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Abstract
Computing a shortest path between two nodes in an undirected unweighted graph is among the most
basic algorithmic tasks. Breadth first search solves this problem in linear time, which is clearly also
a lower bound in the worst case. However, several works have shown how to solve this problem in
sublinear time in expectation when the input graph is drawn from one of several classes of random
graphs. In this work, we extend these results by giving sublinear time shortest path (and short path)
algorithms for expander graphs. We thus identify a natural deterministic property of a graph (that
is satisfied by typical random regular graphs) which suffices for sublinear time shortest paths. The
algorithms are very simple, involving only bidirectional breadth first search and short random walks.
We also complement our new algorithms by near-matching lower bounds.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Shortest Path, Expanders, Breadth First Search, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.8

Funding Noga Alon: Supported by NSF grant DMS-2154082.
Kasper Green Larsen: Supported by a DFF Sapere Aude Research Leader Grant No. 9064-00068B.

1 Introduction

Computing shortest paths in an undirected unweighted graph is among the most fundamental
tasks in graph algorithms. In the single source case, the textbook breadth first search (BFS)
algorithm computes such shortest paths in O(m + n) time in a graph with n nodes and m

edges. Linear time is clearly also a lower bound on the running time of any algorithm that
is correct on all input graphs, even if we only consider computing a shortest s-t path for a
pair of nodes s, t, and not a shortest path from s to all other nodes. Initial intuition might
also suggest that linear time is necessary for computing a shortest path between two nodes
s, t in a random graph drawn from any reasonable distribution, such as an Erdős-Rényi
random graph or a random d-regular graph. However, this intuition is incorrect and there
exists an algorithm with a sublinear expected running time for many classes of random
graphs [6, 10, 18]. Moreover, the algorithm is strikingly simple! It is merely the popular
practical heuristic of bidirectional BFS [19]. In bidirectional BFS, one simultaneously runs
BFS from the source s and destination t, expanding the two BFS trees by one layer at a
time. If the input graph is e.g. an Erdős-Rényi random graph, then it can be shown that the
two BFS trees have a node in common after exploring only O(

√
n) nodes in expectation. If

the node v is first to be explored in both trees, then the path from s → v → t in the two
BFS trees form a shortest path between s and t. The fact that only O(

√
n) nodes need to be

explored intuitively follows from the birthday paradox and the fact that the nodes nearest
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8:2 Sublinear Time Shortest Path in Expander Graphs

to s and t are uniform random in an Erdős-Rényi random graph (although not completely
independent). Note that for sublinear time graph algorithms to be meaningful, we assume
that we have random access to the nodes and their neighbors. More concretely, we assume
the nodes are indexed by integers [n] = {1, . . . , n} and that we can query for the number of
nodes adjacent to a node v, as well as query for the j’th neighbor of a node v. We remark
that several works have also extended the bidirectional BFS heuristic to weighted input
graphs and/or setups where heuristic estimates of distances between nodes and the source or
destination are known [19, 20, 12]. There are also works giving sublinear time algorithms for
other natural graph problems under the assumption of a random input graph [14].

A caveat of the previous works that give provable sublinear time shortest path algorithms,
is that they assume a random input graph. In this work, we identify “deterministic” properties
of graphs that may be exploited to obtain sublinear time s-t shortest path algorithms.
Concretely, we study shortest paths in expander graphs. An n-node d-regular (all nodes have
degree d) graph G, is an (n, d, λ)-graph if the eigenvalues λ1 ≥ · · · ≥ λn of the corresponding
adjacency matrix A satisfies maxi̸=1 |λi| ≤ λ. Note that the eigenvalues are real since A is
symmetric and real. We start by presenting a number of algorithmic results when the input
graph is an expander.

Shortest s-t Path

Our first contribution demonstrates that the simple bidirectional BFS algorithm efficiently
computes a shortest path between most pairs of nodes s, t in an expander:

▶ Theorem 1. If G is an (n, d, λ)-graph, then for every node s ∈ G, every 0 < δ < 1, it
holds for at least (1 − δ)n nodes t, that bidirectional BFS between s and t, finds a shortest
s-t path after visiting O((d − 1)⌈(1/4) lgd/λ(n/δ)⌉) nodes.

While the bound in Theorem 1 on the number of nodes visited may appear unwieldy at
first, we note that it simplifies significantly for natural values of d and λ. For instance, an
(n, d, λ)-graph is Ramanujan if λ ≤ 2

√
d − 1. For Ramanujan graphs, and more generally for

graphs with λ = O(
√

d), the bound in Theorem 1 simplifies to near-
√

n:

▶ Corollary 2. If G is an (n, d, O(
√

d))-graph, then for every node s ∈ G, every 0 < δ < 1,
it holds for at least (1 − δ)n nodes t, that bidirectional BFS between s and t, finds a shortest
s-t path after visiting O((n/δ)1/2+O(1/ ln d)) nodes.

