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Abstract
Given a spanning tree T of a 3-connected planar graph G, the co-tree of T is the spanning tree of
the dual graph G∗ given by the duals of the edges that are not in T . Grünbaum conjectured in
1970 that there is such a spanning tree T such that T and its co-tree both have maximum degree at
most 3.

In 2014, Biedl proved that there is a spanning tree T such that T and its co-tree have maximum
degree at most 5. Using structural insights into Schnyder woods, Schmidt and the author recently
improved this bound on the maximum degree to 4. In this paper, we prove that in a 4-connected
planar graph there exists a spanning tree T of maximum degree at most 3 such its co-tree has
maximum degree at most 4. This almost solves Grünbaum’s conjecture for 4-connected graphs.
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1 Introduction

In 1966, Barnette showed that every 3-connected planar graph has a spanning 3-tree [3].
Here and in the following, a k-tree denotes a tree with maximum degree at most k. The
dual of a 3-connected planar graph G is also 3-connected and planar. As mentioned in the
abstract, for a spanning tree T the duals of the edges E(G) − E(T ) form a spanning tree
of the dual graph G∗, the so called co-tree ¬T ∗ of T . Thus, the question of a simultaneous
bound on the maximum degree of T and its co-tree naturally arises. In 1970, Grünbaum
made the following conjecture.

▶ Conjecture 1 (Grünbaum [16, p. 1148], 1970). Every planar 3-connected graph G contains
a 3-tree T whose co-tree ¬T ∗ is also a 3-tree.

While Grünbaum’s conjecture is to the best of our knowledge still unsolved, progress has
been made by Biedl [4], who proved the existence of a 5-tree whose co-tree is a 5-tree. Her
approach uses structural properties of canonical orderings. Schmidt and the author recently
proved that in a 3-connected planar graph there is a spanning tree T such that T and its
co-tree have maximum degree at most 4 [20]. In this paper, we prove that in a 4-connected
planar graph there is a spanning 3-tree such that its co-tree is a spanning 4-tree of the dual.
We use structural properties of minimal Schnyder woods. Schnyder woods are a tool which
is widely applied in graph drawing [1, 13,15,21,22] and beyond [6, 7, 10,17].

Our approach divides into two steps. Let G be the graph in question. First, we identify
a suitable candidate graph H. This candidate is a spanning and connected subgraph of G

of maximum degree at most 3. By the well-known cut-cycle duality [11, Prop. 4.6.1], its
co-graph (that is the graph with edge set E(G∗) − E(H)∗) is acyclic. We show that the
co-graph also has maximum degree 3. Then, we only lack the acyclicity of the primal graph.
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Thus, in the second step, we delete edges of the candidate graph H such that it becomes
acyclic and the co-graph remains acyclic. Then, we show that the degree of the resulting
co-graph does not exceed 4. This then yields the desired 3-tree such that its co-tree is a
4-tree. The first step is far from being trivial. Especially, it is hard to prove the connectivity
of the candidate graph. The second step uses parts of the proof of the main theorem of [20].
Hence, we focus on the first step.

We discuss Schnyder woods, their lattice structure and ordered path partitions in Section 2,
the candidate graph H in Section 3 and the second and final step in Section 4. Due to space
limitations some proofs are omitted or only sketched.

2 Schnyder Woods and Ordered Path Partitions

We only consider simple undirected graphs. A graph is plane if it is planar and embedded
into the Euclidean plane without intersecting edges. The neighborhood of a vertex set A is
the union of the neighborhoods of vertices in A. Although parts of this paper use orientation
on edges, we will always let vw denote the undirected edge {v, w}.

2.1 Schnyder Woods
Let σ := {r1, r2, r3} be a set of three vertices of the outer face boundary of a plane graph
G in clockwise order (but not necessarily consecutive). We call r1, r2 and r3 roots. The
suspension Gσ of G is the graph obtained from G by adding at each root of σ a half-edge
pointing into the outer face. With a little abuse of notation, we define a half-edge as an arc
that has a startvertex but no endvertex.

▶ Definition 2 (Felsner [12]). Let σ = {r1, r2, r3} and Gσ be the suspension of a 3-connected
plane graph G. A Schnyder wood of Gσ is an orientation and coloring of the edges of Gσ

(including the half-edges) with the colors 1,2,3 (red, green, blue) such that
(a) Every edge e is oriented in one direction (we say e is unidirected) or in two opposite

directions (we say e is bidirected). Every direction of an edge is colored with one of the
three colors 1,2,3 (we say an edge is i-colored if one of its directions has color i) such
that the two colors i and j of every bidirected edge are distinct (we call such an edge
i-j-colored). Throughout the paper, we assume modular arithmetic on the colors 1,2,3
in such a way that i + 1 and i − 1 for a color i are defined as (i mod 3) + 1 and (i + 1
mod 3) + 1, respectively. For a vertex v, a uni- or bidirected edge is incoming (i-colored)
in v if it has a direction (of color i) that is directed toward v, and outgoing (i-colored)
of v if it has a direction (of color i) that is directed away from v.

