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Abstract
Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem
is to compute a subset of disks of smallest total weight such that the union of the disks in the
subset covers all points of P . The problem is NP-hard. In this paper, we consider a line-separable
unit-disk version of the problem where all disks have the same radius and their centers are separated
from the points of P by a line ℓ. We present an O(n3/2 log2 n) time algorithm for the problem.
This improves the previously best work of O(n2 log n) time. Our result leads to an algorithm of
O(n7/2 log2 n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover
n points), an improvement over the previous O(n4 log n) time solution. If all halfplanes are lower
ones, our algorithm runs in O(n3/2 log2 n) time, while the previous best algorithm takes O(n2 log n)
time. Using duality, the hitting set problems under the same settings can be solved with similar
time complexities.
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1 Introduction

Let P be a set of points, and S a set of disks in the plane such that each disk has a positive
weight. The disk coverage problem asks for a subset of disks whose union covers all points
and the total weight of the disks in the subset is minimized. The problem is NP-hard, even
if all disks have the same radius and all disks have the same weight [12,20]. Polynomial-time
approximation algorithms have been proposed for the problem and many of its variants,
e.g., [1, 7–9,13,17].

In this paper, we consider a line-separable unit-disk version of the problem where all
disks have the same radius and their centers are separated from the points of P by a line
ℓ (see Fig. 1). This version of the problem has been studied before. For the unweighted
case, that is, all disks have the same weight, Ambühl, Erlebach, Mihalák, and Nunkesser [3]
first solved the problem in O(m2n) time, where n = |P | and m = |S|. An improved
O(nm + n log n) time algorithm was later given in [11]. Liu and Wang [19] recently presented
an O((n + m) log(n + m)) time algorithm.1 For the weighted case, Pederson and Wang [22]
derived an algorithm of O(nm log(m + n)) time or O((m + n) log(m + n) + κ log m) time,

1 The runtime of the algorithm in the conference paper of [19] was m2/3n2/32O(log∗(m+n)) + O((n +
m) log(n + m)), which has been improved to O((n + m) log(n + m)) time in the latest arXiv version.
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`

Figure 1 Illustrating the line-separable unit-disk case: All points of P are above ℓ while the
centers of all disks are below ℓ.

where κ is the number of pairs of disks that intersect and κ = O(m2) in the worst case. In
this paper, we propose an algorithm of O(n

√
m log2 m + (m + n) log(m + n)) time for the

weighted case. In addition to the improvement over the previous work, perhaps theoretically
more interesting is that the runtime of our algorithm is subquadratic.

The halfplane coverage problem. If every disk of S is a halfplane, then the problem
becomes the halfplane coverage problem. To solve the problem, Pedersen and Wang [22]
showed that the problem can be reduced to O(n2) instances of the lower-only halfplane
coverage problem in which all halfplanes are lower halfplanes; this reduction works for both
the unweighted and the weighted cases. Consequently, if the lower-only problem can be
solved in O(T ) time, then the general problem (i.e., S has both lower and upper halfplanes)
is solvable in O(n2 · T ) time.

For the weighted lower-only problem, Chan and Grant [8] first gave an algorithm that
runs in O((m + n)4) time. As observed in [22], the lower-only halfplane coverage problem is
actually a special case of the line-separable unit-disk coverage problem. Indeed, let ℓ be a
horizontal line below all the points of P . Then, since each halfplane of S is a lower halfplane,
it can be considered a disk of infinite radius with center below ℓ. In this way, the lower-only
halfplane coverage problem becomes an instance of the line-separable unit-disk coverage
problem. As such, with their algorithm for the weighted line-separable unit-disk coverage
problem, Pederson and Wang [22] solved the weighted lower-only halfplane coverage problem
in O(nm + n log n) time or O((m + n) log(m + n) + m2 log m) time. Using our new algorithm
for the weighted line-separable unit-disk coverage problem, the weighted lower-only halfplane
coverage problem can now be solved in O(n

√
m log2 m + (m + n) log(m + n)) time.

The unweighted lower-only halfplane coverage problem can be solved faster. Indeed, since
the problem is a special case of the unweighted line-separable unit-disk coverage problem,
with the O((n + m) log(n + m)) time algorithm of Liu and Wang [19] for the latter problem,
the unweighted lower-only halfplane coverage problem is solvable in O((n + m) log(n + m))
time. Wang and Xue [24] derived another O((n + m) log(n + m)) time algorithm for the
unweighted lower-only halfplane coverage problem with a different approach (which does
not work for the unit-disk problem); they also solved the general unweighted halfplane
coverage problem in O(n4/3 log5/3 n logO(1) log n) time. In addition, by a reduction from the
set equality problem [4], a lower bound of Ω((n + m) log(n + m)) is proved in [24] for the
lower-only halfplane coverage problem under the algebraic decision tree model.

The hitting set problem. A related problem is the hitting set problem in which each point
of P has a positive weight and we seek to find a subset of points with minimum total weight
so that each disk of S contains at least one point of the subset. Since the disks of S have the
same radius, the problem is actually “dual” to the disk coverage problem. More specifically,
if we consider the set of unit disks centered at the points of P as a set of “dual disks” and
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consider the centers of the disks of S as a set of “dual points”, then the hitting set problem
on P and S is equivalent to finding a minimum weight subset of dual disks whose union
covers all dual points. Consequently, applying our new weighted case line-separable unit-disk
coverage algorithm in this paper solves the weighted line-separable unit-disk hitting set
problem in O(m

√
n log2 n + (m + n) log(m + n)) time; applying the O((m + n) log(m + n))

time algorithm in [19] for the unweighted line-separable unit-disk coverage algorithm solves
the unweighted line-separable unit-disk hitting set problem in O((m + n) log(m + n)) time.

If every disk of S is a halfplane, then the problem becomes the halfplane hitting set
problem. Har-Peled and Lee [14] first solved the weighted problem in O((m + n)6) time. Liu
and Wang [18] showed that the problem can be reduced to O(n2) instances of the lower-only
halfplane hitting set problem in which all halfplanes are lower halfplanes; this reduction works
for both the unweighted and the weighted cases. Consequently, if the lower-only problem
can be solved in O(T ) time, then the general problem can be solved in O(n2 · T ) time. For
the lower-only problem, as in the coverage problem, it is a special case of the line-separable
unit-disk hitting set problem; consequently, the weighted and unweighted cases can be solved
in O(m

√
n log2 n + (m + n) log(m + n)) time using our new algorithm in this paper and

O((m + n) log(m + n)) time using the algorithm in [19], respectively.

