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Abstract
This work examines a strongly NP-hard routing problem on trees, in which multiple servers need to
serve a given set of requests (on vertices), where the routes of the servers start from a common source
and end at their respective terminals. Each server can travel free of cost on its source-to-terminal
path but has to pay for travel on other edges. The objective is to minimize the maximum cost over
all servers. As the servers may pay different costs for traveling through a common edge, balancing
the loads of the servers can be difficult. We propose a polynomial-time 4-approximation algorithm
that applies the parametric pruning framework but consists of two phases. The first phase of the
algorithm partitions the requests into packets, and the second phase of the algorithm assigns the
packets to the servers. Unlike the standard parametric pruning techniques, the challenge of our
algorithm design and analysis is to harmoniously relate the quality of the partition in the first phase,
the balances of the servers’ loads in the second phase, and the hypothetical optimal values of the
framework. For the problem in general graphs, we show that there is no algorithm better than
2-approximate unless P = NP . The problem is a generalization of unrelated machine scheduling and
other classic scheduling problems. It also models scheduling problems where the job processing times
depend on the machine serving the job and the other jobs served by that machine. This modeling
provides a framework that physicalizes scheduling problems through the graph’s point of view.
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1 Introduction

We propose a generalization of the makespan minimization problem that concerns jobs with
locality and machines with preferences. Consider two jobs sharing some common preprocessing
subroutines. The time for serving these jobs is reduced if they are assigned to the same
machine since the outcome of the preprocessing can be shared (instead of executing the
preprocessing step from scratch again). Jobs are considered to be “close” to each other
if they share more preprocessing. In other words, the locality of jobs indicates how much
acceleration a schedule can achieve when these jobs are assigned to one machine.

On the other hand, the machines have preferences on jobs. That is, a machine may be
better at serving some of the jobs. If the jobs have common preprocessing routines, the
machine that has a preference for the routine can further accelerate the total processing time
of the batch of jobs.

For example, consider assigning teaching tasks to faculty members in a department. The
teaching tasks can be classified systematically as a rooted tree structure. For instance, an
internal node representing Algorithm Design And Analysis course may have two children,
Approximation Algorithms and Randomized Algorithms courses. Every faculty member has
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their own research area and prefers teaching the courses that match their expertise, where
each expertise is a path in the tree starting from the root. A course in an area further away
from a teacher’s research direction takes this teacher more time to prepare and also makes
them less happy. The department’s goal is to balance the workload people take to prepare
for courses. That is, the objective of the assignment is to make the most unhappy colleague
as happy as possible.

In a typical routing problem, there are servers that are able to move along paths on
a given graph. A server may be required to stop at a terminal, which is a vertex that is
associated with the server. Additionally, a server may also need to travel to some vertices to
serve some requests or collect some packets located at the vertices.

To model the job localities and the machine preferences, we propose the scheduling with
locality problem (Scheduling-with-Locality) and describe it as a routing problem on a
graph with server-sensitive edge weights. Given a weighted graph, the jobs are represented
by requests located at (some of) the vertices, and the distance between requests indicates
how close the corresponding jobs are. The machines are represented by servers initially
at a source vertex and aim to travel to their terminals. Serving a request by a server is
analogous to assigning the corresponding job (of the request) to the corresponding machine
(of the server). The traveling distance for a server to serve a request is analogous to the
time for processing the corresponding job on the corresponding machine. A server may have
some discount on the weights of some particular edges. That is, it pays a smaller traveling
cost when traveling through these edges. The discount of servers on those edges indicates
the preference of the corresponding machines serving particular types of jobs. The goal is
to compute a schedule for all servers, which is a set of walks (where vertices/edges may
repeat), each for one server. A walk corresponding to a server starts from the common
source vertex and ends at the terminal of the server. To feasibly serve all requests, the walks
should cover all of them. The traveling cost of a server on its walk is the total load (that
is, the total processing time) of the corresponding machine. To minimize the makespan of
a schedule, we want to find the walks where the maximum traveling cost (with regard to
the corresponding server) is minimized. The modeling aims to provide a framework that is
capable of transforming scheduling problems into a routing problem that has the potential
to capture more properties of the scheduling problems from the graph’s point of view.

Formal problem definition. An instance of Scheduling-with-Locality is given by an
undirected graph G = (V, E), a set of servers S, a set of requests R ⊆ V , and a source ρ ∈ V .
Each server s ∈ S is associated with its terminal τ(s) ∈ V . Each edge e ∈ E is associated
with server-sensitive weights weight(e, s) ≥ 0 for s ∈ S, where weight(e, s) is the cost for
server s traveling through edge e. In a feasible schedule, each server s ∈ S is assigned a
walk1 that starts from ρ and ends at τ(s), and the walks of all servers in S all together visit
all requests R. Let Zs be the walk assigned to server s by schedule Z, the cost of a server s

in this schedule, cost(Zs, s), is
∑

e∈Zs
weight(e, s) by definition. The cost of a schedule Z is

defined as the maximum cost of servers on their corresponding walk, maxs∈S{cost(Zs, s)}.
The objective is to find a schedule that minimizes the cost, i.e., the maximum traveling cost
of server walks.