(b) For every color i, the half-edge at ri is unidirected, outgoing and i-colored.
(c) Every vertex v has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored

edges e1, e2, e3 of v occur in clockwise order around v. For every color i, every incoming
i-colored edge of v is contained in the clockwise sector around v from ei+1 to ei−1 (see
Figure 1).

(d) No inner face boundary contains a directed cycle (disregarding possible opposite edge
directions) in one color.

For a Schnyder wood and color i, let Ti be the directed graph that is induced by the
directed edges of color i. The following result justifies the name of Schnyder woods.

▶ Lemma 3 ([13,21]). For every color i of a Schnyder wood of Gσ, Ti is a directed spanning
tree of G in which all edges are oriented to the root ri.
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Figure 1 Properties of Schnyder woods. Condition 2c at a vertex.

For a directed graph H, we denote by H−1 the graph obtained from H by reversing the
direction of all its edges.

▶ Lemma 4 (Felsner [15]). For every i ∈ {1, 2, 3}, T −1
i ∪ T −1

i+1 ∪ Ti+2 is acyclic.

▶ Lemma 5 (folklore). Let S be a Schnyder wood of Gσ. Then, G is internally triangulated,
i.e., every face except the outer face is a triangle if and only if every internal edge of G is
unidirected in S.

2.2 Dual Schnyder Woods

Let G be a 3-connected plane graph. Any Schnyder wood of Gσ induces a Schnyder wood of
a slightly modified planar dual of Gσ in the following way [9,14] (see [19, p. 30] for an earlier
variant of this result given without proof). As common for plane duality, we will use the
plane dual operator ∗ to switch between primal and dual objects (also on sets of objects).

Extend the three half-edges of Gσ to non-crossing infinite rays and consider the planar
dual of this plane graph. Since the infinite rays partition the outer face f of G into three
parts, this dual contains a triangle with vertices b1, b2 and b3 instead of the outer face vertex
f∗ such that b∗

i is not incident to ri for every i (see Figure 2). Let the suspended dual Gσ∗ of
Gσ be the graph obtained from this dual by adding at each vertex of {b1, b2, b3} a half-edge
pointing into the outer face.

r1

r2r3

b1

b2 b3

Figure 2 The completion of G obtained by superimposing Gσ and its suspended dual Gσ∗
(the

latter depicted with dotted edges). The primal Schnyder wood is not the minimal element of the
lattice of Schnyder woods of G, as this completion contains a clockwise directed cycle (marked in
yellow).
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Consider the superposition of Gσ and its suspended dual Gσ∗ such that exactly the primal
dual pairs of edges cross (here, for every 1 ≤ i ≤ 3, the half-edge at ri crosses the dual edge
bi−1bi+1).

▶ Definition 6. For any Schnyder wood S of Gσ, define the orientation and coloring S∗ of
the suspended dual Gσ∗ as follows (Figure 2):
(a) For every unidirected (i − 1)-colored edge or half-edge e of Gσ, color e∗ with the two

colors i and i + 1 such that e points to the right of the i-colored direction.
(b) Vice versa, for every i-(i + 1)-colored edge e of Gσ, (i − 1)-color e∗ unidirected such that

e∗ points to the right of the i-colored direction.
(c) For every color i, make the half-edge at bi unidirected, outgoing and i-colored.

The following lemma states that S∗ is indeed a Schnyder wood of the suspended dual.
The vertices b1, b2 and b3 are called the roots of S∗.

▶ Lemma 7 ([18], [14, Prop. 3]). For every Schnyder wood S of Gσ, S∗ is a Schnyder wood
of Gσ∗ .

Since S∗∗ = S, Lemma 7 gives a bijection between the Schnyder woods of Gσ and the
ones of Gσ∗ . Let the completion G̃ of G be the plane graph obtained from the superposition
of Gσ and Gσ∗ by subdividing each pair of crossing (half-)edges with a new vertex, which we
call a crossing vertex (Figure 2). The completion has six half-edges pointing into its outer
face.

Any Schnyder wood S of Gσ implies the following natural orientation and coloring G̃S

of its completion G̃: For any edge vw ∈ E(Gσ) ∪ E(Gσ∗), let z be the crossing vertex of G̃

that subdivides vw and consider the coloring of vw in either S or S∗. If vw is outgoing of v

and i-colored, we direct vz ∈ E(G̃) toward z and i-color it; analogously, if vw is outgoing
of w and j-colored, we direct wz ∈ E(G̃) toward z and j-color it. In the case that vw is
unidirected, say w.l.o.g. incoming at v and i-colored, we direct zv ∈ E(G̃) toward v and
i-color it. The three half-edges of Gσ∗ inherit the orientation and coloring of S∗ for G̃S . By
Definition 6, the construction of G̃S implies immediately the following corollary.

