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Abstract
We investigate the streaming space complexity of word problems for groups. Using so-called
distinguishers, we prove a transfer theorem for graph products of groups. Moreover, we use
distinguishers to obtain a logspace streaming algorithm for the membership problem in a finitely
generated subgroup of a free group.
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1 Introduction

The word problem for a fixed finitely generated (f.g. for short) group G is the following
computational problem: Fix a finite set of generators Σ for G, which means that every
element of G can be written as a finite product of elements from Σ. The input for the word
problem is a finite word a1a2 · · · an over the alphabet Σ and the question is whether this
word evaluates to the group identity of G. The word problem was introduced by Dehn in
1911 [5]. It is arguably the most important computational problem in group theory and has
been studied by group theorists as well as computer scientists. In general, the word problem
is undecidable [4, 20], but for many classes of groups (e.g. linear groups, metabelian groups,
hyperbolic groups) efficient algorithms exist; see e.g. [15] for an overview.

In [16, 17] we started to investigate streaming algorithms for the word problem of a
group G. The input stream is a word w ∈ Σ∗ over the generators and the algorithm has to
decide whether w = 1 holds in the group G. This can be viewed as a streaming algorithm
for the formal language {w ∈ Σ∗ : w = 1 in G}. Streaming algorithms for formal languages
(mainly subclasses of context-free languages) have been studied in [1, 2, 7, 18]. In [16, 17]
we consider the space complexity of streaming algorithms. For deterministic streaming
algorithms it turnes out that the space complexity of the word problem for a f.g. group G is
tightly related to the growth of G: if γ(n) is the growth function of G (which is the number
of different group elements that can be represented by words of length at most n over the
generating set), then the space complexity of the best deterministic streaming algorithm
for the word problem of G is roughly log γ(n/2). This result basically reduces the study
of deterministic streaming algorithms for word problems to the study of growth in groups,
which is an important research area in geometric group theory with many deep results.

In [16, 17] we therefore mainly focus on randomized streaming algorithms for word
problems. For this it turns out to be useful to consider so called distinguishers for groups.
Roughly speaking, a distinguisher for a f.g. group G with finite generating set Σ is a
randomized streaming algorithm A such that for all words u, v ∈ Σ∗ of length at most n we
have that: (i) if u and v evaluate to the same element of G then with high probability, u and
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71:2 Streaming in Graph Products

v lead to the same memory state of A, and (ii) if u and v evaluate to different elements of G

then with high probability, u and v lead to different memory states of A; see Section 4. It is
easy to obtain from a distinguisher R for the group G a randomized streaming algorithm S
for the word problem of G (with low error probability). Moreover, the space complexity of S
is only twice the space complexity of R; see Lemma 3.

We showed in [16, 17] that for many important f.g. groups G there exist logspace
distinguishers with error probability 1/nc for any constant c > 1, where n is the input length.
This is in particular the case for f.g. linear groups (matrix groups). In general, the growth
of a linear group can be 2Θ(n) (take for instance a free group of rank 2), and therefore its
deterministic streaming space complexity can be Θ(n), which is the worst case (the streaming
algorithms can always store the whole prefix of the input stream). We proved in [17] also the
following transfer theorem for wreath products: If G is a f.g. group having a distinguisher
with space complexity s(n) and error probability ϵ(n) and A is a f.g. abelian group then
there is a distinguisher for the wreath product A ≀ G having space complexity O(s(n) + log n)
and error probability roughly n2ϵ(n). Interestingly, if H is any non-abelian group then any
randomized streaming algorithm with error at most 1/2 − ϵ for the word problem of H ≀ G

must have the worst-case space complexity Θ(n); see [16, Theorem 21].
The first main result of the paper states a similar transfer theorem for graph products.

This is an important construction in group theory that generalizes the direct product as well
as the free product. It can be seen as a partially commutative version of the free product,
where some of the factors Gi in a free product G1 ∗ G2 ∗ · · · ∗ Gk are allowed to commute.
Which of Gi commute is specified by a graph on the index set {1, . . . , k}. We show that
if every group Gi (1 ≤ i ≤ k) has a distinguisher with space complexity at most s(n) and
error probability ϵ(n), then every graph product of the groups Gi has a distinguisher with
space complexity O(s(n) + log n) and error probability roughly n2ϵ(n) (Theorem 9). As a
corollary we obtain for instance a randomized streaming algorithm with logarithmic space
complexity for the word problem of a graph product of linear groups. Theorem 9 is similar
to the following result from [6]: If the word problem for every group Gi can be solved in
deterministic logspace on a Turing machine then the same is true for every graph product of
the Gi. Kausch in his thesis [13] strengthened this result by showing that the word problem
of the graph product is AC0-Turing-reducible to the word problems of the Gi (1 ≤ i ≤ k)
and the free group of rank two.

Our second main contribution deals with randomized streaming algorithms for subgroup
membership problems. In a subgroup membership problem one has a subgroup H of a
f.g. group G. For an input word w ∈ Σ∗ (Σ is again a finite set of generators for G) one has to
determine whether w represents an element of H. The word problem is the special case where
H = 1. We present a randomized streaming algorithm with logarithmic space complexity for
the case where G is a f.g. free group and H is a f.g. subgroup of G (Theorem 14). Moreover,
we show that this result extends neither to the case where H is not finitely generated
(Theorem 15) nor the case where H is a finitely generated subgroup of a direct product of
two free groups of rank two (Theorem 16).

2 Preliminaries

For integers a < b let [a, b] be the integer interval {a, a + 1, . . . , b}. We write [0, 1]R for the
set {r ∈ R : 0 ≤ r ≤ 1} of all probabilities.

Let Σ be a finite alphabet. As usual we write Σ∗ for the set of all finite words over the
alphabet w. The empty word is denoted with ε. For a word w = a1a2 · · · an (a1, a2, . . . , an ∈
Σ) let |w| = n be its length and w[i] = ai (for 1 ≤ i ≤ n) the symbol at position i.
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A prefix of a word w is a word u such that w = uv for some word v. We denote with
P(w) the set of all prefixes of w. Let Σ+ = Σ∗ \ {ε} be the set of non-empty words and
Σ≤n = {w ∈ Σ∗ : |w| ≤ n} be the set of all words of length at most n. For a subalphabet
Θ ⊆ Σ we denote with πΘ : Σ∗ → Θ∗ the projection homomorphism that deletes all symbols
from Σ \ Θ in a word: πΘ(a) = a for a ∈ Θ and πΘ(a) = ε for a ∈ Σ \ Θ.

2.1 Sequential transducer
In Section 5 we make use of (left-)sequential transducers, see e.g. [3] for more details. A
sequential transducer is a tuple T = (Q, Σ, Γ, q0, δ), where Q is a finite set of states, Σ is the
input alphabet, Γ is the output alphabet, q0 ∈ Q is the initial state, and δ : Q × Σ → Q × Γ∗

is the transition function. The meaning of δ(q, a) = (p, u) is that if T is in state q and the
next input symbol is a then it moves to state p and outputs the word u. We extend δ to a
mapping δ : Q × Σ∗ → Q × Γ∗ as follows, where q ∈ Q, a ∈ Σ and w ∈ Σ∗:

δ(q, ε) = (q, ε) for all q ∈ Q, and
if δ(q, a) = (p, u) and δ(p, w) = (r, v) then δ(q, aw) = (r, uv).

