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Abstract
We investigate the compression sensitivity [Akagi et al., 2023] of lex-parse [Navarro et al., 2021]
for two operations: (1) single character edit and (2) modification of the alphabet ordering, and
give tight upper and lower bounds for both operations (i.e., we show Θ(log n) bounds for strings of
length n). For both lower bounds, we use the family of Fibonacci words. For the bounds on edit
operations, our analysis makes heavy use of properties of the Lyndon factorization of Fibonacci
words to characterize the structure of lex-parse.
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1 Introduction

Dictionary compression is a scheme of lossless data compression that is very effective, especially
for highly repetitive text collections. Recently, various studies on dictionary compressors and
repetitiveness measures have attracted much attention in the field of stringology (see [25, 26]
for a detailed survey).

The sensitivity [1] of a string compressor/repetitiveness measure c is defined as the
maximum difference in the sizes of c for a text T and for a single-character edited string T ′,
which can represent the robustness of the compressor/measure w.r.t. small changes/errors of
the input string. Akagi et al. [1] gave upper and lower bounds on the worst-case multiplicative
sensitivity of various compressors and measures including the Lempel–Ziv parse family [29, 30],
the run-length encoded Burrows-Wheeler transform (RLBWT) [4], and the smallest string
attractors [17].
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75:2 Edit and Alphabet-Ordering Sensitivity of Lex-Parse

On the other hand, some structures built on strings, including the output of text
compressors, can also depend on the order of the alphabet, meaning that a different alphabet
ordering can result in a different structure for the same string. Optimization problems of
these kinds of structures have recently been studied, e.g., for the RLBWT [2], the RLBWT
based on general orderings [12], or the Lyndon factorization [13]. Due to their hardness,
efficient exact algorithms/heuristics for minimization have been considered [5, 7, 8, 22, 23].

This paper is devoted to the analysis of the sensitivity of lex-parse. Lex-parse [27] is a
greedy left-to-right partitioning of an input text T into phrases, where each phrase starting
at position i is T [i..i + max{1, ℓ}) and ℓ is the longest common prefix between T [i..n] and
its lexicographic predecessor T [i′..n] in the set of suffixes of T . Each phrase can be encoded
by a pair (0, T [i]) if ℓ = 0, or (ℓ, i′) otherwise. By using the lex-parse of size v of a string, we
can represent the string with v derivation rules.1 Lex-parse was proposed as a new variant in
a family of ordered parsings that is considered as a generalization of the Lempel–Ziv parsing
and a subset of bidirectional macro schemes [28]. We stress that lex-parse can have much
fewer factors than the Lempel–Ziv parsing; for instance the number of Lempel–Ziv factors of
the k-th Fibonacci word is k while we have only four factors for lex-parse regardless of k

(assuming that k is large enough) [27]. Besides having potential for lossless data compression,
it helped to gain new insights into string repetitiveness: For instance, a direct relation
v ∈ O(r) between v and the size r of the RLBWT, one of the most important dictionary
compressors, holds [27]. Hence, combinatorial studies on lex-parse can lead us to further
understanding in string repetitiveness measures and compressors.

The contribution of this paper is twofold. We first consider the sensitivity of lex-parse
w.r.t. edit operations, and give tight upper and lower bounds which are logarithmic in the
length of the input text. Interestingly, lex-parse is the third measure with super-constant
bounds out of (about) 20 measures [1]. Second, we consider a new variant of sensitivity, the
alphabet ordering sensitivity (AO-sensitivity) of lex-parse, defined as the maximum difference
in the number of phrases of lex-parse between any two alphabet orderings, and give tight
upper and lower bounds. For both lower bounds, we use the Fibonacci word. Moreover, we
also use properties of the Lyndon factorization [6] for the edit sensitivity to characterize
the structure of lex-parse. These insights may be of independent interest. Properties of the
Fibonacci word can contribute to the analysis of algorithm complexity. In fact, there are
several results regarding lower bounds based on the Fibonacci word (i.e., [9, 14, 16, 27]).

Related work. Inspired by the results of Lagarde and Perifel [19], Akagi et al. [1] pioneered
the systematic study of compression sensitivity of various measures w.r.t. edit operations.
Giuliani et al. [14] showed an improved lower bound for the additive sensitivity of the
run-length BWT. They also use the family of Fibonacci words to obtain their lower bound.
Fujimaru et al. [11] presented tight upper and lower bounds for the additive and multiplicative
sensitivity of the size of the compact directed acyclic word graph (CDAWG) [3, 10], when
edit operations are restricted to the beginning of the text.

2 Preliminaries

Strings
Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. The empty string ε is the string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗ \ {ε}. For any strings x and y, let x · y (or sometimes xy) denote

1 We stick to the convention to denote the size of lex-parse by v as done in literature such as [27, 26].
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the concatenation of the two strings. For a string w = xyz, x, y and z are called a prefix,
substring, and suffix of w, respectively. They are called a proper prefix, a proper substring,
and a proper suffix of w if x ̸= w, y ̸= w, and z ̸= w, respectively. A proper substring that
is both a prefix and a suffix of w is also called a border of w. The i-th symbol of a string
w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|,
let w[i..j] denote the substring of w that begins at position i and ends at position j. For
convenience, let w[i..j] = ε when i > j. Also, let w[..i] = w[1..i] and w[i..] = w[i..|w|]. For a
string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2. A string w is said to be
primitive if w cannot be written as xk for any x ∈ Σ+ and integer k ≥ 2. The following
property is well known.

