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Abstract
For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph
G and we have to determine whether there exists an edge-preserving mapping φ : V (G) → V (H).
Note that Hom(C3), where C3 is the cycle of length 3, is equivalent to 3-Coloring. The question
of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open
problem. In this paper we study the Hom(C2k+1) problem on bounded-diameter graphs for k ≥ 2,
so we consider all other odd cycles than C3. We prove that for k ≥ 2, the Hom(C2k+1) problem is
polynomial-time solvable on diameter-(k + 1) graphs – note that such a result for k = 1 would be
precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give
subexponential-time algorithms for diameter-(k + 2) and -(k + 3) graphs.

We complement these results with a lower bound for diameter-(2k + 2) graphs – in this class of
graphs the Hom(C2k+1) problem is NP-hard and cannot be solved in subexponential-time, unless
the ETH fails.

Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We
consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show
that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.
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1 Introduction

A natural approach to computationally hard problems is to restrict the class of input graphs,
for example by bounding some parameters. One of such parameters is the diameter, i.e., for a
graph G, its diameter is the least integer d such that for every pair of vertices u, v of G, there is
a u-v path on at most d edges. We say that G is a diameter-d graph, if its diameter is at most
d. Recently, bounded-diameter graphs received a lot of attention [23, 20, 25, 3, 2, 24, 9, 6].
It is known that graphs from real life applications often have bounded diameter, for instance
social networks tend to have bounded diameter [30]. Furthermore, almost all graphs have
diameter 2, i.e., the probability that a random graph on n vertices has diameter 2 tends to
1 when n tends to infinity [21]. Therefore, solving a problem on bounded-diameter graphs
captures a wide class of graphs. On the other hand, not all of the standard approaches can
be used – note that the class of diameter-d graphs is not closed under vertex deletion.

Even if we consider the class of diameter-2 graphs, its members can contain any graph as
an induced subgraph. Indeed, consider any graph G, and let G+ be the graph obtained from
G by adding a universal vertex u, i.e., we add vertex u and make it adjacent to all vertices of
G. It is straightforward to observe that the diameter of G+ is at most 2. This construction
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can be used for many graph problems on diameter-2 graphs as a hardness reduction, which
proves that they cannot be solved in subexponential time under the Exponential Time
Hypothesis (ETH, see [19]), for instance Max Independent Set.

The construction of G+ also gives us a reduction from (k − 1)-Coloring to k-Coloring
on diameter-2 graphs, and thus for any k ≥ 4, the k-Coloring problem on diameter-2
graphs is NP-hard and cannot be solved in subexponential time, unless the ETH fails. Note
that this argument does not work for k = 3 since then we reduce from 2-Coloring, which
is polynomial-time solvable. A textbook reduction from NAE-SAT implies that for d ≥ 4,
the 3-Coloring problem is NP-hard and cannot be solved in subexponential-time, unless
the ETH fails [28]. Therefore, it is only interesting to study 3-Coloring on diameter-2
and -3 graphs. Mertzios and Spirakis proved that 3-Coloring is NP-hard on diameter-3
graphs [25]. However, the question of whether 3-Coloring can be solved in polynomial time
on diameter-2 graphs remains open.

For 3-Coloring on diameter-2 graphs, subexponential-time algorithms were given, first
by Mertzios and Spirakis with running time 2O(

√
n log n) [25]. This was later improved by

Dębski, Piecyk, and Rzążewski, who gave an algorithm with running time 2O(n1/3·log2 n) [9].
They also provided a subexponential-time algorithm for 3-Coloring for diameter-3 graphs.

The 3-Coloring problem on bounded-diameter graphs was also intensively studied on
instances with some additional restrictions, i.e., on graphs with some forbidden induced
subgraphs – and on such graph classes polynomial-time algorithms were given [23, 20, 24].

One of the generalizations of graph coloring are homomorphisms. For a fixed graph
H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G,
and we have to determine whether there exists an edge-preserving mapping φ : V (G) →
V (H), i.e., for every uv ∈ E(G), it holds that φ(u)φ(v) ∈ E(H). Observe that for Kk

being a complete graph on k vertices, the Hom(Kk) problem is equivalent to k-Coloring.
Observe also that the problem is trivial when H contains a vertex x with a loop since
we can map all vertices of G to x. In case when H is bipartite, in fact we have to verify
whether G is bipartite and this can be done in polynomial time. Hell and Nešetřil proved
that for all other graphs H, i.e., loopless and non-bipartite, the Hom(H) problem is NP-
hard [18]. Such a complete dichotomy was provided by Feder, Hell, and Huang also for
the list version of the problem [13]. The graph homomorphism problem and its variants
in various graph classes and under various parametrizations received recently a lot of
attention [26, 15, 14, 4, 5, 7, 8, 14, 27, 17]. We also point out that among all target graphs
H, odd cycles received a lot of attention [16, 1, 10, 31, 22]. Note that the cycle on 5 vertices
is the smallest graph H such that the Hom(H) problem is not equivalent to graph coloring.

Our contribution. In this paper we consider the Hom(C2k+1) problem on bounded-diameter
graphs, where C2k+1 denotes the cycle on 2k + 1 vertices. Note that for k = 1, we have C3,
so this problem is equivalent to 3-Coloring. In this work we consider all other values of k.
Our first result is the following.

▶ Theorem 1. Let k ≥ 2. Then Hom(C2k+1) can be solved in polynomial time on diameter-
(k + 1) graphs.

