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Abstract
This paper studies the influence of probabilism and non-determinism on some quantitative aspect X

of the execution of a system modeled as a Markov decision process (MDP). To this end, the novel
notion of demonic variance is introduced: For a random variable X in an MDP M, it is defined as
1/2 times the maximal expected squared distance of the values of X in two independent execution of
M in which also the non-deterministic choices are resolved independently by two distinct schedulers.

It is shown that the demonic variance is between 1 and 2 times as large as the maximal variance
of X in M that can be achieved by a single scheduler. This allows defining a non-determinism
score for M and X measuring how strongly the difference of X in two executions of M can be
influenced by the non-deterministic choices. Properties of MDPs M with extremal values of the
non-determinism score are established. Further, the algorithmic problems of computing the maximal
variance and the demonic variance are investigated for two random variables, namely weighted
reachability and accumulated rewards. In the process, also the structure of schedulers maximizing
the variance and of scheduler pairs realizing the demonic variance is analyzed.
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1 Introduction

In software and hardware systems, uncertainty manifests in two distinct forms: non-
determinism and probabilism. Non-determinism emerges from, e.g., unknown operating
environments, user interactions, or concurrent processes. Probabilistic behavior arises
through deliberate randomization in algorithms or can be inferred, e.g., from probabilities
of component failures. In this paper, we investigate the uncertainty in the value X of
some quantitative aspect of a system whose behavior is subject to non-determinism and
probabilism. On the one hand, we aim to quantify this uncertainty. In the spirit of the
variance that quantifies uncertainty in purely probabilistic settings, we introduce the notion
of demonic variance that generalizes the variance in the presence of non-determinism. On the
other hand, we provide a non-determinism score (NDS) based on this demonic variance that
measures the extent to which the uncertainty of X can be ascribed to the non-determinism.

As formal models, we use Markov decision processes (MDPs, see, e.g., [29]), one of
the most prominent models combining non-determinism and probabilism, heavily used in
verification, operations research, and artificial intelligence. The non-deterministic choices in
an MDP are resolved by a scheduler. Once a scheduler is fixed, the system behaves purely
probabilistically.
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Figure 1 MDPs modeling a communication protocol and the time required to process a message.

Demonic variance. For a random variable Y , the variance is equal to half the expected
squared deviation of two independent copies Y1 and Y2 of Y :

V(Y ) def= E((Y − E(Y ))2) = E(Y 2) − E(Y )2 = 1
2E(Y 2

1 − 2Y1Y2 + Y 2
2 ) = 1

2E((Y1 − Y2)2).

For a quantity X in an MDP M, we obtain a random variable XS
M for each scheduler S.1

The maximal variance Vmax
M (X) def= supS V(XS

M) can serve as a measure for the “amount
of probabilistic uncertainty” regarding X present in the MDP. However, in the presence of
non-determinism, quantifying the spread of outcomes in terms of the squared deviation of
two independent executions of a system gives rise to a whole new meaning: We can allow the
non-determinism to be resolved independently as well. To this end, we consider two different
scheduler S1 and S2 in two independent copies M1 and M2 of M and define

VS1,S2
M (X) def= 1

2E((XS1
M1

− XS2
M2

)2).

If we now allow for a demonic choice of the two schedulers making this uncertainty as large
as possible, we arrive at the demonic variance Vdem

M (X) def= supS1,S2 V
S1,S2
M (X) of X in M.

▶ Example 1.1. To illustrate a potential use case, consider a communication network in
which messages are processed according to a randomized protocol employed on different
hardware at the different nodes of the network. A low worst-case expected processing time
of the protocol is clearly desirable. In addition, however, large differences in the processing
time at different nodes make buffering necessary and increase the risk of package losses.

Consider the MDPs M and N in Fig. 1 modeling such a communication protocol. Initially,
a non-deterministic choice between α, β, and γ is made. Then, a final node containing the
processing time X is reached according to the depicted distributions. In both MDPs, the
expected value of X lies between 1 and 3 for all schedulers S – with the values 1 and 3 being
realized by α and γ. Furthermore, as the outcomes lie between 0 and 4, the distribution over
outcomes leading to the highest possible variance of 4 is the one that takes value 0 and 4 with
probability 1

2 each, which is realized by a scheduler choosing β. So, Vmax
M (X) = Vmax

N (X) = 4.
However, the demonic variances are different: Our results will show that the demonic

variance is obtained by a pair of deterministic schedulers that do not randomize over the
non-deterministic choices. In M, we can easily check that no combination of such schedulers
S and T leads to a value VS,T

M (X) of more than 4 = Vβ,β
M (X) where β denotes the scheduler

that chooses β with probability 1. In N , on the other hand, the demonic variance is
Vdem

N (X) = Vα,γ
N (X) = 1

2E((Xα
N1

− Xγ
N2

)2) = 1
2

( 10
16 · 16

)
= 5.

1 Note that the notation XS
M here differs from the notation used in the technical part of the paper.
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Figure 2 Example MDPs with different non-determinism scores (NDSs).