▶ Lemma 1 ([20]). w is primitive if and only if w occurs exactly twice in w2.

For a string w, let w′ = w[1..|w|−1], w′′ = w[1..|w|−2]. A sequence of k strings w1, . . . , wk

is called a parsing or a factorization of a string w if w = w1 · · · wk. For a binary string w, w

denotes the bitwise reversed string of w (e.g., aab = baa over {a, b}). Let ≺ denote a (strict)
total order on an alphabet Σ. A total order ≺ on the alphabet induces a total order on the set
of strings called the lexicographic order w.r.t. ≺, also denoted as ≺, i.e., for any two strings
x, y ∈ Σ∗, x ≺ y if and only if x is a proper prefix of y, or, there exists 1 ≤ i ≤ min{|x|, |y|}
s.t. x[1..i − 1] = y[1..i − 1] and x[i] ≺ y[i]. For a string w, let SAw denote the suffix array of
w, where the i-th entry SAw[i] stores the index j of the lexicographically i-th suffix w[j..]
of w.

Lex-parse

The lex-parse of a string w is a parsing w = w1, . . . , wv, such that each phrase wj starting
at position i = 1 +

∑
k<j |wk| is w[i..i + max{1, ℓ}), where ℓ is the length of the longest

common prefix between w[i..] and its lexicographic predecessor w[i′..] in the set of suffixes
of w. Each phrase can be encoded by a pair (0, w[i]) if ℓ = 0 (called an explicit phrase), or
(ℓ, i′) otherwise. We will call w[i′..] the previous suffix of w[i..]. The size (the number of
phrases) of the lex-parse of a string w will be denoted by v(w). Note that a phrase starting
at position i is explicit if and only if w[i..] is the lexicographically smallest suffix starting
with w[i] and thus there are |Σ| of them. Let w = ababbaaba. The lex-parse of w is aba, b,
ba, a, b, a. Since the previous suffix of w[1..] is w[7..] and the longest common prefix between
them is aba, the first phrase is aba. In this example, the last two phrases are explicit phrases.

Lyndon factorizations

A string w is a Lyndon word [21] w.r.t. a lexicographic order ≺, if and only if w ≺ w[i..] for
all 1 < i ≤ |w|, i.e., w is lexicographically smaller than all its proper suffixes with respect
to ≺. The Lyndon factorization [6] of a string w, denoted LF(w), is a unique factorization
λp1

1 , . . . , λpm
m of w, such that each λi ∈ Σ+ is a Lyndon word, pi ≥ 1, and λi ≻ λi+1 for all

1 ≤ i < m. A suffix x of w is said to be significant if there exists an integer i such that
x = λpi

i · · · λpm
m and, for every j satisfying i ≤ j < m, λ

pj+1
j+1 · · · λpm

m is a prefix of λ
pj

j (cf. [15]).
Let w = bbabbaabaabbaabaabbaabaa. The Lyndon factorization of w is b2, abb, (aabaabb)2,
aab, a2. The suffix a2 that is the last Lyndon factor is always significant. Since a2 is a prefix
of (aab)a2, (aab)a2 is also significant. Since a2 and (aab)a2 is a prefix of (aabaabb)2(aab)a2,
(aabaabb)2(aab)a2 is also significant.

MFCS 2024



75:4 Edit and Alphabet-Ordering Sensitivity of Lex-Parse

Table 1 Fibonacci words Fk up to k = 8.

k Fk k Fk

1 b 2 a

3 ab 4 aba

5 abaab 6 abaababa

7 abaababaabaab 8 abaababaabaababaababa

Fibonacci words

The k-th (finite) Fibonacci word Fk over a binary alphabet {a, b} is defined as follows: F1 = b,
F2 = a, Fk = Fk−1 · Fk−2 for any k ≥ 3 (see also an example in Table 1). Let fk be the
length of the k-th Fibonacci word (i.e., fk = |Fk|).

We also use the infinite Fibonacci word F = limk→∞ Fk over an alphabet {a, b}. We also
use Gk = Fk−2Fk−1 which will be useful for representing relations between even and odd
Fibonacci words.

▶ Lemma 2 (Useful properties of Fibonacci words (cf. [27])). The following properties hold
for every Fibonacci word Fk.
1. The length of the longest border of Fk is fk−2.
2. Fk has exactly three occurrences of Fk−2 at position 1, fk−2 + 1, and fk−1 + 1 (suffix)

for every k ≥ 6.
3. Fk = Gk[1..fk − 2] · Gk[fk − 1..fk].
4. Gk = Fk[1..fk − 2] · Fk[fk − 1..fk].
5. For every k, aaa and bb do not occur as substrings in Fk [27, Lemma 36].
6. Fk is primitive for every k (we can easily obtain the fact from Property 1).

The next lemma is also useful for our proof which can be obtained from the above
properties.

▶ Lemma 3. For any k ≥ 8, Fk−4 occurs exactly eight times in Fk.