We consider a special case Multi-server Routing with Free-paths (MRF) problem,
where the given graph is a weighted tree T = (V, E) rooted at the source vertex ρ. There is
an integral weight function on edges weight : E → N. We call the path from ρ to τ(s) the

1 A walk is defined by a sequence of vertices W = {v0, v1, v2, · · · , vℓ} where vi−1 and vi are adjacent for
any 1 ≤ i ≤ ℓ. It is possible that a vertex or an edge appears multiple times in a walk.
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home path of server s, denoted as PH(s). A server can travel on the edges of its home path
free of cost. Formally, weight(e, s) = 0 if e ∈ PH(s) and weight(e, s) = weight(e) otherwise.
We will generalize the edge weights from integers to real numbers later in the paper.

Scheduling-with-Locality can model many scheduling problems, such as Unrelated
machine scheduling [21], Machine scheduling with setup times [22], etc. (see the full version
for details). On the other hand, although the preferences of servers are limited in the MRF
problem, the problem captures the locality-aware properties of scheduling problems, i.e., the
cost of a server serving a set of requests depends on the locality of the requests and the
server. The problem still preserves servers’ preferences for serving batches of requests and
accommodates complicated inter-request localities by the tree structure. On the other hand,
the routing is tricky due to different edge costs for different servers. In fact, one can show
that without wisely partitioning the requests, any algorithm is at least r-approximate, where
r is the number of requests.

Our results
For positive results, We propose a two-phase Partition-and-Balancing (PnB) algorithm
that first partitions the requests into packets properly and then assigns the packets to the
servers while balancing the serving costs of servers. More specifically, we apply the classic
parametric pruning framework that has been exploited to solve the k-center problem [23].
Intuitively, the framework keeps guessing the optimal value. Given a parameter ϑ as the
guessed optimal value, if an algorithm ALG guarantees to return a solution with a cost
of α · ϑ as long as ϑ is a correct guess of the optimal cost, then ALG is α-approximate.
Afterward, the framework concentrates on finding a correct guess.

In the two-phase PnB algorithm, we use the parameter ϑ as a hypothesized value of the
optimal cost. In the first phase, we partition the requests into packets according to the value
of ϑ. The partition ensures that for each packet, the cost of traveling to the packet and
the cost of traveling within the packet (to serve the requests) are balanced for any server.
Eventually, the cost of serving each packet falls between ϑ and 2ϑ, with a bounded number
of packets with serving costs less than ϑ (Lemma 3). The second phase delicately assigns the
packets, consulting the value of ϑ and the topology of the server terminals. In the end, with a
large enough ϑ, the algorithm guarantees that a server only reaches packets within a distance
bounded by a constant factor of ϑ, and the cost of any server is at most 4ϑ (Theorem 5). To
make sure that if the algorithm fails to generate an assignment with the cost at most 4ϑ, then
the value ϑ must be strictly smaller than the optimal cost, the algorithm is designed such
that the information of the instance (that will be used in the second phase) when packing
the requests into packets in the first phase is preserved (Theorem 8). Finally, the algorithm
is adjusted to solve the problem with real number edge weights via runtime trade-off.

For negative results, we provide the 2-inapproximability for the general scheduling with
locality problem (Scheduling-with-Locality) to complete the study (Theorem 15).

Related work
Makespan minimization has been studied in various settings where machines have different
speeds with respect to different jobs [7, 12, 13, 15, 17, 20, 21], machines with status and
setup costs [1, 10, 18], machines with reconfiguration overheads [19, 25], etc. On the other
hand, the scheduling of jobs with locality has raised attention recently [14, 16, 25]. That
is, reusing configurations among different jobs increases warm-starts and reduces cold-start
overheads.
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Jobs scheduling and load balancing. The closest related problem is the jobs scheduling
problem with the objective of minimizing the makespan. Lenstra et al. proposed a classic LP-
based polynomial time 2-approximation algorithm [21]. In contrast, Gairing et al. provided a
combinatorial 2-approximation algorithm [15]. Later, Arad et al. used a parametric pruning
style technique [2]. They showed that given values L and T , either there exists no schedule
of mean machine completion time L and makespan T , or a schedule of makespan at most
T + L/h < 2T can be found in polynomial time, where h ∈ (0, 1] is the feasibility factor
of a given instance. An important special case of job scheduling problem is the restricted
assignment problem, where processing times are of the form pi,j ∈ {pj , ∞}. The best known
result of the problem to date is a ( 33

17 + ε)-approximation by Svensson [26].