Note that such a result for k = 1 would yield a polynomial-time algorithm for 3-Coloring
on diameter-2 graphs. Let us discuss the crucial points where this algorithm cannot be
applied directly for k = 1. The first property, which holds for every cycle except C3 and C6,
is that if for some set S of vertices, any two of them have a common neighbor, then there
is a vertex that is a common neighbor of all vertices of S. Furthermore, for every cycle of
length at least 5 except C6, for a set S of 3 vertices, every vertex of S has a private neighbor
with respect to S, i.e., a neighbor that is non-adjacent to any other vertex of S.
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Table 1 Complexity of Hom(C2k+1) on bounded-diameter graphs. The symbol in the cell (k, d)
denotes that Hom(C2k+1) on diameter-d, resp., P – is polynomial-time solvable, NP-h – is NP-hard,
S – can be solved in subexponential time, and NS – cannot be solved in subexponential time under
the ETH. The rows for k ≥ 2 are filled due to Theorems 1–3. The first row is based on [25, 9].

k / diam 1 2 3 4 5 6 7 8 9 ≥ 10
1 P S S, NP-h NS NS NS NS NS NS NS
2 P P P S S NS NS NS NS NS
3 P P P P S S ? ? NS NS
4 P P P P P S S ? ? NS

≥ 5 P P P P P P S S ? ?

We first show that for an instance of Hom(C2k+1), for each vertex v we can deduce the
set of vertices it can be mapped to and define a list of v – all lists are of size at most 3. The
properties discussed above allow us to encode coloring of a vertex with list of size 3 using
its neighbors with lists of size two, and such a reduced instance of a slightly more general
problem (we have more constraints than just the edges, but all of them are binary) can be
solved in polynomial time by reduction to 2-SAT, similar to the one of Edwards [11].

Furthermore, we give subexponential-time algorithms.

▶ Theorem 2. Let k ≥ 2. Then Hom(C2k+1) can be solved in time:

(1.) 2O((n log n)
k+1
k+2 ) on diameter-(k + 2) n-vertex graphs,

(2.) 2O((n log n)
k+2
k+3 ) on diameter-(k + 3) n-vertex graphs.

Here the branching part of the algorithm is rather standard. The more involved part is to
show that after applying braching and reduction rules we are left with an instance that can
be solved in polynomial time. Similar to Theorem 1, we first analyze the lists of all vertices,
and then reduce to an instance of more general problem where all lists are of size at most 2.

We complement Theorem 1 and Theorem 2 with the following NP-hardness result – since
our reduction from 3-SAT is linear, we also prove that the problem cannot be solved in
subexponential time under the ETH. The summary of the results is presented in Table 1.

▶ Theorem 3 (♠). Let k ≥ 2. Then Hom(C2k+1) is NP-hard on diameter-(2k + 2) graphs
(of radius k + 1) and cannot be solved in subexponential time, i.e., there is no algorithm
solving every n-vertex instance G of Hom(C2k+1) in time 2o(n) · nO(1), unless the ETH fails.

The next direction we study in the paper is the following. Instead of considering larger
odd cycles and apropriate diameter, we focus on diameter-2 input graphs, but we change
the target graph to arbitrary H. Note that it only makes sense to consider graphs H of
diameter-2, since the homomorphic image of a diameter-2 graph has to induce a diameter-2
subgraph. We consider triangle-free target graphs. We point out that the class of triangle-free
diameter-2 graphs is still very rich, for instance, contains all Mycielski graphs.

▶ Theorem 4. Let H be a triangle-free graph. Then the Hom(H) problem can be solved in
polynomial time on diameter-2 graphs.

Finally, let us point out that we actually prove stronger statements of Theorem 1,
Theorem 2, Theorem 4 as we consider more general list version of the problem.

The proofs of statements marked with ♠ can be found in the full version of the paper [29].

MFCS 2024
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2 Preliminaries

For a vertex v, by NG(v) we denote the neighborhood of v in G, and for a set U ⊆ V (G), we
denote NG(U) :=

⋃
u∈U NG(u) \ U . By distG(u, v) we denote the length (number of edges)

of a shortest u-v path in G. For a positive integer d, by N≤d
G (v) we denote the set of all

vertices u ∈ V (G) such that distG(u, v) ≤ d. If G is clear from the contex, we omit the
subscript G and simply write N(v), N(U), N≤d(v), and dist(u, v). A diameter of G, denoted
by diam(G), is the maximum dist(u, v) over all pairs of vertices u, v ∈ V (G). We say that G

is diameter-d graph if diam(G) ≤ d. A radius of G is the minimum integer r such that there
is a vertex z ∈ V (G) such that for every v ∈ V (G), it holds that dist(v, z) ≤ r. By [n] we
denote the set {1, 2, . . . , n} and by [n]0 we denote {0, 1, . . . , n}. Throughout this paper all
graphs we consider are simple, i.e., no loops, no multiple edges.

Homomorphisms. For graphs G, H, a homomorphism from G to H is an edge-preserving
mapping φ : V (G) → V (H), i.e., for every uv ∈ E(G), it holds φ(u)φ(v) ∈ E(H). For
fixed H, called target, in the homomorphism problem, denoted by Hom(H), we are given
a graph G, and we have to determine whether there exists a homomorphism from G to
H. In the list homomorphism problem, denoted by LHom(H), G is given along with lists
L : V (G) → 2V (H), and we have to determine if there is a homomorphism φ from G to H

which additionally respects lists, i.e., for every v ∈ V (G) it holds φ(v) ∈ L(v). We will write
φ : G → H (resp. φ : (G, L) → H) if φ is a (list) homomorphism from G to H, and G → H

(resp. (G, L) → H) to indicate that such a (list) homomorphism exists. Since the graph
homomorphism problem generalizes graph coloring we will often refer to homomorphism as
coloring and to vertices of H as colors. For an instance (G, L) and an induced subgraph G′

of G while refering to a subinstance (G′, L|G′), we will often simply write (G′, L).

Cycles. Whenever C2k+1 is the target graph, we will denote its vertex set by [2k]0, unless
stated explicitly otherwise. Moreover, whenever we refer to the vertices of the (2k + 1)-cycle,
i.e., cycle on 2k + 1 vertices, by + and − we denote respectively the addition and the
subtraction modulo 2k + 1.