Proof. From property 2 of Lemma 2, Fk has at least eight occurrences of Fk−4 (since the
suffix occurrence of Fk−4 in the second Fk−2 and the prefix occurrence of Fk−4 in the third
Fk−2 are the same position). Suppose to the contrary that there exists an occurrence of
Fk−4 in Fk that is different from the eight occurrences. From property 2 of Lemma 2, the
occurrence crosses the boundary of the first and the second Fk−2. Since Fk−4 is both a prefix
and a suffix of Fk−2, the occurrence implies that F 2

k−4 has Fk−4 as a substring that is neither
a prefix nor a suffix. This contradicts Lemma 1. ◀

Sensitivity of lex-parse

In this paper, we consider two compression sensitivity variants of lex-parse. The first variant
is the sensitivity by (single character) edit operations (cf. [1]). For any two strings w1 and w2,
let ed(w1, w2) denote the edit distance between w1 and w2. The worst-case multiplicative
sensitivity of lex-parse w.r.t. a substitution is defined as follows:

MSsub(v, n) = max
w1∈Σn

MSsub(v, w1),
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where MSsub(v, w1) = max{v(w2)/v(w1) | w2 ∈ Σn, ed(w1, w2) = 1}. MSins(v, n) (resp.
MSdel(v, n)) is defined by replacing the condition w2 ∈ Σn with w2 ∈ Σn+1 (resp. w2 ∈
Σn−1). The second variant is the sensitivity by alphabet orderings. For any string w and a
lexicographic order ≺, let v(w, ≺) be the size of the lex-parse of w under ≺. We define the
alphabet-ordering sensitivity of lex-parse as follows:

AOS(v, n) = max
w∈Σn

AOS(v, w),

where AOS(v, w) = max≺1,≺2∈A{v(w, ≺2)/v(w, ≺1)} and A is the set of orderings over Σ.

3 Upper bounds

We first give upper bounds for both operations. We can obtain the following result by using
known connections regarding the bidirectional macro scheme and lex-parse.

▶ Theorem 4. MSsub(v, n), MSins(v, n), MSdel(v, n), AOS(v, n) ∈ O(log n).

Proof. For any string w, let b(w) be the size of the smallest bidirectional macro scheme [28].
Then, v(w) ≥ b(w) holds [27, Lemma 25]. For any two strings w1 and w2 with ed(w1, w2) = 1,
v(w2) ∈ O(b(w2) log(n/b(w2))) [27, Theorem 26] and b(w2) ≤ 2b(w1) [1, Theorem 11] hold.
Hence, for |w2| ∈ Θ(n),

v(w2)
v(w1) ≤ v(w2)

b(w1) ∈ O

(
b(w2) log(n/b(w2))

b(w1)

)
⊆ O

(
b(w1) log(n/b(w1))

b(w1)

)
= O(log(n/b(w1))).

For any alphabet order ≺ on Σ, v(w, ≺) ∈ O(b(w) log(n/b(w))) and v(w, ≺) ≥ b(w) holds.
Hence, for any two alphabet orders ≺1 and ≺2,

v(w, ≺2)
v(w, ≺1) ≤ v(w, ≺2)

b(w) ∈ O

(
b(w) log(n/b(w))

b(w)

)
= O(log(n/b(w))).

These facts imply this theorem. ◀

4 Lower bounds for edit operations

In this section, we give tight lower bounds for edit operations with the family of Fibonacci
words.

▶ Theorem 5. MSsub(v, n), MSins(v, n), MSdel(v, n) ∈ Ω(log n).

We devote this section to show MSsub(v, n) ∈ Ω(log n) since a similar argument can obtain
the others. We obtain the claimed lower bound by combining the result of [27] (also in
Lemma 20 in Section 5) stating that v(F2k) = 4, and the following Theorem 6.

▶ Theorem 6. For every integer k ≥ 6, there exists a string w of length f2k such that
ed(F2k, w) = 1 and v(w) = 2k − 2.

Let T2k denote the string obtained from F2k by substituting the rightmost b of F2k with a,
i.e., T2k = F ′′

2k · aa. We show that the lex-parse of T2k has 2k − 2 phrases. More specifically,
we show that the lengths of the phrases are

f2k−1 − 1, f2k−4 − 1, f2k−5 + 1, ..., f4 − 1, f3 + 1, 1, 2, 1.

MFCS 2024
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There are three types of phrases as follows: (1) first phrase, (2) inductive phrases, (3) last
three short phrases. Phrases of Type (1) or Type (3) can be obtained by simple properties
of Fibonacci words. However, phrases of Type (2) need a more complicated discussion. We
use the Lyndon factorizations of the strings to characterize the inductive phrases. Intuitively,
we show that every suffix of T2k that has an odd inductive phrase as a prefix can be written
as the concatenation of the odd inductive phrase and a significant suffix.

(1) First phrase and (3) Short phrases
We start from Type (1). From the third property of Lemma 2 and the edit operation, T2k[1..]
and T2k[f2k−2 + 1..] have a (longest) common prefix x = F ′

2k−1 of length f2k−1 − 1 and
T2k[1..] ≻ T2k[f2k−2 + 1..] holds. T2k[f2k−2 + 1..] can be written as T2k[f2k−2 + 1..] = x · a.
We show that the previous suffix of T2k[1..] is T2k[f2k−2 + 1..]. Suppose to the contrary
that there exists a suffix y of F2k that satisfies T2k[1..] ≻ y ≻ T2k[f2k−2 + 1..]. Since both
T2k[f2k−2 + 1..] and T2k[1..] have x as a prefix, y can be written as y = x · a · z1 or y = x · b · z2
for some strings z1, z2. Since F2k−1 ends with aab and thus aa is a suffix of x, the existence of
y = x · a · z1 contradicts the fact that a3 only occurs at the edit position. On the other hand,
the existence of y = x · b · z2 contradicts the fact that x · b = F2k−1 only occurs as a prefix of
T2k, since otherwise it would violate the second property of Lemma 2. Thus T2k[f2k−2 + 1..]
is the previous suffix of T2k[1..], and the length of the first phrase is |x| = f2k−1 − 1.

