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Abstract
Analyzing refutations of the well known pebbling formulas Peb(G) we prove some new strong
connections between pebble games and algebraic proof system, showing that there is a parallelism
between the reversible, black and black-white pebbling games on one side, and the three algebraic
proof systems Nullstellensatz, Monomial Calculus and Polynomial Calculus on the other side. In
particular we prove that for any DAG G with a single sink, if there is a Monomial Calculus refutation
for Peb(G) having simultaneously degree s and size t then there is a black pebbling strategy on G

with space s and time t + s. Also if there is a black pebbling strategy for G with space s and time
t it is possible to extract from it a MC refutation for Peb(G) having simultaneously degree s and
size ts. These results are analogous to those proven in [14] for the case of reversible pebbling and
Nullstellensatz. Using them we prove degree separations between NS, MC and PC, as well as strong
degree-size tradeoffs for MC.

We also notice that for any directed acyclic graph G the space needed in a pebbling strategy
on G, for the three versions of the game, reversible, black and black-white, exactly matches the
variable space complexity of a refutation of the corresponding pebbling formula Peb(G) in each
of the algebraic proof systems NS, MC and PC. Using known pebbling bounds on graphs, this
connection implies separations between the corresponding variable space measures.
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1 Introduction

The use of pebble games in complexity theory goes back many decades. They offer a very
clean tool to analyze certain complexity measures, mainly space and time, in an isolated
way on a graph, which can then be translated to specific computational models. Very good
overviews of these results can be found in [26, 28, 23].

We consider several versions of the game, defined formally in the preliminaries. Intuitively,
the goal of these games is to measure the minimum number of pebbles needed by a single
player in order to place a pebble on the sink of a directed acyclic graph (DAG) following
certain rules (this is called the pebbling price). A black pebble can only be placed on a
vertex if it is a source or if all its direct predecessors already have a pebble on them, but
these pebbles can be removed at any time. A white pebble (modelling non-determinism) can
be placed on any vertex at any time but can only be removed if all its direct predecessors
contain a pebble. In the reversible pebble game, pebbles can only be placed or removed from
a vertex if all the direct predecessors of the vertex contain a pebble. These three games
define a short hierarchy being reversible pebbling weaker than black pebbling and this in
turn weaker than the black-white pebble game.

In proof complexity one tries to understand the resources needed for a proof of a
mathematical statement in a formalized system. Pebbling games have also become one of the
most useful tools for proving results in this area. The reason for this is that one can often
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64:2 Pebble Games and Algebraic Proof Systems

translate a certain measure for the pebbling game, mainly number of pebbles or pebbling
time, into a suitable complexity measure for a concrete proof system. Very often the bounds
for this measure in a graph translate accurately to bounds in the different proof systems
for a certain kind of contradictory formulas mimicking the game, called pebbling formulas.
These formulas were introduced in [6] and have been extremely useful for proving separations,
upper and lower bounds as well as tradeoff results in basically all studied proof systems. See
e.g. [22].

In the present paper we will concentrate on algebraic proof system. In these systems
formulas are encoded as sets of polynomials over a field and the question of whether a
formula is unsatisfiable is translated to the question of whether the polynomials have a
common root. Powerful algebraic tools like the Gröbner Basis Algorithm can be used for
this purpose. Several algebraic proof systems have been introduced in the literature (defined
formally bellow). Well known are Nullstellensatz (NS) introduced in [3] and the more
powerful Polynomial Calculus (PC) defined in [11]. The first one is usually considered as a
static system in which a “one-shot” proof has to be produced, while in PC there are certain
derivation rules like in a more standard proof system.

The best studied complexity measures for refutations in these systems are the degree
(maximum degree of a polynomial) and size (number of monomials counted with repetitions).
For studying the connections with the pebble games it is very useful to consider also space
measures and the configurational refutations associated with space. We will use the variable
space measure (number of variables that are simultaneously active in a refutation).

In [8] the Monomial Calculus system (MC) was identified. This system is defined by
limiting the multiplication rule in PC to monomials and its power lies between NS and PC.
Building on results from [2] for the Sherali-Adams proof system, the authors proved that for
any pair of non-isomorphic graphs, the MC degree for the refutation of the corresponding
isomorphism formulas exactly corresponds to the Weisfeiler-Leman bound for separating the
graphs, a very important tool in graph theory and descriptive complexity. This equivalence
(as well as the relations to pebbling shown here) motivates the study of Monomial Calculus
as a natural proof system between NC and PC.

As mentioned above, connections between pebbling games and algebraic systems have
been known. Already in [9] it was proved that for any directed acyclic graph (DAG) G

the corresponding pebbling formula Peb(G) can be refuted with constant degree in PC but
in NS it requires degree Ω(s), where s is the black pebbling price of G, Black(G). Using
pebbling results, this automatically proves a strong degree separation between NS and PC.
As a more recent example, the authors in [14] proved a very tight connection between NS
and the reversible pebbling game. They showed that space and time in the game played
on a DAG exactly correspond to the degree and size measures in a NS refutation of the
corresponding pebbling formula. From this connection strong degree-size tradeoffs for NS
follow. This result also improves degree separation from [9] since it is known that there are
graphs for which the reversible pebbling price is a logarithmic factor larger than the black
pebbling price.

We show in this paper that besides these results, there are further parallelisms between
the reversible, black and black-white game hierarchy on one side, and the NS, MC and PC
proof systems on the other side.

