observe that the sets of free edges corresponding to two distinct clauses are disjoint:

▷ Claim 2 (⋆). Each free edge of E(GΓ) is contained in exactly one subgraph induced by a
clause community in CΓ.

Connecting the gadgets. We complete the construction by connecting the variable and
clause gadget, using new assignment communities. The idea is to add a new community
containing the endpoints of a free edge describing a literal in a clause together with the
endpoints of the selection edge describing the same opposite literal in the variable gadget.
These communities model occurrences of variables in the clauses. Roughly speaking, these
communities are satisfied if the selection edge of the variable gadget or the free edge of the
clause gadget is part of the solution. To enforce this, we fix further edges of G.

We create for each clause q = {q1, q2, q3} ∈ Γ three assignment communities Cq1
q =

ν(q, q1)∪ θ(q1), Cq2
q = ν(q, q2)∪ θ(q2), and Cq3

q = ν(q, q3)∪ θ(q3). We denote the assignment
communities with CX

Γ . To enforce that each solution contains the selection edge or the
free edge of each assignment community, we fix all edges between the vertex sets U and Z,
between the vertex sets P and Y , and between the vertex sets P and Z.

Finally, we set ℓ := |X|+ 2 · |Γ|+
(|P |

2
)

+
(|Z|

2
)

+ |U | · |Z|+ |P | · |Y |+ |P | · |Z|.

MFCS 2024
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Correctness. The correctness is based on the facts that each solution for I contains a) all
fixed edges, b) exactly |X| selection edges, and c) exactly 2|Γ| free edges. Fact b) ensures
that this models an assignment β of the variables of X and fact c) ensures that each clause
is satisfied by at least one literal of β. The detailed correctness proof is deferred to the full
version. ◀

An adapted construction yields further results for d-Diam NWS [17] (Π is “having
diameter at most d”) and Density NWS [19] (Π is “exceeding some density threshold”).

▶ Corollary 3.2 (⋆). If the ETH is true, then Unweighted Connectivity NWS, d-Diam
NWS for each d ≥ 2, and Density NWS cannot be solved in 2o(n2+c) time even if G is a
clique and each community has size at most 4.

▶ Corollary 3.3 (⋆). Unweighted Stars NWS remains NP-hard and, assuming the ETH,
cannot be solved in 2o(n+m+c) time on graphs with maximum degree six and community size
at most 4.

4 Parameterization by the Feedback Edge Number of a Solution

The parameter ℓ, the number of edges in the solution is in most cases not independent from the
size of the input instance of Stars NWS or Connectivity NWS: if the hypergraph (V, C)
is connected, a solution G′ has at least n−1 edges. In other words, n−1 is a lower bound for ℓ

in this case. In this section, we study Stars NWS and Connectivity NWS parameterized
above this lower bound. Formally, the parameter t is defined as the size of a minimum
feedback edge set of any optimal solution of an instance of Stars NWS or Connectivity
NWS. Thus, the parameter t measures how close the solution is to a forest. Formally, the
definition is t := ℓ − n + x where x denotes the number of connected components of G′.
Recall that t can be computed in polynomial time (see Section 2.).

4.1 An XP-Algorithm for Stars NWS
In this subsection, we show that Stars NWS parameterized by t admits an XP-algorithm.

▶ Theorem 4.1. Stars NWS can be solved in m4t · poly(|I|) time.

Our XP-algorithm exploits the fact that there are two different kinds of cycles in G′: First,
there are global cycles. These are the cycles in the solutions that are directly caused by cycles
in the input hypergraph. No solution may avoid these cycles. Second, there are local cycles.
These are cycles which are entirely contained in the subgraph induced by two communities.
Since in each solution, each community contains a spanning star, local cycles can only have
length 3 or 4. This allows us to bound the number of possible local cycles and thus to
consider all possibilities for the local cycles in XP-time with respect to t. Then, the crux of
our algorithm is that after all local cycles have been fixed, all remaining cycles added by
our algorithm have to be global and are thus unavoidable. Using this fact, we show that in
polynomial time we can compute an optimal solution with feedback edge number at most t

that extends a fixed set of local cycles without introducing any further local cycles. To do
this, for each community C, we store a set of potential centers, that is, vertices of C that
may be the center of a spanning star of C in any solution that does not produce new local
cycles. We define several operations that restrict the potential centers of each community.
We show that after all operations have been applied exhaustively, one can greedily pick the
best remaining center for each community.
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b)a) c)