We define the function fT : Σ∗ → Γ∗ computed by T by fT (w) = x if and only if δ(q0, w) =
(q, x) for some q ∈ Q. Intuitively, in order compute fT (w), T reads the word w starting in
the initial state q0 and thereby concatenates all the outputs produced in the transitions.

2.2 Probabilistic finite automata
In the following we introduce probabilistic finite automata [21, 22] as a model for randomized
streaming algorithms. A probabilistic finite automaton (PFA) A = (Q, Σ, ι, ρ, F ) consists
of a finite set of states Q, a finite alphabet Σ, an initial state distribution ι : Q → [0, 1]R, a
transition probability function ρ : Q × Σ × Q → [0, 1]R and a set of final states F ⊆ Q such
that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ. If ρ is required to map into

{0, 1}, then A is a semi-probabilitistic finite automaton (semiPFA). This means that after
choosing the initial state according to the distribution ι, A proceeds deterministically.

Let A = (Q, Σ, ι, ρ, F ) be a PFA. For a random variable X with values from Q and a ∈ Σ
we define the random variable X · a (which also takes values from Q) by

Prob[X · a = q] =
∑
p∈Q

Prob[X = p] · ρ(p, a, q).

For a word w ∈ Σ∗ we define a random variable A(w) with values from Q inductively as
follows: the random variable A(ε) is defined such that Prob[A(ε) = q] = ι(q) for all q ∈ Q.
Moreover, A(wa) = A(w) · a for all w ∈ Σ∗ and a ∈ Σ. Thus, Prob[A(w) = q] is the
probability that A is in state q after reading w. For a language L ⊆ Σ∗, the error probability
of A on w ∈ Σ∗ for L is

ϵ(A, w, L) =
{

Prob[A(w) /∈ F ] if w ∈ L,

Prob[A(w) ∈ F ] if w /∈ L.

If A is a semiPFA then we can identify ρ with a mapping ρ : Q × Σ → Q, where ρ(p, a) is the
unique state q with ρ(p, a, q) = 1. This mapping ρ is extended to a mapping ρ : Q × Σ∗ → Q

in the usual way: ρ(p, ε) = p and ρ(p, aw) = ρ(ρ(p, a), w). We then obtain

Prob[A(w) = q] =
∑

{ι(p) : p ∈ Q, ρ(p, w) = q}.

For a semiPFA A = (Q, Σ, ι, ρ, F ) and a boolean condition E : Q → {0, 1} we define the
probability Probq∈Q[E(q)] =

∑
{ι(q) : q ∈ Q, E(q) = 1}. SemiPFAs are needed in Section 4

for the notion of a distinguisher.

MFCS 2024
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2.3 Randomized streaming algorithms

In this section we define our model of randomized streaming algorithms. It is a non-uniform
model in the sense that for every input length n we have a separate algorithm that handles
inputs of length at most n. Formally, a (non-uniform) randomized streaming algorithm is a
sequence R = (An)n≥0 of PFA An over the same alphabet Σ. If every An is a semiPFA, we
speak of a semi-randomized streaming algorithm.

Let ϵ0, ϵ1 : N → [0, 1]R be monotonically decreasing functions. A randomized streaming
algorithm R = (An)n≥0 is (ϵ0, ϵ1)-correct for a language L ⊆ Σ∗ if for every large enough
n ≥ 0 and every word w ∈ Σ≤n we have the following:

if w ∈ L then ϵ(An, w, L) ≤ ϵ1(n), and
if w /∈ L then ϵ(An, w, L) ≤ ϵ0(n).

If ϵ0 = ϵ1 =: ϵ then we also say that R is ϵ-correct for L. We say that R is a randomized
streaming algorithm for L if it is 1/3-correct for L. The choice of 1/3 for the error probability
is not important. Using a standard application of the Chernoff bound, one can make the
error probability an arbitrarily small constant; see [17, Theorem 4.1].

The space complexity of the randomized streaming algorithm R = (An)n≥0 is the function
s(R, n) = ⌈log2 |Qn|⌉, where Qn is the state set of An. The motivation for this definition is
that states of Qn can be encoded by bit strings of length at most ⌈log2 |Qn|⌉. The randomized
streaming space complexity of the language L is the smallest possible function s(R, n), where
R is a randomized streaming algorithm for L. It is always bounded by O(n) since even a
deterministic streaming algorithm can store the whole input word w ∈ Σ≤n using O(n) bits.

As remarked before, our model of randomized streaming algorithms is non-uniform in the
sense that for every input length n we have a separate streaming algorithm An. This makes
lower bounds of course stronger. On the other hand, the randomized streaming algorithms
that we construct for concrete groups will be mostly uniform in the sense that there is an
efficient algorithm that constructs from a given n the PFA An. An exception is the following
theorem (see [17, Theorem 4.3]), which uses non-uniformity in a crucial way.

▶ Theorem 1. Let R be a randomized streaming algorithm such that s(R, n) ≥ Ω(log n) and
R is ϵ-correct for a language L. Then there exists a semi-randomized streaming algorithm S
such that s(S, n) = Θ(s(R, n)) and S is 2ϵ-correct for the language L.

3 Groups and word problems

Let G be a group. The identity element will be always denoted with 1. For a subset Σ ⊆ G,
we denote with ⟨Σ⟩ the subgroup of G generated by Σ. It is the set of all products of elements
from Σ ∪ Σ−1. It can be also defined as the smallest (w.r.t. inclusion) subgroup of G that
contains Σ. Similarly, the normal closure N(Σ) of Σ is smallest normal subgroup of G that
contains Σ. In this case, one gets the quotient group G/N(Σ).

We only consider finitely generated (f.g.) groups G, for which there is a finite set Σ ⊆ G

with G = ⟨Σ⟩; such a set Σ is called a finite generating set for G. If Σ = Σ−1 then we say
that Σ is a finite symmetric generating set for G. In the following we assume that all finite
generating sets are symmetric. Every word w ∈ Σ∗ evaluates to a group element πG(w)
in the natural way; here πG : Σ∗ → G is the canonical morphism from the free monoid
Σ∗ to G that is the identity on Σ. Instead of πG(u) = πG(v) we also write u ≡G v. Let
WP(G, Σ) = {w ∈ Σ∗ | πG(w) = 1} be the word problem for G with respect to the generating
set Σ.
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We are interested in streaming algorithms for words problems WP(G, Σ). By the following
lemma (see [17, Lemma 5.1]) the randomized streaming space complexity for a word problem
only changes by a constant when the generating set is changed.

▶ Lemma 2. Let Σ1 and Σ2 be finite symmetric generating sets for the group G and let si(n)
be the randomized streaming space complexity of WP(G, Σi). Then there exists a constant c

that depends on G, Σ1 and Σ2 such that s1(n) ≤ s2(c · n).

4 Distinguishers for groups

Let G be a f.g. group G with the finite generating set Σ. Moreover, let ϵ0, ϵ1 : N → [0, 1]R be
monotonically decreasing functions. A semi-randomized streaming algorithm (An)n≥0 with
An = (Qn, Σ, ιn, ρn, Fn) is called an (ϵ0, ϵ1)-distinguisher for G (with respect to Σ), if the
following properties hold for all large enough n ≥ 0 and all words u, v ∈ Σ≤n:

If u ≡G v then Probq∈Qn [ρn(q, u) = ρn(q, v)] ≥ 1 − ϵ1(n). In other words: for a randomly
chosen initial state, the semiPFA An arrives with probability at least 1 − ϵ1(n) in the
same state after reading u and v.
If u ̸≡G v then Probq∈Qn

[ρn(q, u) ̸= ρn(q, v)] ≥ 1 − ϵ0(n). In other words: for a randomly
chosen initial state, the semiPFA An arrives with probability at least 1− ϵ0(n) in different
states after reading u and v.

