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Abstract
Hausdorff Φ-dimension is a notion of Hausdorff dimension developed using a restricted class of
coverings of a set. We introduce a constructive analogue of Φ-dimension using the notion of
constructive Φ-s-supergales. We prove a Point-to-Set Principle for Φ-dimension, through which we
get Point-to-Set Principles for Hausdorff dimension, continued-fraction dimension and dimension of
Cantor coverings as special cases. We also provide a Kolmogorov complexity characterization of
constructive Φ-dimension.

A class of covering sets Φ is said to be “faithful” to Hausdorff dimension if the Φ-dimension
and Hausdorff dimension coincide for every set. Similarly, Φ is said to be “faithful” to constructive
dimension if the constructive Φ-dimension and constructive dimension coincide for every set. Using
the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences
satisfying a certain Kolmogorov complexity condition, we show that the notions of “faithfulness” of
Cantor coverings at the Hausdorff and constructive levels are equivalent.

We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin [1] to derive the necessary and
sufficient conditions for the constructive dimension faithfulness of the coverings generated by the
Cantor series expansion, based on the terms of the expansion.
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1 Introduction

1.1 Faithfulness in dimension
In the study of randomness and information, an important concept is the preservation of
randomness across multiple representations of the same object. Martin-Löf randomness, and
computable randomness, for example, are preserved among different base-b representations of
the same real (see Downey and Hirschfeldt [5], Nies [27], Staiger [31]) and when we convert
from the base-b expansion to the continued fraction expansion ([23, 26, 25]).

A quantification of this notion is whether the rate of information is preserved across
multiple representations. This rate is studied using a constructive analogue of Hausdorff
dimension called Constructive dimension [11, 21]. Hitchcock and Mayordomo [8] show that
constructive dimension is preserved across base-b representations. However, in a recent work,
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Akhil, Nandakumar and Vishnoi [24] show that the rate of information is not preserved across
all representations. In particular, they show that constructive dimension is not preserved
when we convert from base-b representation to continued fraction representation of the same
real.

This raises the following question: Under which settings is the effective rate of information
– i.e., constructive dimension – preserved when we change representations of the same real?
Since constructive dimension is a constructive analogue of Hausdorff dimension, this question
is a constructive analogue of the concept of “faithfulness” of Hausdorff dimension.

A family of covering sets Φ is “faithful” to Hausdorff dimension if the dimension of
every set F defined using covers constructed using Φ, called the Hausdorff Φ-dimension,
coincides with the Hausdorff dimension of F . Faithfulness is well-studied as determining the
Hausdorff dimension of a set is often a difficult problem, and faithful coverings help simplify
the calculation. This notion is introduced in a work of Besicovitch [3], which shows that the
class of dyadic intervals is faithful for Hausdorff dimension. Rogers and Taylor [29] further
develop the idea to show that all covering families generated by comparable net measures
are faithful for Hausdorff dimension. This implies that the class of covers generated by the
base b expansion of reals for any b ∈ N \ {1} is faithful for Hausdorff dimension. However,
not all coverings are faithful for Hausdorff dimension. A natural example is the continued
fraction representation, which is not faithful for Hausdorff dimension [28]. Faithfulness of
Hausdorff dimension has then been studied in various settings [1, 2, 9, 28].

1.2 Constructive Dimension Faithfulness

In this work, we introduce a constructive analogue of Hausdorff Φ-dimension which we call
constructive Φ-dimension. A family of covering sets Φ is “faithful” to constructive dimension
if the constructive Φ-dimension of every set F coincides with the constructive dimension
of F . Mayordomo and Hitchcock [8] show that all base-b representations of reals, which
are faithful for Hausdorff dimension, are also faithful for constructive dimension. On the
other hand, Nandakumar, Akhil, and Vishnoi’s work shows that the continued fraction
expansion, which is not faithful for Hausdorff dimension is also not faithful for constructive
dimension [24]. This raises the natural question: Are faithfulness with respect to Hausdorff
dimension and faithfulness with respect to constructive dimension equivalent notions? A
positive answer to this question implies that Hausdorff dimension faithfulness, a geometric
notion, can be studied using the tools from information theory. Conversely, the faithfulness
results of Hausdorff dimension can help us understand the settings under which constructive
dimension is invariant for every individual real.

