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Abstract
Twin-width is a width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS’20,
JACM’22], which has many structural and algorithmic applications. Hliněný and Jedelský [ICALP’23]
showed that every planar graph has twin-width at most 8. We prove that the twin-width of every
graph embeddable in a surface of Euler genus g is at most 18

√
47g + O(1), which is asymptotically

best possible as it asymptotically differs from the lower bound by a constant multiplicative factor.
Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To
prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger
version of the Product Structure Theorem for graphs of Euler genus g that asserts that every such
graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all
bags of size at most eight with a single exceptional bag of size max{6, 32g − 37}.
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1 Introduction

Twin-width is a graph parameter, which has recently been introduced by Bonnet, Kim,
Thomassé and Watrigant [16, 17]. It has quickly become one of the most intensively studied
graph width parameters due to its many connections to algorithmic and structural questions
in both computer science and mathematics. In particular, classes of graphs with bounded
twin-width (we refer to Section 2 for the definition of the parameter) include at the same
time well-structured classes of sparse graphs and well-structured classes of dense graphs.
Particular examples are classes of graphs with bounded tree-width, with bounded rank-width
(or equivalently with bounded clique-width), and classes excluding a fixed graph as a minor.
As the first order model checking is fixed parameter tractable for classes of graphs with
bounded twin-width [16,17], the notion led to a unified view of various earlier results on fixed
parameter tractability of first order model checking of graph properties [21, 22, 30–33, 49],
and more generally first order model checking properties of other combinatorial structures
such as matrices, permutations and posets [4, 12,19,20].
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66:2 Twin-Width of Graphs on Surfaces

The foundation of the theory concerning twin-width has been laid by Bonnet, Kim,
Thomassé and their collaborators in a series of papers [8–14,16,17], also see [51]. The amount
of literature on twin-width is rapidly growing and includes exploring algorithmic aspects of
twin-width [6,10,12,15,48], its combinatorial properties [2,4,7,10,14,24,47], and connections
to logic and model theory [12,16,17,19,20,34]. While many important graph classes have
bounded twin-width, good bounds are known only in a small number of specific cases. One
of the examples is the class of graphs of bounded tree-width where an asymptotically optimal
bound, exponential in tree-width, was proven by Jacob and Pilipczuk [40]. Another example
is the class of planar graphs. The first explicit bound of 583 by Bonnet, Kwon and Wood [18]
was gradually improved [5,35,40] culminating with a bound of 8 obtained by Hliněný and
Jedelský [38]; also see [36, 37] for a simpler proof and [41] for a promising approach of
obtaining the upper bound of 7, which would be tight since Lamaison and the first author [42]
constructed a planar graph with twin-width 7. In this paper, we extend this list by providing
an asymptotically optimal upper bound on the twin-width of graphs embeddable in surfaces
of higher genera. We prove the following two results (the latter is used to prove the former):

We show that the twin-width of a graph embeddable in a surface of Euler genus g is
at most 18

√
47g + O(1), which is asymptotically best possible; our proof also yields a

quadratic time algorithm to find a witnessing sequence of vertex contractions.
We provide a strengthening of the Product Structure Theorem for graphs embeddable in
a surface of Euler genus g by showing that such graphs are subgraphs of a strong product
of a path and a graph that almost has a bounded tree-width.

We next present the two results in more detail while also presenting the related existing
results. While we prove both results in purely structural way, their proofs are algorithmic
and yield a quadratic time algorithm (when the genus g > 0 is fixed) that given a graph G

embeddable in a surface of genus g, constructs a sequence of contractions witnessing that
the twin-width of G is at most 18

√
47g + O(1). Further details are discussed in Section 5.

1.1 Twin-width of graphs embeddable in surfaces
Graphs that can be embedded in surfaces of higher genera, such as the projective plane,
the torus and the Klein bottle, form important minor-closed classes of graphs with many
applications and connections [45]. While the general theory concerning minor-closed classes
of graphs yields that graphs embeddable in a fixed surface have bounded twin-width, the
bounds are quite enormous: the results from [14, Section 4] on d-contractible graphs (graphs
embeddable in a surface of Euler genus g are O(g)-contractible [39]) yields a bound double
exponential in g, and the Product Structure Theorem for graphs embeddable in surfaces [26,28]
together with results on the twin-width of graphs with bounded tree-width [40], of the strong
product of graphs [46] and their subgraph closure [9] yields an exponential bound.

Bonnet, Kwon and Wood [18] showed that every graph embeddable in a surface of Euler
genus g has twin-width at most 205g + 583. Our main result asserts that twin-width of every
graph embeddable in a surface of Euler genus g is at most 18

√
47g + O(1) ≈ 123.4√

g + O(1).
This bound is asymptotically optimal as any graph with

√
6g−O(1) vertices can be embedded

in a surface of Euler genus g and the n-vertex Erdős-Rényi random graph Gn,1/2 has twin-
width at least n/2−O(

√
n log n) [1], i.e., there exists a graph with twin-width

√
3g/2−o(√g)

embeddable in a surface of Euler genus g. In particular, our upper bound asymptotically
differs from the lower bound by a multiplicative factor 6