Note that the set Fn of final states of An is not important for a distinguisher and we will just
write An = (Qn, Σ, ιn, ρn) in the following if we talk about an (ϵ0, ϵ1)-distinguisher (An)n≥0.
The following result is shown in [17].

▶ Lemma 3. Let R be an (ϵ0, ϵ1)-distinguisher for G with respect to Σ. Then WP(G, Σ) has
an (ϵ0, ϵ1)-correct semi-randomized streaming algorithm with space complexity 2 · s(R, n).

Due to Lemma 3, our goal in the rest of the paper will be the construction of space efficient
(ϵ0, ϵ1)-distinguishers for groups. In the next section we will need some further observations
on (ϵ0, ϵ1)-distinguishers that we introduce in the rest of this section.

For equivalence relations ≡1 and ≡2 on a set A and a subset S ⊆ A we say that:
≡1 refines ≡2 on S if for all a, b ∈ S we have: if a ≡1 b then a ≡2 b;
≡1 equals ≡2 on S if for all a, b ∈ S we have: a ≡1 b if and only if a ≡2 b.

For a semiPFA A = (Q, Σ, ι, ρ) and a state q ∈ Q we define the equivalence relation ≡A,q on
Σ∗ as follows: u ≡A,q v if and only if ρ(q, u) = ρ(q, v). Whenever A is clear from the context,
we just write ≡q instead of ≡A,q. The statements from the following lemma can be shown
by straightforward applications of the union bound; see [17].

▶ Lemma 4. Let (An)n≥0 be an (ϵ0, ϵ1)-distinguisher for the f.g. group G with respect to
the generating set Σ. Let An = (Qn, Σ, ι, ρ). Consider a set S ⊆ Σ≤n. Then, the following
statements hold, where ≡q refers to An:

Probq∈Qn
[≡G equals ≡q on S] ≥ 1 − max{ϵ0(n), ϵ1(n)}

(|S|
2

)
,

Probq∈Qn
[≡G refines ≡q on S] ≥ 1 − ϵ1(n)

(|S|
2

)
,

Probq∈Qn [≡q refines ≡G on S] ≥ 1 − ϵ0(n)
(|S|

2
)
.

The following two simple lemmas are needed in Section 5; their proofs can be found in [17].
Recall that for a word w we write P(w) for the set of all prefixes of w.

▶ Lemma 5. Let G be a f.g. group with the finite generating set Σ and let A = (Q, Σ, ι, ρ)
be a semiPFA with q ∈ Q. Consider u, v ∈ Σ∗ such that ≡G refines ≡q on P(u) ∪ P(v) and
let u = xyz with y ≡G 1. Then ≡G refines ≡q on P(xz) ∪ P(v).

MFCS 2024



71:6 Streaming in Graph Products

▶ Lemma 6. Let G, A, and q be as in Lemma 5. Consider u, v ∈ Σ∗ such that ≡q refines ≡G

on P(u)∪P(v) and let u = xyz with ρ(q, x) = ρ(q, xy). Then ≡q refines ≡G on P(xz)∪P(v).

Finally we state the following result from [17, Theorem 9.1]. Recall that a linear group is a
group of matrices over some field.

▶ Theorem 7. For every f.g. linear group G and every c > 0 there exists a (1/nc, 0)-
distinguisher with space complexity O(log n).

Theorem 7 can serve as a basis for the construction of further distinguishers. Note that in
the positive case (where u ≡G v) the error probability is zero.

5 Randomized streaming algorithms for graph products

In this section we investigate a common generalization of the free product and direct product,
which is known as the graph product of groups.

Let us first define the free product of two groups G and H. Let A = G\{1} and B = H\{1}.
W.l.o.g. we assume that A∩B = ∅. The free product G∗H consists of all alternating sequences
a1a2 · · · an where n ≥ 0, ai ∈ A∪B for all i ∈ [1, n] and ai ∈ A ⇔ ai+1 ∈ B for all i ∈ [1, n−1].
The identity element is of course the empty sequence ε. The product u · v of two elements
u, v ∈ G∗H is obtained by concatenating u and v and then making the obvious simplifications
according to the multiplication tables of G and H. More precisely, let u = anan−1 · · · a1
and v = b1b2 · · · bm. If n = 0 then u · v = v and if m = 0 then u · v = u. Now assume that
n > 0 and m > 0. If a1 ∈ A ⇔ b1 ∈ B then u · v = anan−1 · · · a1b1b2 · · · bm. Otherwise
choose k ≥ 0 maximal such that ai = b−1

i (in either G or H) holds for all i ∈ [1, k]. If k = n

then u · v = bk+1 · · · bm and if k = m then u · v = an · · · ak+1. Finally, if k < n and k < m

then u · v = an · · · ak+2(ak+1 · bk+1)bk+2 · · · bm. Note that ak+1 · bk+1 is a nontrivial element
(either in G or H) by the choice of k. The free product of several groups G1, . . . , Gc can be
simply defined as ∗i∈[1,c] Gi = (· · · ((G1 ∗ G2) ∗ G3) ∗ · · · ∗ Gc).

A graph product is specified by a list of groups G1, . . . , Gc and a symmetric and irreflexive
relation I ⊆ [1, c] × [1, c]. The corresponding graph product G = GP(G1, . . . , Gc, I) is the
quotient (∗i∈[1,c] Gi)/N of the free product ∗i∈[1,c] Gi modulo the normal closure N of all
commutators aba−1b−1, where a ∈ Gi, b ∈ Gj and (i, j) ∈ I. In other words, we take the free
product ∗i∈[1,c] Gi but allow elements from groups Gi and Gj with (i, j) ∈ I to commute.
Graph products interpolate in a natural way between free products (I = ∅) and direct
products (I = {(i, j) : i, j ∈ [1, c], i ̸= j}). Graph products were introduced by Green in her
thesis [8]. Graph products GP(G1, . . . , Gc, I), where every Gi is isomorphic to Z, are also
known as graph groups (or right-angled Artin groups). We will make use of the fact that
every graph group is linear [11].

Let Σi be a finite symmetric generating set for Gi, where w.l.o.g. 1 /∈ Σi and Σi ∩ Σj = ∅
for i ̸= j. Then, Σ =

⋃c
i=1 Σi generates G. For a word u ∈ Σ∗, the block factorization of

u is the unique factorization u = u1u2 · · · ul such that l ≥ 0, u1, . . . , ul ∈
⋃

i∈[1,c] Σ+
i and

ujuj+1 ̸∈
⋃

i∈[1,c] Σ+
i for all j ∈ [1, l − 1]. The factors u1, u2, . . . , ul are called the blocks of u.

We define several rewrite relations on words from Σ∗ as follows: take u, v ∈ Σ∗ and let
u = u1u2 · · · ul be the block factorization of u.

