
Unweighted Geometric Hitting Set for
Line-Constrained Disks and Related Problems
Gang Liu #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Haitao Wang #Ñ

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Abstract
Given a set P of n points and a set S of m disks in the plane, the disk hitting set problem asks
for a smallest subset of P such that every disk of S contains at least one point in the subset. The
problem is NP-hard. This paper considers a line-constrained version in which all disks have their
centers on a line. We present an O(m log2 n + (n + m) log(n + m)) time algorithm for the problem.
This improves the previous result of O(m2 log m + (n + m) log(n + m)) time for the weighted case
of the problem where every point of P has a weight and the objective is to minimize the total
weight of the hitting set. Our algorithm also solves a more general line-separable problem with a
single intersection property: The points of P and the disk centers are separated by a line ℓ and the
boundary of every two disks intersect at most once on the side of ℓ containing P .

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases hitting set, line-constrained, line-separable, unit disks, half-planes, coverage

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.68

Related Version Full Version: http://arxiv.org/abs/2407.00331

Funding This research was supported in part by NSF under Grant CCF-2300356.

1 Introduction

Let P be a set of n points and S a set of m disks in the plane. The hitting set problem is to
compute a smallest subset of P such that every disk in S contains at least one point in the
subset (i.e., every disk is hit by a point in the subset, and the subset is called a hitting set).
The problem is NP-hard, even if all disks have the same radius [18, 25]. Polynomial-time
approximation algorithms are known for the problem, e.g., [3, 15,16,21,24,25].

In this paper, we consider the line-constrained version of the problem, where centers of
all disks are on a line while the points of P can be anywhere in the plane. The weighted
case of the problem was studied by Liu and Wang [22], where each point of P has a weight
and the objective is to minimize the total weight of the hitting set. Their algorithm runs in
O((m + n) log(m + n) + κ log m) time, where κ is the number of pairs of disks that intersect
and κ = O(m2) in the worst case. They reduced the runtime to O((m + n) log(m + n)) for
the unit-disk case, where all disks have the same radius [22]. Our problem in this paper is
for the unweighted case. To the best of our knowledge, we are not aware of any previous
work that particularly studied the unweighted hitting set problem for line-constrained disks.
We propose an algorithm of O(m log2 n + (n + m) log(n + m)) time, which improves the
weighted case algorithm of O(m2 log m + (n + m) log(n + m)) worst-case time [22]. Perhaps
theoretically more interesting is that the worst-case runtime of our algorithm is near linear.

© Gang Liu and Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 68; pp. 68:1–68:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:u0866264@utah.edu
mailto:haitao.wang@utah.edu
https://www.cs.utah.edu/~hwang/
https://doi.org/10.4230/LIPIcs.MFCS.2024.68
http://arxiv.org/abs/2407.00331
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Geometric Hitting Set for Line-Constrained Disks

1.1 Related work

A closely related problem is the disk coverage problem, which is to compute a smallest subset
of S that together cover all the points of P . This problem is also NP-hard because it is
dual to the hitting set problem in the unit-disk case (i.e., all disks have the same radius).
Polynomial-time algorithms are known for certain special cases, e.g., [1,4,9,10]. In particular,
the line-constrained problem (in which all disks are centered on a line) was studied by
Pedersen and Wang [26]. Their algorithm runs in O((m + n) log(m + n) + κ log m) time,
where κ is the number of pairs of disks that intersect and κ = O(m2) in the worst case;
they also solved the unit-disk case in O((m + n) log(m + n)) time. As noted above, in the
unit-disk case, the coverage and hitting set problems are dual to each other and therefore
the two problems can essentially be solved by the same algorithm. However, this is not the
case if the radii of the disks are different.1

In addition, the O((m+n) log(m+n)+κ log m) time algorithm of Pedersen and Wang [26]
also works for the weighted line-separable unit-disk version, where all disks have the same
radius and the disk centers are separated from the points of P by a line.

All the above results are for the weighted case. The unweighted disk coverage case was
also particularly studied before. Liu and Wang [23]2 considered the line-constrained problem
and gave an O(m log n log m + (n + m) log(n + m)) time algorithm. For the line-separable
unit-disk case, Ambühl et al. [1] derived an algorithm of O(m2n) time, which was used as a
subroutine in their algorithm for the general coverage problem in the plane (without any
constraints). An improved O(nm + n log n) time algorithm is presented in [8]. Liu and
Wang’s approach [23] solves this case in O((n + m) log(n + m)) time.

If disks of S are half-planes, the problem becomes the half-plane coverage problem. For
the weighted case, Chan and Grant [4] proposed an algorithm for the lower-only case where
all half-planes are lower ones; their algorithm runs in O(n4) time when m = n. With the
observation that a half-plane may be considered as a unit disk of infinite radius, the lower-
only half-plane coverage problem is essentially a special case of the line-separable unit-disk
coverage problem [26]. Consequently, applying the algorithm of [26] can solve the weighted
lower-only case in O(n2 log n) time (when m = n) and applying the algorithm of [23] can
solve the unweighted lower-only case in O(n log n) time. Wang and Xue [28] derived another
O(n log n) time algorithm for the unweighted lower-only case with a different approach and
also proved an Ω(n log n) lower bound under the algebraic decision tree model by a reduction
from the set equality problem [2] (note that this leads to the same lower bound for the
line-separable unit-disk coverage problem). For the general case where both upper and lower
half-planes are present, Har-Peled and Lee [17] solved the weighted problem in O(n5) time.
Pedersen and Wang [26] showed that the problem can be reduced to O(n2) instances of the
lower-only case problem. Consequently, applying the algorithms of [26] and [23] can solve
the weighted and unweighted cases in O(n4 log n) and O(n3 log n) time, respectively. Wang
and Xue [28] gave a more efficient algorithm of O(n4/3 log5/3 n logO(1) log n) time for the
unweighted case.

1 Note that [12] provides a method to reduce certain coverage problems to instances of the hitting set
problem; however, the reduction algorithm, which takes more than O(n5) time, is not efficient.

2 See the arXiv version of [23], which improves the result in the original conference paper. The algorithms
follow the same idea, but the arXiv version provides more efficient implementations.

G. Liu and H. Wang 68:3

`

Figure 1 Illustrating the line-separable single-intersection case: Centers of all disks are below ℓ.

1.2 Our result
Instead of solving the line-constrained problem directly, we tackle a more general problem in
which the points of P and the centers of the disks of S are separated by a line ℓ such that the
boundaries of every two disks intersect at most once on the side of ℓ containing P (see Fig. 1).
We refer to it as the line-separable single-intersection hitting set problem (we will explain
it later why this problem is more general than the line-constrained problem). We present
an algorithm of O(m log2 n + (n + m) log(n + m)) time for the problem. To this end, we
find that some points in P are “useless” and thus can be pruned from P . More importantly,
the remaining points have certain properties so that the problem can be reduced to the 1D
hitting set problem, which can then be easily solved. The algorithm itself is relatively simple
and quite elegant. However, one challenge is to show its correctness, and specifically, to prove
why the “useless” points are indeed useless. The proof is lengthy and fairly technical, which
is one of our main contributions.

