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Abstract
We show that the conditional independence (CI) implication problem with bounded cardinalities,
which asks whether a given CI implication holds for all discrete random variables with given
cardinalities, is co-NEXPTIME-hard. The problem remains co-NEXPTIME-hard if all variables are
binary. The reduction goes from a variant of the tiling problem and is based on a prior construction
used by Cheuk Ting Li to show the undecidability of a related problem where the cardinality of some
variables remains unbounded. The CI implication problem with bounded cardinalities is known to
be in EXPSPACE, as its negation can be stated as an existential first-order logic formula over the
reals of size exponential with regard to the size of the input.
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1 Introduction

The implication problem for conditional independence statements is one of the major decision
problems arising in multivariate statistical modeling and other applications [2]. The problem
asks whether a list of conditional independence statements implies another such statement
(see the exact formulation below). The problem is a special case of the conditional entropic
inequality problem, as the statement X and Y are independent, given Z (sometimes denoted
X ⊥ Y | Z) is equivalent to the equation I(X; Y |Z) = 0 in information theory. Here the
random variables in consideration are of the form (Xi1 , . . . , Xiℓ

), abbreviated by XZ with
Z = {i1, . . . , iℓ}, selected from a fixed n-tuple of variables X1, . . . , Xn considered with a joint
distribution. As with the general problem, this can be considered over continuous, infinite
discrete or finite discrete random variables. Furthermore, the CI implication problem can be
refined by imposing certain requirements on the sets A, B, C in XA ⊥ XB | XC , e.g., they
must be pairwise disjoint for disjoint CI, and for saturated CI they must additionally satisfy
A ∪ B ∪ C = {1, . . . , n}. We will focus on discrete random variables with a finite domain
and without constraints on the sets, addressing disjoint CI in the full version.

If the domain size is bounded, this problem is decidable since the conditional independence
can be expressed as an arithmetic formula in terms of elementary events’ probabilities.
Considering all possible domain sizes yields a semi-algorithm for finding a counter-example
to the implication, showing that the unbounded problem is co-recursively enumerable (as
noted by Khamis et al [5]). The decidability of the general CI implication problem was
unknown for a long time, with only special cases resolved. Finally, Cheuk Ting Li published
two papers [8, 9] proving the problem to be undecidable. This was also shown independently
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by Kühne and Yashfe [6]. Still unknown is the complexity of the bounded problem – the
method of constructing an existential formula of Tarski’s arithmetic yields an upper bound
of EXPSPACE (cf. [1]), while the other published algorithms appear to be mostly heuristics.
Hannula et al [4] conjectured that the problem can be actually easier, especially in the case
where all variables are binary, as the arithmetic formula in question is of a very special form.

In this paper we show that the problem is in general co-NEXPTIME-hard, and the
hardness result continues to hold if all variables are binary. Our reduction is an adaptation
of the construction presented by Li [8] to show that the problem is undecidable if the
cardinalities of some variables are bounded. While there is still a gap between the lower and
upper bound, this shows that the complexity of the CI implication problem is harder than it
might have been expected.

2 Problem statement

Denote by card(X) the cardinality of a random variable X. Formally, the following problem
will be considered:

Bounded CI Implication
Input: Integers m, n, given in unary. A list of m + 1 triples (Ai, Bi, Ci) of subsets

of {1, . . . , n}. A list of n integers Kj , given in binary.
Question: Determine whether the implication∧

i∈{1,...,m}

(I(XAi
; XBi

|XCi
) = 0) ⇒ I(XAm+1 ; XBm+1 |XCm+1) = 0

holds for all jointly distributed random variables (X1, . . . , Xn) with
card(Xj) ≤ Kj for all j ∈ {1, . . . , n}.

We define Constant-bounded CI Implication as a variant of the above problem in
which all Ki are fixed to be equal to 2 rather than given as input. We show the following:

▶ Theorem 1. Bounded CI Implication and Constant-bounded CI Implication are
co-NEXPTIME-hard. This also holds in the disjoint CI case, i. e. when for each i the sets
Ai, Bi, Ci are pairwise disjoint.

We focus on the first part of the theorem – the proof of the second part differs little from
that given by Li [8] and is given in the full version.

In order to state the tiling-based problems utilized in the reduction, we introduce some
definitions based on those in [7]. We define a tiling system as a triple D = (D, H, V ), where D

is a finite set of tiles and H, V ⊆ D2 are the horizontal and vertical constraints, accordingly,
which give the pairs of tiles that may be neighbors. This is a generalization of Wang tiles,
where a set of colors C is given and tiles (formally quadruples from the set C4) are represented
by squares with colored edges with the requirement that only edges of the same color may
touch. As stated in [12], Wang tiles correspond exactly to those tiling systems for which the
implication (a R b ∧ a R c ∧ d R b) ⇒ d R c holds for all a, b, c, d ∈ D and both R ∈ {H, V }.

We define a k × l tiling by D as a function f : {0, . . . , k − 1} × {0, . . . , l − 1} → D such
that:

(f(m, n), f(m + 1, n)) ∈ H for all m < k − 1, n < l,
(f(m, n), f(m, n + 1)) ∈ V for all m < k, n < l − 1.

A periodic tiling is one that also has (f(k − 1, n), f(0, n)) ∈ H and (f(m, l − 1), f(m, 0)) ∈ V

for all m < k, n < l. For a (non-periodic) k × l tiling f , the starting tile and final tile are the
values of f(0, 0) and f(k − 1, l − 1), respectively.
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We will show a polynomial-time many-one reduction from the following problem, which
is known to be NEXPTIME-complete [7, exercise 7.2.2.]:

Binary Bounded Tiling
Input: A tiling system D, a starting tile d0 ∈ D, an integer k given in binary.
Question: Determine whether there exists a k×k tiling f by D such that f(0, 0) = d0.

