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Abstract
Given a set of n points in Rd and two positive integers k and m, the Euclidean k-means with outliers
problem aims to remove at most m points, referred to as outliers, and minimize the k-means cost
function for the remaining points. Developing algorithms for this problem remains an active area
of research due to its prevalence in applications involving noisy data. In this paper, we give a
(1 + ε)-approximation algorithm that runs in n2d((k + m)ε−1)O(kε−1) time for the problem. When
combined with a coreset construction method, the running time of the algorithm can be improved
to be linear in n. For the case where k is a constant, this represents the first polynomial-time
approximation scheme for the problem: Existing algorithms with the same approximation guarantee
run in polynomial time only when both k and m are constants. Furthermore, our approach generalizes
to variants of k-means with outliers incorporating additional constraints on instances, such as those
related to capacities and fairness.
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1 Introduction

Clustering is a frequently encountered task in many fields related to machine learning, aiming
to partition a given set of points into several cohesive clusters. Among the various ways
of formalizing the task of clustering, the Euclidean k-means problem is perhaps the most
commonly studied one. In this problem, we are given a set P ⊂ Rd of points and a positive
integer k, and the goal is to identify a set C ⊂ Rd of no more than k centers so that the
objective function

∑
p∈P minc∈C ||p − c||2 is minimized. Here, the points are partitioned into

different clusters according to the disparities in their corresponding centers, namely, the
nearest ones. In most applications of the problem, the upper bound on the number of centers
(i.e., k) is significantly smaller than the number of points to be clustered. This prompts
considerable efforts in developing algorithms for the case where k is fixed. Specifically, it is
known that the problem admits polynomial-time approximation schemes (PTASs) when k is
a constant [14, 18, 11, 37, 33, 34].

Despite extensive study, algorithms developed for the Euclidean k-means problem often
exhibit poor performance. The main issue lies in the lack of robustness of the objective
function to noisy data: A few outliers within the point set can significantly impact the
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value of the function. Removing these outliers typically leads to a better clustering result.
Motivated thus, we consider the Euclidean k-means with outliers (k-MeansOut) problem,
which can be defined as follows.

▶ Definition 1 (Euclidean k-MeansOut). An instance of Euclidean k-MeansOut is specified
by a set P ⊂ Rd of points and two positive integers k and m. A feasible solution to the
instance is a set C ⊂ Rd of centers satisfying |C| ≤ k and a set O ⊆ P of outliers satisfying
|O| ≤ m. The cost of such a solution is

∑
p∈P\O minc∈C ||p − c||2. The goal of Euclidean

k-MeansOut is to find a feasible solution with minimum cost.

Solving the Euclidean k-MeansOut problem helps to the removal of more interpretable
outliers that can be contextualized by the clusters. This, in turn, results in more cohesive
clusters. Notably, it has been observed that adopting this joint perspective on outlier detection
and clustering leads to improved performance, even when solely focusing on the task of
outlier removal [9, 25]. Given its important role in dealing with noisy data, the Euclidean k-
MeansOut problem has received lots of attention from both theoretical and practical points
of view. A series of algorithms have been proposed for the problem, including heuristics [9],
distributed algorithms [10, 39, 24, 23, 27], approximation algorithms [25, 36, 6, 15, 30, 41],
and coreset-construction methods [17, 19, 28, 29].

A commonly used way for relaxing the Euclidean k-MeansOut problem is to assume that
the upper bounds on the numbers of centers and outliers (i.e., k and m) are small constants.
Under this assumption, several PTASs exist for the problem. Feldman and Schulman [19]
showed that a coreset-based approach yields a (1 + ε)-approximation algorithm running in
nd(k + m)O(k+m) + (ε−1k log n)O(1) time, where n denotes the size of the given point set.
Bhattacharya et al. [7] later gave an outlier-to-outlier-free reduction, where they mapped
an instance of k-MeansOut to an instance of the standard k-means problem. This incurs
an arbitrarily small loss in the approximation ratio and a (k + m)mε−O(1) multiplicative
overhead on the running time of the executed algorithm. Subsequently, Agrawal et al. [1]
and Jaiswal and Kumar [32] gave different reductions that impose multiplicative overheads
of nO(1)((k + m)ε−1)O(m) and ((k + m)ε−1)O(m) on the running time, respectively. When
combined with the state-of-the-art approximation scheme running in O(ndk + d(kε−1)O(1) +
(kε−1)O(kε−1)) time for the Euclidean k-means problem [18], these reductions yield (1 + ε)-
approximation algorithms with running times exponentially dependent on k and m. When
k and m are not fixed, PTASs for Euclidean k-MeansOut exist for the case where d is a
constant and the upper-bound constraint on the number of centers can be slightly violated,
including the (dε−1)O(d)-swap local-search algorithm given by Friggstad et al. [20] and the
algorithm based on split-tree decomposition given by Cohen-Addad et al. [12]. These existing
(1 + ε)-approximation results are summarized in Table 1.

1.1 Our Results
As described above, there are (1 + ε)-approximation algorithms for Euclidean k-MeansOut
with running time exponential in both k and m. We cannot hope to achieve a better solution
(i.e., an optimal one) in the same time frame: Euclidean k-MeansOut has been shown to
be NP-hard, even for the case where k = 2 and m = 0 [38]. Nevertheless, this negative result
does not rule out the possibility of achieving a (1 + ε)-approximation solution in a more
efficient manner. In particular, given that the outliers often constitute a constant fraction of
the entire point set [21, 22, 15], it is interesting to consider whether a (1 + ε)-approximation
algorithm without exponential dependence on m exists in high-dimensional spaces. The main
result in this paper is the first affirmative answer to this question, as described in Theorem 2.
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Table 1 (1 + ε)-approximation algorithms for Euclidean k-MeansOut. The first two are bi-
criteria approximation algorithms that violate the upper-bound constraint on the number of centers
by a factor of 1 + O(ε). T (n, d, k, ε) = O(ndk + d(kε−1)O(1) + (kε−1)O(kε−1)) denotes the running
time of the state-of-the-art approximation scheme for the Euclidean k-means problem.

Running time Parameter(s) in Reference
the exponent

(nk)(dε−1)O(d)
d [20]

2ε−O(d2)
n logO(1) n + nO(1) d [12]

nd(k + m)O(k+m) + (ε−1k log n)O(1) k, m [19]
(k + m)mε−O(1)

T (n, d, k, ε) k, m [7]
nO(1)((k + m)ε−1)O(m)T (n, d, k, ε) k, m [1]
((k + m)ε−1)O(m)T (n, d, k, ε) k, m [32]
nd((k + m)ε−1)O(kε−1) k This work

▶ Theorem 2. Given a constant ε ∈ (0, 1) and an instance (P, k, m) of Euclidean k-
MeansOut satisfying P ⊂ Rd and |P| = n, there is a (1 + ε)-approximation algorithm
running in n2d((k + m)ε−1)O(kε−1) time.