Next, we consider Type (3) phrases. Since T2k ends with baaa and no Fibonacci word has
aaa as a substring, we conclude that SAT2k

[1] = f2k, SAT2k
[2] = f2k−1, and SAT2k

[3] = f2k−2.
In particular, ba3 is the smallest suffix of T2k that begins with b. These facts imply that
T2k[f2k] = a and T2k[f2k − 3] = b are the explicit phrases, and T2k[f2k − 2..f2k − 1] = a2

between the explicit phrases is a phrase. Thus the last three phrases are b, a2, a.

(2) Inductive phrases
In the rest of this section, we explain Type (2) phrases. Firstly, we study the Lyndon
factorization LF(F) = ℓ1, ℓ2, . . . of the (infinite) Fibonacci word. To characterize these
Lyndon factors ℓi, we use the string morphism ϕ with ϕ(a) = aab, ϕ(b) = ab as defined in [24,
Proposition 3.2].

▶ Lemma 7 ([24]). ℓ1 = ab, ℓk+1 = ϕ(ℓk), and |ℓk| = f2k+1 holds.

In order to show our result, we consider the Lyndon factorization of F ′′
2k(= T ′′

2k)
(Lemma 10). Lemmas 8 and 9 explain the Lyndon factorization of a finite prefix of the
(infinite) Fibonacci word by using properties of the morphism ϕ.

▶ Lemma 8. Given a string w ∈ {a, b}+, let LF(w) = λp1
1 , . . . , λpm

m . Then LF(ϕ(w)) =
ϕ(λp1

1 ), . . . , ϕ(λpm
m ).

Proof. For any two binary strings x and y, it is clear that ϕ(x) ≻ ϕ(y) if x ≻ y. In the rest
of this proof, we show that ϕ(x) is a Lyndon word for a Lyndon word x over {a, b}. If |x| = 1,
then the statement clearly holds. Suppose that |x| ≥ 2. Let x̃ be a non-empty proper suffix
of ϕ(x). Then x̃ can be represented as x̃ = ϕ(y) for some suffix y of x, or x̃ = α · ϕ(y) for
some suffix y of x and α ∈ {ab, b}. Since x ≺ y, ϕ(x) ≺ x̃ if x̃ = ϕ(y) for some suffix y of x.
Also in the case of x̃ = α · ϕ(y), ϕ(x) ≺ x̃ holds since x[1] = a (from x is a Lyndon word)
and ϕ(x)[1..3] = aab. Thus, ϕ(x) ≺ x̃ holds for all non-empty proper suffixes x̃ of x. This
implies that ϕ(x) is a Lyndon word. Therefore, the statement holds. ◀
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▶ Lemma 9. For every integer i ≥ 1, LF(ℓ′
i) = ϕi−1(a), . . . , ϕ0(a), where ℓ′

i = ℓi[..|ℓi| − 1].

Proof. We prove the statement by induction on i. For the base case i = 1, LF(ℓ′
1) = a = ϕ0(a).

Assume that the lemma holds for all i ≤ j for some j ≥ 1. By the definition of the morphism
ϕ, ℓ′

j+1 = ϕ(ℓj)′ = ϕ(ℓ′
j) · a holds because ℓj ends with b. Also, by using Lemma 8 and the

induction hypothesis,

LF(ℓ′
j+1) = LF(ϕ(ℓ′

j) · a) = LF(ϕ(ℓ′
j)), a = ϕ(LF(ℓ′

j)), a = ϕj(a), . . . , ϕ1(a), ϕ0(a).

Therefore, the lemma holds. ◀

▶ Lemma 10. Let Li be the i-th Lyndon factor of F ′′
2k. For every k ≥ 2,

Li =
{

ϕi−1(ab) if 1 ≤ i < k − 1,
ϕ2k−i−3(a) if k − 1 ≤ i ≤ 2k − 3.

Proof. From Lemma 7,

k−1∑
i=1

|ℓi| =
k−1∑
i=1

f2i+1 = f3 + f5 + · · · + f2k−1 = f2 + (f3 + f5 + · · · + f2k−1) − 1 = f2k − 1.

Thus LF(F2k) = ℓ1, . . . , ℓk−1, a holds. Also, Li = ℓi holds for all i < k − 1 since ℓi is not a
prefix of ℓi−1. In other words, LF(F ′′

2k) = ℓ1, . . . , ℓk−2, LF(ℓ′
k−1). From Lemma 9,

LF(F ′′
2k) = ℓ1, . . . , ℓk−2, ϕk−2(a), . . . , ϕ0(a).

Then the statement also holds. ◀

Moreover, we can find the specific form of suffixes characterized by the Lyndon factoriza-
tion of F ′′

2k as described in the next lemma.

▶ Lemma 11. For every integer i ≥ 1, ϕi−1(a) · · · ϕ0(a) is a prefix of ϕi(a).

