
Computational Model for Parsing Expression
Grammars
Alexander Rubtsov #

HSE University, Moscow, Russia
MIPT, Moscow, Russia

Nikita Chudinov #

Google, Zürich, Switzerland

Abstract
We present a computational model for Parsing Expression Grammars (PEGs). The predecessor
of PEGs top-down parsing languages (TDPLs) were discovered by A. Birman and J. Ullman in
the 1960-s, B. Ford showed in 2004 that both formalisms recognize the same class named Parsing
Expression Languages (PELs). A. Birman and J. Ullman established such important properties
like TDPLs generate any DCFL and some non-context-free languages like anbncn, a linear-time
parsing algorithm was constructed as well. But since this parsing algorithm was impractical in the
60-s TDPLs were abandoned and then upgraded by B. Ford to PEGs, so the parsing algorithm
was improved (from the practical point of view) as well. Now PEGs are actively used in compilers
(eg., Python replaced LL(1)-parser with a PEG one) so as for text processing as well. In this
paper, we present a computational model for PEG, obtain structural properties of PELs, namely
proof that PELs contain Boolean closure of regular closure of DCFLs and PELs are closed over left
concatenation with regular closure of DCFLs. We present an extension of the PELs class based on
the extension of our computational model. Our model is an upgrade of deterministic pushdown
automata (DPDA) such that during the pop of a symbol it is allowed to return the head to the
position of the push of the symbol. We provide a linear-time simulation algorithm for the 2-way
version of this model, which is similar to the famous S. Cook linear-time simulation algorithm of
2-way DPDA.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases PEG, formal languages, pushdown automata, two-way pushdown automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.80

Related Version Full Version: https://arxiv.org/abs/2406.14911 [13]

Funding Alexander Rubtsov: This paper was prepared within the framework of the HSE University
Basic Research Program. Supported in part by RFBR grant 20–01–00645.

Acknowledgements Authors thank Mikhail Iumanov for helpful discussions and anonymous referees
for the helpful comments.

1 Introduction

We present a computational model for Parsing Expression Grammars (PEGs) presented by B.
Ford in [6]. The predecessor of PEGs top-down parsing languages (TDPLs) was discovered
by A. Birman and J. Ullman in the 1960s (so as generalized TDPLs) [4]. While the PEGs
formalism has more operations, it has the same power as TDPLs and generalized TDPLs
which was shown by B. Ford in [7]. We refer to the class of languages generated by PEGs
(and TDPLs, and generalized TDPLs) as Parsing Expression Languages (PELs).

Little is known about the structural properties of PELs. From the 60’s it is known that
PELs contain DCFLs as a subclass and some non-context-free languages like anbncn as well.
A linear-time parsing algorithm (in RAM) had been constructed for TDPLs, but it was

© Alexander Rubtsov and Nikita Chudinov;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 80; pp. 80:1–80:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rubtsov99@gmail.com
https://orcid.org/0000-0001-8850-9749
mailto:imonory@yandex.ru
https://doi.org/10.4230/LIPIcs.MFCS.2024.80
https://arxiv.org/abs/2406.14911
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 Computational Model for Parsing Expression Grammars

impractical in the 1960s since it required too much memory for memoization and TDPLs
had been abandoned. B. Ford upgraded the TDPLs formalism to PEGs and presented a
linear-time practical algorithm in 2002 [6]. Now PEGs are being actively used in compilers
(eg., Python replaced an LL(1)-parser with a PEG one [16]) so as for text processing as
well. In this paper, we present a computational model for PELs and obtain some interesting
properties for this class, analyze (some of) its subclasses, and generalize the PELs class as
well.

A computational model for PELs was presented in [12], but this model significantly differs
from classical models of computations, so it is hard to clarify the place of PELs among
known classes of formal languages, based on this model. So we present a simpler and more
convenient model that discovers the place of PEGs in the variety of formal language classes.
Namely, the computational model is a modified deterministic pushdown automaton (DPDA)
that puts to the stack a symbol with the pointer of the head’s position on the tape (from
which the push has been performed). During the pop, the automaton has two options:
either leave the head in the current position or move the head to the position stored in the
pointer (retrieved during the pop of the symbol). We call this model a deterministic pointer
pushdown automaton (DPPDA). This description of PELs from the automata point of view
helped us to obtain other important results not only for the PELs but for the general area of
formal languages as well. Namely, we prove that boolean closure of regular closure of DCFLs
is linear-time recognizable (in RAM), what extends the nontrivial result by E. Bertsch and
M.-J. Nederhof [3] that regular closure of DCFLs is linear-time recognizable.

To describe our results we shall mention the following important results in the area
of formal languages and automata theory. Donald Knuth invented LR(k) grammars that
describe DCFLs for k ≥ 1 and were widely used in practice. It is easier to design an LL(k)
grammar for practical purposes, so despite the power of LR, LL grammars are widely used
for parsing (and some artificial modification of recursive descent parsing as well). Top-
down parsing languages (TDPLs, predecessor of PEGs) cover LL(1) grammars and even
contain DCFLs as a subclass, but their linear-time parsing algorithm was impractical in the
1970s, so TDPLs had been abandoned till B. Ford upgraded them to PEGs and presented
a practically reasonable linear-time parser (Packrat). So, linear-time recognizable classes
of formal languages are used in compilers, and LR (DCFLs) parsers now compete with
PEGs which cover a wider class of formal languages that is almost undiscovered. There
are no comprehensive results on the structure of PELs, so we make a contribution to this
open question. Another wide linear-time recognizable class of formal languages is languages
recognizable by two-way deterministic pushdown automata (2DPDA). S. Cook obtained
in [5] a famous linear-time simulation algorithm for this model. There also was an amazing
story about how D. Knuth used S. Cook’s algorithm to discover the Knuth-Morris-Pratt
algorithm ([10], Section 7).