Lists. For an instance (G, L) of LHom(C2k+1), by Vi we denote the set of vertices v of G

such that |L(v)| = i. Sometimes we will refer to vertices of V1 as precolored vertices. We also
define V≥i =

⋃
j≥i Vj . We say that a list L(v) is of type (ℓ1, . . . , ℓr) if |L(v)| = r + 1 and its

vertices can be ordered c0, . . . , cr so that for every i ∈ [r − 1]0, we have that ci+1 = ci + ℓi.
For example, for k ≥ 4, one of the types of the list {1, 4, 6, 7} is (3, 2, 1).

Binary CSP and 2-SAT. For a given set (domain) D, in the Binary Constraint Satis-
faction problem (BCSP) we are given a set V of variables, list function L : V → 2D, and
constraint function C : V × V → 2D×D. The task is to determine whether there exists an
assignment f : V → D such that for every v ∈ V , we have f(v) ∈ L(v) and for every pair
(u, v) ∈ V × V , we have (f(u), f(v)) ∈ C(u, v). Clearly, any instance of LHom(H) can be
seen as an instance of BCSP, where the domain D is V (H), list function remains the same,
and for every edge uv ∈ E(G) we set C(u, v) = {(x, y) | xy ∈ E(H)} and for every uv /∈ E(G)
we set C(u, v) = V (H) × V (H). We will denote by BCSP(H, G, L) the instance of BCSP
corresponding to the instance (G, L) of LHom(H). Standard approach of Edwards [11] with
a reduction to 2-SAT implies that in polynomial time we can solve an instance of BCSP
with all list of size at most two.
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▶ Theorem 5 (Edwards [11]). Let (V, L, C) be an instance of BCSP over the domain D.
Assume that for every v ∈ V it holds |L(v)| ≤ 2. Then we can solve the instance (V, L, C) in
polynomial time.

3 Reduction rules and basic observations

In this section we define reduction rules and show some basic observations.

Reduction rules

Let H be a graph and let (G, L) be an instance of LHom(H). We define the following
reduction rules.
(R1) If H = C2k+1 and G contains an odd cycle of length at most 2k − 1, then return NO.
(R2) If H = C2k+1 and in G there are two (2k+1)-cycles with consecutive vertices respectively

c0, . . . , c2k and c′
0, . . . , c′

2k and such that c0 = c′
0 and ci = c′

j for some i, j ̸= 0, then a)
if i = j, then identify cℓ with c′

ℓ for every ℓ ∈ [2k], b) if i = −j, then identify cℓ with
c′

(−ℓ) for every ℓ ∈ [2k], c) otherwise return NO.
(R3) For every edge uv, if there is x ∈ L(u) such that NH(x) ∩ L(v) = ∅, then remove x

from L(u).
(R4) If there is v ∈ V (G) such that L(v) = ∅, then return NO.
(R5) For every v ∈ V (G), if there are x, y ∈ L(v) such that for every u ∈ NG(v), we have

NH(x) ∩ L(u) ⊆ NH(y) ∩ L(u), then remove x from L(v).
(R6) For a vertex x ∈ V (H), and vertices u, v ∈ V (G) such that L(u) = L(v) = {x}, if

uv ∈ E(G), then return NO, otherwise contract u with v.

Clearly, each of the above reduction rules can be applied in polynomial time. The
following lemma shows that the reduction rules are safe.

▶ Lemma 6. After applying each reduction rule to an instance (G, L) of LHom(H), we
obtain an equivalent instance with diameter at most diam(G).

Proof. First, any odd cycle cannot be mapped to a larger odd cycle, so the reduction rule
(R1) is safe. Furthermore, for any (2k + 1)-cycle, in any list homomorphism to C2k+1, its
consecutive vertices have to be mapped to consecutive vertices of C2k+1. Let c0, . . . , c2k and
c′

0, . . . , c′
2k be the vertices of two (2k + 1)-cycles such that c0 = c′

0 and ci = c′
j for some

i, j ̸= 0. Suppose we are dealing with a yes-instance and let φ : (G, L) → C2k+1. Without
loss of generality assume that φ(c0) = φ(c′

0) = 0 and φ(ci) = φ(c′
j) = i. Then φ(cs) = s for

every s ∈ [2k]0. Moreover, either j = i or j = −i, and φ(c′
s) = s for every s ∈ [2k]0 in the

first case, or φ(c′
s) = −s for every s ∈ [2k]0 in the second case. Therefore, the reduction rule

(R2) is safe.
Let uv ∈ E(G) be such that there is x ∈ L(u) such that N(x) ∩ L(v) = ∅. Suppose that

there is a list homomorphism φ : (G, L) → C2k+1 such that φ(u) = x. Then v must be
mapped to a vertex from N(x)∩L(v) = ∅, a contradiction. Thus we can safely remove x from
L(u), and (R3) is safe. Clearly, if any list of a vertex is an empty set, then we are dealing
with a no-instance and thus (R4) is safe. Finally, assume there is v ∈ V (G) and x, y ∈ L(v)
such that for every u ∈ NG(v), it holds NH(x) ∩ L(u) ⊆ NH(y) ∩ L(u), and suppose there is
a list homomorphism φ : (G, L) → H such that φ(v) = x. Then φ′ defined so that φ′(v) = y

and φ′(w) = φ(w) for w ∈ V (G) \ {v} is also a list homomorphism (G, L) → H. Therefore,
(R5) is safe. If two vertices have the same one-element list, then they must be mapped to
the same vertex. Since we only consider loopless graphs H, adjacent vertices of G cannot be

MFCS 2024
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mapped to the same vertex. Therefore, if two vertices u, v of G have lists L(v) = L(u) = {x}
for some x ∈ V (H), then if uv ∈ E(G) we are dealing with a no-instance. Otherwise, we can
identify u and v and thus (R6) is safe. ◀

In the following lemma we describe the lists of vertices that are at some small distance of
a precolored vertex.

▶ Lemma 7. Let k ≥ 2 and let (G, L) be an instance of LHom(C2k+1). Let u ∈ V (G) be
such that L(u) = {i} and let v ∈ V (G) be such that dist(u, v) = d. If none of the reduction
rules can be applied, then
a) L(v) ⊆ {i − d, i − d + 2, . . . , i − 2, i, i + 2, . . . , i + d − 2, i + d} if d is even,
b) L(v) ⊆ {i − d, i − d + 2, . . . , i − 1, i + 1, . . . , i + d − 2, i + d} if d is odd.

