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Abstract
Punctual structure theory is a rapidly emerging subfield of computable structure theory which aims
at understanding the primitive recursive content of algebraic structures. A structure with domain N
is punctual if its relations and functions are (uniformly) primitive recursive. One of the fundamental
problems of this area is to understand which computable members of a given class of structures
admit a punctual presentation. We investigate such a problem for a number of familiar classes of
algebraic structures, paying special attention to the case of trees, presented both in a relational and
functional signature.

2012 ACM Subject Classification Theory of computation → Computability

Keywords and phrases fully primitive recursive structures, punctual presentability, trees, injection
structures

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.65

Funding Dariusz Kalociński: supported by the National Science Centre Poland grant under the
agreement no. 2023/49/B/HS1/03930.
Luca San Mauro: is a member of INDAM-GNSAGA.
Michał Wrocławski: supported by the National Science Centre Poland grant under the agreement
no. 2023/49/B/HS1/03930.

Acknowledgements We would like to thank the reviewers as well as Nikolay Bazhenov, Ivan Georgiev
and Stefan Vatev for helpful discussions.

1 Introduction

Computable structure theory is a vast research program which aims at analyzing the
algorithmic content of algebraic structures through the tools of computability theory (for an
excellent introduction to this field, see [15]). The fundamental concept of when a structure
is computably presented dates back to the seminal work of Mal’cev [14] and Rabin [16]
in the 1960s: A structure with domain the set N of the natural numbers is computable if
its relations and functions are uniformly Turing computable. Then, a countably infinite
structure is computably presentable (or, it has computable copy) if it is isomorphic to some
computable structure.

A classic problem in computable structure theory is to understand, for familiar classes
of structures K, which members of K are computably presentable. Sometimes the answer
is that every member of K has a computable copy: this is the case for, e.g., vector spaces
over Q and algebraically closed fields of a given characteristic. On the other hand, it is an
immediate consequence of Tennebaum’s theorem that, among models of Peano Arithmetic,
only one is computably presentable: the standard model. Yet, in most cases, characterizing
the computable members of K is a delicate task, which often requires to individuate nice
invariants for K (if any) and to determine how hard is to compute such invariants.
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65:2 Punctual Presentability in Certain Classes of Algebraic Structures

A parallel endeavour is to explore when a computable algebraic structure has a feasible
presentation. The problem can be formalized in a number of different ways leading, e.g., to the
study of algebraic structures presented by finite state automata [13], or to polynomial-time
algebra [7, 1]. Kalimullin, Melnikov, and Ng [12] initiated the systematic study of punctual
presentations, that lies somewhere in the between of computability and complexity theory:

▶ Definition 1. A structure with domain N is punctual (or, fully primitive recursive) if its
relations and functions are uniformly primitive recursive.

Then, clearly, a structure is punctually presentable, if it is isomorphic to some punctual
structure. Intuitively – and by relying on a sort of restricted Church-Turing thesis – a
structure is punctual, if there is algorithmic with no unbounded search which is able to
decide any quantifier-free question about the structure (that is, for any such question, one
knows in advance how much time is needed to compute an answer).

Punctual structure theory rapidly emerged as an intriguing subfield of computable
structure theory [10, 11, 4, 3] and it also serves as a theoretical underpinning for the study
of online algorithms [2] (i.e., algorithms in which the input is received and processed piece
by piece without having access from the start to the complete problem data).

One of notable results is that the index set of computable structures that are punctually
presentable is Σ1

1-complete [5]. However, if we restrict the class of structures is some
natural way, it may be the case that every computable member from that class is punctually
presentable (and thus the corresponding index set is trivial).

▶ Definition 2. We say that a class of structures K is punctually robust, if every computable
member of K admits a punctual presentation.

In [12], it is proven that the following classes of structures are punctually robust: equivalence
structures, linear orders, torsion-free abelian groups, Boolean algebras, and abelian p-groups;
on the other hand, there are computable undirected graphs, computable torsion abelian
groups, and computable Archimedean ordered abelian groups with no punctual copy. In this
work, we contribute to this line of research, exhibiting new examples of both classes that are
punctually robust and classes that are not.

Kalimullin, Melnikov, and Ng [12] showed that there exists a computable undirected
graph with no punctual presentation. However, many natural classes of graphs admit such
presentations. In Section 3, using a technique introduced in [12] for showing that equivalence
structures are punctually presentable, we isolate one such class.

▶ Proposition 3. Every computable digraph with an infinite semi-transversal is punctually
presentable.

For structures with a functional signature, the situation may change drastically. One of
the simplest types of purely functional structures are the so-called injection structures. They
are of the form A = (N, f), where f is 1-1. Injection structures have already been considered
in the computable setting (see, e.g., [6]) and in punctual structure theory with an emphasis
on punctual categoricity in [10]. In Section 4 we prove the following:

▶ Theorem 4. The class of injection structures is not punctually robust.

The structure witnessing that injections structures are not punctually robust will consist
only of cycles. One can observe that the relational counterpart of this structure is punctually
presentable (this follows from Proposition 3). We supplement Theorem 4 by a list of sufficient
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conditions for an injection structure to be punctually presentable, as well as by a list of
conditions equivalent to their punctual presentability. These supplementary results are
omitted due to space constraints and will appear in the extended version.1

A similar contrast emerges for trees. We show that the punctual robustness (or, lack
thereof) of the class of trees depends on how they are presented. More precisely, in Section 5
we consider the notion of a tree represented as a function mapping each child to its parent
and looping back at the root. We then prove the main result of the paper:

▶ Theorem 5. The class of functional trees is not punctually robust.