√
282 ≈ 100.76. While several parts

of our argument can be refined to decrease the multiplicative constant (to around 20), we
have decided not to do so due to the technical nature of such refinements and the absence of
additional structural insights gained by doing so.
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1.2 Product Structure Theorem
On the way to our main result, we prove a modification of the Product Structure Theorem
that applies to graphs embeddable in surfaces. The Product Structure Theorem is a recent
significant structural result obtained by Dujmović, Joret, Micek, Morin, Ueckerdt and
Wood [26, 28], which brought new substantial insights into the structure of planar graphs
and led to breakthroughs on several long standing open problems concerning planar graphs,
see, e.g. [25]. We also refer to the survey by Dvořák et al. [29] on the topic. The statement of
the Product Structure Theorem originally proven by Dujmović et al. [26, 28] reads as follows
(we remark that the statement in [26,28] does not include the condition on planarity of the
graph of bounded tree-width, however, an easy inspection of the proof yields this).

▶ Theorem 1. Every planar graph is a subgraph of the strong product of a path and a planar
graph with tree-width at most 8.

Ueckerdt et al. [52] improved this as follows (we state a corollary of their main result to
avoid defining the notion of simple tree-width, which is not needed in our further presentation).

▶ Theorem 2. Every planar graph is a subgraph of the strong product of a path and a planar
graph with tree-width at most 6.

Dujmović et al. [26, 28] also proved two extensions of the Product Structure Theorem to
graphs embeddable in surfaces.

▶ Theorem 3. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of
the strong product of a path, the complete graph K2g and a planar graph with tree-width at
most 9.

▶ Theorem 4. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of the
strong product of a path, the complete graph Kmax{2g,3} and a planar graph with tree-width
at most 4.

A stronger version was proven by Distel at el. [23]; the discussion of the even stronger
statement implied by the proof of the next theorem given in [23] can be found after Theorem 6.

▶ Theorem 5. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of the
strong product of a path, the complete graph Kmax{2g,3} and a planar graph with tree-width
at most 3.

We remark that it is not possible to replace K2g in the statement of Theorems 3, 4
and 5 with a complete graph with o(g) vertices as long as the bound on the tree-width stays
constant since the layered tree-width of graphs embeddable in a surface of Euler genus g is
linear in g [27] (the definition of layered tree-width is given in Section 2). To prove our upper
bound on the twin-width of graphs embeddable in surfaces, we strengthen the statement of
the Product Structure Theorem for graphs embeddable in surfaces as follows. Theorems 3, 4
and 5 imply that every graph embeddable in a surface of Euler genus g > 0 is a subgraph of
the strong product of a path and a graph with tree-width at most 20g − 1, max{10g − 1, 14}
and max{8g − 1, 11}, respectively. The next theorem, which we prove in Section 3, asserts
that it is possible to assume that the tree-width of the graph in the product is almost at
most 7 in the sense that all bags except possibly for a single bag have size at most 8.

▶ Theorem 6. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of
the strong product of a path and a graph H that has a rooted tree-decomposition such that

the root bag has size at most max{6, 32g − 37}, and
every bag except the root bag has size at most 8.

MFCS 2024
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Similarly as it is not possible to replace K2g with a complete graph with o(g) vertices in
Theorem 3, it is necessary to permit at least one of the bags to have a size linear in g in
Theorem 6. Hence, the statement of Theorem 6 is the best possible asymptotically.

We remark that the proof of Theorem 5 given in [23] implies that every graph embeddable
in a surface of Euler genus g > 0 is a subgraph of the strong product of a path and a graph
that can be obtained from a planar graph with tree-width at most 3 by replacing one vertex
of this planar graph with K2g and the remaining vertices with K3 (and replacing each edge of
the planar graph with a complete bipartite graph between the corresponding sets of vertices).
However, the vertex of the planar graph that is replaced with K2g can be contained in many
bags of the tree-decomposition and so the proof given in [23] does not yield a statement
similar to that of Theorem 6 since the number of bags in the tree-decomposition with size
linear in g can be arbitrary (although each such bag contains the same 2g vertices of K2g in
addition to 9 other vertices). The main new component in the proof of Theorem 6 (compared
to the proofs given in [23,26,28]) is Lemma 12 given in Section 3, which is crucial so that we
are able to restrict the sizes of all but one bag in a tree-decomposition to a constant size.

We also note the following corollary of Theorem 6 for projective planar graphs.

▶ Corollary 7. Every graph embeddable in the projective plane is a subgraph of the strong
product of a path and a graph with tree-width at most 7.

2 Preliminaries

In this section, we introduce notation used throughout the paper. We use [n] to denote the
set of the first n positive integers, i.e., {1, . . . , n}. All graphs considered in this paper are
simple and have no parallel edges unless stated otherwise; if G is a graph, we use V (G) to
denote the vertex set of G. A triangulation of the plane or a surface of Euler genus g > 0 is
a graph embedded in such a surface such that every face is a 2-cell, i.e., homeomorphic to a
disk, and bounded by a triangle. A near-triangulation is a 2-connected graph G embedded
in the plane such that each inner face of G is bounded by a triangle.