1.1 Our Results
In Section 3 we prove that very similar results to those given in [14] for NS and reversible
pebbling are also true for the case of MC and black pebbling. More concretely we show in
Theorem 13 that for any DAG G with a single sink, if there is a MC refutation for Peb(G)
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having simultaneously degree s and size t then there is a black pebbling strategy on G with
space s and time t + s. This is done by proving that any Horn formula has a very especial
kind of MC refutation, which we call input monomial refutation since it is the same concept
as an input refutation in Resolution. Horn formulas constitute an important class with
applications in many areas like program verification or logic programming. It is well known
that input Resolution is complete for Horn formulas.

For the other direction, we show in Theorem 8 that from a black pebbling strategy
for G with space s and time t it is possible to extract a MC refutation for Peb(G) having
simultaneously degree s and size ts. The small loss in the time parameter compared to
the results in [14] comes from the fact that size complexity is measured in slightly different
ways in NS and MC. Using these results we are able to show degree separations between
NS and MC as well as the first strong degree separations between MC and PC. We also use
the simultaneous relation with time and space in the black pebbling game to obtain strong
degree-size tradeoffs for MC in the same spirit as those in [14]. The results also show that
strong degree lower bounds for MC refutations do not imply exponential size lower bounds
as it happens in the PC proof system [19].

The degrees of the refutation for pebbling formulas in NS and MS correspond exactly
to the space in reversible and black games respectively. It would be very nice if the same
could be said about PC degree and space in the black-white game. Unfortunately this is not
the case since as mentioned above, it was proven in [9] that for any DAG the corresponding
pebbling formula can be refuted within constant PC degree. We notice however that if instead
of the degree we consider the complexity measure of variable space, then the connection still
holds. We notice that for for any single sink DAG G the variable space complexity of refuting
Peb(G) in each of the algebraic proof systems NS, MC and PC is exactly the space needed
in a strategy for pebbling G in each of the three versions Reversible, Black and Black-White
of the pebble game. These results allow us to apply known separations between the pebbling
space needed in the different versions of the the game, in order to obtain separations in the
variable space measure between the different proof systems.

2 Preliminaries

2.1 Pebble Games
Black pebbling was first mentioned implicitly in [24], while black-white pebbling was intro-
duced in [12]. Note, that there exist several variants of the (black-white) pebble game in
the literature. For differences between these variants, we refer to [23]. For the following
definitions, let G = (V, E) be a DAG with a unique sink vertex z.

▶ Definition 1 (Black and black-white pebble games). The black-white pebble game on G is
the following one-player game: At any time i of the game, there is a pebble configuration
Pi := (Bi, Wi), where Bi ∩ Wi = ∅ and Bi ⊆ V is the set of black pebbles and Wi ⊆ V is the
set of white pebbles, respectively. A pebble configuration Pi−1 = (Bi−1, Wi−1) can be changed
to Pi = (Bi, Wi) by applying exactly one of the following rules:
Black pebble placement on v: If all direct predecessors of an empty vertex v have pebbles

on them, a black pebble may be placed on v. More formally, letting Bi = Bi−1 ∪ {v} and
Wi = Wi−1 is allowed if v ̸∈ Bi−1 ∪ Wi−1 and predG(v) ⊆ Bi−1 ∪ Wi−1. In particular, a
black pebble can always be placed on an empty source vertex s, since predG(s) = ∅.

Black pebble removal from v: A black pebble may be removed from any vertex at any time.
Formally, if v ∈ Bi−1, then we can set Bi = Bi−1 \ {v} and Wi = Wi−1.

MFCS 2024



64:4 Pebble Games and Algebraic Proof Systems

White pebble placement on v: A white pebble may be placed on any empty vertex at any
time. Formally, if v ̸∈ Bi−1 ∪ Wi−1, then we can set Bi = Bi−1 and Wi = Wi−1 ∪ {v}.

White pebble removal from v: If all direct predecessors of a white-pebbled vertex v have
pebbles on them, the white pebble on v may be removed. Formally, letting Bi = Bi−1 and
Wi = Wi−1 \ {v} is allowed if v ∈ Wi−1 and predG(v) ⊆ Bi−1 ∪ Wi−1. In particular, a
white pebble can always be removed from a source vertex.

A black-white pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such
that P0 = Pt = (∅, ∅), for some i ≤ t, z ∈ Bi ∪ Wi, and for all i ∈ [t] it holds that Pi can be
obtained from Pi−1 by applying exactly one of the above-stated rules.

A black pebbling is a pebbling where Wi = ∅ for all i ∈ [t]. Observe that w.l.o.g. we can
always assume that Bt−1 = {z}. For convenience we will also use the dual notion of white
pebbling game. A white (only) pebbling is a pebbling where Bi = ∅ for all i ∈ [t]. Notice
that P = (P0,P1, . . . ,Pt) is a black pebbling of G if and only if P ′ = (P′

t, . . . ,P′
0) is a white

pebbling of G, where each configuration P′
i contains the same set of pebbled vertices as in Pi,

but with white pebbles instead of black pebbles. In a white pebbling we can always suppose
that W1 = {z}.

▶ Definition 2 (Pebbling time, space, and price). The time of a pebbling P = (P0,P1, . . . ,Pt)
is time(P) := t and the space of it is space(P) := maxi∈[t] |Bi ∪ Wi|. The black-white
pebbling price (also known as the pebbling measure or pebbling number) of G, which we
will denote by BW(G), is the minimum space of any black-white pebbling of G. The black
pebbling price of G, denoted by Black(G), is the minimum space of any black pebbling of G.
By the observation above, the white pebbling price White(G) coincides with Black(G)

Finally, we mention the reversible pebble game introduced in [7]. In the reversible pebble
game, the moves performed in reverse order should also constitute a legal black pebbling,
which means that the rules for pebble placements and removals have to become symmetric.
This implies that reversible pebbling is a restricted version of black pebbling. The notions of
reversible pebbling time, space, and price are defined as in the other pebbling variants.