Other related work. Pedersen and Wang [22] actually considered a line-constrained disk
coverage problem, where disk centers are on the x -axis while the points of P can be
anywhere in the plane, but the disks may have different radii. They solved the weighted case
in O(nm + n log n) time or O((m + n) log(m + n) + κ log m) time, where κ is the number of
pairs of disks that intersect. For the unweighted case, Liu and Wang [19] gave an algorithm
of O((n + m) log(m + n) + m log m log n) time. The line-constrained disk hitting set problem
was also studied by Liu and Wang [18], where an O((m + n) log(m + n) + κ log m) time
algorithm was derived for the weighted case, matching the time complexity of the above
line-constrained disk coverage problem. Other types of line-constrained problems have also
been considered in the literature, e.g., [2, 5, 6, 15,16,21,25].

Our approach. Our algorithm for the weighted line-separable unit-disk coverage problem
is essentially a dynamic program. The algorithm description is quite simple and elegant.
However, it is not straightforward to prove its correctness. To this end, we show that our
algorithm is consistent with the algorithm in [22] for the same problem; one may view our
algorithm as a different implementation of the algorithm in [22]. Another challenge of our
approach lies in its implementation. More specifically, our algorithm has two key operations,
and the efficiency of the algorithm hinges on how to perform these operations efficiently.
For this, we construct a data structure based on building a cutting on the disks of S [10].
Although we do not have a good upper bound on the runtime of each individual operation
of the algorithm, we manage to bound the total time of all operations in the algorithm by
O(n
√

m log2 m + (m + n) log(m + n)).

Outlines. The rest of the paper is structured as follows. After introducing some nota-
tion in Section 2, we describe our algorithm and prove its correctness in Section 3. The
implementation of the algorithm is presented in Section 4.

MFCS 2024
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2 Preliminaries

We follow the notation defined in Section 1, e.g., P , S, m, n, ℓ. All disks of S have the same
radius, which we call unit disks. Without loss of generality, we assume that ℓ is the x-axis
and all points of P are above ℓ while all centers of disks of S are below ℓ. Note that when
we say that a point is above (or below) ℓ, we allow the case where the point is on ℓ.

We assume that each point of P is covered by at least one disk since otherwise there
would be no solution. Our algorithm can check whether this assumption is met. For ease of
discussion, we make a general position assumption that no point of P lies on the boundary
of a disk and no two points of P have the same x-coordinate.

We call a subset S′ of S a feasible subset if the union of all disks of S′ covers all points of
P . If S′ is a feasible subset of minimum total weight, then S′ is called an optimal subset.
Let δopt denote the total weight of all disks in an optimal subset; we call δopt the optimal
objective value.

For any point q in the plane, let Sq ⊆ S denote the subset of disks containing q; define
Sq = S \ Sq. For each disk s ∈ S, let w(s) denote its weight.

3 Algorithm description and correctness

We now present our algorithm. As mentioned above, the algorithm description is quite
simple. The challenging part is to prove its correctness and implement it efficiently. In the
following, we first describe the algorithm in Section 3.1, and then establish its correctness in
Section 3.2. The algorithm implementation will be elaborated in Section 4.

3.1 Algorithm description
We first sort the points of P from left to right as p1, p2, . . . , pn. Our algorithm then processes
the points of P in this order. For each point pi ∈ P , the algorithm computes a value δi. The
algorithm also maintains a value cost(s) for each disk s ∈ S, which is initialized to its weight
w(s). The pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1 The primal algorithm.

Input: The points of P are sorted from left to right as p1, p2, . . . , pn

Output: The optimal objective value δopt

1 cost(s)← w(s), for all disks s ∈ S;
2 for i← 1 to n do
3 δi ← mins∈Spi

cost(s); // FindMinCost Operation
4 cost(s)← w(s) + δi for all disks s ∈ Spi

; // ResetCost Operation
5 end
6 return δn;

The algorithm is essentially a dynamic program. We prove in Section 3.2 that the value
δn returned by the algorithm is equal to δopt, the optimal objective value. To find an optimal
subset, one could slightly modify the algorithm following the standard dynamic programming
backtracking technique. More specifically, if δn is equal to cost(s) for some disk s ∈ Spn ,
then s should be reported as a disk in the optimal subset. Suppose that cost(s) is equal to
w(s) + δi for some point pi. Then δi is equal to cost(s′) for some disk s′ ∈ Spi and s′ should
be reported as a disk in the optimal subset. We continue this backtracking process until
a disk whose cost is equal to its own weight is reported (in which case all points of P are
covered by the reported disks).
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For reference purposes, we use FindMinCost to refer to the operation in Line 3 and use
ResetCost to refer to the operation in Line 4 of Algorithm 1. The efficiency of the algorithm
hinges on how to implement these two key operations, which will be discussed in Section 4.

3.2 Correctness of Algorithm 1
We prove that Algorithm 1 is correct, i.e., prove δn = δopt. To this end, we show that our
algorithm is consistent with the algorithm of Pederson and Wang [22] for the same problem,
or alternatively, our algorithm provides a different implementation of their algorithm. Their
algorithm first reduces the problem to a 1D interval coverage problem and then solves
the interval coverage problem by a dynamic programming algorithm. In the following,
we first review their problem reduction in Section 3.2.1 and then explain their dynamic
programming algorithm in Section 3.2.2. Finally, we show that our algorithm is essentially
an implementation of their dynamic programming algorithm in Section 3.2.3.

3.2.1 Reducing the problem to an interval coverage problem
For convenience, let p0 (resp., pn+1) be a point to the left (resp., right) all the points of P

and is not contained in any disk of S.
Consider a disk s ∈ S. We say that a subsequence P [i, j] of P with 1 ≤ i ≤ j ≤ n is a

maximal subsequence covered by s if all points of P [i, j] are covered by s but neither pi−1
nor pj+1 is (it is well defined due to p0 and pn+1). Define F (s) as the set of all maximal
subsequences covered by s. It is easy to see that the subsequences of F (s) are pairwise
disjoint.

