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Abstract
We introduce a novel generalization of the notion of clique-width which aims to bridge the gap
between classical hereditary width measures and the recently introduced graph product structure
theory. Bounding the new H-clique-width, in the special case of H being the class of paths, is
equivalent to admitting a hereditary (i.e., induced) product structure of a path times a graph
of bounded clique-width. Furthermore, every graph admitting the usual (non-induced) product
structure of a path times a graph of bounded tree-width, has bounded H-clique-width and, as a
consequence, it admits the usual product structure in an induced way. We prove further basic
properties of H-clique-width in general.
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1 Introduction

A prominent structural result by Dujmović, Joret, Micek, Morin, Ueckerdt and Wood [11],
known as the Planar product structure theorem, claims that every planar graph can be found
as a subgraph in the strong product (⊠) of a path and a graph of small tree-width. We refer
to Section 2 and Theorem 2.3 for the definitions and details.

The original motivation for this rather recent Product structure theorem was to bound the
queue number of planar graphs, but the theorem has quickly found interesting applications
and follow-up results, among which we may mention [1,9, 10,12,13,23]. Namely, the product
structure theory has been used to study non-repetitive colourings [10], to design short
labelling schemes [1, 9], or to bound the twin-width of planar graphs [4, 16,19].

The basic goal of the product structure theory can be seen in studying graph classes
which admit such product structure, that is, they can be constructed as subgraphs of the
strong product of a path and a graph of small tree-width. Within this setting, there are two
major restrictions; first that the containment (subgraph) relation is not induced, and second
that this kind of a superstructure can exist only for sparse graph classes.

We aim to give a different perspective on the product structure (Definition 2.1) addressing
both mentioned issues, that is, getting graphs which admit the traditional product structure
as induced subgraphs in such strong product, and allowing also dense graphs to occur.

Our alternative view is two-sided and is closely related to another classical structural
notion in graph theory – the clique-width measure. On one hand, any graph admitting
the traditional product structure can be obtained as an induced subgraph of the strong
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61:2 H-Clique-Width and Product Structure

product of a path and a suitable graph of bounded clique-width and even bounded tree-width
(Theorem 4.6). On the other hand, a graph G admits the induced product structure with
bounded clique-width (of the relevant factor), if and only if G has bounded H-clique-width
where H is the class of reflexive paths (Theorem 4.1). This dual nature of our view is another
promising enhancement. Moreover, we believe this view can contribute to finding potential
algorithmic applications of product structure theory.

The wide scope of our definition suggests to study H-clique-width for other graph families
H in addition to paths, too. For instance, in relation to the aforementioned product-structure
works, one may consider H to be the class of the graphs Pn ⊠ Kk or of Pn ⊠ Pm.

We study and characterize relations of H-clique-width to ordinary clique-width (The-
orem 3.1), to local clique-width (Theorem 3.4), and in parts to twin-width (Corollary 4.3).
The full potential of this new concept when H is a family of specific graphs other than
paths is yet to be explored, especially in the case of H formed by suitable dense graphs. We
conclude with a number of open questions related to the new concept (Section 5).

2 Preliminaries

We consider finite simple graphs, i.e., graphs without parallel edges or loops, but in one
specific context (Definition 2.1) we allow graphs with optional (self-)loops, thereafter called
loop graphs. Precisely, a loop graph is a multigraph allowing loops (at most one per vertex),
but not allowing parallel edges. In the context of loop graphs, we specially call a graph G

a reflexive (loop) graph if every vertex of G has a loop. We naturally use terms reflexive
path, reflexive clique, and reflexive independent set to denote ordinary paths, cliques, and
independent sets, respectively, with loops added to all vertices. We write G1 ⊆i G2 to say
that G1 is an induced subgraph of G2. Note that if G1 ⊆i G2 for loop graphs, then possible
loops of G2 on vertices of G1 are also inherited.

A graph G is a matching if G is simple and all vertex degrees in G are 1. A graph
G ⊆ Kn,n is an antimatching if G is obtained from Kn,n by removing a matching of n edges.
A graph G is a half-graph if G is a bipartite simple graph with the bipartition {u1, . . . , un}
and {v1, . . . , vn}, such that uivj ∈ E(G) if and only if i ≤ j.

Width measures. As a traditional structural decomposition, a tree decomposition of a graph
G is a tuple (T, X ) where T is a tree, and X = {Xt : t ∈ V (T )} where Xt ⊆ V (G) is a
collection of bags which satisfy the following: (i)

⋃
t∈V (T ) Xt = V (G), (ii) for every vertex

v ∈ V (G), the set of the nodes t ∈ V (T ) such that v ∈ Xt forms a subtree in T , and (iii) for
every edge uv ∈ E(G), there exists t ∈ V (T ) such that {u, v} ⊆ Xt. The tree-width of G is
the minimum of maxt∈V (T ) |Xt| − 1 over all tree decompositions of G.

Our work is closely related to another measure, which is a “dense counterpart” of tree-
width. The clique-width of a graph G is the minimum integer ℓ such that G (irrespective of
labelling) is the value of an algebraic ℓ-expression defined by the following operations:

create a new vertex of label (colour) i for some i ∈ {1, . . . , ℓ};
take the disjoint union of two labelled graphs;
for 1 ≤ i ≠ j ≤ ℓ, add all (missing) edges between a vertex of label i and a vertex of
label j;
for 1 ≤ i ̸= j ≤ ℓ, recolour each vertex of label i to have label j.

In the same direction, let the local clique-width of a graph G be the integer function λ

defined as follows; for an integer distance r ≥ 1, λ(r) is the maximum clique-width of the
r-neighbourhood of a vertex v in G, over all v ∈ V (G). We say that a graph class G is



P. Hliněný and J. Jedelský 61:3

of bounded local clique-width if there exists an integer function upper-bounding the local
clique-width of every member of G. For instance, the class of grids is of bounded local
clique-width, but of unbounded clique-width.

The last measure we mention, twin-width, was introduced a few years ago by Bonnet et
al. in [3]. A trigraph is a simple graph G in which some edges are marked as red, and with
respect to the red edges only, we naturally speak about red neighbours and red degree in G.
For a pair of (possibly not adjacent) vertices x1, x2 ∈ V (G), we define a contraction of the
pair x1, x2 as the operation creating a trigraph G′ which is the same as G except that x1, x2
are replaced with a new vertex x0 (said to stem from x1, x2) such that:

the (full) neighbourhood of x0 in G′ (i.e., including the red neighbours), denoted by
NG′(x0), equals the union of the neighbourhoods NG(x1) of x1 and NG(x2) of x2 in G

except x1, x2 themselves, that is, NG′(x0) = (NG(x1) ∪ NG(x2)) \ {x1, x2}, and
the red neighbours of x0, denoted here by Nr

G′(x0), inherit all red neighbours of x1
and of x2 and add those in NG(x1)∆NG(x2), that is, Nr

G′(x0) =
(
Nr

G(x1) ∪ Nr
G(x2) ∪

(NG(x1)∆NG(x2))
)

\ {x1, x2}, where ∆ denotes the symmetric set difference.
A contraction sequence of a trigraph G is a sequence of successive contractions turning G

into a single vertex, and its width d is the maximum red degree of any vertex in any trigraph
of the sequence. The twin-width of a trigraph G is the minimum width over all possible
contraction sequences of G. The twin-width of a multigraph or a loop graph is defined as
the twin-width of its simplification.