We write u ↔s v (s for swap) if there is i ∈ [1, l − 1] and (j, k) ∈ I such that ui ∈ Σ+
j ,

ui+1 ∈ Σ+
k and v = u1u2 · · · ui−1ui+1uiui+2 · · · ul. In other words, we swap consecutive

commuting blocks. Note that ↔s is a symmetric relation.
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We write u →d v (d for delete) if there is i ∈ [1, l] and j ∈ [1, c] such that ui ∈ Σ+
j ,

ui ≡Gj
1 and v = u1u2 · · · ui−1ui+1ui+2 · · · ul. In other words, we delete a block that is

trivial in its group.
We write u ↔r v (r for replace) if there is i ∈ [1, l] and j ∈ [1, c] such that ui, u′

i ∈ Σ+
j ,

ui ≡Gj
u′

i and v = u1u2 · · · ui−1u′
iui+1ui+2 · · · ul. In other words, we replace a block by

an equivalent non-empty word. Note that ↔r is a symmetric relation.
Clearly, in all three cases we have u ≡G v. If u →d v, then the number of blocks of v is
smaller than the number of blocks of u and if u ↔s v then the number of blocks of v can be
smaller than the number of blocks of u (since two blocks can be merged into a single block).
We write u ↔sr v if u ↔s v or u ↔r v and we write u →sd v if u ↔s v or u →d v.

Let us say that a word u ∈ Σ∗ with l blocks is reduced, if there is no v ∈ Σ∗ such that
u →∗

sd v and v has at most l − 1 blocks. Clearly, for every word u ∈ Σ∗ there is a reduced
word u′ ∈ Σ∗ such that u →∗

sd u′. The following result can be found in [8, Theorem 3.9]
and [10] in slightly different notations.

▶ Lemma 8. Let G be a graph product as above and u, v ∈ Σ∗. The following are equivalent:
u ≡G v

There are reduced words u′, v′ such that u →∗
sd u′, v →∗

sd v′, and u′ ↔∗
r v′.

Consider a word u ∈ Σ∗ and its block factorization u = u1u2 . . . ul. A pure prefix of u is a
word uk1uk2 · · · ukm

such that for some i ∈ [1, c] we have
1 ≤ k1 < k2 < · · · < km ≤ l,
uk1 , uk2 , . . . , ukm

∈ Σ+
i and

if kj < p < kj+1 for some j ∈ [1, m − 1] or 1 ≤ p < k1 then up /∈ Σ+
i .

▶ Theorem 9. Let G = GP(G1, . . . , Gc, I) be a graph product as above and let Ri = (Ai,n)n≥0
be an (ϵ0, ϵ1)-distinguisher for Gi. Let d ≥ 1 and define ζ0(n) = 2ϵ0(n)cn2 + 1/nd and
ζ1(n) = 2ϵ1(n)cn2. Then, there exists a (ζ0, ζ1)-distinguisher for G with space complexity
O(

∑c
i=1 s(Ri, n) + log n).

Proof. Let us fix an input length n and let Ai,n = (Qi,n, Σi, ιi,n, ρi,n), where w.l.o.g. Qi,n =
[0, |Qi,n| − 1]. To simplify the notation, we will omit the second subscript n in the following,
i.e., we write Ai = (Qi, Σi, ιi, ρi) with Qi = [0, |Qi| − 1] for the semiPFA Ai,n. For a state
q ∈ Qi, we will use the equivalence relation ≡q = ≡Ai,q defined in Section 4. For a word
w ∈ Σ∗, we write πi(w) for the projection πΣi

(w).
For every i ∈ [1, c] we choose a new symbol ai and consider the infinite cyclic group ⟨ai⟩ ∼=

Z. Let Γ = {a1, a−1
1 , . . . , ac, a−1

c } and consider the graph group H = GP(⟨a1⟩, . . . , ⟨ac⟩, I).
Since every graph group is linear, there is a (1/md, 0)-distinguisher (Bm)m≥0 with space
complexity O(log m) for H by Theorem 7. Let Bm = (Rm, Γ, λm, σm).

We build from the semiPFA Ai and a state q ∈ Qi a sequential transducer Ti,q =
(Qi, Σi, {ai, a−1

i }, q, δi), where for all a ∈ Σi and p ∈ Qi we define (recall that Qi ⊆ N):

δi(p, a) = (ρi(p, a), a−p
i a

ρi(p,a)
i ).

Let fi,q := fTi,q
: Σ∗

i → {ai, a−1
i }∗ be the function computed by Ti,q. For a tuple q̄ =

(q1, . . . , qc) ∈
∏

i∈[1,c] Qi of states from the semiPFAs Ai we define the sequential transducer
Tq̄ by taking the direct product of the Ti,qi

(i ∈ [1, c]). Formally, it is defined as follows:

Tq̄ = (
∏

i∈[1,c]

Qi, Σ, Γ, q̄, δ)
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Algorithm 1 (ζ0, ζ1)-distinguisher for GP(G1, . . . , Gc, I).

global variables: qi ∈ Qi for all i ∈ [1, c], r ∈ Rm

initialization:
1 guess qi ∈ Qi = [0, |Qi| − 1] according to the input distribution ιi of Ai ;
2 guess r ∈ Rm according to the input distribution λm of Bm ;

next input letter: a ∈ Σ
3 let i ∈ [1, c] such that a ∈ Σi ;
4 r := σm(r, a−qi

i a
ρi(qi,a)
i ) ; qi := ρi(qi, a) ;

where for every i ∈ [1, c], a ∈ Σi, and (p1, . . . , pc) ∈
∏

i∈[1,c] Qi we have

δ((p1, . . . , pc), a) =
(
(p1, . . . , pi−1, ρi(pi, a), pi+1, . . . , pc), a−pi

i a
ρi(pi,a)
i

)
.

Let fq̄ := fTq̄
: Σ∗ → Γ∗ be the function computed by Tq̄. Moreover, define

m = 2 · n · max{|Qi| : i ∈ [1, c]} ≤ n · 21+max{s(Ri,n) : i∈[1,c]}.

Note that |fq̄(w)| ≤ m if |w| ≤ n.
Our randomized streaming algorithm for G and input length n uses the semiPFA Bm.

States of Bm can be stored with O(log m) ≤ O(max{s(Ri, n) : i ∈ [1, c]} + log n) bits.
Basically, for an input word w ∈ Σ≤n the algorithm simulates Ai (i ∈ [1, c]) on the projections
wi = πi(w) and feeds the word fq̄(w) into the semiPFA Bm. Here, the state tuple q̄ is randomly
guessed in the beginning according to the distributions ιi. The complete streaming algorithm
is Algorithm 1. It stores at most

∑c
i=1 s(Ri, n) + O(max{s(Ri, n) : i ∈ [1, c]} + log n) bits.

Before we analyze the error probability of the algorithm we need some preparations.
For i ∈ [1, c] and a word w ∈ Σ∗ let Pi(w) = P(πi(w)) be the set of all prefixes of the
projection πi(w). Assume that y ∈ Σ+

i is a block of w and write w = xyz. We then have
fq̄ = fq̄(x)fr̄(y)fs̄(z), where δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). The word fr̄(y) is
also a block of fq̄ (for this it is important that the transducers Tj,q translate non-empty words
into non-empty words). Since y ∈ Σ+

i we have rj = sj for all j ∈ [1, c]\{i} and fr̄(y) = fi,ri(y).
In addition, the definition of the transducer Ti,ri

implies that fr̄(y) ≡⟨ai⟩ a−ri
i asi

i .
Consider now two input words u, v ∈ Σ≤n and let Si = Pi(u) ∪ Pi(v) for i ∈ [1, c], so that

|Si| ≤ 2n. By Lemma 4 we have for all i ∈ [1, c]:
Probq∈Qi

[≡q refines ≡Gi
on Si] ≥ 1 − ϵ0(n)

(|Si|
2

)
≥ 1 − 2ϵ0(n)n2,

Probq∈Qi
[≡Gi

refines ≡q on Si] ≥ 1 − ϵ1(n)
(|Si|

2
)

≥ 1 − 2ϵ1(n)n2.
Our error analysis of Algorithm 1 is based on the following two claims.