So, despite the same maximal variance and range of expected values, the worst-case
expected squared deviation between two values of X in independent executions is worse in
N than in M. Hence, we argue that the protocol modeled by M should be preferred.

Non-determinism score (NDS). By the definition of the demonic variance, it is clear that
Vdem

M (X) ≥ Vmax
M (X). Under mild assumptions ensuring the well-definedness, we will prove

that Vdem
M (X) ≤ 2Vmax

M (X), too. So, the demonic variance is between 1 and 2 times as large
as the maximal variance. We use this to define the non-determinism score (NDS)

NDS(M, X) def= Vdem
M (X) − Vmax

M (X)
Vmax

M (X) ∈ [0, 1].

The NDS captures how much larger the expected squared deviation of two outcomes can be
made by resolving the non-determinism in two executions independently compared to how
large it can be solely due to the probabilism under a single resolution of the non-determinism.

▶ Example 1.2. For an illustration of the NDS, four simple MDPs and their NDSs are
depicted in Figure 2. In all of the MDPs except for the first one, a scheduler has to make
a (randomized) choice over actions α and β in the initial state sinit. Afterwards one of the
terminal states is reached according to the specified probabilities. The terminal states are
equipped with a weight that specifies the value of X at the end of the execution. For all of
these MDPs, the maximal variance can be computed by expressing the variance in terms
of the probability p that α is chosen and maximizing the resulting quadratic function. In
the interest of brevity, we do not present these computations. The pair of (deterministic)
schedulers realizing the demonic variance always consists of the scheduler choosing α and
the scheduler choosing β making it easy to compute the demonic variance in these examples.

Potential applications. First of all, the demonic variance might serve as the basis for
refined guarantees on the behavior of systems, in particular, when employed in different
environments. As a first result in this direction, we will prove an analogue to Chebyshev’s
Inequality using the demonic variance. Further, as illustrated in Example 1.1, achieving a
low demonic variance or NDS can be desirable when designing systems. Hence, a reasonable
synthesis task could be to design a system ensuring a high expected value of a quantity X

while keeping the demonic variance of X below a threshold.
Secondly, the demonic variance and the NDS can serve to enhance the explainability of a

system’s behavior, a topic of growing importance in the area of formal verification (see, e.g.,
[4] for an overview). More concretely, the NDS can be understood as a measure assigning
responsibility for the scattering of a quantity X in different executions to the non-determinism
and the probabilism present in the system, respectively. Further, considering the NDS for
different starting states makes it possible to pinpoint regions of the state space in which the

MFCS 2024
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non-determinism has a particularly high influence. Notions of responsibility that quantify to
which extent certain facets of the behavior of a system can be ascribed to certain components,
states, or events have been studied in various settings [10, 33, 6, 25, 5].

Finally, the NDS can also be understood as a measure for the power of control when
non-determinism models controllable aspects of a system. This interpretation could be useful,
e.g., when designing exploration strategies in reinforcement learning. Here, the task is to
learn good strategies as fast as possible by interacting with a system. One of the main
challenges is to decide which regions of the state space to explore (see [21] for a recent survey).
Estimations for the NDS starting from different states could be useful here: States from
which the NDS is high might be more promising to explore than states from which the NDS
is low as the difference in received rewards from such a state is largely subject to randomness.

Contributions. Besides establishing general results for the demonic variance and the NDS,
we investigate the two notions for weighted reachability and accumulated rewards. For
weighted reachability, terminal states of an MDP are equipped with a weight that is received
if an execution ends in this state. For accumulated rewards, all states are assigned rewards
that are summed up along an execution. The main contributions of this paper are as follows.

We introduce the novel notions of demonic variance and non-determinism score. For
general random variables X, we prove that the demonic variance is at most twice as large
as the maximal variance. Furthermore, we prove an analogue of Chebyshev’s inequality.
For the non-determinism score, we establish consequences of a score of 0 or 1.
In the process, we prove a result of independent interest using a topology on the space of
schedulers that states that convergence with respect to this topology implies convergence
of the corresponding probability measures.
For weighted reachability, we show that the maximal and the demonic variance can be
computed via quadratic programs. For the maximal variance, this results in a polynomial-
time algorithm; for the demonic variance, in a separable bilinear program of polynomial
size yielding an exponential time upper bound. Further, we establish that there is a
memoryless scheduler maximizing the variance and a pair of memoryless deterministic
schedulers realizing the demonic variance.
For accumulated rewards, we prove that the maximal variance and an optimal finite-
memory scheduler can be computed in exponential time. Further, we prove that the
demonic variance is realized by a pair of deterministic finite-memory schedulers which
can be computed via a bilinear program of exponential size.