Introducing H-clique-width. Our main contribution builds on the following new concept.

▶ Definition 2.1 (H-clique-width). Let H be a family of loop graphs, and ℓ > 0 be an integer.
Consider labels of the form (i, v) where i ∈ {1, . . . , ℓ} and v ∈ V (H) for some (fixed) H ∈ H.
a) For H ∈ H, let an (H, ℓ)-expression be an algebraic expression using the following four

operations on vertex-labelled graphs:
creating a new vertex with single label (i, v) for some i ∈ {1, . . . , ℓ} and v ∈ V (H);
taking the disjoint union of two labelled graphs;
for 1 ≤ i ̸= j ≤ ℓ, adding edges between i and j, which means to add all edges between
the vertices of label (i, v) and the vertices of label (j, w) over all pairs (v, w) ∈ V (H)2

such that vw ∈ E(H) (including the case of a single vertex v = w with a loop, which
will often be assumed to exist for the graphs H); and
for 1 ≤ i ≠ j ≤ ℓ, recolouring i to j, which means to relabel all vertices with label (i, v)
where v ∈V (H) to label (j, v).

b) The H-clique-width H-cw(G) of a simple graph G is defined as the smallest integer ℓ such
that (some labelling of) G is the value of an (H, ℓ)-expression for some H ∈ H. If it is
not possible to build G this way, then let H-cw(G) = ∞.

Given an (H, ℓ)-expression of value (a labelled graph) G, we use the following terminology; the
graph H is the parameter of the expression, and when referring to a label (i, v) of x ∈ V (G),
the integer i is the colour and v the parameter vertex of x.

Observe that, throughout an (H, ℓ)-expression φ valued G, the colours of vertices of G may
arbitrarily change by the recolouring operations, but the parameter vertex of every x ∈ V (G)
stays the same (is uniquely determined for x) in φ.

It is obvious that H-clique-width (similarly to ordinary clique-width) is monotone under
taking induced subgraphs. On the other hand, it is not apriori clear whether H-clique-width
is (at least functionally) closed under taking the complement of a graph; we will address
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61:4 H-Clique-Width and Product Structure

this interesting issue in the concluding section. Another remark concerns the family H
which should be generally treated as an infinite class of (finite) loop graphs, due to H-clique-
width being asymptotically the same as ordinary clique-width in the case of finite H – see
Theorem 3.1.

To further briefly illustrate Definition 2.1, we add few more easy observations:

▷ Claim 2.2.
a) If H = {K1}, then H-cw(G) < ∞ if and only if G has no edges. If H = {K◦

1 }, where K◦
1

stands for a single vertex with a loop, then H-cw(G) = cw(G) < ∞.
b) If H contains a loop graph with at least one loop, then H-cw(G) ≤ cw(G).
c) If H = {H}, then H-cw(H1) ≤ 2 holds for every simple graph H1 obtained from an

induced subgraph of H by removing loops.
d) If H = {H} and H is disconnected, then for every connected simple graph G we have

H-cw(G) = {H0}-cw(G) for some connected component H0 of H.
e) If H = {K2} (no loops), then H-cw(G) < ∞ if and only if G is a simple bipartite graph.

More generally, for any H, we have H-cw(G) < ∞ for a simple graph G, if and only if G

has a homomorphism into some H ∈ H.
f) For any k ≥ 3 and H = {Kk}, it is NP-hard to decide whether H-cw(G) < ∞.
g) Let H be a family containing arbitrarily long reflexive paths. If G is any square grid,

then H-cw(G) ≤ 5 (while cw(G) is unbounded in such case).

Proof.
a) There is no edge in K1, and so Definition 2.1 cannot create an edge in G. On the other

hand, (K◦
1 , ℓ)-expressions in Definition 2.1 exactly coincide with traditional ℓ-expressions of

clique-width (replacing every label i with (i, v) where {v} = V (K◦
1 )).

b) We pick v ∈ V (H) for H ∈ H such that v has a loop in H. Then, in an ordinary
cw(G)-expression for G, we replace every label i with (i, v) to get an (H, cw(G))-expression
for G, similarly to part a).

c) We simply make an (H, 2)-expression for H1 as follows; in an arbitrary order V (H1) =
{v1, . . . , vn} of the vertices, for k = 1, . . . , n, we add a new vertex labelled (2, vk), add edges
between 1 and 2, and recolour 2 to 1. This creates exactly the non-loop edges of H1.

d) This follows from the facts that the recolouring operation of Definition 2.1 does not
allow to change the initially assigned parameter vertex of H, and hence every edge of G

created within an (H, ℓ)-expression has a preimage edge in H. So, an expression creating
connected G may only use parameter vertices of a connected component of H.

e) Considering the previous argument turned around, every edge created within an
(H, ℓ)-expression has a unique homomorphic image in H (possibly a loop). In the opposite
direction, for a homomorphism h : G → H ∈ H, we make an (H, |V (G)|)-expression starting
with the disjoint union of vertices labelled (ix, h(x)) for all x ∈ V (G) where ix ≠ iy for x ̸= y,
and then simply add the edges of G one by one using the colours (i.e., ix).

f) By e), we have H-cw(G) < ∞ if and only if G is k-colourable.
g) Let G be an a × b grid, i.e., |V (G)| = ab. We take H ∈ H such that |V (H)| ≥ b,

choose a consecutive subpath on {v1, . . . , vb} ⊆ V (H), and make an (H, 5)-expression valued
G as follows. As in c), we define an (H, 3)-(sub)expression creating a “vertical” copy P1 of
the path on b vertices, but now using three colours such that the resulting labels of P1 are
with alternating colours 2 and 3, precisely as (2, v1), (3, v2), (2, v3), (3, v4), . . .. We likewise
create a copy P2 of the same path with alternating colours in labels (4, v1), (5, v2), (4, v3),
(5, v4), . . .. Then we make a disjoint union and add edges between colours 2, 4 and between
3, 5 – this creates precisely the “horizontal” edges between the labels (2, vi) and (4, vi), and
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between (3, vi+1) and (5, vi+1), for i = 1, 3, . . .. In a subsequent round, we recolour colours
2, 3 to 1 (this concerns only P1), and continue the same process with adding a path P3 with
alternating colours again 2 and 3, and adding the “horizontal” edges. After a − 1 rounds, we
build the desired a × b square grid G. ◁

Product structure theory. The strong product G1 ⊠ G2 of two simple graphs is the graph
G on the vertex set V (G) := V (G1) × V (G2) such that, for any [u, u′], [v, v′] ∈ V (G), we
have {[u, u′], [v, v′]} ∈ E(G) if and only if (uv ∈ E(G1) and u′v′ ∈ E(G2)) or (u = v and
u′v′ ∈ E(G2)) or (uv ∈ E(G1) and u′ = v′).