We next give a formal definition of twin-width. A trigraph is a graph with some of its
edges being red; the red degree of a vertex v is the number of red edges incident with v. If
G is a trigraph and v and v′ form a pair of its (not necessarily adjacent) vertices, then the
trigraph obtained from G by contracting the vertices v and v′ is the trigraph obtained from
G by removing the vertices v and v′ and introducing a new vertex w such that w is adjacent
to every vertex u that is adjacent to at least one of the vertices v and v′ in G and the edge
wu is red if u is not adjacent to both v and v′ or at least one of the edges vu and v′u is red.
The twin-width of a graph G is the smallest integer k such that there exists a sequence of
contractions that reduces the graph G, i.e., the trigraph with the same vertices and edges
as G and no red edges, to a single vertex, and none of the intermediate graphs contains a
vertex of red degree more than k.

A rooted tree-decomposition T of a graph G is a rooted tree such that each vertex of T is
a subset of V (G), which we refer to as a bag, and that satisfies the following:

for every vertex v of G, there exists a bag containing v,
for every vertex v of G, the bags containing v form a connected subgraph (subtree) of T ,
and
for every edge e of G, there exists a bag containing both end vertices of e.

If the choice of the root is not important, we just speak about a tree-decomposition of a
graph G. The width of a tree-decomposition T is the maximum size of a bag of T decreased
by one, and the tree-width of a graph G is the minimum width of a tree-decomposition of G.
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A k-tree is defined recursively as follows: the complete graph Kk is a k-tree and if G is a
k-tree, then any graph obtained from G by introducing a new vertex and making it adjacent
to any k vertices of G that form a complete subgraph in G is also a k-tree. Note that a
graph G is a 1-tree if and only if G is a tree. More generally, a graph G has tree-width at
most k if and only if G is a subgraph of a k-tree, and if G has at least k vertices, then G is a
spanning subgraph of a k-tree. Note that k-trees have a tree-like structure given by their
recursive definition, which also gives a rooted tree-decomposition of G with width k: the
rooted tree-decomposition of Kk consists of a single bag containing all k vertices, and the
rooted tree-decomposition of the graph obtained from a k-tree G by introducing a vertex
w can be obtained from the rooted tree-decomposition TG of G by introducing a new bag
containing w and its k neighbors and making this bag adjacent to the bag of TG that contains
all k neighbors of w (such a bag exists since the subtrees of a tree have the Helly property).

A BFS spanning tree T of a (connected) graph G is a rooted spanning tree such that
the path from the root to any vertex v in T is the shortest path from the root to v in G; in
particular, a BFS spanning tree can be obtained by the breadth-first search (BFS). A layering
is a partition of a vertex set of a graph G into sets V1, . . . , Vk, which are called layers, such
that every edge of G connects two vertices of the same or adjacent layers. i.e., layers whose
indices differ by one. If T is a BFS spanning tree of G, then the partition of V (G) into sets
based on the distance from the root of T is a layering. A BFS spanning forest F of a (not
necessarily connected) graph G is a rooted spanning forest, i.e., a forest consisting of rooted
trees, such that there exists a layering V1, . . . , Vk compatible with F , i.e., for every tree of F ,
there exists d such that the vertices at distance ℓ from the root are contained in Vd+ℓ. Note
that if G is a graph and T a BFS spanning tree of G, then removing the same vertices in G

and T results in a graph G′ and a BFS spanning forest of G′. Finally, the layered tree-width
of a graph G is the minimum k for which there exists a tree-decomposition T of G and a
layering such that every bag of T contains at most k vertices from the same layer.

Consider a graph G and a BFS spanning tree T of G. A vertical path is a path contained
in T with no two vertices from the same layer, i.e., a subpath of a path from a leaf to the
root of T . The vertex of a vertical path closest to the root is its top vertex and the vertex
farthest is its bottom vertex. Vertical paths with respect to a BFS spanning forest are defined
analogously. If P is a partition of the vertex set of G to vertical paths, the graph G/P is
the graph obtained by contracting each of the paths contained in P to a single vertex; note
that the vertices of G/P can be viewed as the vertical paths contained in P and two vertical
paths P and P ′ are adjacent in G/P if the graph G has an edge between V (P ) and V (P ′).

3 Product Structure Theorem for graphs on surfaces

In this section, we provide the version of the Product Structure Theorem for graphs on
surfaces, which we need to prove our upper bound on the twin-width. We start with recalling
the following lemma proven by Dujmović et al. [26, 28]; note that the fundamental cycles
determined by the edges a1b1, . . . , agbg generate the fundamental group of the surface Σ.

▶ Lemma 8. Let G be a triangulation of a surface Σ of Euler genus g > 0 and let T be a
BFS spanning tree of G. There exist edges a1b1, . . . , agbg not contained in the tree T with the
following property. Let F0 be the subset of edges of G comprised of the g edges a1b1, . . . , agbg

and the edges of the 2g paths in T from the root of T to the vertices a1, . . . , ag and b1, . . . , bg.
The surface Σ after the removal of the edges contained in F0 is homeomorphic to a disk and
its boundary is formed by a closed walk comprised of the edges contained in F0.

MFCS 2024
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a1

b1

a2 b2

Figure 1 A rooted tree T0 and edges a1b1 and a2b2, which are drawn dashed, bounding a part
of the torus that is homeomorphic to a disk as in Lemma 9. Possible additional edges of the BFS
spanning tree T are drawn dotted.