Multiple traveling salespeople problem. Another related problem is the multiple traveling
salespeople problem [24]. Given a set C of n cities, k salespeople, and a depot d ∈ C, the
multiple TSP problem aims to find k tours that start and end at the depot such that all of
the cities in C must be visited by at least one salesperson. The objective is to minimize the
maximum tour length over the k tours. In Euclidean metric, Monroe and Mount [24] showed
that there exists a randomized algorithm for the multiple TSP problem that runs in the
expected time O(n(( 1

ε ) log( n
ε ))O(1/ε)), where ε > 0 is an approximation parameter. For the

multiple distinct depots case, Xu and Rodrigues proposed a 3
2 -approximation algorithm [27].

For more approximation algorithms for a variety of vehicle routing problems within graphs,
please see [3]. Note that the MRF problem should not be confused with the k-delivery
traveling salesman problem [4, 6], which is a routing problem of limited-capacity vehicles
with pickup and delivery locations.

Note that in these previous works, the number of servers is considered to be constant,
while in the MRF problem, the number of servers is part of the input since each server has
its own terminal. Moreover, in the MRF problem, the servers are allowed to travel through
one edge multiple times. To decrease the overall cost, an optimal solution may send multiple
servers through one edge. If the metric space in the multiple TSP problem is a tree, and the
servers are allowed to travel through an edge more than once, the multiple TSP problem can
be seen as a special case of our problem.

Other related work. MRF is similar to the school bus problem with regret minimization [8],
in which an algorithm is additionally able to determine the locations of terminals. Bock
et al. [8] provide a 13.5-approximation algorithm for the school bus problem. For more
similar problems in vehicle routing, readers may refer to the survey [9]. On the other
hand, the min-max objective considered in this paper also has a significant impact on other
combinatorial optimization problems in vehicle routing [5] and efficiency of allocations [11].

Paper organization. In Section 2, we propose our algorithm PnB. In Section 3, we analyze
the correctness and approximation ratio of the PnB algorithm. Finally, in Section 4, we
provide complexity results of the Scheduling-with-Locality problem. Due to the page
limit, we skip most of the proofs. The complete version with proofs and pseudocodes is
attached in the appendix.

2 Partition-and-Balancing Algorithm

We propose the Partition-and-Balancing (PnB) algorithm for the MRF problem, where the
input graph is a weighted tree T rooted at the source vertex ρ, and weight(e, s) = 0 if the edge
e ∈ PH(s) (that is, e is on the home path of s, from ρ to τ(s)) and weight(e, s) = weight(e)
otherwise. We first specify the terminologies that will be used in the algorithm and analysis.
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The input tree T can be partitioned into two components, skeleton (denoted by Ts) and
request forest (denoted by FR) according to the servers’ terminals and the set of requests R.
The skeleton is the union of the home paths of all servers, and the request forest is defined
by E(T ) \ Ts. Each connected component in FR is a tree rooted at some vertex on the
skeleton. We call the trees request trees In other words, the request forest is a set of request
trees (see Figure 1). We say that a server s is based at a (sub)tree T if τ(s) ∈ T . We also
say that an edge e is a detour of server s if e ∈ PH(s′) \ PH(s), where s′ ≠ s. Conceptually,
a detour of server s is an edge that s travels at a non-free cost while there is another server
that can travel through it free of cost. Note that the edges in request forest are not detours
of any server, as all servers have to pay for travel in request forest.

Given an edge-weighted graph, a walk is a sequence of vertices W = {v0, v1, v2, · · · , vℓ}
such that vi−1 and vi are adjacent for any 1 ≤ i ≤ ℓ. The walk W is called a closed walk if v0 =
vℓ. The cost of walk W is the total weight of the edges and formally

∑ℓ
i=1 weight((vi−1, vi)).

Note that in a walk, the vertices or edges may be repeated, and a repeated edge contributes
its weight multiple times in the cost of the walk. Given a weighted rooted tree T = (V, E)
with weight function weight : E → N, we denote the subtree rooted on vertex v ∈ V by Tv.
In T , the unique path between a pair of vertices u and v is called (u, v)-path and denoted by
Pu,v. We further denote the distance between two vertices u and v by dist(u, v), which is the
sum of weights of the edges on Pu,v. For any connected component C ⊆ E, which can be a
walk, a path, or even a subtree, we denote weight(C) as the total weight of the edges in C.