For an illustration, the strong product P ⊠ Q of two paths P, Q is the square grid with
diagonals. It may be interesting to observe that, in the context of loops graphs, if both G1
and G2 are reflexive, then the definition of the strong product G1 ⊠G2 could be shortened as
“uv ∈ E(G1) and u′v′ ∈ E(G2)”, and the result would be the same except that all vertices
would have loops.

Origins of graph product structure theory go back to the mentioned seminal paper [11]:

▶ Theorem 2.3 ([11], improved in [23]). Every planar graph is a subgraph of the strong
product P ⊠ M where P is a path and M is a planar graph of tree-width at most 6.

There exist alternative refined formulations of Theorem 2.3, such as using the strong
product P ⊠K3 ⊠M where M is now of tree-width at most 3 which is of importance in some
applications (such as in refining the upper bound on the queue number of planar graphs).

Our main goal is to refine, using Definition 2.1, the statement of Theorem 2.3 with
the induced subgraph relation in Theorem 4.6; admittedly, at the cost of worse absolute
constants.

3 Properties of H-Clique-Width

We first characterize the asymptotic difference between the ordinary clique-width and the
H-clique-width for families of loop graphs H.

We recall the concept of neighbourhood diversity by Lampis [20]. Two vertices x, y of a
simple graph G are of the same neighbourhood type if and only if they have the same set of
neighbours in V (G) \ {x, y}. We shall use an adjusted version of this concept, suitable for our
loop graphs; Two vertices x, y of a simple loop graph G are of the same total neighbourhood
type, if and only if they have the same set of neighbours in V (G) when x counts as a neighbour
of x if there is a loop on x (and likewise with y). A loop graph G is of total neighbourhood
diversity at most d if V (G) can be partitioned into d parts such that every pair in the same
part have the same total neighbourhood type.

The slight, but very important in our context, difference of these two notions in presence
of loops can be observed, e.g., on: loopless cliques Kn (neighbourhood diversity 1 and total
neighbourhood diversity n) vs. reflexive cliques K◦

n (total neighbourhood diversity 1), or
loopless stars K1,n (both neighbourhood diversities equal 2) vs. reflexive stars K◦

1,n (total
neighbourhood diversity n).

A loop graph class G is of component-bounded total neighbourhood diversity if there
exists an integer d such that each connected component of every graph of G is of total
neighbourhood diversity at most d.

▶ Theorem 3.1. Let H be a family of loop graphs. There exists a function f such that,
cw(G) ≤ f(H-cw(G)) holds for all simple graphs G, if and only if H is of component-bounded
total neighbourhood diversity.

MFCS 2024



61:6 H-Clique-Width and Product Structure

Proof. In the “⇐” direction, we may assume G is connected (we will later take the maximum
over connected components). By Claim 2.2 d), H-cw(G) = {H0}-cw(G) = ℓ for a connected
component H0 of some H ∈ H. The total neighbourhood diversity of H0 is at most some
constant d, by the theorem assumption. Then, in an (H0, ℓ)-expression for G, we may
equivalently replace the parameter vertices of H0 by d new colours, giving a dℓ-expression
for G. So, cw(G) ≤ d · H-cw(G).

A proof of the “⇒” direction is based on the following natural technical claim:

▷ Claim 3.2 (Ding et al. [7, Corollary 2.4]). For every k there exists m such that the following
holds. If F is a bipartite connected simple graph with the bipartition V (F ) = A∪B, |A| ≥ m

and the vertices of A have pairwise different neighbourhood types (in B), then F contains
an induced subgraph isomorphic to one of the following graphs on 2k vertices: a matching,
an antimatching, or a half-graph.

Having Claim 3.2 at hand, we continue as follows. Assume that H is not of component-
bounded total neighbourhood diversity. Let H ∈ H (or a component thereof) be a connected
loop graph of total neighbourhood diversity ≥ c1, and C ⊆ V (H) be vertices representing
these c1 total neighbourhood types. By Ramsey theorem, for sufficiently large c1 we find a
subset C1 ⊆ C, |C1| = 2c2 − 1, such that C1 induces a clique or an independent set in G,
and then we can select C2 ⊆ C1, |C2| = c2 such that either all vertices of C2 have loops, or
none has. We have got one of the two possibilities:

C2 is a reflexive independent set or a loopless clique in G.
Or, all vertices of C2 have the same total neighbourhood type in C2 (empty or full C2),
and so they have pairwise different neighbourhood types in D := V (G)\C2. Consequently,
we may apply Claim 3.2 to the bipartite subgraph “between” C2 and D.

Regarding the second point, in more detail, we say that a bipartite graph F1 with a fixed
bipartition V (F1) = A1 ∪ B1 is a bi-induced subgraph of a graph H, if F1 ⊆ H such that
every edge of H with one end in A1 and the other end in B1 belongs to F1. Claim 3.2 hence
implies that one of the three claimed subgraphs is bi-induced in H.

Altogether, for every k and sufficiently large c1 depending on k, we have connected H ∈ H
containing one of the five said substructures; an induced reflexive independent set or an
induced loopless clique on k vertices, or a bi-induced matching, a bi-induced antimatching,
or a bi-induced half-graph on 2k vertices. In each of these five cases, we can construct
a “grid-like” graph of bounded H-clique-width whose ordinary clique-width grows linearly
with k. This is provided by subsequent Lemma 3.3, in which one can easily check that its
assumptions cover all five cases of H ∈ H listed in this proof. ◀

▶ Lemma 3.3. Let k ≥ 3 be an integer, and H1 be a loop graph satisfying the following:
H1 is connected.
There exist sets A, B ⊆ V (H1), |A| = |B| = k, such that either A = B, or A ∩ B = ∅.
We can write A = {u1, . . . , uk} and B = {u′

1, . . . , u′
k} such that, for some of the following

three conditions on integers C(i, j) ∈ {‘ i < j’,‘ i = j’,‘ i ̸= j’} we have; for all (i, j) ∈
{1, . . . , k}2, {ui, u′

j} ∈ E(H1) if and only if C(i, j) is false. (Note that, if A = B, we
assume ui = u′

i and deal also with loops.)
Then, there exists a constant ℓ0 independent of k such that the class of graphs of {H1}-clique-
width at most ℓ0 has ordinary clique-width Ω(k).

Proof. We construct, via an (H1, O(1))-expression, a graph Gk of ordinary clique-width Ω(k)
as follows.
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Similarly as in Claim 2.2 c), we create a loopless copy G′
1 of the graph H1, such that

every vertex x ∈ V (G′
1) which is a copy of a vertex v ∈ B has the label with colour 2 and

parameter vertex v and, if A ̸= B, every vertex x ∈ V (G′
1) which is a copy of w ∈ A has the

label with colour 1 and parameter vertex w. Vertices of V (G′
i) that are not copies of A ∪ B

have labels with colour 0 and the respective parameter vertex from V (H1) \ (A ∪ B).
We set G1 := G′

1, and for a = 2, . . . , k we do:
We, likewise, create a loopless copy G′

a of H1, now with colour 3 in the labels of the copy
of A in V (G′

a) and, if A ̸= B, with colour 4 in the labels of the copy of B in V (G′
a). The

labels of V (G′
a) besides the copies of A ∪ B are again with colour 0.