Related work. We are not aware of investigations of notions similar to the demonic variance
for MDPs. Previous work on the variance in MDPs usually focused on the minimization of
the variance. In [24], the problem to find schedulers that ensure a certain expected value
while keeping the variance below a threshold is investigated for accumulated rewards in
the finite horizon setting. It is shown that deciding whether there is a scheduler ensuring
variance 0 is NP-hard. In [22], the minimization of the variance of accumulated rewards and
of the mean payoff is addressed with a focus on optimality equations and no algorithmic
results. The variance of accumulated weights in Markov chains is shown to be computable in
polynomial time in [32]. For the mean payoff, algorithms were given to compute schedulers
that achieve given bounds on the expectation and notions of variance and variability in [9].

One objective incorporating the variance that has been studied on MDPs is the variance-
penalized expectation (VPE) [16, 13, 28]. Here, the goal is to find a scheduler that maximizes
the expected reward minus a penalty factor times the variance. In [28], the objective is
studied for accumulated rewards. Methodically, our results for the maximal and demonic
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variance of accumulated rewards share similarities with the techniques of [28] and we make use
of some results proved there, such as the result that among expectation-optimal schedulers
a variance-optimal memoryless deterministic scheduler can be computed in polynomial
time. Nevertheless, the optimization of the VPE inherently requires the minimization of the
variance. In particular, it is shown in [28] that deterministic schedulers are optimal for the
VPE, while randomization is necessary for the maximization of the variance.

Besides the variance, several other notions that aim to bound the uncertainty of the
outcome of some quantitative aspect in MDPs have been studied – in particular, in the
context of risk-averse optimization: Given a probability p, quantiles for a quantity X are
the best bound B such that X exceeds B with probability at most p in the worst or best
case. For accumulated rewards in MDPs, quantiles have been studied in [31, 3, 17, 30]. The
conditional value-at-risk is a more involved measures that quantifies how far the probability
mass of the tail of the probability distribution lies above a quantile. In [20], this notion has
been investigated for weighted reachability and mean payoff; in [27] for accumulated rewards.
A further measure incentivizing a high expected value while keeping the probability of low
outcomes small is the entropic risk measure. For accumulated rewards, this measure has
been studied in [2] in stochastic games that extend MDPs with an adversarial player.

Finally, as the demonic variance is a measure that looks at a system across different
executions, there is a conceptual similarity to hyperproperties [12, 11]. For probabilistic
systems, logics expressing hyperproperties that allow to quantify over different executions or
schedulers have been introduced in [1, 15].

2 Preliminaries

Notations for Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S, Act, P, sinit) where S is a finite set of states, Act a finite set of actions, P : S × Act ×
S → [0, 1] ∩ Q the transition probability function, and sinit ∈ S the initial state. We require
that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S × Act. We say that action α is enabled in state

s iff
∑

t∈S P (s, α, t) = 1 and denote the set of all actions that are enabled in state s by Act(s).
We further require that Act(s) ̸= ∅ for all s ∈ S. If for a state s and all actions α ∈ Act(s),
we have P (s, α, s) = 1, we say that s is absorbing. The paths of M are finite or infinite
sequences s0 α0 s1 α1 . . . where states and actions alternate such that P (si, αi, si+1) > 0 for
all i ≥ 0. For π = s0 α0 s1 α1 . . . αk−1 sk, P (π) = P (s0, α0, s1) · . . . ·P (sk−1, αk−1, sk) denotes
the probability of π and last(π) = sk its last state. Often, we equip MDPs with a reward
function rew : S × Act → N. The size of M is the sum of the number of states plus the
total sum of the encoding lengths in binary of the non-zero probability values P (s, α, s′)
as fractions of co-prime integers as well as the encoding length in binary of the rewards
if a reward function is used. A Markov chain is an MDP in which the set of actions is a
singleton. In this case, we can drop the set of actions and consider a Markov chain as a tuple
M = (S, P, sinit, rew) where P now is a function from S × S to [0, 1] and rew a function from
S to N.

An end component of M is a strongly connected sub-MDP formalized by a subset
S′ ⊆ S of states and a non-empty subset A(s) ⊆ Act(s) for each state s ∈ S′ such that
for each s ∈ S′, t ∈ S and α ∈ A(s) with P (s, α, t) > 0, we have t ∈ S′ and such that
in the resulting sub-MDP all states are reachable from each other. An end-component is
a 0-end-component if it only contains state-action-pairs with reward 0. Given two MDPs
M = (S, Act, P, sinit) and N = (S′, Act′, P ′, s′

init), we define the (synchronous) product M⊗N
as the tuple (S × S′, Act × Act′, P ⊗, (sinit, s′

init)) where we define P ⊗((s, s′), (α, β), (t, t′)) =
P (s, α, t) · P (s′, β, t′) for all (s, s′), (t, t′) ∈ S × S′ and (α, β) ∈ Act × Act′.