2.2 Formulas and Polynomials
We will only consider propositional formulas in conjunctive normal form (CNF). Such a
formula is a conjunction of clauses and a clause is a disjunction of literals. A literal is a
variable or its negation. For a formula F , Var(F ) denotes the set of its variables.

A Horn formula in a special type of CNF formula in which each clause has at most
one positive literal. For a more detailed treatment of formulas as well as the well known
Resolution proof system we refer the interested reader to some of the introductory texts in
the area like [29]. We will basically only deal with pebbling formulas. These provide the
connection between pebbling games and proof complexity.

▶ Definition 3 (Pebbling formulas). Let G = (V, E) be a DAG with a set of sources S ⊆ V

and a unique sink z. We identify every vertex v ∈ V with a Boolean variable xv. For a
vertex v ∈ V we denote by pred(v) the set of its direct predecessors. In particular, for a
source vertex v, pred(v) = ∅. The pebbling contradiction over G, denoted Peb(G), is the
conjunction of the following clauses:

for all vertices v, the clause
∨

u∈pred(v) x̄u ∨ xv, (pebbling axioms)
for the unique sink z, the unit clause x̄z. (sink axiom)

Observe that every clause in a pebbling formulas has at most one positive literal. These
formulas are therefore Horn formulas.
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A way to prove that a CNF formula is unsatisfiable is by translating it into a set of
polynomials over a field F and then show that these polynomials do not have any common
{0, 1}-valued root. A clause C =

∨
x∈P x ∨

∨
y∈N ȳ can be encoded as the polynomial

p(C) =
∏

x∈P (1 − x)
∏

y∈N y. A set of clauses C1, . . . , Cm is translated as set of polynomials
p(C1), . . . , p(Cm). Adding the polynomials x2

i − xi (as axioms) for each variable xi, there
is no common {0, 1}-valued root for all these polynomials if and only if the original set of
clauses is unsatisfiable. The intuition here is to identify false with 1 and true with 0. A
monomial is falsified by a Boolean assignment if all its variables get value 1, while it is
satisfied if one of its variables gets value 0. In this context we will consider a monomial m as
a set of variables and a polynomial p as a linear combination of monomials. A monomial
with its coefficient in F is called a monomial term.

When encoding the pebbling formulas as polynomials, for a set U ⊆ V , we denote by
mU the monomial

∏
u∈U xu. For U = ∅, mU = 1. For every vertex v ∈ V the axiom∨

u∈pred(v) x̄u ∨ xv becomes the polynomial Av := mpred(v)(1 − xv), and the sink axiom x̄z is
transformed into the polynomial Asink := xz. Observe that every polynomial in the encoding
of a pebbling formula has one or two monomials.

To avoid confusion we will denote the polynomial encoding of a CNF formula F by PF .

2.3 Algebraic Proof Systems
Several proof systems that work with polynomials have been defined in the literature. The
simplest one is Nullstellensatz, NS.

▶ Definition 4. A Nullstellensatz refutation of the set of polynomials p1, . . . , pm in
F[x1, . . . , xn] consists of a set of polynomials g1, ..., gm, h1, . . . , hn such that∑

j=1,...,m

pjgj +
∑

i=1,...,n

hi(x2
i − xi) = 1.

As a consequence of Hilbert’s Nullstellensatz, the NS proof systems is sound and complete
for the set of encodings of unsatisfiable CNF formulas.

A stronger more dynamic algebraic refutational calculus also dealing with polynomials is
the Polynomial Calculus (PC). As in the case of Nullstellensatz, PC is intended to prove the
unsolvability of a set of polynomial equations.

▶ Definition 5. The PC proof system uses the following rules:
1. Linear combination

p q

αp + βq
α, β ∈ F.

2. Multiplication
p

xip
i ∈ [n].

A refutation in PC of an initial unsolvable set of polynomials P is a sequence of polynomials
{q1, . . . , qm} such that each qi is either a polynomial in P, a Boolean axiom x2

i − xi or it is
obtained by previous polynomials in the sequence applying one of the rules of the calculus.

A less known algebraic proof system between NS and PC is Monomial Calculus, MC. This
system was introduced in [8] identifying exactly the complexity of refuting graph isomorphism
formulas. This proof system is defined like PC but the multiplication rule is only allowed to
be applied to a monomial, or to a monomial times an axiom.

MFCS 2024
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▶ Definition 6. The MC proof system uses the following rules:
1. Linear combination

p q

αp + βq
α, β ∈ F.

2. Multiplication

p

xip
i ∈ [n], p is a monomial or the product of a monomial and an axiom.

As is the case of PC, a refutation in MC of an initial unsolvable set of polynomials P is a
sequence of polynomials {q1, . . . , qm} where each one of them is either in P, an axiom or is
obtained by applying one of the rules of the calculus.

As pointed out in [8], an equivalent definition of the Nullstellensatz system, but a dynamic
one, would be to restrict the multiplication rule in the above definition even more, and
only allow to apply it to polynomials that are a monomial multiplied by an axiom. In this
way, the difference in the definition of the three systems NS, MC and PC is just a variation
on how the multiplication rule can be applied. This alternative view of the definition also
allows to consider configurational proofs in the NS system. In order to analyze and compare
refutations we will consider several complexity measures on them.