We modify 2DPDA in the same way as we did for DPDA: we add symbols to stack
with a pointer that allows returning the head to the cell from which the push had been
performed. S. Cook’s linear-time simulation algorithm applies to this model as well (with a
little modification). So we extend the important class of formal languages (recognizable by
2DPDAs) preserving linear-time parsing. This extension can be used to generalize PEGs.
Also, this algorithm provides another approach to linear time recognition of languages
generated by PEGs described via DPPDAs. Note that there are not many structural results
about PELs. Moreover, even equivalence of TDPLs and generalized TDPLs (with PEGs)
had been proved by B. Ford [7] decades after these classes had been invented. In our opinion,
one of the reasons for that is that TDPL-based formalisms are hard. So even the proof of
inclusion DCFLs in PELs [4] is complicated, while it directly follows from the equivalence of
PEGs with our model.

A. Rubtsov and N. Chudinov 80:3

So we hope that our model will raise interest in investigations of PELs and will help with
these investigations as well. Our results also clarify the place of another interesting result (we
also improved it, as described below). It was shown by E. Bertsch and M.-J. Nederhof [3] that
regular closure of DCFLs is linear-time recognizable. We show that this class is recognizable
by DPPDAs which simplifies the original proof [3] and shows the place of this class in the
formal languages classes.

There are many linear-time recognizable classes of formal languages. Recently Rubtsov
showed [14] that Hibbard’s hierarchy (the subclass of CFLs) is linear-time recognizable. So
there are many open questions related to the systematization of linear time recognizable
classes of formal languages and particularly the relation of Hibbard’s hierarchy with languages
recognizable by 1-2 DPPDAs.

1.1 Results
In this paper, we present a new computational model DPPDA which is equivalent to PEGs.
We also consider the two-way model 2DPPDA and provide a linear time simulation algorithm
for this model following S. Cook’s construction. Via DPPDA we show that the PEGs class is
closed over left concatenation with regular closure of DCFLs, so PELs contain the regular
closure of DCFLs as a subclass. With the linear-time simulation algorithm for 2DPPDA,
we obtain another linear-time recognition algorithm for the regular closure of DCFLs and
since PELs are closed over Boolean operation we prove that the Boolean closure of regular
closure of DCFLs is linear-time recognizable. Note that the last result not only generalizes
well known result of linear-time recognizability of regular closure of DCFLs [3], but also our
proof is significantly simpler as well.

The full version of this paper is available on arXiv [13]. We put the reference to [13]
when the proof is omitted due to the space limitations.

1.2 Basic Notation
We follow the notation from [9] on formal languages, especially on context-free grammars
(CFGs) and pushdown automata. We denote the input alphabet as Σ and its elements
(letters, terminals) are denoted by small letters a, b, c, . . ., while letters w, x, y, z denote words.
The empty word is denoted by ε. We denote nonterminals N by capital letters A,B,C, . . .,
and X,Y, Z can be used for both nonterminals and terminals. The axiom is denoted by
S ∈ N . Words over the alphabet N ∪Σ are called sentential forms and are denoted by small
Greek letters.

1.3 Informal Description of PEGs
The formal definition of PEGs is not well intuitive, so we begin with an informal one that
clarifies a simple idea behind this formal model. The intuition behind PEGs lies in recursive
descent parsing.

One of the parsing methods for CF-grammars is a recursive descent parsing that is a
process when the derivation tree is built top-down (starting from the axiom S) and then
each nonterminal is substituted according to the associated function. A rollback is possible
as well, where by rollback we mean the replacement of one production rule by another or
even the replacement of the rule higher above the current node with the deletion of subtrees.
This method is very general and we do not go deep into details. For our needs, we describe a
recursive descent parsing of LL(1) grammars and its modification that defines PEGs.

MFCS 2024

80:4 Computational Model for Parsing Expression Grammars

For LL(1) grammar, the following assertion holds. Fix a leftmost derivation of a word
w◁ = uav◁ and let uAα◁ be a derivation step (here ◁ is a right end marker of the input).
The next leftmost derivation step is determined by the nonterminal A and the terminal a, so
the rule is the function R(A, a). So, the recursive descent algorithm for an LL(1)-parser is as
follows. An input w◁ is written in the one-way read-only tape called the input tape. The
pointer in the (constructing) derivation tree points to the leftmost nonterminal node (without
children), initially the axiom S. This node is replaced according to the function R. In the
fixed above derivation step uAα◁ the pointer is over the nonterminal A, R(A, a) = xBβ,
where A → xBβ is a grammar rule. So, xBβ is glued into A as a subtree, x is a prefix of
av and the head of the input tape moves while scanning x. If R(A, a) does not contain a
nonterminal, then (after replacement) the tree is traversed via DFS until the next (leftmost!)
nonterminal is met. Each terminal during this traversal shifts the head of the input tape. If
the symbol under the head differs from the traversed terminal, the input word is rejected.
We illustrated the described process in Fig. 1. Note that u, x, α, β are the subtrees and u, v,
x, v′ in fact occupies several cells of the input tape.