For each point pi of P , we vertically project it on the x-axis ℓ; let p∗
i denote the projection

point. Let P ∗ denote the set of all such projection points. Due to our general position
assumption that no two points of P have the same x-coordinate, all points of P ∗ are distinct.
For any 1 ≤ i ≤ j ≤ n, we use P ∗[i, j] to denote the subsequence p∗

i , p∗
i+1, . . . , p∗

j .
Next, we define a set S∗ of line segments on ℓ as follows. For each disk s ∈ S and each

subsequence P [i, j] ∈ F (s), we create a segment for S∗, denoted by s∗[i, j], with the left
endpoint at p∗

i and the right endpoint at p∗
j . As such, s∗[i, j] covers all points of P ∗[i, j] and

does not cover any point of P ∗ \ P ∗[i, j]. We let the weight of s∗[i, j] be equal to w(s). We
say that s∗[i, j] is defined by the disk s.

Consider the following interval coverage problem (i.e., each segment of S∗ can also be
considered an interval of ℓ): Find a subset of segments of S∗ of minimum total weight such
that the union of the segments in the subset covers all points of P ∗. Pederson and Wang [22]
proved that an optimal solution to this interval coverage problem corresponds to an optimal
solution to the original disk coverage problem on P and S. More specifically, suppose that
S∗

opt is an optimal subset of the interval coverage problem. Then, we can obtain an optimal
subset Sopt for the disk coverage problem as follows: For each segment s∗[i, j] ∈ S∗

opt, we add
the disk that defines s∗[i, j] to Sopt. It is proved in [22] that Sopt thus obtained is an optimal
subset of the disk coverage problem. Note that since a disk of S may define multiple segments
of S∗, a potential issue with Sopt is that a disk may be included in Sopt multiple times (i.e.,
if multiple segments defined by the disk are in S∗

opt); but this is proved impossible [22].

3.2.2 Solving the interval coverage problem
We now explain the dynamic programming algorithm in [22] for the interval coverage problem.

Let p∗
0 be the vertical projection of p0 on ℓ. Note that p∗

0, p∗
1, . . . , p∗

n are sorted on ℓ from
left to right. For each segment s∗ ∈ S∗, let w(s∗) denote the weight of s∗.

MFCS 2024
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For each segment s∗ ∈ S∗, define fs∗ as the index of the rightmost point of P ∗ ∪ {p∗
0}

strictly to the left of the left endpoint of s∗. Note that fs∗ is well defined due to p∗
0.

For each i ∈ [1, n], define δ∗
i as the minimum total weight of a subset of segments of S∗

whose union covers all points of P ∗[1, i]. The goal of the interval coverage problem is to
compute δ∗

n, which is equal to δopt [22]. For convenience, we let δ∗
0 = 0. For each segment

s∗ ∈ S∗, define cost(s∗) = w(s∗) + δ∗
fs∗ . One can verify that δ∗

i = mins∗∈S∗
p∗

i

cost(s∗), where
S∗

p∗
i
⊆ S∗ is the subset of segments that cover p∗

i . This is the recursive relation of the dynamic
programming algorithm.

Assuming that the indices fs∗ for all disks s∗ ∈ S∗ have been computed, the algorithm
works as follows. We sweep a point q on ℓ from left to right. Initially, q is at p∗

0. During
the sweeping, we maintain the subset S∗

q ⊆ S∗ of segments that cover q. The algorithm
maintains the invariant that the cost of each segment of S∗

q is already known and the values
δ∗

i for all points p∗
i ∈ P ∗ to the left of q have been computed. An event happens when q

encounters an endpoint of a segment of S∗ or a point of P ∗. If q encounters a point p∗
i ∈ P ∗,

then we find the segment of S∗
q with the minimum cost and assign the cost value to δ∗

i . If q

encounters the left endpoint of a segment s∗, we set cost(s∗) = w(s∗) + δ∗
fs∗ and then insert

s∗ into S∗
q . If q encounters the right endpoint of a segment, we remove the segment from S∗

q .
The algorithm finishes once q meets p∗

n, at which event δ∗
n is computed.

Remark. It was shown in [22] that the above dynamic programming algorithm for the
interval coverage problem can be implemented in O((|P ∗|+ |S∗|) log(|P ∗|+ |S∗|)). While
|P ∗| = n, |S∗| may be relatively large. A straightforward upper bound for |S∗| is O(nm).
Pederson and Wang [22] proved another bound |S∗| = O(n + m + κ), where κ is the number
of pairs of disks that intersect. This leads to their algorithm of O(nm log(m + n) + n log n)
time or O((m + n) log(m + n) + κ log m) time for the original disk coverage problem on P

and S.

3.2.3 Correctness of our algorithm
Next, we argue that δn = δ∗

n, which will establish the correctness of Algorithm 1 since
δ∗

n = δopt. In fact, we will show that δi = δ∗
i for all 1 ≤ i ≤ n. We prove it by induction.

As the base case, we first argue δ1 = δ∗
1 . To see this, by definition, δ1 = mins∈Sp1

w(s)
because cost(s) = w(s) initially for all disks s ∈ S. For δ∗

1 , notice that fs∗ = 0 for every
segment s∗ ∈ S∗

p∗
1
. Since δ∗

0 = 0, we have δ∗
1 = mins∗∈S∗

p∗
1

w(s∗). By definition, a segment
s∗ ∈ S∗ covers p∗

1 only if the disk of S defining s∗ covers p1, and the segment has the same
weight as the disk. Therefore, s∗ is in S∗

p∗
1

only if the disk of S defining s∗ is in Sp1 . On the
other hand, if a disk s covers p1, then s must define exactly one segment in S∗ covering p∗

1.
Hence, for each disk s ∈ Sp1 , it defines exactly one segment in S∗

p∗
1

with the same weight. This
implies that δ∗

1 is equal to the minimum weight of all disks of S covering p1, and therefore,
δ∗