MFCS 2024
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Schedulers. A scheduler (also called policy) for M is a function S that assigns to each finite
path π a probability distribution over Act(last(π)). If S(π) = S(π′) for all finite paths π and
π′ with last(π) = last(π′), we say that S is memoryless. In this case, we also view schedulers
as functions mapping states s ∈ S to probability distributions over Act(s). A scheduler
S is called deterministic if S(π) is a Dirac distribution for each finite path π, in which
case we also view the scheduler as a mapping to actions in Act(last(π)). Given two MDPs
M = (S, Act, P, sinit) and N = (S′, Act′, P ′, s′

init) and two schedulers S and T for M and N ,
respectively, we define the product scheduler S⊗T for M⊗N by defining for a finite path π =
(s0, t0) (α0, β0) (s1, t1) . . . (sk, tk): S ⊗ T(π)(α, β) = S(s0 α0 . . . sk)(α) · T(t0 β0 . . . tk)(β)
for all (α, β) ∈ Act × Act′.

Probability measure. We write PrSM,s to denote the probability measure induced by a
scheduler S and a state s of an MDP M. It is defined on the σ-algebra generated by
the cylinder sets Cyl(π) of all infinite extensions of a finite path π = s0 α0 s1 α1 . . . αk−1 sk

starting in state s, i.e., s0 = s, by assigning to Cyl(π) the probability that π is realized under S,
which is PS(π) def=

∏k−1
i=0 S(s0 α0 . . . si)(αi)·P (si, α0, si+1). This can be extended to a unique

probability measure on the mentioned σ-algebra. For details, see [29]. For a random variable
X, i.e., a measurable function defined on infinite paths in M, we denote the expected value
of X under a scheduler S and state s by ES

M,s(X). We define Emin
M,s(X) def= infS ES

M,s(X) and
Emax

M,s(X) def= supS ES
M,s(X). The variance of X under the probability measure determined by

S and s in M is denoted by VS
M,s(X) and defined by VS

M,s(X) def= ES
M,s((X −ES

M,s(X))2) =
ES

M,s(X2) − ES
M,s(X)2. We define Vmax

M,s(X) def= supS VS
M,s(X). If s = sinit, we sometimes

drop the subscript s in PrSM,s, ES
M,s and VS

M,s(X).

Mixing schedulers. Intuitively, we often want to use a scheduler that initially decides to
behave like a scheduler S and then to stick to this scheduler with probability p and to behave
like a scheduler T with probability 1 − p. As this intuitive description does not match the
definition of schedulers as functions from finite paths2, we provide a formal definition: For
two schedulers S and T and p ∈ [0, 1], we use pS⊕ (1−p)T to denote the following scheduler.
For a path π = s0 α0 s1 α1 . . . αk−1 sk, we define for an action α enabled in sk

(pS ⊕ (1 − p)T)(π)(α) def= p · PS(π) · S(π)(α)
p · PS(π) + (1 − p) · PT(π) + (1 − p) · PT(π) · T(π)(α)

p · PS(π) + (1 − p) · PT(π) .

This is well-defined for any path that has positive probability under S or T. The following
result is folklore; a proof is included in the full version [26].

▶ Proposition 2.1. Let the schedulers S and T and the value p be as above. Then, for any
path π = s0 α0 s1 α1 . . . αk−1 sk, we have P pS⊕(1−p)T(π)(π) = pPS(π) + (1 − p)PT(π).

We conclude PrpS⊕(1−p)T
M,s (A) = pPrSM,s(A) + (1 − p)PrTM,s(A) for any measurable set

of paths A. Hence, we can think of the scheduler pS ⊕ (1 − p)T as behaving like S with
probability p and like T with probability (1 − p). In particular, we can also conclude that
for a random variable X, we have EpS⊕(1−p)T

M,s (X) = pES
M,s(X) + (1 − p)ET

M,s(X). For the
variance, we obtain the following as shown in full version [26].

▶ Lemma 2.2. Given M, X, and two schedulers S1 and S2, as well as p ∈ [0, 1], let T =
pS1 ⊕(1−p)S2. Then, VT

M(X) = pVS1
M (X)+(1−p)VS2

M (X)+p(1−p)(ES1
M (X)−ES2

M (X))2.

2 This description would be admissible if we allowed stochastic memory updates (see, e.g., [8]).
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Figure 3 Graphical illustration of the task to find the demonic variance (see Example 3.2).

Topology and convergence of measures. Given a family of topological spaces ((Si, τi))i∈I ,
the product topology τ on

∏
i∈I Si is the coarsest topology such that the projections

pi :
∏

i∈I Si → Si, (si)i∈I 7→ si are continuous for all i ∈ I. For measures (µj)j∈N and µ on
a measure space (Ω, Σ) where Ω is a metrizable topological space and Σ the Borel σ-algebra
on Ω, we say that the sequence (µj)j∈N weakly converges to µ if for all bounded continuous
functions f : Ω → R, we have limj→∞

∫
fdµj =

∫
fdµ. The set of infinite paths ΠM of an

MDP M with the topology generated by the cylinder sets is metrizable as we can define the
metric d(π, π′) = 2−ℓ where ℓ is the length of the longest common prefix of π and π′.

3 Demonic variance and non-determinism score

In this section, we formally define the demonic variance. After proving first auxiliary results,
we prove an analogue of Chebyshev’s Inequality using the demonic variance. Then, we
introduce the non-determinism score and investigate necessary and sufficient conditions for
this score to be 0 or 1. Proofs omitted here can be found in the full version [26].