S

u A α

u a v ◁

A

S

u A

x B β

α

u x b v′ ◁

B

Figure 1 Example of LL(1) recursive descent parsing.

So now we move to the description of PEGs via modification of recursive descent parsing.
In the first example, we will provide similar PEG and CFG (Fig. 2) and explain their
similarity and differences.

PEG

S ← AB /BC

A← aA/ a

B ← abb / b

C ← cC / ε

CFG

S → AB | BC
A→ aA | a
B → abb | b
C → cC | ε

Figure 2 PEG and CFG for comparison.

PEGs look similar to context-free grammars, but the meaning of almost all concepts are
different, therefore the arrow ← is used to separate the left part of a rule from the right part.
The difference comes from the following approach to recursive descent parsing. We describe
the PEG via the transformation of the CFG. Let us order all the rules of the CFG for each
nonterminal. During recursive descent parsing, we will try each rule according to this order.
If a failure happens, let us try the next rule in the order. If the last rule leads us to the
failure too, propagate the failure to the parent and try using the next rule in the order on

A. Rubtsov and N. Chudinov 80:5

the previous tree level. So, that is the reason why all right-hand sides of the rules in PEG
are separated by the delimiter /, but not by |. The order of rules in PEGs matters, unlike
CFGs. Consider the parsing (Fig. 3) of the word aab by the PEG defined on Fig. 2.

S

A

a A

a A

a A

B

a a b ◁

a

S

A

a A

a A

a

B

a a b ◁

a

S

A

a A

a

B

a b b

a a b ◁

a

S

A

a A

a

B

b

a a b ◁

b

Figure 3 Parsing of aab by PEG.

The rule A← aA is applied while the content of the input tape matches the crown (the
leafs) of the tree. So, when the last application is unsuccessful, it is replaced by the following
rule A← a which is unsuccessful too. So failure signal goes to the level above and the second
rule A← aA is replaced by A← a. After that, the control goes to the nonterminal B for
which firstly the rule B ← abb is applied, but since it leads to the failure, finally the rule
B ← b is applied and it finishes the parsing since the whole word has been matched.

So PEGs are similar to CFGs since they share the idea of recursive descent parsing. But
the difference is significant. Since all the rules for each nonterminal are ordered, the classical
notion of concatenation does not apply to PEGs. We cannot say that if a word u is derived
from A and v is derived from B, then uv is derived from AB as explained below. In the
PEG example above, a word abb is never derived from B because A from AB will always
parse all a’s from the input. Note that the failure during the parsing occurs only because
of a mismatch. So, the input abbc will be parsed by the PEG as following. The prefix ab

will be successfully parsed by AB and by S as well, but since the whole word has not been
parsed, the input is rejected. Since there was no failure, the rule S ← AB was not replaced
by S ← BC. So the word abbc is not accepted by the PEG while it is derived from the CFG.
▶ Remark 1. It is an open question, whether PELs are closed over concatenation.

Note that the patterns of iteration A ← aA/ a and C ← cC / ε work in a greedy way.
In the case of concatenation Ce (with an expression e), all c’s from the prefix of the input
would be parsed by C.

In the considered example we have not mentioned an important PEG’s operation. There is
a unary operator ! that is applied as follows. In the case !e the following happens. Firstly the
parsing goes to the expression e. If e parsed the following input successfully (i.e., a subtree for
e that matches the prefix of the unprocessed part of the input has been constructed without
a failure), then !e produces failure. If a failure happens, then !e is considered to parse the
empty word ε and the parsing process continues. For example, consider the following PEG:

S ← A(!C) /B A← aAb / ε B ← aBc / ε C ← a / b

(!C) guarantees that if A(!C) finished without failure, then it parsed the whole input.
So, in the case of the input anbn for n ≥ 0, the input will be parsed by A(!C) and there will
be no switch to the rule S ← B. For any other input, the parsing of A(!C) fails and the rule
is switched to S ← B. So, this PEG generates the language {anbn | n ≥ 0} ∪ {ancn | n ≥ 0}.

MFCS 2024

80:6 Computational Model for Parsing Expression Grammars

Another common use of the operator ! is its double application that has its name:
&e = !(!e). This construction checks whether the prefix of the (unprocessed part of the)
input matches e: in the positive case, & parses an empty word and computation continues, in
the negative case, it returns failure. So & acts similarly to !, but the conditions are flipped.
Consider the following example:

S ← (&(Ac))BC A← aAb / ε B ← aB / a C ← bCc / ε

This PEG checks that the input has the prefix anbnc and then parses the input if it has the
form a+bncn, so the PEG generates the language {anbncn | n ≥ 1}.

So it is known that PEGs generate non CFLs and it is still an open question whether
PEGs generate all CFLs. The conditional answer is no: there exists a linear-time parsing
algorithm for PEG, while the work of L. Lee [11] and Abboud et al. [1] proves that it is very
unlikely for CFLs due to theoretical-complexity assumptions: any CFG parser with time
complexity O(gn3−ε), where g is the size of the grammar and n is the length of the input
word, can be efficiently converted into an algorithm to multiply m×m Boolean matrices in
time O(m3−ε/3). Note that this conditional result shows that it is unlikely that 2DPPDAs
recognize all CFLs as well.