Leveraging a coreset construction method that reduces the point set to a weighted set of
size poly(m, k, ε−1) [29], we can improve the running time of the algorithm in Theorem 2 to
be linear in n. A detailed analysis is given in Section 4.2.

Awasthi et al. [3] showed that obtaining a PTAS for Euclidean k-MeansOut for arbitrary
k and d = Ω(log n) is also NP-hard. Given that we avoid the exponential dependence
on d, the exponential dependence on k exhibited in Theorem 2 is unavoidable. Existing
approximation schemes without exponential dependence on k, like the ones in [20, 12], work
only in low-dimensional spaces and select more than k centers.

The optimal solutions to instances of k-MeansOut exhibit a useful property: The center
associated with each point is simply the one nearest to the point. This property, called the
locality property, guides the estimation of the locations of centers selected by an optimal
solution. One advantage of our approach is that it no longer relies on the locality property.
This enhances the versatility of the approach, allowing us to deal with problems not satisfying
the locality property. Indeed, we show that our approach establishes a unified framework for
addressing generalizations of Euclidean k-MeansOut that invalidate the locality property,
including the Euclidean versions of capacitated and fair k-MeansOut [32, 13]. As in the
unconstrained case, we give the first PTAS for each considered generalization of Euclidean
k-MeansOut, assuming k is a constant.

1.2 Our Techniques
Most existing approximation schemes for k-MeansOut are built heavily on the following
natural idea: The m outliers can be viewed as m virtual centers, each corresponding
to a cluster containing only itself, and solving a (k + m)-clustering problem enables the
identification of the k centers and m outliers. This provides a clear strategy for constructing
the desired approximation solution. However, the complexities of clustering problems
increase with the number of centers to be identified, and considering the additional m virtual
centers incurs an exponential time-dependence on m, as exhibited in the running times
of the approximation schemes given in [19, 7, 1, 32]. To deal with the case where m is
super-constant, we employ a different sampling-based method.

MFCS 2024
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Given a small positive constant ε, it is well-known that the centroid of O(ε−1) uniformly
sampled points is close to the optimal 1-means clustering center of the entire point set
(Lemma 6). Building upon this insight, we uniformly sample from the point set for each
cluster defined by an optimal solution, and enumerate the sampled points to find a subset of
O(ε−1) points uniformly distributed in the cluster, such that the corresponding center can
be approximated by the centroid of the subset. This idea follows the one for the k-means
problem outlined in [37], while the case we consider poses more challenges. The first issue we
encounter lies in the presence of a non-fixed number of outliers, which reduces the proportion
of some small clusters within the point set, and so, the likelihood of obtaining members of
these clusters through randomly sampling may not be sufficiently high. To address this issue,
we carefully adjust the sampling region for each cluster in a recursive way, ensuring a sufficient
proportion of the cluster within the defined region. Another issue emerges as we extend our
consideration to the constrained variants of k-MeansOut that do not satisfy the locality
property. In these variants, the points are not guaranteed to be close to their corresponding
centers. This leads to the lack of a distinct pattern in the distributions of the clusters, making
it more difficult to determine appropriate sampling regions. In dealing with this issue, it is
essential to address the points that violate the locality property, meaning those far from
their corresponding centers. Instead of attempting to find these points through sampling,
we regard previously identified approximate centers close to these points as substitutes,
enumerating the union of the sampled points and the previously selected centers to construct
a small representative set for the considered cluster.

2 Preliminaries

Given a positive integer λ, define [λ] = {1, · · · , λ}. Given a set X ⊂ Rd and a point y ∈ Rd,
let ∆(y, X ) = minx∈X ||y − x||2 denote the squared distance from y to the nearest point
in X , and let ∆(X , y) =

∑
x∈X ||x − y||2 denote the sum of squared distances from y to

the points in X . Additionally, define c(X ) = |X |−1 ∑
x∈X x as the centroid of X , and let

∆(X ) = minc∈Rd ∆(X , c) denote the minimum 1-means clustering cost of X .
The following two lemmas provide ways of estimating the squared distances from the

points to the centers selected by an approximate solution. As a corollary of the first one, we
know that ∆(X ) = ∆(X , c(X )) for each X ⊂ Rd.

▶ Lemma 3 ([35]). Given a point x ∈ Rd and a set X ⊂ Rd, we have ∆(X , x) = ∆(X ) +
|X | · ||c(X ) − x||2.

▶ Lemma 4 ([16]). Given a set X ⊂ Rd, a real number λ ∈ (0, 1], and a subset X ′ ⊆ X
satisfying |X ′| ≥ λ|X |, we have ||c(X ′) − c(X )||2 ≤ (1 − λ)(λ|X |)−1∆(X ).

The following lemma is an extensive version of triangle inequality.

▶ Lemma 5. Given three points x, y, and z in Rd and a real number λ > 0, we have
||x − z||2 ≤ (1 + λ)||x − y||2 + (1 + λ−1)||y − z||2.

Proof. Using triangle inequality, we have||x − z|| ≤ ||x − y|| + ||y − z||, which implies that

||x − z||2 ≤(||x − y|| + ||y − z||)2

=||x − y||2 + ||y − z||2 + 2
√

λ||x − y|| 1√
λ

||y − z||

≤||x − y||2 + ||y − z||2 + λ||x − y||2 + 1
λ

||y − z||2,

as desired. ◀
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The following result says that uniform sampling works for the 1-means problem.

▶ Lemma 6 ([31]). Given a set X ⊂ Rd, a multi-set S constructed by sampling points from
X independently and uniformly, and a positive real number λ, inequality ||c(S) − c(X )||2 ≤
(λ|S||X |)−1∆(X ) holds with probability at least 1 − λ.

The following result is known as Chernoff bound, which has been widely used in analysis
of sampling-based algorithms.

▶ Lemma 7 ([26]). Given a set of t independent random variables a1, · · · , at and a real
number p ∈ (0, 1), if ai ∈ {0, 1} and Pr[ai = 1] ≥ p hold for each i ∈ [t], then each real
number λ ∈ (0, 1) satisfies Pr

[∑t
i=1 ai < (1 − λ)pt

]
< e− 1

2 λ2pt.