Figure 3 Examples for solutions with and without local cycles. Red edges indicate the edges of
the solution. Part a) shows an example, where both communities induce a local cycle. Part b) shows
an example, where the two communities do not induce local cycle. Finally, part c) shows an example,
where the solution contains a (global) cycle but no two communities induce a local cycle.

Algorithm-specific notation. Next, we present the formal definition of local cycles; an
example is shown in Figure 3. For a spanning subgraph H of G and a community C ∈ C,
let univH(C) denote the vertices of C that are universal for C in H. Note that univH(C) ⊆
univG(C). In the following, we assume that for each community C ∈ C, univG(C) ̸= ∅, as
otherwise, there is no solution for the instance I of Stars NWS.

For a solution G′, we say that two distinct communities C1 and C2 induce a local cycle if
for each i ∈ {1, 2}, there is a vertex ci ∈ univG′(Ci) such that the graph S1 ∪ S2 contains a
cycle. Here, for each i ∈ {1, 2}, Si is the spanning star of Ci with center ci and S1 ∪S2 is the
union of both these stars defined by S1∪S2 := (C1∪C2, {{ci, wi} : wi ∈ Ci \{ci}, i ∈ {1, 2}}).
Moreover, we say that each cycle of S1 ∪ S2 is a local cycle in G′. Note that each local cycle
has length at most four, and if C1 and C2 induce a local cycle, then |C1 ∩ C2| ≥ 2.

As described above, the first step of the algorithm behind Theorem 4.1 is to test each
possibility for the local cycles of the solution. For a fixed guess, we let E∗ denote the set of
all edges contained in at least one local cycle and in the following we refer to them as local
edges. Moreover, we call a minimum solution G′ fitting for E∗ if each local cycle of G′ uses
only edges of E∗ and each edge of E∗ is contained in G′. Hence, to determine whether the
choice of local edges E∗ can lead to a solution, we only have to check, whether there is a
fitting solution for E∗. In the following, we show that this can be done in polynomial time.

▶ Theorem 4.2. Let I = (G = (V, E), C, ω, ℓ, b) be an instance of Stars NWS, and
let E∗ ⊆ E. In polynomial time, we can

find a solution G′ = (V, E′) for I with E∗ ⊆ E′ or
correctly output that there is no minimum solution that is fitting for E∗.

Based on the definition of fitting solutions, we define for each community C ∈ C a
set fitE∗(C) of possible centers. We initialize fitE∗(C) := univG(C) for each community C ∈ C.
The goal is to reduce fitE∗(C) of each community C as much as possible while preserving the
following property, which trivially holds for the initial fitE∗(C) for each community C ∈ C.

▶ Property 1. For each minimum solution G′ which is fitting for E∗ and each community C ∈
C, we have univG′(C) ⊆ fitE∗(C).

Note that if Property 1 is fulfilled and if fitE∗(C) = ∅ for some C ∈ C, then we can correctly
output that there is no fitting solution for E∗. Next, we define several operations that for
some communities C ∈ C remove vertices from fitE∗(C) which – when taken as a center vertex
for C – would introduce new local cycles, violating the properties of a fitting solution. We
show that these operations preserve Property 1 and that after these operations are applied
exhaustively, the task of Theorem 4.2 can be performed greedily based on fitE∗ . Examples
for each of our operations are shown in Figure 5.
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In the following, we say that a vertex v ∈ V is locally universal for a vertex set A ⊆ V , if
for each vertex w ∈ A \ {v}, the vertex pair {v, w} is a local edge.