2 Formal Definition of PEGs

Our definition slightly differs from the standard definition of PEG from [7] (Section 3) due
to technical reasons. We discuss the difference after the formal definition.

▶ Definition 2. A parsing expression grammar G is defined by a tuple (N,Σ, P, S), where N
is a finite set of symbols called nonterminals, Σ is a finite input alphabet (a set of terminals),
N ∩Σ = ∅, S ∈ N is the axiom, and P is a set of production rules of the form A← e such
that each nonterminal A ∈ N has the only corresponding rule, and e is an expression that
is defined recursively as follows. The empty word ε, a terminal a ∈ Σ, and a nonterminal
A ∈ N are expressions. If e and e′ are expressions, then so are (e) which is equivalent to e, a
sequence ee′, a prioritized choice e / e′, a not predicate !e. We assume that ! has the highest
priority, the next priority has the sequence operation and the prioritized choice has the lowest
one. We denote the set of all expressions over G by EG or by E if the grammar is fixed.

To define the language generated by a PEG G we define recursively a partial function
R : E × Σ∗ → (Σ∗ ∪ {F}) that takes as input the expression e, the input word w, and if
R(e, w) = s ∈ Σ∗, then s is the suffix of w = ps such that the prefix p has been parsed by
e during the processing of w; if R(e, w) = F it indicates a failure that happens during the
parsing process. So, the function R is defined recursively as follows:

R(ε, w) = w, R(a, as) = s, R(a, bs) = F (where a ̸= b)
R(e1e2, w) = R(e2, R(e1, w)) if R(e1, w) ̸= F, otherwise R(e1e2, w) = F
R(A,w) = R(e, w), where A← e ∈ P
R(e1 / e2, w) = R(e1, w) if R(e1, w) ̸= F, otherwise R(e1 / e2, w) = R(e2, w)
R(!e, w) = w if R(e, w) = F, otherwise R(!e, w) = F

Note that R(e, w) is undefined if during the recursive computation, R comes to an infinite
loop. In fact, we will never meet this case because for each PEG there exists an equivalent
form for which R is a total function (see Subsection 2.1).

We say that a PEG G generates the language L(G) = {w | R(S,w) = ε}; if R(S,w) = ε

we say that w is generated by G.

A. Rubtsov and N. Chudinov 80:7

2.1 Difference with other standard definitions and forms of PEGs
Note that our definition of L(G) differs from [7] (Section 3). The difference is about the
operations allowed in PEG and the acceptance condition as well. In this subsection, we
explain the difference and provide an overview of different forms of PEGs.

In the case of practical parsing, it is convenient to have more operations in the definition
of PEG, but theoretically, it is more convenient to have fewer operations for the sake of
the proofs’ simplicity. In [7] B. Ford investigated different forms of PEGs and proved their
equivalence, so as the equivalence with (generalized) top-down parsing languages. We begin
our overview with operations that are so easy to express via operations from our definitions
that they can be considered (as programmers say) syntactic sugar:

Iterations: e∗ is equivalent to A← eA / ε; e+ = ee∗

Option expression: e? is equivalent to A← e / ε

And predicate: &e = !(!e)
Any character: • = a1 / a2 / . . . / ak where Σ = {a1, . . . , ak}
Failure: F = !ε (we use the same notation as for the failure result)

We can use these constructions below. In this case, the reader can assume that they are
reduced to the operations from Definition 2 as we have described.

So by adding to the definition (or removing) syntactic sugar operations, one obviously
obtains an equivalent definition (in terms of recognizable languages’ class). Now we move to
the nontrivial cases proved in [7].

A PEG G is complete if for each w ∈ Σ∗ the function R(S,w) is defined. A PEG G is
well-formed if it does not contain directly or mutually left-recursive rules, such as A← Aa/ a.
It is easy to see that a well-formed grammar is complete. It was proved in [7] that each PEG
has an equivalent well-formed one and the algorithm of the transformation had been provided
as well. So from now on we assume that each PEG in our constructions is well-formed. Note
that most PEGs that are used in practice are well formed by construction.

Another interesting result from [7] is that each PEG has an equivalent one without
predicate !. Despite this fact, we decided to include ! in our definition since unlike substitutions
for syntactical sugar operations, removing ! predicate requires significant transformations of
the PEG. Since ! predicate is widely used in practice and it does not affect our constructions,
by including ! in the definition we achieve the constructions that can be used in practice.

As we have already mentioned our condition of the input acceptance also differs from [7].
We used the provided approach since if R(S,w) = ε we can reconstruct the parsing tree with
the root S that generates w. We use this property for the transformation of PEG to the
computational model and the inverse transformation as well. Firstly, in [7] there is no axiom
in PEG, but there is a starting expression eS . This difference is insignificant since one can
state eS = S and S ← eS for the opposite direction. A PEG from [7] generates the input w
if R(eS , w) ̸= F, so R(eS , w) = y, where w = xy. So to translate PEG from [7] to ours one
needs to set S ← eS(•)∗. The transformation in the other direction is eS = S(!•).