2 Preliminaries

We denote the set of natural numbers by N. We let [a, b) = {x ∈ N : a ≤ x < b}. We assume
a fixed computable enumeration p0, p1, . . . of all primitive recursive unary functions. We
abbreviate primitive recursive as p.r. By fn be denote the n-fold composition of f with itself.
If F is a partial function or a relation, χF denotes a graph of F . A structure is any tuple
A = (A, (Ri)i∈I , (fj)j∈J , (ck)k∈K), where A ̸= ∅ is the domain of A, in symbols dom(A),
while Ri, fj , ck are relations, functions, constants on A. By A ∼= B we mean that A and
B are isomorphic, and by A ↪→ B that A embeds into B. All structures in this article are
countably infinite, except finite structures that appear in constructions.

▶ Definition 6 (computable structure). A structure is a computable if its domain, as well as
all relations, functions, and constants from its signature are uniformly computable.

Punctual structures were defined in the introduction (Definition 1).
Notice that (N, p0), (N, p1), . . . is a computable enumeration of all punctual structures

with just one unary functional symbol.

▶ Definition 7 (punctual presentability). A structure A is a copy (presentation) of B if A and
B are isomorphic. We say that A is punctually presentable if A has a punctual presentation.

3 Directed graphs

In this section, we individuate a class of computable directed graphs (from now on, digraphs)
which are punctually presentable. For a digraph G = (N, EG), we denote by LG the collection
of G-nodes with loops, i.e., LG := {x : (x, x) ∈ EG}. We denote by G ↾c the restriction of G

to the initial segment {x : 0 ≤ x ≤ c}.

▶ Definition 8 (semi-transversal). Let G = (N, EG) be a computable digraph. The semi-
transversal of G, denoted as τG, is the collection of numbers that are not adjacent to any
smaller number, i.e.,

τG := {x : (∀y < x)({(y, x), (x, y)} ∩ EG = ∅)}.

It is immediate to observe that τG is computable, whenever G is computable. As
aforementioned, the following result elaborates on ideas presented in [12] when dealing with
equivalence structures. The proof may serve as a gentle introduction to the way of thinking
about punctual copies and as a warm-up to the more complex constructions of this paper.

1 Following a suggestion from one of the reviewers, the authors have realized that some results on injection
structures were obtained earlier [8]. Essentially, Theorem 4 should be attributed to Cenzer and Remmel
(see, Lemma 3.12 and Theorem 3.13 in [8]). For completeness of the presentation, we include our proof
of this theorem in the punctual setting.
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65:4 Punctual Presentability in Certain Classes of Algebraic Structures

▶ Proposition 3. Every computable digraph with an infinite semi-transversal is punctually
presentable.

Proof. Let G = (N, EG) be a computable digraph so that τG is an infinite set. For the sake
of exposition, we assume that both LG ∩ τG and (N \ LG) ∩ τG are infinite (the other cases
are treated similarly and are somehow simpler). We will build by stages a punctual copy PG

of G and a bijection f : N → N witnessing that G ∼= PG.
The underlying idea of the proof is rather straightforward: At any given stage of the

construction, we monitor a finite fragment of G. In particular, we aim at determining
if a given number c belongs to τG. This information is computable but, in general, not
primitive recursive. So to ensure that PG will be punctual, while waiting to know if c ∈ τG,
we let several numbers x to be inactive (meaning that such numbers will belong to the
semi-transversal of PG). If we see that c /∈ τG, we extend the desired isomorphism by letting
f(c) be a fresh number and ensuring that G ↾c embeds into the active part of PG. On the
other hand, if c ∈ τG, we will let f(c) be a suitable inactive number z (which returns active
right after this action). Let us now be formal.

Construction

To record which fragment of G is currently monitored, we use a parameter c that will be
updated as the construction proceeds. Moreover, during the construction some numbers x will
be marked as inactive: specifically, by declaring x to be no loop-inactive (NL-inactive), we let
x be non-adjacent (in PG) to any number ≤ x; by declaring x as loop-inactive (L-inactive),
we let x non-adjacent (in PG) to any number < x but we also let (x, x) ∈ PG. Active numbers
are those that are neither NL-inactive nor L-inactive.

At stage 0, all numbers in N are active; we let c be 0 and we immediately move to the
next stage. At all stages s > 0, we see if the following condition holds:

(∀x ≤ c)(χEG
(x, c) ↓ and χEG

(c, x) ↓ in less than s stages). (⋆)

If (⋆) is not met, we declare 2s to be NL-inactive and 2s + 1 to be L-inactive. Then, we
move to the next stage. Otherwise, if (⋆) is met, we can determine whether c belongs to τG.
Then, we distinguish two cases:

1. If c /∈ τG, we define f(c) = 2s and we mirror an initial segment of the G-neighborhood of
c by forming the PG-edges that are needed to ensure that, for all x ≤ c, the following
equation holds:

(x, c) ∈ EG ⇔ (f(x), f(c)) ∈ EPG
& (c, x) ∈ EG ⇔ (f(c), f(x)) ∈ EPG

. (†)

Finally, we declare 2s + 1 NL-inactive.
2. We distinguish two subcases:

a. If c ∈ LG ∩ τG, we define f(c) = z for the least number z which is L-inactive, and
we mark z as active (if there is no such number, we define f(c) = 2s + 1). Then, we
declare 2s to be NL-inactive.

b. If c ∈ (N \ LG) ∩ τG, the situation is symmetric: We define f(c) = z for the least
number z which is NL-inactive, and we mark z as active (if there is no such number,
we define f(c) = 2s), and we declare 2s + 1 to be L-inactive.

In both cases 1. and 2., we increase c by one and we move to the next stage.



D. Kalociński, L. San Mauro, and M. Wrocławski 65:5

Verification

From the construction, it follows immediately that PG is punctual: indeed, to decide if
(u, v) ∈ EPG

, for u < v, it suffices to run the construction until stage ⌊v/2⌋ and each stage s

requires at most s steps to be completed. To see that PG is isomorphic to G, we begin by
arguing that f is bijection.