For convenience, we define two operations, Walk(P ) and Merge(C, W ). The Walk(P ) oper-
ation makes the path P into a walk by going back and forth on the path. Formally, given that
P = [v1, v2, · · · , vℓ], Walk(P ) returns a walk W = {v1, v2, · · · , vℓ−1, vℓ, vℓ−1, vℓ−2, · · · , v2, v1}.
The function Merge(C, W ) is to merge the closed walk W to the component C, which can be
a path or a walk, by concatenating the two components properly. Note that the Merge(C, W )
function is feasible only when W is a closed walk, and there is at least a vertex that is in
W and in C at the same time. More formally, assume that C = {v1, v2, · · · , vℓ} is a walk
and W = {u1, u2, · · · , uk, u1}, where vx = uy for some x and y, Merge(C, W ) returns a
walk {v1, v2, · · · , vx = uy, uy+1, · · · , uk, u1, · · · , uy = vx, vx+1, · · · , vℓ}. If there are multiple
vertices that are in both C and W , we break ties arbitrarily.

Instance transformation. We first transform any input tree into a special form, where
all requests are at the leaves, and the PnB algorithm works on the transformed instance.
Formally, given the input tree T , we first remove all vertices v such that there are no terminals
or requests in Tv. Then, we remove the requests on any internal node of the resulting tree.
(See Figure 1.)

One can prove by contradiction that in an optimal schedule, no server travels to any of the
removed vertices. Moreover, since we only remove requests at the vertices with descendants
that also contain requests or terminals, an optimal solution on the original input tree is
a feasible schedule of the modified input tree. By a similar reasoning, we can argue that
PnB(T ′′) is a feasible schedule of T , where T ′′ is the modified input tree. Therefore, we
have the following lemma, and it is legal to restrict our discussion to the instance where all
requests are at the leaves:

▶ Lemma 1. If the PnB algorithm is α-approximate on the modified input T ′′, PnB algorithm
is α-approximate on input T .

MFCS 2024
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(a) Original instance. (b) Instance after transformation.

Figure 1 Instance transformation. The squares are terminals, and the gray circles are requests.
The thick edges indicate the skeleton Ts. The vertices labeled by v and requests at the vertices
labeled by r in 1a are removed in 1b. In 1b, each of the green triangles indicates a request tree.

2.1 PnB algorithm
The PnB algorithm follows the parametric pruning framework and has two phases: Partition
and Assignment. Taking parameter ϑ = 1, 2, 3, · · · , the algorithm PnB(T , ϑ) first calls
Partition(T , ϑ). If Partition(T , ϑ) does not fail, it returns an updated tree T ′ that only
consists of the skeleton while each request tree Tw rooted at w is packed into packets stored
at the vertex w. Next, the algorithm calls Assignment(T ′, ϑ). If Assignment(T ′, ϑ) does
not fail, it returns a set of |S| walks, which is an assignment of the packets to the servers.
Whenever a phase fails, we terminate the process of PnB(T , ϑ) and move on to the next ϑ

value.

2.1.1 Partition: Packing requests (Phase 1)
Given a value of ϑ, Partition deals with the request trees one by one and returns fail if
there is a request tree with a depth (that is, the length of the longest path from w) larger
than ϑ/2. In a request tree Tw, the procedure keeps formulating packets of requests in a
bottom-up manner, removing the walk that travels through the packed requests from the
request tree, and finally, storing the formulated packets at the root of the request tree. After
the Partition procedure, if it does not return fail, the updated tree T ′ has a special form,
where the vertices in the request trees except the root are all deleted, and the vertices that
were the roots of request trees now store packets. Moreover, each leaf is a terminal of some
server in the updated tree T ′.

Checking the vertices in the request tree from bottom-top. For each request tree Tw

rooted at w, the Partition procedure checks the vertices v1, v2, · · · , vk in Tw in post order.
If the subtree Tvi

has a weight of less than ϑ−dist(w,vi)
2 , we finish checking vi and move on

to the next vertex vi+1 in Tw in the post order. Otherwise, Tvi is “heavy” enough, and we
proceed to the next step for partitioning the requests in Tvi

.

Partition the requests in a heavy-enough subtree Tvi of request tree Tw. We
travel Tvi

in the depth-first-search traversal, which is a walk Wvi
= {vi, u1, u2, · · · ,

uk1 , vi, uk1+1, uk1+2, · · · , uk2 , vi, · · · , vi}. Let βvi
= ϑ − 2 · dist(w, vi). We partition Wvi

into sub-walks, B1, B2, · · · , Bm, such that each Bj starts and ends at vi and is the walk
with smallest total weight such that weight(Bj) ≥ βvi/2. Then, each sub-walk Bj is merged
to the walk Walk(Pw,vi

) and forms a packet. The involved vertices in Bj are then trimmed
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(a) Illustration of DFS packing. (1) (b) Illustration of DFS packing. (2)

(c) Illustration of DFS packing. (3) (d) Illustration of DFS packing. (4)

(e) Illustration of DFS packing. (5) (f) The five corresponding packets stored at vertex w.