1 = δ1 must hold.
Consider any i with 2 ≤ i ≤ n. Assuming that δj = δ∗

j for all 1 ≤ j < i, we now prove
δi = δ∗

i . Recall that δi = mins∈Spi
cost(s) and δ∗

i = mins∗∈S∗
p∗

i

cost(s∗). As argued above,
each disk s ∈ Spi

defines a segment in S∗
p∗

i
with the same weight and each segment s∗ ∈ S∗

p∗
i

is defined by a disk in Spi
with the same weight. Let s∗ be the segment of S∗

p∗
i

defined by a
disk s ∈ Spi

. To prove δi = δ∗
i , it suffices to show that cost(s) of s is equal to cost(s∗) of

s∗. To see this, first note that w(s) = w(s∗). By definition, cost(s∗) = w(s∗) + δ∗
fs∗ . For

notational convenience, let j = fs∗ . By definition, all points of P ∗[j + 1, i] are covered by
the segment s∗ but the point p∗

j is not. Therefore, all points of P [j + 1, i] are covered by the
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disk s but pj is not. As such, during the ResetCost operation of the j-th iteration of the for
loop in Algorithm 1, cost(s) will be set to w(s) + δj ; furthermore, cost(s) will not be reset
again during the i′-th iteration for all j + 1 ≤ i′ ≤ i. Therefore, we have cost(s) = w(s) + δj

at the beginning of the i-th iteration of the algorithm. Since δj = δ∗
j holds by induction

hypothesis and w(s) = w(s∗), we obtain cost(s) = cost(s∗). This proves δi = δ∗
i .

The correctness of Algorithm 1 is thus established.

Remark. The above proof for δn = δopt also implies that δi = δi
opt for all 1 ≤ i ≤ n − 1,

where δi
opt is the minimum total weight of a subset of disks whose union covers all points of

P [1, i]. Indeed, we can apply the same proof to the points of P [1, i] only. Observe that δi

will never change after the i-th iteration of Algorithm 1.

4 Algorithm implementation

In this section, we discuss the implementation of Algorithm 1. Specifically, we describe
how to implement the two key operations FindMinCost and ResetCost. A straightforward
method can implement each operation in O(m) time, resulting in a total O(mn + n log n)
time of the algorithm. Note that this is already a logarithmic factor improvement over the
previous work of Pederson and Wang [22]. In the following, we present a faster approach of
O(n
√

m log2 m + (m + n) log(m + n)) time.

Duality. Recall that the points of P are sorted from left to right as p1, p2, . . . , pn. In fact,
we consider the problem in the “dual” setting. For each point pi ∈ P , let di denote the unit
disk centered at pi, and we call di the dual disk of pi. For each disk s ∈ S, let qs denote the
center of s, and we call qs the dual point of s. We define the weight of qs to be equal to w(s).
We use D to denote the set of all dual disks and Q the set of all dual points. For each dual
point q ∈ Q, let w(q) denote its weight. Because all disks of S are unit disks, we have the
following observation.

▶ Observation 1. A disk s ∈ S covers a point pi ∈ P if and only if the dual point qs is
covered by the dual disk di.

For any disk di ∈ D, let Qdi
denote the subset of dual points of Q that are covered by di,

i.e., Qdi
= Q∩ di. Define Qdi

= Q \Qdi
. In light of Observation 1, Algorithm 1 is equivalent

to the following Algorithm 2.

Algorithm 2 An algorithm “dual” to Algorithm 1.

1 cost(q)← w(q), for all dual points q ∈ Q;
2 for i← 1 to n do
3 δi ← minq∈Qdi

cost(q); // FindMinCost Operation
4 cost(q)← w(q) + δi for all dual points q ∈ Qdi ; // ResetCost Operation
5 end
6 return δn;

In the following, we will present an implementation for Algorithm 2, and in particular,
for the two operations FindMinCost and ResetCost.

For each disk di ∈ D, since its center is above the x-axis ℓ and all points of Q are below
ℓ, only the portion of di below ℓ matters to Algorithm 2. We call the boundary portion of di

below ℓ the lower arc of di. Let H denote the set of the lower arcs of all disks of D.

MFCS 2024
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Figure 2 Illustrating a pseudo-trapezoid.

Cuttings. Our algorithm will need to construct a cutting on the arcs of H [10]. We explain
this concept first. Note that |H| = n. For a parameter r with 1 ≤ r ≤ n, a (1/r)-cutting Ξ
of size O(r2) for H is a collection of O(r2) constant-complexity cells whose union covers the
entire plane and whose interiors are pairwise disjoint such that the interior of each cell σ ∈ Ξ
is crossed by at most n/r arcs of H, i.e., |Hσ| ≤ n/r, where Hσ is the subset of arcs of H

that cross the interior of σ (Hσ is often called the conflict list in the literature). Let Dσ be
the subset of disks of D whose lower arcs are in Hσ. Hence, we also have |Dσ| ≤ n/r.

We actually need to construct a hierarchical cutting for H [10]. We say that a cutting
Ξ′ c-refines another cutting Ξ if each cell of Ξ′ is completely inside a single cell of Ξ and
each cell of Ξ contains at most c cells of Ξ′. Let Ξ0 denote the cutting with a single cell
that is the entire plane. We define cuttings {Ξ0, Ξ1, ..., Ξk}, in which each Ξi, 1 ≤ i ≤ k,
is a (1/ρi)-cutting of size O(ρ2i) that c-refines Ξi−1, for two constants ρ and c. By setting
k = ⌈logρ r⌉, the last cutting Ξk is a (1/r)-cutting. The sequence {Ξ0, Ξ1, ..., Ξk} is called a
hierarchical (1/r)-cutting for H. If a cell σ′ of Ξi−1, 1 ≤ i ≤ k, contains cell σ of Ξi, we say
that σ′ is the parent of σ and σ is a child of σ′. We can also define ancestors and descendants
correspondingly. As such, the hierarchical (1/r)-cutting can be viewed as a tree structure
with the single cell of Ξ0 as the root. We often use Ξ to denote the set of all cells in all
cuttings Ξi, 0 ≤ i ≤ k. The total number of cells of Ξ is O(r2) [10].

A hierarchical (1/r)-cutting of H can be computed in O(nr) time, e.g., by the algorithm
in [23], which adapts Chazelle’s algorithm [10] for hyperplanes. The algorithm also produces
the conflict lists Hσ (and thus Dσ) for all cells σ ∈ Ξ, implying that the total size of these
conflict lists is bounded by O(nr). In particular, each cell of the cutting produced by the
algorithm of [23] is a (possibly unbounded) pseudo-trapezoid that typically has two vertical
line segments as left and right sides, a sub-arc of an arc of H as a top side (resp., bottom
side) (see Fig. 2).