Throughout this section, let M = (S, Act, P, sinit) be an MDP and let X be a random
variable, i.e., a Borel measurable function on the infinite paths of M. We will work under
two assumptions that ensure that all notions are well-defined: First, note that Vmax

M (X) = 0
implies that there is a constant c such that under all schedulers S, we have PrSM(X = c) = 1
– an uninteresting case. Furthermore, for meaningful definitions of demonic variance and
non-determinism score, we need that the expected value and the variance of X in M are
finite. Hence, we work under the following assumption:

▶ Assumption 3.1. We assume that 0 < Vmax
M (X) < ∞ and that supS

∣∣ES
M(X)

∣∣ < ∞.

3.1 Demonic variance
As described in the introduction, the idea behind the demonic variance is to quantify the
expected squared deviation of X in two independent executions of M, in which the non-
determinism is resolved independently as well. We use the following notation: Given a path
in M ⊗ M consisting of a sequence of pairs of states and pairs of actions, we denote by X1
and X2 the function X applied to the projection of the path on the first component and on
the second component, respectively. Given two schedulers S1 and S2 for M, we define

VS1,S2
M (X) def= 1

2E
S1⊗S2
M⊗M ((X1 − X2)2).

MFCS 2024
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Intuitively, in this definition two independent executions of M are run in parallel while the
non-determinism is resolved by S1 in the first execution and by S2 in the second component.
As the two components in the products M ⊗ M and S1 ⊗S2 are independent, the resulting
distributions of X in the two components, i.e., X1 and X2 are independent as well. The
factor 1

2 is included as for a random variable Y , this factor also appears in the representation
V(Y ) = 1

2E((Y1 − Y2)2) for two independent copies Y1 and Y2 of Y .
The demonic variance is now the worst-case value when ranging over all pairs of schedulers:

Vdem
M (X) def= sup

S1,S2

1
2E

S1⊗S2
M⊗M ((X1 − X2)2).

A first simple, but useful, result allows us to express VS1,S2
M (X) in terms of the expected

values and variances of X under S1 and S2.

▶ Lemma 3.1. Given two schedulers S1 and S2 for M, we have

VS1,S2
M (X) = 1

2

(
VS1

M (X) + VS2
M (X) + (ES1

M (X) − ES2
M (X))2

)
.

This lemma allows us to provide an insightful graphical interpretation of the demonic
variance using the standard deviation SD(X) def=

√
V(X) of a random variable X:

▶ Example 3.2. Suppose in an MDP M, there are four deterministic scheduler S1, . . . ,S4
with expected values 1, 2, 3, and 4 and variances 1, 8, 8, and 5 for a random variable X.
Lemma 2.2 allows us to compute the variances of schedulers obtained by randomization
leading to parabolic line segments in the expectation-variance-plane as depicted in Figure
3a (see also [28]). Further randomizations also make it possible to realize any combination
of expectation and variance in the interior of the resulting shape. When looking for the
maximal variance and the demonic variance, only the upper bound of this shape is relevant.

In Figure 3b, we now depict the standard deviations of schedulers on this upper bound
over the expectation twice on two orthogonal planes. Clearly, the highest standard deviation
(and consequently variance) is obtained for the expected value 2.5 in this example. The red
dotted line of length

√
2Vmax

M (X) connects the two points corresponding to this maximum

on the two planes. Considering S2 and S4, we can also find the value
√

2VS2,S4
M (X) : The

blue dashed line connects the point corresponding to S2 on one of the planes to the point
corresponding to S4 on the other plane. By the Pythagorean theorem, its length is√√

VS2
M (X)

2
+ (ES2

M (X) − (ES4
M (X))2 +

√
VS4

M (X)
2

=
√

2VS2,S4
M (X).

So, finding
√

2 times the “demonic standard deviation” and hence the demonic variance
corresponds to finding two points on the two orthogonal graphs with maximal distance.

The relation between maximal and demonic variance is shown in the following proposition.

▶ Proposition 3.3. We have Vmax
M (X) ≤ Vdem

M (X) ≤ 2Vmax
M (X).

By means of Chebyshev’s Inequality, the variance can be used to bound the probability that
a random variable Y lies far from its expected value. Using the demonic variance, we can
prove an analogous result providing bounds on the probability that the outcomes of X in two
independent executions of the MDP M lie far apart. This can be seen as a first step in the
direction of using the demonic variance to provide guarantees on the behavior of a system.
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▶ Theorem 3.4. We have PrS⊗T
M⊗M

(
|X1 − X2| ≥ k ·

√
Vdem

M (X)
)

≤ 2
k2 for any k ∈ R>0

and schedulers S and T for M.

Using the result that Vdem
M (X) ≤ 2Vmax

M (X), we obtain the following variant of the
inequality providing a weaker bound in terms of the maximal variance.

▶ Corollary 3.5. We have PrS⊗T
M⊗M

(
|X1 − X2| ≥ k ·

√
Vmax

M (X)
)

≤ 4
k2 for any k ∈ R>0 and

schedulers S and T for M.