▶ Lemma 9. The function f : N → N is a bijection.

Proof. Say that a stage s is expansionary, if at stage s the condition (⋆) holds. It is not hard
to see that there are infinitely many expansionary stages: indeed, since G is computable, for
any choice of the parameter c, there will a stage at which we are able to entirely compute
G ↾c. Now, observe that the parameter c starts as 0 and is increased by one whenever f(c) is
defined. Thus, f is total.

Next, let u < v be numbers on which f is defined at stages su < sv. By construction,
f(u) ∈ {2su, 2su+1, z}, for some z which is NL-inactive or L-inactive at the beginning of
stage su; on the other hand, f(v) ∈ {2sv, 2sv+1, z′}, for some z′ which is NL-inactive or
L-inactive at stage sv. Observe that z ̸= z′, since z returns active as soon as it enters the
range of f . Thus, f is injective.

To deduce that f is surjective, it suffices to prove that all numbers are eventually active:
indeed, if a number z ∈ {2s, 2s + 1} is active at all stages, then s must an expansionary
stage at which z enters the range of f ; similarly, if at stage s some number z returns active,
after being NL-inactive or L-inactive, then z simultaneously enters the range of f . Towards
a contradiction, suppose there is a least number u which is declared, say, L-inactive and
eventually remains so. Since LG ∩ τG is infinite, then there must be a stage s at which
the condition (⋆) is met and we perform action 2.a, by which z (being the least L-inactive
number) enters the range of f , contradicting our hypothesis. Hence, f is surjective. ◀

Finally, we shall prove that the bijection f yields an isomorphism from G to PG. Suppose
that, for a pair of numbers u < v,

(u, v) ∈ EG ̸⇔ (f(u), f(v)) ∈ EPG
.

Let su and sv be the stages at which f(u) and f(v) are, respectively, defined. By construction,
su < sv, so that f(u) is already defined at stage sv. Moreover, at stage sv, we decide whether
(f(u), f(v)) ∈ EPG

: if v /∈ τG, then condition (†) ensures that (f(u), f(v)) ∈ EPG
if and only

if (u, v) ∈ EG; on the other hand, if v ∈ τG, we have that (u, v) /∈ EG, but f(v) is chosen
from the inactive numbers so that f(u) is non-adjacent to f(v). Similarly, one proves that,
for all u, (u, u) ∈ EG if and only (f(u), f(u)) ∈ EPG

. So f is an isomorphism from G to
EPG

. ◀

As an immediate corollary of Proposition 3, one obtains that the following classes of
algebraic structures K are punctually robust: equivalence structures, strongly locally finite
graphs, and – more generally – graphs with infinitely many components. In fact, Proposition 3
may serve to obtain the punctual robustness of the classes of locally finite graphs and of
graph-theoretic trees (the analog result holds in the setting of feasible presentations, see
Cenzer and Remmel [9]). Let us give a brief informal discussion of these cases.

Recall that a dominating set for a graph G = (VG, EG) is a set D ⊆ VG so that all
vertices of VG ∖ D has a neighbor in D. The domination number γ(G) is the minimum size
of a dominating set for G. It is simple to show that every computably presentable graph
G with γ(G) = ∞ has a computable copy H with an infinite semi-transversal. Hence, by

MFCS 2024



65:6 Punctual Presentability in Certain Classes of Algebraic Structures

Proposition 3, all computable graphs with infinite domination numbers admit a punctual
copy. This comprises the class of infinite but locally finite graphs, as is shown by a simple
application of the pigeonhole principle.

We conclude the section by observing that the class of graph-theoretic trees, (i.e., acyclic
graphs) is also punctually robust. Let T be a such tree. If T has infinite domination number,
then T must be punctually presentable. On the other hand, if γ(T ) < ∞, then it must
contain a vertex with infinite neighborhood; a standard construction proves that such T is
punctually presentable (we omit the details for space reasons). In contrast, in Section 5 we
will show that there is a computable functional tree which admits no punctual copy.

4 Injection structures

▶ Definition 10 (injection structure). (A, f) is an injection structure, if f : A → A is
injective.

Let f : A → A. A finite sequence of pairwise distinct elements a1, ..., an ∈ A is an f -cycle of
length n if, for each i = 1, ..., n − 1, f(ai) = ai+1, and also f(an) = a1. If f is clear from the
context, we may refer to a cycle without specifying f .

▶ Definition 11 (cyclic injection structure). f : A → A is cyclic, if f is injective and every
element of A belongs to some f -cycle. A = (N, f) is a cyclic injection structure, if f is cyclic.
Such A is called simple, if A contains at most one cycle of length l, for all l ∈ N.

▶ Definition 12 (N-chain, Z-chain). Let f : A → A. If (an)n∈I is an indexed family of
elements of A such that ai ̸= aj for all i ̸= j ∈ I, and f(an) = an+1 for all n ∈ I, then we
call (an) an N-chain if I = N and there is no such x that f(x) = a0, and a Z-chain if I = Z.

If f : N → N is an injection, then every n ∈ N belongs to a cycle, an N-chain, or a Z-chain.
In the remaining part of this section we prove the following:2

▶ Theorem 4. The class of injection structures is not punctually robust.

We construct by stages a computable simple cyclic injection structure A = (N, f) not
isomorphic to any (N, pi). For each i ∈ N, we have the following requirement:

Ri : if (N, pi) is a simple cyclic injection structure, then there is
n ∈ N so that pi has a cycle of length n but f does not.

Initially, for A = ∅, and all requirement are inactive. At a given stage we have finitely
many active requirements. Active requirements may later be deactivated: deactivating a
requirement Ri will guarantee that Ri is, and will remain, satisfied. Some requirements Ri

may stay eventually active, but we will argue that in that case they are satisfied vacuously
(i.e., the antecedent of Ri is false).