▶ Corollary 8. Every crossing vertex of G̃S has one outgoing edge and three incoming edges
and the latter are colored 1, 2 and 3 in counterclockwise direction.

Using results on orientations with prescribed outdegrees on the respective completions,
Felsner and Mendez [8,13] showed that the set of Schnyder woods of a planar suspension Gσ

forms a distributive lattice. The order relation of this lattice relates a Schnyder wood of Gσ

to a second Schnyder wood if the former can be obtained from the latter by reversing the
orientation of a directed clockwise cycle in the completion. This gives the following lemma.

▶ Lemma 9 ([8, 13]). For the minimal element S of the lattice of all Schnyder woods of Gσ,
G̃S contains no clockwise directed cycle.

We call the minimal element of the lattice of all Schnyder woods of Gσ the minimal
Schnyder wood of Gσ.

▶ Lemma 10 (Di Battista et al. [9]). The boundary of every internal face of G can be
partitioned into six paths P1,3, p2,3, P2,1, p3,1, P3,2 and p1,2 which appear in that clockwise
order. For those paths the following holds (see Figure 3).
(a) Pi,j consists of one edge which is either unidirected i-colored, unidirected j-colored or

i-j-colored. Color i is directed in clockwise direction and color j in counterclockwise
direction around f .

(b) pi,j consists of a possibly empty sequence of i-j-colored edges such that color i is directed
clockwise around f .
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f∗

P1,3

p2,3

P2,1

p3,1

P3,2

p1,2

Figure 3 Illustration for Lemma 10. A face f , the paths on its boundary and the dual edges
incident to f∗. If P1,3 is unidirected 1-colored and p2,3 is non-empty, there is a clockwise cycle in
G̃S , marked in yellow.

2.3 Ordered Path Partitions
We denote paths as tuples of vertices such that consecutive vertices in the tuple are adjacent
in the path. If a path P consists of only one vertex x, we might also write P = x. The
concatenation of two paths P1 and P2 we denote by P1P2.

▶ Definition 11. For any j ∈ {1, 2, 3} and any {r1, r2, r3}-internally 3-connected plane graph
G, an ordered path partition P = (P0, . . . , Ps) of G with base-pair (rj , rj+1) is a tuple of
induced paths such that their vertex sets partition V (G) and the following holds for every
i ∈ {0, . . . , s − 1}, where Vi :=

⋃i
q=0 V (Pq) and the contour Ci is the clockwise walk from

rj+1 to rj on the outer face of G[Vi].
(a) P0 is the clockwise path from rj to rj+1 on the outer face boundary of G, and Ps = rj+2.
(b) Every vertex in Pi has a neighbor in V (G) \ Vi.
(c) Ci is a path.
(d) Every vertex in Ci has at most one neighbor in Pi+1.

By Definition 11a and 11b, G contains for every i and every vertex v ∈ Pi a path from v

to rj+2 that intersects Vi only in v. Since G is plane, we conclude the following.

▶ Lemma 12. Every path Pi of an ordered path partition is embedded into the outer face of
G[Vi−1] for every 1 ≤ i ≤ s.

2.3.1 Compatible Ordered Path Partitions
We describe a connection between Schnyder woods and ordered path partitions that was first
given by Badent et al. [2, Theorem 5] and then revisited by Alam et al. [1, Lemma 1].

▶ Definition 13. Let j ∈ {1, 2, 3} and S be any Schnyder wood of the suspension Gσ of G. As
proven in [1, arXiv version, Section 2.2], the inclusion-wise maximal j-(j + 1)-colored paths
of S then form an ordered path partition of G with base pair (rj , rj+1), whose order is a linear
extension of the partial order given by reachability in the acyclic graph T −1

j ∪ T −1
j+1 ∪ Tj+2;

we call this special ordered path partition compatible with S and denote it by Pj,j+1.

For example, for the Schnyder wood given in Figure 2, P2,3 consists of the six maximal
2-3-colored paths, of which four are single vertices. We denote each path Pi ∈ Pj,j+1 by
Pi := (vi

1, . . . , vi
k) such that vi

1vi
2 is outgoing j-colored at vi

1.

MFCS 2024
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Let Ci be as in Definition 11. By Definition 11c and Lemma 12, every path Pi =
(vi

1, . . . , vi
k) of an ordered path partition satisfying i ∈ {1, . . . , s} has a neighbor vi

0 ∈ Ci−1
that is closest to rj+1 and a different neighbor vi

k+1 ∈ Ci−1 that is closest to rj . We call vi
0

the left neighbor of Pi, vi
k+1 the right neighbor of Pi and P e

i := vi
0Piv

i
k+1 the extension of Pi;

we omit superscripts if these are clear from the context. For 0 < i ≤ s, let the path Pi cover
an edge e or a vertex x if e or x is contained in Ci−1, but not in Ci, respectively.