In what follows, we first discuss a preprocessing step in Section 4.1. The algorithms for
handling the two key operations are described in the subsequent two subsections, respectively.
Section 4.4 finally summarizes everything.

4.1 Preprocessing
In order to handle the two key operations, we first perform some preprocessing work before
we run Algorithm 2. As discussed above, we first sort all points of P from left to right. In the
following, we describe a data structure which will be used to support the two key operations.

We start by computing a hierarchical (1/r)-cutting {Ξ0, Ξ1, ..., Ξk} for H in O(nr)
time [10,23], for a parameter 1 ≤ r ≤ n to be determined later. We follow the above notation,
e.g., σ, Hσ, Dσ, Ξ. As discussed above, the cutting algorithm also produces the conflict lists
Hσ (and thus Dσ) for all cells σ ∈ Ξ. Using the conflict lists, we compute a list L(di) for
each disk di ∈ D, where L(di) comprises all cells σ ∈ Ξ such that di ∈ Dσ. Computing L(di)
for all disks di ∈ D can be done in O(

∑
σ∈Ξ |Hσ|) time by simply traversing the conflict lists

Hσ of all cells σ ∈ Ξ, which takes O(nr) time as
∑

σ∈Ξ |Hσ| = O(nr). Note that this also
implies

∑
di∈D |L(di)| = O(nr).
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For any region R in the plane, let Q(R) denote the subset of points of Q that are inside
R, i.e., Q(R) = Q ∩R.

For simplicity, we assume that no point of Q is on the boundary of any cell of Ξ. This
implies that each point of Q is in the interior of a single cell of Ξi, for all 0 ≤ i ≤ k. We
compute the subset Q(σ) of all cells σ in the last cutting Ξk. This can be done by a point
location procedure as follows. For each point q ∈ Q, starting from the only cell of Ξ0, we find
the cell σi of Ξi containing q, for each 0 ≤ i ≤ k. More precisely, suppose that σi is known.
To find σi+1, we simply check all O(1) children of σi and find the one that contains q, which
takes O(1) time. As such, processing all points of Q takes O(m log r) time as k = O(log r),
after which Q(σ) for all cells σ ∈ Ξk are computed. We explicitly store Q(σ) for all cells
σ ∈ Ξk. Note that the subsets Q(σ) for all cells σ ∈ Ξk form a partition of Q. Therefore, we
have the following observation.

▶ Observation 2.
∑

σ∈Ξk
|Q(σ)| = m.

Note that a cell σ ∈ Ξ is the ancestor of another cell σ′ ∈ Ξ (alternatively, σ′ is a
descendant of σ) if and only if σ fully contains σ′. For convenience, we consider σ an ancestor
of itself but not a descendant of itself. Let A(σ) denote the set of all ancestors of σ and B(σ)
the set of all descendants of σ. Hence, σ is in A(σ) but not in B(σ). Let C(σ) denote the
set of all children of σ Clealy, |A(σ)| = O(log r) and |C(σ)| = O(1).

Variables and algorithm invariants. For each point q ∈ Q, we associate with it a variable
λ(q). For each cell σ ∈ Ξ, we associate with it two variables: minCost(σ) and λ(σ). If
|Q(σ)| = ∅, then minCost(σ) = ∞ and λ(σ) = 0 always hold during the algorithm. Our
algorithm for handling the two key operations will maintain the following two invariants.

▶ Algorithm Invariant 1. For any point q ∈ Q, cost(q) = w(q) + λ(q) +
∑

σ′∈A(σ) λ(σ′),
where σ is the cell of Ξk that contains q.

▶ Algorithm Invariant 2. For each cell σ ∈ Ξ with Q(σ) ̸= ∅, if σ is a cell of Ξk, then
minCost(σ) = minq∈Q(σ)(w(q)+λ(q)); otherwise, minCost(σ) = minσ′∈C(σ)(minCost(σ′)+
λ(σ′)).

The above algorithm invariants further imply the following observation.

▶ Observation 3. For each cell σ ∈ Ξ with Q(σ) ̸= ∅, minq∈Q(σ) cost(q) = minCost(σ) +∑
σ′∈A(σ) λ(σ′).

Proof. We prove the observation by induction. For the base case, consider a cell σ of the
last cutting Ξk. By the two algorithm invariants, we have

min
q∈Q(σ)

cost(q) = min
q∈Q(σ)

(
w(q) + λ(q) +

∑
σ′∈A(σ)

λ(σ′)
)

by Algorithm Invariant 1

= min
q∈Q(σ)

(
w(q) + λ(q)

)
+

∑
σ′∈A(σ)

λ(σ′)

= minCost(σ) +
∑

σ′∈A(σ)

λ(σ′). by Algorithm Invariant 2

This proves the observation for σ.
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Now consider a cell σ ∈ Ξ \ Ξk. We assume that the observation holds for all children σ′

of σ, i.e., minq∈Q(σ′) cost(q) = minCost(σ′) +
∑

σ′′∈A(σ′) λ(σ′′). Then, we have

min
q∈Q(σ)

cost(q) = min
σ′∈C(σ)

min
q∈Q(σ′)

cost(q)

= min
σ′∈C(σ)

(
minCost(σ′) +

∑
σ′′∈A(σ′)

λ(σ′′)
)

by induction hypothesis

= min
σ′∈C(σ)

(
minCost(σ′) + λ(σ′)

)
+

∑
σ′′∈A(σ)

λ(σ′′)

= minCost(σ) +
∑

σ′′∈A(σ)

λ(σ′′). by Algorithm Invariant 2

This proves the observation. ◀

For each cell σ ∈ Ξ, we also maintain L(σ), a list comprising all descendant cells σ′ of
σ whose values λ(σ′) are not zero and all points q ∈ Q(σ) whose values λ(q) are not zero.
As L(σ) has both cells of B(σ) and points of Q(σ), for convenience, we use an “element”
to refer to either a cell or a point of L(σ). As such, for any element e ∈ B(σ) ∪Q(σ) with
e ̸∈ L(σ), λ(e) = 0 must hold. As will be seen later, whenever the algorithm sets λ(σ) to
a nonzero value for a cell σ ∈ Ξ, σ will be added to L(σ′) for every ancestor σ′ of σ with
σ′ ̸= σ. Similarly, whenever the algorithm sets λ(q) to a nonzero value for a point q, then q

will be added to L(σ′) for every cell σ′ ∈ A(σ), where σ is the cell of Ξk containing q.