As a corollary of Lemma 7, we have the following result about uniform sampling.

▶ Lemma 8. Given a set X ⊂ Rd, a subset S ⊆ X , a positive integer t, and a real number
λ ∈ (0, 1), the following event happens with probability more than 1 − e− λ2t|S|

2|X | : A multi-set
of more than t points independently and uniformly sampled from X contains no less than
(1 − λ)t|S||X |−1 points in S.

Proof. We define a set of independent random variables a1, · · · , at as follows: For each i ∈ [t],
let ai = 1 if the i-th point sampled from X is in S, and let ai = 0 otherwise. We have
Pr[ai = 1] = |S||X |−1 for each i ∈ [t]. Lemma 7 implies that

Pr[
t∑

i=1
ai ≥ (1 − λ)t|S||X |−1] = 1 − Pr[

t∑
i=1

ai < (1 − λ)t|S||X |−1] > 1 − e− λ2t|S|
2|X | .

This completes the proof of Lemma 8. ◀

3 The Sampling Algorithm

In this section we give a sampling-based approach for constructing candidate center sets, as
described in Algorithm 1. Taking as inputs three real numbers k, m, and ε, two sets C′ and
P†, and a collection C, the algorithm recursively augments C with some center sets. Here,
k is the upper bound on the size of a center set, m is the upper bound on the number of
outliers, ε is the factor trading off the approximation ratio and running time, C′ is a center
set that needs to be updated or added to C, P† is the sampling region, and C contains the
center sets that have been constructed. The algorithm constructs a multi-set S as follows: It
independently and uniformly samples O((k + m)ε−3) points from P† and then adds to the
set O(ε−1) copies of each center in C′. After constructing S, the algorithm considers each
subset of size O(ε−1) of S, adding the centroid of the subset to C′ and recursively invoking
itself with the updated center set. Finally, it throws away half of the points in P† that are
close to the centers in C′, and invokes itself again with the reduced point set.

By inducting on the sizes of the given sets of centers and points, we obtain the following
upper bounds on the running time of our sampling algorithm and the quantity of center sets
it generates.

▶ Lemma 9. Given a constant ε ∈ (0, 1), a collection C, and an instance (P, k, m) of
Euclidean k-MeansOut with |P| ≤ n and P ⊂ Rd, Sampling(k, m, ε, ∅, P,C) runs in
nd((k + m)ε−1)O(kε−1) time and adds at most n((k + m)ε−1)O(kε−1) center sets to C.

MFCS 2024
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Algorithm 1 Sampling(k, m, ε, C′, P†,C).

Input: Two positive integers k and m, a constant ε ∈ (0, 1), a set C′ ⊂ Rd of no more
than k centers, a set P† ⊂ Rd of points, and a collection C of center sets

1 N ⇐ ⌈(17400k + 60m)ε−3⌉, M ⇐ ⌈25ε−1⌉;
2 if |C′| = k then
3 C ⇐ C ∪ {C′};
4 else
5 Sample a multi-set S of N points from P† independently and uniformly;
6 S ⇐ S ⊎ {M copies of each c ∈ C′};
7 for each S ′ ⊂ S satisfying |S ′| = M do
8 Calculate the centroid c(S ′) of S ′;
9 Sampling(k, m, ε, C′ ⊎ {c(S ′)}, P†,C);

10 if C′ ̸= ∅ and |P†| > 1 then
11 Let P‡ be the set of the ⌊ |P†|

2 ⌋ points p ∈ P† with the largest values of
∆(p, C′);

12 Sampling(k, m, ε, C′, P‡,C).

3.1 An Overview of Analysis
We now introduce some notations to be used throughout this section. We consider a constant
ε ∈ (0, 1) and an instance I = (P, k, m) of Euclidean k-MeansOut, where P ⊂ Rd and
|P| = n. Let N = ⌈(17400k + 60m)ε−3⌉ and M = ⌈25ε−1⌉. Let P1, · · · , Pk, O denote k + 1
arbitrary disjoint subsets of P satisfying |O| = m,

⋃k
i=1 Pi ∪ O = P , and |P1| ≥ |P2| ≥ · · · ≥

|Pk|. For each i ∈ [k], let c∗
i = c(Pi) be the centroid of Pi. Define ∆(P) =

∑k
i=1 ∆(Pi).

Let C denote the collection of center sets constructed by Sampling(k, m, ε, ∅, P, ∅). We
will show that C contains a center set approximating {c∗

1, . . . , c∗
k} well with high probability.

More formally, we will prove the correctness of the following result.

▶ Lemma 10. The following event happens with probability no less than 15−k: There is a
center set C ∈ C satisfying

∑k
i=1 minc∈C ∆(Pi, c) ≤ (1 + ε)∆(P).

The proof of Lemma 10, presented in Section 3.2, is based on an inductive method.
Specifically, for a given integer i ∈ {2, · · · , k}, we assume that a set Ci−1 = {c1, · · · , ci−1} of
centers, where cj is close to c∗

j for each j ∈ [i − 1], has been constructed, and prove that a
center close to c∗

i can be identified and added to Ci−1 when invoking Algorithm 1 with Ci−1.
Define (informally) Bi−1 as the set of points close to one of the centers in Ci−1. Given a real
number λ defined based on the value of ε, we divide the analysis into the following two cases:
(1) |Pi\Bi−1| ≤ λ|Pi|, and (2) |Pi\Bi−1| > λ|Pi|.

The case of |Pi\Bi−1| ≤ λ|Pi| captures the scenario where most points in Pi are from
Bi−1 and in close proximity to one of the centers in Ci−1. Conditioned on this, the centers
copied in step 6 of Algorithm 1 can be regarded as proxies for the points in Pi. Based on
Lemma 4 and Lemma 6, we are able to show that the centroid of a subset of the copies is
close to c∗

i and can be added to Ci−1 by the algorithm.
For the case where |Pi\Bi−1| > λ|Pi|, we handle the points from Pi ∩ Bi−1 similarly to

the above approach: We regard the copies of centers in Ci−1 as proxies of these points. It
remains to consider how to deal with the points from Pi\Bi−1. When formally defining Bi−1
in Section 3.2, we carefully establish its range such that the ratio of |P\Bi−1| to |Pi\Bi−1| is
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polynomial in m, k, and ε if |Pi\Bi−1| > λ|Pi| (as exhibited in Claim 15), which implies that
a limited number of points uniformly sampled from P\Bi−1 contains a representative subset
of Pi\Bi−1 with a good chance. Furthermore, it is shown that Algorithm 1 can recursively
adjust the sampling region to make it close to P\Bi−1, based on the operation in step 12.
Putting everything together, we know that a representative subset of Pi\Bi−1 is involved in
the points sampled by the algorithm.