Proof. Let P be a shortest u-v path such that the consecutive vertices of P are u =
p0, p1, . . . , pd = v. We have L(p0) = {i}. Since the reduction rule (R3) cannot be applied for
p0p1, we must have L(p1) ⊆ {i − 1, i + 1}. Applying this reasoning to consecutive vertices of
the path, for j ∈ [d], we must have

L(v) ⊆ {i − j, i − j + 2, . . . , i − 2, i, i + 2, . . . , i + j − 2, i + j},

if j is even,

L(v) ⊆ {i − j, i − j + 2, . . . , i − 1, i + 1, . . . , i + j − 2, i + j},

if j is odd, which completes the proof. ◀

The next lemma immediately follows from Lemma 7.

▶ Lemma 8. Let k ≥ 2 and let (G, L) be an instance of LHom(C2k+1). Let u, w ∈ V (G) be
such that L(u) = {i} and L(w) = {i+1}. Let v ∈ V (G) be such that dist(u, v) = dist(w, v) =
k + ℓ. If none of the reduction rules can be applied, then L(v) ⊆ {i + k − ℓ + 1, i + k − ℓ +
2, . . . , i + k + ℓ + 1}.

In the following lemma we show that for a partial mapping φ : V (G) → [2k]0 for k ≥ 2,
for v ∈ V (G), if every pair (a, b) of its neighbors is precolored so that φ(a) and φ(b) have
a common neighbor in L(v), then φ can be extended to v so that it preserves the edges
containing v.

▶ Lemma 9. Let k ≥ 2, let (G, L) be an instance of LHom(C2k+1) and let v ∈ V (G). Let
φ : N(v) → [2k]0 be a mapping such that for every a, b ∈ N(v), we have that NC2k+1(φ(a)) ∩
NC2k+1(φ(b)) ∩ L(v) ̸= ∅. Then

⋂
u∈N(v) NC2k+1(φ(u)) ∩ L(v) ̸= ∅.

Proof. Define A = {φ(u) | u ∈ N(v)}. If |A| ≤ 2, then the statement clearly follows. We
will show that this is the only case. So suppose that |A| ≥ 3. If two distinct vertices of C2k+1
for k ≥ 2 have a common neighbor, then they must be at distance exactly two. Without
loss of generality, let 0, 2 ∈ A and 1 ∈ L(v). Moreover, let i ∈ A \ {0, 2}. By assumption
NC2k+1(i) ∩ NC2k+1(0) ̸= ∅, so i = 2k − 1. On the other hand, NC2k+1(i) ∩ NC2k+1(2) ̸= ∅, so
i = 4. Thus 2k − 1 = 4, a contradiction. ◀

In the next lemma we show that for an odd cycle C and a vertex v there is at least one
pair of consecutive vertices of C with equal distances to v.

▶ Lemma 10. Let G be a connected graph, let C be a cycle in G with consecutive vertices
c0, . . . , c2k, and let v ∈ V (G) \ V (C). Then there is i ∈ [2k]0 such that dist(v, ci) =
dist(v, ci+1).



M. Piecyk 78:7

Proof. First observe, that for all i, we have | dist(v, ci)−dist(v, ci+1)| ≤ 1 since cici+1 ∈ E(G).
Therefore, going around the cycle the distance from v to ci can increase by 1, decrease by
1, or remain the same. Since we have to end up with the same value at the end and the
length of the cycle is odd, there is at least one pair of consecutive vertices ci, ci+1 such that
dist(v, ci) = dist(v, ci+1). ◀

4 Polynomial-time algorithm

In this section we prove Theorem 1. In fact we prove a stronger statement for the list version
of the problem.

▶ Theorem 11. Let k ≥ 2. Then LHom(C2k+1) can be solved in polynomial time on
diameter-(k + 1) graphs.

Proof. Let (G, L) be an instance of LHom(C2k+1) such that G has diameter at most k + 1.
First for every i ∈ [2k]0 we check whether there is a list homomorphism φ : (G, L) → C2k+1
such that no vertex is mapped to i, so we look for a list homomorphism to a path which can
be done in polynomial time by [12].

If there is no such a list homomorphism, then we know that all colors have to be used
and thus we guess 2k + 1 vertices that will be mapped to distinct vertices of C2k+1. Let
c0, . . . , c2k be the vertices such that ci is precolored with i. We check whether such a partial
assignment satisfies the edges with both endpoints precolored. Moreover, if ci, ci+1 are
non-adjacent, we add the edge cici+1 – this operation is safe as ci, ci+1 are precolored with
consecutive vertices of C2k+1 and adding an edge does not increase the diameter. Finally, we
exhaustively apply the reduction rules.

Observe that the vertices c0, . . . , c2k induce a (2k + 1)-cycle C. Suppose there is a vertex
v that after the above procedure is not on C. By Lemma 10, there is i ∈ [2k]0 such that
dist(v, ci) = dist(v, ci+1) =: ℓ.

First we show that we cannot have ℓ ≤ k. Suppose otherwise. Let P1, P2 be shortest
v-ci-, and v-ci+1-paths, respectively. Let u be the their last common vertex (it cannot be
ci or ci+1 as the distances are the same and ci, ci+1 are adjacent). Note that since P1, P2
are shortest, the u-ci-path P ′

1 obtained from P1 and the u-ci+1-path P ′
2 obtained from P2

have the same length. Therefore we can construct a cycle by taking P ′
1, P ′

2 and the edge
cici+1. The length of the cycle is odd, and it is at most 2k + 1. This cycle contains at least
two vertices from C, so either it should be contracted by (R2) or (R1) would return NO.
Therefore we cannot have ℓ ≤ k, and thus, since diam(G) ≤ k + 1, we have ℓ = k + 1.