The line-constrained problem. To solve the line-constrained problem, where all disks of S

are centered on a line ℓ, the problem can be reduced to the line-separable single-intersection
case. Indeed, without loss of generality, we assume that ℓ is the x-axis. For each point p

of P below ℓ, we replace p by its symmetric point with respect to ℓ. As such, we obtain
a set of points that are all above ℓ. Since all disks are centered on ℓ, it is not difficult to
see that an optimal solution using this new set of points corresponds to an optimal solution
using P . Furthermore, since disks are centered on ℓ, although their radii may not be equal,
the boundaries of any two disks intersect at most once above ℓ. Therefore, the problem
becomes an instance of the line-separable single-intersection case. As such, applying the
algorithm for line-separable single-intersection problem solves the line-constrained problem
in O(m log2 n + (n + m) log(n + m)) time. Therefore, in the rest of the paper, we will focus
on solving the line-separable single-intersection problem.

The unit-disk case. As mentioned earlier, the unit-disk case problem where all disks have
the same radius can be reduced to the coverage problem (and vice versa). More specifically,
if we consider the set of unit disks centered at the points of P as a set of “dual disks” and
consider the centers of the disks of S a set of “dual points”, then the hitting set problem
is equivalent to finding a smallest subset of dual disks whose union covers all dual points.
Consequently, applying the line-separable unit-disk coverage algorithm in [23] solves the
hitting set problem in O((n + m) log(n + m)) time. Nevertheless, we show that our technique
can directly solve the hitting set problem in this case in the same time complexity.

The half-plane hitting set problem. As in the coverage problem discussed above, if disks of
S are half-planes, the problem becomes the half-plane hitting set problem. For the weighted
case, the approach of Chan and Grant [4] solves the lower-only case in O(n4) time when

MFCS 2024

68:4 Geometric Hitting Set for Line-Constrained Disks

m = n. Again, with the observation that a half-plane may be viewed as a unit disk of infinite
radius, the lower-only half-plane hitting set problem is a special case of the line-separable
unit-disk hitting set problem. As such, applying the algorithm of [22] can solve the weighted
lower-only case in O(n2 log n) time (when m = n) and applying the unit-disk case algorithm
discussed above can solve the unweighted lower-only case in O(n log n) time. For the general
case where both upper and lower half-planes are present, Har-Peled and Lee [17] solved the
weighted problem in O(n6) time. Liu and Wang [22] showed that the problem (for both the
weighted and unweighted cases) can be reduced to O(n2) instances of the lower-only case
problem. Consequently, applying the above algorithms for the weighted and unweighted
lower-only case problems can solve the weighted and unweighted general case problems in
O(n4 log n) and O(n3 log n) time, respectively.

Lower bound. As discussed above, the Ω(n log n) lower bound in [28] for the lower-only
half-plane coverage problem leads to the Ω(n log n) lower bound for the line-separable unit-
disk coverage problem when m = n. As the unit-disk hitting set problem is dual to the
unit-disk coverage problem, it also has Ω(n log n) as a lower bound. Since the unit-disk hitting
set problem is a special case of the line-separable single-intersection hitting set problem,
Ω(n log n) is also a lower bound of the latter problem. Similarly, since the lower-only half-
plane hitting set is dual to the lower-only half-plane coverage, Ω(n log n) is also a lower
bound of the former problem.

An algorithm in the algebraic decision tree model. In the algebraic decision tree model,
where the time complexity is measured only by the number of comparisons, our method,
combining with a technique recently developed by Chan and Zheng [6], shows that the
line-separable single-intersection problem (and thus the line-constrained problem) can be
solved using O((n + m) log(n + m)) comparisons, matching the above lower bound. To ensure
clarity in the following discussion, unless otherwise stated, all time complexities are based on
the standard real RAM model.

Outline. The rest of the paper is organized as follows. After introducing the notation in
Section 2, we describe our algorithm in Section 3. The algorithm correctness is proved in
Section 4. We show how to implement the algorithm efficiently in Section 5. The algebraic
decision tree algorithm and the unit-disk case algorithm are also discussed in Section 5.

2 Preliminaries

This section introduces some notation and concepts that will be used throughout the paper.
As discussed above, we focus on the line-separable single-intersection case. Let P be a

set of n points and S a set of m disks in the plane such that the points of P and the centers
of the disks of S are separated by a line ℓ and the boundaries of every two disks intersect at
most once on the side of ℓ which contains P . Note that the points of P and the disk centers
may be on ℓ. Without loss of generality, we assume that ℓ is the x-axis and the points of
P are above (or on) ℓ while the disk centers are below (or on) ℓ (see Fig. 1). As such, the
boundaries of every two disks intersect at most once above ℓ. Our goal is to compute a
smallest subset of P such that each disk of S is hit by at least one point in the subset.

Under this setting, for each disk s ∈ S, only its portion above ℓ matters for our problem.
Hence, unless otherwise stated, a disk s refers only to its portion above (and on) ℓ. As such,
the boundary of s consists of an upper arc, i.e., the boundary arc of the original disk above
ℓ, and a lower segment, i.e., the intersection of s with ℓ. Note that s has a single leftmost
(resp., rightmost) point, which is the left (resp., right) endpoint of the lower segment of s.

G. Liu and H. Wang 68:5

If P ′ is a subset of P that form a hitting set for S, we call P ′ a feasible solution. If P ′ is
a feasible solution of minimum size, then P ′ is an optimal solution.

We assume that each disk of S is hit by at least one point of P since otherwise there
would be no feasible solution. Our algorithm is able to check whether the assumption is met.

We make a general position assumption that no two points of A have the same x-
coordinate, where A is the union of P and the set of the leftmost and rightmost points
of the upper arcs of all disks. Degenerate cases can be handled by standard perturbation
techniques, e.g., [14].

For any point p in the plane, we denote its x-coordinate by x(p). We sort all points
in P in ascending order of their x-coordinates, resulting in a sorted list {p1, p2, · · · , pn}.
We use P [i, j] to denote the subset {pi, pi+1, · · · , pj}, for any 1 ≤ i ≤ j ≤ n. We sort all
disks in ascending order of the x-coordinates of the leftmost points of their upper arcs; let
{s1, s2, · · · , sm} be the sorted list. We use S[i, j] to denote the subset {si, si+1, · · · , sj}, for
1 ≤ i ≤ j ≤ m. For convenience, let P [i, j] = ∅ and S[i, j] = ∅ if i > j. For each disk si, let
li and ri denote the leftmost and rightmost points of its upper arc, respectively.

For any disk s ∈ S, we use Sl(s) (resp., Sr(s)) to denote the subset of disks S whose
leftmost points are to the left (resp., right) of that of s, that is, if the index of s is i, then
Sl(s) = S[1, i − 1] and Sr(s) = S[i + 1, m]. For any disk s′ ∈ Sl(s), we also say that s′ is to
the left of s; similarly, if s′ ∈ Sr(s), then s′ is to the right of s. For convenience, if s′ is to the
left of s, we use s′ ≺ s to denote it.

For a point pi ∈ P and a disk sk ∈ S, we say that pi is vertically above sk (or sk is
vertically below pi) if pi is outside sk and x(lk) < x(pi) < x(rk).