Using Lemma 8, one can prove the following; we refer to Figure 1 for the illustration
of the notation in the case of the torus. The proof of the lemma is omitted due to space
constraints.

▶ Lemma 9. Let G be a triangulation of a surface of Euler genus g > 0 and let T be a BFS
spanning tree of G. There exist a closed walk W in G, a subtree T0 of T that contains the
root of T , and k vertex-disjoint vertical paths P1, . . . , Pk, k ≤ 2g, such that

the closed walk W bounds a part of the surface homeomorphic to a disk,
the sets V (P1), . . . , V (Pk) form a partition of V (T0), i.e., V (T0) = V (P1) ∪ · · · ∪ V (Pk),
and
the sequence of vertices given by traversing the closed walk W can be split into at most
6g − 1 segments such that all vertices of each segment belong to the same vertical path.

Lemma 9 is one of two key ingredients for the proof of Theorem 13. The second, which
is Lemma 12, relates to partitioning disk regions bounded by vertical paths. Similarly
to [26,28,52], we make use of Sperner’s Lemma, see e.g. [3, 50].

▶ Lemma 10. Let G be a near-triangulation. Suppose that the vertices of G are colored with
three colors in such a way that the vertices of each of the three colors on the outer face are
consecutive, i.e., they form a non-empty path. There exists an inner face that contains one
vertex of each of the three colors.

The proof of the next lemma follows the lines of the proof of [52, Lemma 8] and is omitted
due to space constraints. We say that a cycle is covered by paths P1, . . . , Pk if each path is a
subpath of the cycle and each vertex of the cycle belongs to one of the paths P1, . . . , Pk.

▶ Lemma 11. Let G be a near-triangulation and let T be a BFS rooted spanning forest
such that all roots of T are on the outer face. If the boundary cycle of the outer face can be
covered by at most 6 vertex-disjoint vertical paths, say P1, . . . , Pk, k ≤ 6, then there exists a
collection P of vertex-disjoint vertical paths such that

the collection P contains the paths P1, . . . , Pk,
every vertex of G is contained in one of the paths in P, and
G/P has a rooted tree-decomposition of width at most seven such that the root bag contains
the k vertices corresponding to the paths P1, . . . , Pk.
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To state the next lemma, which is the second ingredient to prove the main result of this
section, we need the following definition: if G′ is a subgraph of a graph G embedded in a
surface, a face of G′ is a region if its interior contains a vertex or an edge of G; an inner
region is an inner face that is a region. The proof of the lemma is omitted due to space
constraints.

▶ Lemma 12. Let G be a near-triangulation and let T be a BFS rooted spanning forest such
that all roots of T are on the outer face. If the boundary cycle of the outer face can be covered
by k ≥ 6 vertex-disjoint vertical paths P1, . . . , Pk, then there exist a 2-connected subgraph G′

of G and a collection P of vertex-disjoint vertical paths such that
P contains the vertical paths P1, . . . , Pk,
P contains at most max{6, 6k − 32} vertical paths,
the vertex set of G′ is the union of the vertex sets of the vertical paths contained in P,
the graph G′ contains the boundary of the outer face,
the graph G′ has at most max{1, 3k − 18} inner regions, and
the boundary cycle of each inner region of G′ can be covered by at most six paths such
that each is a subpath of a path from P.

We can now prove the main result of this section. Since a triangulation G in Theorem 13
is a subgraph of the strong product of a path and the graph G/P , Theorem 13 readily implies
Theorem 6. We remind that a tree-decomposition of G/P is a tree whose vertices are bags
containing paths from the set P (the vertices of G/P can be viewed as these paths).

▶ Theorem 13. Let G be a triangulation of a surface of Euler genus g > 0 and let T be a
BFS spanning tree of G. There exists a collection P of vertical paths that partition the vertex
set of G and the graph G/P has a rooted tree-decomposition such that

the root bag has size at most max{6, 32g − 37},
the root bag has at most 6 · max{1, 18g − 21} children, and
every bag except the root bag has size at most 8.

Moreover, every subtree T ′ of the tree-decomposition formed by a child of the root and all its
descendants satisfies the following:

the bags of T ′ contain at most six paths that are contained in the root bag, and
if P1, . . . , Pk are all paths from P that are contained in the bags of T ′ but not in the root
bag, the subgraph induced by V (P1) ∪ · · · ∪ V (Pk) has a component joined by an edge to
each of the paths that are contained both in the root bag and in T ′.

Proof. Fix a triangulation G of a surface of Euler genus g > 0 and a BFS spanning tree T

of G. We apply Lemma 9 to obtain a closed walk W , a subtree T0 of T and k vertex-disjoint
vertical paths P1, . . . , Pk, k ≤ 2g, with the properties given in Lemma 9. Let ℓ ≤ 6g − 1 be
the number of segments that cover the closed walk W as in the statement of the lemma.