3 The Candidate Graph H

In this section, we define a special triangulation τ(G) of G. We also give some structural
properties of τ(G). Afterwards, we define our candidate graph H as a subgraph of τ(G).
Then, we are left to show some structural properties of H. First, we show that H is also
a subgraph of G. Then, we argue that H and its co-graph have maximum degree at most
3. And finally, we show that if G is 4-connected, then H is connected. The latter will need
some technical preparation.

Let P be the counterclockwise 3-colored path on the boundary of some internal face. By
Lemma 10, P consists of p2,3 (a possibly empty sequence of 2-3-colored edges) and possibly
P1,3 (an edge which is either unidirected 1-colored, unidirected 3-colored or 1-3-colored).
Since S is minimal, we do not have clockwise cycles in G̃S . Hence, if p2,3 is non-empty, then
P1,3 is either unidirected 3-colored or 3-1-colored (Figure 3), and we might define τ(G) as
follows. A similar construction, but in the reverse direction, is used by Bonichon et al. [5].

▶ Definition 14. Let G be a 3-connected planar graph and let S be the minimal Schnyder wood
of Gσ. Define the internal triangulation τ(G) of G and the Schnyder wood of the σ-suspension
of τ(G) to be the graph and Schnyder wood obtained by modifying every internal face f of
G as follows (Figure 4). Let P be the counterclockwise 3-colored path on the boundary of
f and let v1, . . . , vk be its vertices in counterclockwise order around f . If k ≥ 3, proceed as
follows. Add 3-colored edges v1vk, . . . , vk−2vk directed towards vk and for j = 2, . . . , k − 1
change the color and orientation of vjvj+1 such that vjvj+1 is 2-colored and directed towards
vj. Proceed the same way for the counterclockwise 1-colored path and the counterclockwise
2-colored path on the boundary of f .

Observe that if G is k-connected, then so is τ(G).

v1v4

vk = v5

v2v3

e

(a) An internal face of G.

v1v4

vk = v5

v2v3

e′
e

(b) The corresponding subgraph of τ(G).

Figure 4 Illustration for the definition of τ(G). The counterclockwise 3-colored path P on the
boundary of the face of G is highlighted in yellow.

▶ Lemma 15. For a minimal Schnyder wood of Gσ, Definition 14 yields a minimal Schnyder
wood of the σ-suspension of τ(G).
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▶ Definition 16. Let G be a 3-connected plane graph. Let S be a minimal Schnyder wood of
Gσ such that r1r3 and r3r2 are both edges of G. Define the subgraph H of τ(G) as follows
(Figure 5). Let V (H) = V (τ(G)). The edge set of H is defined in the following. The edges
on the outer face of τ(G) that are either 1-2-colored or 2-3-colored are defined to be in E(H).
Now, we define which of the internal edges of τ(G) are in E(H). For this, we treat the
1-2-colored edges and the 1-3-colored edge like unidirected 1-colored edges. The 2-3-colored
edge we treat like a unidirected 2-colored edge. Then, for all i ∈ {1, 2, 3}, an internal i-colored
edge e of τ(G) is in E(H) if e and two (i + 1)-colored edges form a face. Observe that, by
Definition 2c, this face needs to be right of e w.r.t. the orientation of e.

Figure 5 Illustration for the definition of H. H is depicted in yellow.

▶ Lemma 17. As in Definition 16, treat the 1-2-colored edges and the 1-3-colored edge like
unidirected 1-colored edges and the 2-3-colored edge like a unidirected 2-colored edge. An
edge of τ(G) with head x is in E(H) if and only if it is the first incoming i-colored edge in
clockwise direction at x for some i ∈ {1, 2, 3}.

▶ Lemma 18. H has maximum degree at most 3.

Sketch of proof. Treat the edges of the outer face of τ(G) as described in Definition 16. Let
v ∈ V (H) be a vertex that is not a root vertex. It is possible to argue for the root vertices
in a similar way. We show that, for every i ∈ {1, 2, 3}, of the incoming i-colored and the
outgoing (i + 1)-colored edges at v there is at most one edge in E(H). Assume that at v

there is an incoming edge e = vy ∈ E(H), and w.l.o.g. e is 2-colored. By Definition 16, e

and the outgoing 3-colored edge vx at v form a triangle with another 3-colored edge xy. By
Definition 2c, xy is incoming 3-colored at x. Hence, xy precedes vx in clockwise order around
x. Thus, by Lemma 17, vx /∈ E(H). Furthermore, by Lemma 17, e is the only incoming
2-colored edge at v that is in H.