3.2 Proof of Lemma 10
It can be seen that the algorithm Sampling makes multiple recursive calls to itself. We
conceptualize the execution of Sampling(k, m, ε, ∅, P, ∅) as a tree denoted by T . Each node
within the tree, identified by (C′, P†), corresponds to an invocation of the algorithm with
center set C′ and sampling region P†. The children of a node symbolize the recursive calls
made in the corresponding invocation of the algorithm, and each leaf of the tree is associated
with a set of k centers added to C.

Prior to showing the correctness of Lemma 10, we establish the following invariant for
each i ∈ [k].
τ (i): With probability at least 15−i, there exists a node (Ci, P†) in T such that (1) Ci

consists of i centers c1, · · · , ci (added in this order), (2) each j ∈ [i] satisfies ∆(Pj , cj) ≤
(1 + ε

2 )∆(Pj) + ε
2k ∆(P), and (3) {p ∈ P : ∆(p, Ci) > ε∆(P)

8k|Pi| } ⊆ P†.

We prove the invariant by induction on i. We first consider the base case of i = 1. It can
be seen that Sampling(k, m, ε, ∅, P, ∅) independently and uniformly samples a multi-set S
of N points from P , and T has a node ({c(S ′)}, P) for each S ′ ⊂ S with |S ′| = M . We have
|P||P1|−1 = (

∑k
j=1 |Pj | + |O|)|P1|−1 ≤ k + m due to the fact that |P1| ≥ |P2| ≥ · · · ≥ |Pk|.

This inequality and Lemma 8 (with t = N and λ = 1 − M(k + m)N−1) imply that a
node ({c(S ′)}, P) satisfying |S ′| = M and S ′ ⊆ P1 exists in T with probability more than
1 − e−(1−M(k+m)N−1)2N)/(2(k+m)) > 1

3 . Using Lemma 6 (with λ = 4
5 ), we know that if such

a node ({c(S ′)}, P) exists, then inequality

||c(S ′) − c∗
1||2 ≤ 5∆(P1)

4|P1||S ′|
= ε∆(P1)

20|P1|
(1)

holds with probability at least 1
5 . Inequality (1) and Lemma 3 imply that

∆(P1, c(S ′)) = ∆(P1) + |P1| · ||c(S ′) − c∗
1||2 ≤ (1 + ε

20)∆(P1),

which in turn implies that τ(1) is true.
We now assume that τ(i − 1) holds for an integer i ∈ {2, · · · , k}, and prove that τ(i) also

holds. Let (Ci−1, P†) be a node satisfying

∆(Pj , cj) ≤ (1 + ε

2)∆(Pj) + ε

2k
∆(P) (2)

for each j ∈ [i − 1] and

{p ∈ P : ∆(p, Ci−1) >
ε∆(P)

8k|Pi−1|
} ⊆ P†, (3)

where Ci−1 = {c1, · · · , ci−1}. τ(i − 1) implies that such a node (Ci−1, P†) exists in T
with probability no less than 151−i. Conditioning on the existence of this node, we define
Bi−1 = {p ∈ P : ∆(p, Ci−1) ≤ ε∆(P)

8k|Pi| }. Let Pn
i = Pi ∩ Bi−1 and Pf

i = Pi\Bi−1 for brevity.
As described in Section 3.1, we prove τ(i) differently based on the size of Pf

i . Specifically, we
consider the following two cases: (1) |Pf

i | ≤ ε
17 |Pi|, and (2) |Pf

i | > ε
17 |Pi|. These two cases

are respectively analyzed in the following two subsections.

MFCS 2024
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Case (1): |Pf
i | ≤ ε

17 |Pi|
In this case, most points in Pi are close to the centers in Ci−1, based on which we show that
a convex combination of the latter’s members effectively approximates c∗

i . We consider a
multi-set P ′

i = {c(p) : p ∈ Pn
i }, where c(p) is the center in Ci−1 nearest to p. The proximity

of each point in Pn
i to its counterpart in P ′

i, combined with the substantial proportion of Pn
i

in Pi, implies that the centroid of P ′
i is close to c∗

i . This is confirmed by the following lemma.

▶ Lemma 11. If |Pf
i | ≤ ε

17 |Pi|, then we have ||c(P ′
i) − c∗

i ||2 ≤ ε∆(Pi)
8|Pi| + ε∆(P)

4k|Pi| .

Lemma 11 suggests that c(P ′
i) is close to c∗

i . Unfortunately, directly approximating c∗
i

using c(P ′
i) is not feasible, as the members of both Pn

i and P ′
i are unknown. The idea of

Algorithm 1 is to take M copies of each center from Ci−1 and simulate P ′
i using a subset of

these copies. The following lemma implies that this yields a center approximating c∗
i well

with high probability and, furthermore, generates the node claimed in τ(i).

▶ Lemma 12. If |Pf
i | ≤ ε

17 |Pi|, then the following event happens with probability at least 1
5 :

(Ci−1, P†) has a child (Ci−1 ⊎ {ci}, P†) satisfying {p ∈ P : ∆(p, Ci−1 ⊎ {ci}) > ε∆(P)
8k|Pi| } ⊆ P†

and ∆(Pi, ci) < (1 + ε
2 )∆(Pi) + ε

2k ∆(P).

Proof. The fact that |P1| ≥ |P2| ≥ · · · ≥ |Pk| and ∆(p, Ci−1) ≥ ∆(p, Ci−1 ⊎ {c}) for each
p ∈ P and c ∈ Rd suggests that

{p ∈ P : ∆(p, Ci−1 ⊎ {c}) >
ε∆(P)
8k|Pi|

} ⊆ {p ∈ P : ∆(p, Ci−1) >
ε∆(P)

8k|Pi−1|
} ⊆ P† (4)

for each c ∈ Rd, where the last step is due to inequality (3).
In the invocation of Algorithm 1 corresponding to (Ci−1, P†), the algorithm takes M

copies of each center from Ci−1 and calculates the centroid of each subset of the copies with
size M . By Lemma 6 (with λ = 4

5 ) and the fact that P ′
i ⊆ Ci−1, we know that a center ci

identified in this way satisfies

||ci − c(P ′
i)||2 ≤ 5∆(P ′

i)
4M |P ′

i|
≤ ε∆(P ′

i)
20|P ′

i|
= ε∆(P ′

i)
20|Pn

i |
(5)

with probability no less than 1
5 .