We first deal with the general case ℓ ≥ 7 (note that if ℓ ≥ 7, then g ≥ 2). We apply
Lemma 12 to the near-triangulation obtained by cutting along the closed walk W , the BFS
spanning forest obtained from T0 by duplicating the vertices contained in W as needed,
and the ℓ vertical paths that corresponds to the segments that cover the closed walk W .
We obtain a collection P0 of vertex-disjoint vertical paths that contains at most 5ℓ − 32
additional vertical paths and a 2-connected subgraph G′ such that the boundary of each
inner region of G′ can be covered by at most six paths contained in P0. In addition, the
number of inner regions of G′, further denoted by f , is at most 3ℓ − 18. Since ℓ ≤ 6g − 1, we
obtain that P0 contains at most 30g − 37 additional vertical paths and that f ≤ 18g − 21.
We now identify the duplicated vertices of T0, i.e., G′ has been modified to a subgraph of G,

MFCS 2024



66:8 Twin-Width of Graphs on Surfaces

and we replace in the collection P0 the ℓ paths that cover the closed walk W with the paths
P1, . . . , Pk. Hence, the size of the collection P0 is at most 32g − 37 (note that k ≤ 2g) and
the boundary of each region of G′ is still covered by at most six paths such that each is a
subpath of the vertical paths contained in P0 (two different paths can be subpaths of the
same vertical path).

If ℓ ≤ 6 (and so k ≤ 6), we set P0 to be the collection {P1, . . . , Pk} and G′ the graph
consisting of the vertices and the edges of the closed walk W ; note that the only face of G′

bounds a near-triangulation in G and f = 1.
We now proceed jointly for all values of ℓ. Suppose there is a region of G′ such that the

subgraph of G induced by the vertices of G inside this region does not have a component
joined by an edge to each of the (at most six) paths that cover the boundary of the region
and that are subpaths of paths from P0. Then, because G is a triangulation, there are two
vertices on the boundary of this region joined by an edge not contained in G′ and we add
this edge to G′. We proceed as long as such a region exists and eventually obtain a graph
G′′ with f ′ ≤ 6f regions such that the boundary of each region can be covered by at most
six paths, each subpath of a path contained in P0, and each region contains a component
that is joined by an edge to each of the (at most six) paths that cover its boundary. We now
apply Lemma 11 to each of the f ′ near-triangulations bounded by the regions of G′′ and
obtain rooted tree-decompositions T1, . . . , Tf ′ with width at most seven of each them. Let P
be the collection of vertical paths obtained from P0 by including all additional vertical paths
obtained by these f ′ applications of Lemma 11.

We now construct a rooted tree-decomposition of G/P . The root bag contains the vertices
corresponding to the paths in P0 and the subtrees rooted at its children are T1, . . . , Tf ′ . So,
the root bag has size |P0| ≤ max{6, 32g − 37}, it has f ′ ≤ 6f ≤ 6 max{1, 18g − 21} children,
and all bags except the root bag has size at most 8. Consider now a subtree Ti, i ∈ [f ′]. The
only paths from P0 contained in the bags of Ti are the at most six paths whose subpaths
cover the boundary of the corresponding region of G′′ and the vertices contained in the paths
of the bags of Ti but not in the paths of P0 are exactly the vertices of G contained inside the
region. Hence, the subgraph of G induced by such vertices has a component joined by an
edge to each of the paths from P0 contained in the root bag of Ti. We conclude that the
obtained rooted tree-decomposition of G/P has the properties given in the statement. ◀

4 Bound on twin-width

We now present the asymptotically optimal upper bound on the twin-width of graphs
embeddable in surfaces.

▶ Theorem 14. The twin-width of every graph G of Euler genus g ≥ 1 is at most

6 · max
{

3
√

47g + 1, 224
}

= 18
√

47g + O(1).

Proof. Fix a graph G of Euler genus g > 0 and let G0 be any triangulation of the surface
with Euler genus g that G is a spanning subgraph of G0, i.e., V (G0) = V (G) (to avoid
unnecessary technical issues related to adding new vertices, G0 may contain parallel edges).

We apply Theorem 13 to G0 and an arbitrary BFS spanning tree T0; let P be a collection
of vertical paths and T a rooted tree-decomposition as in Theorem 13. Let P1, . . . , Pk be
the vertical paths contained in the root bag and let T1, . . . , Tℓ be the subtrees rooted at the
children of the root bag (note that k ≤ 32g and ℓ ≤ 108g). Further, let Vi, i ∈ [ℓ], be the
vertices contained in the vertical paths in the bags of Ti that are not contained in the root
bag. Note that for every i = 1, . . . , ℓ, the subgraph induced by a set Vi has a component that
is joined by an edge to each path Pj , j ∈ [k], that is contained in a bag of the subtree Ti.
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Let H0 be the graph obtained from G0 by contracting each of the k+ℓ sets V (P1), . . . , V (Pk)
and V1, . . . , Vℓ to a single vertex. Let a1, . . . , ak and b1, . . . , bℓ be the resulting vertices.
Observe that H0 can be obtained from G0 by contracting edges and deleting vertices. Indeed,
the vertices a1, . . . , ak are obtained by contracting paths P1, . . . , Pk and each vertex bi,
i = 1, . . . , ℓ, can be obtained as follows: first contract the component of the subgraph induced
by the set Vi that is joined by an edge to each of the paths P1, . . . , Pk contained in the subtree
Ti to a single vertex, and then delete all the vertices of Vi not contained in this component.
Since H0 can be obtained from G0 by contracting edges and deleting vertices, the graph H0
can be embedded in the same surface as G0. Hence, the number of the edges of H0 is at
most 3(k + ℓ) − 6 + 3g ≤ 3(k + ℓ + g); the latter bound applies even if k + ℓ = 2. Since each
subtree Ti contains at most six of the paths P1, . . . , Pk, each of the vertices b1, . . . , bℓ has
degree at most six and all its (at most six) neighbors are among the vertices a1, . . . , ak.

