
Monoids of Upper Triangular Matrices over the
Boolean Semiring
Andrew Ryzhikov #

Department of Computer Science, University of Oxford, UK

Petra Wolf # Ñ

LaBRI, CNRS, Université de Bordeaux, Bordeaux INP, France

Abstract
Given a finite set A of square matrices and a square matrix B, all of the same dimension, the
membership problem asks if B belongs to the monoid M(A) generated by A. The rank one problem
asks if there is a matrix of rank one in M(A). We study the membership and the rank one
problems in the case where all matrices are upper triangular matrices over the Boolean semiring. We
characterize the computational complexity of these problems, and identify their PSPACE-complete
and NP-complete special cases.

We then consider, for a set A of matrices from the same class, the problem of finding in M(A) a
matrix of minimum rank with no zero rows. We show that the minimum rank of such matrix can be
computed in linear time.We also characterize the space complexity of this problem depending on the
size of A, and apply all these results to the ergodicity problem asking if M(A) contains a matrix
with a column consisting of all ones. Finally, we show that our results give better upper bounds
for the case where each row of every matrix in A contains at most one non-zero entry than for the
general case.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases matrix monoids, membership, rank, ergodicity, partially ordered automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.81

Funding Andrew Ryzhikov: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 852769, ARiAT).
Petra Wolf : Supported by the French ANR, project ANR-22-CE48-0001 (TEMPOGRAL).

Acknowledgements We thank anonymous reviewers for their comments that improved the content
and presentation of the paper.

1 Introduction

Membership in matrix monoids. Given a finite set A of n × n matrices and an n × n

matrix B, the membership problem asks if B belongs to the monoid M(A) generated by A,
which is the set of all products of matrices from A. For matrices over rational numbers,
membership is solvable in polynomial time if A consists of one matrix [22]. This result was
later extended to the case where A is a set of commuting matrices [1], and then to a special
class of non-commutative matrices [28]. Membership is also decidable for 2 × 2 non-singular
integer matrices [34]. On the other hand, membership is already undecidable for 3 × 3 integer
matrices with determinant equal to 0 [32].

For sets of matrices over the Boolean semiring (the set {0, 1} with addition and multiplic-
ation defined the same way as for integer numbers, except that 1 + 1 = 1), many natural
problems, including membership, are trivially in PSPACE, and are thus more tractable.
However, membership in this case is actually PSPACE-complete [25]. In this paper, we
further restrict the setting and study upper triangular matrices over the Boolean semiring.
Everywhere below in this paper, we assume all matrices to be square and over the Boolean

© Andrew Ryzhikov and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 81; pp. 81:1–81:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryzhikov.andrew@gmail.com
https://orcid.org/0000-0002-2031-2488
mailto:mail@wolfp.net
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.MFCS.2024.81
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Monoids of Upper Triangular Matrices over the Boolean Semiring

semiring, unless specified otherwise. Upper triangular matrices may seem to be a simple
and restrictive class, but sets of such matrices and the corresponding automata have been
studied extensively, and many problems for them are known to be PSPACE-complete, see e.g.
[33, 26, 31, 37, 30]. Nevertheless, we are not aware of any results on the four problems we
consider in this paper (membership, rank one, minimum rank of a total word and ergodicity)
specifically for the case of upper triangular matrices, except for the results of [43] on the
ergodicity problem, which we explain below.

Matrices and sets of matrices over the Boolean semiring play an important role in
automata theory [4], discrete-time Markov chains [38], graph theory [2], variable-length
codes [12], and symbolic dynamics [27]. They are often used in the theory of nonnegative
matrices, since in many problems one is not interested in the actual values of the entries, but
only in which values are zero and which are strictly positive [3].

Boolean square matrices can also be viewed as binary relations on a finite set Q. Matrices
with at most one non-zero entry in each row thus correspond to partial transformations,
and if they have exactly one non-zero entry in every row, to complete transformations. We
call such matrices transformation and complete transformation matrices respectively. For
monoids of complete transformation matrices, membership is PSPACE-complete [25], and its
complexity was studied for several subsclasses [7, 6, 9, 8]. Connections of membership with
the automata intersection problem are explored in [13].

The rank one problem. Instead of asking if the monoid M(A) contains a given matrix,
one can ask if it contains a matrix from a certain class. Given a set A of matrices, the rank
one problem asks if there is a matrix of rank one in M(A).

The rank one problem is known to be solvable in polynomial time for monoids of
complete transformation matrices (see e.g. [41]), strongly connected monoids of transformation
matrices [11] and, more generally, for strongly connected monoids of unambiguous relations
and their subclasses [36, 14, 24, 4] (a monoid of n × n matrices is called strongly connected
if for each pair (i, j), 1 ≤ i, j ≤ n, it contains a matrix whose entry (i, j) is equal to one).
The latter case plays an important role in the theory of variable-length codes because of
its connections with synchronizing codes [12]. On the other hand, the rank one problem is
PSPACE-complete already for monoids of transformation matrices which are not strongly
connected [10]. The complexity of deciding if a monoid of complete transformation matrices
contains a matrix of given rank is studied in [18].

The rank one problem is related to the Černý conjecture and its generalizations. Indeed,
the case of monoids of complete transformations corresponds exactly to the case of complete
DFAs, and hence in this case the rank one problem is nothing else than the problem of
checking if a complete DFA is synchronizing. We refer to the surveys [41, 42, 23, 5] for the
vast literature on synchronizing DFAs.

Careful synchronization and ergodicity. A similar problem is, given a set A of matrices, to
find in M(A) a minimum rank matrix without zero rows. We call matrices with no zero rows
total, since they correspond to total relations. For sets of transformation matrices, monoids
of matrices containing a total matrix of rank one correspond to carefully synchronizing
DFAs [29]. Deciding if M(A) contains a total matrix of rank one is PSPACE-complete even
if A consists of two matrices [29], and the length of a shortest product of matrices from
A resulting in a total matrix of rank one can be exponential [29]. If A is a set of upper
triangular transformation matrices, deciding if M(A) contains a total matrix of rank one
and finding a product resulting in such a matrix is solvable in polynomial time [43]. We
discuss the contributions of [43] and their connection to the results of this paper in more
details in the beginning of Section 4.

A. Ryzhikov and P. Wolf 81:3

A closely related notion is that of ergodic matrices (also known as column-primitive [16]
or D3-directing [20, 21]). A matrix is called ergodic [44] if it has a column consisting of
all ones. Note that a transformation matrix is ergodic if and only if it is a total matrix of
rank one, that is, this case also coincides with carefully synchronizing DFAs. The ergodicity
problem asks if a given matrix monoid contains an ergodic matrix. The ergodicity problem
is PSPACE-complete [29], but is solvable in polynomial time for monoids of matrices with
no zero rows [35, 44]. An application of ergodicity to deciding if a discrete-time multi-agent
system can be driven to consensus is presented in [16]. We emphasize that the existing
polynomial-time solvability results on ergodicity [44, 16, 15] (except for [43]) consider monoids
of matrices with no zero rows, while our results for this problem do not have this requirement.

2 Main definitions and our contributions

Boolean rank. The Boolean semiring is the set {0, 1} with addition and multiplication
defined in the usual way except that 1 + 1 = 1. All matrices in this paper are over the
Boolean semiring. The Boolean rank [17] (which we call just rank for brevity in this paper)
of an n ×n matrix A is the smallest number r such that A = CR, where C is an n × r matrix,
and R is an r × n matrix, with usual matrix multiplication over the Boolean semiring.

For example, the following equality shows that the rank of A is at most two (moreover, it
cannot be one since there are two different non-zero rows in A):

A =

1 1 1
1 1 0
0 1 1

 =

1 1
1 0
0 1

 (
1 1 0
0 1 1

)
= CR.