In this work, we show that for the most inclusive generalization of base-b expansions under
which faithfulness has been studied classically, namely, for classes of coverings generated by the
Cantor series expansions, the notions of Hausdorff faithfulness and constructive faithfulness
are indeed equivalent. The Cantor series expansion, introduced by Georg Cantor [4], uses
a sequence of natural numbers Q = {nk}k∈N as the terms of representation. Whereas
base-b representation use exponentials with respect to a fixed b, {bn}n∈N, the Cantor series
representation Q = {nk}k∈N uses factorials {n1 . . . nk}k∈N as the basis for representation.
This class is of additional interest as there are Cantor expansions that are faithful as well
as non faithful for Hausdorff dimension, depending on the Cantor series representation
{nk}k∈N in consideration [1]. To establish our result, we use a Φ-dimensional analogue of
the Point-to-Set Principle.
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1.3 Point-to-Set Principle and Faithfulness
The Point-to-Set principle introduced by J. Lutz and N. Lutz [13] relates the Hausdorff
dimension of a set of n-dimensional reals with the constructive dimensions of points in the
set, relative to a minimizing oracle. This theorem has been instrumental in answering open
questions in classical fractal geometry using the theory of computing (See [14, 20, 19, 18, 13]).
Mayordomo, Lutz, and Lutz [15] extend this work to arbitrary separable metric spaces.

In this work, we first prove the Point-to-Set principle for Φ-dimension (Theorem 27) and
show that this generalizes the original Point-to-Set principle. We then develop a combinatorial
construction of sequences having Kolmogorov complexities that grow at the same rate as a
given sequence relative to any given oracle (Theorem 36). This new combinatorial construction
may be of independent interest in the study of randomness. Using these new tools, we
show that under the setting of covers generated by Cantor series expansions, the notions of
constructive faithfulness and Hausdorff dimension faithfulness are equivalent (Theorem 51).
We then adapt the result by Albeverio, Ivanenko, Lebid, and Torbin [1] to derive a loglimit
condition for the constructive dimension faithfulness of the coverings generated by the Cantor
series expansions (Theorem 53).

Our main results include the following.
1. We introduce the notion of constructive Φ-dimension using that subsumes base-b, contin-

ued fraction, and Cantor covering dimension. We also give an equivalent Kolmogorov
Complexity characterization of constructive Φ-dimension. We prove a Point-to-Set prin-
ciple for Φ-dimension. This generalizes the original Point-to-Set Principle and yields
new Point-to-Set principles for the dimensions of continued fractions and Cantor series
representations.

2. Using the point-to-set principle, we characterize constructive faithfulness for Cantor
series expansions using a log limit condition of the terms appearing in the series. This
generalizes the invariance result of constructive dimension under base b representations
to all Cantor series expansions that obey this log limit condition. Moreover, it implies
that for any Cantor series expansion that does not obey the log limit condition, there are
sequences whose Cantor series dimension is different from its constructive dimension.

The recent works of J. Lutz, N. Lutz, Stull, Mayordomo and others study the “point-to-set
principle” of how constructive Hausdorff dimension of points may be used to compute the
classical Hausdorff dimension of arbitrary sets. In addition to the generalization of this
point-to-set principle to Φ-systems, our final result may be viewed as a new point-to-set
phenomenon for the notion of “faithfulness”: here, equality of the constructive Cantor series
dimensions and constructive dimensions of every point yield equality for the classical Cantor
series and Hausdorff dimensions of every set, and conversely.

2 Preliminaries

2.1 Notation
We use Σ to denote the binary alphabet {0, 1}, Σ∗ represents the set of finite binary strings,
and Σ∞ represents the set of infinite binary sequences. We use |x| to denote the length
of a finite string x ∈ Σ∗. For an infinite sequence X = X0X1X2 . . . , we use X ↿ n to
denote the finite string consisting of the first n symbols of X. When n ≥ m we also use
the notation X[m, n] to denote the substring XmXm+1 . . . Xn of X ∈ Σ∞. We call two sets
U and V to be incomparable if U ̸⊆ V and V ̸⊆ U . For a set U ⊆ R, we denote |U | to
denote the diameter of U , that is |U | = supx,y∈U d(x, y), where d is the Euclidean metric.

MFCS 2024
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We use ∅ to denote the empty set, and we assume |∅| = 0. For any finite collection of
sets {U}, we use #(U) to denote the number of elements in U . Given infinite sequences
X1, . . . Xn, we define the interleaved sequence X1 ⊕X2 ⊕ . . . Xn to be the interleaved sequence
X = X1[0]X2[0] . . . Xn[0]X1[1] . . . Xn[1] . . . . For some fixed n ∈ N, we use X ⊆ Rn to denote
the metric space under consideration. We call a set of strings P ⊂ Σ∗ to be prefix free if
there are no two strings σ, τ ∈ P such that σ is a proper prefix of τ . Given n ∈ N we use [n]
to denote {0, 1, . . . n − 1}. Kolmogorov Complexity represents the amount of information
contained in a finite string. For more details on Kolmogorov Complexity, see [5, 10, 27, 30].