▶ Operation 1. Let C ∈ C be a community and let {y, z} ⊆ C be a local edge. Remove each
vertex v from fitE∗(C) which is not locally universal for {y, z}.

The following lemma shows that Operation 1 preserves Property 1.

▶ Lemma 4.3 (⋆). Let G′ be a minimum solution for I, let C be a community of C and
let x ∈ univG′(C) such that x is not locally universal for some local edge {y, z} ⊆ C. Then,
G′ is not fitting for E∗.

Note that after the exhaustive application of Operation 1, for each community C ∈ C
with at least one local edge, the vertices of fitE∗(C) induce a clique with only local edges.

Next, we define a partition C of the communities of C. The idea of this partition is that
in each fitting solution for E∗, all communities of the same part of the partition C have the
same unique center. The definition of the partition C is based on the following lemma.

▶ Lemma 4.4 (⋆). Let C and D be distinct communities of C with |C ∩D| ≥ 3 and where
no vertex v ∈ C ∪D is locally universal for C ∩D. Let G′ be a solution such that there is no
vertex w ∈ C ∩D with univG′(C) = univG′(D) = {w}. Then, C and D induce a local cycle
in G′ that uses at least one edge which is not a local edge.

Consider the auxiliary graph GC with vertex set C and where two distinct communities C

and D are adjacent if and only if a) |C ∩D| ≥ 3 and b) there is no locally universal vertex
for C ∩D in C ∪D. The partition C consists of the connected components of GC and for
a community C ∈ C, we denote by C(C) the collection of communities in the connected
component of C in GC. An example is shown in Figure 4.

By Lemma 4.4 and due to transitivity, we obtain the following.

▶ Corollary 4.5. For each community C ∈ C with |C(C)| ≥ 2 and each fitting solution G′

for E∗, there is a vertex v ∈
⋂

C̃∈C(C) C̃ such that univG′(C̃) = {v} for each C̃ ∈ C(C).

This implies that the following operation preserves Property 1.

▶ Operation 2. Let C ∈ C. Remove each vertex v from fitE∗(C) if v is not contained
in

⋂
Ĉ∈C(C) fitE∗(Ĉ).

Next, we define an operation for each possibility how two communities may intersect.

▶ Operation 3. Let C ∈ C such that C contains no local edge. Moreover, let D ∈ C such
that |C ∩D| ≥ 2. Remove all vertices from fitE∗(C) that are not contained in C ∩D.

▶ Operation 4. Let C ∈ C such that C contains at least one local edge. Moreover, let D ̸∈ C(C)
be a community, such that |C ∩D| = 2 and {x, y} := C ∩D is not a local edge.
1. If fitE∗(C) ∩ {x, y} = ∅, then remove x and y from fitE∗(D) or
2. if fitE∗(C) ∩ {x, y} = {x}, then set fitE∗(C) := {x}.

▶ Operation 5. Let C ∈ C be a community containing at least one local edge. Moreover,
let D ̸∈ C(C) such that |C ∩D| ≥ 3. For each pair of distinct vertices x and y of C ∩D,
where {x, y} is not a local edge, remove x and y from fitE∗(D).

▶ Lemma 4.6 (⋆). Operation 3 preserves Property 1. Moreover, if Operation 1 is exhaustively
applied, then Operation 4 and Operation 5 preserve Property 1.
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Figure 4 Examples for parts of the partition C. Only the local edges are shown. Note that A, C ∈
C(B), since A and C share at least three vertices with B and no vertex of A ∪ B or C ∪ B is locally
universal for A ∩ B or C ∩ B, respectively. Hence, after exhaustive application of Operation 2,
fitE∗ (A) = fitE∗ (B) = fitE∗ (C) = ∅, since A and C share no vertices. Furthermore, Y ∈ C(Z), since
no vertex of Y ∪ Z is locally universal for Y ∩ Z. Note that X /∈ C(Z), since the black vertex of X

is locally universal for X ∩ Y and X ∩ Z. Observe that an exhaustive application of Operation 2
yields fitE∗ (Z) ⊆ Y ∩ Z and an exhaustive application of Operation 5 yields fitE∗ (Z) ∩ (X ∩ Z) =
fitE∗ (Z) ∩ (Y ∩ Z) = ∅, since X contains at least one local edge and X ∩ Z contains no local edge.
Hence, for both shown hypergraphs, there is no fitting solution for the given set of local edges.