By Lemma 8, for v ∈ V≥3, we have that L(v) ⊆ {i + k, i + k + 1, i + k + 2}. Therefore,
all lists of our instance have size at most 3. Moreover, each vertex of V3 has list of type
(1, 1). Furthermore, since (R3) cannot be applied, for a vertex with list {j, j + 1, j + 2},
the possible lists of its neighbors in G[V3] are then {j − 1, j, j + 1}, {j, j + 1, j + 2}, and
{j + 1, j + 2, j + 3}.

For a list {i, j, r} of type (1, 1), where j is the vertex such that j = i + 1 and j = r − 1,
we will call j the middle vertex of {i, j, r}. For a homomorphism φ we will say that a vertex
v ∈ V3 is φ-middle, if φ maps v to the middle vertex of its list.

Now consider a connected component S of G[V3], let v ∈ V (S), and let L(v) = {j −
1, j, j + 1}. The following claim is straightforward.

▷ Claim 12. Suppose there is a list homomorphism φ : (S, L) → C2k+1. Then
(1.) if v is φ-middle, then any u ∈ NS(v) with list {j − 1, j, j + 1} cannot be φ-middle, and

every w ∈ NS(v) with list {j − 2, j − 1, j} or {j, j + 1, j + 2} has to be φ-middle,
(2.) if v is not φ-middle, then every u ∈ NS(v) with list {j − 1, j, j + 1} has to be φ-middle,

and any w ∈ NS(v) with list {j − 2, j − 1, j} or {j, j + 1, j + 2} cannot be φ-middle.
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Thus deciding if one vertex of S is φ-middle, already determines for every vertex of S if
it is φ-middle or not. It is described more formally in the following claim, whose proof can
be found in the full version of the paper [29].

▷ Claim 13 (♠). In polynomial time we can either (1) construct a partition (U1, U2) of
V (S) (U1, U2 might be empty) such that for every list homomorphism φ : (S, L) → C2k+1,
either all vertices of U1 are φ-middle and no vertex of U2 is φ-middle, or all vertices of U2
are φ-middle and no vertex of U1 is φ-middle, or (2) conclude that we are dealing with a
no-instance.

Therefore, for every connected component S of G[V3] we solve two subinstances:
(I1) (S, L1), where for every v ∈ V (S) with list {i−1, i, i+1} for some i ∈ [2k]0, L1(v) = {i}

if v ∈ U1 and L1(v) = {i − 1, i + 1} if v ∈ U2,
(I2) (S, L2), where for every v ∈ V (S) with list {i−1, i, i+1} for some i ∈ [2k]0, L2(v) = {i}

if v ∈ U2 and L2(v) = {i − 1, i + 1} if v ∈ U1.

Note that both subinstances have all lists of size at most two and thus can be solved in
polynomial time by Theorem 5. If for some component in both cases we obtain NO, then we
return NO.
Creating a BCSP instance. Let (V (G), L, C) = BCSP(C2k+1, G[V1 ∪ V2], L). We will
modify now the instance (V (G), L, C) so it is equivalent to the instance (G, L). For every
v ∈ V3 and for every pair of a, b ∈ N(v) ∩ V2, we leave in C(a, b) only these pairs of vertices
that have a common neighbor in L(v) – recall that by Lemma 9 this ensures us that there
will be color left for v. Furthermore, for every connected component S of G[V3], we add
constraints according to which of the two possibilities S can be properly colored (possibly
S can be colored in both cases) as follows. Let v ∈ V (S) with L(v) = {i − 1, i, i + 1}, and
without loss of generality assume that v ∈ U1. The neighbors of v in V2 have lists {i − 1, i}
and {i, i + 1}. For each such v:

if S cannot be properly colored so that vertices of U1 are middle (v is colored with i), we
remove i − 1 and i + 1 from the lists of neigbors of v,
if S cannot be properly colored so that vertices of U1 are not middle (v is colored with
one of i − 1, i + 1), we remove i from the lists of neigbors of v.
Moreover, for every u ∈ V (S) with list {j − 1, j, j + 1}, for every neighbor u′ ∈ V2 ∩ N(u),
and for every v′ ∈ V2 ∩ N(v), if u ∈ U1, then we remove from C(u′, v′) pairs (j, i + 1),
(j, i − 1), (j − 1, i), (j + 1, i), and if u ∈ U2, then we remove from C(u′, v′) the pairs (j, i),
(j − 1, i − 1), (j − 1, i + 1), (j + 1, i − 1), (j + 1, i + 1).

This completes the construction of BCSP instance (V (G), L, C). By Theorem 5 we solve
(V (G), L, C) in polynomial time.
Correctness. The detailed proof of correctness can be found in the full version of the
paper [29].

▷ Claim 14 (♠). (V (G), L, C) is a yes-instance of BCSP iff (G, L) is a yes-instance of
LHom(C2k+1).

Let us only mention here the idea behind each of introduced constraints. First, we start
with BCSP(C2k+1, G[V1 ∪ V2], L), so that the assignment restricted to V1 ∪ V2 can be a
list homomorphism φ on (G[V1 ∪ V2], L). The remaining constraints ensure us that we can
extend φ to each connected component S of G[V3]. First, we make sure that for every vertex
v ∈ V (S), there is a color left for v in L(v) – it is a necessary condition. Observe that for a
vertex v with list {i − 1, i, i + 1}, if the neighbors of v in V2 are mapped so that there is a
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color left for v, then either they are colored with i − 1, i + 1 and the color left for v is i, or
all such neighbors are colored with i, and both i − 1, i + 1 are left for v (unless one of them
is not on L(v)). Therefore, we can assume that v has the same list as in one of the instances
(I1) and (I2). Moreover, because of the last introduced constraint, all vertices of S have lists
corresponding to the same instance, say (I1). Finally, if these lists are still present, then we
know that (I1) is a yes-instance, and φ can be extended to S. This completes the proof. ◀

5 Subexponential-time algorithms

In this section we prove the following stronger version of Theorem 2.