Matrices and automata. Let A = {A1, . . . , Am} be a set of n×n matrices over the Boolean
semiring. The monoid generated by A is the set of all possible products (with respect to the
usual matrix multiplication) of matrices from A, including the empty product corresponding
to the identity matrix. By assigning to each matrix Ai ∈ A a letter ai from a finite alphabet
Σ of size m, the set A can be equivalently seen as a nondeterministic finite automaton (NFA)
with state set Q = {1, 2, . . . , n}, alphabet Σ and transition relation ∆ : Q × Σ → 2Q defined
for each letter ai by the action of the corresponding matrix Ai. That is, we have j ∈ ∆(i, ak)
if and only if the entry (i, j) in Ak is one. If the transition relation is clear from the context,
we denote the set ∆(q, a) as q · a. Equivalently, given an NFA (Q, Σ, ∆), we can consider
for each a ∈ Σ the matrix such that its entry (p, q), p, q ∈ Q, is non-zero if and only if
q ∈ ∆(p, a). This allows to consider an NFA as a set of matrices corresponding to its letters.
The transition relation can be homomorphically extended to the set Σ∗ of words over Σ.
Words over Σ thus naturally correspond to products of matrices. In particular, by the matrix
of a word we mean the result of this product, and by the rank of a word we mean the rank
of its matrix. In this paper we make use of this correspondence between NFAs and matrix
monoids and switch between the languages of matrices and automata whenever convenient.
We remark that the described construction is nothing more than a homomorphism from the
free monoid Σ∗ to the monoid of matrices over the Boolean semiring.

In NFA terms, the matrix M of a word w has rank at most r if and only if there exist r

subsets Q1, . . . , Qr of Q such that the image of every state of Q under w is a union of some
of these subsets. If r is the smallest such number, the rank of M is equal to r. In particular,
the rank of a word is one if and only if there is a subset Q1 ⊆ Q such that the image of every
state under w is either Q1 or the empty set, and not all images are empty.

MFCS 2024

81:4 Monoids of Upper Triangular Matrices over the Boolean Semiring

For a set S ⊆ Q of states and a word w ∈ Σ∗, we denote S · w = {p ∈ Q | p ∈
q · w for some q ∈ S}. We say that the action of a word w is defined for a state q if q · w is
non-empty. A word is called total if its action is defined for every state. Equivalently, it
means that the matrix of a word does not have zero rows.

An NFA is a deterministic finite automaton (DFA) if for every p ∈ Q and a ∈ Σ we
have that |∆(p, a)| ≤ 1. In this case we use δ instead of ∆ to emphasize that the transition
relation is a (partial) transition function. If moreover δ(p, a) is defined for every p ∈ Q and
a ∈ Σ, the DFA is called complete. For DFAs, the rank of a word w is simply the size |Q · w|.

Ergodic words. A word w is called ergodic for an NFA A = (Q, Σ, ∆) if there is a state q ∈ Q

such that for every state p ∈ Q we have q ∈ p · w. Equivalently, a word is ergodic if its matrix
contains a column of all ones. Clearly, every ergodic word is total. We call an NFA ergodic if
it admits an ergodic word.

Partially ordered automata. An NFA A = (Q, Σ, ∆) is called partially ordered (poNFA) if
there exists an order ≺ on its set of states Q which is preserved by all its transitions. That
is, if p ∈ ∆(q, a) for p, q ∈ Q and a ∈ Σ, then q ≺ p or q = p. Such order can be found in
time O(mn) by topological sorting, and in deterministic logarithmic space [40], hence we
always assume that a poNFA is provided together with the order ≺. Equivalently, an NFA
is a poNFA if the underlying digraph of A does not have any cycles other than self-loops,
or, alternatively, if the matrices of all letters of A are upper triangular. A poNFA A is
called self-loop deterministic if for every letter a ∈ Σ such that q ∈ q · a for a state q ∈ Q we
have q · a = {q}. Following [26], we denote self-loop deterministic partially ordered NFAs as
rpoNFAs. We denote partially ordered DFAs as poDFAs.

Decision problems. An NFA acceptor A = (Q, Σ, ∆, I, F) is an NFA (Q, Σ, ∆) with
distinguished sets I ⊆ Q and F ⊆ Q of, respectively, initial and final states. The language
L(A) of an NFA acceptor is the set of words w ∈ Σ∗ such that there exist states i ∈ I, f ∈ F

with f ∈ i·w. Given an NFA acceptor, the universality problem asks if it accepts all words over
its alphabet. Universality of poNFAs is PSPACE-complete even over a binary alphabet [26],
and remains PSPACE-complete for rpoNFAs over polynomial size alphabet [26, 30].

Given an NFA A and a matrix B, the membership problem asks if there exists a word
such that its matrix in A is equal to B. Given an NFA A, the rank one problem asks if there
is a word whose matrix has rank one in A.

We assume that the reader is familiar with basic notions of automata theory and compu-
tational complexity, see e.g. [39].

Our contributions. In the first half of this paper, Section 3, we analyze the computational
complexity of the membership and rank one problems for poNFAs (equivalently, for monoids
of upper triangular matrices). We show that they are PSPACE-complete for rpoNFAs and
ternary poNFAs (Proposition 6). The main results of Section 3 are that for rpoNFAs over a
fixed alphabet the membership problem is in NP (Theorem 1), and remains NP-complete
even for complete poDFAs over a binary alphabet (Theorem 8). We show containment in NP
by proving that for each word there is a short word with the same matrix (Proposition 2).
We complement this result with a lower bound on the length of words with a given matrix
(Lemma 7).

In the second half of the paper, Section 4, we study the problem of finding the minimum
rank of a total word in a poNFA. We show that, depending on the size of the alphabet, this
problem lies between L and P-complete, and moreover can be solved in linear time. These

A. Ryzhikov and P. Wolf 81:5

results are summarized in Theorem 11. All these results transfer to the problem of ergodicity
of a set of upper triangular matrices (Theorem 15), which asks if a matrix monoid contains
a matrix with a column consisting of all ones. We then further extend these results to get
improved bounds for ergodicity of poDFAs (Theorem 16).

3 Membership and minimum rank

3.1 Upper bounds for rpoNFAs
The goal of this subsection is to prove the following theorem.

▶ Theorem 1. Membership for rpoNFAs over a fixed alphabet is in NP.

We start with the following key result which, intuitively, shows that if A is an rpoNFA, a
product of matrices from A cannot contain too many partial products.

▶ Proposition 2. Let A = (Q, Σ, ∆) be an rpoNFA with n states and m letters. For every
word w ∈ Σ∗ there exist at most n(n + 1)m−1 prefixes of w with pairwise different matrices.

Proof. We prove the statement by induction on m. Clearly, if m = 1, the matrix of every
word w of length more than n is equal to the matrix of some word v of length at most n,
and thus the matrix of every prefix of w is equal to the matrix of some prefix of v, and there
are only at most n prefixes.

Assume now that m ≥ 2 and the statement is true for rpoNFAs over all alphabets Σ′ ⊂ Σ,
|Σ′| ≤ m − 1. We can assume that every letter from Σ appears in w, otherwise the statement
is proved. Let Q = Q1 ∪ Q′

1, where Q1 is the set of states p such that there exists a letter
a ∈ Σ with p ̸∈ p · a, and Q′

1 = Q \ Q1. Let q be a smallest (with respect to ≺) state in Q1,
and let a ∈ Σ be a letter such that q ̸∈ q · a.

Let w′ be the prefix of w before the first appearance of a, that is, w′ is the prefix of w

such that w′ does not contain a, and w′a is also a prefix of w. Clearly, w′ ∈ (Σ \ {a})∗. By
the induction assumption, there are at most n(n+1)m−2 prefixes of w′ with pairwise different
matrices. After the first application of a, for each state p ∈ Q1 · w′a we have that q ≺ p.