Algorithm 1 Algorithm solving the problem described in Theorem 4.2.

Input : I = (G = (V, E), C, ω, ℓ, b), E∗ ⊆ E

Output : A solution G′ = (V, E′) with at most ℓ edges and total weight at most b, or
no, if there is no minimal solution which is fitting for E∗

1 Compute the partition C of C
2 For each C ∈ C, initialize fitE∗(C)← univG(C) and apply Operation 1
3 Apply Operations 1–5 exhaustively
4 if fitE∗(C) = ∅ for some C ∈ C then return no
5 GA ← (V, E∗)
6 forall L ∈ C do
7 C ← some community of L
8 VL ←

⋃
C̃∈L C̃

9 y ← arg minu∈fitE∗ (C) ω({{u, v} : v ∈ VL \ {u}} \ E∗)
10 add all edges of {{y, v} : v ∈ VL \ {y}} to GA

11 if |E(GA)| ≤ ℓ and ω(E(GA)) ≤ b then return GA

12 return no

Based on these operations, we are now able to present the algorithm (see Algorithm 1)
behind Theorem 4.2 working as follows: First, we apply Operations 1–5 exhaustively. Next,
if there is a community C ∈ C with fitE∗(C) = ∅, then we return no. This is correct, since
Operations 1–5 preserve Property 1. Afterwards, we start with an auxiliary graph GA with
vertex set V and edge set E∗ and we iterate over the partition C. Recall that since Operation 2
is exhaustively applied, for each L ∈ C, fitE∗(C) = fitE∗(D) for any two communities C

and D of L. For each L ∈ C, we find a vertex y ∈ fitE∗(C) that minimizes the total weight of
non-local edges required to make y the center of all communities of L, where C is an arbitrary
community of L. Finally, we add all edges between y and each vertex of any community of L
to GA. After the iteration over the partition C is completed, we output GA if it contains at
most ℓ edges and has total weight at most b. Otherwise, we return that there is no fitting
solution for E∗. It remains to show that this greedy choice for the center vertices is correct.

▶ Lemma 4.7. Algorithm 1 is correct.
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Figure 5 Examples of applications of Operations 1–5. The black edges represent the local edges,
the solid (for C) or dashed (for D) red edges show the non-local edges resulting from choosing
the respective center for community C or D. For example in 2), z is the center of community C

and v is the center of community D, and the edges {z, y} and {v, y} are non-local edges in the
solution. For each operation, the violation of the property of being a fitting solution is shown, if
a vertex a is selected as a center of a community A where the application of the corresponding
operation would remove a from fitE∗ (A). In 1), 2), 3), and 4.2), the vertex selected as center
for community C is removed from fitE∗ (C) by the respective operation. For example, in 4.2),
(assuming fitE∗ (C) ∩ {x, y} = {x}) Operation 4 removes v from fitE∗ (C), as otherwise selecting v

as center of C results in the depicted non-fitting solution. In 4.1) and 5), the vertex selected as
center for community D is removed from fitE∗ (D) by the respective operation. For example in 4.1),
(assuming fitE∗ (C) ∩ {x, y} = ∅) Operation 4 removes y from fitE∗ (D), as otherwise selecting y as
center of D results in the depicted non-fitting solution.

Proof. If Algorithm 1 outputs “no” in Line 4, then this is correct, since fitE∗ fulfills Prop-
erty 1. Otherwise, let GA denote the graph constructed by Algorithm 1 and let for each
community C ∈ C, center(C) denote the vertex y chosen to be the center of all communities
of C(C) in Line 9. By construction, GA is a solution since for each community C ∈ C,
center(C) is a vertex of fitE∗(C) ⊆ univG(C). If GA contains at most ℓ edges and has total
weight at most b, then the algorithm correctly outputs the solution GA which is fitting
for E∗.