▶ Definition 7 (Complexity measures). Let C be one of the mentioned systems C ∈
{NS, MC, PC} Let π = {q1, . . . , qm} be a C refutation. The degree of a polynomial qi, deg(qi)
is the maximum degree of its monomials and the degree of π, degC(π) = maxi=1,...,n(deg(qi)).
The size of π, denoted by SizeC(π) is the total number of monomials in π (counted with
repetitions), when all polynomials pi are fully expanded as linear combinations of monomials1.

For the space measures we need to define configurational proofs. Such a proof π in the
system C is a sequence of configurations π = C0, . . . Ct in which each Ci is a set of polynomials
with C0 = ∅ and Ct = 1. Each configuration Ci represents a set of polynomials that are kept
simultaneously in memory at time i in the refutation, and for each i, 0 < i ≤ t, Ci is either

Ci−1 ∪ {p} for some axiom p (axiom download),
Ci−1 \ {p} (erasure) or
Ci−1 ∪ {p} for some p inferred by the rules of C by some rule of the system (inference).

The variable space of the proof π, VSpaceC(π) is defined as the maximum number of
different variables appearing in any configuration of the proof.

For any of the defined complexity measures Comp and proof systems C, and for every
unsatisfiable set of polynomials PF we denote by CompC(PF ⊢) the minimum over all C
refutations of PF of CompC(π).

It is often convenient to consider a multilinear setting in which the multiplications in
the mentioned algebraic systems are implicitly multilinearized. Clearly the degree and size
measures can only decrease in this setting.

1 Usually the size in the NS proof system is defined in a different way, for simplicity we keep this unifying
definition although in some of the referenced results the size of NS refutations corresponds to the size
definition given in the reference.
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3 Monomial Calculus and pebbling formulas

In [14] it was shown that for any DAG G with a single sink, the reversible pebbling space
and time of G, exactly coincides with the degree and the size of a NS refutation of PebG. We
show that a very similar relation holds for the case of black pebbling and Monomial Calculus.

▶ Theorem 8. Let G be a directed acyclic graph with a single sink z. If there is a black
pebbling strategy of G with time t and space s then there is a MC refutation of PebG with
degree s and size ts. The variable space of this refutation coincides with its degree.

Proof. It is convenient to consider here the equivalent notion of white pebbling. Let
P = (P0, . . . ,Pt) be a white pebbling strategy for G with P1 = {z} and Pt = ∅ using s

pebbles. We show that for each pebbling configuration Pi, i ∈ [t], Pi = {vi1 , . . . , viki
} the

monomial mi =
∏

v∈Pi
xv can be derived from PebG and mi−1 in degree s and size 1 if Pi

adds a pebble, or size 2s − 1 if Pi removes a pebble. This proves the result since in the t steps
of the pebbling strategy half of the steps add a pebble and the other half of the steps remove
a pebble (each added pebble has to be removed). The total number of steps is therefore
t
2 + t

2 (2s − 1) = ts.

Pebble placement. If the configuration at pebbling step i+1 is reached after placing a white
pebble on vertex v and Pi = {ui1 , . . . , uiki

} with ki ≤ s − 1 then Pi+1 = {v, ui1 , . . . , uiki
}.

Multiplying the monomial mi =
∏

u∈Pi
xu by the variable xv we obtain mi+1. We have just

added one more monomial of degree at most s to the proof.

Pebble removal. If the configuration at pebbling step i + 1 is reached after removing a
white pebble from vertex v and Pi = {v, ui1 , . . . , uiki

} with ki ≤ s − 1 then all predecessors
of v are in the set {ui1 , . . . , uiki

}. For the derivation of mi+1 we can multiply the axiom
(1 − xv)

∏
u∈pred(v) xu by the variables in Var(mi) \ (

⋃
u∈pred(v) xu ∪ {xv}), and add this

polynomial to mi obtaining mi+1. Since there are at most s − 1 variables in Var(mi) \
(
⋃

u∈pred(v) xu ∪ {xv}), the number of intermediate monomials added to the proof (counting
also monomial mi+1) is at most 2(s − 1) + 1 = 2s − 1.

Observe that in all the steps in the refutation, at most two different monomials are active
and the number of different variables in these monomials coincides with the largest of their
degrees. This shows that the variable space of the MC refutation is also bounded by s. ◀

▶ Observation 9. The size bound ts in the above proof comes from the way the MC rules
are defined. As is the case of PC, in the multiplication rule only one variable at at time is
multiplied, even when multiplying the axiom polynomials. When an axiom is multiplied by a
monomial with several variables, all the intermediate polynomials contribute to the size of the
MC refutation. This is different from the the usual way to measure the size in the NS case,
where intermediate monomials are not counted. If we would define the MC rules as those in
NS, that is, if a whole monomial could be multiplied by an axiom in one step, the size of the
MC proof would be would avoid the s factor in the monomial size and obtain size 2t instead.

In order to prove a result in the other direction we consider a very restricted kind of
refutation in MC, similar to what is known as an input refutation in Resolution. It this kind
of refutation in every Resolution step one of the parent clauses must be an axiom. Input
Resolution is not complete, but it is complete for Horn formulas. We will show that the
same is true for MC input refutations.

▶ Definition 10. A MC refutation π of a contradictory set of polynomials F is called an
input refutation if there is a sequence of monomials M0, . . . , Mt such that M0 is the product
of a monomial and an axiom, Mt = 1 and for each i Mi is obtained by multiplying Mi−1

MFCS 2024
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times a variable, or by the linear combination rule from Mi−1 and a monomial multiplied by
an axiom polynomial. We will call the sequence of monomials M0, . . . , Mt the backbone of
the proof.