Then we make a disjoint union Ga := Ga−1 ∪̇ G′
a, and add edges between colours 2 and 3.

If A = B, we recolour 2 to 1 and 3 to 2. If A ̸= B, we recolour 2 and 3 to 1 and 4 to 2.

Altogether, the graph Gk has k · |V (H1)| vertices, k disjoint copies G′
a of H1, and every

copy G′
a has k vertices which are, in a well-defined way – cf. condition C(i, j), adjacent to

corresponding k vertices of the subsequent copy G′
a+1 (if a < k). There are no other edges

in Gk. For clarity (and in resemblance to Theorem 4.1), we imagine the copy G′
a of H1 as

“column a” of Gk, and the set of the copies of ui and u′
i of H1 as “row i” of Gk. Possible

remaining vertices of G′
a (those of colour 0 in their label) are not part of any row, as they do

not participate in inter-column edges of Gk. Observe that, if A ̸= B, the adjacency pattern
occurring between columns a and a + 1 is exactly the same as the edges between B and A in
H1, and so the same as the “mirrored” adjacency pattern between the copies of A and of B

within column a (or a + 1).
Now, assume we have an (ordinary) ℓ-expression φ valued Gk for some integer ℓ. We

apply an argument which is folklore in this area. There must exist a subexpression φ1 of φ

making a subset of vertices X ⊆ V (Gk) (it is irrelevant which of the edges of Gk[X] this φ1
makes), such that 1

3 |V (Gk)| ≤ |X| ≤ 2
3 |V (Gk)|. Let X̄ = V (Gk) \ X.

Consider any 1 ≤ a < k; then the columns a and a + 1 differ with respect to X in at most
3ℓ rows (≤ ℓ if A = B); meaning that in ≤ 3ℓ rows i we have a situation that a vertex of row
i in one of the columns a or a + 1 belongs to X, and a vertex of row i in the other column
belongs to X̄. This follows since we have at most ℓ different colours in φ1 which can be used
to further distinguish different adjacencies, as given by the condition C(i, j) of the lemma,
between the columns a and a + 1, or within each one of the columns a or a + 1 if A ̸= B.

Likewise, at most ℓ columns are such that they intersect both X and X̄. This follows
similarly since every column is a copy of connected H1, and so it needs in φ1 a special colour
for its (at least one) “private” edge from X to X̄. The two latter conditions together are in
a clear contradiction with 1

3 |V (Gk)| ≤ |X| ≤ 2
3 |V (Gk)| if ℓ ∈ o(k). ◀

Secondly, there is an interesting relation to established concepts in the case of parameter
families H of bounded degrees.

▶ Theorem 3.4. Let H be a family of loop graphs of maximum degree ∆. Then the class of
graphs of H-clique-width at most ℓ is of bounded local clique-width in terms of ∆ and ℓ.

Proof. Let H ∈ H and G be a graph that is a value of an (H, ℓ)-expression φ. Choose
x ∈ V (G), and assume a vertex y ∈ V (G) at distance at most r from x in G. Let v, w ∈ V (H)
be the parameter vertices in φ of x and y, respectively. As argued in Claim 2.2 e), there is a
homomorphism G → H taking a path between x and y into a walk between v and w in H,
and so the distance from v to w in H is at most r. Since ∆(H) ≤ ∆, the r-neighbourhood of
v in H has at most (∆+1)r vertices, and hence φ restricted to the r-neighbourhood of x in G

uses only at most (∆ + 1)r parameter vertices which can be replaced in φ by unique colours.

MFCS 2024



61:8 H-Clique-Width and Product Structure

This way we obtain an (ordinary) ℓ · (∆ + 1)r-expression whose value is the r-neighbourhood
of x in G. We can thus set f(r) := ℓ · (∆ + 1)r (independently of H ∈ H and G) to certify
bounded local clique-width of every G such that H-cw(G) ≤ ℓ. ◀

A similar structural relation of H-clique-width to the parameter twin-width is stated
later in Corollary 4.3, as a consequence of a product-structure-like characterization.

From Theorem 3.4 we, for instance, immediately get tractability of FO model checking,
which is FPT for all classes of bounded local clique-width – this well-known fact follows by a
combination of the ideas of Frick and Grohe [15] and of Dawar, Grohe and Kreutzer [5]:

▶ Corollary 3.5. For every family H of loop graphs, the FO model checking problem of a
graph G is in FPT when parameterized by the formula, the maximum degree of H and the
H-clique-width of G. ◀

Furthermore, it may be interesting to ask to which extent Theorem 3.4 can be reversed.
This cannot be done straightforwardly since there are families H of unbounded degrees,
such that classes of bounded H-clique-width not only have bounded local clique-width, but
even bounded ordinary clique-width. One example is H1 the class of all reflexive cliques
by Theorem 3.1. On the other hand, e.g., for H2 being the class of all reflexive stars, there
are graphs whose H2-clique-width is bounded by a constant, and they contain arbitrarily
large induced grids and a universal vertex adjacent to everything (a construction similar to
Claim 2.2 g) ). Such graph hence have unbounded local clique-width.

4 Approaching Induced Product Structure

In this section we restrict our attention to families H formed by reflexive loop graphs (i.e.,
all vertices have loops in the graphs of H), which makes most natural sense with respect to
the strong-product structure studied.

▶ Theorem 4.1. Let H be a family of reflexive loop graphs, and H′ be the family of simple
graphs obtained from the graphs of H by removing all loops. For every integer ℓ ≥ 2 the
following holds. A simple graph G is of H-clique-width at most ℓ, if and only if G is
isomorphic to an induced subgraph of the strong product H ′ ⊠ M where H ′ ∈ H′ and M is a
simple graph of clique-width at most ℓ.

Proof. In the “⇐” direction, it is enough to show that H-cw(G) ≤ ℓ for G := H ′ ⊠ M . Let
φ be an ℓ-expression of the graph M , and let H◦ be obtained from H ′ by adding loops to
all vertices. We are going to transform φ into an (H◦, ℓ)-expression as follows. First, for
each x ∈ V (M) we independently construct a copy H ′

x of H ′, using only 2 ≤ ℓ colours by
Claim 2.2 c). That is, the parameter vertex of every vx ∈ V (H ′

x) is the preimage v ∈ V (H ′)
of vx. Then, at every moment the expression φ introduces a new vertex y ∈ V (M) of
colour i, we take (substitute) the copy H ′

y and recolour it to i. The remaining operations
(union, recolouring, and adding edges) stay in place in φ, but are now applied according to
Definition 2.1.