2 As a side remark, Theorem 3.16 from [8] says that any computable injective structure has a polynomial-
time computable copy with the domain equal to Bin(ω), the set of all binary representations of natural
numbers, or to T al(ω), the set of all unary (tally) representations of natural numbers; call such a
copy fully polynomial-time. The statement of Theorem 3.16 [8] turns out to be too general because
the structures constructed in the proofs of our Theorem 3, or Theorem 3.13 [8] for that matter, are
computable injection structures with no punctual presentation, and hence they cannot have fully
polynomial-time copies either (as any fully polynomial-time structure is punctual). However, a slight
weakening of the statement of Theorem 3.16 [8] can be achieved, namely: every computable injection
structure which is not cyclic is punctually presentable. We omit the proof due to space constraints.
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Stage s of the construction. Let Ri1 , . . . , Rik
be the list of active requirements, and

let ci1 , . . . , cik
be the corresponding witnesses. If there is a fresh active requirement in

the list, execute the strategy for the fresh requirement (see below). Then, for each active
non-fresh requirement, execute the corresponding strategy (also see below). If the list of
active requirements is empty or, during stage s, we have not discovered any cycle of length s

while executing strategies for fresh or non-fresh Rij , then we add a fresh (i.e., composed from
distinct least numbers a1, a2, . . . , as /∈ A) cycle of length s to A and add the least inactive
requirement to the list of active requirements and call it fresh.

Strategy for non-fresh Ri,j. Compute cij
, pij

(cij
), p2

ij
(cij

), . . . , ps−1
ij

(cij
). The following

outcomes are possible:
1. elements of the sequence are pairwise different from each other and then we shall call

such a sequence a straight line of length s,
2. there is some l such that 1 ≤ l ≤ s − 1 and pl

ij
(cij ) = cij and then for the least such l, we

shall call cij
, pij

(cij
), p2

ij
(cij

), . . . , pl
ij

(cij
) a cycle of length l,

3. there are some l and l′ such that 1 ≤ l < l′ ≤ s − 1 and pl
ij

(cij
) = pl′

ij
(cij

) and then for
the least such l′ we shall call such sequence a cycle with a tail of length l′ + 1.

If precisely after s − 1-th iteration of function pij on its corresponding witness we close a
cycle or a cycle with a tail, then we deactivate Rij

.
Strategy for fresh Ri,j . We define αp to be the sequence ap, pij (ap), p2

ij
(ap), . . . , ps−1

ij
(ap),

for p = 1, . . . s, where ap is the least number which is currently not in the domain of A and
has not appeared anywhere in calculations of any of the sequences αp.

Now we check if any of the following outcomes occurs and act accordingly:
if some αp is a line of length s, set cij

:= ap as the witness for Rij
and call Rij

non-fresh,
if some αp is a cycle of length s or a cycle with a tail of any length, deactivate Rij ,
if for every αp we obtained a cycle of length smaller than s, deactivate Rij

.

Verification

▶ Lemma 13. A is a computable simple cyclic injection structure.

Proof. Clearly, A is computable. It is a cyclic injection structure since whenever we add
new elements to the structure, they are in a cycle. A cycle of length s can only be added at
stage s and only once. Hence, the structure is simple. ◀

▶ Lemma 14. If a requirement Ri is deactivated during some stage s, then from that moment
it always remains satisfied.

Proof. There are several possible cases of how Ri was deactivated at stage s. Below we
consider all of them:

We discovered a cycle with a tail generated by the function pi starting from its corres-
ponding witness. In this case Ri is satisfied because pi is not a cyclic function,
We discovered a cycle of length s generated by pi during stage s. In this case Ri is
satisfied because we do not have a cycle of such length in A and hence A is not isomorphic
to (N, pi).
We tried s different witnesses a1, . . . , as for Ri and for each potential witness a we
generated a cycle of length shorter than s starting with a. As a consequence of the
pigeon-hole principle it is necessary that there are some witnesses a and b generating
cycles of the same length. Furthermore, whenever we choose a new witness, we take
a number which has not appeared anywhere in earlier calculations. Hence, the cycle
containing a and the cycle containing b are not the same and they are both in (N, pi). We
conclude that this is not a simple cyclic injection structure and hence Ri is satisfied. ◀

MFCS 2024



65:8 Punctual Presentability in Certain Classes of Algebraic Structures

▶ Lemma 15. If a requirement Ri is not deactivated at any stage, then it is satisfied.

Proof. We assume that Ri was activated at some stage s. Then at stage s + 1 it acted as
a fresh requirement and it was deactivated unless we discovered a witness ci such that the
sequence ci, pi(ci), p2

i (ci), . . . , ps
i (ci) is a straight line of length s + 1. In that case, at every

stage t ≥ s + 1, requirement Ri is deactivated if and only if we discover a cycle or a cycle
with a tail of length t starting with ci. If this does not happen at any stage, then the line
starting with ci is becoming longer at every stage and never closes. Hence, (N, pi) contains
an N-chain with an element ci. So this structure is not cyclic and Ri is satisfied. ◀

▶ Lemma 16. The domain of A is N.

Proof. Whenever we add a new element to A, it is the least natural number which is currently
not there. It follows that the domain of A is either all of N or some initial segment of it.

It remains to show that the dom(A) is infinite. Suppose not. Let a be the largest (as a
number) element in A. Suppose that a was added at some stage s and that at the end of stage
s the only active requirements were Ri1 , . . . , Rik

. We consider stages s + 1, . . . , s + ik + 1. We
observe that there are ik + 1 of them and this is more than the number of active requirements.
Since each requirement gets deactivated at most once, it follows that there is some t such
that s + 1 ≤ t ≤ s + ik + 1 such that none of the requirements is deactivated at stage t. This
implies that at stage t we have not discovered any new cycle of length t. Hence at stage t we
add a cycle of length t to A and this cycle consists of new elements larger than a. Hence a is
not the largest natural number in A contrary to our assumption. ◀

▶ Lemma 17. A is not punctually presentable.