The non-containment property. If a disk si contains another disk sj completely, then si is
redundant for our problem since any point hitting sj also hits si. It is easy to find those
redundant disks in O(m log m) time (indeed, this is a 1D problem since si contains sj if and
only if the lower segment of si contains that of sj). Therefore, to solve our problem, we first
remove such redundant disks from S and then work on the remaining disks. For simplicity,
from now on we assume that no disk of S contains another. Therefore, S has the following
non-containment property, which is critical to our algorithm.

▶ Observation 1. (Non-Containment Property) For any two disks si, sj ∈ S, x(li) < x(lj)
if and only if x(ri) < x(rj).

3 The algorithm description

In this section, we describe our algorithm. We follow the notation defined in Section 2.
We begin with the following definition, which is critical for our algorithm.

▶ Definition 2. For each disk si ∈ S, among all the points of P covered by si, define a(i) as
the smallest index of these points and b(i) the largest index of them.

Since each disk si contains at least one point of P , both a(i) and b(i) are well defined.

▶ Definition 3. For any point pk ∈ P , we say that pk is prunable if there is a disk si ∈ S

such that pk ̸∈ si and a(i) < k < b(i).

We now describe our algorithm. Although the description seems simple, establishing its
correctness is by no means an easy task. We devote Section 4 to the correctness proof. The
implementation of the algorithm, which is also not straightforward, is presented in Section 5.

MFCS 2024

68:6 Geometric Hitting Set for Line-Constrained Disks

Algorithm description. The algorithm has three main steps.

1. Compute a(i) and b(i) for all disks si ∈ S. We will show in Section 5 that this can be
done in O(m log2 n + (n + m) log(n + m)) time.

2. Find all prunable points; let Q be the set of all prunable points. We will show in Section 5
that Q can be computed in O((n + m) log(n + m)) time.
Let P ∗ = P \ Q. We will prove in Section 4 that P ∗ contains an optimal solution to the
hitting problem on P and S. This means that it suffices to work on P ∗ and S.

3. Reduce the hitting set problem on P ∗ and S to a 1D hitting set problem, as follows.
For each point of P ∗, we project it perpendicularly onto ℓ. Let P̃ be the set of all
projected points. For each disk si ∈ S, we create a segment on ℓ whose left endpoint
has x-coordinate equal to x(pa(i)) and whose right endpoint has x-coordinate equal to
x(pb(i)). Let S̃ be the set of all segments thus created.
We solve the following 1D hitting set problem: Find a smallest subset of points of P̃ such
that every segment of S̃ is hit by a point of the subset. This 1D problem can be easily
solved in O((|S̃| + |P̃ |) log(|S̃| + |P̃ |)) time [22],3 which is O((m + n) log(m + n)) since
|P̃ | ≤ n and |S̃| = m.
Suppose that P̃opt is any optimal solution for the 1D problem. We create a subset P ∗

opt of
P ∗ as follows. For each point of P̃opt, suppose that it is the projection of a point pi ∈ P ∗;
then we add pi to P ∗

opt. We will prove in Section 4 that P ∗
opt is an optimal solution to

the hitting set problem on P ∗ and S.

We summarize the result in the following theorem.

▶ Theorem 4. Given a set P of n points and a set S of m disks in the plane such that the
disk centers are separated from the points of P by a line and the single-intersection condition
is satisfied, the hitting set problem is solvable in O(m log2 n + (n + m) log(n + m)) time.

4 Algorithm correctness

In this section, we prove the correctness of our algorithm. More specifically, we will argue
the correctness of the second and the third main steps of the algorithm. We start with the
third main step, as it is relatively straightforward. In fact, arguing the correctness of the
second main step is quite challenging and is a main contribution of our paper.

Correctness of the third main step. For each disk si ∈ S, let s′
i refer to the segment of S̃

created from si. For each point pj ∈ P , let p′
j refer to the point of P̃ which is the projection

of pj . Lemma 5 justifies the correctness of the third main step of the algorithm.

▶ Lemma 5. A point pj ∈ P ∗ hits a disk si ∈ S if and only if p′
j hits s′

i.

Proof. Suppose pj hits si. Then, pj ∈ si. By definition, we have a(i) ≤ j ≤ b(i). Hence,
x(pa(i)) ≤ x(pj) ≤ x(pb(i)), and thus p′

j hits s′
i by the definitions of p′

j and s′
i.

On the other hand, suppose that p′
j hits s′

i. Then, according to the definitions of p′
j and

s′
i, x(pa(i)) ≤ x(pj) ≤ x(pb(i)) holds. If j = a(i) or j = b(i), then pj must hit si following the

definitions of a(i) and b(i). Otherwise, we have a(i) < j < b(i). Observe that pj must be
inside si since otherwise pj would be a prunable point and therefore could not be in P ∗. As
such, pj must hit si. ◀

3 The algorithm in [22], which uses dynamic programming, is for the weighted case where each point
has a weight. Our problem is simpler because it is the unweighted case. We can use a simple greedy
algorithm to solve it.

G. Liu and H. Wang 68:7

p

pl pr

s

`

si

Figure 2 Illustrating the proof of Observation 6.

4.1 Correctness of the second main step
In what follows, we focus on the correctness of the second main step.

For any disk s, let P (s) denote the subset of points of P inside s. For any point p, let
S(p) denote the subset of disks of S hit by p. For any subset P ′ ⊆ P , by slightly abusing
notation, let S(P ′) denote the subset of disks of S hit by at least one point of P ′, i.e.,
S(P ′) =

⋃
p∈P ′ S(p).

The following observation follows directly from the definition of prunable points.

▶ Observation 6. Suppose a point p is a prunable point in P . Then, there is a disk s ∈ S

vertically below p such that the following are true.
1. P (s) has both a point left of p and a point right of p.
2. For any two points pl, pr ∈ P (s) with one left of p and the other right of p, we have

S(p) ⊆ S(pl) ∪ S(pr).

Proof. The first statement directly follows the definition of prunable points. For the second
statement, without loss of generality, assume that pl is left of p while pr is right of p (see
Fig. 2). Consider any disk si ∈ S(p). By definition, p ∈ si. As p ̸∈ s, si ̸= s. Hence, si is
either in Sl(s) or in Sr(s). If si ∈ Sl(s), then due to the non-containment property, si must
contain the area of s to the left of p and therefore must contain pl, which implies si ∈ S(pl).
Similarly, if si ∈ Sr(s), then si must be in S(pr). ◀

The following lemma establishes the correctness of the second main step of the algorithm.

▶ Lemma 7. P ∗ contains an optimal solution for the hitting set problem on S and P .

Proof. Let Popt be an optimal solution for S and P . Let Q be the set of all prunable points.
Recall that P ∗ = P \ Q. If Popt ∩ Q = ∅, then Popt ⊆ P ∗ and thus the lemma is vacuously
true. In what follows, we assume that |Popt ∩ Q| ≥ 1.