▶ Lemma 11. Let F be an unsatisfiable Horn formula and let PF be the encoding of F as a
set of polynomials. Let π be any MC refutation of PF . There is an input MC refutation π′

of PF with at most the same size and degree as π.

Proof. Let d and t be the degree and size of π. We can suppose that π is multilinear. We
prove the result by induction on k, the number of times the multiplication rule is applied
to a monomial derived in π. In the base case k = 0, π is just a NS refutation of PF . This
means that there is a linear combination of a set of polynomials S that adds up to 1. Each
of these polynomials has the form of a polynomial axiom multiplied by a monomial and
since F is a Horn formula, each polynomial in S has either one or two monomials. We
will represent such a polynomial p = αmm + αm′m′ by the pair of monomials (m, m′). In
all these polynomials the monomial terms have some coefficients αm and αm′ . Clauses
without positive literals are encoded as single monomials. Some polynomial in S has a single
monomial otherwise the whole set S would have a common root by setting all variables to 1.
Moreover, there has to be a sequence of polynomials p1, . . . , pℓ represented by the monomials
(∅, m1), (m1, m2), (m2, m3) . . . , (mℓ−1, m) 2. This is because the linear combination adds up
to 1 and for this to happen, there has to be a polynomial (∅, m1) in the linear combination
since otherwise all monomials would have variables. Also the monomial m1 in (∅, m1) has
to be cancelled and there has to be some other polynomial of the form (m1, m2) and so
on. It must also hold that some polynomial in the sequence must have the form (mℓ−1, m)
that can cancel with one of the polynomials with a single monomial m in S. We suppose
that p1, . . . , pℓ is a minimal sequence with these properties. Now we can define the input
monomial refutation π starting at M0 = m and applying then ℓ linear combinations with
axioms multiplied by monomials and deriving all the monomials mℓ, . . . , m1 until 1 is derived.
Observe that the monomials M0, . . . Mt are exactly those appearing in p1, . . . , pℓ. By the
minimality of the sequence we also know that the monomials in the backbone are all different.

All the monomials in π′ belong also to π, therefore the degree of the new refutation is not
larger than that in π. In fact all the polynomials in p1, . . . , pℓ are already in π. Besides these
polynomials π′ contains also the ℓ new monomials in the backbone. Since the p1, . . . , pℓ and
m belong to π and in each linear combination of two polynomials at most one monomial
vanishes, there are at least ℓ intermediate polynomials in π until 1 is reached. This means
that the size of π′ is bounded by t.

For the case k > 0 let m′ be the first monomial in the proof that is the result of a
multiplication from a derived monomial m and a variable x, m′ = xm in π. The same
argument as above shows that there is a sequence of polynomials p1, . . . , pℓ, m̂ in π from
which we can extract an input monomial refutation that starts at M0 = m̂ and derives at
some point Mi = m. In the next step the multiplication rule is applied to obtain Mi+1 = m′.

Observe that the set of polynomials m′ ∪ PF still has the Horn property and that there is
sub-proof of π that refutes this set to the monomial 1 applying the multiplication rule at
most k − 1 times. By induction hypothesis we know that there is a sequence of polynomials
p′

1, . . . , p′
ℓ′ in π represented by the monomials (∅, m′

1), (m′
1, m′

2), . . . , (m′
r, m′) from which an

input refutation of PF ∪m′ can be extracted. We can put together both input MC refutations
M0 . . . Mi and Mi+1, . . . , 1. Again we can assume that all the monomials in the backbone

2 Since we are representing monomials by their set of variables, the monomial 1 is represented by ∅
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are different since if Mi = Mj for i < j, we could shorten π′ by connecting Mi with Mj+1.
By the same argument as in the base case the size and degree of the input MC refutation
cannot be larger than that of π. ◀

Since pebbling formulas are Horn formulas we immediately obtain:

▶ Corollary 12. Let G be a directed acyclic graph with a single sink vertex z and let π be a
MC refutation of Peb(G). There is an input MC refutation π′ of Peb(G) with at most the
same size and degree as π.

We consider next a result in the other direction.

▶ Theorem 13. Let G be a directed acyclic graph with a single sink. Let π be a MC refutation
of Peb(G) with degree s and size t. There is a black pebbling strategy with s pebbles and time
t + s.

Proof. Because of Corollary 12 we can suppose that there exits an input MC refutation with
monomials M0, . . . Mt starting with M1 = mxsink for some monomial m and with Mt = 1.
We describe a strategy for a white pebbling of G following π. At each step i only the vertices
corresponding to variables in Mi have a pebble on them. In a multiplication step a new
pebble is added, which is always possible in a white pebbling strategy. We only have to show
that in case variables disappear when going from Mi to Mi+1, this is a correct pebbling
move. But in this case, the step from i to i + 1 is a linear combination of Mi with the axiom
for some vertex v, mpred(v)(1 − xv) multiplied by some monomial m. The only variable that
can disappear in Mi+1 is xv and in this case Mi = mpred(v)xv. Therefore all the vertices
in pred(v) have pebbles on them and the pebble in xv can be removed. At the end of the
refutation, when the 1 monomial is reached there are no pebbles left on G. The number of
pebbles present at any moment is the number of variables in any of the monomials and this
is the degree of π. The number of pebbling steps needed is at most d steps to place a pebble
in each variable of M1 = mxsink and then t more pebbling steps. ◀

▶ Observation 14. For the case of Polynomial Calculus it is known that strong degree lower
bounds imply size lower bounds. If a set of unsatisfiable polynomials PF with n variables and
constant degree requires PC refutations of degree s, then any PC refutation of PF requires
size at least 2Ω( d2

n ) [19]. The previous results show that this does not hold for Monomial
Calculus. This follows from the fact that there are graph families {Gn}∞

n=0 with n vertices
and constant in-degree that require black pebbling space Ω( n

log n ) [25]. Theorem 13 implies
that the pebbling formulas for this graph family needs degree Ω( n

log n ). On the other hand, for
every single-sink DAG with n vertices there is a trivial black pebbling strategy using space n

and pebbling time 2n. By Theorem 8 this implies that the pebbling formulas corresponding
to the graphs in {Gn}∞

n=0 have MC refutations of quadratic size in n. This is a family of
formulas with MC refutation degree Ω( n

log n ) but having quadratic size refutations, a very
different situation from the PC case.