3.2 Non-determinism score
We have seen that the demonic variance is larger than the maximal variance by a factor
between 1 and 2. As described in the introduction, we use this insight as the basis for a
score quantifying how much worse the “uncertainty” of X is when non-determinism can be
resolved differently in two executions of an MDP compared to how bad it can be in a single
execution. We define the non-determinism score (NDS)

NDS(M, X) def= Vdem
M (X) − Vmax

M (X)
Vmax

M (X) .

By Assumption 3.1, the NDS is well-defined. By Proposition 3.3, the NDS always returns a
value in [0, 1]. Clearly, in Markov chains, the NDS is 0. A bit more general, we can show:

▶ Proposition 3.6. If ES
M(X) = ET

M(X) for all schedulers S and T, then NDS(M, X) = 0.

In transition systems viewed as MDPs in which all transition probabilities are 0 or 1, the
NDS is 1: Under Assumption 3.1 in a transition system the value of X must be bounded,
i.e., X ∈ [a, b] for some a, b ∈ R such that supπ X(π) = b and infπ X(π) = a where π ranges
over all paths. Any path can be realized by a scheduler with probability 1. So, for any ε > 0,
there are schedulers S and T with PrSM(X < a + ε) = 1 and PrTM(X > b − ε) = 1. Then,
VS,T

M (X) ≥ 1
2 (b − a − 2ε)2. For ε → 0, this converges to (a−b)2

2 . It is well-known that the
variance of random variables taking values in [a, b] is maximal for the random variable taking
values a and b with probability 1

2 each. The variance in this case is (a−b)2

4 . So, the maximal
variance is (at most) half the demonic variance in this case. Consequently, the NDS is 1.

Of course, a NDS of 1 does not imply that there are no probabilistic transitions in M.
Nevertheless, a NDS of 1 has severe implications showing that the outcome of X can be
heavily influenced by the non-determinism in this case as the following theorem shows:

▶ Theorem 3.7. If NDS(M, X) = 1, the following statements hold:
1. For every ε > 0, there are schedulers Minε and Maxε with EMinε

M (X) ≤ Emin
M (X) + ε and

VMinε

M (X) ≤ ε, and EMaxε

M (X) ≥ Emax
M (X) − ε and VMaxε

M (X) ≤ ε.
2. If there are schedulers S0 and S1, with Vdem

M (X) = VS0,S1
M (X), then, for i = 0 or i = 1,

PrSi

M(X = Emin
M (X)) = 1 and PrS1−i

M (X = Emax
M (X)) = 1.

3. If X is bounded and continuous wrt the topology generated by the cylinder sets, there are
schedulers Min and Max with PrMin

M (X = Emin
M (X)) = 1 and PrMax

M (X = Emax
M (X)) = 1.

The first two statements can be shown by elementary calculations. For the third statement,
we use topological arguments. We view schedulers as elements of

∏∞
k=0 Distr(Act)Pathsk

M

where Pathsk
M is the set of paths of length k in M and prove the following result:

▶ Proposition 3.8. The space of schedulers Sched(M) =
∏∞

k=0 Distr(Act)Pathsk
M with the

product topology is compact. So, every sequence of schedulers has a converging subsequence
in this space. Further, for a sequence (Sj)j∈N converging to a scheduler S in this space, the
sequence of probability measures (PrSj

M )j∈N weakly converges to the probability measure PrSM.

MFCS 2024
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An example for a random variable that is bounded and continuous wrt the topology
generated by the cylinder sets is the discounted reward: Given a reward function rew : S → R,
the discounted reward of a path π = s0α0s1 . . . is defined as DRλ(π) def=

∑∞
j=0 λjrew(sj) for

some discount factor λ ∈ (0, 1). First, |DRλ| is bounded by maxs∈S |rew(s)| · 1
1−λ . Further,

for any ε > 0, let N be a natural number such that maxs∈S |rew(s)| · λN

1−λ < ε. Then,
|DRλ(π) − DRλ(ρ)| < ε for all paths π and ρ that share a prefix of length more than N .

4 Weighted reachability

We now address the problems to compute the demonic and the maximal variance for weighted
reachability where a weight is collected on a run depending on which absorbing state is
reached. As the NDS is defined via these two quantities, we do not address it separately here.
Throughout this section, let M = (S, Act, P, sinit) be an MDP with set of absorbing states
T ⊆ S and let wgt : T → Q be a weight function. We define the random variable WR on
infinite paths π by WR(π) = wgt(t) if π reaches the absorbing state t ∈ T , and WR(π) = 0
if π does not reach T . The main result we are going to establish is the following:

Main result. The maximal variance Vmax
M (WR) and an optimal memoryless randomized

scheduler can be computed in polynomial time.
The demonic variance Vdem

M (WR) can be computed as the solution to a bilinear program
that can be constructed in polynomial time. Furthermore, there is a pair of memoryless
deterministic schedulers realizing the demonic variance.