The reduction consists of two parts, the first being a purely tiling-based reduction from the
above to the following intermediate problem:

Periodic Bounded Tiling
Input: A tiling system D, a designated tile t, integers m, n given in binary.
Question: Determine whether there exists a periodic tiling by D of size at most

m × n which uses tile t.

The second part is a reduction from Periodic Bounded Tiling to the complement of
Bounded CI Implication, based on a construction by Li [8].

3 First part of the reduction

We first show a polynomial-time many-one reduction from Binary Bounded Tiling to
Periodic Bounded Tiling. This means that given a tiling system D, starting tile d0 and
integer k, we will construct in polynomial time a tiling system D′′, designated tile t and
integers m, n such that Binary Bounded Tiling gives a positive answer for input (D, d0, k)
iff Periodic Bounded Tiling gives a positive answer for input (D′′, t, m, n). This consists
of two steps:
1. Modify D into system D′ such that valid tilings by D of size k × k correspond to valid

tilings by D′ with certain corner constraints.
2. Modify D′ into system D′′ and tile t such that valid tilings by D′ with the above corner

constraints correspond to periodic tilings by D′′ of size (k + 1) × (k + 1) that use tile t.
This is a fairly typical reduction between tilings, similar to problems considered for instance
in [3].

Limiting tiling size

For the first step, we create a tiling system C (of polynomial size with regard to the length
of k), along with starting tile c0 and final tile c1, implementing a binary counter that counts
down from an appropriately chosen k′ ≤ k (close to k) and whose position shifts by 1 with
each decrement. The tile c1 occurs when the counter reaches 0. Similar constructions have
been shown [11], our example is given in Figure 1. Thus, any tiling by C with c0 in the
top-right corner and c1 in the bottom-left must be of size exactly k × k.

Consider a “layering” of D and C into system D × C = (D × C, HD×C , VD×C), where
the relations are defined as RD×C = {((d, c), (d′, c′)) : (d, d′) ∈ RD ∧ (c, c′) ∈ RC} for both
R ∈ {H, V }. This way, any tiling by D × C corresponds to a pair of tilings by D and C.
We let D′ = D × C and define the corner constraints mentioned in point 2 by restricting
the possible starting and final tiles to S = {(d0, c0)}, F = {(d, c1) : d ∈ D} respectively. This
yields tilings by D′ which consist of a tiling by D with starting tile d0 and a tiling by C with
starting tile c0 and final tile c1.

MFCS 2024
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Periodic tilings
The second step realizes the above constraint while also converting between periodic and
non-periodic tilings. It consists of adding 5 new tiles to D′ – , , , , – yielding
D′′. The added constraints are shown in Figure 2 and an example tiling in Figure 3. The
distinguished tile t is – the idea is that its usage forces a “border” of and tiles.
Within each of these borders (there can be multiple if is used more than once) there is a
valid tiling by the system D′ additionally satisfying the starting and final constraints S, F .

Final conversion
Combining the above steps, a tiling by D of size k×k is represented by a periodic (k+1)×(k+1)
tiling by D′′ and thus we let m = n = k + 1. The designated tile is set to , completing the
reduction from Binary Bounded Tiling to Periodic Bounded Tiling.

Variant with only powers of two
Consider the following variant of the tiling problem:

Power-of-two Periodic Bounded Tiling
Input: Integers m, n given in unary, a tiling system D, a designated tile t.
Question: Determine whether there exists a periodic tiling by D of size at most

2m × 2n which uses tile t.

Note that this is the same as taking the input in binary while restricting it only to powers
of two. This variant is also NEXPTIME-hard because in the above reduction, the only
possible sizes of tiling by the constructed tiling system are multiples of k + 1, both in width
and height. Letting m = n = ⌈log2(k + 1)⌉, we have k + 1 ≤ 2m < 2(k + 1) and the same
for 2n. Therefore, the possible tilings are the same for size bound (k + 1) × (k + 1) and
2⌈log2(k+1)⌉ × 2⌈log2(k+1)⌉.

4 Second part of the reduction

Given a tiling system D, a designated tile t and integers m, n given in binary, we will construct
(in polynomial time) a CI implication with bounded cardinalities which does not hold iff
Periodic Bounded Tiling has a solution for input (D, t, m, n). This is based on the
construction of Li [8]. Proofs which differ from the original only by specifying cardinality
bounds are deferred to the full version. The main changes to Li’s construction are as follows:

provide bounds for the random variables used in the construction – this is done as the
implication is being constructed;
reduce the size of the implication from exponential to polynomial with regard to the input
– only one part (the predicate COL) needs to be replaced by a polynomial-size equivalent;
modify the representation of tiles to better suit bounded size and non-Wang tiles;
add the requirement of the usage of a given tile – this is done by modifying the consequent
of the implication.

4.1 Preliminaries
We denote by Unif(S) a uniform distribution over set S and by Bern(p) a Bernoulli distribution
with parameter p. We use the shorthand Xk to represent a tuple of random variables
(X1, . . . , Xk), which is in itself also a random variable.
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1 10 01 1
1 10 00 0

0 01 1∗
1 1∗

0 01 10 0
0 00 01 1∗

0 00 00 0
⋆ 1∗

1 1∗
1 1∗

Figure 1 A tiling implementation of a binary counter which shifts its position on every decrement,
with the starting and final tile in the top-right and bottom-left corners respectively. This example
counts down from 5 (101 in binary). Every tile except for the final ⋆ is of the form ac

b, where a is the
bit value (possibly blank), b is the value of the bit directly to the right (or blank if there is none),
and c is optionally ∗ if a borrow operation is required. The shaded tiles of the top row function in
the same manner, but they are “memorized” within the tiling system such that the placement of the
top-right tile forces the top row to write out the binary initial value. The tiles in the lower rows are
chosen deterministically based on their right and top neighbor. Finally, the ⋆ tile only occurs when
the tile above is blank and the one to the right requires a borrow, which indicates that the counter
has just gone below zero. In order to be unable to further count down, we disallow any tiles being
below or to the left of tile ⋆. The size of the tiling is (k′ + b + 2) × (k′ + 2), where b is the number of
bits and k′ is the initial value; however, this could be modified such that the final tiling has size
(k′ + b + 2) × (k′ + b + 2) by padding with b dummy rows at the top. For sufficiently large k, we can
always efficiently find b, k′ such that k′ + b + 2 = k.