Let s = 3
√

47g; note that s ≥ 6. We next split the vertices a1, . . . , ak into sets A1, . . . , Ak′

and the vertices b1, . . . , bℓ into sets B1, . . . , Bℓ′ as follows; a similar argument has also been
used in [2]. Keep adding the vertices b1, . . . , bℓ to the set B1 until the sum of their degrees
just exceeds s, then keep adding the remaining vertices to the set B2 until the sum of their
degrees just exceeds s, etc. Observe that the sum of the degrees of the vertices in each
of the sets B1, . . . , Bℓ′ is at most s + 6 ≤ 2s and the sum of the degrees of the vertices in
each of the sets B1, . . . , Bℓ′−1 is at least s. Each of the vertices a1, . . . , ak with degree larger
than s forms a set of size one, and the remaining vertices are split in the same way as the
vertices b1, . . . , bk. Each of the sets A1, . . . , Ak′ has either size one or the sum of the degrees
of its vertices is at most 2s, and the sum of the degrees of the vertices in each of the sets
A1, . . . , Ak′−1 is at least s. Let H ′

0 be the graph obtained from H0 by contracting the vertices
in each of the sets A1, . . . , Ak′ and each of the sets B1, . . . , Bℓ′ to a single vertex; note that
the graph H ′

0 does not need to be embeddable in the same surface as H0. Since the sum of
the degrees of the vertices a1, . . . , ak and b1, . . . , bℓ is at most 6(k + ℓ + g) ≤ 846g (as H0 has
at most 3(k + ℓ + g) edges), we obtain that k′ + ℓ′ ≤ 846g

s + 2 = 2s + 2, i.e., H ′
0 has at most

2s + 2 vertices.
We now describe the order in which we contract the vertices of G, and we analyze the

described order later. In what follows, when we say a layer, we always refer to the layers
given by the BFS spanning tree T0 from the application of Theorem 13. In particular, each
vertex of G is adjacent only to the vertices in its own layer and the two neighboring layers.
To make the presentation clearer, we split contracting vertices into three phases.

Phase I. This phase consists of ℓ subphases. In the i-th subphase, i ∈ [ℓ], we contract all
the vertices of the set Vi that are contained in the same layer to a single vertex in the way
that we now describe. Then, we possibly contract them to some of the vertices created in
the preceding subphases, i.e., those obtained by contracting vertices in V1 ∪ · · · ∪ Vi−1. In
this phase, we never contract two vertices contained in different layers and no contraction
involves any vertex from V (P1) ∪ · · · ∪ V (Pk).

Subphase. Fix i ∈ [ℓ]. Let Gi be the subgraph of G0/P induced by the vertices contained
in the bags of the subtree Ti and let n′ be the number of the paths P1, . . . , Pk that are
contained in the bags of the subtree Ti; note that n′ ≤ 6. If the graph Gi has less than 8
vertices, we proceed directly to the conclusion of the subphase, which is described below. If
the graph Gi has at least 8 vertices, Gi is a subgraph of a spanning subgraph of a 7-tree G′

i

such that the n′ vertices corresponding to the paths from the set {P1, . . . , Pk} are contained
in the initial complete graph of G′

i.
Fix any order Q1, . . . , Qn of the vertical paths corresponding to the vertices of G′

i such
that the neighbors of Qj , j ∈ [n], among Q1, . . . , Qj−1 form a complete graph of order at
most 7 in G′

i and the n′ paths from the set {P1, . . . , Pk} are the paths Q1, . . . , Qn′ . Let Cj be
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the complete subgraph of Gi formed by Qj and its (at most 7) neighbors among Q1, . . . , Qj−1.
Note that the neighbors in G of each vertex of a path Qj , j ∈ [n], are contained in at most
seven of the paths Q1, . . . , Qj−1, which are exactly the paths forming the complete graph
Cj . We define the j-shadow of a vertex v ∈ Vi to be the set of its neighbors contained in
the paths Q1, . . . , Qj−1. Since every vertex of Qj has at most 21 neighbors on the paths
Q1, . . . , Qj−1 (as its neighbors must be in the same or adjacent layers), the j-shadow of a
vertex contained in the path Qj has at most 21 vertices.