Proof. Suppose not. Then A ∼= (N, pi), for some i ∈ N. By Lemma 13, A is a simple cyclic
injection structure. By Lemmas 14 and 15, Ri is satisfied. Since (N, pi) is also a simple cyclic
injection structure, there is some cycle length occurring in pi but not in f . This contradicts
the assumption that (N, f) ∼= (N, pi). Hence, A is not punctually presentable. ◀

5 Functional trees

In this section we prove the main result of the paper:

▶ Theorem 5. The class of functional trees is not punctually robust.

▶ Definition 18 (functional tree). Let A ̸= ∅ be a set and let T : A → A. (A, T ) is a
functional tree, if there is a unique r such that T (r) = r, and for every x ∈ A there exists
i ∈ N such that T i(x) = r. The unique r is called the root, and is denoted by r(A, T ).

Before we start, we need several technical notions.
First, observe that a functional tree (P, T ) may be viewed as a partial order (P, ≤) defined

as follows: x ≤ y ⇔ ∃i ∈ NT i(x) = y. This allows us to use a convenient order-theoretic
notation when speaking about trees. However, we should keep in mind that this is just
a manner of speaking and that in this section we deal with functional trees. Given a
partial order (P, ≤), we define P≤x = {y ∈ P : y ≤ x} and P≥x = {y ∈ P : y ≥ x}. The
corresponding strict partial order is denoted by <. Elements x, y ∈ P are adjacent, Adj(x, y),
if and only if x < y ∧ ¬∃z ∈ P x < z < y. To avoid confusion, we sometimes write ≤T or
AdjT to indicate that the ordering or adjacency relation is induced by T .
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▶ Definition 19 (branching node, branching, binary branching). x ∈ T is a branching node
of T (or x branches in T ) if it has at least two children in T . Such an x induces a unique
subtree of T , called a branching and defined as br(x, T ) = {y ∈ T : Adj(y, x)} ∪ T≥x. If x

is a branching node, we define |br(x, t)|, the length of br(x, t), as the length of T≥x. By a
binary branching we mean a tree with exacly two leaves sharing a parent.

▶ Definition 20 (uniquely branching tree). We say that a tree T is uniquely branching if for
every n ∈ N, there exists at most one branching node x ∈ T such that |T≥x| = n.

▶ Definition 21 (level). We say that a branching node x ∈ T belongs to the level n of T if
the set T>x contains precisely n branching nodes. We denote the level n of T by T [n]. We
sometimes refer to the members of T [n] as n-level nodes.

Keep in mind that we number levels 0, 1, . . . . Therefore, the first level is level 0. Level T [n]
may be empty but if T [n] ̸= ∅ then T [k] ̸= ∅, for k < n.

▶ Definition 22 (i-level subtree). Let T be a tree such that T [i] ̸= ∅. We define T [≤ i] as the
least subtree of T containing all nodes at levels ≤ i together with their children.

Notice that T [≤ i] is the sum of the branchings br(x, T ) for all x ∈ T [j] such that j ≤ i.
Recall that a binary tree is a tree in which every internal node has at most two children.

In a proper binary tree, every internal node has exactly two children.

▶ Lemma 23. Let (T, ≤) be a finite proper binary tree and let F ⊆ T be such that, at every
level of T except the first, at most one node is in F . Then there exists a leaf x ∈ T such that
T≥x ∩ F = ∅.

Proof. By assumption, r(T ) /∈ F . Suppose we have a path xn, xn−1, . . . , x0 = r(T ) such that
xi /∈ F , for i = 0, 1, . . . , n. If xn is a leaf, we are done. If not, xn has two children. These
two children are at the same level and one of them is outside F . Let xn+1 to be a child
outside F . ◁

▶ Definition 24 (attaching a tree to a leaf). Let T, T̂ be disjoint finite trees and let z ∈ T be a
leaf. T ′ is obtained from T by attaching T̂ to z in T if dom(T ′) = dom(T )∪(dom(T̂ )\{r(T̂ )})
and x, y ∈ dom(T ′) satisfy AdjT ′(x, y) iff AdjT (x, y) ∨ AdjT̂ (x, y) ∨ AdjT̂ (x, r(T̂ )) ∧ y = z.

▶ Definition 25 (functional semitree). Let A be a finite set and let T : A → A be a partial
function. We say that (A, T ) is a functional semitree if there is a unique r such that T (r) = r,
and (A, χT \ {(r, r)}) is an acyclic directed graph. The unique r is called the root, and is
denoted by r(A, T ).

The difference between a semitree and a tree is that the former may contain nodes that
are not connected to the root via any path. We will use the letters t and q, possibly with
decorations, to refer to finite trees and to semitrees, respectively.

▶ Definition 26 (rooted part of T ). R(T ) denotes the largest subtree of a semitree T .

At every stage of the construction, the main tree T that we build is approximated by a finite
tree. As we will see, the growth of T is modulated by a set of nodes F .

▶ Definition 27 (closed node, open node). A node y ∈ T is closed at a given stage if
T≥y ∩ F ̸= ∅ at that stage. A node y is open if y is not closed, that is T≥y ∩ F = ∅.
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▶ Definition 28 (leaf extension). Let t be a tree with a distinguished set of nodes F . We
say that t′ is a leaf extension of a tree t (in symbols: t′ ⊒ t) if, for some k > 0, there exist
disjoint (from t and from each other) finite trees t̃1, . . . , t̃k, and pairwise distinct open leaves
x1, . . . , xk ∈ t, such that t′ is obtained from t by simultaneously attaching each t̃i to xi in t.
We say that t′ is a proper leaf extension of t (in symbols: t′ ⊐ t) if t′ ⊒ and t′ ̸= t.