▶ Definition 1. The Kolmogorov complexity of σ ∈ Σ∗ is defined as K(σ) =
min
π∈Σ∗

{|π| | U(π) = σ}, where U is a fixed universal prefix free Turing machine.

2.2 Hausdorff Dimension
The following definitions are originally given by Hausdorff [7]. We take the definitions from
Falconer [6].

▶ Definition 2 (Hausdorff [7]). Given a set F ⊆ X, a collection of sets {Ui}i∈N where for
each i ∈ N, Ui ⊆ X is called a δ-cover of F if for all i ∈ N, |Ui| ≤ δ and F ⊆

⋃
i∈N Ui.

▶ Definition 3 (Hausdorff [7]). Given an F ⊆ X, for any s > 0, define

Hs
δ(F) = inf

{∑
i

|Ui|s : {Ui}i∈N is a δ-cover of F

}
.

As δ decreases, the set of admissible δ covers decreases. Hence Hs
δ(F) increases.

▶ Definition 4 (Hausdorff [7]). For s ∈ (0, ∞), the s-dimensional Hausdorff outer measure
of F is defined as:

Hs(F) = lim
δ→0

Hs
δ(F).

Observe that for any t > s, if Hs(F) < ∞, then Ht(F) = 0 (see Section 2.2 in [6]).
Finally, we have the following definition of Hausdorff dimension.

▶ Definition 5 (Hausdorff [7]). For any F ⊂ X, the Hausdorff dimension of F is defined as:

dim(F) = inf{s ≥ 0 : Hs(F) = 0}.

2.3 Constructive dimension
Lutz [11] defines the notion of effective (equivalently, constructive) dimension of an infinite
binary sequence using the notion of lower semicomputable s-gales.

▶ Definition 6 (Lutz [11]). For s ∈ [0, ∞), a binary s-gale is a function d : Σ∗ → [0, ∞) such
that d(λ) < ∞ and for all w ∈ Σ∗, d(w) = 2s.

∑
i∈{0,1} d(wi).

The success set of d is S∞(d) =
{

X ∈ Σ∞ | lim sup
n→∞

d(X ↿ n) = ∞
}

.

For F ⊆ [0, 1], G(F) denotes the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable (Definition 24) binary s-gale d with F ⊆ S∞(d).
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▶ Definition 7 (Lutz [11]). The constructive dimension or effective Hausdorff dimension of
F ⊆ [0, 1] is

cdim(F) = inf G(F).

The constructive dimension of a sequence X ∈ Σ∞ is cdim(X) = cdim({X}).

Mayordomo [21] extends the result by Lutz [12] to give the following Kolmogorov com-
plexity characterization of constructive dimension of infinite binary sequences.

▶ Theorem 8 (Lutz [12], Mayordomo [21]). For any X ∈ Σ∞,

cdim(X) = lim inf
n→∞

K(X ↿ n)
n

.

Mayordomo [22] later gave the following Kolmogorov complexity characterization of
constructive dimension of points in Rn.

▶ Definition 9 (Mayordomo [22]). For any x ∈ Rn,

cdim(x) = lim inf
r→∞

Kr(x)
r

.

where Kr(x) = min
q∈Qn

{K(q) : |x − q| < 2−r}.

Constructive dimension also works in the Euclidean space. For a real x = (x1, ...xn) ∈ Rn,
let binary expansions of the fractional parts of each of the coordinates of x be S1 ∈
Σ∞, . . . , Sn ∈ Σ∞ respectively. Then cdim(x) = n · cdim(X) where X is the interleaved
sequence X = S1 ⊕ S2 · · · ⊕ Sn [16].

We now state some useful properties of constructive dimension. Lutz [11] shows that the
constructive dimension of a set is always greater than or equal to its Hausdorff dimension.

▶ Lemma 10 (Lutz [11]). For any F ⊆ X, dim(F) ≤ cdim(F).

Further, Lutz[11] also shows that the constructive dimension of a set is the supremum of
the constructive dimensions of points in the set.

▶ Lemma 11 (Lutz [11]). For any F ⊆ X, cdim(F) = sup
x∈F

cdim(x).

3 Hausdorff Φ-dimension and Effective Φ-dimension

Hausdorff dimension is defined using the notion of s-dimensional outer measures, where a
cover is taken as the of union of a collection of covering sets {Ui}i∈N. Here a covering set Ui

can be any arbitrary subset of the space (see Section 2.2). We define the general notion of
Hausdorff Φ-dimension by restricting the class of admissible covers to Φ-covers, which are
the union of sets from a family of covering sets Φ.

3.1 Family of covering sets
In this work, we consider a family of covering sets which satisfy the properties given below.