If at v there is an outgoing edge vw ∈ E(H), and w.l.o.g. vw is 3-colored. Then, by
Definition 16, vw and the at v outgoing 1-colored edge vu are on the boundary of a face
together with another 1-colored edge. By Definition 2c, incoming 2-colored edges at v only
occur in the clockwise sector between vw and vu. As vw and vu are on the same face, this
sector is empty and thus there is no incoming 2-colored edge at v.

Hence, for every i ∈ {1, 2, 3}, of the set of the incoming i-colored edges and the outgoing
(i + 1)-colored edge at v there is at most one edge in E(H). Those three sets cover all edges
incident to v and hence degH(v) ≤ 3. Similar arguments show that also the root vertices
have degree at most 3. ◀

▶ Lemma 19. H is a subgraph of G.

MFCS 2024



77:8 Toward Grünbaum’s Conjecture for 4-Connected Graphs

Proof. Let e ∈ E(τ(G))\E(G) be w.l.o.g. 3-colored with tail v and head w. In the following,
we show that e is no edge of H. This implies that H is a subgraph of G. Let f be the face
of τ(G) that has v and w on the boundary in that clockwise order. Let e′ = wu be the edge
succeeding e on f in clockwise order. As observed in Definition 14, wu is incoming 3-colored
at w (Figure 4). If w ̸= r3, then wv is not the in clockwise order first incoming 3-colored
edge at w in the sense of Lemma 17. Hence, wv /∈ E(H).

So let w = r3. Assume, for the sake of contradiction, that u = r1. The edge uv = r1v

succeeding wu = r3r1 on f in clockwise order is outgoing 2-colored at u by Definition 14
(Figure 4). The only outgoing 2-colored edge at r1 is on the clockwise path from r1 to r2 on
the outer face of τ(G). And hence, v is on that path. As vr3 is unidirected, v ̸= r2. Hence,
{v, r3} is a 2-separator of τ(G) and thus of G, contradicting the 3-connectivity of G. This
implies that u ≠ r1 and thus r1r3 ̸= wu. As above, wv is not the in clockwise order first
incoming 3-colored edge at w in the sense of Lemma 17, and thus, wv /∈ E(H). ◀

▶ Lemma 20. The co-graph ¬H∗ of H in G has maximum degree at most 3. All edges in
E(¬H∗) except (r1r3)∗ are bidirected.

Sketch of proof. We show that all bidirected edges of G except r1r3 are in H. Let e = xy

be a bidirected internal edge in G.
Case 1. x and y are both internal vertices of G. Assume that e is w.l.o.g. a 2-3-colored edge

in G. By Definition 14, e becomes 2-colored and is on a face with two 3-colored edges e1
and e2 in τ(G). As x and y are both internal vertices, e1 and e2 are both internal edges
and, by Lemma 5, unidirected. And thus, e ∈ E(H) by Definition 16.

Case 2. x and y are both on the outer face of G. If they do not appear consecutively, then
they form a 2-separator of G, contradicting the 3-connectivity of G. Thus, xy is an edge
on the outer face of G. Then, by Definition 16, e ∈ E(H) if and only if e ̸= r1r3.

Case 3. W.l.o.g. x is on the outer face of G and y is an internal vertex. This case follows
with similar arguments as Case 1.

Hence, only (r1r3)∗ and the dual edges of unidirected edges might be edges of ¬H∗. By
Corollary 8, the dual edges of unidirected edges in G are bidirected. Also, observe that
(r1r3)∗ is unidirected and points into the outer face of G. Thus, for an internal face f of G

only the outgoing edges of f∗ might be in ¬H∗. Hence, deg¬H∗(f∗) ≤ 3. As, by Definition 16,
only one edge on the boundary of the outer face of G is not in H, the dual of the outer face
has degree 1 in ¬H∗. ◀

The following definition and lemmas are in preparation of the final statement (Proposi-
tion 26) of this section. They study the structure of τ(G) under the assumption that H is
not connected. In the end, they allow us to show that if H is not connected, then there is a
3-separator in G (Figure 6). This yields that if G is 4-connected, then H is connected.

▶ Definition 21. For x ∈ V (τ(G)), define DFS(x) to be the DFS-index of x for a depth first
search on T1 that starts at r1 and explores the children of each vertex in counterclockwise
order.

For a vertex x ∈ V (τ(G)) let p3(x) and p1(x) be the parent of x in T3 and T1, respectively
(Figure 6). Let c2(x) be the vertex such that c2(x)x is the clockwise first incoming 2-colored
edge at x if existent, i.e., c2(x) is the clockwise first child of x in T2. Define ld(x) ("leftmost
descendant") to be the descendant v of x in T1 such that v is a leaf of T1 and DFS(v) is
minimal.