We also demonstrate that the bound can be tightened even further for Ramanujan graphs:

▶ Theorem 3. If G is a d-regular Ramanujan graph where d ≥ 3, then for every node s ∈ G,
it holds for at least (1 − o(1))n nodes t, that bidirectional BFS between s and t, finds a
shortest s-t path after visiting O(

√
n · ln3/2(n)) nodes.

Short s-t Path

One drawback of bidirectional BFS in expanders, is that it is only guaranteed to find a
shortest path efficiently for most pairs of nodes s, t. One can show that this is inherent.
In particular, as we sketch in Section 4, for constant d and infinitely many n, there exists
(n, d, 3

√
d)-graphs with diameter at least 1.998 lgd−1 n. Picking two nodes s and t of maximum

distance in such a graph and running BFS from both will only terminate after having visited
Ω((d − 1)(1.998/2) lgd−1 n) = Ω(n0.999) nodes.

Motivated by this shortcoming, we also present a simple randomized algorithm for finding
a short, but not necessarily shortest, s-t path. For any parameter 0 < δ < 1, the algorithm
starts by growing a BFS tree from s until Θ(

√
n ln(1/δ)) nodes have been explored. It then
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performs O(
√

n ln(1/δ)/ lgd/λ(n)) random walks starting at t. Each of these random walks
run for O(lgd/λ(n)) steps. If any of these walks discover a node in the BFS tree, it has found
an s-t path of length O(lgd/λ(n)).

We show that this BFS + Random Walks algorithm has a high probability of finding an
s-t path:

▶ Theorem 4. If G is an (n, d, λ)-graph with λ ≤ d/2, then for every pair of nodes s, t,
every 0 < δ < 1, it holds with probability at least 1 − δ, that BFS + Random Walks between s

and t, finds an s-t path of length O(lgd/λ(n)) while visiting O(
√

n ln(1/δ)) nodes.

Finally, let us mention the two previous works [9, 7] that have also identified deterministic
properties of graphs which suffice for provable speedups from bidirectional BFS. The determ-
inistic properties they identify are vaguely related to expansion, but are not as standard
and clean-cut as our results using the standard definition of expanders. The work [16]
has also investigated short paths in expanders in the context of multicommodity flow and
approximating the maximum number of disjoint paths between pairs of nodes.

Lower Bounds

While bidirectional BFS, or BFS + Random Walks, are natural algorithms for finding s-t
paths efficiently, it is not a priori clear that better strategies do not exist. One could e.g.
imagine sampling multiple nodes in an input graph, growing multiple small BFS trees from
the sampled nodes and somehow use this to speed up the discovery of an s-t path. To
rule this approach out, we complement the algorithms presented above with lower bounds.
For proving lower bounds, we consider distributions over input graphs and show that any
algorithm that explores few nodes fails to find an s-t path with high probability in such a
random input graph. As Erdős-Rényi random graphs (with large enough edge probability)
and random d-regular graphs are both expanders with good probability, we prove lower
bounds for both these random graph models. The distribution of an Erdős-Rényi random
graph on n nodes is defined from a parameter 0 < p < 1. In such a random graph, each edge
is present independently with probability p. A random d-regular graph on the other hand, is
uniform random among all n-node graphs where every node has degree d.

Our lower bounds hold even for the problem of reporting an arbitrary path connecting
a pair of nodes s, t, not just for reporting a short/shortest path. Furthermore, our lower
bounds are proved in a model where we allow node-incidence queries. A node-incidence
query is specified by a node index v and is returned the set of all edges incident to v. Our
first lower bound holds for Erdős-Rényi random graphs:

▶ Theorem 5. Any (possibly randomized) algorithm for reporting an s-t path in an Erdős-
Rényi random graph, where edges are present with probability p ≥ 1.5 ln(n)/n, either makes
Ω(1/(p

√
n)) node-incidence queries or outputs a valid path with probability at most o(1) + p.

Note that the lower bound assumes p ≥ 1.5 ln(n)/n. This is a quite natural assumption
since for p ≪ ln(n)/n, the input graph is disconnected with good probability. The concrete
constant 1.5 is mostly for simplicity of the proof. We remark that the additive p in the
success probability is tight as an algorithm always reporting the direct path consisting of
the single edge (s, t) is correct with probability p. Also observe that the number of edges
discovered after O(1/(p

√
n)) node-incidence queries is about O(pn/(p

√
n)) = O(

√
n) since

each node has p(n − 1) incident edges in expectation.
For the case of random d-regular graphs, we show the following lower bound for constant

degree d:

MFCS 2024



8:4 Sublinear Time Shortest Path in Expander Graphs

▶ Theorem 6. Any (possibly randomized) algorithm for reporting an s-t path in a random
d-regular graph with d = O(1), either makes Ω(

√
n) node-incidence queries or outputs a valid

path with probability at most o(1).