Initialization. The above describes the data structure. We now initialize the data structure,
and in particular, initialize the variables L(·), λ(·), minCost(·) so that the algorithm invariants
hold.

First of all, for each cell σ ∈ Ξ, we set L(σ) = ∅ and λ(σ) = 0. For each point q ∈ Q, we
set λ(q) = 0. Since cost(q) = w(q) initially, it is not difficult to see that Algorithm Invariant
1 holds.

We next set minCost(σ) for all cells of σ ∈ Ξ in a bottom-up manner following the tree
structure of Ξ. Specifically, for each cell σ in the last cutting Ξk, we set minCost(σ) =
minq∈Q(σ) w(q) by simply checking every point of Q(σ). If Q(σ) = ∅, we set minCost(σ) =∞.
This establishes the second algorithm invariant for all cells σ ∈ Ξk. Then, we set minCost(σ)
for all cells of σ ∈ Ξk−1 with minCost(σ) = minσ′∈C(σ)(minCost(σ′) + λ(σ′)), after which
the second algorithm invariant holds for all cells σ ∈ Ξk−1. We continue this process to set
minCost(σ) for cells in Ξk−2, Ξk−3, . . . , Ξ0. After that, the second algorithm invariant is
established for all cells σ ∈ Ξ.

In addition, for each cell σ in the last cutting Ξk, in order to efficiently update minCost(σ)
once λ(q) changes for a point q ∈ Q(σ), we construct a min-heap H(σ) on all points q of Q(σ)
with the values w(q) + λ(q) as “keys”. Using the heap, if λ(q) changes for a point q ∈ Q(σ),
minCost(σ) can be updated in O(log m) time as |Q(σ)| ≤ m.

This finishes our preprocessing step for Algorithm 2. The following lemma analyzes the
time complexity of the preprocessing.

▶ Lemma 4. The preprocessing takes O(n log n + nr + m log r) time.

Proof. First of all, sorting P takes O(n log n) time. Constructing the hierarchical cutting
Ξ takes O(nr) time. Computing the lists L(di) for all disks di ∈ D also takes O(nr) time.
The point location procedure for computing the subsets Q(σ) for all cells σ ∈ Ξk runs in
O(m log r) time. For the initialization step, setting L(Q) = ∅ and λ(σ) = 0 for all cells σ ∈ Ξ
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takes O(r2) time as |Ξ| = O(r2). Since Ξk has O(r2) cells, computing minCost(σ) for all
cells σ ∈ Ξk can be done in O(r2 +

∑
σ∈Ξk

|Q(σ)|) time, which is O(r2 +m) by Observation 2.
Initializing minCost(σ) for all other cells σ ∈ Ξ\Ξk takes O(r2) time since each cell has O(1)
children (and thus computing minCost(σ) for each such cell σ takes O(1) time). Finally,
constructing a heap H(σ) for all cells σ ∈ Ξk takes O(

∑
σ∈Ξk

|Q(σ)|) time, which is O(m)
by Observation 2. Since r ≤ n, r2 ≤ nr. Therefore, the total time of the preprocessing is
O(n log n + nr + m log r). ◀

4.2 The FindMinCost operation
We now discuss how to perform the FindMinCost operation.

Consider a disk di in FindMinCost operation of the i-th iteration of Algorithm 2. The
goal is to compute minq∈Qdi

cost(q), i.e., the minimum cost of all points of Q inside the
disk di.

Recall that L(di) is the list of all cells σ ∈ Ξ such that di ∈ Dσ. Define L1(di) to be the
set of all cells of L(di) that are from Ξk and let L2(di) = L(di) \ L1(di). Define L3(di) as
the set of cells σ ∈ Ξ such that σ’s parent is in L2(di) and σ is completely contained in di.
We first have the following observation following the definition of the hierarchical cutting.

▶ Observation 5. Qdi is the union of
⋃

σ∈L1(di)(Q(σ) ∩ di) and
⋃

σ∈L3(di) Q(σ).

Proof. Consider a point q ∈
⋃

σ∈L1(di)(Q(σ) ∩ di). Suppose that q is in Q(σ) ∩ di for some
cell σ ∈ L1(di). Then, since q ∈ di, it is obvious true that q ∈ Qdi

.
Consider a point q ∈

⋃
σ∈L3(di) Q(σ). Suppose that q ∈ Q(σ) for some cell σ ∈ L3(di).

By the definition of L3(d), σ is fully contained in di. Therefore, q ∈ di holds. Hence, q ∈ Qdi
.

On the other hand, consider a point q ∈ Qdi . By definition, di contains q. Let σ be
the cell of Ξk containing q. Since both di and σ contain q, di ∩ σ ̸= ∅. Therefore, either
σ ⊆ di or the boundary of di crosses σ. In the latter case, we have σ ∈ L1(di) and thus
q ∈

⋃
σ∈L1(di)(Q(σ) ∩ di). In the former case, σ must have two ancestors σ1 and σ2 such

that (1) σ1 is the parent of σ2; (2) σ2 is fully contained in di; (3) the boundary of di crosses
σ1. This is true because σ is fully contained in di while the boundary of di crosses the only
cell of Ξ0, which is the entire plane and is an ancestor of σ. As such, σ1 must be in L2(di)
and σ2 must be in L3(di). Therefore, q must be in

⋃
σ∈L3(di) Q(σ).