3.1 Degree separations
The given relationships between MC and the black pebbling game allow for the immediate
translation of pebbling results to Monomial Calculus. We start with some degree separations
between MC and PC. The original motivation for introducing MC was the close connection
between the degree complexity of the refutation of the graph isomorphism formulas in
this proof system, and the Weisfeiler-Leman hierarchy [8]. Formulas corresponding to non-
isomorphic graphs pairs that can only be distinguished using a large level of the WL algorithm,
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require a MC refutation with large degree. It was proven later in [1, 15], that the degree of a
PC refutation of the isomorphism formulas cannot be much smaller than in the MC case,
in fact the degrees of a MC and a PC refutation can only be a constant factor apart. We
improve this separation and obtain an almost optimal degree separations by considering the
pebbling formulas. In [9] it was shown that pebbling formulas have constant PC degree and
that for any directed acyclic graph G with black pebbling price B(G), the formula Peb(G)
requires NS refutations with degree Ω(B(G)). Since it is known that there are graph families
{Gn}∞

n=0 with Θ(n) vertices and B(Gn) = Ω( n
log n ) [25], this implies a degree separation of

Ω( n
log n ) between PC and NS. From Theorem 13 follows that this is in fact a degree separation

between MC and PC.

▶ Theorem 15. There is an unsatisfiable family of formulas {Fn}∞
n=0 with Θ(n) variables

each, that have PC refutations of constant degree but require MC refutations of degree Ω( n
log n ).

For the case of NS, from Theorem 8 and the equivalence between reversible pebbling
price and NS degree from [13], [14], follows that a separation between reversible and black
pebbling price for a graph family implies a degree separation between NS and MC for the
corresponding pebbling formulas. For example it is known that a directed path graphs with n

vertices can be black pebbled with 2 pebbles but requires reversible pebbling number ⌈log n⌉
[7]. Translated to pebbling formulas this means:

▶ Theorem 16. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Θ(n) variables

each, that have MC refutations of degree 2 but require NS refutations of degree ⌈log n⌉.

There are other graph families for which a separation between the black and reversible
pebbling prices by a logarithmic factor in the number of vertices is known, [10],[30]. The
separations in pebbling for these graphs is translated into the next result.

▶ Theorem 17. For any function s(n) = O(n1/2−ϵ) for constant 0 < ϵ < 1
2 there is a family

of unsatisfiable formulas {Fn}∞
n=0 with Θ(n) variables each, that have MC refutations of

degree O(s(n)) but require NS refutations of degree Ω(s(n) log n).

The question of whether the separation between reversible and black pebbling space can
be larger than a logarithmic factor in the number of nodes is open. The best known degree
separation between NS and and MC is slightly better. This was obtained in [16] with very
different methods. Using a classic result from descriptive complexity [18], the authors show
that for for every constant c ≥ 1 there are families of formulas Fn with O(n) variables that
have a degree 3 MC refutation but require NS degree at least logc(n). It is also open whether
this degree separation between NS and MC is optimal.

3.2 Size-degree tradeoffs for MC
The close connections between black pebbling space and monomial calculus expressed in
Theorems 8,13 make it possible to translate space-time tradeoffs for pebbling into degree-size
tradeoffs for MC. There is a slight loss of the time parameter that comes from the extra space
factor in the the MC refutation from Theorem 8. We present two such results as examples.
The first one is an extreme tradeoff result that shows how decreasing the degree by one can
make the size increase exponentially.

▶ Theorem 18 ([28]). There is a family of directed graphs {Gn}∞
n=0 having Θ(n2) vertices

each and with Black(Gn) = Θ(n) for which any black pebbling strategy with Black(Gn) pebbles
requires at least 2Ω(n log n) steps while there is a pebbling strategy with Black(Gn) + 1 pebbles
and O(n2) steps.
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▶ Corollary 19. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Fn having O(n2)

variables and dn ∈ O(n) such that Fn has a MC refutation of degree dn but any MC refutation
with this degree requires size 2Ω(n log n). On the other side there is a MC refutation of Fn with
degree dn + 1 and size O(n3).

As a second example we present a robust time-space result from [23].

▶ Theorem 20. There is a family of directed graphs {Gn}∞
n=0 having Θ(n) vertices each

and with Black(Gn) = O(log2 n), with a black pebbling strategy in space O(n/ log n) and time
O(n). There is also a constant c > 0 for which any pebbling strategy using less than cn/ log n

pebbles requires at least nΩ(log log n) steps.

▶ Corollary 21. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Fn having O(n)

variables, and a constant c > 0 such that Fn has a MC refutation of degree O(n/ log n) and
size O(n2/ log n) but for which any MC refutation with degree smaller than cn/ log n requires
size at least nΩ(log log n).