3 Definition of the Computational Model

We call our model deterministic pointer pushdown automata (DPPDA). We consider a one-
way model (1DPPDA or just DPPDA) as a restricted case of a two-way model (2DPPDA),
so we define the two-way model only.

▶ Definition 3. A 2-way deterministic pointer pushdown automata M is defined by a tuple

⟨Q,Σ▷◁,Γ, F, q0, z0, δ⟩

MFCS 2024

80:8 Computational Model for Parsing Expression Grammars

Q is the finite set of automaton states.
Σ▷◁ = Σ ∪ {▷,◁}, where Σ is the finite input alphabet and ▷,◁ are the endmarkers.
The input has the form ▷w◁, w ∈ Σ∗.
Γ is the alphabet of the pushdown storage.
F ⊆ Q is the set of the final states.
q0 ∈ Q is the initial state.
Z0 ∈ Γ is the initial symbol in the pushdown storage.
δ is the partial transition function defined as δ : Q× Σ▷◁ × Γ→ Q× Γ∗

ε × {←, ↓, ↑,→},
where Γε = Γ ∪ {ε}. Moreover, if δ(q, a, z) = (q′, α, ↑), then α = ε.

To define and operate with configurations of automata we introduce some notation. We
denoted by α× i⃗ = (Zm, im), . . . , (Z0, i0) the zip of the sequences α and i⃗, which are of the
same length by the definition. A right associative operation x : l⃗ prepends an element x to
the beginning of the vector l⃗ (we adopt this operator from Haskell programming language).
E.g., if l⃗ = 1, 2, 3 and r⃗ = 2, 3, we write l⃗ = 1 : r⃗.

A configuration of M on a word w is a quadruple c ∈ Q × (Γ × I)∗ × I, where I =
{0, . . . , |w| + 1}; we refer to wi, i ∈ I as the i-th input symbol; w0 = ▷, w|w|+1 = ◁. A
configuration c = (q, α× i⃗, j) has the following meaning. The head of 2DPPDA M is over
the symbol wj in the state q; the pushdown contains α = ZmZm−1 · · ·Z0 (the stack grows
from right to left) and there is also additional information vector i⃗ = im, im−1, . . . , i0, ik ∈ I
such that Zk was pushed to the pushdown store when the head was over the ik-th cell.

The automaton’s move is defined via the relation ⊢ as follows. Let δ(q, a, Zn) = (q′, β, d).
The relation

(q, Znα× in : i⃗, j) ⊢ (q′, α′ × i⃗′, j′)

is defined according to the following case analysis.
If d ∈ {←, ↓,→}, then j′ = j− 1, j′ = j, j′ = j + 1 respectively. The cases a = ▷, d =←
and a = ◁, d =→ are forbidden.
If β = ε and d ∈ {←, ↓,→}, then α′ = α, i⃗′ = i⃗

If β = ε and d = ↑, then α′ = α, i⃗′ = i⃗, j′ = in
If β = X1 · · ·Xk, k > 0, then α′ = βZnα, i⃗′ = j′ : j′ : · · · : j′︸ ︷︷ ︸

k

: in : i⃗

The initial configuration is (q0, Z0×0, 0) and an accepting configuration is (qf , ε× (), |w|+
1), where qf ∈ F and by () we have denoted the empty sequence of integers. I.e., M reaches
the right end marker ◁ empties the stack and finishes the computation in an accepting state.
Formally, a word w is accepted by M if there exists a computational path from the initial
configuration to an accepting one.

In the case of 1DPPDA (or just DPPDA), the moves ← are forbidden.

3.1 Properties of DPPDA
Now we discuss the properties of the model and provide some shortcuts for the following needs.
Note that each move of a 2DPPDA is either push- or pop-move due to the sake of convenience
in the proofs (induction invariants are simpler). At the same time, in constructions, it
is convenient to have right, left, and even stay moves that do not change the stack. So
we add moves ↪→, ←↩, and

↪→ that are syntactic sugar for such moves. So, when we write
δ(q, a, z) = (p, ↪→), we mean the sequence of moves:

δ(q, a, z) = (p′, Z ′,→);∀σ ∈ Σ▷◁ : δ(p′, σ, Z ′) = (p, ε, ↓).

The construction for ←↩ and

↪→ are similar.

A. Rubtsov and N. Chudinov 80:9

Due to the definition of δ, a DPPDA can move only if the stack is non-empty and since
each move is either push or pop, we have that Z0 lies at the bottom of the stack till the last
move of a computation or even after the last move in the case of unsuccessful computation.
In the case of a successful computation, Z0 is popped at the last move.

4 Equivalence of DPPDAs and PEGs

In this section, we provide an algorithm that transforms a PEG into a DPPDA. The algorithm
of the inverse transformation provided in [13] due to space limitations. Our construction is
similar to the well-known proof of equivalence between CFGs and DPDA for CFLs, but since
both DPPDAs and PEGs are more complicated than DPDAs and CFLs, our constructions
are technically harder. We refer the reader to [15] for the detailed explanation of the proof
idea, where it was provided for CFLs (so as the proof for CFLs as well).

In this section we assume that PEGs have a special form. We call it Chomsky’s normal
form since it is similar to such a form for CFGs.

▶ Definition 4. A PEG G has a Chomsky normal form if the axiom S never occurs on the
right side of the rules and the rules are of the following form:

A← B /C, A← BC, A← !B, A← a, A← ε.