Thus, in the following we assume that GA contains more than ℓ edges or has weight
more than b. Assume towards a contradiction that there is a fitting solution GF for E∗ such
that Agree(GF ) := {C ∈ C : center(C) ∈ univGF

(C)} is as large as possible.

Case 1. Agree(GF ) = C. By construction, GA contains all edges of E∗ and only the required
edges to achieve that for each community C ∈ C, center(C) ∈ univGA

(C). Consequently, GA

is a subgraph of GF and thus GF contains more than ℓ edges or has weight more than b, a
contradiction.

Case 2. There is a community C ∈ C \ Agree(GF ). In the following, we define a fitting
solution G′

F for E∗ with Agree(G′
F ) ⊋ Agree(GF ). By definition, center(C) = center(C̃) for

each community C̃ ∈ C(C). Let VC :=
⋃

C̃∈C(C) C̃ and let y := center(C). Moreover, let x

be an arbitrary vertex of VC such that x ∈ univGF
(C̃) for each community C̃ ∈ C(C). Due
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to Corollary 4.5 and since GF is fitting for E∗, this vertex exists and is unique if |C(C)| ≥ 2.
Note that C ∈ C \Agree(GF ) implies that x ̸= y. This also implies that C has size at least 3,
and thus, each community of C(C) has size at least 3. We obtain G′

F as follows: First,
initialize G′

F as GF . Second, for each community C̃ ∈ C(C), remove all edges that are not
local edges of GF [C̃] from G′

F . Finally, for each community C̃ ∈ C(C), add the minimum
number of edges to G′

F such that y ∈ univG′
F

(C̃), that is, the edges {{y, v} : v ∈ VC \{y}}\E∗.
First, we show that G′

F contains at most as many edges as GF . To this end, we first
observe the following.

▷ Claim 3 (⋆). For each z ∈ VC \ {x, y}, the edge {x, z} is a local edge if and only if {y, z}
is a local edge.

Recall that each edge which is in G′
F and not in GF is incident with y and some vertex

of VC \ {x, y}. Hence, for each z ∈ VC \ {x, y} where the edge {y, z} was added to obtain G′
F ,

the edge {x, z} was removed to obtain G′
F . Thus, G′

F contains at most as many edges as GF .
This implies that the difference between the total weight of G′

F and the total weight of GF is
at most ρ = ω({{y, z} : z ∈ VC \ {y}} \E∗)−ω({{x, z} : z ∈ VC \ {x}} \E∗). Due to Line 9,
ρ is not positive. Thus, since GF has total weight at most b, G′

F has total weight at most b.
To show that G′

F is a solution, it remains to show that each community C ∈ C has at
least one center in G′

F . For this, it suffices to show that all communities outside of C(C)
have the same centers in GF and G′

F , since y is a center of all communities of C(C).

▷ Claim 4. For each community D ∈ C \ C(C), univGF
(D) = univG′

F
(D).

Proof. Due to symmetry, we only show that univGF
(D) ⊆ univG′

F
(D). Assume towards a

contradiction that there is a vertex z ∈ univGF
(D) \univG′

F
(D). Since z /∈ univG′

F
(D), there

is an edge {z, w} which is contained in GF but not in G′
F . Moreover, {z, w} is not a local edge,

since G′
F contains all local edges. This further implies that there is a community C̃ ∈ C(C)

such that {z, w} ⊆ C̃. Since GF is fitting for E∗, x is one endpoint of {z, w}, as otherwise,
C̃ and D induce a local cycle in GF on the vertices {x, z, w} and the edge {z, w} is not a
local edge. Next, we distinguish the cases whether C̃ contains a local edge.