Figure 2 An illustration of Partition(ϑ) on Tw. In 2a–2e, the blue trajectories show the walks
paid by the “budget” β· = ϑ − 2 · dist(w, ·) (where · is the vertex the corresponding DFS starts at),
and the red trajectories show the remaining walks back to the vertex ·. Figure 2f shows the five
corresponding packets stored at the vertex w. The green trajectories are the walks Walk(Pw,·).

from Tw (except vi, which is trimmed only when all requests in Tvi
are packed, and w, which

is never trimmed). Note that the last partition of Wvi
may have a weight of less than βvi

/2.
In this case, this sub-walk will be pended and dealt with again when the next vertex vi+1
in Tw (in the post-order) is checked. Finally, if at the end of packing on Tw, there are still
vertices left in the (trimmed) Tw, these left-over vertices are packed into one packet and
stored at w. (See Figure 2.)

2.1.2 Assignment: Assigning packets (Phase 2)
After the procedure Partition in Section 2.1.1, the modified input tree T ′ is exactly the
skeleton Ts with each request tree Tw rooted at the vertex w ∈ Ts packed into packets and
stored at w. Moreover, every leaf in T ′ is a terminal of some server. Let B denote the set
of all packets returned by Partition, and Bw denotes the set of packets stored at vertex

MFCS 2024
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w (Bv is empty if there is no request tree rooted at v). By the process of Partition, the
packets in Bw cover all requests in the request tree Tw. In the second phase of our algorithm,
Assignment, we visit the vertices in T ′ in a post-order. When a vertex v is visited, we assign
the packets stored in the subtree Tv but “far” enough from v to a server, which has its
terminal nearby, and balance the load among the servers. The algorithm returns fail if it
fails to balance the load of the servers.

Initial assignment. In the round of visiting v, we check its children c1, c2, · · · , ck one by one.
When the child ci is checked, for any vertex w that is in the subtree Tci

and dist(w, v) > ϑ
2 , we

release the packets in Bw and assign the packets to a server s based at w (that is, τ(s) ∈ Tw)2.
Ties are broken arbitrarily. Note that some servers may have already been assigned packets
in previous rounds as we visit the vertices in T ′ in a post-order.

To describe how to reassign the packets among servers, we first define the terminologies.
We call the total weight of the packets assigned to server s the work of s. A server is heavy,
light, or normal if its work is strictly greater than 3ϑ, strictly smaller than ϑ, or otherwise,
respectively. If a server s′ is assigned to serve packets that are initially assigned to another
server s, s′ is called helping for s. Otherwise, a server that helps no other servers is free.

Re-assignment for load-balancing. After the initial assignment when checking a child ci

of v, the servers with terminals in Tci
may be light, normal, or heavy. For a server s that

becomes heavy in this round, we find some light servers based at Tci
to help it with some

of the packets as follows. We first check if there is a light server s′ that is based at Tci

and already helped s with some packets. If so, we re-assign some packets released in this
round to s′. The re-assignment stops once s or s′ becomes normal. If at this moment, s is
still heavy, then we search for another light helping server for s based at Tci

and repeat the
re-assignment. If there is no light server that helped s before, we find a light free server with
its terminal in Tci

that has not helped any other server. If all light servers based at Tci
are

helping other servers, and s is still heavy, the procedure Assignment returns fail.

Wrap the packets into walks. Finally, let Ws ⊆ V (T ′) be the set of vertices that store
packets assigned to server s and Ls be the set of vertices on the (ρ, τ(s))-path. The packets
assigned to s can be wrapped up into a walk from ρ to τ(s) by traversing the subtree induced
by Ws ∪ Ls.

Figure 3 is an example of the released packets when checking c and the servers’ status
after the initial assignment. The pseudocode of Assignment can be found in the full version.

3 Analysis of PnB algorithm

Throughout the analysis, we use OPT to denote the optimal schedule. We also use OPT to
denote the value of the optimal schedule when the context is clear.

Sizes of the packets successfully returned by Partition are bounded
Recall that the PnB algorithm is run on a modified input tree T , where each leaf is a terminal
of some server. With parameter ϑ, the procedure Partition either returns fail or modifies
the input tree T into T ′ that contains the same vertices as T ′, and the packets are stored at

2 Note that all these vertices on the path from v to ci to w are all in T ′.
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(a) The requests are released. (b) After initial assignment.

(c) After re-assignment.