Pick an arbitrary point from Popt ∩ Q, denoted by p̂1. Below, we give a process that can
find a point p∗ from P ∗ to replace p̂1 in Popt such that the new set P 1

opt = {p∗} ∪ Popt \ {p̂1}
is a feasible solution, implying that P 1

opt is still an optimal solution since |P 1
opt| = |Popt|. As

p∗ ∈ P ∗, we have |P 1
opt ∩ Q| = |Popt ∩ Q| − 1. Therefore, if P 1

opt ∩ Q is still nonempty, then
we can repeat the process for other points in P 1

opt ∩ Q until we obtain an optimal solution
P ∗

opt with P ∗
opt ∩ Q = ∅, which will prove the lemma. The process involves induction. To

help the reader understand it better, we first provide the details for the first two iterations
of the process (we will introduce some notation that appears unnecessary for the first two
iterations, but these will be needed for explaining the inductive hypothesis later).

The first iteration. Let P ′
opt = Popt \ {p̂1}. Since p̂1 ∈ Q, by Observation 6, S has a disk

ŝ1 vertically below p̂1 such that P (ŝ1) contains both a point left of p̂1, denoted by p̂l
1, and

a point right of p̂1, denoted by p̂r
1. Furthermore, S(p̂1) ⊆ S(p̂l

1) ∪ S(p̂r
1). Since p̂1 ̸∈ ŝ1 and

Popt = P ′
opt ∪ {p̂1} forms a hitting set of P , P ′

opt must have a point p that hits ŝ1. Clearly, p

MFCS 2024

68:8 Geometric Hitting Set for Line-Constrained Disks

is left or right of p̂1. Without loss of generality, we assume that p is right of p̂1. Since p̂r
1

refers to an arbitrary point to the right of p̂1 that hits ŝ1 and p is also a point to right of p̂1
that hits ŝ1, for notational convenience, we let p̂r

1 refer to p. As such, p̂r
1 is in P ′

opt.
Consider the point p̂l

1. Since S(p̂1) ⊆ S(p̂l
1) ∪ S(p̂r

1) and p̂r
1 is in P ′

opt, it is not difficult to
see that S(Popt) ⊆ S(P ′

opt) ∪ S(p̂l
1) and thus P ′

opt ∪ {p̂l
1} is a feasible solution. As such, if

p̂l
1 ̸∈ Q, then we can use p̂l

1 as our target point p∗ and our process (to find p∗) is performed.
In what follows, we assume p̂l

1 ∈ Q.
We let p̂2 = p̂l

1. Define A1 = {p̂r
1}. According to the above discussion, A1 ⊆ P ′

opt,
S(p̂1) ⊆ S(A1) ∪ S(p̂2), P ′

opt ∪ {p̂2} is a feasible solution, p̂1 is vertically above ŝ1, and
p̂2 ∈ ŝ1.

The second iteration. We are now entering the second iteration of our process. First,
notice that p̂2 cannot be p̂1 since p̂2 = p̂l

1, which cannot be p̂1. Our goal in this iteration is
to find a candidate point p′ to replace p̂2 so that P ′

opt ∪ {p′} also forms a hitting set of S.
Consequently, if p′ ̸∈ Q, then we can use p′ as our target p∗; otherwise, we need to guarantee
p′ ̸= p̂1 so that our process will not enter a loop. The discussion here is more involved than
in the first iteration.

Since p̂2 ∈ Q, by Observation 6, S has a disk ŝ2 vertically below p̂2 such that P (ŝ2)
contains both a point left of p̂2, denoted by p̂l

2, and a point right of p̂2, denoted by p̂r
2.

Further, S(p̂2) ⊆ S(p̂l
2) ∪ S(p̂r

2). Depending on whether ŝ2 is in S(A1), there are two cases.

If ŝ2 ̸∈ S(A1), since p̂2 does not hit ŝ2 and S(p̂1) ⊆ S(A1) ∪ S(p̂2), we obtain ŝ2 ̸∈ S(p̂1).
Now we can basically repeat our argument from the first iteration. Since p̂2 does not hit
ŝ2 and P ′

opt ∪ {p̂2} is a feasible solution, P ′
opt must have a point p that hits ŝ2. Clearly, p

is either left or right of p̂2.
We first assume that p is right of p̂2. Since p̂r

2 refers to an arbitrary point to the right of
p̂2 that hits ŝ2 and p is also a point to right of p̂2 that hits ŝ2, for notational convenience,
we let p̂r

2 refer to p. As such, p̂r
2 is in P ′

opt.
We let p̂l

2 be our candidate point, which satisfies our need as discussed above for p′.
Indeed, since P ′

opt ∪ {p̂2} is an optimal solution, S(p̂2) ⊆ S(p̂l
2) ∪ S(p̂r

2), and p̂r
2 ∈ P ′

opt,
we obtain that P ′

opt ∪ {p̂l
2} also forms a hitting set of S. Furthermore, since p̂l

2 hits ŝ2
while p̂1 does not, we know that p̂l

2 ̸= p̂1. Therefore, if p̂l
2 ̸∈ Q, then we can use p̂l

2 as our
target p∗ and we are done with the process. Otherwise, we let p̂3 = p̂l

2 and then enter the
third iteration. In this case, we let A2 = A1 ∪ {p̂r

2}. According to our above discussion,
A2 ⊆ P ′

opt, S(p̂2) ⊆ S(A2) ∪ S(p̂3), {p̂3} ∪ P ′
opt is a feasible solution, p̂2 is vertically above

ŝ2, and p̂3 ∈ ŝ2.
The above discussed the case where p is right of p̂2. If p is left of p̂2, then the analysis is
symmetric.4
If ŝ2 ∈ S(A1), we let p̂l

2 be our candidate point. We show below that it satisfies our need
as discussed above for p′, i.e., {p̂l

2} ∪ P ′
opt forms a hitting set of S and p̂l

2 ̸= p̂1.
Indeed, since A1 = {p̂r

1} and ŝ2 ∈ S(A1), ŝ2 is hit by p̂r
1. Since p̂r

1 is to the right of p̂1,
and p̂2, which is p̂l

1, is to the left of p̂1, we obtain that p̂r
1 is to the right of p̂2. Since p̂l

2
hits ŝ2, p̂l

2 is to the left of p̂2, p̂r
1 hits ŝ2, and p̂r

1 is to the right of p̂2, by Observation 6,
S(p̂2) ⊆ S(p̂l

2) ∪ S(p̂r
1), i.e., S(p̂2) ⊆ S(p̂l

2) ∪ S(A1). Since P ′
opt ∪ {p̂2} is a feasible solution

and A1 ⊆ P ′
opt, it follows that {p̂l

2} ∪ P ′
opt is also a feasible solution. On the other hand,

since p̂l
2 is to the left of p̂2 while p̂2 (which is p̂l

1) is to the left of p̂1, we know that p̂l
2 is

to the left of p̂1 and thus p̂l
2 ̸= p̂1.

4 More specifically, if p̂r
2 ̸∈ Q, then we can use p̂r

2 as our target p∗ and the process is complete. Otherwise,
we let p̂3 = p̂r

2 and enter the third iteration; in this case, we let A2 = A1 ∪ {p̂l
2}.