▷ Claim 10. Assume that q̄ = (q1, . . . , qc) is such that ≡Gi refines ≡qi on Si for every
i ∈ [1, c]. If u →∗

sd u′ and v →∗
sd v′, then fq̄(u) →∗

sd fq̄(u′), fq̄(v) →∗
sd fq̄(v′) and ≡Gi

refines
≡qi

on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].

Proof. It suffices to show the following: If u →sd u′ holds, then fq̄(u) →sd fq̄(u′) and ≡Gi

refines ≡qi
on Pi(u′) ∪ Pi(v) for every i ∈ [1, c]. From this (and the symmetric statement

where v →sd v′ and u = u′) we obtain the general statement by induction on the number of
→sd-steps. We distinguish two cases.
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Case 1. u ↔s u′. We must have u = xy1y2z and u′ = xy2y1z for blocks y1, y2 such that
y1 ∈ Σ+

i , y2 ∈ Σ+
j and (i, j) ∈ I (in particular i ̸= j). We obtain

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z) and
fq̄(u′) = fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z),

where δ(q̄, x) = (p̄, fq̄(x)), δ(p̄, y1) = (r̄, fp̄(y1)), δ(r̄, y2) = (s̄, fr̄(y2)), δ(p̄, y2) = (r̄′, fp̄(y2)),
and δ(r̄′, y1) = (s̄, fr̄′(y1)). If we write p̄ = (p1, . . . , pc), then there are states ri ∈ Qi and
rj ∈ Qj such that

r̄ = (p1, . . . , pi−1, ri, pi+1, . . . , pc), (1)
r̄′ = (p1, . . . , pj−1, rj , pj+1, . . . , pc), and (2)
s̄ = (p1, . . . , pi−1, ri, pi+1, . . . , pj−1, rj , pj+1, . . . , pc) (3)

(we assume w.l.o.g. that i < j). Moreover, fp̄(y1) = fi,pi(y1) = fr̄′(y1) ∈ {ai, a−1
i }+ and

fr̄(y2) = fj,pj
(y2) = fp̄(y2) ∈ {aj , a−1

j }+. Thus, we have

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z)
= fq̄(x)fi,pi

(y1)fj,pj
(y2)fs̄(z)

↔s fq̄(x)fj,pj
(y2)fi,pi

(y1)fs̄(z)
= fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z)
= fq̄(u′).

Moreover, since Pi(u′) = Pi(u) and ≡Gi
refines ≡qi

on Si for all i ∈ [1, c], it follows that
≡Gi

refines ≡qi
on Pi(u′) ∪ Pi(v) for all i ∈ [1, c].

Case 2. u →d u′. Then we obtain a factorization u = xyz, where y ∈ Σ+
i is a block,

y ≡Gi
1, and u′ = xz. We obtain a factorization

fq̄(u) = fq̄(x)fr̄(y)fs̄(z),

where δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). The word fr̄(y) is a block of fq̄(u).
For the projection πi(u) we have πi(u) = πi(x)yπi(z). Since ≡Gi

refines ≡qi
on Si and

πi(x) ≡Gi
πi(x)y, we obtain πi(x) ≡qi

πi(x)y. Since ri (resp., si) is the state reached from qi

by the automaton Ai after reading πi(x) (resp., πi(x)y), we obtain ri = si and hence r̄ = s̄.
This implies

fr̄(y) ≡⟨ai⟩ a−ri
i asi

i ≡⟨ai⟩ 1.

Moreover, we have

fq̄(u′) = fq̄(xz) = fq̄(x)fr̄(z) = fq̄(x)fs̄(z).

We therefore get fq̄(u) →d fq̄(u′).
It remains to show that ≡Gj

refines ≡qj
on Pj(u′) ∪ Pj(v) for every j ∈ [1, c]. For

j ̸= i this is clear since Pj(u′) ∪ Pj(v) = Sj . For j = i we can use Lemma 5 for the words
πi(u) = πi(x)yπi(z) and πi(v). ◁

▷ Claim 11. Assume that q̄ = (q1, . . . , qc) is such that ≡qi
refines ≡Gi

on Si for every
i ∈ [1, c]. If fq̄(u) →∗

sd ũ and fq̄(v) →∗
sd ṽ, then there are u′, v′ ∈ Σ∗ such that u →∗

sd u′,
v →∗

sd v′, fq̄(u′) = ũ, fq̄(v′) = ṽ and ≡qi
refines ≡Gi

on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].

Proof. The proof is very similar to the above proof of Claim 10. As in the above proof of
Claim 10, it suffices to consider the case where fq̄(u) →sd ũ and ṽ = fq̄(v).
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Case 1. fq̄(u) ↔s ũ. Since the blocks of u are translated into the blocks of fq̄(u) by the
transducer Tq̄, we obtain a factorization u = xy1y2z for blocks y1 ∈ Σ+

i , y2 ∈ Σ+
j of u such

that (i, j) ∈ I (in particular i ̸= j) and

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z),
ũ = fq̄(x)fr̄(y2)fp̄(y1)fs̄(z).

Here, the state tuples p̄ = (p1, . . . , pc), r̄, and s̄ are as in the above proof of Claim 10, see in
particular (1) and (3). We can then define the tuple r̄′ as in (2) and get fp̄(y1) = fi,pi(y1) =
fr̄′(y1) ∈ {ai, a−1

i }+ and fr̄(y2) = fj,pj
(y2) = fp̄(y2) ∈ {aj , a−1

j }+. We thus have

ũ = fq̄(x)fr̄(y2)fp̄(y1)fs̄(z) = fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z) = fq̄(xy2y1z).

Clearly, we also have u = xy1y2z →s xy2y1z. So, we can set u′ = xy2y1z. Since Pi(u′) = Pi(u)
for all i ∈ [1, c], it follows that ≡qi

refines ≡Gi
on Pi(u′) ∪ Pi(v) for all i ∈ [1, c].

Case 2. fq̄(u) →d ũ. Then we obtain a factorization u = xyz, where y ∈ Σ+
i is a block of u,

fq̄(u) = fq̄(x)fr̄(y)fs̄(z), and
ũ = fq̄(x)fs̄(z).

The state tuples r̄ and s̄ are such that δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). Moreover,
the word fr̄(y) is a block of fq̄(u) with

a−ri
i asi

i ≡⟨ai⟩ fr̄(y) ≡⟨ai⟩ 1.

This implies that ri = si and hence r̄ = s̄. We therefore have

ρi(qi, πi(x)) = ri = si = ρi(qi, πi(x)y).