Case 1. There is no local edge in C̃. Since Operation 3 is exhaustively applied, {x, y} ⊆
fitE∗(C̃) ⊆ C̃ ∩D. Hence, if |C̃ ∩D| = 2, then x = z and y = w, or vice versa. Consequently,
the edge {z, w} is contained in G′

F , a contradiction. Otherwise, assume |C̃ ∩D| ≥ 3. We
show that in this case, there is no fitting solution for E∗. Since D is not in C(C), there is
some vertex of C̃ ∪D which is locally universal for C̃ ∩D. Hence, fitE∗(C̃) ⊆ C̃ ∩D, since C̃

contains no local edge and Operation 3 is exhaustively applied. Moreover, since Operation 5
is exhaustively applied and there is no local edge between any two vertices of C̃ ∩ D,
fitE∗(C̃)∩ (C̃ ∩D) = ∅. We conclude that fitE∗(C̃) = ∅, which implies that there is no fitting
solution for E∗, a contradiction to the fact that GF is a fitting solution for E∗.

Case 2. There is some local edge in C̃. Recall that Operation 4 and Operation 5 are
applied exhaustively with respect to C̃. If x = z and y = w, or vice versa, then the
edge {z, w} is contained in G′

F , a contradiction. Otherwise, let w∗ be the unique vertex
of {z, w} \ {x}. Since {x, w∗} = {z, w} is not a local edge, x ∈ fitE∗(C̃), and Operation 1
is exhaustively applied, no vertex of fitE∗(C̃) is locally universal for w∗ and w∗ /∈ fitE∗(C̃).
Hence, if |C̃ ∩D| = 2, then since Operation 4 is exhaustively applied, fitE∗(C̃) has size at
most one, a contradiction. Otherwise, if |C̃ ∩D| ≥ 3, then since Operation 5 is exhaustively
applied x /∈ fitE∗(D) and w∗ /∈ fitE∗(D). Consequently, z /∈ fitE∗(D), a contradiction. ◁
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Since GF is a solution, for each community D ∈ C \ C(C), Claim 4 implies
that univG′

F
(D) = univGF

(D) is nonempty. Hence, G′
F is a solution. Moreover, since GF is

a minimum solution, Claim 3 implies that G′
F is a minimum solution.

Next, we show that G′
F is fitting for E∗. To show that G′

F is a fitting solution for E∗, it
remains to show that each local cycle of G′

F uses only edges of E∗.

▷ Claim 5 (⋆). Each local cycle of G′
F uses only edges of E∗.

Finally, we show that Agree(G′
F ) is a proper superset of Agree(GF ). By construction,

C(C) ⊆ Agree(G′
F ), and due to Claim 4, for each community D ∈ C \ C(C), univG′

F
(D) =

univGF
(D). Hence, Agree(GF ) ⊆ Agree(G′

F ). Moreover, since C /∈ Agree(G′
F ) \Agree(GF )

we obtain that Agree(G′
F ) is a proper superset of Agree(GF ). Altogether, G′

F is a fitting
solution for E∗ with Agree(G′

F ) ⊋ Agree(GF ). This contradicts our choice of GF .
Hence, if GA contains more than ℓ edges or has weight more than b, then the algorithm

correctly outputs that there is no solution which is fitting for E∗. ◀

Proof of Theorem 4.2. Clearly, the partition C of C and also the initialization of fitE∗ in
Lines 1 and 2 can be computed in polynomial time. Note that Operations 1–5 can be
exhaustively applied in polynomial time by iterating over all local edges and all pairs of
communities, since for each community C ∈ C, fitE∗(C) initially has size at most |C| < n

and each application of any operation may only remove elements from fitE∗(C). Hence,
Lines 3–5 can be performed in polynomial time. Afterwards, Lines 6–10 can be performed
in polynomial time since for each partite set of C we compute the vertex y with minimal
cost such that y serves as the center of all communities in this partite set. Finally, the check
whether the solution has at most ℓ edges and weight at most b can be done in polynomial
time. Thus, Algorithm 1 runs in polynomial time. ◀

Finding the correct edge set E∗. To solve Stars NWS, the main algorithmic difficulty
now lies in finding an edge set E∗ that contains all edges of local cycles of any optimal
solution of I. Hence, to prove Theorem 4.1, it remains to show that such an edge set can be
found in m4t · poly(n + c) time, if it exists.