▶ Definition 12 (Family of covering sets Φ). We consider the space X ⊆ Rη where η ∈ N. A
countable family of sets Φ =

⋃
n∈Z{Un

i }i∈N, where for each i ∈ N, n ∈ Z, Un
i ⊆ X, is called a

family of covering sets if it satisfies the following properties:

MFCS 2024
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Increasing Monotonicity: For every n ∈ Z, U ∈ {Un
i }i∈N and m ≤ n, there is a unique

V ∈ {Um
i }i∈N such that U ⊆ V .

Fineness : Given any ϵ > 0, and x ∈ X, there exists a U ∈ Φ such that |U | < ϵ and
x ∈ U .

Note that the number of sets {Un
i } in some level n ∈ Z can also be finite and bounded

by m. The definition still holds because in this case we take Un
j = ∅ for j > m. Note that

from Increasing monotonicity property, it follows that all elements {Un
i } in a particular level

n ∈ Z are incomparable.
We now define the notion of a Φ-cover of a set.

▶ Definition 13 (Φ-cover). Let Φ =
⋃

n∈Z{Un
i }i∈N be a family of covering sets. A Φ -

cover of a set F ⊆ X is collection of sets {Vj}j∈N ⊆ Φ such that {Vj}j∈N covers F , that is
F ⊆

⋃
j∈N

Vj

Note: Mayordomo [22] gives a definition of Nice covers of a metric space. They then give
the definition of constructive dimension on a metric space with a nice cover. We note here
that the notion of Family of covering sets is incomparable with the notion of Nice covers. Our
definition does not require the c-cover property and the Decreasing monotonicity property
of nice covers. Therefore, our notion includes the setting of continued fraction dimension,
which is not captured by Nice covers. Also, the Fineness property required in our definition
is not there in the definition of nice covers. The notion of Increasing monotonicity is present
in both settings.

3.2 Hausdorff Φ-dimension
Recall from Definition 13 that a Φ-cover of F is a collection of sets from Φ that covers F .
We call this as a δ-cover if the diameter of elements in the cover are less than δ.

▶ Definition 14. Let Φ be a family of covering sets defined over X. Given a set F ⊆ X, a
Φ-cover {Ui}i∈N of F is called a δ-cover of F using Φ if for all i ∈ N, |Ui| ≤ δ.

▶ Definition 15. Given an F ⊆ X, for any s > 0, we define

Hs
δ(F , Φ) = inf

{∑
i

|Ui|s : {Ui}i∈N is a δ-cover of F using Φ
}

.

From the fineness property given in Definition 12, it follows that for any F ⊆ X, and
δ > 0, δ-covers of F using Φ always exist.

As δ decreases, the set of admissible δ-covers using Φ decreases. Hence Hs
δ(F , Φ) increases.

▶ Definition 16. For s ∈ (0, ∞), define the s-dimensional Φ outer measure of F as:

Hs(F , Φ) = lim
δ→0

Hs
δ(F , Φ).

Observe that as with the case of classical Hausdorff dimension, for any t > s, if Hs(F , Φ) <

∞, then Ht(F , Φ) = 0 (see Section 2.2 in [6]).
Finally, we have the following definition of Hausdorff Φ-dimension.

▶ Definition 17. For any F ⊂ X, the Hausdorff Φ-dimension of F is defined as:

dimΦ(F) = inf{s ≥ 0 : Hs(F , Φ) = 0}.
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3.3 Effective Φ-dimension
We first formulate the notion of a Φ-s-supergale. A Φ-s-supergale can be seen as a gambling
strategy where the bets are placed on the covering sets from Φ. The definitions in this
subsection are adaptations from Mayordomo [22].

▶ Definition 18 (Mayordomo [22]). Let Φ =
⋃

n∈Z{Un
i }i∈N be a family of covering sets from

Definition 12. For s ∈ [0, ∞), a Φ-s-supergale is a function d : Φ → [0, ∞) such that:∑
U∈{U0

i
}i∈N

d(U)|U |s < ∞ and

For all n ∈ N and all U ∈ {Un
i }i∈N, the following condition holds:

d(U).|U |s ≥
∑

V ∈{Un+1
i

}i∈N,V ⊆U

d(V )|V |s .

The following is the generalization of Kraft inequality for s-supergales from Mayordomo [22].

▶ Lemma 19 (Generalisation of Kraft inequality [22]). Let d be a Φ-s-supergale. Then for
every E ⊆ Φ such that the sets in E are incomparable, we have that∑

V ∈E
d(V )|V |s ≤

∑
U∈{U0

i
}i∈N

d(U)|U |s.

▶ Definition 20 (Mayordomo [22]). Given x ∈ X, a Φ-representation of x is a sequence
(Un)n∈Z such that for each n ∈ Z, Un ∈ {Un

i }i∈N and x ∈ ∩nUn.