Figure 3 Illustration of Assignment(ϑ) when v is visited and in the round of checking c. Each
bean-shaped object is a packet from Partition(ϑ). The solid bean-shaped green objects are released
when c is checked, as they are outside the range of ϑ

2 from v. The hollow and dashed-lined ones are
packets released in previous rounds, and the hollow and solid-lined ones have not been released. The
squares indicate the servers’ terminals. The square is white/black/gray if its corresponding server is
light/heavy/normal. When a terminal is a double-layered square, its corresponding server is helping.
The gray arrows from τ(s′) to τ(s) indicate that s′ is helping s with some packets. Note that in this
example, after checking c, Assignment(ϑ) must return fail as the servers with the terminals at u1,
u2 and u3 are heavy, but there are no free light servers in Tc.

some of these vertices. Consider any request tree Tw rooted at w ∈ T ′. By construction, the
procedure Partition packed each request in Tw into exactly one packet that is stored at the
vertex w, as long as Partition(ϑ) does not return fail.

Partition fails when there is a path Pw,ℓ, where w ∈ T ′ and ℓ is a leaf in Tw, such
that dist(w, ℓ) > ϑ

2 . Since we work on the modified input tree, the only vertex that can
be a terminal in Tw is 2. Thus, any server that serves the request on ℓ has cost at least
2 · dist(w, ℓ). Therefore, we have the following lemma:

▶ Lemma 2. If Partition(ϑ) returns fail, then OPT > ϑ.

On the other hand, if Partition returns a partition regarding ϑ, each packet B stored
at vertex w ∈ T ′ is a closed walk containing w. For any packet B packed when vi ∈ Tw is
visited, it was packed using a budget of ϑ − 2 · dist(w, vi). Since we only pack heavy enough
request trees, and the vertices in the request tree are packed from the bottom up, the trip
back to vi after the budget is off is bounded by a function of ϑ and the distance between w

and vi. By careful calculations, we have the following lemma:

▶ Lemma 3. If Partition(ϑ) does not return fail, for any packet B, weight(B) ≤ 2ϑ.

MFCS 2024
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Assignment feasibly returns a schedule with a cost of 4ϑ

After Assignment(ϑ), if it does not return fail, each server is assigned a set of packets,
where each packet is a closed walk by the construction. Recall that a packet B ∈ Bw is
assigned to a server s′ either because B is assigned to s initially or s′ is helping another
server s with B. In the prior case, w is on PH(s′) = Pρ,τ(s′) and can be merged with PH(s′)
without incurring any detour edges. In the latter case, w is on PH(s) = Pρ,τ(s), and B was
released when the algorithm visited some vertex c ∈ Pρ,w, which is a common ancestor of
τ(s′) and τ(s). Thus, B can be merged with the walk Walk(Pa,τ(s)), and the merged walk
can be merged with the path PH(s′). Therefore, the packets assigned to server s′ can be
merged with PH(s′) into a walk from the root to τ(s′), and we have the following feasibility
of the PnB algorithm (see the full version for a complete proof):

▶ Theorem 4. Given instance T , the transformed instance T ′, and a parameter of value
ϑ, if Assignment(T ′, ϑ) does not return fail, PnB(T , ϑ) is feasible. Moreover, the cost of
PnB(T , ϑ) equals to the cost of PnB(T ′, ϑ).

To bound the cost of any server, we first bound the cost spent on the server’s detours.
By the selection of helping servers, any server s′ that helps another server s with packet
B ∈ Bw is taking detours with a total distance of at most 2 · dist(w, a), where a is the lowest
common ancestor of τ(s′) and τ(s). Since in each round, we only release “far-away” packets
in terms of ϑ, 2 · dist(w, a) ≤ ϑ. Hence, the total detour length of s′ is at most ϑ. Therefore,
we have the following theorem:

▶ Theorem 5. Given that Assignment(ϑ) does not return fail, the cost of any server on
serving all packets assigned to it is at most 4ϑ.

The lower bound of the optimal cost
There are two occasions that PnB returns fail; one is in the procedure Partition, and
another one is in the procedure Assignment. In Lemma 2, we have shown that if Partition
returns fail, the optimal cost must be larger than ϑ. Next, we consider the case when
Partition successfully returns a partition of requests while Assignment returns fail.

We first argue that the partition returned by Partition(ϑ) is sufficiently cost-efficient.
More specifically, if Partition(ϑ) does not return fail, and the optimal cost is at most ϑ,
then total cost the optimal schedule has to pay is comparable to the total work of all packets.

▶ Lemma 6. Given that Partition(ϑ) does not return fail, if OPT ≤ ϑ, then the sum
of the cost of servers in the optimal schedule is at least

∑
packets B weight(B). That is,∑

s∈S costOPT(s) ≥
∑

B∈B weight(B).