▶ Theorem 15. Let k ≥ 3. Then LHom(C2k+1) can be solved in time:

(1.) 2O((n log n)
k+1
k+2 ) on n-vertex diameter-(k + 2) graphs,

(2.) 2O((n log n)
k+2
k+3 ) on n-vertex diameter-(k + 3) graphs.

We start with defining branching rules crucial for our algorithm.

Branching rules. Let k ≥ 2, let (G, L) be an instance of LHom(C2k+1) and let d ≥ diam(G).
Let µ =

∑2k+1
ℓ=2 ℓ · |Vℓ|. We define the following branching rules.

(B1) If there is a vertex v ∈ V≥2 with at least (µ log µ)1/d neighbors in V≥2, for some a ∈ L(v),
we branch on coloring v with a or not, i.e., we create two instances Ia = (G, La),
I ′

a = (G, L′
a) such that La(u) = L′

a(u) = L(u) for every u ∈ V (G)\{v}, and La(v) = {a}
and L′

a(v) = L(v) \ {a}.
(B2) We pick a vertex v and branch on the coloring of N≤d−1[v]∩V≥2, i.e., for every mapping

f of N≤d−1[v] ∩ V≥2 that respects the lists, we create a new instance If = (G, Lf ) such
that Lf (u) = L(u) for u /∈ N≤d−1[v]∩V≥2 and Lf (w) = {f(w)} for w ∈ N≤d−1[v]∩V≥2.

Algorithm Recursion Tree

Let us describe an algorithm that for fixed d takes an instance (G, L) of LHom(C2k+1)
with a fixed precolored (2k + 1)-cycle C and such that diam(G) ≤ d, and returns a rooted
tree R whose nodes are labelled with subinstances of (G, L). We first introduce the root
r of R and we label it with (G, L). Then for every node we proceed recursively as follows.
Let s be a node labelled with an instance (G′, L′) of LHom(C2k+1). We first exhaustively
apply to (G′, L′) reduction rules and if some of the reduction rules returns NO, then s does
not have any children. Otherwise, if possible, we apply branching rule (B1). We choose
a ∈ L(v) for (B1) as follows. If on NG′[V≥2](v) there are no lists of type (2), then we take
any a ∈ L(v). Otherwise, let S be the most frequent list of type (2) on NG′[V≥2](v), and let
S = {j − 1, j + 1} for some j ∈ [2k]0. Then we take any a ∈ L(v) \ {j}. After application of
(B1), we exhausively apply reduction rules to each instance. Furthermore, for each instance
created by (B1), we create a child node of s and we label it with that instance.

So suppose that (B1) cannot be applied. We proceed as follows.

Case 1: there is no vertex v such that dist(v, ci) = dist(v, ci+1) = k + 3 for some
i ∈ [2k]0. Then we apply the branching rule (B2) once, we exhausively apply reduction
rules, and again for each instance created by (B2), we introduce a child node of s. The choice
of v is not completely arbitrary. If possible, we choose v so that dist(v, C) ≥ ⌈ d

2 ⌉ – note that
the cycle C is present in all instances of R.
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Case 2: there exists at least one vertex v such that dist(v, ci) = dist(v, ci+1) = k + 3
for some i ∈ [2k]0. For every i ∈ [2k]0, we choose (if exists) a vertex v such that
dist(v, ci) = dist(v, ci+1) = k + 3, and again, if possible, we choose v so that dist(v, C) ≥ ⌈ d

2 ⌉.
For each such v, we apply the branching rule (B2) and exhaustively reduction rules, and the
children of s are those introduced for all instances created in all applications of (B2).

In both cases, we do not recurse on the children of s for which we applied (B2). Let us
analyze the running time of Recursion Tree and properties of the tree R.

▶ Lemma 16. Given an instance (G, L) of LHom(C2k+1) with a fixed precolored (2k + 1)-
cycle C and such that n = |V (G)|, diam(G) ≤ d, the algorithm Recursion Tree in time
2O((n log n)

d−1
d ) returns a tree R whose nodes are labelled with instances of LHom(C2k+1)

and (G, L) is a yes-instance if and only if at least one instance corresponding to a leaf of R
is a yes-instance.

Proof. First we show that for every node s of R the corresponding instance is a yes-instance
if and only if at least one instance corresponding to a child of s is a yes-instance. Let s

be a node of R and let (G′, L′) be the corresponding instance. The algorithm Recursion
Tree applies first reduction rules to (G′, L′) and by Lemma 6, we obtain equivalent instance.
Furthermore, we applied to (G′, L′) either (B1) or (B2) where the branches correspond to
all possible colorings of some set of vertices so indeed (G′, L′) is a yes-instance if and only
if at least one instance corresponding to a child of s is a yes-instance. Since the root of R
is labelled with (G, L), we conclude that (G, L) is a yes-instance if and only if at least one
instance corresponding to a leaf of R is a yes-instance.

It remains to analyze the running time. Let F (µ) be the upper bound on the running
time of Recursion Tree applied to an instance (G′, L′) with µ =

∑2k+1
ℓ=2 ℓ · |Vℓ|. Let p(n)

be a polynomial such that the reduction rules can be exhaustively applied to an instance
on n vertices in time p(n) – note that each reduction rule either decreases the number of
vertices/sizes of lists or returns NO, so indeed exhaustive application of reduction rules can
be performed in polynomial time. Observe that if we apply (B1) to (G′, L′), then

F (µ) ≤ F

(
µ − (µ log µ)1/d

2k + 1

)
+ F (µ − 1) + 2 · p(n).