We now use the tree-like structure of the 7-tree G′
i to define the order of contractions

of the vertices contained in Vi; this part of our argument is analogous to that used in [40]
in relation to twin-width of graphs with bounded tree-width. We proceed iteratively for
j = n − 1, . . . , n′. Before we describe the order of contractions, we present the properties
satifised at the end of the iterations. At the end of the iteration for j = n − 1, . . . , n′ + 1, all
vertices of Vi that

are contained in paths of the same component of G′
i \ {Q1, . . . , Qj−1},

have the same j-shadow, and
are in the same layer

will have been contracted to a single vertex. At the end of the iteration for j = n′, all vertices
of Vi with the same (n′ + 1)-shadow that are contained in the same layer will have been
contracted to a single vertex. In particular, at the end of the iteration for j = n′, all vertices
of Vi contained in the same layer will have been contracted to at most 23n′ vertices (a vertex
can have at most three neighbors on each path Qj , j ∈ [n′], which are the vertex on the
same layer and the two vertices on the adjacent layers, and the (n′ + 1)-shadow is a subset
of these 3n′ vertices).

For j ∈ {n − 1, . . . , n′}, we now describe the order of contractions of the vertices in the
iteration for j. Let m be the number of components of G′

i \ {Q1, . . . , Qj} that are included in
the component of G′

i \ {Q1, . . . , Qj−1} that contains Qj , and let W1, . . . , Wm be the sets of
vertices obtained by contracting (in the previous iterations) vertices on the paths of these m

components; note that the vertices in W1, . . . , Wm are obtained by contracting some vertices
contained in V (Qj+1) ∪ · · · ∪ V (Qn) ⊆ Vi. Observe that each of the sets W1, . . . , Wm has
at most 221 vertices in each layer (as the (j + 1)-shadow of vertices on the same layer are
subsets of the same set of 3 · 7 = 21 vertices). We first contract each vertex of W2 to the
vertex W1 with the same (j + 1)-shadow on the same layer if such vertex exists. Next, we
contract each vertices of W3 to the vertex of W1 ∪ W2 with the same (j + 1)-shadow on the
same layer if such vertex exists, etc. At the end of this process, all vertices of W1 ∪ · · · ∪ Wm

with the same (j + 1)-shadow that are on the same layer have been contracted to a single
vertex (note that there are at most 224 such vertices in each layer as the (j + 1)-shadows are
subsets of the same set of 3 · 8 = 24 vertices). If j > n′, we contract all resulting vertices
with the same j-shadow that are on the same layer to a single vertex, and subsequently, we
contract the vertex contained on the path Qj to the vertex with the same j-shadow on the
same layer (if such vertex exists). The description of the iteration for j is now finished.

Conclusion of subphase. The i-th subphase concludes by contracting all the vertices of Vi

in the same layer to a single vertex, and if the vertex bi is not the vertex with the smallest
index in the set Bi′ such that bi ∈ Bi′ , i.e., bi−1 ∈ Bi′ , then we contract each resulting vertex
w to the vertex obtained in the (i′ − 1)-th subphase that is in the same layer as w (if such
vertex exists).

Phase II. The graph obtained after Phase I has at most k + ℓ′ vertices in each layer: k

correspond to the vertices a1, . . . , ak of the graph H0, i.e., they are contained on the paths
P1, . . . , Pk, and the remaining ℓ′ to the sets B1, . . . , Bℓ′ (see Figure 2). For every i = 1, . . . , k′,
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P1

P2

P3

P4

P5

B1 B2 B3

Figure 2 An example of a graph obtained after Phase I in the proof of Theorem 14 (k = 5 and
ℓ′ = 3). The edges of vertical paths are drawn in bold. Note that there are no edges between paths
corresponding to the set B1, B2 and B3.

we contract all the vertices on the paths of Ai that are in the same layer to a single vertex as
follows. Let Pi1 , . . . , Pin be the paths corresponding to the vertices of Ai. We first contract
the vertices of Pi1 and Pi2 that are in the same layer, proceeding from top to bottom (starting
with the layer that contains both such vertices). We then contract the vertices of Pi3 to
the vertices created previously, again in each layer proceeding from top to bottom, then the
vertices of Pi4 , etc. At the end of this phase, we obtain a graph that is a subgraph of the
strong product of a path and the graph H ′

0. Since H ′
0 has k′ + ℓ′ ≤ 2s + 2 vertices, each layer

now contains at most 2s + 2 vertices.

Phase III. We now contract all the vertices contained in the top layer to a single vertex,
then all the vertices of the next layer to a single vertex, etc. Finally, we contract the vertices
one after another to eventually obtain a single vertex, starting with the two vertices of the
top two layers, then contracting the vertex in the third layer, etc.

Analysis of red degrees. We now establish an upper bound on the maximum possible
red degree of the vertices of the graphs obtained throughout the described sequence of
contractions. We start with Phase I. During the i-th subphase and the iteration for j, the
only new red edges ever created are among the vertices of W1, . . . , Wm and the path Qj .
Since the vertices of W1 ∪ · · · ∪ Wm have at most 224 different (j + 1)-shadows (the neighbors
in their shadows are only on the paths contained in Cj), each vertex has neighbors in its
and the two neighboring layers, and we first contract all vertices of W1 ∪ W2 with the same
(j + 1)-shadow, then all vertices of W1 ∪ W2 ∪ W3, etc., the red degree of any vertex does not
exceed 2 · 3 · 224 = 3 · 225. We eventually arrive at having at most 224 vertices in each layer
and so their red degrees do not exceed 3 · 224. Then, the vertices with the same j-shadow
that are on the same layer are contracted, which can result in the vertices of Qj (temporarily)
having the red degree up to 3 · 224. At the end of iteration for j > n′, there are at most 221

vertices in each layer that have been obtained from W1 ∪ · · · ∪ Wm and so the red degree of
each of them is at most 3 · 221. Also note that there is no red edge between the vertices on
the paths Q1, . . . , Qj−1 and the remaining vertices of Vi.