We claim that the value G of the resulting transformed (H◦, ℓ)-expression σ is H ′ ⊠ M .
Indeed, the vertex set is V (G) = V (H ′) × V (M), and for each m ∈ V (M) the subgraph
induced on V (H ′) × {m} is a copy of H ′. For any [v1, m1], [v2, m2] ∈ V (G) and m1 ̸= m2; if
{[v1, m1], [v2, m2]} ∈ E(G), then v1v2 ∈ E(H◦) by Definition 2.1, and m1m2 ∈ E(M) by the
definition of σ. Hence {[v1, m1], [v2, m2]} ∈ E(H ′ ⊠ M). Conversely, if {[v1, m1], [v2, m2]} ∈
E(H ′ ⊠ M), then, by the definition of ⊠, v1v2 ∈ E(H ′) or v1 = v2, meaning v1v2 ∈ E(H◦),
and m1m2 ∈ E(M). So, the edge {[v1, m1], [v2, m2]} has been created by σ.
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In the “⇒” direction, let σ be an (H◦, ℓ)-expression valued G, for some H◦ ∈ H. Let
H ′ ∈ H′ be the simple graph of H◦. We are going to construct an ℓ-expression φ valued M

on the vertex V (M) = V (G), such that G ⊆i H ′ ⊠ M . The expression φ simply discards
parameter vertices (cf. Definition 2.1) from the labels in σ. Hence, we clearly get M ⊇ G.
To prove that G ⊆i H ′ ⊠ M , consider any vertices x ̸= y ∈ V (G) labelled (i, v) and (j, w)
by σ (for here, indefinite i and j are irrelevant, and v and w are uniquely determined by σ).
We claim that the vertices x and y as of G can be represented by [v, x] and [w, y] of the
product H ′ ⊠ M . If xy ∈ E(G), then xy ∈ E(M) by previous M ⊇ G, and vw ∈ E(H◦)
by Definition 2.1. Consequently, {[v, x], [w, y]} ∈ E(H ′ ⊠ M) by ⊠. On the other hand, if
{[v, x], [w, y]} ∈ E(H ′ ⊠ M), then vw ∈ E(H ′) or v = w, and so vw ∈ E(H◦). Moreover,
xy ∈ E(M) since x ̸= y, and so xy ∈ E(G) since the (original) (H◦, ℓ)-expression σ creates
the edge xy by Definition 2.1. ◀

Theorem 4.1 can be used also to bound the twin-width of graphs of bounded H-clique-
width. To show this, we first prove the following ad-hoc upper bound.

▶ Proposition 4.2. Let P be a reflexive path and G a simple graph. Then the twin-width
of G is at most 5 · ({P}-cw(G)) − 2. Consequently, denoting by P◦ the class of all reflexive
paths, the twin-width of any simple graph G is at most 5 · (P◦-cw(G)) − 2.

Proof. Let G be the value of a (P, ℓ)-expression φ, where ℓ = {P}-cw(G). When constructing
a contraction sequence for G, we proceed recursively (bottom-up) along the expression tree
of φ; processing only the union and recolouring nodes, and at each node contracting together
all vertices of the same label.

Consider a situation at a node with a subexpression φ0 of φ, where X0 ⊆ V (G) is the
vertex set generated by φ0, and let x0

(i,v) denote the vertex resulting from the contractions
of all vertices of X0 that are of label (i, v) by φ0. The core observation is that every vertex
of V (G) \ X0 has the same adjacency to all vertices forming x0

(i,v) by Definition 2.1, and so
the only possible red neighbours of x0

(i,v) in a contraction of G are those that stem from X0.
The only possible neighbours of x0

(i,v) in the described contraction of the induced subgraph
G[X0] are x0

(j,w) where j ∈ {1, . . . , ℓ} and vw ∈ E(P ) – altogether at most 3ℓ − 1 choices of
potential red neighbours of x0

(i,v) in the contraction of G[X0]. If a recolouring operation i to
j is encountered after the node of φ0, we simply contract each former x0

(i,v) with x0
(j,v) over

all v ∈ X0, not increasing the previous bound on the red degree.
Consider now a union node making X2 := X0∪̇X1, where X1 has been generated by a

sibling subexpression φ1 of φ, and let x1
(i,v) analogously denote the vertices resulting from

contractions of X1. Let the vertices of P be V (P ) = (v1, . . . , va) in the natural order along
the path. For k = 1, . . . , a, and subsequently for i = 1, . . . , ℓ, we make x2

(i,vk) by contracting
x0

(i,vk) with x1
(i,vk). Considering the corresponding successive contractions of the induced

subgraph G[X2], the only possible red neighbours of x2
(i,vk) are the ℓ vertices x2

(i′,vk−1), the up
to 2(ℓ − 1) vertices x2

(j,vk) for j < i, or x0
(j,vk), x1

(j,vk) for j > i, and the 2ℓ vertices x2
(i′′,vk+1),

x2
(i′′,vk+1). The maximum possible encountered red degree is thus ℓ+2(ℓ−1)+2ℓ = 5ℓ−2. ◀

▶ Corollary 4.3. Let H be a family of reflexive loop graphs of maximum degree ∆ and twin-
width at most t. Then the twin-width of any simple graph G is at most O(t + ∆ · H-cw(G)).

Proof. By Theorem 4.1, we have G ⊆i H ′ ⊠ M , where H ′ is of maximum degree at most ∆
and twin-width at most t and M is of clique-width at most ℓ := H-cw(G). Since twin-width
is monotone under taking induced subgraphs, it is enough to bound it for the graph H ′ ⊠ M .
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By Proposition 4.2 applied to P being a single reflexive vertex, and Claim 2.2 a), M is of
twin-width at most k := 5ℓ − 2. Then, by Bonnet et al. [2] (bounding twin-width of a strong
product), H ′ ⊠ M is of twin-width at most max

{
t + ∆, k(∆ + 1) + 2∆

}
= O(t + ∆ℓ). ◀

Notice that, for constant ∆, the bound O(t+∆·H-cw(G)) in Corollary 4.3 is asymptotically
best possible; a linear dependence on t (the maximum twin-width of H) is necessary due to
Claim 2.2 c), and a linear dependence on H-cw(G) is, on the other hand, required already by
the subcase of ordinary clique-width. It is not clear whether the linear dependence on ∆ in
the bound of Corollary 4.3 is really necessary, however, the next construction shows that the
bound has to depend on ∆, the maximum degree of H:

▶ Proposition 4.4. (*) Let Hn denote the half-graph (cf. Section 2) on 2n vertices. Then the
twin-width of the graphs Hn ⊠Hn grows with n. Furthermore, the class {Hn ⊠Hn : n ∈ N+}
is monadically independent.

Since Proposition 4.4 was not part of the reviewed MFCS submission, we leave its proof to
the full preprint [17].

If H is the family of reflexive half-graphs (which is of unbouded maximum degree), then
H-cw(Hn ⊠ Hn) ≤ cw(Hn) ≤ 3 using Theorem 4.1 and a trivial 3-expression for Hn, and
likewise the twin-width of H is constant. So, from Proposition 4.4 we get that the bound in
Corollary 4.3 must grow with n = ∆(Hn), too.