▶ Lemma 5 ([13]). Each PEG G has an equivalent PEG G′ in Chomsky’s normal form
which is complete if so was G.

▶ Theorem 6. For a PEG G there exists an equivalent DPPDA M .

Proof. We assume that G is a well-formed PEG in a Chomsky normal form (by Lemma 5).
We construct an equivalent DPPDA M = ⟨Q,Σ▷◁,Γ, {qf}, q0, Z0, δ⟩ by the PEGs description.
We formally describe δ on Fig. 4; we do not provide a full list of states Q and pushdown
alphabet Γ since most of the states and symbols depend on rules listed in δ’s construction
and can be easily restored from it. Since the construction is straightforward, we describe
here only the main details.

The DPPDA M simulates the parsing process of a PEG G on the input w. Firstly M
performs a series of technical moves to come from the initial configuration to the initial
simulation configuration:

(q0, Z0 × 0, 0) ⊢
∗

(q, SZ0 × (1 : 0), 1),

where q is the main work state and S is the axiom of the PEG.
During the simulation the following invariants hold. Below A is a nonterminal of the

PEG.

1. If the automaton is in the main work state q and on the top of the stack is the pair A× i,
then the head is over the cell i.

2. If the head is over the cell r + 1 in a state qA± (hereinafter qA± ∈ {qA+ , qA−}) and the
topmost symbol had been added at the position l, then it means the following.
qA+ A subword s = wl · · ·wr would be parsed by the PEG from A (starting from the

position l); when r + 1 = l, we have s = ε. In the other direction: if the PEG parses
wl · · ·wr from A starting from the position l, then the DPPDA that starts computation
from the position l in the main work state q with A on the top on the stack finishes at
the position r + 1 with (the same) A on the top of the stack, i.e.,

(q, Aα× l : i⃗, l) ⊢
∗

(qA+ , Aα× l : i⃗, r + 1).

MFCS 2024

80:10 Computational Model for Parsing Expression Grammars

qA− After the PEG started parsing from A from the position l, the computation ended
up with a failure at some point in the case of qA− . In the other direction: if the PEG
fails, then for some r ≥ l − 1:

(q, Aα× l : i⃗, l) ⊢
∗

(qA− , Aα× l : i⃗, r + 1).

DPPDA M accepts the input only if the head reaches the symbol ◁ in the state qS+
(note that the axiom does not occur on the right side of the rules). Formally, we add the rule

δ(qS+ ,◁, Z0) = (qf , ε, ↓),

where qf is the only final state of the DPPDA. So, from the invariant it follows that the
DPPDA accepts the input iff the PEG parses the input.

The rest of the construction is the delta’s description in Fig. 4. The proof is a straight-
forward induction on the recursion depth of the PEGs computation. So we describe the
behavior of the automaton corresponding to formal construction in two main cases and check
that the invariants hold (the remaining cases are simple).

Construction of δ

We denote by Z ∈ Γ and σ ∈ Σ▷◁ arbitrary symbols. The rules are grouped with respect
to the PEG’s operations. Note that the states q, qA± are the same for all rules, while
other states and stack symbols depend on the rule, i.e., stack symbols A1’s from different
rules are different even if they correspond to the same nonterminal A. When we use
nonterminals (and states) with signs ± or ∓, the signs have corresponding matching,
i.e., if in a rule we have A± and B∓, then when A± = A+, B∓ equals to B− and when
A± = A−, B∓ equals to B+.

0. General rules
δ(q0,▷, Z0) = (q0, ↪→); ∀σ′ ∈ Σ ∪ {◁} : δ(q0, σ

′, Z0) = (q, S, ↓);
δ(qA± , σ, A) = (qA± , ε, ↓); δ(qS+ ,◁, Z0) = (qf , ε, ↓).

1. A← BC

δ(q, σ,A) = (q,BA1, ↓)
δ(qB+ , σ, A1) = (q, CA2, ↓);
δ(qB− , σ, A1) = (qA− , ε, ↑);
δ(qC+ , σ, A2) = (q′

A2
, ε, ↓);

δ(q′
A2
, σ, A1) = (qA+ , ε, ↓);

δ(qC− , σ, A2) = (q′
A2−

, ε, ↑);
δ(q′

A2−
, σ, A1) = (qA− , ε, ↑).

2. A← B /C

δ(q, σ,A) = (q,BA1, ↓)
δ(qB+ , σ, A1) = (qA+ , ε, ↓)
δ(qB− , σ, A1) = (qA2 , ε, ↑)
δ(qA2 , σ, Z) = (q, CA2, ↓)
δ(qC+ , σ, A2) = (qA+ , ε, ↓)
δ(qC− , σ, A2) = (qA− , ε, ↑);

3. A← ε

δ(q, σ,A) = (qA+ ,

↪→)

4. A← !B
δ(q, σ,A) = (q,BA1, ↓);
δ(qB± , σ, A1) = (qA∓ , ε, ↑)

5. A← a

δ(q, a,A) = (qA+ , ↪→);
δ(q, b, A) = (qA− ,

↪→), here b ̸= a;

Figure 4 Construction of δ by the PEG G.