Note that the same x can have multiple Φ-representations. Given x ∈ X, let R(x) be the
set of Φ-representations of x.

▶ Definition 21 (Mayordomo [22]). A Φ-s-supergale d succeeds on x ∈ X if there is a
(Un)n∈Z ∈ R(x) such that lim sup

n→∞
d(Un) = ∞.

Equivalently, a Φ-s-supergale d succeeds on a point x ∈ X iff for every k ∈ N, there exists
a U ∈ Φ such that x ∈ U and d(U) > 2k.

▶ Definition 22. The success set of d is S∞(d) = {x ∈ X | d succeeds on x} .

To define constructive Φ-dimension, we require some additional computability restrictions
over Φ. It is an adaptation of the definition from [22].

▶ Definition 23 (Family of computable covering sets Φ). We consider the space X ⊆ Rη where
η ∈ N and a family of covering sets Φ =

⋃
n∈Z{Un

i }i∈N from Definition 12. We call Φ to be
a family of computable covering sets if it satisfies the following additional properties:

Computable diameter: For every n ∈ Z and i ∈ N, |Un
i | is computable.

Computable subsets: For every n ∈ Z, and i ∈ N, the set {j ∈ N : Un+1
j ⊆ Un

i } is
uniformly computable.

In definition 23, when we say |Un
i | is computable, we mean that there is a turing machine

that on input n, i, r outputs a q ∈ Q such that ||Un
i |−q| < 2r. The set {j ∈ N : Un+1

j ⊆ Un
i } is

uniformly computable if there is a turing machine which on input i, j, n decides if Un+1
j ⊆ Un

i .

We use constructive Φ-s-gales to define the notion of constructive Φ-dimension. For a
Φ-s-gale d to be constructive, we require the gale function d to be lower semicomputable.
Note that a lower semicomputable supergale actually takes as input (i, n) where i ∈ N, n ∈ Z
to place bets on Un

i . We omit this technicality in this paper and keep the domain of the gale
as Φ for the sake of simplicity.

MFCS 2024
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▶ Definition 24. A function d : Φ −→ [0, ∞) is called lower semicomputable if there exists
a total computable function d̂ : Φ × N −→ Q ∩ [0, ∞) such that the following two conditions
hold.

Monotonicity : For all U ∈ Φ and for all n ∈ N, we have d̂(U, n) ≤ d̂(U, n + 1) ≤ d(U).
Convergence : For all U ∈ Φ, lim

n→∞
d̂(U, n) = d(U).

For F ⊆ X, let GΦ(F) denote the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable Φ-s-supergale d with F ⊆ S∞(d).

▶ Definition 25. The constructive Φ-dimension of F ⊆ X is

cdimΦ(F) = inf GΦ(F).

The constructive Φ dimension of a point x ∈ X is defined by cdimΦ({x}), the constructive
Φ-dimension of the singleton set containing x.

This definition can easily be relativized with respect to an oracle A ⊆ N by giving the
s-supergale an additional oracle access to set A ⊆ N. We denote this using cdimA

Φ(F).
We now show that the constructive Φ-dimension of a set is the supremum of constructive

Φ-dimensions of points in the set. The proof is a straightforward adaptation of proof of
Theorem 11 by Lutz [11].

▶ Theorem 26. For any family of computable covering sets Φ defined over the space X, for
any F ⊆ X, we have

cdimΦ(F) = sup
x∈F

cdimΦ(x).

4 Point-to-set principle for Φ-dimension

Let Φ =
⋃

n∈Z{Un
i }i∈N be a family of computable covering sets from Definition 23. In this

work, we introduce the Point-to-Set principle for Φ-dimension. We show that the Hausdorff
Φ-dimension of any set F ⊆ X is equal to the relative constructive Φ-dimensions of elements
in the set, relative to a minimizing oracle A.

▶ Theorem 27. For a family of computable covering sets Φ over the space X, for all F ⊆ X,

dimΦ(F) = min
A⊆N

sup
x∈F

cdimA
Φ(x).

4.1 Point to Set Principle for constructive dimension
▶ Definition 28 (Dyadic Family of covers). Consider the space X = Rn. The dyadic family of
covers is the set of coverings ΦB =

⋃
r∈N{[ m1

2r , m1+1
2r ] × · · · × [ mn

2r , mn+1
2r ]}m1,m2...,mn∈[2r].

It is straightforward to verify that ΦB is a family of computable covering sets from
Definition 23. Besicovitch [3] gave the following Φ-dimension characterization of Hausdorff
dimension.

▶ Lemma 29 (Besicovitch [3]). For all F ⊆ Rn, we have dim(F) = dimΦB
(F).