G. Liu and H. Wang 68:9

As such, if p̂l
2 ̸∈ Q, we can use p̂l

2 as our target p∗ and we are done with the process.
Otherwise, we let p̂3 = p̂l

2 and continue with the third iteration. In this case, we
let A2 = A1. According to our above discussion, A2 ⊆ P ′

opt, S(p̂2) ⊆ S(A2) ∪ S(p̂3),
P ′

opt ∪ {p̂3} is a feasible solution, p̂2 is vertically above ŝ2, and p̂3 ∈ ŝ2.

This finishes the second iteration of the process.

Inductive step. In general, suppose that we are entering the i-th iteration of the process
with the point p̂i ∈ Q, i ≥ 2. We make the following inductive hypothesis for i.

1. We have points p̂k ∈ Q for all k = 1, 2, . . . , i − 1 in the previous i − 1 iterations such that
p̂i ̸= p̂k for any 1 ≤ k ≤ i − 1

2. We have subsets Ak for all k = 1, 2, . . . , i − 1 such that A1 ⊆ A2 ⊆ · · · ⊆ Ai−1 ⊆ P ′
opt,

and S(p̂k) ⊆ S(Ak) ∪ S(p̂k+1) holds for each 1 ≤ k ≤ i − 1.
3. For any 1 ≤ k ≤ i, {p̂k} ∪ P ′

opt is a feasible solution.
4. We have disks ŝk ∈ S for k = 1, 2, . . . , i − 1 such that ŝk is vertically below p̂k and

p̂k+1 ∈ ŝk.

Our previous discussion already established the hypothesis for i = 2 and i = 3. Next, we
proceed with the i-th iteration argument for any general i ≥ 4. Our goal is to find a candidate
point p̂i+1 such that P ′

opt ∪ {p̂i+1} is a feasible solution and the inductive hypothesis still
holds for i + 1.

Since p̂i ∈ Q, by Observation 6, there is a disk ŝi vertically below p̂i such that P (ŝi)
has a point left of p̂i, denoted by p̂l

i, and a point right of p̂i, denoted by p̂r
i . Furthermore,

S(p̂i) ⊆ S(p̂l
i) ∪ S(p̂r

i). Depending on whether ŝi is in S(Ai−1), there are two cases.

1. If ŝi ̸∈ S(Ai−1), then since ŝi does not contain p̂i and P ′
opt ∪ {p̂i} is a feasible solution,

P ′
opt must have a point p that hits ŝi. Clearly, p is to the left or right of p̂i. Without

loss of generality, we assume that p is to the right of p̂i. Since p̂r
i refers to an arbitrary

point to the right of p̂i that hits ŝi and p is also a point to the right of p̂i that hits p̂i, for
notational convenience, we let p̂r

i refer to p. As such, p̂r
i is in P ′

opt.
We let p̂i+1 be p̂l

i and define Ai = Ai−1 ∪ {p̂r
i }. In the following, we argue that the

inductive hypothesis holds.
First of all, by definition, p̂i is vertically above ŝi and p̂i+1 ∈ ŝi. Hence, the fourth
statement of the hypothesis holds.
Since {p̂i} ∪ P ′

opt is a feasible solution, S(p̂i) ⊆ S(p̂l
i) ∪ S(p̂r

i), p̂r
i ∈ P ′

opt, and p̂i+1 = p̂l
i,

we obtain that {p̂i+1} ∪ P ′
opt is a feasible solution. This proves the third statement of

the hypothesis.
Since Ai = Ai−1 ∪{p̂r

i }, Ai−1 ⊆ P ′
opt by inductive hypothesis, and p̂r

i ∈ P ′
opt, we obtain

Ai ⊆ P ′
opt. Furthermore, since S(p̂i) ⊆ S(p̂l

i) ∪ S(p̂r
i), p̂r

i ∈ Ai, and p̂i+1 = p̂l
i, we have

S(p̂i) ⊆ S(Ai) ∪ S(p̂i+1). This proves the second statement of the hypothesis.
For any point p̂k with 1 ≤ k ≤ i − 1, to prove the first statement of the hypothesis, we
need to show that p̂k ̸= p̂i+1. To this end, since ŝi is hit by p̂i+1, it suffices to show
that ŝi is not hit by p̂k. Indeed, by the inductive hypothesis, S(p̂k) ⊆ S(Ak) ∪ S(p̂k+1)
and S(p̂k+1) ⊆ S(Ak+1) ∪ S(p̂k+2). Hence, S(p̂k) ⊆ S(Ak) ∪ S(Ak+1) ∪ S(p̂k+2).
As S(Ak) ⊆ S(Ak+1), we obtain S(p̂k) ⊆ S(Ak+1) ∪ S(p̂k+2). Following the same
argument, we can derive S(p̂k) ⊆ S(Ai−1) ∪ S(p̂i). Now that ŝi ̸∈ S(Ai−1) and ŝi is
not hit by p̂i, we obtain that ŝi is not hit by p̂k.

MFCS 2024

68:10 Geometric Hitting Set for Line-Constrained Disks

2. If ŝi ∈ S(Ai−1), then ŝi is hit by a point of Ai−1, say p. As p̂i ̸∈ ŝi, p is left or right of p̂i.
Without loss of generality, we assume that p is to the right of p̂i.
We let p̂i+1 be p̂l

i and define Ai = Ai−1. We show in the following that the inductive
hypothesis holds.

By definition, p̂i is vertically above ŝi and p̂i+1 ∈ ŝi. Hence, the fourth statement of
the hypothesis holds.
Since ŝi is hit by both p and p̂l

i, p̂l
i is to the left of p̂i, and p is to the right of p̂i, by

Observation 6, S(p̂i) ⊆ S(p̂l
i) ∪ S(p). Further, since {p̂i} ∪ P ′

opt is a feasible solution,
p ∈ Ai−1 ⊆ P ′

opt, and p̂i+1 = p̂l
i, we obtain that {p̂i+1} ∪ P ′

opt is also a feasible solution.
This proves the third statement of the hypothesis.
Since Ai−1 ⊆ P ′

opt by the inductive hypothesis and Ai = Ai−1, we have Ai ⊆ P ′
opt. As

discussed above, S(p̂i) ⊆ S(p̂l
i) ∪ S(p). Since p ∈ Ai−1 = Ai and p̂i+1 = p̂l

i, we obtain
S(p̂i) ⊆ S(Ai) ∪ S(p̂i+1). This proves the second statement of the hypothesis.
For any point p̂k with 1 ≤ k ≤ i − 1, to prove the first statement of the hypothesis,
we need to show that p̂k ≠ p̂i+1. Depending on whether x(p̂i) < x(p̂k), there are two
cases (note that p̂i ̸= p̂k by our hypothesis and thus x(p̂i) ̸= x(p̂k) due to our general
position assumption).

If x(p̂i) < x(p̂k), then since p̂i+1 = p̂l
i, we have x(p̂i+1) < x(p̂i) < x(p̂k). Hence,

p̂k ̸= p̂i+1.
If x(p̂k) < x(p̂i), then we can prove p̂k /∈ ŝi. This implies that p̂k ̸= p̂i+1 as p̂i+1 ∈ ŝi.
The proof of p̂k /∈ ŝi, which is quite technical and lengthy, is omitted due to the
space limit.

This proves the first statement of the hypothesis.

This proves that the inductive hypothesis still holds for i + 1.