Now we perform the following iterative process. If the suffix of w after the first appearance
of a does not contain all letters from Σ, we stop. Otherwise, we consider the smallest state
q′ in Q1 · w′a and a letter a′ such that q′ ̸∈ q′ · a′, and repeat the argument above with
Q1 · w′a taken as Q1, q′ taken as q, a′ taken as a, and w′ taken as w. This argument will
be repeated at most n times in total, since after n times Q1 must be empty, and thus the
remaining suffix does not change the matrix of the word. Hence we get that there are at
most n · (n(n + 1)m−2 + 1) ≤ n(n + 1)m−1 prefixes of w with pairwise different matrices. ◀

▶ Lemma 3. Let A be an rpoNFA and w be a word. Let P be the set of matrices of all
prefixes of w, and |P | = k. Then there exist words w1, . . . , wk such that w = w1w2 . . . wk,
every matrix in P is equal to the matrix of w1 . . . wi for some i, and for each i, 0 ≤ i < k,
for every non-empty prefix v of wi+1 the matrices of w1w2 . . . wiv and w1w2 . . . wiwi+1 are
equal.

Proof. Represent w as a concatenation w1w2 . . . wk of words wi such that for every i,
0 ≤ i < k, the matrices of w1w2 . . . wi and w1w2 . . . wiwi+1 are different, but the matrix of
w1w2 . . . wiv is equal to the matrix of w1w2 . . . wiwi+1 for every non-empty prefix v of wi+1.
We only need to show that for i ̸= j the matrices of w1w2 . . . wi and w1w2 . . . wj cannot be
equal. This follows from the fact that in rpoNFAs, if for some non-empty words u1, u2 the
matrices of u1 and u1u2 are different, there is no word u3 such that the matrices of u1 and
u1u2u3 are equal. ◀

MFCS 2024

81:6 Monoids of Upper Triangular Matrices over the Boolean Semiring

The following statement implies that membership is in NP for rpoNFAs over a fixed
alphabet, thus proving Theorem 1. It also implies that the rank one problem for rpoNFAs
over a fixed alphabet is in NP.

▶ Proposition 4. Let A be an rpoNFA with n states and m letters. Then for every word
there exists a word of length at most n(n + 1)m−1 with the same matrix.

Proof. Let w1, . . . , wk be the words from the statement of Lemma 3. By Proposition 2,
k ≤ n(n + 1)m−1. For each i, 1 ≤ i ≤ k, let ai be the first letter of wi. Then the matrix of
a1a2 . . . ak is equal to the matrix of w. ◀

As another consequence of our results, we get an elementary combinatorial proof of a
theorem from [26] which originally required some non-trivial formal languages machinery.

▶ Corollary 5 (Theorem 23 in [26]). Let A be an NFA acceptor, and B be an rpoNFA acceptor,
both over the same fixed alphabet. Checking if L(A) ⊆ L(B) is in coNP.

Proof. If L(A) ̸⊆ L(B), there exists a word w accepted by A and not accepted by B. Let
w1, . . . , wk be the words from the statement of Lemma 3. By Proposition 2, k ≤ n(n+1)m−1.
For each i let ai be the first letter of wi, and let wi = aiw

′
i. Furthermore, let Σi be the set

of letters occurring in w′
i. Consider the regular expression e = a1Σ∗

1a2Σ∗
2a3 . . . Σ∗

k−1akΣ∗
k.

By construction, w is accepted by e, and for every word accepted by e its matrix in B is
equal to the matrix of w in B, and thus every such word is not accepted by B. Moreover, e

can be straightforwardly transformed into a poNFA acceptor E with at most n(n + 1)m−1

states and m letters. It remains to note that the intersection of A and E can be decided in
polynomial time, and hence E can be used as a certificate for coNP. ◀

3.2 Lower bounds for rpoNFAs
We now complement the positive results from the previous subsection with lower bounds.
We first show that if the alphabet is not fixed, membership for rpoNFAs is as hard as for
general NFAs. The proof of that is done by constructing a reduction from the universality
problem for rpoNFA acceptors, which is PSPACE-complete [26]. The same proof works for
ternary poNFAs.

▶ Proposition 6. The membership and rank one problems are PSPACE-complete for rpoNFAs
and ternary poNFAs.

Proof. To prove both statements, we use the following reduction from the universality
problem for poNFA acceptors. Let A = (Q, Σ, ∆, I, F) be a poNFA acceptor. Construct
a poNFA A′ = (Q ∪ {q0, p0, p1, q+, q−}, Σ ∪ {r}, ∆′). The transition relation ∆′ includes
all transitions in ∆, with the addition of ∆′(q0, r) = I, ∆′(q, r) = {q+} if q ∈ F , and
∆′(q, r) = {q−} if q ∈ Q \ F . We also define ∆′(p0, r) = {p1}, ∆′(p1, r) = {q−}. Finally, all
letters in Σ induce self-loops for q+, q−, q0, p0, p1. See Figure 1 for an illustration.

We claim that A does not accept a word in Σ∗ if and only if there exists a word in A′

which maps q0 and p0 to {q−}, and all other states to the empty set. Indeed, if there exists
a word w not accepted by A, then the word rwr has the required action in A′. Conversely,
if w′ is a word having the required action, then it must contain exactly two occurrences
of r, and its factor between the first and the second occurrence of r maps I to a subset of
Q \ F and is thus not accepted by A. Observe also that every word of rank one must have
this action by construction. Furthermore, the described construction preserves the property
that the NFA is an rpoNFA. It remains to use the fact that the universality problem is
PSPACE-complete for rpoNFA acceptors and binary poNFA acceptors [26]. ◀

A. Ryzhikov and P. Wolf 81:7

q0

q−

q+

p1 p0

I

Q
F

r

r

r
r

r

Σ
Σ

Σ
ΣΣ

Figure 1 Illustration for the reduction in Proposition 6.

The following lemma provides a lower bound for the value discussed in Proposition 4.
We remark that for constant m our lower and upper bounds are asymptotically the same,
and if m = n − 1 the lower bound is exponential.

▶ Lemma 7. Let n and m be positive natural numbers such that m divides n − 2. Then there
exists an rpoNFA with n states and m letters such that for some states t and f the length of
a shortest word w with f · w = {f} and q · w = {t} for every state q ̸= f is n−2

m (n−2
m + 1)m−1.

Proof. Let n = ms+2. We construct an rpoNFA A = (Q, Σ, ∆) with the required properties
as follows. Let Q(j) = {q

(j)
1 , . . . , q

(j)
s } and S = ∪1≤j≤mQ(j). Take Q = S ∪ {t, f}, where t

and f are fresh states, and Σ = {a1, a2, . . . , am}. The transition relation ∆ is defined for the
states in the sets Q(1), . . . , Q(m) in such a way that while reading a word w with S · w = {t},
the states in Q(j) that contain an image of a state from S imitate an m-ary counter counting
to zero, with some additional traversal in the process. Formally, for 1 ≤ j, k ≤ m, 1 ≤ i ≤ s

we set

∆(q(k)
i , aj) =

{f} if j < k;
{q

(k)
i+1} if j = k and i < s;

Q(k+1) ∪ . . . ∪ Q(m) if j = k < m and i = s;
{t} if j = k = m and i = s;
{q

(k)
i } if j > k.

See Figure 2 for an illustration.

q
(1)
1 q

(1)
2 q

(2)
1 q

(2)
2 q

(3)
1 q

(3)
2

f

t

a1, a2, a3

a1, a2, a3

Figure 2 Illustration for the construction in Lemma 7. For unlabeled transitions, solid lines stand
for a1, dashed for a2, dotted for a3.