Each rule is applied to a configuration of the form (q, Aα× l : i⃗, l). In the first case (of
concatenation) the automaton pushes the auxiliary symbol A1 at the same position that A
has been pushed (since the invariant 1 holds) and then pushes B. If it reached a configuration

A. Rubtsov and N. Chudinov 80:11

of the form (qB+ , BA1Aα× l : l : l : i⃗, r′ + 1), then B has successfully parsed the subword
wl · · ·wr′ due to invariant 2, then B is popped due to General rules and DPPDA pushes
C at the position r′ + 1 and goes to the main work state q. If then the DPPDA reaches a
configuration of the form (qC+ , CA2A1Aα× (r′ + 1) : (r′ + 1) : l : l : i⃗, r+ 1) we have that the
PEG parsed wr′+1 · · ·wr from C and after the sequences of technical pops the automaton
comes to the configuration (qA+ , Aα× l : i⃗, r+ 1) that proves that invariant 2-qA+ holds (the
arguments for the other direction are similar).

In the case of reaching the configuration (qC− , CA2A1Aα× (r′ +1) : (r′ +1) : l : l : i⃗, r+1)
or (qB− , BA1Aα × l : l : l : i⃗, r′ + 1) earlier, the sequence of pops lead the DPPDA to the
configuration (qA− , Aα× l : i⃗, l) that proves that invariant 2-qA− holds (the arguments for
the other direction are similar).

The case of the ordered choice is similar to the case of concatenation. The difference
is, that in the case of a configuration (qB+ , BA1Aα × l : l : l : i⃗, r + 1), the automaton
reaches the configuration (qA+ , Aβ × l : i⃗, r + 1) via the technical moves, and in the case of
(qB− , BA1Aα× l : l : l : i⃗, r + 1) the automaton reaches the configuration (q, CA2Aα× l : l :
l : i⃗, l) after which

either (q, CA2Aα× l : l : l : i⃗, l) ⊢
∗

(qC+ , CA2Aα× l : l : l : i⃗, r+1) ⊢
∗

(qA+ , Aα× l : i⃗, r+1),

or (q, CA2Aα× l : l : l : i⃗, l) ⊢
∗

(qC− , CA2Aα× l : l : l : i⃗, r + 1) ⊢
∗

(qA− , Aα× l : i⃗, l).
The analysis of the remaining cases directly follows from the definitions, so we omit it. ◀

5 Linear-Time Simulation of 2DPPDA

Our linear-time simulation algorithm for 2DPPDA is almost the same as S. Cook’s algorithm
for 2DPDA [5]. One can find the detailed exposition in [2] and [8].

▶ Theorem 7 ([13]). Let M be a 2DPPDA. The language L(M) is recognizable in time O(n)
in the RAM model. Moreover, there exists an O(|w|) (in RAM) simulation algorithm for M
on the input w.

6 Structural Results

We use the computational model to obtain new structural results about the PELs.

▶ Lemma 8. Let X be a DCFL and Y be a PEL. Then XY is a PEL.

Proof. We describe a DPPDA M recognizing XY that simulates a DPDA MX recognizing
X and a DPPDA MY recognizing Y , constructed by a (well-formed) PEG.

DPPDA M simulates MX until it reaches an accepting state. Then it pushes the
information of the state to the stack, then pushes Z0 (of MY) and simulates MY . If MY

accepts the rest of the input, then the whole input is accepted. Otherwise, M pops symbols
from the stack until it reaches the info about the MX state and continues the simulation
until it reaches an accepting state again. This process is continued until either MY accepts,
or MX reaches the end of the input (and MY rejects ε).

The correctness easily follows from the construction. During the process M tests all the
prefixes of the input from X and checks whether the corresponding suffixes belong to Y . ◀

We use the notation PEL, DCFL, and REG for the language classes in formulas (the last
one denotes regular languages). Denote by ΓREG(DCFL) the regular closure of DCFLs; this
class is defined as follows. L ∈ ΓREG(DCFL) if there exists a regular expression (RE) R over
an alphabet Σk = {a1, . . . , ak} and DCFLs L1, . . . , Lk such that if we replace ai by Li in R

the resulting expression ψ(R) describes L.

MFCS 2024

80:12 Computational Model for Parsing Expression Grammars

▶ Lemma 9 ([13]). ΓREG(DCFL) ⊆ PEL.

We describe only the proof idea. We provided the proof of Lemma 8 to generalize it
as follows. In the case of a single concatenation, we have a kind of linear order for an
exhaustive search. In the case of ΓREG(DCFL) we will perform an exhaustive search in the
order corresponding to a (graph of) deterministic finite automaton (DFA) recognizing R.
If a word w on the input belongs to L ∈ ΓREG(DCFL), then it can be split into subwords
w1 · · ·wk = w such that there exists a word α1 · · ·αk ∈ R such that wi ∈ Lαi

, where Lαi

is the DCFL from the substitution that maps αi to Lαi . So, the exhaustive search finds
the split of w by considering α1 · · ·αk in the length-lexicographic order and considering w’s
subwords wi ∈ Lαi

ordered by the length. If a word w1 ∈ Lα1 is the shortest prefix, the
DPPDA tries to find the shortest w2 ∈ Lα2 and so on. If at some point the DPPDA failed to
find wj+1 ∈ Lαj+1 , it rollbacks to αj and tries to find a longer word wj ∈ Lαj

. If it fails, then
it rollbacks to αj−1 and so on. During the search of wj , the DPPDA simulates a DPDA Mj

recognizing Lαj
.