At the beginning of the conclusion of the subphase, each layer has at most 218 vertices
obtained from contracting the vertices of Vi (note that this bound also holds when Gi has
less than eight vertices, i.e., when we proceeded directly to the conclusion of the subphase).
The conclusion of the subphase starts with contracting these vertices to a single vertex per
layer: this can increase the red degree of vertices on at most six paths P1, . . . , Pk and the
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red degree of each vertex on these paths can increase by at most three. When the subphase
finishes, each of the vertices contained in the paths P1, . . . , Pk has at most 3ℓ′ red neighbors
(although during the subphase it can have upto three additional red neighbors), and each of
the vertices obtained by contracting the vertices of V1, . . . , Vi has red degree at most 6s (since
the sum of the degrees of the vertices in each set B1, . . . , Bℓ′ is at most 2s). In particular,
the red degree of each vertex on the paths P1, . . . , Pk never exceeds 3(ℓ′ + 1). We conclude
that the red degree of none of the vertices exceeds the largest of the following three bounds:
3 · 225, 3(ℓ′ + 1) and 6s. Moreover, the red degree of no vertex exceeds max{3ℓ′, 6s} ≤ 6s + 3
(recall that ℓ′ ≤ 2s + 1) at the end of each subphase (and so also at the end of Phase I).

During Phase II, each vertex has at most max{k′ + ℓ′, 2s} red neighbors in its layer and
in each of the neighboring layers. Indeed, the vertices obtained from those on the paths
P1, . . . , Pk have at most k′ + ℓ′ red neighbors in each layer (at most k′ neighbors among
vertices obtained from contracting vertices on the paths P1, . . . , Pk, and there are at most ℓ′

vertices in each layer obtained by contracting vertices not on the paths P1, . . . , Pk) and the
vertices obtained from those not on the paths P1, . . . , Pk have at most 2s red neighbors in
each layer as this is simply the upper bound on the number of their neighbors on the paths
P1, . . . , Pk. Hence, during the entire Phase II, the red degree of any vertex never exceeds

3 max{k′ + ℓ′, 2s} ≤ 3 max{2(s + 1), 2s} = 6(s + 1).

Finally, since the number of vertices contained in each layer at the end of Phase II is at most
k′ + ℓ′, during the entire Phase III, the red degree of no vertex exceeds 3(k′ + ℓ′) − 1.

Hence, we have established that the red degree of no vertex exceeds max
{

6(s + 1), 3 · 225}
during the whole process, which implies the bound claimed in the statement. ◀

5 Algorithmic aspects

We now overview the main steps of the algorithm based on the proof of Theorem 14 that
computes a witnessing sequence of vertex contractions of a graph embeddable in a fixed
surface. We remark that we measure the time complexity in terms of the number of vertices,
and we recall the number of edges of an n-vertex graph embeddable in a surface of Euler
genus g is at most 3n + 3g − 6, i.e., linear in the number of vertices when g is fixed.

Since it is possible to find an embedding of a graph in a fixed surface in linear time [43,44],
we can assume that the input graph G is given together with its embedding in the surface.
When the embedding of G in the surface is fixed, we complete it to a triangulation G′ (we
permit adding parallel edges if needed). We next choose an arbitrary BFS spanning tree T of
G′ and identify g edges a1b1, . . . , agbg as described in Lemma 8, which was proven in [26,28].
The proof of Lemma 8 in [26, 28] proceeds by constructing a spanning tree in the dual graph
that avoids the edges of T and choosing the edges contained in neither T nor the spanning
tree of the dual graph as the edges a1b1, . . . , agbg; this can be implemented in linear time.
When the edges a1b1, . . . , agbg are fixed, the construction of the walk W and the vertical
paths described in Lemma 9 requires linear time.

We next compute the vertical paths described in Lemma 12 such that the boundary
of each region of the graph G′ obtained from the near-triangulation bounded by W can
be covered by subpaths of at most six vertical paths. This requires processing the near-
triangulation repeatedly following the steps of the inductive proof of Lemma 12: each step
can be implemented in linear time and the number of steps is also at most linear. We then
apply the recursive procedure described in the proof of Lemma 11 to each graph contained in
one of the regions of G′; again, the number of steps in the recursive procedure is linear and
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each can be implemented in linear time. In this way, we obtain the collection P of vertical
paths and the tree-decomposition T of G′/P described in Theorem 13. Note that the paths
P and the tree-decomposition T fully determine the order of the contraction of the vertices
and the order can be easily determined in linear time following the proof of Theorem 14.

We conclude that there is a quadratic time algorithm that constructs a sequence of
contractions such that the red degree of trigraphs obtained during contractions does not
exceed the bound given in Theorem 14. We remark that we have not attempted to optimize
the running time of the algorithm, which would particularly require to implement the recursive
steps of the proofs of Lemmas 11 and 12 more efficiently.
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