4.1 Relations to the traditional product structure
In regard of the Planar product structure theorem, as introduced in Section 2, we are
especially interested in H-clique-width for H = P◦ where P◦ is the class of reflexive paths.
We get the following as another immediate consequence of Theorem 4.1:

▶ Corollary 4.5. For every integer ℓ ≥ 2 the following holds. A graph G is isomorphic to an
induced subgraph of the strong product P ⊠ M where P is a path and M is a simple graph of
clique-width at most ℓ, if and only if P◦-cw(G) ≤ ℓ. ◀

There is, however, a more direct connection between our concept and the original Planar
product structure theorem, which constitutes the main new contribution of the paper:

▶ Theorem 4.6. Assume that a graph G is a subgraph (not necessarily induced) of the strong
product G ⊆ P ⊠ M where P is a path and M is a simple graph of tree-width at most k.
Then P◦-cw(G) ≤ 6(k + 1) · 8k+1. Moreover, there exists a graph M1 of tree-width at most
6(k +1) ·8k+1 such that G is isomorphic to an induced subgraph of the strong product P ⊠M1.

Proof. We start with proving the first part of the statement, that P◦-cw(G) ≤ 6(k + 1) · 8k+1.
Although, we remark that we could as well jump straight into a proof of the second part, the
product P ⊠ M1, and then refer to Theorem 4.1 to conclude with a bound (albeit weaker)
on P◦-cw(G). We believe that the presented approach to the proof is more accessible for the
readers.

We assume a rooted tree decomposition (T, X ) of width k of the graph M , such that
every node of T has at most two children. For a node t ∈ V (T ), let X+

t ⊆ V (M) denote
the union of Xs where s ranges over t and all descendants of t. Let p(t) denote the parent
node of t in T , and let Yt = X+

t \ Xp(t) denote the vertices of M which occur only in the
bags of t and its descendants. For the root r of T , let specially Yr = X+

r = V (M). Observe
that all neighbours of a vertex m ∈ Yt in V (M) \ Yt must belong to the set Xt \ Yt, by the
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interpolation property of a tree decomposition. Let q : V (M) → {0, 1, . . . , k} be a function
such that q is injective on each of the bags Xt over t ∈ V (T ) – such q is easily constructed
along the tree T in the root-to-leaves order (in fact, q can be seen as a monotone cop search
strategy on the decomposition of M).

Analogously to the treatment in the proof of Theorem 4.1, we refer to the vertices of
G ⊆ P ⊠ M as to the pairs [p, m] where p ∈ V (P ) and m ∈ V (M) in the natural correspon-
dence. When constructing an expression for the graph G, we follow on a high level the tree T ;
at a node t ∈ V (T ), we will construct precisely the subgraph Gt of G induced on the vertex
set (V (P ) × Yt) ∩ V (G). By the previous, all neighbours of V (Gt) in the rest of G belong
to the set Wt :=

(
V (P ) × (Xt \ Yt)

)
∩ V (G) where |Xt \ Yt| ≤ |Xt| ≤ k + 1. It will thus be

enough to encode in the colour of each x ∈ V (Gt) information about which vertices of Wt

are actual neighbours of x in G and, moreover, the colours used can be “recycled modulo 3”
along the path P . This way we will prove that P◦-cw(G) is bounded in terms of k; more
precisely, that {P ◦}-cw(G) ≤ 6(k + 1) · 8k+1 for P ◦ being the reflexive closure of P .

Let the vertices of P be V (P ) = (p1, . . . , pn) in the natural order along the path, and
let tm ∈ V (T ) for m ∈ V (M) denote the node closest to the root such that m ∈ Xtm

(so, m ∈ Ytm
). In more detail, for each m ∈ V (M) we create, in a trivial way, a subexpression

for the subgraph Gm of G induced by
(
V (P ) × {m}

)
∩ V (G) (which is a copy of a subpath

of P ), such that the labels in Gm are as follows.
For each vertex x ∈ V (Gm) where x = [pi, m], we give x the label (cx, pi) such that the

colour of x is a tuple cx = (0, i mod 3, b0, b1, . . . , bk, d) satisfying the following:
i is the index of pi, and bj ∈ {0, 1}3 and d ∈ {0, . . . , k} are prescribed below;
for every j ∈ {0, 1, . . . , k} \ q(Xtm) we let bj = (0, 0, 0);
for every j = q(m′) where m′ ∈ Xtm (recall that q is injective on each bag, and so m′ is
unique such), we define bj = (b1, b2, b3) where

b1 = 1 if and only if {x, [pi−1, m′]} ∈ E(G),
b2 = 1 if and only if {x, [pi, m′]} ∈ E(G), and
b3 = 1 if and only if {x, [pi+1, m′]} ∈ E(G);

we set d = q(m′′) where m′′ ∈ V (M) is a neighbour of m in M such that all neighbours
of m belong to Ytm′′ (informally, m′′ is any topmost w.r.t. T neighbour of m in M).

For an informal explanation in relation the above “sketch of encoding”, the colour cx in
the label of x covers all desired information about the neighbours of x in the set Wtm in G,
for which adjacencies will created later in the coming expression for G. And again on an
informal level, the purpose of the component d of the colour cx is to encode the moment at
which all edges of m in M are already created going bottom-up along the tree T .

Let Γk := {0, 1} × {0, 1, 2} × {0, 1}3·(k+1) × {0, 1, . . . , k} be our set of colours (where, as
above, we have cx ∈ Γk for every x, and “a half” of the colour space – with the first component
equal to 1, remains unused so far), and let ℓ = |Γk| = 2 · 3 · 23(k+1) · (k + 1) = 6(k + 1) · 8k+1.
We construct a (P ◦, ℓ)-expression φ = φr valued G recursively, making subexpressions φt

valued Gt along the nodes t ∈ V (T ), as follows:
I. For a node t ∈ V (T ) (including leaves), in the leaf-to-root tree order, we start with

an empty expression φ0 and Gt
0 = ∅ if t is a leaf. If t has one child s, then we take

the expression φ0 already constructed at s, and Gt
0 = Gs. If t has two children s, s′,

then we let φ0 be the union operation over the expressions constructed at s and s′,
and Gt

0 = Gs ∪̇ Gs′ . Note that, in the latter case, M has no edges between the sets Ys

and Ys′ by the interpolation property, and so there are no edges between the (disjoint)
subgraphs Gs and Gs′ in G.
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II. Subsequently, for Y ′
t := Yt ∩ Xt (informally, Y ′

t are the vertices of M whose last bag
in T is right at t) we choose an arbitrary order Y ′

t = (m1, . . . , ma), a = |Y ′
t |, of these

vertices – possibly a = 0 if Y ′
t = ∅. For i = 1, . . . , a, we repeat the following:

a) We start the expression φi by making a union of previous φi−1 (if nonempty) and of
the above subexpression constructing Gmi

.
b) Now we add in φi all required edges between Gmi

and
(
Gt

0 ∪ Gm1 ∪ · · · ∪ Gmi−1

)
.

Using information stored in the labels of φi−1 and the labels of vertices of Gmi , this
is a routine task as follows. For simplicity, we write ∗ for an arbitrary value.