Right
*

Left

•
• •

•
•

•
* •

Top
s f *

Bottom

•
• • •

• •
•
• • •

s • •
f • • •
* • •

Figure 2 Modified adjacency relation for the system D′′ – only adjacencies marked by • are
permitted, as well as all adjacencies from the original tiling system. The asterisk denotes any tiles
from the system D′, while s, f represent any tile from the initial and final subset of tiles, respectively
(S and F defined above).

f f

s

f f

Figure 3 An example “border” created by the above tiling, with tiles from the original set
not shown and s, f representing tiles from S, F respectively. The dashed rectangle represents the
actual rectangle being tiled, while the tiles outside are periodic copies added to better illustrate the
construction.

MFCS 2024
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The entropy of a finite discrete random variable X with domain X is defined as

H(X) = −
∑
x∈X

P(X = x) log P(X = x).

The entropy of X conditioned on Y , with X, Y finite discrete random variables with domains
X , Y respectively, is defined as

H(X|Y ) = −
∑

x∈X ,y∈Y
P(X = x ∧ Y = y) log P(X = x ∧ Y = y)

P(X = x) .

Finally, the conditional mutual information of X and Y given Z can be defined as

I(X; Y |Z) = H(X|Z) − H(X|Y, Z).

Similarly, the mutual information of X and Y is defined as

I(X; Y ) = H(X) − H(X|Y ).

Note that the conditional independence (CI) statement I(X; Y |Z) = 0 is equivalent to
the fact that X and Y are independent given Z, and thus can be expressed without the
usage of logarithms as

P(X = x ∧ Y = y ∧ Z = z)P(Z = z) = P(X = x ∧ Z = z)P(Y = y ∧ Z = z)

for all x ∈ X , y ∈ Y, z ∈ Z. Further, the functional dependence statement H(X|Y ) = 0, which
states that for any y ∈ Y, there exists exactly one x ∈ X such that P(X = x ∧ Y = y) ̸= 0
can be expressed equivalently as a (non-disjoint) CI statement I(X; X|Y ) = 0.

We will follow Li’s construction [8], providing cardinality bounds and modifications where
necessary. While the final goal is a CI implication, we will mostly construct affine existential
information predicates (AEIP) [8], converting to a CI implication at the end. We will only
consider a special form of AEIP which consists of an existentially quantified conjunction of
CI statements. This family of predicates is closed under conjunction, in particular we can
use a predicate within the definition of another predicate (implicitly renaming variables in
the case of a naming conflict).

Since our goal is to construct a bounded CI implication, every quantified variable will
be given a cardinality bound – the maximum allowed size of its domain. We denote the
existential quantification of a variable X with card(X) ≤ k by the shorter notation ∃X ≤ k,
similarly for tuple variables ∃X2 ≤ k represents the existence of variables X1, X2 with
card(X1), card(X2) ≤ k. Whenever a predicate takes arguments, their cardinalities are
already bounded since they have been quantified. We may need to refer to these bounds
when quantifying new variables, denoting by KX the bound already given to variable X.
Finally, whenever ≤ is replaced by ≤i, this indicates an “implicit” bound, that is one which
does not change the meaning of the predicate because it is already satisfied by any such
quantified variable even without the explicit bound. An example of this is that whenever
H(X|Y ) = 0, X is functionally dependent on Y and so X ≤i KY .

The first defined predicate is TRIPLE:

TRIPLE(Y1, Y2, Y3) : H(Y1|Y2, Y3) = H(Y2|Y1, Y3) = H(Y3|Y1, Y2) = 0
∧ I(Y1; Y2) = I(Y1; Y3) = I(Y2; Y3) = 0.

By definition, predicate TRIPLE of three variables Y1, Y2, Y3 is satisfied iff Y1, Y2, Y3 are
pairwise independent and each variable is functionally dependent on the other two. Functional
dependency is a special case of conditional independence, since H(X|Y ) = I(X; X|Y ). The
following is shown in [13]:
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▶ Lemma 1. If TRIPLE(X, Y, Z) is satisfied, then X, Y, Z are all uniformly distributed and
have the same cardinality.

This is used in the next predicate, UNIF:

UNIF(X) : ∃U1 ≤i KX , U2 ≤i KX : TRIPLE(X, U1, U2).

By definition, predicate UNIF of one variable X is satisfied iff there exist discrete random
variables U1, U2 jointly distributed with X such that TRIPLE(X, U1, U2) holds, which in
turn is equivalent to X being uniformly distributed over its support. Lemma 1 immediately
shows that the implicit cardinality bounds for U1, U2 are correct.

For any constant k, predicate UNIFk(X) is defined to imply X being uniformly distributed
over a domain of size k:

UNIFk(X) : UNIF(X) ∧ αk ≤ H(X) ≤ αk+1,

where αk ∈ Q is some rational with log(k −1) < αk < log k (because the entropy of a uniform
variable is the logarithm of the cardinality of its support). While this is still a valid AEIP, it
is not a conjunction of CI statements. However, in the bounded cardinality setting UNIFk

can be restated in this form [8, 10]. Note that this predicate imposes an exact domain size
constraint, while the cardinality bounds given as input provide only an upper bound. Finally,
note that the predicates UNIF, UNIFk are satisfiable – for any k > 0, there exists a variable
X which satisfies UNIFk(X) and so UNIF(X).