Proof (Sketch). We denote n∗
e as the number of servers OPT sends over the edge e, and be

as the number of packets constructed by Partition(ϑ, T ) that contain e. It is equivalent to
prove that if OPT ≤ ϑ, n∗

e ≥ be for any edge e ∈ FR. We prove this claim by induction on
the edges with depths from the bottom up. Consider an edge e = (u, v) in a request tree
Tw, where u is v’s parent. Denote weightTv (B) the total weight of edges in packet B that
are also in Tv. The total cost of servers in the optimal solution spent in the subtree Tv is∑

e′∈Tv
n∗

e′ ·weight(e′) ≥
∑

e′∈Tv
be′ ·weight(e′) by the inductive hypothesis. By construction,

any packet that contains e′ ∈ Tv must contain the edge e = (u, v). Therefore, the total
weight

∑
e′∈Tv

be′ · weight(e′) =
∑

B:e∈B weightTv
(B).

Next, we bound
∑

B:e∈B weightTv (B). By case distinction, any packet B containing
the edge e that was packed when v or some descendent of v is visited has weightTv

(B) ≥
ϑ − 2 · dist(w, v). Moreover, there is at most another packet containing the edge e that was
packed when some ancestor of v is visited. Therefore, the total weight of the packets that
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contain e is at least m · (ϑ − 2 · dist(w, v)) + weight(B̂), where m is the total number of
packets formed by visiting v or some descendent of v, and B̂ is the packets packed when an
ancestor of v is visited. Meanwhile, be = m + 1[there is at least one packet in B̂]3.

Finally, since OPT ≤ ϑ, and v is in the request tree Tw, any server that travels to v

has to finish its route in Tv with a cost of at most ϑ − 2 · dist(w, v). Therefore, an optimal

solution has to send at least
∑

B:e∈B
weightTv (B)

ϑ−2·dist(w,v) servers over the edge e to serve all requests
in Tv. Hence, n∗

e ≥ m + 1[there is at least one packet in B̂] = be, since n∗
e is integral. ◀

Next, we show that if Assignment(ϑ) returns fail, the average cost of the servers in the
(failed) Assignment(ϑ) assignment on serving the packets must be strictly larger than ϑ.

▶ Lemma 7. Given that Assignment(ϑ) returns fail, on average, each server in the PnB
assignment is assigned by packets with total work strictly larger than ϑ.

Proof (Sketch). Assume that Assignment(ϑ) returns fail when visiting v and checking
the child c. Consider the set S ′ of servers that an optimal solution uses to serve the requests
in Tc. There are two cases of the optimal solution: 1) there exists at least one server in S ′

who has its terminal outside Tc, or 2) all servers in S ′ have their terminals in Tc. It is easy
to see in case 1, the optimal cost is at least ϑ due to any packets inside Tc are at least ϑ/2
away from c.

For Case 2, we use a helping forest argument described below. Consider the servers’
packets with their terminals in Tc at the moment when Assignment(ϑ) returns fail. We
construct helping trees, which are rooted trees, where each node corresponds to a server by
making s′ a child of s if s′ helps s with some packets.4 In each helping tree, the root and the
internal nodes are normal (or heavy if it is the server that triggers Assignment(ϑ) to return
fail). Consider any internal node s and its children, which are sorted by the order that
they help s. The servers s and all its children but the last one must be all normal. On the
other hand, the last child can be normal or light. Furthermore, if the last child is light, it is
a leaf, as it needs no one to help it. Hence, any internal node has at most one light leaf. The
total work of an internal node s and its light leaf sℓ is at least 3ϑ, since work(s) > 3ϑ right
before sℓ helps s. Therefore, the theorem is proven by the fact that the average work of the
servers with terminals in Tc is strictly greater than n·ϑ+ℓ·3ϑ

n+2ℓ > ϑ, where ℓ is the number of
internal node-light leaf pairs, and n is the number of other nodes in the helping forest. ◀

Now, we are ready to prove our main theorem.

▶ Theorem 8. Given that PnB(T , ϑ) returns fail, OPT > ϑ.

Proof. By the construction, Partition(ϑ) returns fail, the optimal cost must be strictly
larger than ϑ. When Assignment(ϑ) returns fail, there are two cases of the optimal cost:
1) OPT > ϑ, and 2) OPT ≤ ϑ. Suppose on contrary that Assignment(ϑ) returns fail and

OPT ≤ ϑ. Then, OPT ≥ average cost of all servers =
∑

s∈S
costOPT(s)
|S| ≥

∑
B∈B

weight(B)
|S| ,

where the inequality is by Lemma 6. By Lemma 7,
∑

B∈B
weight(B)
|S| > ϑ. In result, OPT > ϑ,

which contradicts to the assumption that OPT ≤ ϑ. ◀

By Theorem 5, Theorem 8, and the parametric pruning framework, we get the approxim-
ation ratio:

▶ Theorem 9. PnB is a 4-approximation.