According to the inductive hypothesis, each iteration of the process finds a new candidate
point p̂i such that P ′

opt ∪ {p̂i} is a feasible solution. If p̂i ̸∈ Q, then we can use p̂i as our
target point p∗ and we are done with the process. Otherwise, we continue with the next
iteration. Since each iteration finds a new candidate point (that was never used before) and
|Q| is finite, eventually we will find a candidate point p̂i that is not in Q.

This completes the proof of the lemma. ◀

5 Algorithm implementation

In this section, we present the implementation of our algorithm. In particular, we describe
how to implement the first two steps of the algorithm: (1) Compute a(i) and b(i) for all
disks si ∈ S; (2) find the subset Q of all prunable points from P .

The following lemma gives the implementation for the first step of the algorithm.

▶ Lemma 8. Computing a(i) and b(i) for all disks si ∈ S can be done in O(m log2 n + (m +
n) log(m + n)) time.

Proof. We only discuss how to compute a(i) since computing b(i) can be done analogously.
Recall that points of P are indexed in ascending order of their x-coordinates as p1, . . . , pn.

Let T be a complete binary search tree whose leaves from left to right correspond to points of
P in their index order. Since n = |P |, the height of T is O(log n). For each node v ∈ T , let
Pv denote the subset of points of P in the leaves of the subtree rooted at v. Our algorithm
is based on the following observation: a disk si ∈ S contains a point of Pv if and only if si

contains the closest point of Pv to ci, where ci is the center of si. In light of this observation,

G. Liu and H. Wang 68:11

we construct the Voronoi diagram for Pv, denoted by VDv, and build a point location data
structure on VDv so that each point location query can be answered in O(log n) time [13,20].
For time analysis, after VDv is computed, building the point location data structure on
VDv takes O(|Pv|) time [13, 20]. To compute VDv, if we do so from scratch, then it takes
O(|Pv| log |Pv|) time. However, using Kirkpatrick’s algorithm [19], we can compute VDv in
O(|Pv|) time by merging the Voronoi diagrams VDu and VDw for the two children u and w

of v, since Pv = Pu ∪ Pw. As such, if we construct the Voronoi diagrams for all nodes of T in
a bottom-up manner, the total time is linear in

∑
v∈T |Pv|, which is O(n log n).

For each disk si ∈ S, we can compute a(i) using T , as follows. Starting from the root
of T , for each node v, we do the following. Let u and w be the left and right children of v,
respectively. First, we determine whether si contains a point of Pu. To this end, using a
point location query on VDu, we find the point p of Pv closest to ci. As discussed above, si

contains a point of Pu if and only if p ∈ si. If p ∈ si, then we proceed with v = u; otherwise,
we proceed with v = w. In this way, a(i) can be computed after searching a root-to-leaf path
of T , which has O(log n) nodes as the height of T is O(log n). Because we spend O(log n)
time on each node, the total time to compute a(i) is O(log2 n). The time for computing a(i)
for all disks si ∈ S is thus O(m log2 n).

In summary, the overall time to compute a(i) for all disks si ∈ S is bounded by O(m log2 n+
(n + m) log(n + m)). ◀

With a(i) and b(i) computed in Lemma 8, Lemma 10 finds all prunable points of P . The
algorithm of Lemma 10 relies on the following observation.

▶ Observation 9. For any point pk ∈ P , pk is prunable if and only if there is a disk si ∈ S

such that pk ̸∈ si and a(i) ≤ k ≤ b(i).

Proof. If pk is prunable, then by definition there is a disk si ∈ S such that pk ̸∈ si and
a(i) < k < b(i).

On the other hand, suppose that there is a disk si ∈ S such that pk ̸∈ si and a(i) ≤ k ≤ b(i).
By the definition of ai, si contains the point pa(i). Since pk ̸∈ si, we obtain k ̸= a(i). By
a similar argument, we have k ̸= b(i). As such, since a(i) ≤ k ≤ b(i), we can derive
a(i) < k < b(i). Therefore, pk is prunable. ◀

▶ Lemma 10. All prunable points of P can be found in O((n + m) log(n + m)) time.

Proof. Recall that ℓ denotes the x-axis. We define T as the standard segment tree [11,
Section 10.3] on the n points of ℓ whose x-coordinates are equal to 1, 2, . . . , n, respectively.
The height of T is O(log n). For each disk si ∈ S, let Ii denote the interval [a(i), b(i)] of
ℓ. Following the definition of the standard segment tree [11, Section 10.3], we store Ii in
O(log n) nodes of T . For each node v ∈ T , let Sv denote the subset of disks si of S whose
interval Ii is stored at v. As such,

∑
v∈T |Sv| = O(m log n).

Consider a point pk ∈ P . The tree T has a leaf corresponding to a point of ℓ whose
x-coordinate is equal to k, called leaf-k. Let πk denote the path of T from the root to
leaf-k. Following the definition of the segment tree, we have the following observation:⋃

v∈πk
Sv = {si | si ∈ S, a(i) ≤ k ≤ b(i)}. By Observation 9, to determine whether pk is

prunable, it suffices to determine whether there is a node v ∈ πk such that Sv has a disk
si that does not contain pk. Recall that all points of P are above ℓ while the centers of
all disks of S are below ℓ. Let Cv denote the common intersection of all disks of Sv in the
halfplane above ℓ. Observe that Sv has a disk si that does not contain pk if and only if pk is
outside Cv. Based on this observation, for each node v ∈ T , we compute Cv and store it at v.
Due to the single-intersection property that the upper arcs of every two disks of S intersect

MFCS 2024

68:12 Geometric Hitting Set for Line-Constrained Disks

at most once, Cv has O(|Sv|) vertices; in addition, by adapting Graham’s scan, Cv can be
computed in O(|Sv|) time if the centers of all the disks of Sv are sorted by x-coordinate
(due to the non-containment property, this is also the order of the disks sorted by the left
or right endpoints of their upper arcs). Assuming that the sorted lists of Sv as above are
available for all nodes v ∈ T , the total time for constructing Cv for all nodes v ∈ T is linear
in

∑
v∈T |Sv|, which is O(m log n). We show that the sorted lists of Sv for all nodes v ∈ T

can be computed in O(m log m + m log n) time, as follows. At the start of the algorithm, we
sort all disks of S by the x-coordinates of their centers in O(m log m) time. Then, for each
disk si of S following this sorted order, we find the nodes v of T where the interval Ii should
be stored, and add si to Sv, which can be done in O(log n) time [11, Section 7.4]. In this
way, after all disks of S are processed as above, Sv for every node v ∈ T is automatically
sorted. As such, all processing work on T together takes O((m + n) log(m + n)) time.

For each point pk ∈ P , to determine whether pk is prunable, following the above discussion,
we determine whether pk is outside Cv for each node v ∈ πk. Deciding whether pk is outside
Cv can be done in O(log m) time. Indeed, since the centers of all disks are below ℓ, the
boundary of Cv consists of a segment on ℓ bounding Cv from below and an x-monotone curve
bounding Cv from above. The projections of the vertices of Cv onto ℓ partition ℓ into a set
Iv of O(|Sv|) intervals. If we know the interval of Iv that contains x(pk), the x-coordinate of
pk, then whether pk is outside Cv can be determined in O(1) time. Clearly, we can find the
interval of Iv that contains x(pk) in O(log m) time by binary search. In this way, whether
pk is prunable can be determined in O(log m log n) time as πk has O(log n) nodes. The time
can be improved to O(log m + log n) using fractional cascading [7], as follows.