Similarly, we have the following Φ-dimension characterization of Constructive dimension.

▶ Lemma 30 (Lutz and Mayordomo [16]). For all F ⊆ Rn, we have cdim(F) = cdimΦB
(F).
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From Theorem 27 for ΦB and using Lemma 29 and 30, we have the following point-to-set
principle from [13] relating Hausdorff and Constructive dimensions.

▶ Corollary 31 (J.Lutz and N.Lutz [13]). For all F ⊆ X,

dim(F) = min
A⊆N

sup
x∈F

cdimA(x).

4.2 Point to Set Principle for Continued Fraction dimension
The sequence Y = [a1, a2, . . . ] where each ai ∈ N is the continued fraction expansion

of the number y =
1

a1 +
1

a2 + · · ·

. Given u = [a1, a2 . . . an] ∈ N∗, the cylinder set of

u, Cu is defined as Cu = [[a1, a2, . . . an], [a1, a2, . . . an + 1]] when n is even and Cu =
[[a1, a2, . . . an + 1], [a1, a2, . . . an]] when n is odd.

The notion of constructive continued fraction dimension was introduced by Nandakumar
and Vishnoi [26] using continued fraction s-gales. Akhil, Nandakumar and Vishnoi [24]
showed that this notion is different from that of constructive dimension.

Consider ΦCF to be the set of covers generated by the continued fraction cylinders,
that is ΦCF =

⋃
n∈Z{C[a1,a2,...an]}a1...an∈N. It is routine to verify that this is a family of

computable covering sets from Definition 23. From Theorem 27, we therefore have the
following point-to-set principle for Continued fraction dimension.

▶ Corollary 32. For all F ⊆ X, dimCF(F) = min
A⊆N

sup
x∈F

cdimA
CF(x).

4.3 Effective Φ-dimension using Kolmogorov Complexity
We give an equivalent formulation of constructive Φ-dimension of a point using Kolmogorov
complexity. For this, we require some additional properties for the space Φ.

▶ Definition 33 (Family of finitely intersecting computable covering sets Φ). We consider the
space X ⊆ Rη where η ∈ N and a family of computable covering sets Φ =

⋃
n∈Z{Un

i }i∈N from
Definition 23. We say that Φ is a family of finitely intersecting computable covering sets if it
satisfies the following additional properties:

Density of Rational points: For each U ∈ Φ, there exists a q ∈ Qn such that q ∈ U .
Finite intersection: There exists a constant c ∈ N such that for any collection {Ui} ⊆ Φ
satisfying

(1) Ui ̸⊆ Uj for all i ̸= j, and
(2)

⋂
i Ui ̸= ∅,

we have #({Ui}) ≤ c.
Membership test: There is a computable function that given i ∈ N and n ∈ Z and a
q ∈ Qn checks if q ∈ Un

i .

The Finite intersection property states that the cardinality of any collection of incompar-
able sets from Φ having non empty intersection is bounded by a constant.

Given family of finitely intersecting computable covering sets Φ over a space X, and an
r ∈ N, we define the notion of Kolmogorov Complexity of a point X at precision r with
respect to Φ. We denote this using Kr(X, Φ).
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▶ Definition 34. Given an r ∈ N, and x ∈ X, define

Kr(x, Φ) = min
U∈Φ

{K(U) | x ∈ U and |U | < 2−r}.

where for U ∈ Φ, K(U) is defined as K(U) = min{K(q) | q ∈ U ∩ Qn}.

For any family of finitely intersecting computable covering sets Φ, we have the following
Kolmogorov Complexity characterization of constructive Φ-dimension.

▶ Theorem 35. Given a family of finitely intersecting computable covering sets Φ, over a
space X. For any x ∈ X,

cdimΦ(x) = lim inf
r→∞

Kr(x, Φ)
r

5 Kolmogorov Complexity Construction

In this section we give a technical construction which is crucial in proving the results in
section 6. Theorem 36 says that given an infinite sequence X and an oracle A, for any oracle
B, there exists a sequence Y whose relativized Kolmogorov complexity (of prefixes) with
respect to B is similar to the relativized Kolmogorov complexity (of prefixes) of X with
respect to A.

▶ Theorem 36. For all X ∈ Σ∞ and A ∈ Σ∞, given a B ∈ Σ∞, there exists a Y ∈ Σ∞

such that for all n ∈ N, |KA(X ↿ n) − KB(Y ↿ n)| = o(n) and cdimB(Y ) = cdim(Y ).

6 Equivalence of Faithfulness of Cantor Coverings at Constructive and
Hausdorff Levels

In this section, we show that when the class of covers Φ is generated by computable Cantor
series expansions, the faithfulness at the Hausdorff and constructive levels are equivalent
notions.