For a set of vertices S ⊆ V (τ(G)) denote the set of the descendants of S in T1 by desc(S).
Define desc+(S) := desc(S) ∪ S.
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ld(x)

p1(x)

v4

c2(v4)
p3(x)

x
v1 v2 v3

Figure 6 Illustration for Proposition 26. If x is not connected to a vertex with smaller DFS-index
in H, then p3(x), p1(x) and vj = v4 form a separating triangle.

▶ Remark 22. Remember that, by Lemma 4, T1
−1 ∪ T2 ∪ T3

−1 is acyclic. Observe that the
DFS-index is a total order of T1

−1 ∪T2 ∪T3
−1. E.g. for an edge xy that is 1-colored incoming

at y we have that DFS(x) > DFS(y).
Also, observe that we obtain the path from x to ld(x) in T1 by descending T1 starting at

x and choosing the counterclockwise first child until we hit a leaf of T1.

▶ Lemma 23. Assume x is not connected to p1(x) in H, i.e., there is no path in H that
has x and p1(x) as endpoints. Then, the situation in τ(G) is as follows. Let v0, . . . , vk be
the DFS-ordered children of p1(x) in T1, i.e., DFS(v0) < . . . < DFS(vk), and x = vt for
some t ∈ {0, . . . , k}. Then, there exists j ∈ {t + 1, . . . , k} such that c2(vj) exists and is not
in desc+(vt, . . . , vk) (Figure 6). We say that x has property B.

Proof. Let the height of a vertex v in T1 be the length of a longest oriented path in T1 from
a leaf of T1 to v. The proof is by induction on the height of p1(x) in T1. Assume that this
height is one. Then, the vertices x = vt, . . . , vk are all leaves in T1. We now show that if
x does not have property B, then x is connected to p1(x) in H. So assume that for every
i ∈ {t + 1, . . . , k} either c2(vi) does not exist or c2(vi) is a vertex of vt, . . . , vk in T1.

If c2(vi) does not exist, for some i ∈ {t + 1, . . . , k}, i.e., vi does not have an incoming
2-colored edge, then, as τ(G) is internally 3-connected, vivi−1 exists and is 3-colored by
Definition 2c. As vip1(x) and vi−1p1(x) are 1-colored, vivi−1 is in H by Definition 16.
Otherwise, c2(vi) = vj for some j ∈ {t, . . . , k}. As observed in Definition 21, DFS(c2(vi)) <

DFS(vi) and hence j ∈ {t, . . . , i − 1}. Since c2(vi)vi is in E(H) by Lemma 17, vj and vi are
connected in H. Hence, in any case vi is connected in H to a vertex vj with j ∈ {t, . . . , i − 1}.
This finally yields that x = vt and vk are connected in H. As vkp1(x) is the clockwise first
incoming 1-colored edge at p1(x), vkp1(x) is in E(H) by Lemma 17. And thus, x = vt and
p1(x) are connected in H.

Assume that the height of p1(x) is at least two. Again, we show that if x does not have
property B, then x and p1(x) are connected in H. As before, we observe that if c2(vi) does
not exist for some i = t + 1, . . . , k, then vi and vi−1 are connected in H. Also, if c2(vi) = vj

for some j ∈ {t, . . . , k}, then j < i and vj and vi are connected in H.
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So assume that c2(vi) is a descendant of vj , j ∈ {t, . . . , k}. For the same reason as above,
j ∈ {t, . . . , i − 1}. Let P be the 1-colored path from c2(vi) to vj in τ(G). P , c2(vi)vi, vip1(x)
and vjp1(x) form a cycle C. Observe that all vertices of C except for p1(x) are descendants
of p1(x). Thus, by planarity, for every vertex in the interior of C the outgoing 1-colored
path meets p1(x) or a descendant of p1(x). And thus, all vertices in the interior of C are
descendants of p1(v) in T1. Let y ̸= vj be a vertex of P . As p1(y) is a descendant of p1(x), it
has smaller height in T1 than p1(x). We want to apply induction on y. Hence, we need to
show that y does not have property B.

Assume, for the sake of contradiction, that y has property B. Then, there is a child
z of p1(y) such that DFS(y) < DFS(z), c2(z) exists and for every child b of p1(y) with
DFS(y) ≤ DFS(b), c2(z) is neither a descendant nor c2(z) = b. Especially, DFS(c2(z)) <

DFS(y). All vertices of C and all vertices in its interior, except for vertices on the 1-colored
path from p1(y) to p1(x), have a higher DFS-index than y. By Lemma 4, c2(z) cannot be on
this path from p1(y) to p1(x). Thus, c2(z) cannot occur on C or in its interior. And hence,
c2(z) needs to be in the exterior of C. As all neighbors of y that have a higher DFS-index
than y are in the interior of C, we have that z is in the interior of C. Hence, c2(z) is in the
exterior and z is in the interior of C, violating planarity.