We construct a fractional cascading data structure on the intervals of Iv of all nodes
v ∈ T , which takes O(m log n) time [7] since the total number of such intervals is O(m log n).
With the fractional cascading data structure, for each point pk ∈ P , we only need to do
binary search on the set of the intervals stored at the root of T to find the interval containing
x(pk), which takes O(log(m log n)) time. Subsequently, following the path πk in a top-down
manner, the interval of Iv containing x(pk) for each node v ∈ πk can be determined in O(1)
time [7]. As such, whether pk is prunable can be determined in O(log n + log m) time. Hence,
the total time for checking all the points pk ∈ P is O(n log(m + n)).

In summary, the time complexity of the overall algorithm for finding all prunable disks of
S is bounded by O((n + m) log(n + m)). ◀

With Lemmas 8 and 10, Theorem 4 is proved.

An algebraic decision tree algorithm. In the algebraic decision tree model, where only
comparisons are counted towards time complexities, the problem can be solved in O((n +
m) log(n + m)) time, i.e., using O((n + m) log(n + m)) comparisons. To this end, observe
that the entire algorithm, with the exception of Lemma 8, takes O((n + m) log(n + m)) time.
As such, we only need to show that Lemma 8 can be solved using O((n + m) log(n + m))
comparisons. For this, notice that the factor O(m log2 n) in the algorithm of Lemma 8
is caused by the point location queries on the Voronoi diagrams VDv. The number of
point location queries is O(m log n). The total combinatorial complexity of the Voronoi
diagrams VDv of all nodes v ∈ T is O(n log n). To answer these point location queries, we
employ a method recently introduced by Chan and Zheng [6]. In particular, by applying [6,
Theorem 7.2], all point location queries can be solved using O((n+m) log(n+m)) comparisons
(specifically, following the notation in [6, Theorem 7.2], we have t = O(n), L = O(n log n),
M = O(m log n), and N = O(n + m) in our problem; according to the theorem, all
point location queries can be answered using O(L + M + N log N) comparisons, which is
O((n + m) log(n + m))).

G. Liu and H. Wang 68:13

The unit-disk case. If all disks of S have the same radius (and the points of P are separated
from the centers of all disks of S by the x-axis ℓ), then as discussed in Section 1 this problem
can be solved in O((n + m) log(n + m)) time by reducing it to a line-separable unit-disk
coverage problem and then applying the algorithm in [23]. Here, we show that our approach
can provide an alternative algorithm with the same runtime.

We apply the same algorithm as above. Observe that the algorithm, except for Lemma 8,
runs in O((n + m) log(n + m)) time. Hence, it suffices to show that Lemma 8 can be
implemented in O((n + m) log(n + m)) time for the unit-disk case, which is done in the
following lemma.

▶ Lemma 11. If all disks of S have the same radius, then a(i) and b(i) for all disks si ∈ S

can be computed in O((n + m) log(n + m)) time.

Proof. We only discuss how to compute a(i) since the algorithm for b(i) is similar. We
modify the algorithm in the proof of Lemma 8 and follow the notation there.

For any disk si ∈ S, to compute a(i), recall that a key subproblem is to determine
whether si contains a point of Pv for a node v ∈ T . To solve the subproblem, the algorithm
of Lemma 8 uses Voronoi diagrams. Here, we use a different approach by exploring the
property that all disks of S have the same radius, say r. For any point p ∈ P , let Dp denote
the disk of radius r and centered at p. Define Dv = {Dp | p ∈ Pv}. For each point p ∈ P ,
since p is above the axis ℓ, the portion of the boundary of Dp below ℓ is an arc on the lower
half circle of the boundary of Dp, and we call it the lower arc of Dp. Let Lv denote the lower
envelope of ℓ and the lower arcs of all disks of Dv. Our method is based on the observation
that si contains a point of Pv if and only if ci is above Lv, where ci is the center of si.

In light of the above discussion, we construct Lv for every node v ∈ T . Since all disks of
Dv have the same radius and all their centers are above ℓ, the lower arcs of every two disks of
Dv intersect at most once. Due to this single-intersection property, Lv has at most O(|Pv|)
vertices. To see this, we can view the lower envelope of each lower arc of Dv and ℓ as an
extended arc. Every two such extended arcs still cross each other at most once and therefore
their lower envelope has O(|Pv|) vertices following the standard Davenport-Schinzel sequence
argument [27] (see also [5, Lemma 3] for a similar problem). Notice that Lv is exactly the
lower envelope of these extended arcs and thus Lv has O(|Pv|) vertices. Note also that Lv is
x-monotone. In addition, given Lu and Lw, where u and w are the two children of v, Lv

can be computed in O(|Pv|) time by a straightforward line sweeping algorithm. As such,
if we compute Lv for all nodes v ∈ T in a bottom-up manner, the total time is linear in∑

v∈T |Pv|, which is O(n log n).
For each disk si ∈ S, we now compute a(i) using T , as follows. Starting from the root

of T , for each node v, we do the following. Let u and w be the left and right children of v,
respectively. We first determine whether ci is above Lu; since |Pu| ≤ n, this can be done in
O(log n) time by binary search. More specifically, the projections of the vertices of Lu onto
ℓ partition ℓ into a set Iu of O(Pu) intervals. If we know the interval of Iu that contains
x(ci), the x-coordinate of ci, then whether ci is above Lu can be determined in O(1) time.
Clearly, finding the interval of Iu containing x(ci) can be done by binary search in O(log n)
time. If ci is above Lu, then si must contain a point of Pu; in this case, we proceed with
v = u. Otherwise, we proceed with v = w. In this way, a(i) can be computed after searching
a root-to-leaf path of T , which has O(log n) nodes as the height of T is O(log n). Because
we spend O(log n) time on each node, the total time for computing a(i) is O(log2 n). As in
Lemma 10, the time can be improved to O(log n) using fractional cascading [7], as follows.

We construct a fractional cascading data structure on the intervals of Iv of all nodes
v ∈ T , which takes O(n log n) time [7] since the total number of such intervals is O(n log n).
With the fractional cascading data structure, for each disk si ∈ S, we only need to do binary

MFCS 2024

68:14 Geometric Hitting Set for Line-Constrained Disks

search on the set of the intervals stored at the root of T to find the interval containing x(ci),
which takes O(log n) time. After that, the interval of Iu containing x(ci) for each node u in
the algorithm as discussed above can be determined in O(1) time [7]. As such, a(i) can be
computed in O(log n) time. Hence, computing a(i) for all disks si ∈ S takes O(m log n) time.

In summary, the total time to compute a(i) for all disks si ∈ S is bounded by O((n +
m) log(n + m)) time. ◀

References
1 Christoph Ambühl, Thomas Erlebach, Matús̆ Mihalák, and Marc Nunkesser. Constant-

factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In
Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), and the 10th International Conference on Randomization
and Computation (RANDOM), pages 3–14, 2006. doi:10.1007/11830924_3.