▶ Lemma 4.8 (⋆). If I is a yes-instance of Stars NWS, then for every optimal solution G′ =
(V, E′), there is an edge set E∗ ⊆ E′ of size at most 4t such that the edge set of each local
cycle of G′ is a subset of E∗.

Proof of Theorem 4.1. The algorithm works as follows: iterate over all possible edge sets E∗

of size at most 4t and apply the algorithm behind Theorem 4.2. If I is a yes-instance, then
for some edge set E∗, Theorem 4.2 yields an optimal solution for I with at most ℓ edges
and weight at most b. Since there are O(m4t) edges sets of size at most 4t, the algorithm
achieves the stated running time. ◀

The concrete algorithm for t = 0. Recall that Theorem 4.1 affirmatively answers the
question by Korach and Stern [30] who asked whether there is a polynomial-time algorithm
for finding an optimal solution for Stars NWS with t = 0. For this case, the concrete
algorithm is much simpler since most of the described operations are never applicable. This
is due to the fact that for t = 0, no local edges exist and Operations 1, 4, and 5 require at
least one local edge to be applicable. In the following, we give an intuitive description of the
concrete much simpler algorithm for t = 0.

First, we set E∗ = ∅ and initialize fitE∗(C) := univG(C) for each community C ∈ C.
Afterwards, we again compute the partition C of the communities of C. Recall that this is
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done by defining an auxiliary graph GC with vertex set C where two distinct communities C

and D are adjacent if and only C and D have an intersection of size at least 3. Note that
in the original definition one had to also check that no vertex is locally optimal for the
intersection. This now always holds since there are no local edges. The partition C then
consists of the connected components of GC.

Second, we exhaustively apply Operations 2 and 3. Operation 2 ensures that all communit-
ies of the same part of C will have the same potential centers according to fitE∗ . Moreover,
Operation 3 ensures that if two communities C and D have an intersection of size at least 2,
then the potential centers of both communities will be within C ∩D according to fitE∗ .

After exhaustive application of these two operations, the remaining lines of Algorithm 1
are executed, that is, if fitE∗(C) = ∅ for at least one community C ∈ C, we correctly output
that the instance under consideration is a no-instance of Stars NWS. Otherwise, we greedily
select for each part L of the partition C a vertex y as center for all communities L, such
that y is a potential center of each community of L and such that the cost of selecting y

as center of all these communities is minimum under all such potential centers. Finally, if
these choices of center vertices result in more than ℓ edges or total weight more than b, we
correctly output that the input instance is a no-instance of Stars NWS. Otherwise, the
chosen center vertices induce a solution with t = 0.

4.2 Connectivity NWS
Korach and Stern presented an O(c4n2)-time algorithm for Connectivity NWS where G

is a clique and t = 0 [29] which was improved by Klemz et al. [28] who provided an
O(m · (c + log(n)))-time algorithm for Connectivity NWS with t = 0. Guttmann-Beck et
al. [21] presented a similar algorithm for Unweighted Connectivity NWS with t = 0.

Next, we show that the positive result for t = 0 cannot be lifted to t = 1; in this
case Connectivity NWS is NP-hard. We obtain our result by reducing from the NP-
hard Hamiltonian Cycle-problem [1, 18], which asks for a given graph G = (V, E) if there
is a Hamiltonian cycle in G, that is, a cycle containing each vertex of G exactly once.

▶ Theorem 4.9 (⋆). Let Π be a graph class on which Hamiltonian Cycle is NP-hard,
then Unweighted Connectivity NWS is NP-complete on Π even if t = 1.