Proof. We prove the lemma by induction on i. For the base case i = 1, ϕ0(a) = a is a prefix
of ϕ1(a) = aab. Assume that the statement holds for all i ≤ j for some j ≥ 1. For i = j + 1,

ϕj+1(a) = ϕj(ϕ(a)) = ϕj(aab) = ϕj(a)ϕj(a)ϕj(b).

By induction hypothesis, ϕj(a) = ϕj−1(a) · · · ϕ0(a) · x for some string x. Then ϕj+1(a) =
ϕj(a) · ϕj−1(a) · · · ϕ0(a) · x · ϕj(b). This implies that the statement also holds for i = j + 1.
Therefore, the lemma holds. ◀

With the Lemmas 10 and 11, we obtain the following lemma, which characterizes the
first k + 1 entries of the suffix array SAT2k

of T2k.
Firstly, we consider the order of the significant suffixes of F ′′

2k.

▶ Lemma 12. SAF ′′
2k

[i] = f2k − 1 −
∑i−1

j=0 |ϕj(a)| for every i ∈ [1..k − 1].

Proof. We can see that ϕk−2(a) · · · ϕ0(a) is a suffix of F ′′
2k by Lemma 10. Our claim is that

ϕi−1(a) · · · ϕ0(a) is the i-th lexicographically smallest suffix of F ′′
2k for every 0 ≤ i ≤ k − 1.

We prove the statement by induction on i. For the base case i = 1, ϕ0(a) = a is the
lexicographically smallest suffix of F ′′

2k. Assume that the statement holds for all i ≤ i′ for some
i′ ≥ 1. Let α be a suffix of ϕi′+1(a) · · · ϕ0(a) such that there is no d with α = ϕd(a) · · · ϕ0(a).
(Otherwise we already know that α is a prefix of ϕi′+1(a), which we already processed for a

MFCS 2024
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⋯

T8F9

T6F7

f0(a)f1(a)f2(a)f3(a)
Z0

Z1
Z2

F’’10

Y1
Y2

b

b

b

b

b

b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a a

Figure 1 Illustration of the edited string T2k and the Lyndon factorization of F ′′
2k (when k = 5).

former suffix array entry.) Then α can be written as α = β · ϕd(a) · · · ϕ0(a) for some proper
suffix β of ϕd+1(a) and d ∈ [0..i′]. Since ϕi′+1(a) has ϕd+1(a) as a prefix and there is a
mismatching character between ϕd+1(a) and β (from β is a suffix of Lyndon word ϕd+1(a)),
then ϕi′+1(a) ≺ β holds. Therefore, the lemma holds. ◀

Because appending a’s to the end does not affect suffix orders, we can easily obtain the
following lemma from Lemma 12.

▶ Lemma 13. For every k ≥ 2, SAT2k
[1] = f2k, SAT2k

[2] = f2k − 1, and SAT2k
[i] =

f2k − 1 −
∑i−3

j=0 |ϕj(a)| for any i that satisfying 3 ≤ i ≤ k + 1.

Proof. T2k ends with the suffix aa such that T [f2k..] = a is the smallest, and T [f2k − 1..] is
the second smallest suffix of T2k. All other suffixes inherit their order from F ′′

2k, and thus
SAT2k

[i] = SAF ′′
2k

[i − 2] for i ≥ 3. ◀

We define a substring Yi and suffixes Xi and Zi of T2k as follows:

Xi = T2k[f2k − f2i+4..] (1 ≤ i ≤ k − 3),
Yi = T2k[f2k − f2i+4..f2k − f2i+3 − 2] (1 ≤ i ≤ k − 3),
Zi = T2k[f2k − f2i+3 − 1..] (0 ≤ i ≤ k − 3).

▶ Observation 14. The following properties hold:

Xi = Yi · Zi = b · T2i+4,

Yi = b · T ′′
2i+2,

Zi = b · ϕi(a) · · · ϕ0(a) · aa.

Notice that |ϕi(a) · · · ϕ0(a)| = |ℓ′
i+1| = f2i+3 − 1 holds. See also Fig. 1 for an illustration

of the specific substrings. Then Lemma 13 implies the following corollary.

▶ Corollary 15. For every integer k ≥ 2 and i satisfying 1 ≤ i ≤ k − 2, the previous suffix of
Zi w.r.t. T2k is Zi−1.

The largest suffix of T2k, denoted by maxsuf, is characterized in the following lemma. We
also use this suffix in the main lemma. Intuitively, we show that every suffix of T2k that has
an even inductive phrase as a prefix references a suffix that is the concatenation of a string
and the maximum suffix (Lemma 18).
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F2k–1 T2k–2
F2k–3 ab

a a ab

f2k–2b
F2k–3

f2k–3 f2k–1

Figure 2 Illustration of T2k for proof of Lemma 16.

▶ Lemma 16. The lexicographically largest suffix maxsuf of T2k is T2k[f2k−3..].