3 The function 1[X] is 1 if statement X is true and is 0 otherwise.
4 By the construction, a server s helped by another server will not help other servers, while a helping

server s′ may be helped by other servers later.
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4 Runtime and complexity

4.1 Runtime

Based on the pseudocode, the runtime of PnB depends on a polynomial function of the
number of vertices, the number of requests, the number of servers and the value of the
optimal schedule. We can slightly improve it as follows. Previously, we search for ϑ∗ through
a linear scan of ϑ starting from 1, 2, and so on. The scan can be accelerated by binary search.

More specifically, we make ϑ starting from 1, double its value until PnB outputs a feasible
schedule, and then binary search within the range up to the ϑ of the feasible schedule.
Therefore, for the part of the value of optimal schedule, the runtime reduces to a logarithmic
function of the value.

▶ Theorem 10. PnB runs in O(|V |3 log OPT(T )) time where |V | is the number of vertices
in the input tree T .

▶ Corollary 11. PnB runs in polynomial time.

By the binary search method, we can generalize the edge weights from integers to real
numbers.

▶ Theorem 12. For real number edge weights, PnB is (4 + ϵ)-approximation with runtime
O(|V |3(4/ϵ − 1 + log⌈OPT(T )⌉)) where |V | is the number of vertices in the input tree T .

4.2 Complexity results

First, by reducing from 3-Partition, we have the following theorem for MRF:

▶ Theorem 13. MRF is strongly NP-hard even if the input is a star.

Then, we move on to the complexity of Scheduling-with-Locality. We show that the
unrelated machine scheduling problem can be reduced to a special case of the scheduling with
locality problem. Thus, the problem is more general than the unrelated machine scheduling
problem in the sense of approximation ratios.

▶ Theorem 14. For α < 1.5, there does not exist a polynomial-time α-approximation al-
gorithm for Scheduling-with-Locality even if we restrict that a server only gets discounts
on the edges of the path from the source vertex to its terminal, unless P = NP .

For the rest of the section, we show the following theorem by a reduction from 3-
dimensional matching.

▶ Theorem 15. For α < 2, there does not exist a polynomial-time α-approximation algorithm
for Scheduling-with-Locality even if the edge weights consist of only 0 and 1, unless
P = NP .

3-Dimensional matching. In the problem, there are disjoint vertex sets A, B and C with
|A| = |B| = |C| = n. There is also a set of triples T . Each t ∈ T is (at, bt, ct) for some
at ∈ A, bt ∈ B and ct ∈ C. There is a matching if we can find n triples that cover A ∪ B ∪ C.
It is known that 3-dimensional matching is NP-hard.
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Construction of the reduction. If |T | < n, we construct a trivial no-instance. Thus in
the following, we assume |T | ≥ n. For ease of the description, there is no discounts on any
edge for each server by default. For each vertex x ∈ A ∪ B ∪ C, there is a corresponding
request vertex rx. There are additionally |T | − n dummy request vertices D. For each triple
t = (a, b, c) ∈ T , there are four vertices vt, xt, yt and zt. Each triple has a corresponding
server. Let s be the corresponding server of t. Vertex vt is the terminal of s. There are edges
(vt, xt), (xt, yt) and (yt, zt). The weights of the three edges is 1 and the discounts of (xt, yt)
and (yt, zt) for server s are 0. There are additionally edges (xt, ra), (yt, rb) and (zt, rc) all
with weight 0. In addition, vt is adjacent to all the dummy requests D, and these edges all
have weight 1. Finally, vt is also adjacent to the source vertex. The edge has weight 1, but
the corresponding server s has a discount 0.

The construction has the following properties.

▶ Observation 16. Consider two different servers s and s′, and their corresponding triples
t = (a, b, c) ∈ T and t′ = (a′, b′, c′) ∈ T respectively. Any walk starting from the terminal of s

and ending at x′
t incurs a cost of at least 2 for server s if a ̸= a′. The reversed walk (from x′

t

to the terminal of s) also incurs a cost of at least 2 for server s if a ̸= a′. Both statements
are also true if we replace the vertices (a, a′, x′

t) by (b, b′, y′
t) or replace (a, a′, x′

t) by (c, c′,
z′

t).

▶ Lemma 17. For Scheduling-with-Locality, the question of deciding if there exists a
feasible schedule with makespan at most 2 is NP-hard.

Proof of Theorem 15. By the construction and Observation 16, it is easy to see that any
feasible schedule with a makespan strictly larger than 2 has a makespan larger than 4. Thus,
the theorem follows. ◀
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