Denote by ci a center satisfying inequality (5). Intuitively, inequality (5) and Lemma 11
imply an upper bound on the squared distance from ci to c∗

i . Combining this insight with
Lemma 3, we can derive the following claim.

▷ Claim 13. If |Pf
i | ≤ ε

17 |Pi|, then we have ∆(Pi, ci) < (1 + ε
2 )∆(Pi) + ε

2k ∆(P).

Using Claim 13 and inequality (4), we complete the proof of Lemma 12. ◀

Case (2): |Pf
i | > ε

17 |Pi|
As in the previous case, we simulate the points in Pn

i using the centers in Ci−1. The main
challenge in the current case is that we cannot ignore the points from Pf

i as we did previously,
since their proportion in Pi is no longer bounded by a small value. As a remedy, we argue
that we can sample sufficient points from Pf

i in step 5 of Algorithm 1 by recursively adjusting
the sampling region. Furthermore, we will show that a combination of these sampled points
and the centers in Ci−1 approximates c∗

i well.
The following lemma suggests a lower bound on the proportion of Pf

i within a carefully
selected sampling region.
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▶ Lemma 14. If |Pf
i | > ε

17 |Pi|, then there is a node (Ci−1, P‡) in the descendants of
(Ci−1, P†) (including itself) that satisfies P\Bi−1 ⊆ P‡ and ε−2(580k + 2m)|Pf

i | > |P‡|.

Proof. Our idea for proving Lemma 14 is to show that |Pf
i | is not too small compared to

|P\Bi−1|, and then argue that the invocation of Algorithm 1 corresponding to (Ci−1, P†) can
find a sampling region P‡ close to P\Bi−1.

The following claim establishes a lower bound on the ratio of |Pf
i | to |P\Bi−1|.

▷ Claim 15. If |Pf
i | > ε

17 |Pi|, then ε−2(290k + m)|Pf
i | > |P\Bi−1|.

The fact that |P1| ≥ |P2| ≥ · · · ≥ |Pk| and inequality (3) imply that

P\Bi−1 = {p ∈ P : ∆(p, Ci−1) >
ε∆(P)
8k|Pi|

} ⊆ P†. (6)

We sort the points p ∈ P† by decreasing values of ∆(p, Ci−1). Let pt be the t-th point
in this order for each t ∈ [|P†|], and define P†

s = {pt : t ∈ [⌊2−s|P†|⌋]} for each integer
s ∈ [0, ⌊log |P†|⌋]. Equality (6) implies the existence of an integer s̃ ∈ [0, ⌊log |P†|⌋] satisfying
P\Bi−1 ⊆ P†

s̃ and 2|P\Bi−1| ≥ |P†
s̃ |, and we have ε−2(580k+2m)|Pf

i | > |P†
s̃ | due to Claim 15.

Moreover, the operations performed in steps 12 and 13 of Algorithm 1 ensure that (Ci−1, P†
s̃ )

is a descendant of (Ci−1, P†). This completes the proof of Lemma 14. ◀

Following the approach in Case (1), we consider a multi-set where each p ∈ Pn
i is replaced

by the nearest center c(p) in Ci−1. We define the multi-set as P ′
i = {c(p) : p ∈ Pn

i } ∪ Pf
i .

Intuitively, we can closely simulate this multi-set using the union of a subset of {c(p) : p ∈ Pn
i }

and a set of points sampled from Pf
i , and the centroid of the simulated set is close to c∗

i ,
given that the squared distance from each p ∈ Pn

i to c(p) is upper-bounded by a small value
and sufficient points from Pf

i can be sampled. This motivates the following lemma.

▶ Lemma 16. If |Pf
i | > ε

17 |Pi|, then the following event happens with probability at least 1
15 :

(Ci−1, P†) has a descendant (Ci−1 ⊎ {ci}, P‡) with {p ∈ P : ∆(p, Ci−1 ⊎ {ci}) > ε∆(P)
8k|Pi| } ⊆ P‡

and ∆(Pi, ci) < (1 + ε
2 )∆(Pi) + ε

2k ∆(P).

Proof. Denote by (Ci−1, P‡) the descendant of (Ci−1, P†) claimed in Lemma 14. When
calling Algorithm 1 with (Ci−1, P‡), we independently and uniformly sample N points from
P‡ and take M copies of each center from Ci−1 to construct a multi-set S. (Ci−1, P‡) has
a child (Ci−1 ⊎ {c(S ′)}, P‡) for each S ′ ⊂ S with |S ′| = M . By Lemma 8 (with t = N

and λ = 1
6 ) and the fact that Pf

i ⊆ P\Bi−1 ⊆ P‡ and ε−2(580k + 2m)|Pf
i | > |P‡| (due to

Lemma 14), we know that S contains no less than M points uniformly distributed in Pf
i

with probability at least 1 − e−ε2N/(72(580k+2m)) > 1
3 . Moreover, the probability that S has

a subset S ′ consisting of M points uniformly distributed in P ′
i can be lower-bounded by

the same constant, given that there are M copies of each distinct member of P ′
i\Pf

i within
S. Under the assumption that such a subset S ′ exists, Lemma 4 (with λ = 4

5 ) implies that
inequality

||ci − c(P ′
i)||2 ≤ 5∆(P ′

i)
4M |P ′

i|
= ε∆(P ′

i)
20|Pi|

(7)

holds with probability at least 1
5 , where ci = c(S ′) is the centroid of S ′. Putting everything

together, we know that (Ci−1, P‡) has a child (Ci−1 ⊎ {ci}, P‡) satisfying inequality (7) with
probability at least 1

15 .
We now show that (Ci−1 ⊎ {ci}, P‡) satisfies the properties claimed in Lemma 16. By a

similar argument as in the proof of Claim 13, we can obtain the following upper bound on
∆(Pi, ci).
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Algorithm 2 The Algorithm for Euclidean k-MeansOut.

Input: A constant ε ∈ (0, 1) and an instance (P, k, m) of Euclidean k-MeansOut
satisfying P ⊂ Rd

Output: A set C ⊂ Rd of no more than k centers and a set O ⊆ P of no more than
m outliers

1 C ⇐ ∅;
2 for t ⇐ 1 to 15k do
3 Sampling(k, m, ε, ∅, P,C);
4 for each C′ ∈ C do
5 cost(C′) ⇐ min

O′⊆P∧|O′|≤m

∑
p∈P\O′ ∆(p, C′);

6 C ⇐ arg min
C′∈C

cost(C′);

7 O ⇐ arg max
O′⊆P∧|O′|≤m

∑
p∈O′ ∆(p, C);

8 return C, O.