The only way to map a state to {t} is to map it first to {q
(m)
s } and then apply the

letter am, otherwise the state is mapped to a set containing f . Observe that the shortest
word such that S · w = {t} is unique. Indeed, at every moment of time there is a unique
letter that does not act as the identity and does not map any state of S to f . To estimate the

MFCS 2024

81:8 Monoids of Upper Triangular Matrices over the Boolean Semiring

length of this word, we argue inductively. Mapping Q(m) to {t} requires a word of length s.
Mapping the set Q(j), j < m, to {t} requires subsequently mapping each of its states to
∪k>jQ(k), and then mapping this union to {t} before we can proceed to Q(j−1). Hence we
get the bound of s(s + 1)m−1. ◀

By applying the idea of the reduction in the proof of Proposition 6 to the automaton
constructed in the proof of Lemma 7, one can get a slightly weaker lower bound of n−4

m−1 (n−4
m−1 +

1)m−2 + 1 for the length of a shortest word of rank one in rpoNFAs with n states and m

letters, where m − 1 divides n − 4. Recall that a word of rank one is allowed to kill some
states.

3.3 Partially ordered DFAs
The following theorem characterizes the complexity of membership and rank one for poDFAs.

▶ Theorem 8. The membership problem is NP-complete for complete poDFAs, even over
a binary alphabet. The rank one problem is NP-complete for poDFAs, even over a binary
alphabet.

The proof of NP-hardness is an adaptation of a construction from [37], and is omitted
due to space constraints. Containment in NP follows from the following result.

▶ Proposition 9. Let A be a poDFA with n states. Then for every word there exists a word
of length at most 1

2 (n + 1)n with the same matrix.

Proof. Let A = (Q, Σ, δ). Introduce a new state f , and define all undefined transitions of A
to end there. Then for every state q ∈ Q \ {f} we have q ≺ f . Let w be a word such that
there is no shorter word with the same matrix. For each prefix w′a of w with w′ ∈ Σ∗, a ∈ Σ,
a must map one of the states in the image Q · w′ to a larger state, otherwise this occurrence
of a can be removed from w without changing its matrix. Hence the maximal length of w is
at most n + (n − 1) + (n − 2) + . . . + 1 = 1

2 (n + 1)n. ◀

A lower bound on the value from Proposition 9 is provided in Lemma 17 below. Its
adaptation provides the following lower bound on shortest words of rank one for poDFAs.

▶ Lemma 10. For every natural numbers n and m ≥ 2 such that m divides n − 1, there
exists a poDFA with 2n + 1 states and m + 1 letters such that the length of a shortest word
of rank one for it is m−1

2m (n − 1)2 + (n − 1).

We remark that the rank one problem is trivial for poNFAs which do not have a word
whose matrix is the zero matrix. Indeed, the minimum rank of a word in such poNFA is
just the number of states such that each letter induces a self-loop for them. However, this
obviously does not affect the complexity of membership, since adding a fresh state having
self-loops by all letters guarantees that the matrix of each word is non-zero, while preserving
the actions of all letters on the remaining states. For poDFAs, one can even obtain a complete
poDFA by adding a sink state and sending all undefined transitions to it.

4 Total words of minimum rank and ergodic words

As shown above, the rank one problem is NP-complete for poDFAs and PSPACE-complete
for rpoNFAs. In this section, we show that computing the minimum rank of a total word in
a poNFA can be done in polynomial time. We then consider the case of poDFAs, show a
tight quadratic bound on the length of shortest total words of minimum rank, and provide a
fast algorithm to compute a total word of minimum rank within this length bound.

A. Ryzhikov and P. Wolf 81:9

In [43], the second author proposed two algorithms for finding a total word of rank one
in a poDFA if it exists. The first algorithm is greedy: take a letter mapping a currently
active state to a larger one without taking undefined transitions. This algorithm does not
seem to generalize to poNFAs, and is inherently sequential even for poDFAs. Moreover,
its implementation proposed in [43] has time complexity O(mn3). The second algorithm
proposed in [43], of time complexity O(m2n2), uses a much less obvious approach. In this
section we use a somewhat similar but more involved idea to deal with a more general case
of poNFAs, and, in particular, show how to compute the minimum rank of a total word
in linear time. For poDFAs, we show that a total word of minimum rank can be found in
time O(mn2), thus further improving on the results of [43]. We further refine the guarantee
on the length of a found total word of minimum rank taking into account the size of the
alphabet, and show that our upper bound it tight.

4.1 Total and ergodic words in poNFAs
▶ Theorem 11. Let A = (Q, Σ, ∆) be a poNFA with n states and m letters.
(a) The length of a shortest total word of minimum rank in A is at most n(n + 1)m.
(b) Finding the minimum rank of a total word in A can be done in O(m log m + log n)

deterministic space.
If m = O(log n

log log n), this problem is in L, and if m = Θ(n), it is P-complete.
(c) The minimum rank of a total word in A can be computed in O(mn + |∆|) time, that is,

in linear time in the size of the input.

We first describe an algorithm that, given a poNFA A = (Q, Σ, ∆) with n states and m

letters, constructs an auxiliary sequence of sets C0 ⊃ C1 ⊃ . . . ⊃ Ck and a sequence of
distinct letters a1, a2, . . . , ak ∈ Σ for some k ≤ min{m, n − 1}. Note that we use ⊃ and ⊂ to
denote proper set inclusion. The value of k is determined by the algorithm and depends on
the number of steps it makes. The intuition behind this algorithm (and the reason why it is
called “stabilization algorithm”) are provided below in the proof of its correctness.

Stabilization algorithm

We initialize the set of currently considered states C0 = Q and the currently explored
alphabet Σ0 = ∅. At step i, i ≥ 1, find a letter ai ∈ Σ \ Σi−1 which is defined for every
state in Ci−1 and does not induce a self-loop for at least one of them. That is, for every
state q ∈ Ci−1, q · ai must be non-empty, and for at least one state q ∈ Ci−1 we must have
q ̸∈ q · ai. If no such letter ai exists, stop and output |Ci−1|. Define Ci to be the subset of
states in Ci−1 for which ai induces a self-loop, that is, Ci = {q ∈ Ci−1 | q ∈ q · ai}. Take
Σi = Σi−1 ∪ {ai}. Go to the step i + 1.

q1 q2 q3 q4 q5 q6 q7

∈ C1, C2 ∈ C1 ∈ C1, C2, C3 ∈ C1, C2, C3

Figure 3 Running example for Section 4.1.

MFCS 2024

81:10 Monoids of Upper Triangular Matrices over the Boolean Semiring

As a running example, we use the rpoNFA in Figure 3. The application of the algorithm
gives C0 = Q = {q1, q2, q3, q4, q5, q6, q7}, C1 = {q1, q3, q4, q7}, C2 = {q1, q4, q7}, C3 = {q4, q7}.
The letters chosen by the algorithm are as follows: a1 is solid, a2 is dashed, a3 is dotted.
The dashdotted letter is not used by the algorithm.

Correctness

We now analyze the output of the algorithm and show that it provides an upper bound on
the minimum rank of a total word in A. For rpoNFAs, this upper bound is tight. For general
poNFAs, we then extend the algorithm with a second stage using similar ideas.

Assume that the algorithm makes k + 1 ≤ m + 1 steps and then stops and returns the
answer |Ck|. Consider the sequence of words defined as w0 = ϵ, wi = wi−1(aiwi−1)n for
1 ≤ i ≤ k. In our example, w1 = a7

1, w2 = a7
1(a2a7

1)7, w3 = a7
1(a2a7

1)7(a3a7
1(a2a7

1)7)7. Table 1
illustrates the images of states under wi in our example.

The intuition is that with i increasing, the words wi map every state to larger and larger
states with respect to ≺, until a fixed point is reached. This can be informally seen as
stabilization of the images of states from Ci under the word wi.

Table 1 The images of states under wi, 1 ≤ i ≤ 3.

q q1 q2 q3 q4 q5 q6 q7

q · w1 q1 q3, q7 q3 q4 q7 q7 q7

q · w2 q1 q4, q7 q4, q7 q4 q7 q7 q7

q · w3 q4, q7 q4, q7 q4, q7 q4 q7 q7 q7

▷ Claim 12. For each i, the word wi is total.