▶ Definition 29 (matching). (h, t′) is a matching of q into t (in symbols: (h, t′) : p ↪→ t), if
t′ ⊒ t and h : R(q) ↪→ t′ is an embedding such that img(h) ⊇ dom(t′) \ dom(t). A matching
(h, t′) of q into t is proper, if t′ ⊐ t. We say that q is (properly) matchable with t if there
exists a (proper) matching (h, t′) of q into t.

▶ Lemma 30. Let P be an infinite tree and let t be a finite tree whose level n is the maximal
one (that is, t[n] ̸= ∅ and t[n + 1] = ∅) and t[≤ n] = t. Let q be a finite subtree of P . If q is
not matchable with t, then P ̸∼= T , for every infinite tree T ⊃ t such that T [≤ n] = t.

Proof. Suppose there is an infinite tree T ⊃ t such that T [≤ n] = t and P ∼= T via h : P → T .
Let h(q) be the isomorphic image of q (hence, a subtree of T ). Let t′ = T ↾ dom(t)∪dom(h(q)).
t′ is a leaf extension of t. Since q is a tree, R(q) = q. We observe that (h ↾ q, t′) is a matching
of q into t. ◀

▶ Definition 31 (outside branching). Suppose q is matchable with t. We say that q branches
outside t at x if x branches in q and |q≥x| is greater than the length of every branching in t.
We say that q branches outside t if it branches outside t for some x.

▶ Definition 32 (inside branching). Suppose q is matchable with t. We say that q branches
inside t at x if x branches in R(q), br(x, q) embeds in t and for every matching (h, t′) : q ↪→ t,
h(q≤x) ∩ t′ \ t ̸= ∅ (i.e., h maps some descendants of x to t′ \ t).

We are ready to start the proof of Theorem 5.
We build an infinite computable functional tree T with domain N such that, for all i ∈ N,

the following requirements Ri are satisfied: T ≁= Pi, where Pi = (N, pi). T will be binary,
uniquely branching and it will grow only through its leaves. T will be approximated by a
sequence of finite trees T0 ⊆ T1 ⊆ . . . , with T =

⋃
s∈N Ts. Occasionally, when it does not

lead to confusion, we take the liberty to use the symbol T to refer to T at a given stage
s, i.e. to Ts. During the construction, we approximate Pi by looking at certain specific
finite approximations of Pi, which we call anticipations. We make this notion precise in
Definition 34. For now, it sufficient to know that an anticipation of Pi simply looks at portions
of Pi that are large compared with the current approximation of T . We simultaneously build
a dynamic set F ⊂ T . We will put elements into F but will never withdraw them.
▶ Remark 33. An approximation Pi,s = (A, pi ↾ A) of a functional tree Pi may actually be a
semi-tree. This is because A may contain nodes which are connected to the root via nodes
from N \ A.

Satisfaction of Ri will be based on two strategies that we describe below. In the description
of these strategies, we mention a tree t. The role of this tree will become clear when we
describe the StrategySelection procedure. When a strategy is called, t is given as one of the
inputs and used t to compute anticipations of Pi. These anticipations depend on the number
of stage s and t, hence their name: (s, t)-anticipations.

Outside-branch Strategy

We say that the outside-branch strategy for pi is ready at stage s for a tree t if the (s, t)-
anticipation q of pi is a functional semitree and q branches outside Ts−1. The strategy is
called only when it is ready in the specified sense. The outside-branch strategy is called with
arguments q, Ts−1, where q is some (s, t)-anticipation of pi that branches outside Ts−1.
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Figure 1 Outside-branch strategy.

The idea of the strategy is as follows (see, also, Figure 1). By the definition of the
outside-branching, q contains a branching b that is longer than every branching in Ts−1
(hence the word “outside-branching”). If we wanted to embed b into T , we would have to
extend Ts−1 to include the branching length of b in the extension of Ts−1. We purposely
extend Ts−1 to a leaf extension t′ ⊐ Ts−1 that omits the branching length of b. Recall that
the construction is arranged in such a way that T grows only through its leaves and whenever
we add new branchings into T , their length is greater than any branching that was in T

so far. Hence, once we omit a given branching length in T , T will not have any branching
of this length at all. Therefore, if we set Ts = t′, we would kill the potential isomorphism
T ∼= Pi permanently.

More precisely, we produce t′ in the following way. Let d = max{|q≥x| : x branches in q}.
Let {l1, . . . , ln} be the set of all open leaves of Ts−1. We make binary branchings b1, . . . , bn

such that for all i, j, |(Ts−1)≥li
| + |bi| > d and i ̸= j ⇒ |(Ts−1)≥li

| + |bi| ≠ |(Ts−1)≥lj
| + |bj |.

The strategy outputs t′ obtained from Ts−1 by simultaneous attachment of each bi to li. We
make sure t′ is extended by the least fresh numbers not occurring in Ts−1.

The outside-branch strategy is illustrated in Figure 1. Ts−1 is shown on the left in black.
The tree R(q) (or rather a leaf extension of Ts−1 into which R(q) embeds) is shown explicitly
only in part using gray subtrees on the left. The output of the outside-branch strategy is t′

shown on the right which has very long branchings attached to l1, . . . , ln, the open leaves of
Ts−1, so that t′ omits some branching lengths of R(q). The horizontal dotted line indicates
that the lengths of the branchings below it are greater than the lengths of all the branchings
in the tree on the left.