Let j = q(mi). For (α, β) ∈ {(0, 2), (1, 0), (2, 1)}, we add edges between each colour
(1, α, ∗, . . . , bj , . . . , ∗, ∗) where bj = (1, ∗, ∗), and each colour (0, β, ∗, . . . , ∗, ∗).
(Note that only vertices of Gmi

may currently hold colours starting with 0.)
Similarly, for (α, β) ∈ {(0, 0), (1, 1), (2, 2)}, we add edges between each colour
(1, α, ∗, . . . , bj , . . . , ∗, ∗) where bj = (∗, 1, ∗), and each colour (0, β, ∗, . . . , ∗, ∗).
And again, for (α, β) ∈ {(0, 1), (1, 2), (2, 0)}, we add edges between each colour
(1, α, ∗, . . . , bj , . . . , ∗, ∗) where bj = (∗, ∗, 1), and each colour (0, β, ∗, . . . , ∗, ∗).

c) Then we recolour every colour c = (0, β, b0, . . . , bk, d) in the previous, where
β ∈ {0, 1, 2} and b0, . . . , bk, d are arbitrary, to colour c′ = (1, β, b0, . . . , bk, d). This
finishes the expression φi constructing a subgraph on V (Gt

0 ∪ Gm1 ∪ · · · ∪ Gmi
).

III. Continuing on the expression φa from the previous point, we for all i ∈ {1, . . . , a}
do the following. We recolour every colour c =

(
1, β, b0, . . . , bk, q(mi)

)
in φa, where

β ∈ {0, 1, 2} and b0, . . . , bk are arbitrary, to colour c′ =
(
1, β, (0, 0, 0)k+1, q(mi)

)
. (The

purpose is to prevent creation of further edges from the recoloured vertices which got
finished.) This finishes the sought expression φt with intended value Gt at the node t.

Now, the constructed (P ◦, ℓ)-expression φ = φr clearly creates (precisely) all vertices and
(at least) all edges of G, and uses at most ℓ = 6(k + 1) · 8k+1 colours. The proof will be
finished once we prove that no other edges than those of G have been created by φ in Gr.

There are three points in verification of the last task.
First, colouring in the process of construction of φ ensures that no additional edges are
created within each of the graphs Gm above, and no edges are ever created between
Gm and Gm′ if mm′ ̸∈ E(M). The only operation adding edges in φ, besides the
subexpressions making each Gm, is as defined in item IIb) above, and so it always adds
only edges from V (Gmi

) to the rest of the current subgraph.
Second, the operations in IIb) indeed add precisely those edges between Gmi and

(
Gt

0 ∪
Gm1 ∪ · · · ∪ Gmi−1

)
which exist in G, thanks to our definition of the colours cx.

And third (which relates to both previous points), the “hash” function q : V (M) →
{0, 1, . . . , k} used in the construction of our colours indeed unambiguously identifies
neighbours we want to make adjacent as in G thanks to assumed injectivity of q on each
bag of (T, X ) and the recolouring performed in item III.

Regarding the second part of the Theorem, the graph M1, we cannot directly employ
Theorem 4.1 since that would give us only a factor (of the strong product) of bounded
clique-width, but containing unbounded bipartite cliques in the worst case. We instead
provide an ad-hoc construction of the desired factor M1 which is closely related to fine details
of the (P ◦, ℓ)-expression φr of G described above.

Let Γ′
k := {0, 1} × {0, 1, 2} × {0, 1}3·(k+1), i.e., we have got Γ′

k × {0, 1, . . . , k} = Γk as
above. Recall also that Y ′

t := Yt ∩ Xt for t ∈ V (T ) denotes the vertices of the graph M

whose last bag in T (going bottom-up) is right at t, and that, when defining the expression
φ of G, we have ordered the members of Y ′

t where a = |Y ′
t | as Y ′

t = (m1, . . . , ma).
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We define the sought graph M1 such that V (M1) := V (M) × Γ′
k, and E(M1) ⊆ F where

F = {{(m, c), (m′, c′)} : m = m′ ∨ mm′ ∈ E(M), c, c′ ∈ Γ′
k}. This setting clearly implies

that tree-width of M1 is going to be at most (k + 1) · |Γ′
k| < 6(k + 1) · 8k+1, regardless of the

detailed definition of its edges. We finish the definition of M1 as follows:
i. For each m ∈ V (M) and ι ∈ {0, 1}, we have {(m, c), (m, c′)} ∈ E(M1) if and only if

c = (ι, ∗, ∗, . . . , ∗) and c′ = (ι, ∗, ∗, . . . , ∗) ̸= c.
ii. For each m ̸= m′ ∈ V (M) such that mm′ ∈ E(M), up to symmetry, we either have m ∈

Y ′
t and m′ ∈ Y ′

u where u is closer to the root of T than t, or m, m′ ∈ Y ′
t and m precedes

m′ in the order Y ′
t = (m1, . . . , ma) mentioned above. We define {(m, c), (m′, c′)} ∈

E(M1) if and only if, for j = q(m′) and some α ∈ {0, 1, 2}, one of the following holds:
c = (∗, α, ∗, . . . , bj , . . . , ∗), c′ = (∗, (α + 2) mod 3, ∗, . . . , ∗) and bj = (1, ∗, ∗), or
c = (∗, α, ∗, . . . , bj , . . . , ∗), c′ = (∗, α, ∗, . . . , ∗) and bj = (∗, 1, ∗), or
c = (∗, α, ∗, . . . , bj , . . . , ∗), c′ = (∗, (α + 1) mod 3, ∗, . . . , ∗) and bj = (∗, ∗, 1).

iii. No other edges exist in M1.

It remains to identify an isomorphism of G ⊆ P ⊠ M to an induced subgraph of the
product P ⊠ M1. To each vertex x ∈ V (G) such that x = [pi, m] in P ⊠ M , we assign
x 7→ [pi, (m, ci)] in P ⊠M1 where ci = (ai, i mod 3, b0, . . . , bk) is determined in the following:

(I) The first component ai of ci is defined inductively by i (for each fixed m) as follows; it
is a1 = 0, and for each i > 1 we let ai = 1 − ai−1 if there is y = [pi−1, m] ∈ V (G) such
that xy ̸∈ E(G), and ai = ai−1 otherwise.

(II) For each j ∈ {0, 1, . . . , k} where j = q(m′) for some m′ ∈ Xtm (and recall that
there is at most one such m′ for j since q is injective on each bag), the component
bj is determined as bj = (b1, b2, b3) where, for k = 1, 2, 3, bk = 1 if and only if
{x, [pi+k−2, m′]} ∈ E(G).

(III) If undetermined by the previous point, bj may be chosen arbitrarily.

Let G′ be the induced subgraph of P ⊠ M1 determined by the previous assignment 7→;
our remaining task is to prove that 7→ is an isomorphism of G to G′. By ⊠ and the
definition of M1, we know that edges of G and of G′ are of the form e = {[pi, m], [pj , m′]}
and e′ = {[pi, (m, ∗)], [pj , (m′, ∗)]}, respectively, where j ∈ {i − 1, i, i + 1} and mm′ ∈ E(M)
or m = m′.