We remark that a random d-regular graph is near-Ramanujan with probability 1 − o(1) as
proved in [13], confirming a conjecture raised in [1]. A near-Ramanujan graph is an (n, d, λ)-
expander with λ ≤ 2

√
d − 1 + o(1). Thus our upper bounds in Theorem 1 and Theorem 4

nearly match this lower bound.

Overview

In Section 2, we present our upper bound results and prove the claims in Theorem 1 and
Theorem 4. The upper bounds are all simple algorithms and also have simple proofs using
well-known facts about expanders.

In Section 3, we prove our lower bounds. These proofs are more involved and constitute
the main technical contributions of this work.

2 Upper Bounds

In the following, we present and analyse simple algorithms for various s-t reachability
problems in expander graphs.

2.1 Shortest Path
Let G be an (n, d, λ)-graph and consider the following bidirectional BFS algorithm for finding
a shortest path between a pair of nodes s, t: grow a BFS tree Ts from s and a BFS tree Tt

from t simultaneously. In each iteration, the next layer of Ts and Tt is computed and as soon
as a node v appears in both trees, we have found a shortest path from s to t, namely the
path s → v → t in the two BFS trees.

We show that this algorithm is efficient for most pairs of nodes s, t as claimed in Theorem 1.
To prove Theorem 1, we show that in any (n, d, λ)-graph G, it holds for every node s ∈ G

that most other nodes have a small distance to s. Concretely, we show the following

▶ Lemma 7. If G is an (n, d, λ)-graph, then for every node s ∈ G, it holds for every 0 < δ < 1
that there are no more than δn nodes with distance more than (1/2) lgd/λ(n/δ) from s.

Theorem 1 now follows from Lemma 7 by observing that for a pair of nodes s, t of distance k

in an (n, d, λ)-graph, the bidirectional searches will meet after expanding for ⌈k/2⌉ steps from
s and t. Since each node explored during breadth first search has at most d − 1 neighbors
outside the previously explored tree, it follows that the total number of nodes visited is
O((d − 1)⌈k/2⌉). Since it holds for every s ∈ G that dist(s, t) ≤ (1/2) lgd/λ(n/δ) for a 1 − δ

fraction of all other nodes t, the conclusion follows.
Corollary 2 follows from Theorem 1 by observing that when λ = O(

√
d), we have

(1/4) lgd/λ(n/δ) = (1/2) lgΩ(d)(n/δ). Noting that lgΩ(d)(n/δ) = ln(n/δ)/(ln(d) − O(1)) =
(1 + O(1/ ln d)) lgd−1(n/δ), the conclusion follows.

What remains is to prove Lemma 7. While the contents of the lemma is implicit in
previous works, we have not been able to find a reference explicitly stating this fact. We
thus provide a simple self-contained proof building on Chung’s [11] proof that the diameter
of an (n, d, λ)-graph is bounded by ⌈lgd/λ n⌉.
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Proof of Lemma 7. Let A be the adjacency matrix of an (n, d, λ)-graph G. Letting d =
λ1 ≥ λ2 ≥ · · · ≥ λn denote the (real-valued) eigenvalues of the real symmetric matrix A, we
may write A in its spectral decomposition A = UΣUT with λ1, . . . , λn being the diagonal
entries of the diagonal matrix Σ. By definition, we have max{λ2, |λn|} = λ.

Notice that (Ak)s,t gives the number of length-k paths from node s to node t in G.
Furthermore, we have Ak = UΣkUT . Now let s be an arbitrary node of G and let Z ⊆ [n]
denote the subset of columns t such that (Ak)s,t = 0. The eigenvalues of Ak are λk

1 , . . . , λk
n

and the all-1’s vector 1 is an eigenvector corresponding to λ1. Let 1Z denote the indicator
for the set Z, i.e. the coordinates of 1Z corresponding to t ∈ Z are 1 and the remaining
coordinates are 0. By definition of Z, we have that eT

s Ak1Z = 0. At the same time,
we may write 1Z = (|Z|/n)1 + βu where u is a unit length vector orthogonal to 1 and
β =

√
|Z| − |Z|2/n. Hence

0 = eT
s Ak1Z

= eT
s Ak((|Z|/n)1 + βu)

= eT
s λk

1(|Z|/n)1 + βeT
s Aku

≥ dk|Z|/n − β · ∥es∥ · ∥Aku∥
≥ dk|Z|/n − βλk.

From this we conclude |Z| ≤ (λ/d)knβ ≤ (λ/d)kn
√

|Z|, implying |Z| ≤ (λ/d)2kn2. For
k = (1/2) lgd/λ(n/δ), this is |Z| ≤ δn. ◀

For the special case of Ramanujan graphs, Theorem 3 claims an even stronger result than
Theorem 1. Recall that an (n, d, λ)-graph is Ramanujan if it satisfies that λ ≤ 2

√
d − 1. To

prove Theorem 3 we make use of the following concentration result on distances in Ramanujan
graphs:

▶ Theorem 8 ([17]). Let G be a d-regular Ramanujan graph on n nodes, where d ≥ 3. Then
for every node s ∈ G it holds that

|{t ∈ G : |dist(s, t) − lgd−1 n| > 3 lgd−1 lg n}| = o(n).