Proof. We show by induction that the image of each state under wi contains a state from
Ci, starting with i = 1. By construction, a1 is defined for every state q ∈ C0 = Q. Since A
is partially ordered, we get that after n applications of a1, the image of every state must
contain a state q such that q ∈ q · a1. Every such state is by definition in C1.

Assume now that the image of every state under wi−1 contains a state from Ci−1. We
thus only need to show that for each state in Ci−1 its image under wi contains a state
from Ci. By definition, the image of every state from Ci−1 under ai is non-empty. Let
q ∈ Ci−1 be a state. If q ∈ Ci, there is nothing to prove. Otherwise, q ̸∈ q · ai. Thus we
have that every state in q · aiwi−1 is larger (with respect to ≺) than q. By the induction
assumption, there is another state from Ci−1 in q · aiwi−1. Since A is partially ordered, by
repeating this argument at most n times, we get a state from Ci in the image of q. ◁

▷ Claim 13. For every i, the rank of wi is at most |Ci|.

Proof. For every state q ∈ Q, call the i-trace of q the set q · wi. To prove the claim, we show
that for every i ≥ 1 and every state q ∈ Q, the i-trace of q is a union of i-traces of some states
from Ci. We prove that by induction on i. For i = 1, this is obvious from the construction
of w1 since A is partially ordered. Assume now that the statement holds true for i − 1. Then
we need to show that for every q ∈ Q and p ∈ q · wi−1 we have that p · (aiwi−1)n is a union
of i-traces of some states from Ci. Observe that since A is partially ordered, for every p′ ∈ Q

we have p′ · (aiwi−1)n = p′ · (aiwi−1)h(p′), where h(p′) = |{s ∈ Q | p′ ≺ s or p′ = s}|. Hence,
it is enough to prove that p · (aiwi−1)h(p) is a union of i-traces of some states from Ci.

A. Ryzhikov and P. Wolf 81:11

We do that again by induction, now on the order ≺. For the largest state t with respect
to ≺ this is obvious, since its i-trace for every i is {t}. Assume now that this is true for
all states larger than p with respect to ≺. If p ∈ Ci, the statement is proved. Assume now
that p ̸∈ Ci. Then there exists 1 ≤ j ≤ i such that p ̸∈ p · aj , and hence every state in
p · aiwi−1 is larger (with respect to ≺) than p. For every state p′ such that p ≺ p′, we have
that h(p′) < h(p), hence we can use the assumption of the induction on ≺, which concludes
the proof. ◁

Hence we get that wk is a total word of rank |Ck|. If A is an rpoNFA, the rank of every
total word in A is at least |Ck|. Indeed, by the definition of the algorithm, each letter in Σ
either induces a self-loop for every state of Ck, or is undefined for at least one state in Ck.
Since A is an rpoNFA, this means that if the action of a word w is defined for every state
of A, then for every state q ∈ Ck we must have q · w = {q}. Since A is partially ordered,
every set q · w can only contain q and states that are larger with respect to ≺ than q, hence
the rank of w is at least |Ck|. Observe that the length of wi is (n + 1)m − 1, which proves
Theorem 11 (a) for rpoNFAs.

To deal with the general case of poNFAs instead of rpoNFAs, we continue our analysis of
the stabilization algorithm, and extend it with a very similarly defined second part, which we
call moving algorithm. The moving algorithm is executed after the stabilization algorithm.
We start with some definitions. Recall that the result of the stabilization algorithm is the set
Ck of states and the alphabet Σk.

Let S ⊆ Ck be the set of states q ∈ Ck such that for every letter a ∈ Σk we have that
q · a = {q}. Let Σ′ ⊆ Σ \ Σk be the set of letters not from Σk which are defined for every
state in S. Only letters from Σk ∪ Σ′ can occur in a total word, since the first occurrence of
any other letter will kill at least one state in S. After the stabilization algorithm provides its
output, we run the moving algorithm defined as follows.

Moving algorithm

We initialize the set of currently considered states C ′
0 = Ck and the currently explored

alphabet Σ′
0 = ∅. At step i, i ≥ 1, find a letter a′

i ∈ Σ′ \ Σ′
i−1 such that for at least one state

q ∈ C ′
i−1 we have q ̸∈ q ·a′

i. If no such letter a′
i exists, stop and output |C ′

i−1|. Define C ′
i to be

the subset of states in C ′
i−1 for which a′

i induces a self-loop, that is, C ′
i = {q ∈ C ′

i−1 | q ∈ q·a′
i}.

Take Σ′
i = Σ′

i−1 ∪ {a′
i}. Go to the step i + 1.

Correctness of the moving algorithm

Assume that the algorithm makes k′ + 1 steps, outputs |C ′
k′ | and stops. Consider the

words w′
i defined as follows. We take w′

0 = (wk)n. This is done to make sure that the image
of every state in Q under w′

0 contains at least one state from S. For 1 ≤ i ≤ k′, define
w′

i = w′
i−1(a′

iw
′
i−1)n.

First, we claim that each w′
i is total. This follows inductively from the fact that for

every i, the image of every state under w′
i contains at least one state from S, and a′

i is defined
for all states in S.

The fact that the rank of w′
i is at most |C ′

i| is proved by exactly the same argument as in
the proof of Claim 13, since the construction of the words w′

i coincides with the construction
of the words wi. Observe that in the setting of Claim 13, ai is defined for every state in Ci,
but this fact is never used in the proof of this claim.

It remains to show that the rank of every total word in A is at least |C ′
k′ |. Indeed, by

the definition of the moving algorithm, for each letter a ∈ Σ which is defined for every state
in S, we have that q ∈ q · a for every state q ∈ C ′

k′ . As argued above, only letters defined for
each state in S can occur in a total word, which concludes the proof.

MFCS 2024

81:12 Monoids of Upper Triangular Matrices over the Boolean Semiring

It is easy to see that the length of w′
k′ is at most n(n + 1)m. This concludes the proof of

Theorem 11 (a) for general poNFAs.
To simplify the presentation, we assume that if the poNFA is not an rpoNFA, the moving

algorithm is the second part of the stabilization algorithm. To comply with the notation of
the stabilization algorithm, we define Ck+i = C ′

i and Σk+i = Σk ∪ Σ′
i for 1 ≤ i ≤ k′. Observe

that by construction, Σk and Σ′
k′ do not intersect, every letter in Σk+k′ induces a self-loop

for every state in Ck+k′ and wk+k′ is a total word of minimum rank. Thus, everywhere below
we denote the value k′ + k simply by k.

Space complexity

We show how to implement a variant of the stabilization algorithm in O(m log m + log n)
deterministic space. To do so, it is enough to note that the sets Ci do not have to be
constructed explicitly, and each Ci can be reconstructed on the fly based only on Σi. Indeed,
assume that the sequence a1, . . . , ai is already constructed and stored in the memory. Then
to test if a given state q belongs to Ci, we need to check that all of a1, . . . , ai induce self-loops
for it. Testing if a given letter a can be taken as ai is then straightforward and only requires
going through all states of A in an arbitrary order.

If m = O(log n
log log n), the bit length of the representation of one letter in Σ is O(log log n).

Thus storing a sequence a1, . . . , ad, d ≤ m, of letters in Σ requires O(log n
log log n · log log n) =

O(log n) bits, which provides a deterministic algorithm running in logarithmic space. The
described algorithm can obviously also be implemented in polynomial time, and P-hardness
is stated in the following lemma. This concludes the proof of Theorem 11 (b).

▶ Lemma 14. Deciding if a poDFA over an alphabet of linear size in the number of its states
admits a total word of rank one is P-hard under an AC0 reduction.