This yields that y does not have property B and by induction y and p1(y) are connected
in H. This holds for every vertex on P \ {vj}. Thus, vj and c2(vi) are connected in H. By
Lemma 17, c2(vi)vi ∈ E(H), and thus vj and vi are connected in H. As before, we obtain
that x and p1(x) are connected in H. ◀

▶ Lemma 24. If x ∈ V (τ(G)) \ {r1} is not connected to a vertex v with DFS(v) < DFS(x)
in H, then x is not connected to p1(x) in H and x is the child of p1(x) in T1 with smallest
DFS-index. Furthermore, all vertices w on the x-ld(x)-path in T1 are connected to x in H.
And we have for all vertices w on the p1(x)-ld(x)-path in T1 that p3(w) = p3(x) (Figure 6).

Proof. Let x ∈ V (τ(G)) such that x is not connected to a vertex v with DFS(v) < DFS(x).
Let v0, . . . , vk be the DFS-ordered children of p1(x) in T1. First, we show that x = v0. Assume,
for the sake of contradiction, that x = vj with j ∈ {1, . . . , k}. Then, xvj−1 has either color 2
or 3. If it has color 3, then, by Definition 16, xvj−1 is in H and DFS(vj−1) < DFS(x), a
contradiction. If xvj−1 has color 2, then this edge is incoming 2-colored at x, by Definition 2c.
This implies that c2(x) exists. DFS(c2(x)) < DFS(x) and, by Lemma 17, c2(x)x ∈ E(H),
a contradiction. And hence, x = v0.

Assume, for the sake of contradiction, that there exists a vertex w on the x-ld(x)-path
in T1 such that w is not connected to x in H. Choose w such that DFS(w) is minimal.
Then, p1(w) is connected to x in H, and hence, w is not connected to p1(w) in H. Thus, by
Lemma 23, w has property B. Let w = w0, . . . , wk be the DFS-ordered children of p1(w) in
T1. Let j be the maximal index such that c2(wj) exists and is not a descendant of p1(w).
Since w has property B, j exists. Since j is maximal, wj does not have property B. Hence,
by Lemma 23, it is connected to p1(w) in H and thus to x. Since c2(wj)wj ∈ E(H), x is
connected to c2(wj) in H.

As observed in Definition 21, DFS(c2(wj)) < DFS(wj). The DFS-indices of the ver-
tices w0, . . . , wj−1 and their descendants are exactly the indices in between DFS(wj) and
DFS(w0). And the DFS-indices of the vertices on the p1(w)-x-path are exactly the indices
in between DFS(p1(w)) and DFS(x). By Lemma 4, c2(wj) cannot be on the p1(w)-x-path.
Hence, DFS(c2(wj)) < DFS(x), a contradiction. Hence, w is connected to x in H.
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As all vertices on the x-ld(x)-path in T1 are connected to x in H, they all do not have
incoming 2-colored edges. Indeed, incoming 2-colored edges at those vertices would connect
x to a vertex with smaller DFS-index. Since every vertex on the x-ld(x)-path needs to form
a triangle with its parent, the vertex and the parent send their 3-colored outgoing edge to
the same vertex p3(x). ◀

Similar arguments are used to show the following lemma.

▶ Lemma 25. Let x ∈ V (τ(G))\{r1} be not connected to a vertex v with DFS(v) < DFS(x)
in H. Let x = v0, . . . , vk be the DFS-ordered children of p1(x) in T1. Let vj be the vertex
of smallest index such that c2(vj) exists and is not in desc+(v0, . . . , vj−1). Then, the edge
vjp3(x) is in E(τ(G)).

▶ Proposition 26. If G is 4-connected, then H is connected.

Proof. Observe that if G is 4-connected, then so is τ(G). We show that every vertex x ̸= r1
is connected in H to a vertex with lower DFS-index. Assume, for the sake of contradiction,
that x is not connected to a vertex with lower DFS-index. With the help of the previous
lemmas we show that p3(x), p1(x) and vj (as defined in Lemma 23) form a 3-separator in H.
Let v0, . . . , vk be the DFS-ordered children of p1(x) in T1.

By Lemma 23, there exists a vertex vj , j ∈ {1, . . . , k} of smallest DFS-index such that
c2(vj) exists and is not in desc+(v0, . . . , vj−1). Observe that p1(x)vj is an edge of τ(G).

By Lemma 24, x = v0 and all vertices on the p1(x)-ld(x)-path in T1 send their 3-colored
outgoing edge to the same vertex p3(x). Thus, p1(x)p3(x) ∈ E(τ(G)).