Define the characteristic bipartite graph of random variables X1, X2 with (disjoint)
supports X1, X2 as the undirected graph with set of vertices V = X1 ∪ X2 and set of edges
E = {(x1, x2) : x1 ∈ X1, x2 ∈ X2, P(X1 = x1 ∧ X2 = x2) > 0}.

Li constructs the predicate

CYCS(X1, X2) : ∃U ≤i 2 : UNIF(X1) ∧ UNIF(X2) ∧ UNIF2(U)
∧ I(X1; U) = I(X2; U) = 0
∧ H(X1|X2, U) = H(X2|X1, U) = 0
∧ H(U |X1, X2) = 0

and shows the following (without cardinality bounds):

▶ Lemma 2. CYCS(X1, X2) is satisfied iff X1, X2 are uniform and the characteristic bipartite
graph of X1, X2 consists only of vertex-disjoint simple cycles.

Furthermore, this predicate is satisfiable – for any finite collection of even-length cycles, we
can clearly find X1, X2 such that their characteristic bipartite graph consists exactly of this
collection of cycles.

4.2 Overview of the construction
We now give an overview of the following steps of the construction. Section 4.3 defines
the predicate TORI′(X2, Y 2, Z), which enforces that the characteristic bipartite graph of
X1 and X2 is a collection of cycles, similarly for Y1 and Y2. Finally, we require that Z be
distributed uniformly over two values and that the three variables X2, Y 2, Z be independent.
The distribution of (X2, Y 2) then represents a collection of tori, with each quadruple of
values of (X1, X2, Y1, Y2) representing a vertex in some torus. The addition of variable Z

effectively creates a corresponding copy of this collection.

MFCS 2024
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With the goal of creating meaningful labels to be applied to the vertices of the afore-
mentioned graph, which are represented by k-tuple of binary variables W k, Section 4.4
defines the predicates SW′(W k, V k, V̄ k, F ) and COL′(W k, V k, V̄ k, F ). The former ensures
that Vi = (1 − Wi)F, V̄i = WiF (up to relabeling) with the side-effect of requiring each
Wi ∼ Bern( 1

2 ). The latter predicate restricts W k such that the only values that are possible
have either Wk = 1 and exactly one Wi = 0, or Wk = 0 and exactly one Wi = 1, for some
i ∈ {1, . . . , k − 1}.

Section 4.5 combines the prior predicates in predicate CTORI′(X2, Y 2, Z, W k, V k, V̄ k, F )
in such a way that each vertex is assigned exactly one label, i. e. W k depends functionally on
(X2, Y 2, Z). This is extended in predicate OTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ), which assigns
four possible groups to vertex labels and enforces a structure as shown in Figure 4.

Finally, the predicate TTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ) defined in Section 4.7 restricts
the possible labels of vertices connected by edges so as to enforce the given vertical and
horizontal constraints of the given tile system.

4.3 Grid
A collection of tori is constructed by Li using the following predicate (where X2 represents a
pair of variables (X1, X2), similarly for Y 2):

TORI(X2, Y 2) : CYCS(X2) ∧ CYCS(Y 2) ∧ I(X2; Y 2) = 0,

When the above holds, fixing any three of the variables X1, X2, Y1, Y2 leaves two possible
values of the fourth. Similarly, fixing one variable from X1, X2 and one from Y1, Y2 gives
the remaining two variables a distribution over four values. This is visualized by a graph
similar in idea to the bipartite characteristic graph: its vertices are quadruples of values
(x1, x2, y1, y2) which satisfy P(X1 = x1 ∧ X2 = x2 ∧ Y1 = y1 ∧ Y2 = y2) > 0, with edges
connecting any two quadruples which differ in exactly one out of these four values. When
arranged in a grid with possible pairs (X1, X2) on one axis and (Y1, Y2) on the other, as in
Figure 4, the torus structure becomes apparent. Again, this predicate is satisfiable in the
sense that any collection of tori which is a product of two collections of even-length cycles
has a representation by random variables X2, Y 2.

Our construction departs slightly from the construction of Li, adding another coordinate
Z, corresponding to taking two copies of the collection of tori, with the edges and faces
described above preserved when Z is fixed. Additionally, fixing X2 and Y 2 but not Z
“connects” two corresponding vertices in the two copies. The predicate for this is as follows:

TORI′(X2, Y 2, Z) : CYCS(X2) ∧ CYCS(Y 2) ∧ UNIF2(Z)
∧ I(X2, Y 2; Z) = 0 ∧ I(X2, Z; Y 2) = 0 ∧ I(Y 2, Z; X2) = 0.

4.4 Vertex labels
The basis for constructing labels which will later on be assigned to vertices is the following
predicate defined by Li:

FLIP(F, G1, G2) : ∃U ≤i 4, Z2 ≤i 3 : UNIF4(U) ∧ UNIF2(F )
∧ H(F, G1, G2|U) = I(G1; G2|F ) = 0
∧ UNIF3(Z1) ∧ I(Z1; G1) = H(U |G1, Z1) = 0
∧ UNIF3(Z2) ∧ I(Z2; G2) = H(U |G2, Z2) = 0.
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y1, ỹ1

y2, ỹ1

y2, ỹ2

y1, ỹ2

x1, x̃1 x2, x̃1 x2, x̃2 x3, x̃2 x3, x̃3 x3, x̃1 x4, x̃4 x5, x̃4 x5, x̃5 x5, x̃4

22

21

22

12

11

12

22

21

22

2

1

2

1

3

0

3

0

2

1

2

1

3

0

3

0

fix all but Y1

fix all but Y2

fix all but X2 fix all but X1

fix (Z, X1, Y2)

Figure 4 Visualization of the tori which are a product of the cycles created by (X1, X2) and
(Y1, Y2), with each vertex corresponding to a quadruple of the values of (X1, X2, Y1, Y2). The axes
show these cycles – a quadruple’s (X1, X2) (resp. (Y1, Y2)) values are determined by projecting
onto the horizontal (resp. vertical) axis. Additionally, the left torus shows highlighted edges which
arise when all but one variable (of X1, X2, Y1, Y2, Z) are fixed as well as an example face which
arises when Z and two other variables are fixed. The right torus has each face labeled with its type
and each vertex labeled with its group – these are used in Section 4.6 in order to restrict allowed
labelings of the vertices. The second “corresponding” torus and the Z axis are omitted for clarity.