Proof. It is known that the lexicographically largest suffix of F2k is F2k[f2k−1..] and the
lexicographically second largest suffix of F2k is F2k[f2k−3..] (shown in [18]). Namely,
SAF2k

[f2k] = f2k−1, SAF2k
[f2k − 1] = f2k−3. Due to the edit operation, T2k[f2k−3..] ≻

T2k[f2k−1..] and the length of the longest prefix of these suffixes is f2k−2 (see Fig. 2). As-
sume on the contrary that there is a suffix T2k[i..] that is lexicographically larger than
T2k[f2k−3..]. With Property 5 of Lemma 2, the suffix aaa of T2k acts as a unique delimiter
such that the suffix T2k[f2k−3..] cannot be a prefix of any other suffixes of T2k. Let j be
the smallest positive integer such that T2k[f2k−3..f2k−3 + j] = a and T2k[i..i + j] = b. If
max(i + j, f2k−3 + j) < f2k − 1, then F2k[f2k−3..] ≺ F2k[i..] holds. This contradicts the fact
that the lexicographically second largest suffix of F2k is F2k[f2k−3..]. We can observe that
there is no j with max(i + j, f2k−3 + j) ≥ f2k − 1 and i > f2k−3 since T2k[f2k − 1..] = aa

does not contain b. If max(i + j, f2k−3 + j) ≥ f2k − 1 and i < f2k−3, F2k−3 has a beginning
position d of an occurrence satisfying 2 ≤ d ≤ f2k−3. This contradicts Lemma 2. Therefore,
the lemma holds. ◀

To prove Lemma 18, we also introduce the following corollary.

▶ Corollary 17 (of Lemma 2). For every i satisfying i ≥ 6, Ti has exactly two occurrences of
Fi−2. Moreover, Ti can be written as Ti = Fi−2 · Fi−2 · w for some string w.

▶ Lemma 18. For every k ≥ 2 and i satisfying 1 ≤ i ≤ k − 3, the previous suffix of Xi w.r.t.
T2k is Yi · a · maxsuf.

Proof. Firstly, we show that Yi · a · maxsuf is a suffix of T2k. It is clear from definitions and
properties of Lemma 2 that T2k can be written as T2k = F ′

2k−3 ·maxsuf = F ′′
2k−3 ·a ·maxsuf =

F2k−4 · F ′′
2k−5 · a · maxsuf = F2k−5 · F ′′

2k−4 · a · maxsuf. Since Yk−3 = b · T ′′
2k−4 = b · F ′′

2k−4
and the last character of F2k−5 is b (from 2k − 5 is odd), Yk−3 · a · maxsuf is a suffix of T2k.
Moreover, F2i+2 is a suffix of F2k−4 for every i that satisfying 1 ≤ i ≤ k − 3. This implies
that Yi · a · maxsuf is a suffix of T2k for every i that satisfying 1 ≤ i ≤ k − 3.

Now we go back to our main proof of the lemma. Since Xi = Yi · b · ϕi(a) · · · ϕ0(a) · aa,
Yi · a · maxsuf ≺ Xi holds. Moreover, Yi · a · maxsuf is the lexicographically largest suffix of
T2k that has Yi · a as a prefix. Hence, it is sufficient to prove that Xi is the lexicographically
smallest suffix of T2k that has Yi · b as a prefix. From Property 5 of Lemma 2, no bb occurs
in T2k, so every occurrence of Yi · b is also an occurrence of Yi · ba. We consider occurrences
of Yi · ba in a suffix Xi. From Observation 14 and Corollary 17, (Yi · ba)[2..](= F2i+2) has
exactly two occurrences in Xi(= b · T2i+4). At the first occurrence, (Yi · ba)[2..] is preceded by
b. At the second occurrence, (Yi · ba)[2..] is preceded by a. Hence, the rightmost occurrence
of Yi · ba in T2k is at the prefix of Xi. By combining with Lemma 13, we can see that there is
no suffix w such that Yi · ba · w ≺ Xi holds. Thus, Xi is the lexicographically smallest suffix
of T2k that has Yi · b as a prefix. Therefore, the lemma holds. ◀

MFCS 2024
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Lex-parse of T2k

Now we can explain the lex-parse of T2k. Recall that the length of the first phrase is f2k−1 −1
and the last three phrases are b, a2, a. Hence, from Lemma 18, the second phrase is a prefix
Yk−3 of Xk−3(= b · T2k−2). Since the remaining suffix is Zk−3, the next phrase is a prefix
Zk−4[..|Zk−4| − 1] of Zk−3 from Corollary 15. By applying this argument repeatedly, we can
finally obtain the lex-parse of size 2k − 2 of T2k as follows:

F2k[..f2k−1 − 1], (Yk−3, Zk−4[..|Zk−4| − 1]), . . . , (Y1, Z0[..|Z0| − 1]), b, a2, a.

Furthermore, we can easily obtain v(F ′′
2k · a) = 2k − 2 for a delete operation. Consider

the case for the insertion operation such that $ (which is the smallest character) is inserted
to the preceding position of the last b. We can then show that the lex-parse is of size 2k + 1
by a similar argument as follows:

F2k[1..f2k−1 − 2], (a · Yk−3, Zk−4[..|Zk−4| − 2]), . . . , (a · Y1, Z0[..|Z0| − 2]), a, ba, $, b, a.

5 Lower bounds for Alphabet-Ordering

In this section, we give tight lower bound AOS(v, n) ∈ Ω(log n) with the family of Fibonacci
words. Since b(Fk) ≤ 4 for k ≥ 5 [27, Lemma 35] also holds, our lower bound is tight for any
n ∈ {fi}i. More precisely, we prove the following theorem that determines the number of
lex-parse phrases of the Fibonacci words on any alphabet ordering.