Proof. Let I := (V, E) be an instance of Hamiltonian Cycle containing at least three
vertices. We obtain an equivalent instance I ′ := (G = (V, E), C, ℓ) of Unweighted Con-
nectivity NWS as follows: We start with an empty set C and add for each vertex v ∈ V a
community Cv := V \ {v} to C. Finally, we set ℓ := |V |. Note that t = ℓ− n + x, where x is
the number of connected components of the graph. Thus, t = n− n + 1 = 1.

The detailed correctness proof is deferred to the full version. ◀

▶ Corollary 4.10. Unweighted Connectivity NWS is NP-complete even if t = 1 on
subcubic bipartite planar graphs.

5 Stars NWS Parameterized by the Number of Communities

Unweighted Connectivity NWS is NP-hard even for c = 7 [17, Proposition 3]. In
contrast, Stars NWS admits an XP-algorithm for c with running time nO(c): For each
community C, test each of the at most |C| ≤ n potential center vertices. Then, for each
potential solution check whether it consists of at most ℓ edges of total weight at most b. For
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Stars NWS, we show that it is unlikely that this brute-force algorithm can be improved, by
showing W[1]-hardness. For Unweighted Stars NWS, we obtain an FPT-algorithm for c.

▶ Theorem 5.1 (⋆). Stars NWS is W[1]-hard when parameterized by c even if G is a clique
and each edge weight is 1 or 2.

Proof. We provide a parameter-preserving reduction from the W[1]-hard Regular Multi-
colored Clique problem [11]. The input consists of an r-regular graph G, an integer κ,
and a partition (V1, . . . Vκ) of V (G). The question is whether there exists a clique of size κ

containing exactly one vertex of each partite set Vi.
We construct an equivalent instance (G′, C, ω, ℓ, b) of Stars NWS as follows. The vertex

set of V (G′) consists of a copy of V (G) and κ additional vertex sets Si, i ∈ [κ], each of
size n(G)3. We make G′ a clique by adding all edges between vertices of V (G′). To complete
the construction, we specify the communities and edge weights. First, for each color class i ∈
[1, κ], we add a community Ci := V (G) ∪ Si. Afterwards, we define the edge weights: For
each edge {a, b} ∈ E(G′) such that {a, b} ∈ E(G), we set ω({a, b}) := 2, for each edge {a, b}
with a ∈ Si and b /∈ Vi, we set ω({a, b}) := 2, for each edge {a, b} with a ∈ Si and b ∈ Sj , we
set ω({a, b}) := 2, and for each remaining edge {a, b} ∈ E(G′) we set ω({a, b}) := 1. Finally,
we set ℓ := κ · (n(G)3 + n(G) − 1) −

(
κ
2
)

and b := κ · (n(G)3 + n(G) − 1 + r) − 2
(

κ
2
)
. Note

that c = κ, it thus remains to show the equivalence of the two instances. The detailed
correctness proof is deferred to the full version. ◀

▶ Theorem 5.2 (⋆). Unweighted Stars NWS is solvable in O(4c2 · (n + m) + n2 · c) time.

To complete the parameterized complexity picture, we show that a polynomial kernel
for c is unlikely.

▶ Theorem 5.3 (⋆). Unweighted Stars NWS parameterized by c does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

6 Conclusion

Presumably the most interesting open question is whether Stars NWS parameterized by t

admits an FPT-algorithm. In Theorem 4.2 we showed that Stars NWS can be solved in
polynomial time if for some optimal solution the edge set of all local cycles is known. Thus,
to obtain an FPT-algorithm, it is sufficient to find such an edge set in FPT-time. Also,
it is open whether Unweighted Connectivity NWS can be solved in polynomial time
when t is constant and the input graph is a clique. In other words, it is open whether a
minimum-edge hypergraph support can be found in polynomial time when it has a constant
feedback edge number.

It is also interesting to close the gap between the running time lower bound of 2Ω(c) ·
poly(|I|) (see Proposition 2.5) and the upper bound of 2O(c2) · poly(|I|) (see Theorem 5.2)
for Unweighted Stars NWS. Also, we may ask the following: are there properties Π such
that Π-NWS is NP-hard but can be solved in 2O(n) · poly(n + c) time?
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