Recalling that Unif(S) denotes a uniform distribution over set S, the following is shown:

▶ Lemma 3. FLIP(F, G1, G2) is satisfied iff, up to relabeling, (F, G1, G2) has the distribution
Unif({(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)}).

For any k ≥ 4, Li defines the predicate SW which allows us to represent strings of k bits.
Here, W k represents a tuple of variables (W1, . . . , Wk), same for V k, V̄ k: Intuitively, the
value of Wi determines whether F is copied into Vi or V̄i, hence the name SW for switch.

SW(W k, V k, V̄ k, F ) : ∃G ≤i 2 : I(W k; F, G) = 0

∧
∧

i∈{1,...,k}

(
UNIF2(Wi) ∧ H(Vi, V̄i|Wi, F ) = I(Vi; V̄i|Wi) = 0

∧ FLIP(F, G, Vi) ∧ FLIP(F, G, V̄i)
)

▶ Lemma 4. If SW(W k, V k, V̄ k, F ) is satisfied, then we have (without loss of generality)
Vi = (1 − Wi)F , V̄i = WiF for all i.

The predicate SW is satisfiable: we let (F, G) take each of the values (0, 0), (0, 1) with
probability 1

4 , in which case we let Vi = V̄i = 0, and the value (1, 0) with probability 1
2 , in

which case Vi = 1 − Wi, V̄i = Wi. As long as each Wi ∼ Bern( 1
2 ) (recall that Bern(p) denotes

a Bernoulli distribution with parameter p), we can satisfy the predicate for any distribution
of W k. This predicate additionally has the following property:

▶ Lemma 5. If SW(W k, V k, V̄ k, F ) is satisfied, then for any S, S̄ ⊆ {1, . . . , k} we have

H(F |VS , V̄S̄ , W k) = P(sat(W k, S, S̄) = 1),

where

sat(wk, S, S̄) =
( ∏

i∈S

wi

)( ∏
i∈S̄

(1 − wi)
)

,

i.e. if wi = 1 for all i ∈ S and wi = 0 for i ∈ S̄ then sat(wk, S, S̄) equals 1 and otherwise it
equals 0.

MFCS 2024



73:10 On the Complexity of the CI Implication Problem with Bounded Cardinalities

This immediately yields the following:

▶ Lemma 6. The equality H(F |V{i∈{1,...,k} : wi=1}, V̄{i∈{1,...,k} : wi=0}, W k) = P(W k = wk)
holds for any wk ∈ {0, 1}k. ⌟

Using these properties, we can disallow certain values of W k from occurring using a CI
statement. This is used by Li to limit the possible values of W k to the set Tk ⊆ {0, 1}k,
which consists of 2(k − 1) labels (referred to as colors by Li), each one with a value and sign.
The set consists of strings in which exactly one bit differs from the last bit, that is for any
wk ∈ Tk we have wj ̸= wk for exactly one j ̸= k. The sign of the label is determined by
wk – negative when wk = 1, positive when wk = 0 – and j is the value of the label. For
example, the elements of T4 = {0111, 1011, 1101, 1000, 0100, 0010} correspond in order to
labels {−1, −2, −3, +1, +2, +3}.

Li’s predicate for enforcing this is simple:

COL(W k, V k, V̄ k, F ) : SW(W k, V k, V̄ k, F )

∧
∧

wk∈{0,1}k\Tk

(
H(F |V{i:wi=1}, V̄{i:wi=0}, W k) = 0

)
,

This predicate simply disallows the occurrence of any wk ̸∈ Tk, hence we have

▶ Lemma 7. If COL(W k, V k, V̄ k, F ) is satisfied, then P(W k ̸∈ Tk) = 0. ⌟

While sufficient for showing undecidability, this predicate cannot be used in a polynomial-
time reduction due to its size being exponential with regard to k. However, an equivalent
polynomial-size predicate can be easily constructed: with∧

i,j∈{1,...,k−1},
i<j

(H(F |V{i,j}, V̄{k}, W k) = 0),

we disallow all wk such that wk = 0 and wi = wj = 1 for some 1 ≤ i < j < k. Similarly,∧
i,j∈{1,...,k−1},

i<j

(H(F |V{k}, V̄{i,j}, W k) = 0)

disallows all wk such that wk = 1 and wi = wj = 0 for some 1 ≤ i < j < k. The only
remaining wk have either wk = 0 and at most one 1 in {1, . . . , k−1} or have wk = 1 and at most
one 0 in {1, . . . , k − 1}. The strings 0k and 1k are disallowed by H(F |V{1,...,k}, V̄∅, W k) = 0
and H(F |V∅, V̄{1,...,k}, W k) = 0. Combined, these yield the polynomial-size predicate

COL′(W k, V k, V̄ k, F ) : SW(W k, V k, V̄ k, F )

∧
∧

i,j∈{1,...,k−1},
i<j

(H(F |V{i,j}, V̄{k}, W k) = 0)

∧
∧

i,j∈{1,...,k−1},
i<j

(H(F |V{k}, V̄{i,j}, W k) = 0)

∧ H(F |V{1,...,k}, V̄∅, W k) = 0
∧ H(F |V∅, V̄{1,...,k}, W k) = 0

equivalent to the exponential-size COL.
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4.5 Edge constraints
The next predicate is the following, with COL used in place of COL′ in Li’s original
construction:

COLD(X, W k, V k, V̄ k, F ) : COL′(W k, V k, V̄ k, F )
∧ H(W k|X) = I(V k, V̄ k, F ; X|W k) = 0.