Indeed, let v be the vertex to which we apply (B1). If there are no lists of type (2) on
NG′[V≥2](v), then in the branch where we set L(v) = {a}, after application of reduction rules,
every neighbor of v must have L(v) ⊆ {a − 1, a + 2}. If |L(v)| ≥ 2 and L(v) ̸= {a − 1, a + 1},
then |L(v)| ∩ {a − 1, a + 1}| < |L(v)|. Therefore, in this case we decrease sizes of all lists on
NG′[V≥2](v). Otherwise, we chose a ∈ L(v) \ {j}, where {j − 1, j + 1} is the most frequent
list of type (2) on NG′[V≥2](v). Since there are exactly 2k + 1 lists of type (2), at least

1
2k+1 -fraction of NG′[V≥2](v) has list of different type than (2) or has list {j − 1, j + 1}. Thus,
for the branch where we set L(v) = {a}, the sizes of lists of at least 1

2k+1 · (µ log µ)1/d vertices
decrease. In the branch where we remove a from L(v), we decrease the size of L(v) at least
by one. In both branches we apply the reduction rules, so the desired inequality follows.

If we apply (B2) to (G′, L′) – recall that we stop recursing in this case – and if we are in
Case 1, then we obtain

F (µ) ≤ (2k + 1)(µ log µ)
d−1

d · p(n),

since we guess the coloring on N≤d−1
G′[V≥2](v) whose size is bounded by (µ log µ) d−1

d (in this
case we could not apply (B1) so the degrees in G′[V≥2] are bounded by (µ log µ)1/d) and the
number of possible colors is at most 2k + 1.
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In Case 2, we have:

F (µ) ≤ (2k + 1)(2k+1)·(µ log µ)
d−1

d · p(n),

where additional (2k + 1) in the exponent comes from the fact that we applied (B2) possibly
(2k + 1) times.

We can conclude that F (µ) ≤ 2O((µ log µ)
d−1

d ) (see for example [9], proof of Theorem 7)
which combined with the inequality µ ≤ (2k + 1)n = O(n) completes the proof. ◀

The following lemma shows that we can solve every instance corresponding to a leaf of R
in polynomial time. We only sketch the proof here – for the full proof see [29].

▶ Lemma 17 (♠). Let (G′, L′) be an instance of LHom(C2k+1) such that diam(G′) ≤
k + 3 and let C be a fixed precolored (2k + 1)-cycle. Assume that we applied algorithm
Recursion Tree to (G′, L′) and let R be the resulting recursion tree. Let (G, L) be as
instance corresponding to a leaf in R. Then (G, L) can be solved in polynomial time.

Sketch of proof. By Lemma 10, for every vertex u outside the cycle C, there must be
j ∈ [2k]0 such that dist(u, cj) = dist(u, cj+1). Since the reduction rules (R1), (R2) cannot
be applied and diam(G) ≤ k + 3, then that distance is either k + 1, k + 2, or k + 3. In case
of k + 1 or k + 2 by Lemma 8 have that L(u) ⊆ {i − 2, i − 1, i, i + 1, i + 2} for some i ∈ [2k]0,
and in case of k + 3 we have L(u) ⊆ {i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3} for some i ∈ [2k]0.

Moreover, since for (B2), if we could, we chose vertex v whose distance from C is at
least ⌈ d

2 ⌉, each vertex of V≥3 is at distance ⌊ d
2 ⌋ from C. Indeed, every vertex u′ that was

in N≤d
G[V ≥2](v) has list of size at most 2, as we guessed a color either for u′ or at least one

of its neighbors. So for any vertex u left in V≥3, the shortest u-v path (whose length is at
most the diameter d) should contain a vertex from C and length of that path is at least
dist(v, C) + dist(u, C). So either all vertices outside C were at distance at most ⌊ d

2 ⌋ or v

was at distance at least ⌈ d
2 ⌉ and thus u is at distance at most ⌊ k+3

2 ⌋ from C. If k > 3, then
⌊ k+3

2 ⌋ < k, which by Lemma 7 implies that L(u) is an independent set. Combining the facts,
for u ∈ V≥3, diam ≤ k + 2, and k > 3, we obtain L(u) = {i − 2, i, i + 2}. By careful analysis
we can prove that the same holds in the remaining cases (♠).

Furthermore, observe that if v is a neighbor of u with list {i−2, i, i+2} and the reduction
rule (R3) cannot be applied, then the possible list of v is {i−1, i+1}, {i−3, i+1}, {i−1, i+3},
{i − 3, i − 1, i + 1}, or {i − 1, i + 1, i + 3}. If for some vertex u with list {i − 2, i, i + 2}, some
of possible lists is not present on N(u), then we add v with such a list to G and make it
adjacent to u. Note that now the diameter of G might increase, but we will not care about
the diameter anymore. Moreover, any list homomorphism on G − v can be extended to v,
whose degree is 1. So since now, we can assume that for u with list {i − 2, i, i + 2}, all lists
{i − 1, i + 1}, {i − 3, i + 1}, {i − 1, i + 3} are present on N(u) – this will allow us to encode
coloring of u on its neighbors with lists of size 2.
BCSP instance. We start with BCSP(C2k+1, G − V3, L). Then, for every vertex v ∈ V3 and
for every v′, v′′ ∈ V2∩N(v), we leave in C(v′, v′′) only such pairs that have a common neighbor
in L(v). Furthermore, for every edge uv with u, v ∈ V3 and lists L(u) = {i − 2, i, i + 2},
L(v) = {i − 1, i + 1, i + 3}, and for every pair u′, v′ ∈ V2 such that uu′, vv′ ∈ E(G), we
remove (if they are present) from C(u′, v′) the following pairs: (i − 3, i + 2), (i − 1, i + 4), and
(i + 3, i − 2). This completes the construction of (V, L, C), which is equivalent to (G, L) (♠).

Clearly (V, L, C) is constructed in polynomial time. Moreover, since all the lists have size
at most 2, by Theorem 5, (V, L, C) can be solved in polynomial time, which completes the
proof. ◀
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Now we are ready to prove Theorem 15.

Proof of Theorem 15. Let (G, L) be an instance of LHom(C2k+1) such that diam(G) is at
most d ∈ {k + 2, k + 3}. As in Theorem 1, first for every i ∈ [2k]0, we check in polynomial
time whether there is a list homomorphism φ : (G, L) → C2k+1 such that no vertex is mapped
to i – this can be done by [12]. If there is no such list homomorphism, we guess 2k + 1
vertices c0, . . . , c2k which will be colored so that ci is mapped to i. We add the edges cici+1
and we obtain an induced (2k + 1)-cycle C (if not, then we are dealing with a no-instance).
Note that adding edges cannot increase the diameter and since the edges are added between
vertices precolored with consecutive vertices, we obtain an equivalent instance.