Inside-branch Strategy

We say that the inside-branch strategy for pi is ready at stage s for a tree t if the (s, t)-
anticipation q of pi and Ts−1 satisfy the following conditions:

q is a functional semitree, (1)
Ts−1 and R(q) have level i + 1, (2)
R(q)[≤ i + 1] ∼= T [≤ i + 1], (3)
q branches inside Ts−1. (4)

The strategy is called only when it is ready in the specified sense. We call it with
arguments q, Ts−1, where q is some (s, t)-anticipation of pi that branches inside Ts−1.
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The idea of the inside-branch strategy is as follows. By the definition of the inside-
branching, q contains a branching node x such that br(x, q) embeds into Ts−1 (hence the
word “inside-branching”). Since Ts−1 is uniquely branching, there is only one way of
embedding this branching to Ts−1. Suppose this unique embedding maps x to y ∈ Ts−1. By
the definition of the inside-branching, there is no way of embedding the subtree q≤x into
the subtree (Ts−1)≤y without prolonging some paths in the subtree (Ts−1)≤y. Hence, if we
decide to put y (or some of its ancestors) into F , we would stop growing (Ts−1)≤y, that is, we
would have (in the limit) T≤y = (Ts−1)≤y, thus killing the isomorphism T ∼= Pi permanently.

The details of the strategy follow. Suppose that the inside-branch strategy for pi is ready
and thus (1)-(4) hold. The strategy will stop the growth of T from exactly one node at level
i + 1 of T . Since q branches inside Ts−1, let x be a node of Ts−1 at which q branches inside
Ts−1. If x belongs to level j > i + 1, then the path connecting x to the root must intersect
level i + 1 and the point of intersection is the branching node that we put into F ; note that
this point is unique because T is uniquely branching and (2) and (3) hold. If x belongs to
level i + 1, we simply put x to F ; again, this x is unique by the same reasoning. If x belongs
to level ≤ i but not to level i + 1, it means that Ts−1 did not have chance to grow up to
level i + 1 from x (and will not have such a chance anymore, because we never withdraw
elements from F ) and therefore we do not have to take any action.

Construction

The construction is arranged in stages s = 0, 1, . . . . For s = 0, we set T0(0) = 0 with domain
{0} and F = ∅. No Ri is satisfied at stage 0. At each subsequent stage s > 0, we start with a
finite tree Ts−1. We make a call to StrategySelection(s, Ts−1) and after it finishes working,
we go to the next stage. This ends the construction.

StrategySelection is a recursive procedure that selects which strategy to perform and
with which arguments. It uses a specific way of growing our approximations.

▶ Definition 34 (anticipation). Let p : N → N, s ∈ N and let T be a finite tree. Let
C = [0, s) ∪ [0, |T | + 1) and D =

⋃H(T )+s
l=0 pl(C). We say that p ↾ D is the (s, T )-anticipation

of p.

We say that pi is ready at stage s for a tree t if either the outside-branch or the
inside-branch strategy for pi is ready at stage s for t.

StrategySelection(n, t). Check whether there exists an unsatisfied Ri with i < n such
that pi is ready at stage s for t. If there is no such i, return from the current call to
StrategySelection with permission. Otherwise, let k < n be the least such i.

If the (s, t)-anticipation of pk branches inside Ts−1, perform the inside-branch strategy
with the (s, t)-anticipation of pk, Ts−1 as arguments (we say that pk triggers the inside-branch
strategy). Declare Ri as satisfied and return from the current call to StrategySelection

without permission.
If it is not the case that the (s, t)-anticipation of pk branches inside Ts−1, then the

(s, t)-anticipation of pk branches outside Ts−1. In that case we let t′ be the output of the
outside-branch strategy with the (s, t)-anticipation of pk and Ts−1 as arguments, and we
call StrategySelection(k, t′) (we say that pk asks for permission). If the call returns with
permission, we set Ts = t′ (we say that pk triggers the outside-branch strategy), declare that
Rk is satisfied, and we return without permission.



D. Kalociński, L. San Mauro, and M. Wrocławski 65:13

Verification

It is clear that T is computable and that if it is infinite then its domain is equal to N.

▶ Lemma 35. T is infinite and has infinitely many branchings of distinct length.

Proof. We show by induction on the number of levels that T has infinitely many levels.
Suppose the current T has no levels at all, i.e. the domain of T is {0}. 0 is not a

branching node of T and therefore it cannot trigger the inside-branch strategy. So 0 /∈ F

forever. However, at some stage u ≥ s, we will see pi, with i < u, such that the anticipation
of pi will branch outside T and since 0 will be an open leaf of T at that stage, it will trigger
the outside-branch strategy and add level 0 to T . If T has only one level, i.e., level 0, the
unique branching node in T will never be put into F (because the inside-branch strategy
may affect only levels ≥ 1). As above, we can show that T will grow up to level 1.

Now, let us suppose that T has exactly n levels, where n > 1 (that is, levels 0, 1, . . . , n−1).
The construction may put into F at most one node from each of the levels 1, 2, . . . , n − 1.
Once it does, it never withdraws them from F . Suppose we are at a stage s0 after which the
construction do not add any new nodes from levels 1, 2, . . . , n − 1 into F . This means that it
will never be the case that, for some 0 ≤ i ≤ n − 2, Ri is unsatisfied and the inside-branch
strategy for pi is ready (if we later encountered such an i, the inside-branch strategy would
put some element from levels 1, 2, . . . , n − 1 into F , contradicting our choice of s0). If T

has grown by the time we reached stage s0, we are done. So suppose otherwise. Clearly, at
some later stage s, some pj , j < s, with unsatisfied Rj will show us an anticipation q such
that q is a functional semitree and q branches outside T . Choose the least such j at stage
s. Clearly, the outside-branch strategy for pj is ready at stage s (and Rj is unsatisfied).
Moreover, no outside-branch strategy for pk with k < j is ready because of the choice of j.
As for the inside-branch strategy for pk with k < j, either Rk is satisfied or the inside-branch
strategy for pk not ready – this follows from the choice of s0. Therefore, pk will be granted
permission. By the arrangement of the inside-branch strategy and by Lemma 23, T has open
leaves. Therefore, the outside-branch strategy for pk will extend T by another level.