Since ≡qi
refines ≡Gi

on Si and πi(x), πi(x)y ∈ Si, we get πi(x) ≡Gi
πi(x)y, i.e., y ≡Gi

1. If
we set u′ = xz we get u →d u′ and

ũ = fq̄(x)fs̄(z) = fq̄(x)fr̄(z) = fq̄(xz) = fq̄(u′).

It remains to show that ≡qj
refines ≡Gj

on Pj(u′) ∪ Pj(v) for every j ∈ [1, c]. For j ̸= i

this is clear since Pj(u′) ∪ Pj(v) = Sj . For j = i we can use Lemma 6 for the words
πi(u) = πi(x)yπi(z) and πi(v). ◁

We now estimate the error for the input words u and v. There are two cases to consider:
Case 1. u ≡G v. We will show that Algorithm 1 reaches with probability at least 1 −
2ϵ1(n)cn2 the same state when running on u and v, respectively. For this, assume that the
randomly selected initial states qi ∈ Qi are such that ≡Gi refines ≡qi on Si for all i ∈ [1, c].
This happens with probability at least 1 − 2ϵ1(n)cn2.

First note that u ≡G v implies πi(u) ≡Gi
πi(v) for all i ∈ [1, c]. Since ≡Gi

refines ≡qi
on

Si, we obtain ρi(qi, πi(u)) = ρi(qi, πi(v)). It remains to show that after reading u and v, also
the states of Bm are the same. For this we show that fq̄(u) ≡H fq̄(v) in the graph group H.

From Lemma 8 it follows that there are reduced words u′, v′ ∈ Σ∗ such that u →∗
sd u′,

v →∗
sd v′, and u′ ↔∗

r v′. Claim 10 implies fq̄(u) →∗
sd fq̄(u′), fq̄(v) →∗

sd fq̄(v′), and ≡Gi

refines ≡qi
on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c]. Since u′ ↔∗

r v′ we can write the block
factorizations of u′ and v′ as u′ = u1u2 · · · ul and v′ = v1v2 · · · vl with ui, vi ∈ Σ+

ji
for some

ji ∈ [1, c] and ui ≡Gji
vi for all i ∈ [1, l]. The block factorizations of fq̄(u′) and fq̄(v′) can be

written as fq̄(u′) = ũ1ũ2 · · · ũl and fq̄(v′) = ṽ1ṽ2 · · · ṽl with ũi, ṽi ∈ {aji
, a−1

ji
}+.
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We claim that ũi ≡⟨aji
⟩ ṽi for all i ∈ [1, l], which implies fq̄(u′) ≡H fq̄(v′). Since

ui ≡Gji
vi for all i ∈ [1, l], we get the following: if u′′ = uk1uk2 · · · uke

∈ Σ∗
j is a pure

prefix of u′ for some j ∈ [1, c] then v′′ = vk1vk2 · · · vke
∈ Σ∗

j is a pure prefix of v′ such that
u′′ ≡Gj v′′. Since ≡Gj refines ≡qj on Pj(u′) ∪ Pj(v′) and u′′, v′′ ∈ Pj(u′) ∪ Pj(v′), we obtain
ρj(qj , u′′) = ρj(qj , v′′). This implies ũi ≡⟨aji

⟩ ṽi for all i ∈ [1, l] and hence fq̄(u′) ≡H fq̄(v′).
From this, we finally get fq̄(u) ≡H fq̄(u′) ≡H fq̄(v′) ≡H fq̄(v).

Recall that fq̄(u) (resp., fq̄(v) is the word fed into the semiPFA Bm on input u (resp., v).
Since (Bn)n≥0 is a (1/nd, 0)-distinguisher for H, it follows that fq̄(u) and fq̄(v) lead in Bm

with probability one to the same state. Hence, Algorithm 1 reaches with probability at least
1 − 2ϵ1(n)cn2 the same state when running on u and v, respectively.

Case 2. u ̸≡G v. We will show that Algorithm 1 reaches with probability at least 1 −
(2ϵ0(n)cn2 + 1/nd) different states when running on u and v, respectively. To show this,
assume that the randomly selected initial states qi ∈ Qi are such that ≡qi refines ≡Gi on Si

for all i ∈ [1, c]. This happens with probability at least 1 − 2ϵ0(n)cn2.
We claim that fq̄(u) ̸≡H fq̄(v). In order to get a contradiction, assume that fq̄(u) ≡H

fq̄(v). From Lemma 8 it follows that there are reduced words ũ, ṽ ∈ Γ∗ such that fq̄(u) →∗
sd ũ,

fq̄(v) →sd ṽ and ũ ↔∗
r ṽ. By Claim 11 there are u′, v′ ∈ Σ∗ such that u →∗

sd u′, v →∗
sd v′,

fq̄(u′) = ũ, fq̄(v′) = ṽ and ≡qi
refines ≡Gi

on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].
Since fq̄(u′) ↔∗

r fq̄(v′) we can write the block factorizations of fq̄(u′) and fq̄(v′) as
fq̄(u′) = ũ1ũ2 · · · ũl and fq̄(v′) = ṽ1ṽ2 · · · ṽl with ũi, ṽi ∈ {aji

, a−1
ji

}+ for some ji ∈ [1, c] and
ũi ≡⟨aji

⟩ ṽi for all i ∈ [1, l]. Clearly, the block factorizations of u′ and v′ can then be written
as u′ = u1u2 · · · ul and v′ = v1v2 · · · vl, where the block ui ∈ Σ+

ji
(resp., vi ∈ Σ+

ji
) is translated

into the block ũi (resp., ṽi) by the sequential transducer Tq.
We claim that ui ≡Gji

vi for all i ∈ [1, l]. Since ũi ≡⟨aji
⟩ ṽi for all i ∈ [1, l] we

have the following: if ũ′′ = ũk1 ũk2 · · · ũke
∈ {aj , a−1

j }∗ is a pure prefix of fq̄(u′) for some
j ∈ [1, c] then ṽ′′ = ṽk1 ṽk2 · · · ṽke ∈ {aj , a−1

j }∗ is a pure prefix of fq̄(v′) and ũ′′ ≡⟨aj⟩ ṽ′′. Let
pj = ρj(qj , uk1uk2 · · · uke

) and rj = ρj(qj , vk1vk2 · · · vke
). We therefore have

a
−qj

j a
pj

j ≡⟨aj⟩ ũ′′ ≡⟨aj⟩ ṽ′′ ≡⟨aj⟩ a
−qj

j a
rj

j ,

i.e., pj = rj . Since ≡qj
refines ≡Gj

on Pj(u′)∪Pj(v′) and uk1uk2 · · · uke
as well as vk1vk2 · · · vke

belong to Pj(u′) ∪ Pj(v′), we obtain uk1uk2 · · · uke
≡Gj

vk1vk2 · · · vke
. This holds for all pure

prefixes of u′. We therefore have ui ≡Gji
vi for all i ∈ [1, l], which implies u′ ≡G v′. Finally,

we get u ≡G u′ ≡G v′ ≡G v, which is a contradiction. Hence, we must have fq̄(u) ̸≡H fq̄(v).
Since the algorithm feeds fq̄(u) (resp., fq̄(v)) into the semiPFA Bm, the latter reaches

different states with probability at least 1 − 1/md ≥ 1 − 1/nd (under the assumption
that ≡qi

refines ≡Gi
on Si for all i ∈ [1, c]). Hence, the probability that Algorithm 1

reaches different states when running on u and v is at least (1 − 2ϵ0(n)cn2)(1 − 1/nd) ≥
1 − (2ϵ0(n)cn2 + 1/nd). ◀