▷ Claim 17. If |Pf
i | > ε

17 |Pi|, then ∆(Pi, ci) < (1 + ε
5 )∆(Pi) + 3ε

10k ∆(P).

Observe that

{p ∈ P : ∆(p, Ci−1 ⊎ {ci}) >
ε∆(P)
8k|Pi|

} ⊆ {p ∈ P : ∆(p, Ci−1) >
ε∆(P)
8k|Pi|

} = P\Bi−1 ⊆ P‡,

where the last step is due to Lemma 14. Combining this with Claim 17, we know that
Lemma 16 is true. ◀

Lemma 12 and Lemma 16 suggest that for each i ∈ {2, · · · , k}, τ(i) holds if τ(i − 1) is
true. Combining this with the initial condition τ(1) being true, we establish the validity of
τ(i) for each i ∈ [k]. The proof of Lemma 10 effortlessly follows from the statement of τ(k).

4 Applications

In this section we show the applications of Algorithm 1. We first address the Euclidean
k-MeansOut problem, and then show how to extend our approach to constrained cases.

4.1 The Algorithm for Euclidean k-MeansOut
Our approach for solving Euclidean k-MeansOut is presented in Algorithm 2, which takes
as inputs a constant ε ∈ (0, 1) and an instance I = (P, k, m) with P ⊂ Rd and |P| = n.
The algorithm iteratively invokes Algorithm 1 to construct a collection of center sets and
returns the one, along with the corresponding outlier set, that minimizes the cost for I. By
analyzing the performance of Algorithm 2, we complete the proof of Theorem 2.

Proof (of Theorem 2). Let (C∗, O∗) be an optimal solution to I, which opens a set C∗ =
{c∗

1, · · · , c∗
k} of k centers from Rd and removes a set O∗ of m outliers from P. For each

i ∈ [k], denote by P∗
i the subset of the points in P\O∗ whose closest center in C∗ is c∗

i . Define
∆(P) =

∑k
i=1 ∆(P∗

i , c∗
i ) =

∑
p∈P\O∗ ∆(p, C∗) as the cost of (C∗, O∗). Moreover, let C be

the collection of center sets constructed by Algorithm 2, and let (C, O) be the solution to I
returned by the algorithm. Observe that the statement in Lemma 10 holds with probability
no less than 15−k. Given that Algorithm 2 invokes Sampling 15k times to construct C, the
probability of the statement in Lemma 10 being true in at least one of these invocations can
be lower-bounded by 1 − (1 − 15−k)15k

> 1 − e−1. Consequently, inequality
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∑
p∈P\O

∆(p, C) ≤
k∑

i=1
min
c∈C

∆(P∗
i , c) ≤ (1 + ε)∆(P) (8)

holds with probability at least 1 − e−1, where the first step is due to the operation in step 9
of Algorithm 2, and the second step follows from Lemma 10. Inequality (8) implies that the
approximation ratio of Algorithm 2 is 1 + ε.

It remains to analyze the running time of Algorithm 2. Lemma 9 implies that invoking
Sampling 15k times takes nd((k + m)ε−1)O(kε−1) time and adds n((k + m)ε−1)O(kε−1)

center sets to C. For each center set from C, the algorithm takes O(ndk) time to compute
the corresponding cost for I. Consequently, we know that Algorithm 2 runs in n2d((k +
m)ε−1)O(kε−1) time. This completes the proof of Theorem 2. ◀

4.2 A Coreset-Based Accelerated Algorithm
In a recent study, Huang et al. [29] showed that a subset of poly(m, k, ε−1) weighted points,
referred to as a coreset, can be identified in linear time for the given instance of Euclidean
k-MeansOut, such that the outlier-removal clustering costs, induced by any set of k

centers, are similar between the coreset and the entire point set. Such a method for coreset
construction can serve as a means to accelerate our algorithm. Specifically, when selecting a
well-performing center set from the collection C, we can compare the clustering costs induced
by the center sets on the coreset rather than the entire point set. This reduces the running
time of the algorithm in Theorem 2 to nd((k + m)ε−1)O(kε−1), with an arbitrarily small loss
in the approximation ratio.

▶ Lemma 18 ([29]). Given a constant ε ∈ (0, 1), an instance I = (P, k, m) of Euclidean
k-MeansOut satisfying P ⊂ Rd and |P| = n, and an algorithm that has the guarantee of
yielding a solution (C, O) satisfying

∑
p∈P\O ∆(p, C) ≤ α · opt, |C| ≤ βk, and |O| ≤ γm for

three real numbers α, β, γ ≥ 1 in T (n, d, k, m) time (opt is the cost of an optimal solution
to I), a weighted subset S ⊆ P satisfying |S| ≤ γm + β(kε−1)O(1) with weight function
w : S → [0, +∞) can be constructed in T (n, d, k, m) + O(ndk) time, such that

min
O′⊆S∧

∑
p∈O′ w(p)≤m

∑
p∈S\O′

w(p)∆(p, C′) ∈ (1 ± αε) min
O′⊆P∧|O′|≤m

∑
p∈P\O′

∆(p, C′)

for each C′ ⊂ Rd with |C′| = k.

To leverage Lemma 18, we give a straightforward and fast bi-criteria approximation
algorithm for Euclidean k-MeansOut, based on the D2-sampling method given by Arthur
and Vassilvitskii [2].

▶ Lemma 19. Given an instance I = (P, k, m) of Euclidean k-MeansOut with P ⊂ Rd

and |P| = n, a center set C ⊂ Rd satisfying |C| = O(k + m) and
∑

p∈P ∆(p, C) ≤ O(opt) can
be identified in O(nd(k + m)) time, where opt is the cost of an optimal solution to I.

Taking as an input the algorithm given in Lemma 19, Lemma 18 yields a coreset of size
((k + m)ε−1)O(1) in O(nd(k + m)) time. Leveraging this coreset allows us to reduce the
running time of our algorithm for Euclidean k-MeansOut to be linear in n, as described in
the following theorem.
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▶ Theorem 20. Given a constant ε ∈ (0, 1) and an instance (P, k, m) of Euclidean k-
MeansOut satisfying P ⊂ Rd and |P| = n, there is a (1 + O(ε))-approximation algorithm
running in nd((k + m)ε−1)O(kε−1) time.