▶ Theorem 19. For any k ≥ 6,

v(Fk, ≺) =


⌈ k

2 ⌉ + 1 (a) if k is odd and a ≺ b, (Lemma 23)
4 (b) if k is odd and b ≺ a, (Lemma 24)
4 (c) if k is even and a ≺ b, (Lemma 20)
⌈ k

2 ⌉ + 1 (d) if k is even and b ≺ a. (Lemma 25)

Although the results for a smaller than b have been proven by Navarro et al. [27], we here
give alternative proofs for this case that leads us to the proof for the case when b is smaller
than a.

5.1 Lex-parse with constant number of phrases
We start with Cases (b) and (c). Since Fk[fk − 1..fk] = ba for even k and Fk[fk − 1..fk] = ab

for odd k, we already know in the cases (b) and (c) that each of the last two characters
forms an explicit phrase. It is left to analyze the non-explicit phrases, where we start
with the first phrase. From Property 1 of Lemma 2, Fk has the border Fk−2 and thus
Fk−2 = Fk[fk−1..] ≺ Fk could be used as the reference for the first phrase, given its length
is fk−2. To be an eligible reference for lex-parse, we need to check that Fk[fk−1..] is the
previous suffix of Fk[1..]. However, Property 2 of Lemma 2 states that there is exactly one
other occurrence of Fk−2 in Fk, starting at fk−2 + 1. The proof of the following lemma shows
that the suffix starting with that occurrence is lexicographically larger than Fk, and thus
indeed the first phrase has length fk−2, and the second phrase starting with that occurrence
can make use of Fk as a reference for a phrase that just ends before the two explicit phrases
at the end.

▶ Lemma 20. Assume that k ≥ 6 is even and a ≺ b (Case (c) of Thm. 19). Then the
lex-parse of Fk is Fk−2, Fk[fk−2 + 1..fk − 2], b, a.
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Fk = Fk−1 Fk−2

Fk−2 Fk−3 Fk−4 Fk−5 Fk−4

Fk−2 Gk−3

suf
x ab x ba

Figure 3 Illustration of the proof of Lemma 20 for k even. If k is odd, the blocks ab and ba are
swapped (this gives the setting Lemma 24).

Proof. Fk can be represented as

Fk = Fk−1 · Fk−2 = Fk−2 · Fk−3 · Fk−4 · Fk−5 · Fk−4.

Let suf = Fk−2 · Gk−3 (a suffix of Fk) and x be the longest common prefix of Fk−3 and Gk−3.
Then Fk = Fk−2 · x · ab · Fk−4 · Fk−5 · Fk−4 and suf = Fk−2 · x · ba holds since k is even and
k − 3 is odd. See Fig. 3 for a sketch. This implies that the three suffixes that have Fk−2
as a prefix satisfy Fk−2 ≺ Fk ≺ suf . By combining with Property 2 of Lemma 2, the first
phrase is Fk−2 and the second phrase is Fk−2 · x (which is the longest common prefix of Fk

and suf ). The third phrase is b which is an explicit phrase of character b since the suffix ba

is the lexicographically smallest suffix that has b as a prefix. Finally, the last phrase is an
explicit phrase a. ◀

5.2 Lex-parse with logarithmic number of phrases
Next, we discuss the cases that have a logarithmic number of phrases. For any odd k ≥ 7
and even i satisfying 4 ≤ i ≤ k − 3, let

suf i = (Fi · Fi−2 · Fi−3 · · · F4) · ab = Fi+1,

suf +
i = Fi · suf i = Gi+2.

From the definitions, the following properties hold.

▶ Lemma 21. For odd k ≥ 7, suf i and suf +
i are suffixes of Fk, for every even i with

4 ≤ i ≤ k − 3. In particular, we have
(a) suf i = Fi+1 is a prefix of suf +

i = Gi+2 = FiFi+1, and
(b) suf +

i = FiFi+1 = FiFi−1Fi−2Fi−1 = Fi+1Gi = suf i · suf +
i−2.

Proof. By definitions, Fk = Fk−2Fk−3Fk−2 = Fk−2Fk−3suf k−3 = Fk−2suf +
k−2. Since suf i−2

is a suffix of suf i, the claim holds for suf i for every i. Writing suf i = Fi−1 · Fi−2 · (Fi−2 ·
Fi−3 · · · F4) · ab, we can see that suf +

i−2 is a suffix of suf i. ◀

We use these suffixes to characterize the lex-parse. The following lemma shows that suf i

is the previous suffix of suf +
i w.r.t. Fk for every i, where fk −|suf +

i |+1 and fk −|suf i|+1]−1
are the starting positions of suf +

i and suf i in Fk, respectively.

▶ Lemma 22. Assume that k ≥ 7 is odd and a ≺ b. The previous suffix of suf +
i w.r.t. Fk is

suf i for every even i satisfying 4 ≤ i ≤ k − 3.

Proof. Since suf +
i = Fi · Fi−2 · · · F4 · ab · α for some string α, suf i is a prefix of suf +

i . Thus,
suf i ≺ suf +

i . We prove that there is no suffix x of Fk with suf i ≺ x ≺ suf +
i by induction

on i.

MFCS 2024
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a

b

x =

suf +j+2 = suf +j

y

suf j suf +j–2

suf +j+2–2ℓ’
suf j+2–2ℓ’

...

suf +j–2ℓ’

suf j+2

...
y’

... b

a

Figure 4 Illustration of the proof of Lemma 22.