We have already shown that the outside-branch strategy acts infinitely often. Since it
always adds new branchings, there must be infinitely many branchings in T . Clearly, the
strategy also guarantees that any two different branchings do not have the same length. ◀

▶ Lemma 36. For every i ∈ N, if Pi is a functional tree, then Ri is eventually satisfied.

Proof. Fix a punctual structure Pi and assume that there exists a stage s0 after which for
every j < i, either Ri is satisfied or pj is not ready (this holds vacuously for i = 0). Suppose
that Pi is a uniquely branching functional tree (if not, T ̸∼= Pi). We will show that Ri will
be eventually satisfied.

Choose a stage s0 as above and assume that i < s0. Suppose that at the beginning of
s0 the requirement Ri has not yet been declared as satisfied (that is, neither of the two
strategies has been triggered before s0).

If at some stage u ≥ s0, we see that an anticipation q of pi is not matchable with Tu−1,
then Ri is satisfied by Lemma 30. In the lemma, we take P = pi, t = Tu−1 and q. Let n

be the maximal level of t. By the construction t[≤ n] = t. The infinite tree T that we are
building will be such that T ⊃ Tu−1 = t and T [≤ n] = t. Hence, the premises of the lemma
are satisfied. It means that T ≁= Pi and thus Ri is satisfied. We can therefore assume that,
for u ≥ s0, any considered anticipation of pi is matchable with Tu−1.

Now, if at some stage u ≥ s0 the requirement Ri is still not satisfied but pi is ready at
stage u for Tu−1, i will be the least j with that property. So, according to StrategySelection,
either it will trigger an inside-branch strategy, or it will ask for permission and receive it, thus
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triggering an outside-branch strategy. Now, it may happen that pi becomes ready because
the outside-branch strategy for pi is ready but the inside-branch strategy is not. In that
case, according to the StrategySelection, pi will receive permission and thus Ri will become
satisfied.

So assume pi never becomes ready for this reason after stage s0. Observe that if
anticipations of pi and Ts always fail to satisfy (1), (2) or (3), then T ̸∼= Pi. So assume that
after stage s0 these conditions are always satisfied. Therefore, it remains to prove that at
some stage u ≥ s0, the inside-branch strategy is triggered.

It is important to note that once the level i + 1 of T is done, T does not change up to
level i + 1 at any later stage (it may only add some nodes from levels ≤ i + 1 to F but this
will not change the structure of T up to level i + 1).

Consider stage u ≥ s0. The construction calls StrategySelection(u, Tu−1). Let q be the
initial anticipation of pi at stage u, namely the (u, Tu−1)-anticipation of pi. By the definition
of anticipation, q contains more nodes than Tu−1. Therefore, the situation in which R(q) = q

and R(q) ↪→ Tu−1 is not possible. So we have two remaining cases:
(a) R(q) ↪→ Tu−1 and R(q) ̸= q. In this case, there are nodes z ∈ q \ R(q) that are

disconnected from the root. Moreover, by the definition of anticipation, if z ∈ q \ R(q)
and z does not have children in q, then z gives rise to a chain of length H(Tu−1) + u in q.

(b) R(q) ̸↪→ Tu−1. In this case, q must be properly matchable with Tu−1. To see why, recall
that q is matchable with Tu−1. So R(q) embeds in a leaf extension T ′ of Tu−1. But any
such leaf extension must be proper – otherwise R(q) ↪→ Tu−1. From this it follows that
q branches inside Tu−1. For take a proper matching of q into Tu−1 that embeds q into
T ′ ⊐ Tu−1. Take the least z ∈ T ′ \ Tu−1. This z is connected to the root of Tu−1 via
a path that overlaps with initial i + 1 levels of Tu−1. But every such path (the one in
Tu−1 or its preimage in q) contains branching nodes because q contains a copy of initial
i + 1 levels of Tu−1. Therefore, q branches inside Tu−1, and thus q is ready at stage u

for Tu−1. Hence the inside branch strategy will handle Ri.

Assume that (b) holds. Therefore, the inside-branch strategy for pi is ready at stage u

for Tu−1. Hence, Ri becomes satisfied immediately after StrategySelection is called.
Assume that we are in case (a). Then pi is not ready at stage u for Tu−1. But other pj ,

with j > i will become ready later on, say at stage v. If such pj triggers an inside-branch
strategy to satisfy Rj , our tree does not grow and we therefore do not miss an opportunity
to satisfy Ri. However, if pj , with j > i wants to trigger an outside-branch strategy (which
must happen eventually), it will produce T ′ ⊃ Tu−1 and ask for permission. So before pj is
allowed to act by extending the current tree from Tu−1 to T ′ ⊃ Tu−1, we first check whether
pi is ready at stage v for the (bigger) tree T ′ that we would grow if we allowed pj to act first.
If it is not ready, it means that we can permit pj to trigger an outside-branch strategy and
set Tv = T ′. For it means that all the long disconnected chains that we had in q remain
disconnected, even after prolonging them up to length H(T ′) + v in the (v, T ′)-anticipation
of pi. Notice that if we did not insist on asking for permission, we would set Tv := T ′ ⊃ Tu−1
and it could happen that prolonging a bit the disconnected chains in q would change q into
a tree that embeds into Tv and we would miss the opportunity to satisfy Ri. Asking for
permission prevents this.

Finally, it suffices to observe that, since pi is a tree, at some point these disconnected
chains will connect to the root, either at the beginning of StrategySelection or after being
asked for permission by some other pj , with j > i. Since these chains are kept very long
(longer than any path in the current T ), once they become connected, they necessarily stick
out of T and thus branch inside it. At this point the inside-branch strategy is triggered and
Ri is satisfied. ◀
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