Using Theorem 8, we conclude that for every node s ∈ G, it holds for (1 − o(1))n choices of t

that dist(s, t) ≤ lgd−1 n + 3 lgd−1 lg n. The middle node v on a shortest path from s to t thus
has distance at most k = ⌈(lgd−1 n + 3 lgd−1 lg n)/2⌉ ≤ (1/2) lgd−1 n + (3/2) lgd−1 lg n + 1
from s and t. Since the nodes in a layer ℓ of a BFS tree in a d-regular graph G has at most
d − 1 neighbors in layer ℓ + 1, we conclude that the two BFS trees Ts and Tt contain at most
O((d − 1)k) ≤ O(

√
n · ln3/2(n)) nodes each upon termination. Note that the same proof

shows how to find a shortest path in time n1/2+o(1) between most pairs of vertices s and t in
near Ramanujan graphs, as it is also proved in [17] that in such graphs, for every node s

there are only o(n) nodes t of distance exceeding (1 + o(1)) lgd−1 n from s.

2.2 Connecting Path
In the following, we analyse our algorithm, BFS + Random Walks, for finding a short s-t
path in an (n, d, λ)-graph. The algorithm is parameterised by an integer k ≥

√
n and is as

follows: First, run BFS from s until k nodes have been discovered. Call the set of discovered
nodes Vs. Next, run τ = k/(3 lgd/λ(n)) random walks p1, . . . , pτ from t, with each random
walk having a length of 3 lgd/λ(n). If any of the random walks intersects Vs, we have found
an s-t path of length O(lgd/λ(n)) as the paths pi have length O(lgd/λ(n)) and the diameter,
and hence the depth of the BFS tree, in an (n, d, λ)-graph is at most ⌈lgd/λ(n)⌉ [11].

MFCS 2024



8:6 Sublinear Time Shortest Path in Expander Graphs

To analyse the success probability of the algorithm, we bound the probability that all
paths pi avoid Vs. For this, we use the following two results

▶ Theorem 9 ([15]). Let G be an (n, d, λ)-graph. For any two nodes s, t in G, the probability
pk

s,t that a random walk starting in s and of length k ends in the node t, satisfies |1/n−pk
s,t| ≤

(λ/d)k.

▶ Theorem 10 ([3]). Let G be an (n, d, λ)-graph and let W be a set of w vertices in G and
set µ = w/n. Let P (W, k) be the total number of length k paths (k + 1 nodes) that stay in
W . Then

P (W, k) ≤ wdk(µ + (λ/d)(1 − µ))k.

Now consider one of the length 3 lgd/λ(n) random walks p = pi starting in t. To show that
it is likely that the path intersects Vs, we split the random walk p = (t, v1, . . . , v3 lgd/λ(n)+1)
into two parts, namely the first 2 lgd/λ(n) steps p(1) = (t, v1, . . . , v2 lgd/λ(n)+1) and the
remaining lgd/λ(n) steps p(2) = (v2 lgd/λ(n)+1, . . . , v3 lgd/λ(n)+1). Note that we let the last
node e(p(1)) = v2 lgd/λ(n)+1 in p(1) equal the first node s(p(2)) = v2 lgd/λ(n)+1 in p(2). We
use p(1) to argue that p(2) has a near-uniform random starting node. We then argue that
p(2) intersects Vs with good probability.

By Theorem 9, it holds for any node r ∈ G that Pr[e(p(1)) = r] ≤ 1/n + 1/n2. Next,
conditioned on e(p(1)) = r, the path p(2) is uniform random among the dlgd/λ(n) length
lgd/λ(n) paths starting in r. It follows that for any fixed path p of length lgd/λ(n) in G,
we have Pr[p(2) = p] ≤ Pr[e(p(1)) = s(p)]d− lgd/λ(n) ≤ (1/n + 1/n2)d− lgd/λ(n). Now by
Theorem 10 with W = V (G) \ Vs and assuming λ ≤ d/2, there are at most ndlgd/λ(n)((1 −
k/n)+(λ/d)(k/n))lgd/λ(n) ≤ ndlgd/λ(n)(1−k/(2n))lgd/λ(n) ≤ ndlgd/λ(n) exp(− lgd/λ(n)k/(2n))
paths in G that stay within V (G) \ Vs. A union bound over all of them implies that the
probability that p(2) avoids Vs is at most

(1/n + 1/n2)d− lgd/λ(n)ndlgd/λ(n) exp(− lgd/λ(n)k/(2n)) ≤ exp(− lgd/λ(n)k/(2n) + 1/n).