Proof. We reduce from the monotone circuit value problem. A monotone Boolean circuit is
an acyclic digraph C = (V, E) with a labeling function L : V → {∧, ∨,□}. Intuitively, the
word “monotone” refers to the fact that negation gates are not allowed. Every vertex labeled
by {∧, ∨} is called an inner gate and has indegree two. Each vertex labeled by □ is called
an input gate and has outdegree one and indegree zero. Additionally, there is a designated
vertex of outdegree zero, which is called the output gate. A vertex v with an outgoing edge
to a vertex u is called the child of u.

Let k be the number of input gates in C. Then the value of C on the input x1, . . . , xk, xi ∈
{0, 1}, is defined recursively by computing the value of a gate by applying the corresponding
Boolean operation to its children. Given a monotone Boolean circuit C with k input gates
and the values x1, . . . , xk, xi ∈ {0, 1}, of these input gates, the monotone circuit value
problem asks if the value of the output gate of C is 1. This problem is P-complete, even if
the circuit in the input is topologically ordered [19].

Given C = (V, E) with a labeling function L, and the input values x1, . . . , xk, define a
poDFA A = (Q, Σ, δ) as follows. Define Q = V ∪ {f}, where f is a fresh state.

We now define the letters in Σ and their action on the states to force the following
behavior of A. We start with the whole set of states active, and then make a state non-active
if the corresponding gate can be evaluated to one at the current step. First, we can map every
state corresponding to an input gate with value one to f . This is done by a separate letter
for each gate, and such a letter leaves every other state in its place. Then we inductively
proceed with ∧- and ∨-gates, whose corresponding states can be sent to f if and only if all
their children in C have value 1 (respectively, at least on child has value 1). This is done by
simple gadgets guaranteeing that all the children of a gate (respectively, at least one child

A. Ryzhikov and P. Wolf 81:13

of a gate) are non-active by leaving certain transitions for them undefined, see Figure 4 for
an illustration of these gadgets. If by some sequence of such letter applications the state
corresponding to the output gate can be made non-active, and hence the value of C is 1,
then another letter mapping all other states to f can be taken. This letter cannot be taken
initially, since it is undefined for the state corresponding to the output gate.

q∨

q1 q2

f a1, a2

a1 a2

q∧

q1 q2

f a

Figure 4 The gadgets for an ∨-gate q∨ with children q1, q2 (left) and an ∧-gate q∧ with children
q1, q2 (right). The solid arrows denote transitions of the DFA, and the dotted arrows denote child-
parent relations in the circuit.

We now formally define the remaining part of A to guarantee the described behavior.
For each input gate v whose value is 1, add a fresh letter mapping v to f and acting as
the identity for all states in Q except v.
For each ∨-gate v, add two fresh letters av

1, av
2 acting as follows. Both av

1 and av
2 maps v

to f . Letter av
1 induces a self-loop for the first child of v and is undefined for its second

child. Symmetrically, av
2 is undefined for the first child and maps the second child to

itself. For all remaining states both av
1 and av

2 induce self-loops.
Similarly, for each ∧-gate v, add a fresh letter av to Σ such that av maps v to f , is
undefined for both children of v and induces self-loops for all other states.
Finally, add a fresh letter r which is undefined for the state corresponding to the output
gate and maps all other states to f .

Applying a total word to A now resembles sequential evaluation of C: starting from the
states corresponding to the input gates, we can make the states corresponding to gates with
value one non-active by mapping them to f , and then proceed inductively to their parents.
By definition of the action of r, A has a total word of rank one if and only if the state
corresponding to the output gate eventually becomes non-active, which is possible if and
only if the value of the output gate in C is one. ◀

Time complexity

To implement the stabilization algorithm with low time complexity, we use a data structure
which we simply refer to as a list of states. We implement it as an array of length n that
indicates for each state if it appears in the list, and also refers to the previous and next states
in the array with respect to ≺, if they exist. Hence, testing non-emptiness of such a list can
be done in constant time, going through its elements takes time linear in the size of the list
(and not in n), and removing an element takes constant time.

We first show how to compute the minimum rank of a total word in time complexity
O(mn). For each letter a ∈ Σ we maintain a list Da. After step i, this list contains the states
in Ci for which a is undefined. We also maintain a list D of letters a ∈ Σ \ Σi for which Da

is currently empty and there is a state q ∈ Ci which is mapped by a to a different state.

MFCS 2024

81:14 Monoids of Upper Triangular Matrices over the Boolean Semiring

The algorithm makes at most m steps. At step i, we take an arbitrary letter from D as ai.
We then update the set of currently considered states to Ci, which takes O(n) time, and
remove the entry corresponding to each state in Ci−1 \ Ci from all the lists Da, a ∈ Σ \ Σi.
Observe that the entry for each state is removed at most once during the execution of the
algorithm. Hence, the overall time complexity is O(mn + |∆|), which proves Theorem 11 (c).

Ergodicity

Recall that a word is ergodic if and only if its matrix has a column consisting of all ones.
Clearly, in the case of poNFAs, this can only be the last column. We now apply the obtained
results to ergodic words for a poNFA A. Let Σ′ be the set of letters in Σ which are defined
for every state in Ck obtained in the stabilization algorithm. Let Ck = {q1, q2, . . . , qr} such
that q1 ≺ q2 ≺ . . . ≺ qr.

Observe that there exists an ergodic word for A if and only if for every state qi, 1 ≤ i ≤ r−1,
there exists a letter a′

i ∈ Σ′ such that there is a state p ∈ Q, q ≺ p, with p ∈ q · a′
i. If such a

letter does not exist for some state in Ck \ {qr}, an ergodic word for A obviously does not
exist. For the opposite direction, observe that for every state in Q its image under a′

1wk

contains a state from Ck \ {q1}. Moreover, qr · a′
1wk = {qr}, since qr must be the largest

state in Q with respect to ≺. By inductively repeating this argument r − 1 times in total,
we get that for every state in Q its image under the concatenation of the words (a′

iwk) for
1 ≤ i ≤ r − 1 must contain qk, and hence this word is ergodic. Since r ≤ n, its length is at
most (n − 1)n(n + 1)m. We thus obtain the following theorem.

▶ Theorem 15. Let A be a poNFA with n states and m letters.
(a) The length of its shortest ergodic word is at most (n − 1)n(n + 1)m.
(b) Checking if A is ergodic can be done in O(m log m + log n) deterministic space.

If m = O(log n
log log n), this problem is in L, and if m = Θ(n), it is P-complete.

(c) Checking if A is ergodic can be done in time O(mn + |∆|).

4.2 Partially ordered DFAs
For poDFAs, a total word has rank one if and only if it is ergodic. Thus the following theorem,
which is the main result of this subsection, applies to ergodic words if one takes r = 1.

▶ Theorem 16. Let A be a poDFA with n states and m letters.
(a) The length of a shortest total word of minimum rank r in A is at most k−1

2k (n−r)2+(n−r),
where k = min{n − r, m}. If m divides n − r, the bound is tight.

(b) Finding such a word of at most this length can be done in time O(mn2).

We remark on the values that the bound k−1
2k (n−r)2+(n−r) takes depending on the size of

the alphabet, assuming that r = 1. If m = 2, the lower bound is 1
4 (n−1)(n+3) = 1

4 n2 +O(n),
while for m = n − 1 it becomes 1

2 n(n − 1). As we will see later, having more than n − 1
letters in the alphabet cannot increase the bound.

Proof. We start with proving (a). We continue the analysis of the stabilization algorithm for
rpoNFAs from Section 4.1. In the proof of its correctness, we constructed a very long word
wk. However, intuitively, during the application of this word to a poDFA, most letters do
not change the image of any state at the moment of their application, and each such letter
can thus be removed from the word. For 1 ≤ i ≤ k, denote |Ci| = ci

Put a token onto each state of A and move them according to the transitions taken during
the application of wk letter by letter. We are going to track the paths of these tokens. First,
we claim that for each state, if a token appears on it and then leaves it, it leaves it every

A. Ryzhikov and P. Wolf 81:15

time along the transition labeled by the same letter. Indeed, by construction of wk, each
state q ∈ Q \ Ck belongs to a set Ci−1 \ Ci for exactly one value of i, and thus we can show
by induction that ai is the letter labeling such a transition from q. Given a state q ∈ Q, we
call such a transition the moving transition of q. The number of moving transitions labeled
by ai is |Ci−1 \ Ci| = ci−1 − ci. The total number of moving transitions labeled by letters
in Σi is thus (c0 − c1) + (c1 − c2) + . . . + (ci−1 − ci) = c0 − ci.