This predicate will represent the labeling of vertices, with X representing the coordinate and
W k (which depends functionally on X) representing its label. For any x ∈ X , denote by
wk(x) the unique value of wk which satisfies P(W k = wk|X = x) > 0.

Suppose that COLD(X, W k, V k, V̄ k, F ) is satisfied and let E be any random variable
which splits X into sets of (a constant) size l – we say this is the case when H(E|X) = 0
and X|E = e is uniform over l values for all e ∈ E . This is not verified by a predicate; rather,
we will only choose E which have this property by definition. Fixing subsets of indices
S, S̄ ⊆ {1, . . . , k}, we define for any e ∈ E the value ae:

ae = |{x : P(X = x|E = e) > 0 ∧ sat(wk(x), S, S̄) = 1}|

In order to impose restrictions on the possible values of ae, Li defines the following predicates:

SAT̸=1/2,S,S̄(E, W k, V k, V̄ k, F ) : ∃U ≤i 2 : UNIF2(U) ∧ I(U ; E, VS , V̄S̄) = 0

∧ H(F |VS , V̄S̄ , E, U) = 0,

SAT≤1/2,S,S̄(E, W k, V k, V̄ k, F ) :∃U ≤i 3 : UNIF3(U) ∧ I(U ; E, VS , V̄S̄) = 0

∧ H(F |VS , V̄S̄ , E, U) = 0,

SAT≤3/4,S,S̄(E, W k, V k, V̄ k, F ) :∃U ≤i 105 : UNIF105(U) ∧ I(U ; E, VS , V̄S̄) = 0

∧ H(F |VS , V̄S̄ , E, U) = 0.

The predicates satisfy the following properties.

▶ Lemma 8. If COLD(X, W k, V k, V̄ k, F ) is satisfied and E splits X into sets of size 2, then
SAT̸=1/2,S,S̄(E, W k, V k, V̄ k, F ) is satisfied iff ae ̸= 1 for all e ∈ E.

▶ Lemma 9. If COLD(X, W k, V k, V̄ k, F ) is satisfied and E splits X into sets of size 2, then
SAT≤1/2,S,S̄(E, W k, V k, V̄ k, F ) is satisfied iff ae ≤ 1 for all e ∈ E.

▶ Lemma 10. If COLD(X, W k, V k, V̄ k, F ) is satisfied and E splits X into sets of size 4,
then SAT≤3/4,S,S̄(E, W k, V k, V̄ k, F ) is satisfied iff ae ≤ 3 for all e ∈ E.

The next defined predicate is the following:

CTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ) : TORI′(X2, Y 2, Z)
∧ COLD((X2, Y 2, Z), W k, V k, V̄ k, F ),

which simply implies applying labels (without any constraints) to the vertices of the tori. In
the original predicate, which uses TORI instead of TORI′, there is no coordinate Z. Clearly,
this predicate is satisfiable in the sense that any collection of pairs of tori of even size which
is labeled in a manner that satisfies the requirement Wi ∼ Bern( 1

2 ) has a corresponding
representation by X2, Y 2, Z, W k, V k, V̄ k, F . In particular, this Wi requirement is satisfied
by any labeling in which any pair of corresponding vertices (those which differ only in the Z
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coordinate) has labels of the same value but opposite sign. This is because negating the sign
of a label corresponds to negating all of its bits. For a set of labels L = {0, . . . , l − 1}, we
now label the vertices with labels from the set {0, . . . , 4l − 1} and so we set k = 4l + 1. For
any i ∈ {0, . . . , l}, j ∈ {0, . . . , 3}, we identify all four labels 4i + j with the original label i,
referring to any vertex whose label is 4i + j as a group j vertex. The group of a vertex is
used to orient it relative to its neighbors – this is achieved by the following predicate:

OTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ) :
CTORI′(X2, Y 2, Z, W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X1, X2, Y1, Z), W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X1, X2, Y2, Z), W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X1, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X2, Y1, Y2, Z), W k, V k, V̄ k, F )
∧

∧
j1,j2∈J1

(
SAT≤1/2,∅,{1,...,k}\{j1,j2}((X1, X2, Y1, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,∅,{1,...,k}\{j1,j2}((X1, X2, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X1, X2, Y1, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X1, X2, Y2, Z), W k, V k, V̄ k, F )

)
∧

∧
j1,j2∈J2

(
SAT≤1/2,∅,{1,...,k}\{j1,j2}((X1, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,∅,{1,...,k}\{j1,j2}((X2, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X1, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X2, Y1, Y2, Z), W k, V k, V̄ k, F )

)
∧ SAT≤1/2,{k},∅((X1, X2, Y1, Y2), W k, V k, V̄ k, F )
∧ SAT≤1/2,∅,{k}((X1, X2, Y1, Y2), W k, V k, V̄ k, F ),

where

J1 = {(j1, j2) ∈ {1, . . . , k − 1} : {j1 mod 4, j2 mod 4} /∈ {{0, 1}, {2, 3}}},

J2 = {(j1, j2) ∈ {1, . . . , k − 1} : {j1 mod 4, j2 mod 4} /∈ {{1, 2}, {0, 3}}}.