Theorem 9 only makes sense if ϵ0(n), ϵ1(n) < 1/2cn2. Most of the distinguishers from [17]
have an error probability of 1/nc for any chosen c > 0; see Theorem 7 for the case of f.g. linear
groups. Moreover, notice that if ϵ1 = 0 then also ζ1 = 0 in Theorem 9. Combined with
Theorem 7, Lemma 3, and the transfer theorems from [17] mentioned in Section 1, we get a
logspace randomized streaming algorithm with a one-sided error (no error if w ≡G 1) for
the word problem of any f.g. group G that can be constructed from f.g. linear groups using
finite extensions, wreath products with a f.g. abelian left factor, and graph products. These
groups are in general not linear; see the characterization of linear wreath products in [23].
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6 Randomized streaming algorithms for subgroup membership

Let G be a f.g. group with a finite symmetric generating set Σ and let H be a subgroup
of G. As before, πG : Σ∗ → G is the morphism that maps a word w ∈ Σ∗ to the group
element represented by w. We define the language GWP(G, H, Σ) = {w ∈ Σ∗ : πG(w) ∈ H}.
GWP stands for generalized word problem which is another common name for the subgroup
membership problem. Note that GWP(G, 1, Σ) = WP(G, Σ). In the following we are
interested in randomized streaming algorithms for GWP(G, H, Σ). One can easily show a
statement for GWP(G, H, Σ) analogously to Lemma 2, which allows us to skip the generating
set Σ in combination with the O-notation and just write GWP(G, H) in the following.

For this section we fix a finite alphabet Σ and take a copy Σ−1 = {a−1 : a ∈ Σ} of formal
inverses. Let Γ = Σ ∪ Σ−1. We extend the mapping a 7→ a−1 (a ∈ Σ) to the whole alphabet
Γ by setting (a−1)−1 = a. Moreover, for a word w = a1a2 · · · an with ai ∈ Γ we define
w−1 = a−1

n · · · a−1
2 a−1

1 . A word w ∈ Γ∗ is called reduced if it contains no factor of the form
aa−1 for a ∈ Γ. Let Red(Γ) ⊆ Γ∗ be the set of reduced words. It is convenient to identify
the free group F (Σ) with the set Red(Γ) of reduced words and the following multiplication
operation: Let u, v ∈ Red(Γ). Then one can uniquely write u and v as u = xy and v = y−1z

such that xz ∈ Red(Γ) and define the product of u and v in the free group F (Σ) as xz. For
every word w ∈ Γ∗ we can define a unique reduced word red(w) as follows: if w ∈ Red(Γ)
then red(w) = w and if w = uaa−1v for u, v ∈ Γ∗ and a ∈ Γ then red(w) = red(uv). It is
important that this definition does not depend on which factor aa−1 is deleted in w. The
reduction relation uaa−1v → uv for all u, v ∈ Γ∗ and a ∈ Γ is a so-called confluent relation.
The reduction mapping w 7→ red(w) then becomes the canonical morphism mapping a word
w ∈ Γ∗ to the element of the free group represented by w.

In the following we have to deal with a special class of finite automata over the alphabet Γ.
A partial deterministic finite automaton (partial DFA) is defined as an ordinary DFA except
that the transition function δ : Q × Γ → Q is only partially defined. As for (total) DFAs we
extend the partial transition function δ : Q × Γ → Q to a partial function δ : Q × Γ∗ → Q.
For q ∈ Q and w ∈ Γ∗ we write δ(q, w) = ⊥ if δ(q, w) is undefined, which means that one
cannot read the word w into the automaton A starting from state q. A partial inverse
automaton A = (Q, Γ, q0, δ, qf ) over the alphabet Γ is a partial DFA with a single final state
qf and such that for all p, q ∈ Q and a ∈ Γ, δ(p, a) = q implies δ(q, a−1) = p.

The main technique to deal with f.g. subgroups of a free group is Stallings folding [12].
For our purpose it suffices to know that for every f.g. subgroup G ≤ F (Σ) there exists a
partial inverse automaton AG over the alphabet Γ such that for every w ∈ Red(Γ), w ∈ G if
and only if w ∈ L(AG). We call AG the Stallings automaton for G. It has the additional
property that the unique final state is the initial state. The Stallings automaton for G can
be constructed quite efficiently from a given set of generators for G, but we do not need
this fact since G will be fixed and not considered to be part of the input in our main result,
Theorem 14 below.

Let G be a fixed f.g. subgroup of F (Σ) and let AG = (Q, Γ, q0, δ, q0) be its Stallings
automaton in the following. An important property of AG is the following: If q, q′ ∈ Q and
u ∈ Γ∗ (u is not necessarily reduced) are such that δ(q, u) = q′ then also δ(q, red(u)) = q′.
This follows from the fact that δ(q, aa−1) = q for every q ∈ Q and a ∈ Γ. In particular, if
δ(q0, u) ̸= ⊥, then u ∈ L(AG) if and only if red(u) ∈ L(AG) if and only if red(u) ∈ G.

▶ Definition 12. For a word w ∈ Γ∗ we define the AG-factorization of w uniquely as either
(i) w = w0a1u1 w1a2u2 · · · wk−1akuk wk or
(ii) w = w0a1u1 w1a2u2 · · · wk−1akuk wkak+1v
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AGq0

q1 q2
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q4

q5

w0

w1

w2

w3
w4

a1 a2

a3

a4

u1 u2

u3

u4

Figure 1 An AG-factorization of type (i) for k = 4. The red-blue loops outside of AG are loops
in the Cayley-graph of the free group F (Σ).

AGq0

q1 q2

q3

q4q5

w0

w1

w2

w3

w4

a1 a2

a3

a4a5

u1 u2

u3

u4v

Figure 2 An AG-factorization of type (ii) for k = 4. The red-blue loops outside of AG are loops
in the Cayley-graph of the free group F (Σ).

such that the following properties hold, where ℓ = k in case (i) and ℓ = k + 1 in case (ii):
w0, . . . , wk, u1, . . . , uk, v ∈ Γ∗, a1, . . . , aℓ ∈ Γ,
there are states q1, . . . , qk+1 ∈ Q such that δ(qi, wi) = qi+1 for all i ∈ [0, k] (recall that q0
is the initial state of AG),
δ(qi, ai) = ⊥ for all i ∈ [1, ℓ],
for all i ∈ [1, k], red(aiui) = ε but there is no prefix u ̸= ui of ui with red(aiu) = ε, and
in case (ii), v has no prefix x with red(ak+1x) = ε.

Depending on which of the two cases (i) and (ii) in Definition 12 holds, we say that w has an
AG-factorization of type (i) or type (ii).