Now, consider what happens when wi−1 is already applied to A, and we start applying
(aiwi−1)n. Observe that at this moment the set of states containing a token is precisely the
set Ci−1, which can be proved by induction. By the application of (aiwi−1)n, each token
on a state in Ci−1 \ Ci is moved to a state in Ci. The number of letters in (aiwi−1)n whose
application moves at least one token is thus upper bounded by the number of moved tokens,
which is |Ci−1 \Ci|, multiplied by the number of moving transitions labeled by letters in Σi−1,
plus at most one application of ai per state in Ci−1\Ci. Hence we get that the number of useful
letters in (aiwi−1)n is at most (ci−1 − ci)(c0 − ci−1) + (ci−1 − ci) = (ci−1 − ci)(c0 − ci−1 + 1).

By construction, c0 = n and ck = r. The overall length of the word consisting only of
letters in wk moving at least one token is upper bounded by∑

1≤i≤k

(ci−1 − ci)(c0 − ci−1 + 1) = (c0 + 1)(c0 − ck) − (
∑

1≤i≤k

c2
i−1 −

∑
1≤i≤k

ci−1ci)

= (c0 + 1)(c0 − ck) − (1
2(c2

0 − c2
k) + 1

2
∑

1≤i≤k

(ci−1 − ci)2)

≤ (c0 + 1)(c0 − ck) − 1
2(c2

0 − c2
k) − 1

2k
(c0 − ck)2 = k − 1

2k
(n − r)2 + (n − r).

Hence the upper bound is proved. The fact that if m divides n − r the bound is tight
follows from the following lemma, concluding the proof of (a).

▶ Lemma 17. For every positive natural numbers n, m and r such that m divides n − 1,
there exists a poDFA A with n states and m letters such that the length of its shortest total
word of minimum rank r is m−1

2m (n − r)2 + (n − r).

Proof. We start with r = 1. We construct a poDFA A = (Q, Σ, δ) as follows. Let n = ms + 1
and Q(j) = {q

(j)
1 , . . . , q

(j)
s }. Take Q = ∪1≤j≤mQ(j) ∪ {q

(m+1)
1 }, and Σ = {a1, a2, . . . , am}.

For each 1 ≤ j ≤ m, define δ(q(j)
i , aj) = q

(j)
i+1 for 1 ≤ i < s, δ(q(j)

s , aj) = q
(j+1)
1 and

δ(q(j)
i , aℓ) = q

(j)
i if j < ℓ and 1 ≤ i ≤ s. Set each letter in Σ to induce a self-loop for q

(m+1)
1 .

Leave all remaining transitions undefined. See Figure 5 for an example.

q
(1)
1 q

(1)
2 q

(2)
1 q

(2)
2 q

(3)
1 q

(3)
2 q

(4)
1

a2, a3 a2, a3 a3 a3 a1, a2, a3

a1 a1 a2 a2 a3 a3

Figure 5 Example of the construction in the proof of Lemma 17 for m = 3, s = 2 and r = 1.

Observe that there exists a unique shortest total word of rank one for A. Indeed, at every
moment, only one transition that does not act as the identity can be taken. Namely, if no
state in Q(j) is active and some state in Q(j−1) is active, we can take aj , and as soon as one
state in Q(j) becomes active, it has to be sent all the way to a

(m+1)
1 before any other state

MFCS 2024

81:16 Monoids of Upper Triangular Matrices over the Boolean Semiring

can be sent to another state. Hence, the length of a shortest total word of rank one for A is
s+(s2 +s)+(2s2 +s)+ . . .+((m−1)s2 +s) = s2(1+2+ . . .+(m−1))+sm = s2 · (m−1)m

2 +ms.
Since s = n−1

m , this value is equal to m−1
2m (n − 1)2 + (n − 1).

Finally, observe that adding r − 1 states such that every letter induces a self-loop for
each of them provides a required construction for the case of rank r. ◀

We continue with proving item (b) of Theorem 16. To construct a total word of minimum
rank within the required length bound, recall the definition of the moving transitions from
the length analysis above. For each state q ∈ Q, find the letter labeling its moving transition.
Now we follow the tokens. At step i, all tokens on states in Ci are not moved, so we only
need to compute a word that maps all tokens on the states in Ci−1 \ Ci to states in Ci. To
do so, we need to decide which letters from (aiwi)n move at least one token. Clearly, if ai

does not move anything, we go to the next step. Otherwise, we apply ai and recursively
perform the argument from step i − 1 for the moved tokens. The total number of moments
of time when we do not move anything and thus go to the next step is upper bounded by
O(mn2) by the construction of wk, and the number of moves of tokens is upper bounded by
m−1
2m (n − r)2 + (n − r) = O(mn2). This concludes the proof of (b). ◀

References
1 László Babai, Robert Beals, Jin-yi Cai, Gábor Ivanyos, and Eugene M. Luks. Multiplicative

equations over commuting matrices. In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’96, pages 498–507, USA, 1996. Society for Industrial
and Applied Mathematics.

2 Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

3 R. B. Bapat and T. E. S. Raghavan. Nonnegative Matrices and Applications. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1997.

4 Marie-Pierre Béal, Eugen Czeizler, Jarkko Kari, and Dominique Perrin. Unambiguous automata.
Mathematics in Computer Science, 1:625–638, 2008. doi:10.1007/s11786-007-0027-1.

5 Marie-Pierre Béal and Dominique Perrin. Synchronised automata. In Valérie Berthé
and Michel Rigo, editors, Combinatorics, Words and Symbolic Dynamics, Encyclopedia
of Mathematics and its Applications, pages 213–240. Cambridge University Press, 2016.
doi:10.1017/CBO9781139924733.008.

6 M. Beaudry, P. McKenzie, and D. Thérien. The membership problem in aperiodic transforma-
tion monoids. Journal of the ACM, 39(3):599–616, 1992.

7 Martin Beaudry. Membership testing in commutative transformation semigroups. Information
and Computation, 79(1):84–93, 1988. doi:10.1016/0890-5401(88)90018-1.

8 Martin Beaudry. Membership testing in transformation monoids. PhD thesis, McGill University,
Montreal, Quebec, 1988.

9 Martin Beaudry. Membership testing in threshold one transformation monoids. Information
and Computation., 113(1):1–25, 1994. doi:10.1006/INCO.1994.1062.

10 Mikhail V. Berlinkov. On two algorithmic problems about synchronizing automata - (short
paper). In Arseny M. Shur and Mikhail V. Volkov, editors, Developments in Language
Theory - 18th International Conference, DLT 2014, Ekaterinburg, Russia, August 26-29, 2014.
Proceedings, volume 8633 of Lecture Notes in Computer Science, pages 61–67. Springer, 2014.
doi:10.1007/978-3-319-09698-8_6.

11 Mikhail V. Berlinkov, Robert Ferens, Andrew Ryzhikov, and Marek Szykuła. Synchronizing
Strongly Connected Partial DFAs. In Markus Bläser and Benjamin Monmege, editors, 38th
International Symposium on Theoretical Aspects of Computer Science (STACS 2021), volume
187 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:16, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
STACS.2021.12.

https://doi.org/10.1007/s11786-007-0027-1
https://doi.org/10.1017/CBO9781139924733.008
https://doi.org/10.1016/0890-5401(88)90018-1
https://doi.org/10.1006/INCO.1994.1062
https://doi.org/10.1007/978-3-319-09698-8_6
https://doi.org/10.4230/LIPIcs.STACS.2021.12
https://doi.org/10.4230/LIPIcs.STACS.2021.12

A. Ryzhikov and P. Wolf 81:17

12 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and automata, volume
129 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2010.