The only difference between OTORI′ and Li’s original OTORI is the added variable Z and
the final two SAT≤1/2 predicates. We have the following fact:

▶ Lemma 11. If OTORI ′(X2, Y 2, Z, W k, V k, V̄ k, F ) is satisfied, then the following state-
ments hold:
1. within each torus, all vertices’ labels have the same sign;
2. any two vertices differing only in the Z coordinate have opposite sign;
3. any pair of vertices connected by a vertical edge either has groups 1 and 0 or 2 and 3;
4. any pair of vertices connected by a horizontal edge either has groups 1 and 2 or 3 and 0.

Proof. Recall that fixing the variable Z along with any three of the variables X1, X2, Y1, Y2
leaves two possible values for the remaining variable. These correspond to two vertices of an
edge, as illustrated in Figure 4. Therefore, the first four SAT̸=1/2,{k},∅ predicates state that
for any edge (u, v), the value of wk for u and v cannot differ, which implies exactly Point 1
above. Point 2 follows directly from the last two SAT≤1/2 predicates – of the two vertices
which differ only in the Z coordinate, at most one can have wk = 0 and at most one can
have wk = 1.



M. Makowski 73:13

Figure 5 Left: Li’s representation of a 4 × 4 torus coloring and the 4 × 4 tiling that it yields.
The conversion from 16 vertices to 32 gives the tiling an additional diagonal periodicity. Combined
with the fact that this does not work for non-square n × m tilings (without arranging them into a
lcm(n, m) × lcm(n, m) square), this proves problematic for restricting the size of a periodic tiling.
Right: the corresponding 8 × 8 torus labeling in our representation. Each tile has 4 labels, one for
each corner of the tile (indicated by the arrow in this case). The tiles do not need to be Wang tiles.

For the next two points, note that for j1, j2 ̸= k, we have sat(wk, {1, . . . , k}\{j1, j2},∅) =
1 iff wk represents one of the labels {−j1, −j2} – for positive labels, we have wk = 0 and
for negative labels other than −j1, −j2, we have wi = 0 for some i /∈ {j1, j2}. Analogously,
sat(wk,∅, {1, . . . , k} \ {j1, j2}) = 1 iff wk represents one of {+j1, +j2}. Thus, the four
SAT≤1/2,∅,{1,...,k}\{j1,j2} predicates within the conjunction over j1, j2 ∈ J1 imply exactly
Point 3, with the conjunction over j1, j2 ∈ J2 implying Point 4 analogously. Clearly, OTORI′

is satisfiable – an example torus (with coordinate Z omitted) is shown in Figure 4. ◀

4.6 Tiles

Li denotes the set of four possible vertices when (Z, Xi, Yj) is fixed as a type ij face for any
i, j ∈ {1, 2} – e. g. fixing (Z, X1, Y2) yields a type 12 face. The relation between face types
and vertex groups is illustrated in Figure 4.

Li’s construction utilizes the fact that the four corner-neighbors of any type 11 face are
type 22 faces and vice versa. Because the original construction makes use of a Wang tiling
system, these connecting corner vertices can represent the edge colors of the touching tiles.
An example is shown in Figure 5. The diagonal nature of this tiling proves problematic
when we wish to restrict its size, thus we simply use faces (of type 11) to directly represent
tiles, which also allows us to use the general form of tiling systems. Figure 5 illustrates a
torus labeling in our representation. For given tiling system D = (D, H, V ), we define the
following sets:

D11 = {(4t + 1, 4t + 2, 4t + 3, 4t) : t ∈ D},

D12 = {(4v, 4v + 3, 4u + 2, 4u + 1) : (u, v) ∈ V },

D21 = {(4u + 2, 4u + 1, 4v, 4v + 3) : (u, v) ∈ H},

and for each i ∈ {11, 12, 21},

Ii = {j1, . . . , j4 ∈ {1, . . . , k − 1} : ji mod 4 distinct, {j1, . . . , j4} /∈ Di}.
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The final predicate to enforce that the coloring represents a valid tiling (of size at most
m × n) is defined as follows:

TTORI′
D : ∃X2 ≤ m, Y 2 ≤ n, Z ≤i 2, W k ≤i 2, V k ≤i 2, V̄ k ≤i 2, F ≤i 2 :

OTORI′(X2, Y 2, Z, W k, V k, V̄ k, F )
∧

∧
j1,...,j4∈I11

(
SAT≤3/4,∅,{1,...,k}\{j1,...,j4}((X1, Y1, Z), W k, V k, V̄ k, F )

∧ SAT≤3/4,{1,...,k}\{j1,...,j4},∅((X1, Y1, Z), W k, V k, V̄ k, F )
)

∧
∧

j1,...,j4∈I12

(
SAT≤3/4,∅,{1,...,k}\{j1,...,j4}((X1, Y2, Z), W k, V k, V̄ k, F )

∧ SAT≤3/4,{1,...,k}\{j1,...,j4},∅((X1, Y2, Z), W k, V k, V̄ k, F )
)

∧
∧

j1,...,j4∈I21

(
SAT≤3/4,∅,{1,...,k}\{j1,...,j4}((X2, Y1, Z), W k, V k, V̄ k, F )

∧ SAT≤3/4,{1,...,k}\{j1,...,j4},∅((X2, Y1, Z), W k, V k, V̄ k, F )
)
.

▶ Lemma 12. TTORI′
D is satisfied iff D admits a periodic tiling of size at most m × n.

Proof. All implicit bounds follow from previously defined predicates used within TTORI′
D:

TORI′ for Z, SW for W k, and FLIP for V k, V̄ k, F . The bounds of m, n for X2, Y 2 imply
that the tori can take any even size up to 2m × 2n.