Let i = 4 for the base case. Assume on the contrary that there exists a suffix x of Fk such
that suf 4 ≺ x ≺ suf +

4 . Since suf 4 = F5 = F4 · ab = aba · ab and suf +
4 = F4 · F5 = F4 · abaab,

x can be written as x = F4 · abaaa · y for some string y. However, aaa is not a substring of
Fk according to Property 5 of Lemma 2, so x cannot exist. Thus, the statement holds for
the base case.

Assume that the statement holds for all even i ≤ j for some even j ≥ 4. Suppose on
the contrary that there exists a suffix x of Fk such that suf j+2 ≺ x ≺ suf +

j+2. Since suf j+2
is a prefix of suf +

j+2, we can represent x as x = suf j+2 · y for some string y. There are
two cases w.r.t. the length of x. (1) Assume that |suf j+2| < |x| < |suf +

j+2|. Because of the
assumption and the fact that F 2

j+2 is a prefix of suf +
j+2 from Lemma 21(a), Fj+2 occurs

as a substring that is neither prefix nor a suffix of F 2
j+2. However, F 2

j+2 cannot have such
occurrence of Fj+2 since Fj+2 is primitive (from Property 6 of Lemma 2), a contradiction
(from Lemma 1). (2) Assume that |suf +

j+2| < |x|. We now use that suf +
i = suf i · suf +

i−2 holds
from Lemma 21(b). By the assumption, y and suf +

j mismatch with a and b, respectively
(since x and suf +

j+2 have suf j+2 as a prefix). From Lemma 21, suf +
j+2 can be represented as

suf +
j+2 = suf j+2 · suf j · · · suf j+2−2ℓ · suf +

j−2ℓ (1)

for some integer ℓ ≥ 0. Let ℓ′ be the largest integer ℓ such that the mismatch position is in the
factor suf +

i−2ℓ of the suf +
j+2-factorization in Eq. 1, and y′ be the suffix of y that has the factor

suf j+2−2ℓ′ of the factorization in Eq. 1 as a prefix (i.e., y′ = y[|suf j · · · suf j+2−2(ℓ′−1)| + 1..]).
Since suf j+2−2ℓ′ is a prefix y′, and y′ and suf +

j−2ℓ′ mismatch at the same position, then
suf j+2−2ℓ′ ≺ y′ ≺ suf +

j+2−2ℓ′ holds. This fact contradicts the induction hypothesis (see also
Fig. 4). ◀

Now we can show the following main lemma from the above lemmas.

▶ Lemma 23. Assume that k ≥ 7 is odd and a ≺ b. Then the lex-parse of Fk is

Fk[1..fk−1 − 2], baFk−4, Fk−4, Fk−6, . . . , F5, a, a, b.

Proof. Let x be the longest common prefix of Fk−3 and Gk−3. Due to Property 2 of Lemma 2,
there are three suffixes Fk = Fk−2 · x · ba · Fk−4 · Fk−5 · Fk−4, suf = Fk−2 · x · ab, and Fk−2
that have Fk−2 as a prefix. This implies that Fk−2 ≺ suf ≺ Fk. Thus, the first phrase is
Fk−2 · x. Then the remaining suffix is ba · suf k−3 = ba · Fk−2. We show the second phrase is
ba · Fk−4 by proving that the previous suffix of ba · Fk−2 w.r.t. Fk is ba · Fk−4. It is clear that
ba · Fk−4 ≺ ba · Fk−2 since ba · Fk−4 is a prefix of ba · Fk−2. Suppose on the contrary that
there exists a suffix y of Fk that satisfies ba · Fk−4 ≺ y ≺ ba · Fk−2. From the assumption,
ba · Fk−4 is a prefix of y. We can observe that there are three occurrences of ba · Fk−4 in
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Fk from Lemma 3 (i.e., the third, the fourth, and the sixth occurrence of Fk−4 in Fk). This
implies that suffix ba · Fk−4 · Gk−1 (regarding the third occurrence of Fk−4) of Fk is the only
candidate of y. However,

y = ba · Fk−4 · Gk−1 = ba · Fk−4 · Fk−3 · Fk−2 ≻ ba · Fk−4 · Gk−3 = ba · Fk−2

holds. Thus, the previous suffix of ba · Fk−2 w.r.t. Fk is ba · Fk−4, and the second phrase
is ba · Fk−4. Then, the remaining suffix is suf +

k−5. From Lemma 22, the next phrase is
suf k−5 = Fk−4 and the remaining suffix is suf +

k−7. This continues until the remaining suffix
is aab. It is easy to see that the last three phrases are a, a, b. ◀

We can also prove the following lemmas similarly.

▶ Lemma 24. Assume that k ≥ 7 is odd and b ≺ a. Then the lex-parse of Fk is

Fk−2, Fk[fk−2 + 1..fk − 2], a, b.

▶ Lemma 25. Assume that k ≥ 6 is even and b ≺ a. Then the lex-parse of Fk is

Fk[1..fk−1 − 2], abFk−4, Fk−4, Fk−6, . . . , F6, b, a.

Overall, Theorem 19 holds.

6 Conclusion

In this paper, we considered the compression sensitivity of lex-parse for two operations:
single character edit and modification of the alphabet ordering, and gave Θ(log n) bounds
for both operations. A further work in this line of research on the alphabet orderings is the
problem of computing optimal alphabet orderings for the lex-parse. The problems for the
RLBWT and the Lyndon factorization are known to be NP-hard [2, 13].
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