The following standard model transformation collapsing end components (see [14]) allows
us to assume that T is reached almost surely under any scheduler: We add a new absorbing
state t∗ and set wgt(t∗) = 0 and collapse all maximal end components E in S \ T to single
states sE . In sE , all actions that were enabled in some state in E and that did not belong to
E as well as a new action τ leading to t∗ with probability 1 are enabled. In the resulting
MDP N , the set of absorbing states T ∪ {t∗} is reached almost surely under any scheduler.
Further, for any scheduler S for M, there is a scheduler T for N such that the distribution
of WR is the same under S in M and under T in N , and vice versa. So, w.l.o.g., assume
the following:

▶ Assumption 4.1. The set T is reached almost surely under any scheduler S for M.

In the sequel, we first address the computation of the maximal variance and afterwards
of the demonic variance of WR in M. Omitted proofs can be found in the full version [26].

Computation of the maximal variance. It is well-known that the set of vectors (PrSM(♢q))q∈T

of combinations of reachability probabilities for states in T that can be realized by a scheduler
S can be described by a system of linear inequalities (see, e.g., [18]). We provide such a
system of inequalities below in equations (1) – (3). The equations use variables xs.α for all
state-action pairs (s, α) encoding the expected number of times action α is taken in state s.
Setting 1s=sinit = 1 if s = sinit and 1s=sinit = 0 otherwise, we require

xs,α ≥ 0 for all (s, α), (1)∑
α∈Act(s)

xs,α =
∑

t∈S,β∈Act(t)

xt,β · P (t, β, s) + 1s=sinit for all s ∈ S \ T , (2)

yq =
∑

t∈S,β∈Act(t)

xt,β · P (t, β, q) for all q ∈ T . (3)
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The variables yq for q ∈ T represent the probabilities that state q is reached. We can now
express the expected value of WR and WR2 via variables e1 and e2 via the constraints:

e1 =
∑
q∈T

yq · wgt(q) and e2 =
∑
q∈T

yq · wgt(q)2. (4)

The variance can now be written as a quadratic objective function in e1 and e2:

maximize e2 − e2
1. (5)

▶ Theorem 4.1. The maximal value in objective (5) under constraints (1) – (4) is Vmax
M (WR).

Due to the concavity of the objective function, we conclude:

▶ Corollary 4.2. The maximal variance Vmax
M (WR) can be computed in polynomial time.

Furthermore, there is a memoryless randomized scheduler S with VS
M(WR) = Vmax

M (WR),
which can also be computed in polynomial time.

Computation of the demonic variance. The demonic variance can also be expressed as
the solution to a quadratic program. To encode the reachability probabilities for states in T

under two distinct schedulers, we use variables xs,α for all state weight pairs (s, α) and yq

for q ∈ T subject to constraints (1) – (3) as before. Additionally, we use variables x′
s,α for all

state weight pairs (s, α) and y′
q for q ∈ T subject to the analogue constraints (1′) – (3′) using

these primed variables. The maximization of the demonic variance can be expressed as

maximize 1
2

∑
q,r∈T

yq · y′
r · (wgt(q) − wgt(r))2. (6)

▶ Theorem 4.3. The maximum in (6) under constraints (1) – (3), (1′) – (3′) is Vdem
M (WR).

The quadratic objective function (6) is not concave. However, it is bilinear and separable.
This means that the variables can be split into two sets, the primed and the unprimed
variables, such that the quadratic terms only contain products of variables from different
sets and each constraint contains only variables from the same set. In general, checking
whether the solution to a separable bilinear program exceeds a given threshold is NP-hard [23].
Nevertheless, solution methods tailored for bilinear programs that perform well in practice
have been developed (see, e.g., [19]). Further, bilinearity allows us to conclude:

▶ Corollary 4.4. There is a pair of memoryless deterministic schedulers S and T for M
such that Vdem

M (WR) = VS,T
M (WR).

For the complexity of the threshold problem, we can conclude an NP upper bound.
Whether the computation of the demonic variance is possible in polynomial time is left open.

▶ Corollary 4.5. Given M, wgt and ϑ ∈ Q, deciding whether Vdem
M (WR) ≥ ϑ in in NP.

5 Accumulated rewards

One of the most important random variables studied on MDPs are accumulated rewards:
Let M = (S, Act, P, sinit) be an MDP and let rew : S → N be a reward function. We extend
the reward function to paths π = s0α0s1 . . . by rew(π) =

∑∞
i=0 rew(si). For this random

variable, we prove the following result:

MFCS 2024
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Main result. The maximal variance Vmax
M (rew) and an optimal randomized finite-memory

scheduler can be computed in exponential time.
The demonic variance Vdem

M (rew) can be computed as the solution to a bilinear program
that can be constructed in exponential time. Furthermore, there is a pair of deterministic
finite-memory schedulers realizing the demonic variance.

We provide a sketch outlining the proof strategy. For a detailed exposition, see [26].

Proof sketch for the main result. It can be checked in polynomial time whether
Emax

M (rew) < ∞ [14]. If this is the case, this allows us to perform the same preprocessing as
in Section 4 that removes all end components without changing the possible distributions of
rew [14].