This proves the observation. ◀

With Observation 5, we now describe our algorithm for FindMinCost. Let α be a variable,
which is initialized to ∞. At the end of the algorithm, we will have α = minq∈Qdi

cost(q).
For each cell σ in the list L(di), if it is from σ ∈ Ξk, i.e., σ ∈ L1(di), then we process
σ as follows. For each point q ∈ Q(σ), by Algorithm Invariant 1, we have cost(q) =
w(q) + λ(q) +

∑
σ′∈A(σ) λ(σ′). If q ∈ di, we compute cost(q) by visiting all cells of A(σ),

which takes O(log r) time, and then we update α = min{α, cost(q)}.
If σ ∈ L2(di), then we process it as follows. For each child σ′ of σ that is fully contained

in di (i.e., σ ∈ L3(di)), we compute ασ′ = minCost(σ′) +
∑

σ′′∈A(σ′) λ(σ′′) by visiting all
cells of A(σ′), which takes O(log r) time. By Observation 3, we have ασ′ = minq∈Q(σ) cost(q).
Then we update α = min{α, ασ′}. After processing every cell σ ∈ L(di) as above, we
return α, which is equal to minq∈Qdi

cost(q) according to our algorithm invariants as well as
Observation 5. This finishes the FindMinCost operation. The following lemma analyzes the
runtime of the operation.

▶ Lemma 6. The total time of the FindMinCost operations in the entire Algorithm 2 is
bounded by O((nr + mn/r) log r).
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Proof. Recall that in each operation we processes cells of L1(di) and cells of L2(di) in
different ways. The total time of the operation is the sum of the time for processing L1(di)
and the time for processing L2(di).

For the time for processing L1(di), for each cell σ ∈ L1(di), for each point q ∈ Q(σ)∩di, we
spend O(log r) time computing cost(q). Hence, the time for processing cells of L1(di) for each
di is bounded by O(

∑
σ∈L1(di) |Q(σ)| log r). The total time of processing L1(di) in the entire

algorithm is on the order of
∑n

i=1
∑

σ∈L1(di) |Q(σ)|·log r =
∑

σ∈Ξk
(|Dσ|·|Q(σ)|)·log r. Recall

that |Dσ| ≤ n/r for each cell σ ∈ Ξk. Hence,
∑

σ∈Ξk
(|Dσ| · |Q(σ)|) ≤ n/r ·

∑
σ∈Ξk

|Q(σ)|,
which is O(mn/r) by Observation 2. Therefore, the total time for processing cells of L1(di)
in the entire Algorithm 2 is O(mn/r · log r).

For the time for processing L2(di), for each cell σ ∈ L2(di), for each child σ′ of σ, it takes
O(log r) time to compute ασ′ . Since σ has O(1) cells, the total time for processing all cells
of L2(di) is O(|L2(di)| · log r). The total time of processing L2(di) in the entire algorithm
is on the order of

∑n
i=1 |L2(di)| · log r. Note that

∑n
i=1 |L2(di)| ≤

∑n
i=1 |L(di)| = O(nr).

Therefore, the total time for processing cells of L2(di) in the entire Algorithm 2 is O(nr log r).
Summing up the time for processing L1(di) and L2(di) leads to the lemma. ◀

4.3 The ResetCost operation
We now discuss the ResetCost operation. Consider the ResetCost operation in the i-th
iteration of Algorithm 2. The goal is to reset cost(q) = w(q) + δi for all points q ∈ Q that
are outside the disk di. To this end, we will update our data structure, and more specifically,
update the λ(·) and minCost(·) values for certain cells of Ξ and points of Q so that the
algorithm invariants still hold.

Define L4(di) as the set of cells σ ∈ Ξ such that σ’s parent is in L2(di) and σ is completely
outside di. Let di denote the region of the plane outside the disk di. We have the following
observation, which is analogous to Observation 5.

▶ Observation 7. Qdi is the union of
⋃

σ∈L1(di)(Q(σ) ∩ di) and
⋃

σ∈L4(di) Q(σ).

Proof. The proof is the same as that of Observation 5 except that we use di to replace di

and use L4(di) to replace L3(di). We omit the details. ◀

Our algorithm for ResetCost works as follows. Consider a cell σ ∈ L(di). As for the
FindMinCost operation, depending on whether σ is from L1(di) or L2(di), we process it in
different ways.

If σ is from L1(di), we process σ as follows. For each point q ∈ Q(σ), if q ∈ dj , then
we are supposed to reset cost(q) to w(q) + δi. To achieve the effect and also maintain
the algorithm invariants, we do the following. First, we set λ(q) = δi −

∑
σ′∈A(σ) λ(σ′),

which can be done in O(log r) time by visiting the ancestors of σ. As such, we have
w(q) + λ(q) +

∑
σ′∈A(σ) λ(σ′) = w(q) + δi, which establishes the first algorithm invariant

for q. For the second algorithm invariant, we first update minCost(σ) using the heap H(σ),
i.e., by updating the key of q to the new value w(q) + λ(q). The heap operation takes
O(log m) time. Next, we update minCost(σ′) for all ancestors σ′ of σ in a bottom-up
manner using the formula minCost(σ′) = minσ′′∈C(σ′)(minCost(σ′′) + λ(σ′′)). Since each
cell has O(1) children, updating all ancestors of σ takes O(log r) time. This establishes the
second algorithm invariant. Finally, since λ(q) has just been changed, if λ(q) ̸= 0, then we
add q to the list L(σ′) for all cells σ′ ∈ A(σ). Note that for each such L(σ′) it is possible
that q was already in the list before; but we do not check this and simply add q to the end
of the list (and thus the list may contain multiple copies of q). This finishes the processing
of q, which takes O(log r + log m) time. Processing all points of q ∈ Q(σ) as above takes
O(|Q(σ)| · (log r + log m)) time.
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If σ is from L2(di), then we process σ as follows. For each child σ′ of σ, if σ′ is completely
outside di, then we process σ′ as follows. We are supposed to reset cost(q) to w(q) + δi for
all points q ∈ Q(σ′). In other words, the first algorithm invariant does not hold any more
and we need to update our data structure to restore it. Note that the second algorithm
invariant still holds. To achieve the effect and also maintain the algorithm invariants, we do
the following. For each element e in the list L(σ′) (recall that e is either a cell of B(σ′) or
a point of Q(σ′)), we process e as follows. First, we remove e from L(σ′). Then we reset
λ(e) = 0. If e is a point of Q(σ′), then let σe be the cell of Ξk that contains e; otherwise, e is
a cell of B(σ′) and let σe be the parent of e. Since λ(e) is changed, we update minCost(σ′′)
for all cells σ′′ ∈ A(σe) in the same way as above in the first case for processing L1(di), which
takes O(log r + log m) time. This finishes processing e, after which the second algorithm
invariant still holds. After all elements of L(σ′) are processed as above, L(σ′) becomes ∅
and we reset λ(σ′) = δi −

∑
σ′′∈A(σ′)\{σ′} λ(σ′′). Since λ(σ′) has been changed, we update

minCost(σ′′) for all cells σ′′ ∈ A(σ) in the same way as before (which takes O(log r) time),
after which the second algorithm invariant still holds. In addition, if λ(σ′) ̸= 0, then we add
σ′ to the list L(σ′′) for all cells σ′′ ∈ A(σ), which again takes O(log r) time. This finishes
processing σ′, which takes O(|L(σ′)| · (log r + log m)) time. It remains to restore the first
algorithm invariant, for which we have the following observation.