Let us explain the intuition of the AG-factorization of w; see also Figures 1 and 2. We
start reading the word w into the automaton AG, beginning at q0, as long as possible. If it
turns out that δ(q0, w) is defined, then the AG-factorization of w consists of the single factor
w0 = w and we obtain type (i). Otherwise, there is a shortest prefix w0 of w (the first factor
of the AG-factorization) such that after reading w0 we reach the state δ(q0, w0) = q1 of AG

and δ(q1, a1) = ⊥, where a1 is the symbol following w0 in w. In other words, when trying
to read a1, we escape the automaton AG for the first time. At this point let w = w0a1x.
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Algorithm 2 1/nc-correct randomized streaming algorithm for GWP(F (Σ), G).

global variables: q ∈ Q, p, r ∈ Rn, β ∈ {0, 1}

initialization:
1 q := q0 ; β := 1 ;
2 guess r ∈ Rn according to the initial state distribution λn of Bn ;

next input letter: a ∈ Γ
3 if β = 1 and δ(q, a) = ⊥ then
4 β := 0 ; p := r

5 end
6 if β = 1 and δ(q, a) ̸= ⊥ then
7 q := δ(q, a)
8 end
9 r := σn(r, a) ;

10 if β = 0 and r = p then
11 β := 1
12 end
13 accept if β = 1 and q = q0

We then take the shortest prefix u1 of x such that a1u1 = 1 in F (Σ) (if such a prefix does
not exist, we terminate in case (ii)). This yields a new factorization w = w0a1u1y. We then
repeat this process with the word y starting from the state q1 as long as possible. There
are two possible terminations of the process: starting from state qk we can read the whole
remaining suffix into AG (and arrive in state qk+1). This suffix then yields the last factor wk

and we obtain (i). In the other case, we leave the automaton AG with the symbol ak+1 from
state qk+1 (δ(qk+1, ak+1) = ⊥) and the remaining suffix has no prefix x such that ak+1x

evaluates to the identity in F (Σ). The remaining suffix then yields the last factor v and we
obtain (ii). The following lemma is shown in [17].

▶ Lemma 13. Let w ∈ Γ∗ and assume that the AG-factorization of w and the states
q1, . . . , qk+1 are as in Definition 12.

If the AG-factorization of w is of type (i) then red(w) ∈ G if and only if qk+1 = q0.
If the AG-factorization of w is of type (ii) then red(w) /∈ G.

▶ Theorem 14. Let G a fixed f.g. subgroup of F (Σ). For every c > 0 there is a 1/nc-correct
randomized streaming algorithm for GWP(F (Σ), G) with space complexity O(log n).

Proof. We would like to use the Stallings automaton AG = (Q, Γ, q0, δ, q0) as a streaming
algorithm for GWP(F (Σ), G) (note that |Q| is a constant since G is fixed). The problem is
that the input word is not necessarily reduced. We solve this problem by using a (1/nc+2, 0)-
distinguisher (Bn)n≥0 for F (Σ) with space complexity O(log n). It exists by Theorem 7 since
f.g. free groups are linear. Fix an input length n and let Bn = (Rn, Γ, λn, σn). Consider an
input word w ∈ Γ≤n. Our randomized streaming algorithm for GWP(F (Σ), G) is Algorithm 2.

The space needed by Algorithm 2 is O(log n): The variables q and β need constant
space and p and r both need O(log n) bits. Let us now show that the error probability of
Algorithm 2 is bounded by 1/nc. For this let S = P(w) be the set of all prefixes of w. For
the initially guessed state r0 ∈ Rn (line 3) we have by Lemma 4:

Prob
r0∈Rn

[≡F (Σ) equals ≡r0 on S] ≥ 1 − 1/nc+2
(

|S|
2

)
≥ 1 − 1/nc.
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Assume for the further consideration that the guessed state r0 is such that ≡F (Σ) and ≡r0

are equal on S. We claim that under this assumption, Algorithm 2 accepts in line 13 after
reading w if and only if red(w) ∈ G. For this, assume that the AG-factorization of w and
the states q1, . . . , qk+1 ∈ Q are as in Definition 12. By Lemma 13 it suffices to show the
following:
(a) If the AG-factorization of w is of type (i) then after reading w we have β = 1 and

q = qk+1 in Algorithm 2.
(b) If the AG-factorization of w is of type (ii) then β = 0 after reading w in Algorithm 2.
To see this, observe that Algorithm 2 simulates Bn on w starting from r0 (line 9). Moreover,
initially we have β = 1 (line 1). This implies that Algorithm 2 simulates the Stallings
automaton AG on w as long as possible (line 7). If this possible for the whole input w (i.e.,
δ(q0, w) ̸= ⊥) then w has an AG-factorization of type (i) consisting of the single factor w

(i.e., k = 0). Moreover, after processing w by Algorithm 2, we have β = 1 and the program
variable q holds δ(q0, w) = q1 = qk+1. We obtain the above case (a).

Assume now that k > 0. The AG-factorization of w starts with w0a1, where δ(q0, w0) = q1
and δ(q1, a1) = ⊥. After processing w0 by Algorithm 2 we have q = q1 and r = σn(r0, w0).
While processing the next letter a1, Algorithm 2 sets β to 0 and saves the current state
r = σn(r0, w0) of Bn in the variable p (line 4). Let us write w = w0a1v. Since the flag β was
set to 0, Algorithm 2 only continues the simulation of Bn on input a1v starting from state
σn(r0, w0) = p. Our assumption that ≡F (Σ) and ≡r0 are equal on the set S implies that for
every prefix x of v we have: red(a1x) = ε if and only if p = σn(r0, w0) = σn(r0, w0a1x). In
line 10, the algorithm checks the latter equality in each step (as long as β = 0). If there is
no prefix x of v with red(a1x) = ε then the AG-factorization of w is of type (ii) (it is w0a1v)
and the flag β is 0 after reading w. We then obtain the above case (b). Otherwise, u1 is the
shortest prefix of v with red(a1u1) = ε. Moreover, after processing u1, the if-condition in
line 10 is true for the first time. The algorithm then sets the flag β back to 1 (line 11) and
resumes the simulation of the automaton AG in state q1 (which is still stored in the program
variable q). This process now repeats and we see that the algorithm correctly locates the
factors of the AG-factorization of w. This shows the above points (a) and (b). ◀

It is not possible to generalize Theorem 14 to subgroups of F (Σ) that are not finitely
generated. The proof of the following theorem (see [17]) uses the fact there is a finitely
presented group whose word problem has randomized streaming space complexity Ω(n). A
concrete example is Thompson’s group F ; see [16, Corollary 22].

▶ Theorem 15. The free group F2 of rank two has a normal subgroup N such that the
randomized streaming space complexity of the language GWP(F2, N) is in Θ(n).

Applying Mihăılova’s construction [19] to the normal subgroup N from Theorem 15 yields:

▶ Theorem 16. There is a f.g. subgroup G of F2 × F2 such that the randomized streaming
space complexity of GWP(F2 × F2, G) is in Θ(n).

7 Open problems

A very important class of groups in geometric group theory is the class of hyperbolic groups;
see [9] for background. Free groups are the simplest hyperbolic groups. Hyperbolic groups
have some good algorithmic properties. For instance, their word problems can be decided in
linear time by Dehn’s algorithm. It would be interesting to know whether every hyperbolic
group has an ϵ-distinguisher (say for ϵ = 1/3) with space complexity O(log n), which would
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imply that every hyperbolic group has randomized streaming space complexity O(log n). One
should remark that it is also open whether the word problem for a hyperbolic group belongs
to randomized logspace (RL). The best known space upper bound for the word problem of a
hyperbolic group is DPSPACE(log2 n). This follows from the fact that the word problem of a
hyperbolic group belongs to LogCFL [14].

It would be also interesting to see whether a transfer theorem similar to Theorem 9 can
be shown for certain fundamental groups of graphs of groups, e.g. when all edge groups are
finite.
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