For the “only if” direction, note that the three conjunctions, similarly as in the predicate
OTORI, forbid faces of type 11, 12, 21 from being not of the form in D11, D12, D21, respectively.
Clearly, the set D11 consists of exactly those tiles (represented as type 11 faces) which are
in D. Similarly, D12, D21 consist of all those “glue” type 12 and 21 faces which are allowed
by H, V respectively. Therefore, in a distribution satisfying TTORI′

D, the type 11 faces
represent tiles and neighboring tiles respect the constraints H and V . Therefore, each torus
corresponds to a periodic tiling by D. Since the tori are of size at most 2m × 2n, the tiling is
of size at most m × n.

For the “if” direction, for any given tiling by D of size at most m × n, we create a pair of
corresponding tori, labeled such that one represents the positive version of this tiling and
the other the negative version. The satisfiability arguments show that this can be done for
any given tiling. ◀

4.7 Final construction
Once fully expanded, the TTORI′

D predicate is of the form (omitting the bounds for clarity)

∃B, X2, Y 2, W k, V k, V̄ k, F, . . . :
(

B ∼ Bern(1/2) ∧
∧

i
(I(Ai; Bi|Ci) = 0)

)
,

where Ai, Bi, Ci are tuples of the quantified variables. Its negation can be equivalently
rewritten:

¬∃B, . . . :
(
B ∼ Bern(1/2) ∧

∧
i
(I(Ai; Bi|Ci) = 0)

)
⇔ ∀B, . . . :

(
B ̸∼ Bern(1/2) ∨ ¬

∧
i
(I(Ai; Bi|Ci) = 0)

)
⇔ ∀B, . . . :

(( ∧
i
(I(Ai; Bi|Ci) = 0)

)
⇒ B ̸∼ Bern(1/2)

)
⇔ ∀B, . . . :

((
UNIF(B) ∧ |B| ≤ 2 ∧

∧
i
(I(Ai; Bi|Ci) = 0)

)
⇒ H(B) = 0

)
.

The last equivalence holds because a variable B with |B| ≤ 2 and UNIF(B) can either be
uniform over one value and have entropy 0 or uniform over two values and have entropy 1.
This final form is a valid CI implication with (partial) cardinality bounds. In the bounded
case, the established cardinality bounds are preserved.
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Enforcing the usage of a designated tile
We extend Li’s above construction to enforce that a given tile t be used in the tiling. Recall
from Lemma 6 that for any wk ∈ {0, 1}k,

H(F |V{i:wi=1}, V̄{i:wi=0}, W k) = P(W k = wk).

Furthermore, variable F is constrained by the predicate UNIF2(F ). It can be equivalently
restated as UNIF=(F, B), where UNIF= is defined by Li as follows:

UNIF=(Y, Z) : ∃U3 ≤i KY : TRIPLE(Y, U1, U2) ∧ TRIPLE(Z, U1, U3).

Clearly, UNIF=(F, B) holds iff F and B are both uniform with the same cardinality and
hence UNIF2(F ) can be replaced by UNIF=(F, B). Therefore, if the (conditional) entropy of
F is nonzero, then the entropy of B must also be nonzero and so we must have B ∼ Bern( 1

2 ).
Given a designated tile t, let wk ∈ Tk be the value of W k corresponding to label t (without

loss of generality, of vertex group 0 and positive sign) and S = {i : wi = 1}, S̄ = {i : wi = 0}.
The modified implication is as follows:

∀B, . . . :
((

UNIF(B) ∧ |B| ≤ 2 ∧
∧

i
(I(Ai; Bi|Ci) = 0)

)
⇒ H(F |VS , V̄S̄ , W k) = 0

)
.

The counterexamples of this implication are exactly those labelings which use the tile t.
Altogether, this chapter has shown the following theorem:

▶ Theorem 2. For any given tiling system D along with tile t and natural numbers m, n,
there exists a bounded CI implication which holds iff D does not admit a periodic tiling of
size at most m × n which makes use of tile t. Moreover, the implication can be computed in
time polynomial with regard to the size of the tiling system, while the bounds can be computed
in time polynomial w.r.t. to the size of m, n.

Theorem 2 gives exactly a polynomial-time many-one reduction from Periodic Bounded
Tiling to the complement of Bounded CI Implication, in particular because m, n and
K are encoded in the same manner. In the case of Constant-bounded CI Implication,
the above argument does not work since we have constant bounds larger than 2 as well as
bounds whose value depends on the input. However, any variable X with cardinality bound
2j can be replaced by the tuple (X1, . . . , Xj), where Xi has cardinality bound 2 for each
i ∈ {1, . . . , j}. These are clearly equivalent, since each Xi can correspond to the i-th bit of X.
More generally, a variable with cardinality bound l can be replaced by (X1, . . . , X⌈log l⌉), with
each Xi’s cardinality bounded by 2 and the additional requirement UNIF′

k((X1, . . . , X⌈log l⌉)).
Here UNIF′

k(Y ) is a modification of the UNIFk predicate such that it enforces Y being
uniform with |Y | ≤ k. The construction of both of these follows closely that of Li and is
given in detail in the full version. Note that the resulting predicate can be large, but this is
only important when the bound is not constant – in our case these are only the two bounds
X2 ≤ m, Y 2 ≤ n. To avoid this issue, we reduce from Power-of-two Periodic Bounded
Tiling – then Xi, Yi (for i ∈ {1, 2}) have bounds 2m, 2n respectively, while the remaining
variables have constant bounds. Replacing X1, X2, Y1, Y2 by tuples of binary variables as
shown above, we obtain a CI implication of size N · O(m + n), where N is the size of the
original implication. The number of random variables grows similarly. The newly created
bounds are all constant, and the reduction takes time polynomial with regard to the input
size. The values of the remaining constant bounds are known and therefore each such variable
can be converted in constant time. Together, these two results yield Theorem 1.
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