Since the τ = k/(3 lgd/λ(n)) random walks p1, . . . , pτ are independent, we conclude that the
probability they all avoid Vs is no more than

exp(−k2/(6n) + k/(3 lgd/λ(n)n)).

Letting k =
√

7n ln(1/δ) and assuming n is at least some sufficiently large constant, we have
that at least one path pi intersects Vs with probability at least 1 − δ. This completes the
proof of Theorem 4.

3 Lower Bounds

In this section, we prove lower bounds on the number of queries made by any algorithm for
computing an s-t path in a random graph. Our query model allows node-incidence queries.
Here the n nodes of a graph G are assumed to be labeled by the integers [n]. A node-incidence
query is specified by a node index i ∈ [n], and the query algorithm is returned the list of
edges (i, j) incident to i.

We start by considering an Erdős-Rényi random graph, as it is the simplest to analyse.
We then proceed to random d-regular graphs. For the lower bounds, the task is to output
a path between nodes s = 1 and t = n. An algorithm for finding an s-t path works as



N. Alon, A. Grønlund, S. F. Jørgensen, and K. G. Larsen 8:7

follows: In each step, the algorithm is allowed to ask one node-incidence query. We make no
assumption about how the algorithm determines which query to make in each step, other
than it being computable from all edges seen so far (the responses to the node-incidence
queries). For randomized algorithms, the choice of query in each step is chosen randomly
from a distribution over queries computable from all edges seen so far.

3.1 Erdős-Rényi
Let G be an Erdős-Rényi random graph, where each edge is present independently with
probability p ≥ 1.5 ln(n)/n and let A⋆ be a possibly randomized algorithm for computing
an s-t path in G when s = 1 and t = n. Let α⋆ be the probability that A⋆ outputs a valid
s-t path (all edges on the reported path are in G) and let q be the worst case number of
queries made by A⋆ (for A⋆ making an expected q queries, we can always make it worst case
O(q) queries by decreasing α by a small additive constant). Here the probability is over both
the random choices of A⋆ and the random input graph G. By linearity of expectation, we
may fix the random choices of A⋆ to obtain a deterministic algorithm A that outputs a valid
s-t path with probability α ≥ α⋆. It thus suffices to prove an upper bound on α for such
deterministic A.

For a graph G, let π(G) denote the trace of running the deterministic A on G. If
i1(G), . . . , iq(G) denotes the sequence of queries made by A on G and N1(G), . . . , Nq(G)
denotes the returned sets of edges, then

π(G) := (i1(G), N1(G), i2(G), . . . , iq(G), Nq(G)).

Observe that if we condition on a particular trace τ = (i1, N1, i2, . . . , iq, Nq), then the
distribution of G conditioned on π(A, G) = τ is the same as if we condition on the set of
edges incident to i1, . . . , iq being precisely N1, . . . , Nq. This is because the algorithm A is
deterministic and the execution of A is the same for all graphs G with the same such sets of
edges incident to i1, . . . , iq. Furthermore, no graph G with a different set of incident edges
for i1, . . . , iq will result in the trace τ .

For a trace τ = (i1, N1, . . . , iq, Nq), call the trace connected if there is a path from s to t

using the discovered edges
q⋃

j=1
Nj .

Otherwise, call it disconnected. Intuitively, if a trace is disconnected, then it is unlikely that
A will succeed in outputting a valid path connecting s and t as it has to guess some of the
edges along such a path. Furthermore, if A makes too few queries, then it is unlikely that
the trace is connected. Letting A(G) denote the output of A on the graph G, we have for a
random graph G that

α = Pr[A(G) is valid] ≤ Pr[π(G) is connected]+Pr[A(G) is valid | π(G) is disconnected].

We now bound the two quantities on the right hand side separately.
The simplest term to bound is

Pr[A(G) is valid | π(A, G) is disconnected].

For this, let τ = (i1, N1, . . . , iq, Nq) be an arbitrary disconnected trace in the support of
π(G) when G is an Erdős-Rényi random graph, where each edge is present with probability
p ≥ 1.5 ln(n)/n. Observe that the output of A is determined from τ . Since τ is disconnected,

MFCS 2024



8:8 Sublinear Time Shortest Path in Expander Graphs

the path reported by A on τ must contain at least one edge (u, v) where neither u nor v

is among ∪j{ij} or otherwise the output path is valid with probability 0 conditioned on τ .
But conditioned on the trace τ , every edge that is not connected to {i1, . . . , iq} is present
independently with probability p. We thus conclude

Pr[A(G) is valid | π(G) = τ ] ≤ p.

Since this holds for every disconnected τ , we conclude

Pr[A(G) is valid | π(G) is disconnected] ≤ p.