In the case of m = m′, we get e ∈ E(G) ⇐⇒ e′ ∈ E(G′) already by the definition of the
component ai (aj) in the point (I). For mm′ ∈ E(M), we get the same straightforwardly from
the definition of the edge set of M1, precisely the point ii. above, and from the (matching)
point (II) of the definition of 7→. ◀

▶ Remark 4.7. Theorem 4.6 has a natural and straightforward extension to graphs P ∈ H
where H is any graph class of bounded maximum degree (instead of the class of paths). We
skip details due to their additional technical difficulty.

5 Concluding Remarks

The primary focus of our paper is an introduction of a new concept of potential interest, and
as such it naturally brings many questions and open problems, (some of) which we briefly
survey in this last section.

From the TCS perspective, the probably most important question is about the complexity
of computing the H-clique-width. Computing traditional clique-width exactly is NP-hard [14],
and hence the same holds for computing H-clique-width exactly in general. However, a
question is whether for some special classes H one could compute exact H-clique-width
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faster. This is trivially possible, by Claim 2.2 c), when H is the class of all graphs – which is
uninteresting. Is it true that computing H-clique-width exactly is NP-hard for every fixed
family H except in “similarly trivial” cases?

On the other hand, traditional clique-width can be approximated in FPT time with
respect to the solution value [18,21]. A big goal would be to extend this approximation result
to H-clique-width, perhaps with an additional parameter capturing some properties of H. In
particular, with respect to Section 4, we emphasize:

▷ Problem 5.1. Let P◦ denote the class of reflexive paths. Can one, for input graph G,
approximate P◦-cw(G) in FPT time with respect to the solution value?

Next group of questions concerns combinatorial properties proved in this paper. In regard
of Section 3, we bring the following one:

▷ Problem 5.2 (cf. Theorem 3.4). Can we characterize families H of loop graphs such that,
for all graphs, bounded H-clique-width implies bounded local clique-width?
This question may be interesting even when restricted to particular graph classes which are
of unbounded local clique-width.

A more interesting and natural question, however, comes in a direct relation to the
Planar product structure theorem and to Theorem 4.6. We know that graphs of bounded
clique-width that do not contain large Kt,t subgraphs are as well of bounded tree-width. A
natural counterpart of this claim in the context of P◦-clique-width would be:

▷ Problem 5.3 (cf. Theorem 4.1, Theorem 4.6). Assume a fixed integer t and an arbitrary
graph G such that P◦-cw(G) ≤ t and G has no Kt,t subgraph. Is it then true that G ⊆ P ⊠M

where P is a path and M is a suitable graph of tree-width bounded in terms of t?

Another question, already mentioned in Section 2, is whether H-clique-width is (at least
asymptotically) closed under taking graph complement. This is a prominent and desired
property of ordinary clique-width. It would be natural to ask whether, having any simple
graph G and its complement Ḡ, we can bound H-cw(G) in terms of H-cw(Ḡ). However,
classes H of bounded degree have bounded local clique-width (Theorem 3.4) and this property
is not closed under taking complement.

Instead, we ask whether, for every graph H, there is a graph H ′ such that for all graphs G,
the {H ′}-clique-width of the complement Ḡ is bounded by a function of the {H}-clique-width
of G. Although we do not have a simple concrete counterexample at hand, we conjecture
this is not possible with arbitrary H. One can thus, when being closed under complements is
a desirable property, consider only classes H which are closed under complements themselves
(but even that subcase is not trivial), or enrich Definition 2.1 with an operation of adding
edges between labels (i, v) and (j, w) over all pairs (v, w) ∈ V (H)2 such that vw ̸∈ E(H)
(note that the latter is much stronger than simply requiring H to be complement-closed).

We also suggest to study the special case of T ◦-clique-width when H = T ◦ is the family of
(all) reflexive trees. The related question in the context of the traditional product structure –
that is which graph classes (other than, say, planar graphs) can be expressed as subgraphs of
the strong products T ⊠ M where T is an arbitrary tree and M is of bounded tree-width,
does not seem to be explicitly studied yet. We, however, do not have any progress in this
direction so far.

Our last batch of questions concerns possible relations of H-clique-width to the currently
hot trend of studying structural graph properties through the lens of FO logic on graphs and
of FO transductions – transformations of one graph into another defined by FO formulas.
In this we use some logic-oriented terms which are not formally defined here (such as, in
particular, of FO transductions) and we refer for their definitions, e.g., to [6].
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First, one may ask for which families H, classes of bounded H-clique-width are monadically
dependent, i.e., such that one cannot FO-transduce all finite graphs from graphs of bounded
H-clique-width. A partial answer is provided by Theorem 3.4 and Proposition 4.4, but
a full characterization of such classes H is currently out of our reach. As witnessed by
Proposition 4.4, classes of bounded H-clique-width can be monadically independent even if
H itself is monadically dependent.

Second, it is interesting to investigate whether and when, having a graph class G obtained
as an FO transduction of a class of bounded H-clique-width, one can find a class H+

depending on H (e.g., H+ an FO transduction of H), such that the H+-clique-width of G is
bounded. In relation to the Planar product structure, we formulate the following two specific
questions in this direction:

▷ Problem 5.4. Assume that a graph class G is obtained from the class of planar graphs by
an FO transduction τ . Is it true that one can give an FO transduction σ, depending on τ ,
such that the Pσ-clique-width of G is bounded where Pσ is the class of loop graphs obtained
from the class of all paths by σ?

Problem 5.4 seems to be much easier if we, instead of requiring bounded Pσ-clique-width of
every member of G, require only that every graph from G has a bounded perturbation of
bounded Pσ-clique-width. This is possibly extensible to classes H of bounded degree.

▷ Problem 5.5. Let Pσ be the class of loop graphs obtained from the class of all paths by
an FO transduction σ. Assume that G is a graph class of bounded Pσ-clique-width and G is
monadically stable, meaning that one cannot define on graphs of G an arbitrarily long linear
order using FO formulas. Is it then true that there exists an FO transduction τ , such that G
is obtained, by τ , from a graph class that admits the traditional product structure?

Third, Theorem 3.4 and Corollary 3.5 can be read as that if a class H is of bounded
degree, then the FO model checking problem is FPT on all classes of bounded H-clique-width.
Classes of bounded degree are a prime example of those having FO model checking in
FPT [22]. Unfortunately, a bold conjecture claiming that for every class H having complexity
of the FO model checking problem in FPT, the complexity of the FO model checking
problem is again in FPT on every class of bounded H-clique-width (perhaps assuming a given
decomposition), is very likely false due to the construction given in Proposition 4.4 – the
constructed graphs there actually FO transduce all graphs. Hence, it follows from the results
of Dreier, Mählmann, and Toruńczyk [8] that FO model checking on classes of bounded
Hhalf -clique-width, where Hhalf denotes the class of reflexive half-graphs, is AW[⋆]-hard.
However, a weaker version of this conjecture, with a suitable additional restriction on H,
might still be true.
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