4 Pebble Games and Variable Space

The equality between degree and pebbling price for the cases of Monomial Calculus and black
pebbling from the previous section, as well as for Nullstellensatz and reversible pebbling
from [14] cannot be extended to the case of Polynomial Calculus and black-white pebbling price
since as already mentioned, it was proven in [9] that for any DAG G, degPC(Peb(G)) = O(1).
We show in this section that the correspondence between the three pebbling variations and
the proof systems holds if we consider the variables space measure instead.

It can be seen in the proof of Theorem 8, that not only the minimum degree of a monomial
calculus refutation of Peb(G), but also the minimum variable space is bounded by the black
pebbling price of G. The same can be observed in the proof of Theorem 3.1 in [14] for the
case of Nullstellensatz and reversible pebbling. Considering the trivial fact that variable
space measure is always greater or equal that the degree needed for the refutation of a
formula in all three proof systems NS, MC and PC, and considering Theorems 13 as well as
Theorem 3.4 in [14] this implies:

▶ Observation 22. For every DAG G with a single sink, VSpaceNS(Peb(G) ⊢) = Rev(G)
and VSpaceMC(Peb(G) ⊢) = Black(G).

For the case of black-white pebbling it is known that for the Resolution proof system,
the variable space needed in a refutation of Peb(G) equals BW(G). The inclusion from left
to right is from [5] while the other inclusion appeared in [17]. This results can be extended
to other proof systems using the following result:

▶ Lemma 23 ([4], [27]). Let S be a proof system that can simulate Resolution step by
step without including new variables. For every unsatisfiable formula F , VSpaceS(F ⊢) =
VSpaceRes(F ⊢).

This implies:

▶ Observation 24. For every DAG G with a single sink, VSpacePC(Peb(G) ⊢) = BW(G).

Which together with Observation 22 shows the equivalence between variable space in the
proof systems and the pebbling price in the three variations of the game.
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4.1 Variable Space Separations
These observations allow us to use pebbling results to obtain separation in the variable space
complexity in the algebraic proof systems. The reason why these results do not contradict
Lemma 23, is that MC (or NS) cannot simulate Resolution step by step since the intermediate
polynomials are not necessarily monomials.

For the variable space separations between NS and MC on pebbling formulas, the same
degree separations given in Subsection 3.1 hold, since as we have seen, for this kind of
formulas the variable space and the degree coincide in both proof systems. For the case of
MC versus PC, it is known that for any DAG G, the separation between the black and the
black-white pebbling prices can be at most quadratic [21]. This limits the variable space
gap between MC and PC that can be obtained using pebbling formulas. In [31] a family
of graphs is given that shows an asymptotic separation between the black-white and black
pebbling prices. Translating this to our context we obtain:

▶ Theorem 25. There is a family of unsatisfiable formulas {Fn}∞
n=0 with polynomially many

variables (in n) such that VSpacePC(Fn ⊢) = O(n) and VSpaceMC(Fn ⊢) = Ω( n log n
log log n ).

An optimal quadratic separation between the black-white and black pebbling price was
given in [20] but for a family of graphs having exponentially many vertices respect to their
pebbling price. This implies:

▶ Theorem 26. There is a family of unsatisfiable formulas {Fn}∞
n=0 with exp(Θ(n log n))

many variables such that VSpacePC(Fn ⊢) = O(n) and VSpaceMC(Fn ⊢) = Ω(n2).

5 Conclusions and Open Questions

We have proven a strong connection between the black pebble game and the Monomial
Calculus proof system by showing that the degree and size bounds required simultaneously
in a MC refutation of the pebbling formula for a DAG G closely correspond to the number
of pebbles and the time in a pebbling strategy for G. This improves the known relations
between the complexities of pebble games and algebraic proof systems and implies strong
degree-size tradeoffs for the MC system as well as degree separations between NS, MC and
PC.

We have also shown that the variable space measure for the refutation of pebbling formulas
in the three systems PC, MC and NS exactly corresponds to the number of pebbles in the
black, black-white and reversible games. From this equivalence we obtain variable space
separations between the proof systems.

It is open whether these separations are optimal or can be improved using other techniques.
Finding out what is the optimal degree separation between the NS and MC proof systems is
another interesting open question.

References
1 Albert Atserias and Joanna Fijalkow. Definable ellipsoid method, sums-of-squares proofs, and

the graph isomorphism problem. SIAM J. Comput., 52(5):1193–1229, 2023. doi:10.1137/
20m1338435.

2 Albert Atserias and Elitza N. Maneva. Sherali–Adams relaxations and indistinguishability
in counting logics. SIAM Journal on Computing, 42(1):112–137, January 2013. Preliminary
version in ITCS ’12 . doi:10.1137/120867834.

https://doi.org/10.1137/20m1338435
https://doi.org/10.1137/20m1338435
https://doi.org/10.1137/120867834


L.-M. Jaser and J. Torán 64:13

3 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’94), pages 794–806, 1994.
doi:10.1109/SFCS.1994.365714.

4 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial
calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013. doi:10.1145/2488608.2488711.

5 Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002. doi:
10.1145/509907.509975.

6 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – Resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99 . doi:
10.1145/375827.375835.

7 Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal on
Computing, 18(4):766–776, 1989. doi:10.1137/0218053.

8 Christoph Berkholz and Martin Grohe. Limitations of algebraic approaches to graph iso-
morphism testing. In ICALP 2015, volume 9134 of Lecture Notes in Computer Science, pages
155–166. Springer, 2015. doi:10.1007/978-3-662-47672-7_13.

9 Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Ho-
mogenization and the polynomial calculus. Computational Complexity, 11(3-4):91–108, 2002.
Preliminary version in ICALP ’00 . doi:10.1007/s00037-002-0171-6.