13 Michael Blondin, Andreas Krebs, and Pierre McKenzie. The complexity of intersecting
finite automata having few final states. computational complexity, 25(4):775–814, 2016.
doi:10.1007/s00037-014-0089-9.

14 Arturo Carpi. On synchronizing unambiguous automata. Theoretical Computer Science,
60:285–296, 1988. doi:10.1016/0304-3975(88)90114-4.

15 Pierre-Yves Chevalier, Vladimir V. Gusev, Raphaël M. Jungers, and Julien M. Hendrickx.
Sets of stochastic matrices with converging products: Bounds and complexity. CoRR,
abs/1712.02614, 2017. arXiv:1712.02614.

16 Pierre-Yves Chevalier, Julien M. Hendrickx, and Raphaël M. Jungers. Reachability of consensus
and synchronizing automata. In 54th IEEE Conference on Decision and Control, CDC 2015,
Osaka, Japan, December 15-18, 2015, pages 4139–4144. IEEE, 2015. doi:10.1109/CDC.2015.
7402864.

17 V. Froidure. Ranks of binary relations. Semigroup Forum, 54:381–401, 1997. doi:10.1007/
BF02676619.

18 Pavel Goralčík and Václav Koubek. Rank problems for composite transformations. In-
ternational Journal of Algebra and Computation, 05(03):309–316, 1995. doi:10.1142/
S0218196795000185.

19 Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford University Press, 1995.

20 Balázs Imreh and Magnus Steinby. Directable nondeterministic automata. Acta Cybernetica,
14(1):105–115, 1999.

21 Masami Ito and Kayoko Shikishima-Tsuji. Shortest directing words of nondeterministic
directable automata. Discrete Mathematics, 308(21):4900–4905, 2008. doi:10.1016/J.DISC.
2007.09.010.

22 R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. Journal of the
ACM, 33(4):808–821, 1986. doi:10.1145/6490.6496.

23 Jarkko Kari and Mikhail V. Volkov. Černý’s conjecture and the road colouring problem. In
Handbook of Automata Theory, pages 525–565. EMS Press, 2021. doi:10.4171/AUTOMATA-1/15.

24 Stefan Kiefer and Corto N. Mascle. On nonnegative integer matrices and short killing words.
SIAM Journal on Discrete Mathematics, 35(2):1252–1267, 2021. doi:10.1137/19M1250893.

25 Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 254–266. IEEE Computer Society,
1977. doi:10.1109/SFCS.1977.16.

26 Markus Krötzsch, Tomáš Masopust, and Michaël Thomazo. Complexity of universality and
related problems for partially ordered NFAs. Information and Computation, 255:177–192,
2017. doi:10.1016/J.IC.2017.06.004.

27 Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cambridge
University Press, 2021.

28 Alexei Lisitsa and Igor Potapov. Membership and reachability problems for row-monomial
transformations. In Jiří Fiala, Václav Koubek, and Jan Kratochvíl, editors, Mathematical
Foundations of Computer Science 2004, pages 623–634, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

29 Pavel Martyugin. Computational complexity of certain problems related to carefully synchron-
izing words for partial automata and directing words for nondeterministic automata. Theory
Comput. Syst., 54(2):293–304, 2014. doi:10.1007/S00224-013-9516-6.

30 Tomáš Masopust and Markus Krötzsch. Partially Ordered Automata and Piecewise Testability.
Logical Methods in Computer Science, 17(2):14:1–14:36, 2021. doi:10.23638/LMCS-17(2:
14)2021.

31 Tomáš Masopust and Michaël Thomazo. On boolean combinations forming piecewise testable
languages. Theor. Comput. Sci., 682:165–179, 2017. doi:10.1016/J.TCS.2017.01.017.

MFCS 2024

https://doi.org/10.1007/s00037-014-0089-9
https://doi.org/10.1016/0304-3975(88)90114-4
https://arxiv.org/abs/1712.02614
https://doi.org/10.1109/CDC.2015.7402864
https://doi.org/10.1109/CDC.2015.7402864
https://doi.org/10.1007/BF02676619
https://doi.org/10.1007/BF02676619
https://doi.org/10.1142/S0218196795000185
https://doi.org/10.1142/S0218196795000185
https://doi.org/10.1016/J.DISC.2007.09.010
https://doi.org/10.1016/J.DISC.2007.09.010
https://doi.org/10.1145/6490.6496
https://doi.org/10.4171/AUTOMATA-1/15
https://doi.org/10.1137/19M1250893
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1016/J.IC.2017.06.004
https://doi.org/10.1007/S00224-013-9516-6
https://doi.org/10.23638/LMCS-17(2:14)2021
https://doi.org/10.23638/LMCS-17(2:14)2021
https://doi.org/10.1016/J.TCS.2017.01.017

81:18 Monoids of Upper Triangular Matrices over the Boolean Semiring

32 Mike Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics, 49:105–107,
1970.

33 Jean-Eric Pin and Howard Straubing. Monoids of upper triangular boolean matrices. In
Semigroups. Structure and Universal AIgebraic Problems, volume 39, pages 259–272, 1981.

34 Igor Potapov and Pavel Semukhin. Decidability of the membership problem for 2 × 2 integer
matrices. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 170–186. SIAM, 2017. doi:10.1137/1.9781611974782.12.

35 Vladimir Yu. Protasov. Analytic methods for reachability problems. J. Comput. Syst. Sci.,
120:1–13, 2021. doi:10.1016/J.JCSS.2021.02.007.

36 Andrew Ryzhikov. Mortality and synchronization of unambiguous finite automata. In
Robert Mercas and Daniel Reidenbach, editors, Combinatorics on Words - 12th International
Conference, WORDS 2019, Loughborough, UK, September 9-13, 2019, Proceedings, volume
11682 of Lecture Notes in Computer Science, pages 299–311. Springer, 2019. doi:10.1007/
978-3-030-28796-2_24.

37 Andrew Ryzhikov. Synchronization problems in automata without non-trivial cycles. Theoret-
ical Computer Science, 787:77–88, 2019.

38 Eugene Seneta. Non-negative matrices and Markov chains. Springer Science & Business Media,
2006.

39 Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA,
third edition, 2013.

40 Seinosuka Toda. On the complexity of topological sorting. Information Processing Letters,
35(5):229–233, 1990. doi:10.1016/0020-0190(90)90050-8.

41 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications,
Second International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008. Revised
Papers, volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

42 Mikhail V. Volkov. Synchronization of finite automata. Russian Mathematical Surveys,
77(5):819–891, 2022. doi:10.4213/rm10005e.

43 Petra Wolf. Synchronization under dynamic constraints. In 40th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020),
2020.

44 Yaokun Wu and Yinfeng Zhu. Primitivity and Hurwitz primitivity of nonnegative matrix
tuples: A unified approach. SIAM Journal on Matrix Analysis and Applications, 44(1):196–211,
2023. doi:10.1137/22M1471535.

https://doi.org/10.1137/1.9781611974782.12
https://doi.org/10.1016/J.JCSS.2021.02.007
https://doi.org/10.1007/978-3-030-28796-2_24
https://doi.org/10.1007/978-3-030-28796-2_24
https://doi.org/10.1016/0020-0190(90)90050-8
https://doi.org/10.4213/rm10005e
https://doi.org/10.1137/22M1471535

	1 Introduction
	2 Main definitions and our contributions
	3 Membership and minimum rank
	3.1 Upper bounds for rpoNFAs
	3.2 Lower bounds for rpoNFAs
	3.3 Partially ordered DFAs

	4 Total words of minimum rank and ergodic words
	4.1 Total and ergodic words in poNFAs
	4.2 Partially ordered DFAs