Next we bound the probability that π(G) is connected. For this, define for 1 ≤ k ≤ q

πk(G) := (i1(G), N1(G), i2(G), . . . , ik(G), Nk(G))

as the trace of A on G after the first k queries. As for π(G), we say that πk(G) is connected
if there is a path from s to t using the discovered edges

E(πk(G)) =
k⋃

j=1
Nj(G)

and that it is disconnected otherwise. We further say that πk(G) is useless if it is both
disconnected and |E(πk(G))| ≤ 2pnk. Since

Pr[πk(G) is disconnected] ≥ Pr[πk(G) is useless]

we focus on proving that Pr[πk(G) is useless] is large. For this, we lower bound

Pr[πk(G) is useless | πk−1(G) is useless].

Note that the base case π0(G) is defined to be useless as s and t are not connected
when no queries have been asked and also |E(π0(G))| = 0 ≤ 2pn0 = 0. Let τk−1 =
(i1, N1, . . . , ik−1, Nk−1) be any useless trace. The query ik = ik(G) is uniquely determined
when conditioning on πk−1(G) = τk−1 and so is the edge set Ek−1 = E(πk−1(G)). Fur-
thermore, we know that |Ek−1| ≤ 2pn(k − 1). We now bound the probability that the
query ik discovers more than 2pn new edges. If ik has already been queried, no new edges
are discovered and the probability is 0. So assume ik /∈ {i1, . . . , ik−1}. Now observe that
conditioned on πk−1(G) = τk−1, the edges (ik, i) where i /∈ {i1, . . . , ik−1} are independently
included in G with probability p each. The number of new edges discovered is thus a sum of
m ≤ n independent Bernoullis X1, . . . , Xm with success probability p. A Chernoff bound
implies Pr[

∑
i Xi > (1 + δ)µ] < (eδ/(1 + δ)1+δ)µ for any µ ≥ mp and any δ > 0. Letting

µ = np and δ = 1 gives

Pr[
∑

i

Xi > 2np] < (e/4)np < e−np/3.

Since we assume p > 1.5 ln(n)/n, this is at most 1/
√

n.
We next bound the probability that the discovered edges Nk(G) makes s and t connected

in E(πk(G)). For this, let Vs denote the nodes in the connected component of s in the
subgraph induced by the edges Ek−1. Define Vt similarly. We split the analysis into three
cases. First, if ik ∈ Vs, then Nk(G) connects s and t if and only if one of the edges {ik} × Vt

is in G. Conditioned on πk−1(G) = τk−1, each such edge is in G independently either
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with probability 0, or with probability p (depending on whether one of the end points is
in {i1, . . . , ik−1}). A union bound implies that s and t are connected in E(πk(G)) with
probability at most p|Vt|. A symmetric argument upper bounds the probability by p|Vs| in
case ik ∈ Vt. Finally, if ik is in neither of Vs and Vt, it must have an edge to both a node in
Vs and in Vt to connect s and t. By independence, this happens with probability at most
p2|Vt||Vs|. We thus conclude that

Pr[πk(G) is connected | πk−1(G) = τk−1] ≤ p max{|Vs|, |Vt|} ≤ p(|Ek−1| + 1) ≤ 2p2nk.

A union bound implies

Pr[πk(G) is useless | πk−1(G) is useless] ≥ 1 − 2p2nk − 1/
√

n.

This finally implies

Pr[π(G) is useless] =
q∏

k=1
Pr[πk(G) is useless | πk−1(G) is useless]

≥
q∏

k=1

(
1 − 2p2nk − 1/

√
n

)
≥ 1 −

q∑
k=1

(2p2nk + 1/
√

n)

≥ 1 − p2n(q + 1)2 − q/
√

n.

It follows that

Pr[π(G) is connected] = 1 − Pr[π(G) is disconnected]
≤ 1 − Pr[π(G) is useless]
≤ p2n(q + 1)2 + q/

√
n.

For q = o(1/(p
√

n)) and p ≥ 1.5 ln(n)/n, this is o(1). Note that for the lower bound to be
meaningful, we need p = O(1/

√
n) as otherwise the bound on q is less than 1. (Indeed, for

p = Ω(1/
√

n), s and t have a common neighbor with probability bounded away from 0 and
if so 2 queries suffice). This concludes the proof of Theorem 5.

3.2 d-Regular Graphs
We now proceed to random d-regular graphs. Assume dn is even, as otherwise a d-regular
graph on n nodes does not exist. Similarly to our proof for the Erdős-Rényi random graphs,
we will condition on a trace of A. Unfortunately, the resulting conditional distribution of
a random d-regular graph is more cumbersome to analyse. We thus start by reducing to a
slightly different problem.

Let Mn,d denote the set of all graphs on nd nodes where the edges form a perfect
matching on the nodes. There are thus nd/2 edges in any such graph. We think of the nodes
of a graph G ∈ Mn,d as partitioned into n groups of d nodes each, and we index the nodes
by integer pairs (i, j) with i ∈ [n] and j ∈ [d]. Here i denotes the index of the group. For a
graph G ∈ Mn,d and a sequence of group indices p := s, i1, . . . , im, t, we say that p is a valid
s-t meta-path in G, if for every two consecutive indices a, b in p, there is at least one edge
((a, j1), (b, j2)) in G. A meta-path is thus a valid path if and only if s and t are connected in
the graph resulting from contracting the nodes in each group.