6.1 Faithfulness of Family of Coverings
We will first see the definition of Hausdorff dimension faithfulness. We then introduce the
corresponding notion at the effective level, which we call constructive dimension faithfulness.

A family of covering sets Φ is said to be faithful with respect to Hausdorff dimension if
the Φ dimension of every set in the space is the same as its Hausdorff dimension.

▶ Definition 37. A family of covering sets Φ over the space X is said to be faithful with
respect to Hausdorff dimension if for all F ⊆ X, dimΦ(F) = dim(F).

We extend the definition to the constructive level as well. A family of computable covering
sets Φ is defined to be faithful with respect to constructive dimension if the constructive Φ
dimension of every set is the same as its constructive dimension.

▶ Definition 38. A family of computable covering sets Φ is said to be faithful with respect
to constructive dimension if for all F ⊆ X, cdimΦ(F) = cdim(F).

The following lemma follows from Theorem 26 and Lemma 11. It states that constructive
dimension faithfulness can be equivalently stated in terms of preservation of constructive
dimensions of points in the set.
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▶ Lemma 39. A constructive family of covers Φ is faithful with respect to Constructive
dimension if and only if for all x ∈ X, cdimΦ(x) = cdim(x).

The following lemma states that the Φ-dimension of a set is always greater than or equal
to its Hausdorff dimension. Similarly, the constructive Φ−dimension of a set is always greater
than or equal to its constructive dimension.

▶ Lemma 40. For any family of covering sets Φ over X, for all F ⊆ X, dimΦ(F) ≥ dim(F).

▶ Lemma 41. For any family of finitely intersecting computable covering sets Φ over X, for
all F ⊆ X, cdimΦ(F) ≥ cdim(F).

Therefore we have that Φ is not faithful for Hausdorff dimension if and only if there
exists an F ⊂ X such that dimΦ(F) > dim(F). Similarly, Φ is not faithful for Constructive
dimension if and only if there exists an F ⊂ X such that cdimΦ(F) > cdim(F).

6.2 Cantor coverings over unit interval
We consider the faithfulness of family of coverings generated by the computable Cantor series
expansion [4]. We call such class of coverings as Cantor coverings.

Given a sequence Q = {nk}k∈N with nk ∈ N \ {1}, the expression

x =
∞∑

k=1

αk

n1.n2 . . . nk

where αk ∈ [nk] is called the cantor series expansion of the real number x ∈ [0, 1].

▶ Definition 42 (Cantor Coverings ΦQ). The class of Cantor coverings ΦQ over the space
X = [0, 1] generated by the Cantor series expansion Q = {nk}k∈N is the set of intervals⋃

k∈Z
{[ m

n0.n1.n2 . . . nk
,

m + 1
n0.n1.n2 . . . nk

]}m∈[n0.n1.n2...nk]

with n0 taken as 1.

▶ Definition 43 (Computable Cantor Coverings). The cantor series expansion Q = {nk}k∈N
is said to be computable if there exists a machine that generates nk given k. We call the class
of Cantor coverings ΦQ generated by a computable Cantor series expansion Q as a class of
Computable Cantor Coverings over X = [0, 1].

It is routine to verify that for any computable Cantor series expansion Q = {nk}k∈N,
the Cantor covering ΦQ is a family of finitely intersecting computable covering sets from
Definition 33. Therefore, from Theorem 27, we have the following Point-to-Set principle for
Cantor covering dimension.

▶ Corollary 44. For all F ⊆ X and for all computable Cantor coverings ΦQ,

dimΦQ
(F) = min

A⊆N
sup
x∈F

cdimA
ΦQ

(x).

6.3 Kolmogorov Complexity Characterization of Cantor Series
Dimension

We first show a Kolmogorov complexity characterization of constructive Φ-dimension for
computable Cantor coverings.
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▶ Theorem 45. For any x ∈ X, and any computable Cantor coverings ΦQ generated by
Q = {nk}k∈N,

cdimΦQ
(x) = lim inf

k→∞

K(X ↿ mk)
mk

where X is a binary expansion of x and mk = ⌊log2(n1.n2 . . . nk)⌋ .

Theorem 8 ensures that when the Kolmogorov complexities of any two X, Y ∈ Σ∞ align
over all finite prefixes, their constructive dimensions become equal. From Theorem 45, we
get that when this happens, the constructive Φ-dimensions also become equal.

▶ Lemma 46. For any x, y ∈ X, A, B ⊆ N and any class of computable Cantor coverings Φ,
if for all n, |KA(X ↿ n) − KB(Y ↿ n)| = o(n), then cdimA(x) = cdimB(y) and cdimA

Φ(x) =
cdimB

Φ (y). Here X and Y are the binary expansions of x and y respectively.