Denote by ΓBool(L) the Boolean closure of the language’s class L , i.e., ΓBool(L) is a
minimal class satisfying the conditions:

L ⊆ ΓBool(L)
∀A,B ∈ ΓBool(L) : A ∪B,A ∩B,A ∈ ΓBool(L)

▶ Theorem 10. The following assertions hold.
1. ΓBool(ΓREG(DCFL)) ⊆ PEL.
2. ΓREG(DCFL) · PEL = PEL.

Proof. It was shown in [7] that ΓBool(PEL) = PEL. We proved that ΓREG(DCFL) ⊆ PEL, so
ΓBool(ΓREG(DCFL)) ⊆ PEL.

The inclusion ΓREG(DCFL) · PEL ⊇ PEL is obvious ({ε} ∈ ΓREG(DCFL)). The inclusion
ΓREG(DCFL) · PEL ⊆ PEL follows from the modification of the simulation algorithm from
the proof of Lemma 9 by the simulation step from the proof of Lemma 8: when Mj reaches
an accepting state and the corresponding state of A is an accepting state, M simulates the
DPPDA for the PEG. If it successfully parses the suffix, the input is accepted, otherwise,
the simulation continues as in the proof of Lemma 9. Recall that it is not known, whether
PELs are closed over concatenation (Remark Remark:ConcatClosure), so we have to use
Lemma 9 to for left concatenation with ΓREG(DCFL). ◀

▶ Corollary 11. For each L ∈ ΓBool(ΓREG(DCFL)) there exists a RAM-machine M that
decides, whether w ∈ L in time O(|w|). In other words, the class ΓBool(ΓREG(DCFL)) is
linear-time recognizable.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Current Clique

Algorithms Are Optimal, So is Valiant’s Parser. In IEEE 56th Annual Symposium on Founda-
tions of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, FOCS ’15,
pages 98–117, USA, 2015. IEEE Computer Society. doi:10.1109/FOCS.2015.16.

2 A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley series in computer science and information processing. Addison-Wesley Pub-
lishing Company, 1974.

3 Eberhard Bertsch and Mark-Jan Nederhof. Regular Closure of Deterministic Languages. SIAM
J. Comput., 29:81–102, 1999.

4 A. Birman and J. D. Ullman. Parsing algorithms with backtrack. In 11th Annual Symposium
on Switching and Automata Theory (SWAT 1970), pages 153–174, 1970.

https://doi.org/10.1109/FOCS.2015.16

A. Rubtsov and N. Chudinov 80:13

5 Stephen A Cook. Linear time simulation of deterministic two-way pushdown automata.
Department of Computer Science, University of Toronto, 1970.

6 Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time, Functional Pearl. In Pro-
ceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming,
ICFP ’02, pages 36–47, New York, NY, USA, 2002. Association for Computing Machinery.
doi:10.1145/581478.581483.

7 Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foundation. In
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’04, pages 111–122, New York, NY, USA, 2004. Association for Computing
Machinery. doi:10.1145/964001.964011.

8 Robert Glück. Simulation of Two-Way Pushdown Automata Revisited. In Electronic Proceed-
ings in Theoretical Computer Science, volume 129, pages 250–258. Open Publishing Association,
September 2013.

9 John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, languages and
computation. Addison-Wesley, 1979.

10 Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM Journal on Computing, 6(2):323–350, 1977. doi:10.1137/0206024.

11 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J.
ACM, 49(1):1–15, 2002.

12 Bruno Loff, Nelma Moreira, and Rogério Reis. The computational power of parsing expression
grammars. In Mizuho Hoshi and Shinnosuke Seki, editors, Developments in Language Theory -
22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings,
volume 11088 of Lecture Notes in Computer Science, pages 491–502. Springer, 2018. doi:
10.1007/978-3-319-98654-8_40.

13 Alexander Rubtsov and Nikita Chudinov. Computational Model for Parsing Expression
Grammars, 2024. arXiv:2406.14911.

14 Alexander A. Rubtsov. A Linear-Time Simulation of Deterministic d-Limited Automata. In
Developments in Language Theory: 25th International Conference, DLT 2021, Porto, Portugal,
August 16–20, 2021, Proceedings, pages 342–354, Berlin, Heidelberg, 2021. Springer-Verlag.
doi:10.1007/978-3-030-81508-0_28.

15 Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA,
third edition, 2013.

16 Guido van Rossum, Pablo Galindo, and Lysandros Nikolaou. New PEG parser for CPython,
2020. URL: https://peps.python.org/pep-0617/.

MFCS 2024

https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://doi.org/10.1137/0206024
https://doi.org/10.1007/978-3-319-98654-8_40
https://doi.org/10.1007/978-3-319-98654-8_40
https://arxiv.org/abs/2406.14911
https://doi.org/10.1007/978-3-030-81508-0_28
https://peps.python.org/pep-0617/

	1 Introduction
	1.1 Results
	1.2 Basic Notation
	1.3 Informal Description of PEGs

	2 Formal Definition of PEGs
	2.1 Difference with other standard definitions and forms of PEGs

	3 Definition of the Computational Model
	3.1 Properties of DPPDA

	4 Equivalence of DPPDAs and PEGs
	5 Linear-Time Simulation of 2DPPDA
	6 Structural Results