Bounding expected values and expectation maximizing actions. After the pre-processing,
a terminal state is reached almost surely. As shown in [28], this allows to obtain a bound Q

on Emax
M (rew2) in polynomial time. Further, the maximal expectation Emax

M,s(rew) from each
state s can be computed in polynomial time [7, 14]. From these values, a set of maximizing
actions Actmax(s) for each state s can be computed. After the preprocessing, a scheduler
is expectation optimal iff it only chooses actions from these sets. If a scheduler S initially
chooses a non-maximizing action in a state s, the expected value ES

M,s(rew) is strictly smaller
than Emax

M,s(rew). We define δ to be the minimal difference between these values ranging over
all starting states and non-maximizing actions. So, δ is the “minimal loss” in expected value
of rew received by choosing a non-maximizing action.

Switching to expectation maximization. Using the values Q and δ, we provide a bound B

such that any scheduler choosing a non-maximizing action with positive probability after
a path π with rew(π) ≥ B cannot realize the maximal variance. Intuitively, the reason is
that the influence of accumulating future rewards on the variance grows with the amount of
rewards already accumulated due to the quadratic nature of variance. The bound B can be
computed in polynomial time and its numerical value is exponential in the size of the input.

It follows that variance maximizing schedulers have to maximize the future expected
rewards after a reward of at least B has been accumulated. Furthermore, we can show that
among all expectation maximizing schedulers, a variance maximizing scheduler has to be used
above the reward bound B. In [28], it is shown that a memoryless deterministic expectation
maximizing scheduler U that maximizes the variance among all expectation maximizing
schedulers can be computed in polynomial time. So, schedulers maximizing the variance of
rew can be chosen to behave like U once a reward of at least B has been accumulated.

Quadratic program. Now, we can unfold the MDP M by storing in the state space how
much reward has been accumulated up to the bound B. This results on an exponentially
larger MDP M′. Using the expected values EU

M,s(rew) and the variances VU
M,s(rew) under

U from each state s, we can formulate a quadratic program similar to the one for weighted
reachability in Section 4 for this unfolded MDP M′. From the solution to this quadratic
program, the maximal variance and an optimal memoryless scheduler S for M′ can be
extracted. Transferred back to M, the scheduler S corresponds to a reward-based finite-
memory scheduler that keeps track of the accumulated reward up to bound B. As the
quadratic program is convex, these computations can be carried out in exponential time.

Demonic variance. For the demonic variance, the overall proof follows the same steps.
Similar to the bound B above, a bound B′ can be provided such that in any pair of
scheduler S and T realizing the demonic variance, both schedulers can be assumed to switch
to the behavior of the memoryless deterministic scheduler U above the reward bound B′.
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Again by unfolding the state space up to this reward bound, the demonic variance can be
computed via a bilinear program of exponential size similar to the one used in Section 4 for
weighted reachability. Furthermore, the pair of optimal memoryless deterministic schedulers
in the unfolded MDP, which can be extracted from the solution, corresponds to a pair of
deterministic reward-based finite-memory schedulers in the original MDP M. ◀

6 Conclusion

We introduced the notion of demonic variance that quantifies the uncertainty under probabil-
ism and non-determinism of a random variable X in an MDP M. As this demonic variance
is at most twice as big as the maximal variance of X, we used it to define the NDS for MDPs.

The demonic variance can be used to provide new types of guarantees on the behavior
of systems. A first step in this direction is the variant of Chebyshev’s Inequality using the
demonic variance proved in this paper. Furthermore, the demonic variance and the NDS can
serve as the basis for notions of responsibility. On the one hand, such notions could ascribe
responsibility for the uncertainty to non-determinism and probabilism. On the other hand,
comparing the NDS from different starting states can be used to identify regions of the state
space in which the non-deterministic choices are of high importance.

For weighted reachability and accumulated rewards, we proved that randomized finite-
memory schedulers are sufficient to maximize the variance. For the demonic variance, even
pairs of deterministic finite-memory schedulers are sufficient. While we obtained upper
bounds via the formulation of the computation problems as quadratic programs, determining
the precise complexities is left as future work. In the case of accumulated rewards, we
restricted to non-negative rewards. When dropping this restriction, severe difficulties have
to be expected as several related problems on MDPs exhibit inherent number-theoretic
difficulties rendering the decidability status of the corresponding decision problems open [27].

Of course the investigation of the demonic variance and NDS for further random variables
constitutes an interesting direction for future work. For practical purposes, studying also the
approximability of the maximal and demonic variance is important.

Finally, In the spirit of the demonic variance, further notions can be defined to quantify the
uncertainty in X if the non-determinism in two executions of M is not resolved independently,
but information can be passed between the two executions. This could be useful, e.g., to
analyze the potential power of coordinated attacks on a network. Formally, such a notion
could be defined as supS ES

M⊗M((X1 −X2)2) where S ranges over all schedulers for M⊗M.
In this context, also using an asynchronous product of M with M could be reasonable.
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