6.4 Faithfulness of Cantor Coverings

Using the Point-to-Set Principle and properties of Kolmogorov complexity, we show that
the notions of faithfulness for Cantor coverings at Hausdorff and Constructive levels are
equivalent.

We first show that if a class of computable Cantor coverings Φ is faithful with respect to
constructive dimension, then Φ is also faithful with respect to Hausdorff dimension.

▶ Lemma 47. For any class of computable Cantor coverings Φ, if for all F ⊆ X, cdim(F) =
cdimΦ(F), then for all F ⊆ X, dim(F) = dimΦ(F).

To prove the converse, we require the construction of set Is that contains all points in X
having constructive dimension equal to s.

▶ Definition 48. Given s ∈ [0, ∞), define Is = {x ∈ X | cdim(x) = s}.

Lutz and Weihrauch [17] showed that the Hausdorff dimension of Is is equal to s. We
provide a simple alternate proof of this using the point-to-set principle.

▶ Lemma 49 (Lutz and Weihrauch [17]). dim(Is) = s.

We now show that if a class of computable Cantor coverings Φ is faithful with respect to
Hausdorff dimension, then Φ is also faithful with respect to constructive dimension.

▶ Lemma 50. For any class of computable Cantor coverings Φ, if for all F ⊆ X, dim(F) =
dimΦ(F) , then for all F ⊆ X, cdim(F) = cdimΦ(F).

Therefore, we have the following theorem which states that for the classes of Cantor
coverings Φ, faithfulness with respect to Hausdorff and Constructive dimensions are equivalent
notions.

▶ Theorem 51. For any class of computable Cantor coverings Φ,

∀F ⊆ X ; dim(F) = dimΦ(F) ⇐⇒ ∀F ⊆ X ; cdim(F) = cdimΦ(F).
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6.5 Log limit condition for faithfulness
Albeverio, Ivanenko, Lebid and Torbin [1] showed that the Cantor coverings ΦQ generated
by the Cantor series expansions of Q = {nk}k∈N can be faithful as well as non faithful
with respect to Hausdorff dimension depending on Q. Interestingly, they showed that the
Hausdorff dimension faithfulness of Cantor coverings can be determined using the terms nk

in Q.

▶ Theorem 52 (Albeverio, Ivanenko, Lebid and Torbin [1]). A family of Cantor coverings
ΦQ generated by Q = {nk}k∈N is faithful with respect to Hausdorff dimension if and only if
lim

k→∞
log nk

log n1·n2...nk−1
= 0.

Using the above result and the result that faithfulness at the constructive level is equivalent
to faithfulness with respect to Hausdorff dimension (Theorem 51), we have that the condition
stated above provides the necessary and sufficient conditions for Cantor series coverings to
be faithful for constructive dimension.

▶ Theorem 53. A family of Cantor coverings ΦQ generated by Q = {nk}k∈N is faithful with
respect to constructive dimension if and only if

lim
k→∞

log nk

log n1.n2 . . . nk−1
= 0. (1)

The Cantor series expansion is a generalization of the base-b representation, which is
the special case when nk = b for all k ∈ N. That is Qb = {b}n∈N. Since the condition in
Theorem 53 is satisfied by Qb for any b ∈ N, we have the following result by Hitchcock and
Mayordomo about the base invariance of constructive dimension.

▶ Corollary 54 (Hitchcock and Mayordomo [8]). For any x ∈ [0, 1] and k, l ∈ N \ {1},
cdim(k)(x) = cdim(l)(x). where cdim(k)(x) represents the constructive dimension of x with
respect to its base-k representation.

Note that condition (1) classifies the Cantor series expansions on the basis of constructive
dimension faithfulness. As an example, when nk = 2k, condition (1) holds, and therefore
Q = {2k}k∈N is faithful for constructive dimension. However, when nk = 22k , condition (1)
does not hold, and therefore Q = {22k }k∈N is not faithful for constructive dimension.

7 Conclusion and Open Problems

We develop a constructive analogue of Φ-dimension and prove a Point-to-Set principle for Φ-
dimension. Using this, we show that for Cantor series representations, constructive dimension
faithfulness and Hausdorff dimension are equivalent notions. We also provide a loglimit
condition for faithfulness of Cantor series expansions.

The following are some problems that remain open
1. Are the faithfulness at constructive and Hausdorff levels equivalent for all computable

family of covering sets Φ ?
2. What is the packing dimension analogue of faithfulness, is there any relationship between

faithfulness of Hausdorff dimension and packing dimension ?
3. Is there any relationship between faithfulness of constructive dimension and constructive

strong dimension ?

MFCS 2024
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