Proof. Let S ⊆ P be the coreset constructed by Lemma 18 when taking as inputs constant
ε, instance (P, k, m), and the algorithm in Lemma 19, and let w : S → [0, +∞) be the
corresponding weight function. We have |S| ≤ ((k + m)ε−1)O(1) due to Lemma 18 and
Lemma 19. Our accelerated algorithm for Euclidean k-MeansOut is identical to Algorithm 2,
differing only in steps 6 and 8, where we calculate the outlier-removal clustering costs induced
by the candidate center sets and select the one with minimum cost. We now define

wcost(C′) = min
O′⊆S∧

∑
p∈O′ w(p)≤m

∑
p∈S\O′

w(p)∆(p, C′)

for each C′ ∈ C in step 6 of the algorithm, and select the center set C ∈ C with minimum
value of wcost(C) in step 8.

Observe that calculating wcost(C′) for each C′ ∈ C takes O(|S||C′|d) ≤ d((k + m)ε−1)O(1)

time. Combining this with the fact that we take nd((k + m)ε−1)O(kε−1) time to construct
a collection C of n((k + m)ε−1)O(kε−1) candidate center sets (as argued in the proof of
Theorem 2), we know that the accelerated algorithm runs in nd((k + m)ε−1)O(kε−1) time.

The analysis of the approximation ratio of our accelerated algorithm follows that of
Algorithm 2 (given in the proof of Theorem 2). Denote by (C̃, Õ) the solution to I constructed
by the accelerated algorithm, and let (C, O) be a solution to I satisfying inequality (8). We
have∑

p∈P\Õ

∆(p, C̃) ≤ wcost(C̃)
1 − O(ε) ≤ wcost(C)

1 − O(ε) ≤ 1 + O(ε)
1 − O(ε)

∑
p∈P\O

∆(p, C), (9)

where the first and third steps follow from the approximation guarantee of the coreset given
by Lemma 18 and Lemma 19, and the second step is due to the fact that the center set C̃
selected by our accelerated algorithm satisfies wcost(C̃) = minC′∈C wcost(C′). Combining
inequality (9) with inequality (8), we know that the approximation ratio of the accelerated
algorithm is 1 + O(ε). ◀

5 Extensions to Constrained Cases

Constrained k-MeansOut problems generalize k-MeansOut by introducing additional
constraints on the feasibilities of solutions. For example, in the capacitated generalization,
there is an upper bound on the size of each cluster. Similarly, in the lower-bounded
generalization, each cluster must contain at least a specified number of points. There are
known frameworks for reducing constrained k-MeansOut problems to their outlier-free
counterparts with small losses in the approximation ratios [32, 13]. Combined with the
approximation schemes applicable in outlier-free cases, such as the ones given in [8, 16, 4],
these frameworks enable the development of (1 + ε)-approximation algorithms for constrained
k-MeansOut problems. However, similar to the unconstrained case, the reductions given
in [32, 13] require time exponentially dependent on m.

An apparent distinction between constrained k-MeansOut problems and the uncon-
strained counterpart lies in the locality property described in Section 1.1: In the former,
clusters in an optimal solution can be quite different from the ones with minimum clustering
cost, as additional constraints are imposed on their feasibilities. Fortunately, Lemma 10
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implies that a near-optimal set of centers corresponding to any outlier-removal k-clustering
result can be found by Algorithm 1, including those imposed with additional constraints.
Given k good-enough centers, it is sufficient to remove the outliers and assign each point
to a center under the additional constraints. Indeed, combining Algorithm 1 with problem-
specific methods for identifying outliers and assigning points, we obtain the first PTASs for
constrained k-MeansOut problems in Euclidean spaces for constant k and super-constant
m, including capacitated and fair k-MeansOut.

Our algorithms for constrained k-MeansOut problems closely resemble Algorithm 2,
with the only difference being in the construction of the solution based on C (as shown in
steps 5-10). Given a set P ⊂ Rd with |P| = n, a real number ε ∈ (0, 1], and two positive
integers k and m, let C be the collection of center sets constructed by Algorithm 2. By
Lemma 10 and the fact that C is constructed by invoking Sampling 15k times, we know
that the following event happens with probability no less than 1 − (1 − 15−k)15k

> 1 − e−1:
For any k disjoint subsets P1, · · · , Pk of P with

∑k
i=1 |Pi| = n − m, there is a center set

C ∈ C satisfying

k∑
i=1

min
c∈C

∆(Pi, c) ≤ (1 + ε)
k∑

i=1
∆(Pi). (10)

This implies a good chance of finding a near-optimal set of centers corresponding to any
outlier-removal k-clustering result in C. The next step involves developing problem-specific
methods to remove m outliers and partition the remaining points into k clusters based on
the given center set, with the objective of minimizing the clustering cost (defined as the sum
of the squared distances from the points to the corresponding centers) while satisfying the
specified additional constraints. If we can remove the outliers and partition the points in
an optimal way, then the guarantee of the center set given in inequality (10) suggests the
achievement of a (1 + ε)-approximation solution.

5.1 The Algorithm for Capacitated k-MeansOut
Capacitated clustering is one of the most extensively studied generalizations of the standard
clustering formulation, which imposes an upper-bound constraint on the size of each cluster.
An Euclidean instance of capacitated k-MeansOut is specified by a set P ⊂ Rd of n points,
two positive integers k and m, and a capacity u ≥ 1. A feasible solution to the instance
selects a set C ⊂ Rd of centers and a set O ⊆ P of outliers, and assigns each point p ∈ P\O
to a center φ(p) ∈ C, such that |C| ≤ k, |O| ≤ m, and |φ−1(c)| ≤ u for each c ∈ C. The
cost of such a solution is

∑
p∈P\O ||p − φ(p)||2. The goal of the problem is to find a feasible

solution with minimum cost.
Motivated by the method for solving outlier-free constrained problems given in [16], we

reduce the task of identifying outliers and assigning points for capacitated k-MeansOut to
the well-known minimum-cost circulation problem [40], which can be defined as follows.