▶ Observation 8. After σ′ is processed, the first algorithm invariant is established for all
points q ∈ Q(σ′).

Proof. Consider a point q ∈ Q(σ′). It suffices to show w(q) + δi = w(q) + λ(q) +∑
σ′′∈A(σq) λ(σ′′), where σq is the cell of Ξk that contains q. After the elements of the list

L(σ′) are processed as above, we have λ(q) = 0 for all points q ∈ Q(σ′) and λ(σ′′) = 0 for all
descendants σ′′ of σ′. Therefore, w(q)+λ(q)+

∑
σ′′∈A(σ1) λ(σ1) = w(q)+

∑
σ′′∈A(σ′) λ(σ′′) =

w(q) + λ(σ′) +
∑

σ′′∈A(σ′)\{σ′} λ(σ′′). Recall that λ(σ′) = δi −
∑

σ′′∈A(σ′)\{σ′} λ(σ′′). We
thus obtain w(q) + λ(q) +

∑
σ′′∈A(σq) λ(σ′′) = w(q) + δi. ◀

This finishes the ResetCost operation. According to Observation 7, cost(q) has been reset
for all points q ∈ Q that are outside di. The following lemma analyzes the runtime of the
operation.

▶ Lemma 9. The total time of the ResetCost operations in the entire Algorithm 2 is bounded
by O((nr + mn/r) · log r · (log r + log m)).

Proof. Recall that we processes cells of L1(di) and cells of L2(di) in different ways. The
total time of the operation is the sum of the time for processing L1(di) and the time for
processing L2(di).

For the time for processing L1(di), for each cell σ ∈ L1(di), recall that processing all points
of Q(σ) takes O(|Q(σ)| · (log r + log m)) time. Hence, the total time for processing cells of
L1(di) is on the order of

∑
σ∈L1(di) |Q(σ)|·(log r+log m). The total time for processing cells of

L1(di) in the entire Algorithm 2 is thus on the order of
∑n

i=1
∑

σ∈L1(di) |Q(σ)| ·(log r+log m).
As analyzed in the proof of Lemma 6,

∑n
i=1

∑
σ∈L1(di) |Q(σ)| = O(mn/r). Therefore, the

total time for processing cells of L1(di) in the entire Algorithm 2 is O(mn/r · (log r + log m)).
For the time for processing L2(di), for each cell σ ∈ L2(di), for each child σ′ of σ,

processing σ′ takes O(|L(σ′)| · (log r + log m)) time. Next, we give an upper bound for |L(σ′)|
for all such cells σ′ in the entire algorithm. Recall that each element e of L(σ′) is either a
point q ∈ Q(σ′) or a descendant cell σ′′ ∈ B(σ′). Let L1(σ′) denote the subset of elements of
L(σ′) in the former case and L2(σ′) the subset of elements in the latter case. In the following
we provide an upper bound for each subset.
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1. For L1(σ′), notice that a point q is in the list only if σq is crossed by the lower arc of
a disk di, where σq is the cell of Ξk containing q. If q is outside di, then a copy of q

will be added to L(σ′′) for all O(log r) cells σ′′ of A(σq). As |Dσq
| ≤ n/r, the number of

elements in L1(σ′) contributed by the points of Q(σq) for all such cells σ′ in the entire
algorithm is bounded by O(|Q(σq)| · n/r · log r). In light of Observation 2, the total size
of L1(σ′) of all such cells σ′ in the entire Algorithm 2 is O(mn/r · log r).

2. For L2(σ′), observe that a cell σ1 is in the list only if σ2 is crossed by the lower arc of a disk
di, where σ2 is the parent of σ1. If σ1 is completely outside di, then a copy of σ1 is added
to L(σ′′) for all O(log r) cells σ′′ of A(σ2). As such, the number of elements in L2(σ′) for
all such cells σ′ in the entire algorithm contributed by each cell σ1 ∈ Ξ is bounded by
O(|Dσ2 | · log r). Since every cell of Ξ has O(1) children and

∑
σ2∈Ξ |Dσ2 | = O(nr), the

total size of L2(σ′) of all such cells σ′ in the entire Algorithm 2 is O(nr · log r).

Therefore, the total time for processing cells of L2(di) in the entire Algorithm 2 is
O((nr + mn/r) · log r · (log r + log m)).

Summing up the time for processing L1(di) and L2(di) leads to the lemma. ◀

4.4 Putting it all together
We summarize the time complexity of the overall algorithm. By Lemma 4, the preprocessing
step takes O(n log n + nr + m log r) time. By Lemma 6, the total time for performing the
FindMinCost operations in the entire algorithm is O((nr + mn/r) · log r). By Lemma 9,
the total time for performing the ResetCost operations in the entire algorithm is O((nr +
mn/r) · log r · (log m + log r)). Therefore, the total time of the overall algorithm is O(n log n +
m log r +(nr +mn/r) · log r · (log m+log r)). Recall that 1 ≤ r ≤ n. Setting r = min{

√
m, n}

gives the upper bound O(n
√

m log2 m + (n + m) log(n + m)) for the time complexity of the
overall algorithm.

Note that we have assumed that each point of P is covered by at least one disk of S.
In this is not the case, then no feasible subset exists (alternatively, one may consider the
optimal objective value ∞); if we run our algorithm in this case, then one can check that the
value δn returned by our algorithm is ∞. Hence, our algorithm can automatically determine
whether a feasible subset exists.2

▶ Theorem 10. Given a set of n points and a set of m weighted unit disks in the plane such
that the points and the disk centers are separated by a line, there is an O(n

√
m log2 m + (n +

m) log(n + m)) time algorithm to compute a subset of disks of minimum total weight whose
union covers all points.
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