10 Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness of approxima-
tion in PSPACE and separation results for pebble games (Extended abstract). In Proceedings
of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’15), pages
466–485, 2015. doi:10.1109/FOCS.2015.36.

11 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC ’96), pages 174–183, May 1996. doi:10.1145/237814.237860.

12 Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time recog-
nizable languages. Journal of Computer and System Sciences, 13(1):25–37, 1976. Preliminary
version in STOC ’74 . doi:10.1016/S0022-0000(76)80048-7.

13 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity.
CoRR, abs/2001.02144, 2020. doi:10.48550/arXiv.2001.02144.

14 Susanna F. de Rezende, Or Meir, Jakob Nordström, and Robert Robere. Nullstellensatz
size-degree trade-offs from reversible pebbling. Comput. Complex., 30(1):4, 2021. doi:
10.1007/s00037-020-00201-y.

15 Erich Grädel, Martin Grohe, Benedikt Pago, and Wied Pakusa. A finite-model-theoretic
view on propositional proof complexity. Log. Methods Comput. Sci., 15(1), 2019. doi:
10.23638/LMCS-15(1:4)2019.

16 Martin Grohe and Wied Pakusa. Descriptive complexity of linear equation systems and
applications to propositional proof complexity. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, pages 1–12. IEEE Computer Society, 2017. doi:
10.1109/LICS.2017.8005081.

17 Alexander Hertel. Applications of Games to Propositional Proof Complexity. PhD thesis,
University of Toronto, May 2008. Available at http://www.cs.utoronto.ca/~ahertel/. URL:
http://hdl.handle.net/1807/16735.

18 Neil Immerman. Number of quantifiers is better than number of tape cells. J. Comput. Syst.
Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

19 Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. Lower bounds for the polynomial calculus
and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999. doi:
10.1007/s000370050024.

MFCS 2024

https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1145/2488608.2488711
https://doi.org/10.1145/509907.509975
https://doi.org/10.1145/509907.509975
https://doi.org/10.1145/375827.375835
https://doi.org/10.1145/375827.375835
https://doi.org/10.1137/0218053
https://doi.org/10.1007/978-3-662-47672-7_13
https://doi.org/10.1007/s00037-002-0171-6
https://doi.org/10.1109/FOCS.2015.36
https://doi.org/10.1145/237814.237860
https://doi.org/10.1016/S0022-0000(76)80048-7
https://doi.org/10.48550/arXiv.2001.02144
https://doi.org/10.1007/s00037-020-00201-y
https://doi.org/10.1007/s00037-020-00201-y
https://doi.org/10.23638/LMCS-15(1:4)2019
https://doi.org/10.23638/LMCS-15(1:4)2019
https://doi.org/10.1109/LICS.2017.8005081
https://doi.org/10.1109/LICS.2017.8005081
http://www.cs.utoronto.ca/~ahertel/
http://hdl.handle.net/1807/16735
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1007/s000370050024
https://doi.org/10.1007/s000370050024


64:14 Pebble Games and Algebraic Proof Systems

20 Balasubramanian Kalyanasundaram and George Schnitger. On the power of white pebbles.
Combinatorica, 11(2):157–171, June 1991. Preliminary version in STOC ’88 . doi:10.1007/
BF01206359.

21 Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on graphs.
Theoretical Computer Science, 13(3):315–322, 1981. doi:10.1016/S0304-3975(81)80004-7.

22 Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical Methods
in Computer Science, 9:15:1–15:63, September 2013. doi:10.2168/LMCS-9(3:15)2013.

23 Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with
supplemental results. Manuscript in preparation. Current draft version available at http:
//www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf, 2015.

24 Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Record of the Project
MAC Conference on Concurrent Systems and Parallel Computation, pages 119–127, 1970.
doi:10.1145/1344551.1344563.

25 Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on
graphs. Mathematical Systems Theory, 10:239–251, 1977. doi:10.1007/BF01683275.

26 Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center, 1980.
27 Alexander A. Razborov. On space and depth in resolution. Computational Complexity,

27(3):511–559, 2018. doi:10.1007/s00037-017-0163-1.
28 John E. Savage. Models of computation - exploring the power of computing. Addison-Wesley,

1998.
29 Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms and Analyses,

volume 3 of Mathematics for Applications (Mathematik für Anwendungen). Lehmanns Media,
2013.

30 Jacobo Torán and Florian Wörz. Reversible pebble games and the relation between
tree-like and general resolution space. Comput. Complex., 30(1):7, 2021. doi:10.1007/
s00037-021-00206-1.

31 Robert E. Wilber. White pebbles help. Journal of Computer and System Sciences,
36(2):108–124, 1988. Preliminary version in STOC ’85 . doi:10.1016/0022-0000(88)90023-2.

https://doi.org/10.1007/BF01206359
https://doi.org/10.1007/BF01206359
https://doi.org/10.1016/S0304-3975(81)80004-7
https://doi.org/10.2168/LMCS-9(3:15)2013
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
https://doi.org/10.1145/1344551.1344563
https://doi.org/10.1007/BF01683275
https://doi.org/10.1007/s00037-017-0163-1
https://doi.org/10.1007/s00037-021-00206-1
https://doi.org/10.1007/s00037-021-00206-1
https://doi.org/10.1016/0022-0000(88)90023-2

	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Pebble Games
	2.2 Formulas and Polynomials
	2.3 Algebraic Proof Systems

	3 Monomial Calculus and pebbling formulas
	3.1 Degree separations
	3.2 Size-degree tradeoffs for MC

	4 Pebble Games and Variable Space
	4.1 Variable Space Separations

	5 Conclusions and Open Questions