By Lemma 25, the edge vjp3(x) exists in τ(G). Hence, the edges vjp3(x), p1(x)p3(x) and
p1(x)vj form a triangle in τ(G). The vertex x is in the interior of this triangle. Assume, for
the sake of contradiction, that r1 is not in the exterior of this triangle. Then, r1 = p1(x) and,
by Lemma 24, x = r3. By Definition 16, r3 is connected to r1 by the clockwise path on the
outer face from r1 to r3. As DFS(r1) < DFS(r3), we arrive at a contradiction. Hence, r1 is
in the exterior of the triangle of vjp3(x), p1(x)p3(x), i.e., this triangle is a separating triangle
in τ(G), contradicting the 4-connectivity of τ(G). This yields that every vertex, except for
r1, is connected to a vertex with lower DFS-index in H, and thus H is connected. ◀

4 A Tree of Maximum Degree 3 and a Co-Tree of Maximum Degree 4

In this section, we give one lemma on the structure of ordered path partitions. Then, we
finally prove the main theorem.

We want to remind the reader of the definition of ordered path partitions and the fact
that the maximal 2-3-colored paths of a Schnyder wood yield the compatible ordered path
partition P2,3.

▶ Lemma 27 ([20]). Let G be a 4-connected plane graph, S be the minimal Schnyder wood
of Gσ and P2,3 = (P0, . . . , Ps) be the ordered path partition that is compatible with S. Let
Pi := (v1, . . . , vk) ̸= P0 be a path of P2,3 and v0 and vk+1 be its left and right neighbor.
Then, every edge vlw /∈ {v0v1, vkvk+1} with vl ∈ Pi and w ∈ Vi−1 is unidirected, 1-colored
and incoming at vk and w /∈ {v0, vk+1}.

▶ Theorem 28. Every 4-connected planar graph G contains a 3-tree such that its co-tree is
a 4-tree.

Sketch of proof. Let S be a minimal Schnyder wood of G such that r1r3 and r3r2 are both
edges of G. By Lemma 9, the completion G̃S of G contains no clockwise directed cycle. By
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Proposition 26 and Lemma 19, G has a connected subgraph H as defined in Definition 16. It
has maximum degree at most 3 by Lemma 18, and its co-graph has maximum degree at most
3 by Lemma 20. Now, we define a subset D of the edges of H such that H − D becomes
acyclic and the degree of its co-graph does not exceed 4.

Let C be a cycle in H. Let P2,3 = (P0, . . . , Ps) be the compatible ordered path partition
of S. Let P be the path of maximal length in C such that P ⊆ PM = (v1, . . . , vk) with
M := max{i | Pi ∩ V (C) ̸= ∅}. P is the index maximal subpath of C.

Since P ⊆ PM is the index maximal subpath of the cycle C, there need to be two edges
in H that join a vertex of P with a vertex of VM−1. Say that those edges are the associated
edges of P . Remember that Vi :=

⋃i
q=0 V (Pq). The Schnyder wood S is minimal. Hence, by

Lemma 27, every edge except for v0v1 and vkvk+1 that joins a vertex of PM with a vertex of
VM−1 is unidirected, 1-colored and incoming in vk. Let eP be the clockwise first incoming
1-colored edge at vk if existent. Otherwise, let eP be vkvk+1. It is possible to show that v0v1
and eP are the only edges in H that join a vertex of P with a vertex of VM−1. This also
directly yields that P = PM .

Let Pmax be the set of all index maximal subpaths of cycles in H. Now, we need to
identify for each P = (v1, . . . , vk) ∈ Pmax an edge of the set E(P ) ∪ {v0v1, eP } such that
removing those edges leaves H acyclic and connected and does not raise the maximum degree
of ¬H∗ above 4. Define D = Duni ∪ Dbi to be this set of edges. Start with Duni = Dbi = ∅.

If eP is unidirected, add it to Duni. Otherwise, if eP is bidirected and v0v1 is unidirected
add v0v1 to Duni. By Lemma 20, all edges of ¬H∗ except for (r1r3)∗ are bidirected. As all
edges in Duni are unidirected, their duals are bidirected, by Corollary 8. Hence, all edges
in ¬H∗ + D∗

uni except for (r1r3)∗ are bidirected. By the same reasoning as in the proof of
Lemma 20, the maximum degree of ¬H∗ + D∗

uni is at most 3.
Let Pbi

max ⊆ Pmax be the paths P = (v1, . . . , vk) such that both v0v1 and eP are bidirected.
Observe that in this case eP = vkvk+1. Hence, we now are in the same situation as in the
proof of the main theorem of [20]. We are able to apply the exact same arguments in order to
obtain the desired set Dbi such that H − D becomes acyclic and ¬H∗ + D∗ remains acyclic
and has maximum degree at most 4. Since H has maximum degree at most 3, so does H − D.
And thus, H − D and ¬H∗ + D∗ are the desired trees. ◀
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