2 Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pages
80–86, 1983. doi:10.1145/800061.808735.

3 Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and efficient algorithms for
the geometric hitting set problem. Discrete Applied Mathematics, 240:25–32, 2018. doi:
10.1016/j.dam.2017.12.018.

4 Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results for geometric
packing and covering problems. Computational Geometry: Theory and Applications, 47:112–
124, 2014. doi:10.1016/j.comgeo.2012.04.001.

5 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in
slightly subquadratic time. In Proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC), pages 24:1–24:13, 2016. doi:10.4230/LIPIcs.ISAAC.2016.24.

6 Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional
cascading, and decision trees. ACM Transactions on Algorithms, 2023. doi:10.1145/3591357.

7 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1:133–162, 1986. doi:10.1007/BF01840440.

8 Francisco Claude, Gautam K. Das, Reza Dorrigiv, Stephane Durocher, Robert Fraser, Alejandro
López-Ortiz, Bradford G. Nickerson, and Alejandro Salinger. An improved line-separable
algorithm for discrete unit disk cover. Discrete Mathematics, Algorithms and Applications,
2:77–88, 2010. doi:10.1142/S1793830910000486.

9 Gruia Călinescu, Ion I. Măndoiu, Peng-Jun Wan, and Alexander Z. Zelikovsky. Selecting
forwarding neighbors in wireless ad hoc networks. Mobile Networks and Applications, 9:101–111,
2004. doi:10.1023/B:MONE.0000013622.63511.57.

10 Gautam K. Das, Sandip Das, and Subhas C. Nandy. Homogeneous 2-hop broadcast in 2D.
Computational Geometry: Theory and Applications, 43:182–190, 2010. doi:10.1016/j.comgeo.
2009.06.005.

11 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry
— Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008. doi:10.1007/
978-3-540-77974-2.

12 Stephane Durocher and Robert Fraser. Duality for geometric set cover and geometric hitting
set problems on pseudodisks. In Proceedings of the 27th Canadian Conference on Com-
putational Geometry (CCCG), 2015. URL: https://research.cs.queensu.ca/cccg2015/
CCCG15-papers/10.pdf.

13 Herbert Edelsbrunner, Leonidas J. Guibas, and J. Stolfi. Optimal point location in a monotone
subdivision. SIAM Journal on Computing, 15(2):317–340, 1986. doi:10.1137/0215023.

14 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9:66–104, 1990.
doi:10.1145/77635.77639.

https://doi.org/10.1007/11830924_3
https://doi.org/10.1145/800061.808735
https://doi.org/10.1016/j.dam.2017.12.018
https://doi.org/10.1016/j.dam.2017.12.018
https://doi.org/10.1016/j.comgeo.2012.04.001
https://doi.org/10.4230/LIPIcs.ISAAC.2016.24
https://doi.org/10.1145/3591357
https://doi.org/10.1007/BF01840440
https://doi.org/10.1142/S1793830910000486
https://doi.org/10.1023/B:MONE.0000013622.63511.57
https://doi.org/10.1016/j.comgeo.2009.06.005
https://doi.org/10.1016/j.comgeo.2009.06.005
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://research.cs.queensu.ca/cccg2015/CCCG15-papers/10.pdf
https://research.cs.queensu.ca/cccg2015/CCCG15-papers/10.pdf
https://doi.org/10.1137/0215023
https://doi.org/10.1145/77635.77639

G. Liu and H. Wang 68:15

15 Guy Even, Dror Rawitz, and Shimon Shahar. Hitting sets when the VC-dimension is small.
Information Processing Letters, 95:358–362, 2005. doi:10.1016/j.ipl.2005.03.010.

16 Shashidhara K. Ganjugunte. Geometric hitting sets and their variants. PhD thesis, Duke
University, 2011. URL: https://dukespace.lib.duke.edu/server/api/core/bitstreams/
0d37dabc-42a5-4bc8-b4e9-e69b263a10ca/content.

17 Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited. Journal of
Computational Geometry, 3:65–85, 2012. doi:10.20382/jocg.v3i1a4.

18 Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972. doi:10.1007/978-1-4684-2001-2_9.

19 David G. Kirkpatrick. Efficient computation of continuous skeletons. In 20th Annual Symposium
on Foundations of Computer Science (FOCS), pages 18–27, 1979. doi:10.1109/SFCS.1979.15.

20 David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983. doi:10.1137/0212002.

21 Jian Li and Yifei Jin. A PTAS for the weighted unit disk cover problem. In Proceedings of the
42nd International Colloquium on Automata, Languages and Programming (ICALP), pages
898–909, 2015. doi:10.1007/978-3-662-47672-7_73.

22 Gang Liu and Haitao Wang. Geometric hitting set for line-constrained disks. In Proceedings
of the 18th Algorithms and Data Structures Symposium (WADS), pages 574–587, 2023. doi:
10.1007/978-3-031-38906-1_38.

23 Gang Liu and Haitao Wang. On the line-separable unit-disk coverage and related problems.
In Proceedings of the 34th International Symposium on Algorithms and Computation (ISAAC),
pages 51:1–51:14, 2023. Full version available at arXiv:2309.03162.

24 El O. Mourad, Fohlin Helena, and Srivastav Anand. A randomised approximation algorithm
for the hitting set problem. Theoretical Computer Science, 555:23–34, 2014. doi:10.1007/
978-3-642-36065-7_11.

25 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete and Computational Geometry, 44:883–895, 2010. doi:10.1007/s00454-010-9285-9.

26 Logan Pedersen and Haitao Wang. Algorithms for the line-constrained disk coverage and
related problems. Computational Geometry: Theory and Applications, 105-106:101883:1–18,
2022. doi:10.1016/j.comgeo.2022.101883.

27 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York, 1996.

28 Haitao Wang and Jie Xue. Algorithms for halfplane coverage and related problems. In
Proceedings of the 40th International Symposium on Computational Geometry (SoCG), pages
79:1–79:15, 2024. doi:10.4230/LIPIcs.SoCG.2024.79.

MFCS 2024

https://doi.org/10.1016/j.ipl.2005.03.010
https://dukespace.lib.duke.edu/server/api/core/bitstreams/0d37dabc-42a5-4bc8-b4e9-e69b263a10ca/content
https://dukespace.lib.duke.edu/server/api/core/bitstreams/0d37dabc-42a5-4bc8-b4e9-e69b263a10ca/content
https://doi.org/10.20382/jocg.v3i1a4
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/SFCS.1979.15
https://doi.org/10.1137/0212002
https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/978-3-031-38906-1_38
https://doi.org/10.1007/978-3-031-38906-1_38
https://arxiv.org/abs/2309.03162
https://doi.org/10.1007/978-3-642-36065-7_11
https://doi.org/10.1007/978-3-642-36065-7_11
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1016/j.comgeo.2022.101883
https://doi.org/10.4230/LIPIcs.SoCG.2024.79

	1 Introduction
	1.1 Related work
	1.2 Our result

	2 Preliminaries
	3 The algorithm description
	4 Algorithm correctness
	4.1 Correctness of the second main step

	5 Algorithm implementation