MFCS 2024
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Now consider the problem of finding a valid s-t meta-path in a graph G drawn uniformly
from Mn,d (we write G ∼ Mn,d to denote such a graph) while asking group-incidence queries.
A group-incidence query is specified by a group index i ∈ [n] and the answer to the query is
the set of edges incident to the nodes {i} × {1, . . . , d}.

We start by showing that an algorithm A⋆ for finding an s-t path in a random d-regular
n-node graph, gives an algorithm A for finding an s-t meta-path in a random G ∼ Mn,d

using group-incidence queries.

▶ Lemma 11. If there is a (possibly randomized) algorithm A⋆ that reports a valid s-t path
with probability α in a random d-regular graph on n nodes while making q node-incidence
queries, then there is a deterministic algorithm A that reports a valid s-t meta-path with
probability at least exp(−O(d2))α in a random graph G ∼ Mn,d while making q group-
incidence queries.

Proof. Given an algorithm A⋆ that reports a valid s-t path in a random d-regular graph on n

nodes with probability α, we start by fixing its randomness to obtain a deterministic algorithm
A′ with the same number of queries that outputs a valid s-t path with probability at least α.
Next, let G ∼ Mn,d. Let i1 ∈ [n] be the first node that A′ queries (which is independent of the
input graph). Our claimed algorithm A for reporting an s-t meta-path in G starts by querying
the group i1. Upon being returned the set of edges {((i1, 1), (j1, k1)), . . . , ((i1, d), (jd, kd))}
incident to {i1} × {1, . . . , d}, we contract the groups such that each edge ((i1, h), (j, k)) is
replaced by (i1, j). If this creates any duplicate edges or self-edges, A aborts and outputs an
arbitrarily chosen s-t meta-path. Otherwise, the resulting set of edges {(i1, j1), . . . , (i1, jd)}
is passed on to A′ as the response to the first query i1. The next query i2 of A′ is then
determined and we again ask it as a group-incidence query on G and proceed by contracting
groups in the returned set of edges and passing the result to A′ if there are no duplicate
or self-edges. Finally, if we succeed in processing all q queries of A′ without encountering
duplicate or self-edges, A outputs the s-t path reported by A′ as the s-t meta-path.

To see that this strategy has the claimed probability of reporting a valid s-t meta-path, let
G⋆ be the graph obtained from G by contracting all groups. Observe that if we condition on
G⋆ being a simple graph (no duplicate edges or self-edges), then the conditional distribution
of G⋆ is precisely that of a random d-regular graph on n nodes. It is well-known [5, 8, 22, 21]
that the contracted graph G⋆ is indeed simple with probability at least exp(−O(d2)) and
the claim follows. ◀

In light of Lemma 11, we thus set out to prove lower bounds for deterministic algorithms
that report an s-t meta-path in a random G ∼ Mn,d using group-incidence queries.

Let A be a deterministic algorithm making q group-incidence queries that reports a
valid s-t meta-path with probability α in a random G ∼ Mn,d. Similarly to our proof
for Erdős-Rényi graphs, we start by defining the trace of A on a graph G ∈ Mn,d. If
i1(G), . . . , iq(G) ∈ [n] denotes the sequence of group-incidence queries made by A on G and
N1(G), . . . , Nq(G) denotes the returned sets of edges, then for 1 ≤ k ≤ q, we define

πk(G) = (i1(G), N1(G), . . . , ik(G), Nk(G)).

We also let π(G) := πq(G) denote the full trace. Call a trace τk = (i1, N1, . . . , ik, Nk)
connected if there is a sequence of group indices p := s, i1, . . . , im, t such that for every two
consecutive indices a, b in p, there is an edge ((a, h), (b, k)) in ∪iNi. Otherwise, call the trace
disconnected. Letting A(G) denote the output of A on the graph G, we have

α = Pr[A(G) is valid] ≤ Pr[π(G) is connected]+Pr[A(G) is valid | π(G) is disconnected].
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We bound the two terms separately, starting with the latter. So let τ = (i1, N1, . . . , iq, Nq) be a
disconnected trace in the support of π(G). The output meta-path A(G) = p = s, i1, . . . , im, t

of A is determined from τ . Since τ is disconnected, there must be a pair of consecutive
indices a, b in p such that there is no edge ((a, h), (b, k)) ∈ ∪iNi. Fix such a pair a, b. We
now consider two cases. First, if either a or b is among i1, . . . , iq, then all edges incident
to that group are among ∪iNi conditioned on π(G) = τ . It thus follows that p is a valid
s-t meta-path with probability 0 conditioned on π(G) = τ . Otherwise, neither of a and b

are among i1, . . . , iq. The set of edges ∪iNi specify at most dq edges of the matching G.
For any node whose matching edge is not specified by ∪iNi, the conditional distribution of
its neighbor is uniform random among all other nodes whose matching edge is not in ∪iNi.
For each of the d2 possible edges ((a, h), (b, k)) between the groups a and b, there is thus
a probability at most 1/(nd − 1 − 2dq) that the edge is in G conditioned on π(G) = τ . A
union bound over all d2 such edges finally implies

Pr[A(G) is valid | π(G) = τ ] ≤ d2

nd − 1 − 2dq
.