Now for (G, L) and C as the fixed precolored (2k+1)-cycle we use the algorithm Recursion

Tree, which by Lemma 16 in time 2O((n log n)
d−1

d ) returns a tree R. Moreover, in order to
solve the instance (G, L) it is enough to solve every instance corresponding to a leaf of
R by Lemma 16, and by Lemma 17, we can solve each such instance in polynomial time.
Furthermore, since the size of R is bounded by the running time, the instance (G, L) can be
solved in time 2O((n log n)

d−1
d ) · nO(1) = 2O((n log n)

d−1
d ), which completes the proof. ◀

6 Beyond odd cycles

In this section we consider target graphs other than odd cycles. Instead, we focus on input
graphs with diameter at most 2. Since homomorphisms preserve edges, for graphs G, H, a
homomorphism φ : G → H and a sequence of vertices v1, . . . , vk forming a path in G, the
sequence φ(v1), . . . , φ(vk) forms a walk in H. Therefore, if G has diameter at most 2, we can
assume that H has also diameter at most 2. The following observation is straightforward.

▶ Observation 18. Let G, H be graphs such that G is connected. If there exists a homo-
morphism φ : G → H, then the image φ(V (G)) induces in H a subgraph with diameter at
most diam(G).

We prove the following stronger version of Theorem 4.

▶ Theorem 19. Let H be a simple triangle-free graph. Then LHom(H) is polynomial-time
solvable on diameter-2 graphs.

Proof. Let (G, L) be an instance of LHom(H). We guess the set of colors that will be
used – by Observation 18 they should induce a diameter-2 subgraph H ′ of H. For each
such H ′, we guess h′ = |H ′| vertices v1, . . . , vh′ of G that will be injectively mapped to
V (H ′) = {x1, . . . , xh′}. For each tuple (H ′, v1, . . . , vh′), we solve the instance (G, L′) of
LHom(H ′), where L′(v) = {xi} for v = vi, i ∈ [h′] and L′(v) = L(v) otherwise. Note that
(G, L) is a yes-instance if and only if at least one instance (G, L′) is a yes-instance.

First for every edge xixj ∈ E(H ′), if vi, vj are non-adjacent, we add the edge vivj to G –
note that this operation is safe, since we cannot increase the diameter by adding edges and
we only add edges between vertices that must be mapped to neighbors in H ′. Therefore, we
can assume that the set V ′ = {v1, . . . , vh′} induces a copy of H ′ in G (if not, then we have an
extra edge, which means that we are dealing with a no-instance and we reject immediately).
Furthermore, we exhaustively apply reduction rules.

So from now on we assume that the instance (G, L′) is reduced. We claim that either
(G, L′) is a no-instance or V (G) = {v1, . . . , vh′}, i.e., after exhaustive application of the
reduction rules the graph G is isomorphic to H ′. Note that in the latter case we can return
YES as an answer.
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Suppose there is v ∈ V (G) \ V ′. Moreover, we choose such v which is adjacent to some
vertex of V ′ (see Figure 1). Suppose that there exists φ : (G, L′) → H ′ and let xi = φ(v).
Then v cannot be adjacent to vi since there are no loops in H ′. Furthermore, the only
neighbors of v in V ′ can be the neighbors of vi. Suppose that there is vj ∈ NG(vi) ∩ V ′

which is non-adjacent to v. Since the diameter of G is at most 2, then there must be
u ∈ NG(v) ∩ NG(vj). Observe that u /∈ V ′. Indeed, v does not have any neighbors in
V ′ \ NG(vi) and if u ∈ NG(v), then there is a triangle uvivj in a copy of H ′, a contradiction.
Furthermore, it must hold that φ(u) is adjacent to xi in H ′ as u is adjacent to v and
φ(v) = xi, and similarly, φ(u) must be adjacent to xj as u is adjacent to vj . Then φ(u)xixj

forms a triangle in H ′, a contradiction. Thus v must be adjacent to all vertices of N(vi) ∩ V ′.

vi

vj

v u

H ′

Figure 1 Copy of H ′ in G and a vertex v such that for some homomorphism φ, it holds
φ(vi) = φ(v). We show that a vertex u which is a common neighbor of v and some neighbor vj of vi

in the copy of H ′ cannot exist.

Since (R3) cannot be applied, each vertex of L′(v) is adjacent to all vertices of NH(xi).
Moreover, since (R5) cannot be applied, it holds that L′(v) = {xi}. Indeed, otherwise there is
xi′ ̸= xi such that xi′ ∈ L′(v). Recall that xi′ is adjacent to all vertices of NH(xi). Therefore,
NH(xi) ⊆ NH(xi′), and thus one of xi, xi′ should have been removed from L′(v) by (R5).
Furthermore, since (R6) cannot be applied, we must have v = vi ∈ V ′, a contradiction. This
completes the proof. ◀

7 Conclusion

In this paper we studied the computational complexity of Hom(C2k+1) problem on bounded-
diameter graphs. We proved that for k ≥ 2, the Hom(C2k+1) problem can be solved in
polynomial-time on diameter-(k + 1) graphs and we gave subexponential-time algorithms for
diameter-(k + 2) and -(k + 3) graphs. We also proved that Hom(H) for triangle-free graph
H, can be solved in polynomial time on diameter-2 graphs.

The main open problem in this area remains the question whether 3-Coloring on
diameter-2 graphs can be solved in polynomial time. However, as more reachable, we propose
the following future research directions. (i) Is the Hom(C2k+1) problem NP-hard for the
subexponential-time cases, i.e., diameter-(k+2) or -(k+3) graphs? (2) Let H be a diameter-2
graph such that H contains a triangle but H ̸→ K3. Is the Hom(H) problem NP-hard?
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