Since this holds for every disconnected τ , we conclude

Pr[A(G) is valid | π(G) is disconnected] ≤ d2

nd − 1 − 2dq
.

Next, to bound Pr[π(G) is connected], we show that

Pr[πk(G) is disconnected | πk−1(G) is disconnected]

is large. So let τk−1 = (i1, N1, . . . , ik−1, Nk−1) be a disconnected trace in the support of
πk−1(G). The next query ik = ik(G) of A is fixed conditioned on πk−1(G) = τk−1. We have
a two cases. First, if ik ∈ {i1, . . . , ik−1} then no new edges are returned by the query and we
conclude

Pr[πk(G) is disconnected | πk−1(G) = τk−1] = 1.

Otherwise, let Vs denote the subset of group-indices j for which there is a meta-path from s

to j. Similarly, let Vt denote the subset of group-indices j for which there is a meta-path
from t to j. We have Vs ∩ Vt = ∅. Now if ik ∈ Vs, we have that πk(G) is connected only
if there is an edge between a node (ik, j) with j ∈ [d] and a node (b, k) with b ∈ Vt. Let
r ∈ {0, . . . , d} denote the number of nodes (ik, j) with j ∈ [d] for which the corresponding
matching edge is not in ∪iNi. Conditioned on πk−1(G) = τk−1, the neighbor of any such
node is uniform random among all other nodes for which the corresponding matching edge
is not in ∪iNi. There are at least nd − 1 − 2d(k − 1) such nodes. A union bound over at
most rd|Vt| ≤ d2|Vt| pairs ((ik, j), (b, k)) implies that πk(G) is connected with probability
at most d2|Vt|/(nd − 1 − 2d(k − 1)). A symmetric arguments gives an upper bound of
d2|Vs|/(nd − 1 − 2d(k − 1)) in case ik ∈ Vt. Finally, if ik is in neither of Vs and Vt, then there
must still be an edge ((ik, j), (a, k)) for a group a ∈ Vs. We thus conclude

Pr[πk(G) is connected | πk−1(G) = τk−1] ≤ d2 max{|Vs|, |Vt|}
nd − 1 − 2d(k − 1) ≤ d3k

nd − 1 − 2dq
.
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Since this holds for every disconnected trace τk−1, we finally conclude

Pr[π(G) is disconnected] ≥
q∏

k=1

(
1 − d3k

nd − 1 − 2dq

)

≥ 1 −
q∑

k=1

d3k

nd − 1 − 2dq

≥ 1 − d3q2

nd − 1 − 2dq
,

and thus

Pr[π(G) is connected] ≤ d3q2

nd − 1 − 2dq
.

For constant degree d, if q = o(
√

n), this is o(1). Together with Lemma 11, we have thus
proved Theorem 6.

4 Large Diameter Expanders

In this section, we sketch the claim from Section 1 that there exists large diameter expanders.
Concretely, using the techniques in [4] with a slightly different choice of parameters it is
not difficult to show that there are (n′, d, λ)-graphs with λ < 3

√
d and diameter larger than

(2 − 0.003) lgd−1 n′ for constant d. Here is a sketch of the argument proving this fact.
Start with a Ramanujan (n, d, 2

√
d − 1)-graph, with girth Ω(lgd−1 n) (for example, taking

an LPS expander). Choose in it a set X of 2(d − 1)0.999 lgd−1 n vertices so that the distance
between any pair of them is Ω(lgd−1 n). This can be done by choosing the vertices one by one,
always adding a vertex far from all vertices chosen already. Omit these vertices and identify
their 2d(d − 1)0.999 lgd−1 n neighbors with the leaves of two d-regular trees, each of depth
0.999 lgd−1 n and each having d(d − 1)0.999 lgd−1 n leaves. The graph obtained is d-regular
and has n′ vertices (the original n plus the vertices of the two trees). The distance between
the roots of the two trees is clearly bigger than (2 − 0.002) lgd−1 n > (2 − 0.003) lgd−1 n′.

By the argument in [4] (see also [2], Lemma 3.2) based on the delocalization of eigenvectors
of high girth graphs it is not difficult to show that the absolute value of every nontrivial
eigenvalue of the graph obtained is smaller than 3

√
d, implying the required fact. We omit

the detailed computation.
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