▶ Definition 21 (minimum-cost circulation). An instance of the minimum-cost circulation
problem is specified by a directed graph G(V, A) with a set V of vertices and a set A of
arcs, where each (v, w) ∈ A has a cost ∆(v, w) ≥ 0, a capacity u(v, w) ≥ 0, and a demand
l(v, w) ∈ [0, u(v, w)]. A feasible solution to the instance associates each (v, w) ∈ A with a
flow f(v, w) ∈ [l(v, w), u(v, w)] such that

∑
w:(v,w)∈A f(v, w) =

∑
w:(w,v)∈A f(w, v) for each

v ∈ V. The cost of this solution is
∑

(v,w)∈A ∆(v, w)f(v, w). The problem aims to find a
feasible solution with minimum cost.
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Let I = (P, k, m, u) be an Euclidean instance of capacitated k-MeansOut. As previously
discussed, Algorithm 2 can construct a collection C of center sets, including a near-optimal
one for I, with high probability. For each C ∈ C, we construct an instance of minimum-cost
circulation as follows.

The vertex set V consists of the points in P , the centers in C, and three additional vertices
v1, v2, and v3.
There is an arc (v3, v1) ∈ A with ∆(v3, v1) = 0 and u(v3, v1) = l(v3, v1) = |P|.
For each p ∈ P and c ∈ C, there is an arc (p, c) ∈ A with ∆(p, c) = ||p − c||2, u(p, c) = 1,
and l(p, c) = 0. Here, f(p, c) = 1 signifies the assignment of point p to center c (i.e.,
φ(c) = p).
For each p ∈ P , there is an arc (p, v2) ∈ A with ∆(p, v2) = 0, u(p, v2) = 1, and l(p, v2) = 0.
A point p with f(p, v2) = 1 is identified as an outlier. To ensure that the outliers are
no more than m (more formally,

∑
p∈P f(p, v2) ≤ m), we add to A an arc (v2, v3) with

∆(v2, v3) = 0, u(v2, v3) = m, and l(v2, v3) = 0.
To ensure that each p ∈ P is assigned to a center in C or identified as an outlier (i.e.,∑

c∈C∪{v2} f(p, c) = 1), we add to A an arc (v1, p) with ∆(v1, p) = 0 and u(v1, p) =
l(v1, p) = 1.
To satisfy the capacity constraint imposed on each c ∈ C (i.e.,

∑
p∈P f(p, c) ≤ u), we add

to A an arc (c, v3) with ∆(c, v3) = 0, u(c, v3) = ⌊u⌋, and l(c, v3) = 0.

Given that all the capacities and demands in the instance of minimum-cost circulation
described above are integers, its optimal integral solutions can be found in (nk)O(1) time [40].
It can be seen that these solutions correspond to optimal ways of identifying outliers and
assigning points for the given center set.

Let (C∗, O∗, φ∗) be an optimal solution to I, where C∗ = {c∗
1, · · · , c∗

k}. For each i ∈ [k],
define P∗

i = {p ∈ P\O∗ : φ∗(p) = c∗
i }. Inequality (10) implies that there is a center set

C ∈ C satisfying

k∑
i=1

min
c∈C

∆(P∗
i , c) ≤ (1 + ε)

k∑
i=1

∆(P∗
i ) = (1 + ε)

∑
p∈P\O∗

||p − φ∗(p)||2 (11)

with constant probability. Based on an optimal integral solution to the instance of minimum-
cost circulation corresponding to such a center set C, we can construct a solution (C, O, φ) to
I satisfying

∑
p∈P\O

||p − φ(p)||2 ≤
k∑

i=1
min
c∈C

∆(P∗
i , c). (12)

Inequalities (11) and (12) imply that a (1 + ε)-approximation solution to I has been
constructed. Recall that C is of size n((k + m)ε−1)O(kε−1) and can be constructed in
nd((k + m)ε−1)O(kε−1) time (due to Lemma 9). Combining this with the fact that the
instance of minimum-cost circulation corresponding to each center set in C can be solved
in (nk)O(1) time, we know that constructing the (1 + ε)-approximation solution takes
nO(1)d((k + m)ε−1)O(kε−1) time.

▶ Theorem 22. Given a constant ε ∈ (0, 1) and an Euclidean instance (P, k, m, u) of
capacitated k-MeansOut satisfying P ⊂ Rd and |P| = n, there is a (1 + ε)-approximation
algorithm running in nO(1)d((k + m)ε−1)O(kε−1) time.
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5.2 The Algorithm for Fair k-MeansOut
Motivated by applications related to fair data representation [5], fair clustering problems,
which impose constraints on the proportions of each type of points within the clusters, have
garnered significant attention. We consider the fair k-MeansOut problem defined in [13].
An instance of the problem is specified by a collection P = {P1, · · · , Pℓ} of ℓ disjoint sets of
points in Rd, a positive integer k, two fairness vectors α⃗, β⃗ ∈ [0, 1]ℓ, and an outlier vector
m⃗ ∈ Nℓ. A feasible solution to this instance selects a set C ⊂ Rd of no more than k centers
and a set O ⊆

⋃ℓ
i=1 Pi of outliers, and assigns each point p ∈

⋃ℓ
i=1 Pi\O to a center φ(p) ∈ C,

such that |Pi ∩ φ−1(c)||φ−1(c)|−1 ∈ [αi, βi] and |Pi ∩ O| ≤ mi for each i ∈ [ℓ] and c ∈ C.
The cost of the solution is

∑ℓ
i=1

∑
p∈Pi ||p − φ(p)||2.

Similar to our previous strategy, we address the fair k-MeansOut problem based on
a collection of center sets constructed by repeatedly invoking Algorithm 1. Unfortunately,
identifying outliers and assigning points for a given set of centers in an optimal way within
polynomial time is no longer feasible. Specifically, a reduction from the 3D-matching problem
suggests that this task is NP-hard [5]. Using the mixed-integer linear programming-based
algorithm given in [13], this task can be completed in an exponential time.

▶ Lemma 23 ([13]). Given a set C ⊂ Rd of no more than k centers and an instance
I = (P, k, α⃗, β⃗, m⃗) of fair k-MeansOut satisfying |P| = ℓ,

∑
P∈P |P| = n,

∑ℓ
i=1 mi = m,

and P ⊂ Rd for each P ∈ P, a feasible solution to I with minimum cost among the ones
taking C as the center set can be constructed in (kℓ)O(kℓ)nO(1)dL time, where L is the bit-size
of I.

Using our sampling-based algorithm for constructing center sets (m is replaced with∑ℓ
i=1 mi) and the algorithm for constructing solutions given in Lemma 23, we obtain the

following approximation scheme for fair k-MeansOut.

▶ Theorem 24. Given a constant ε ∈ (0, 1) and an instance I = (P, k, α⃗, β⃗, m⃗) of fair
k-MeansOut satisfying |P| = ℓ,

∑
P∈P |P| = n,

∑ℓ
i=1 mi = m, and P ⊂ Rd for each P ∈ P,

there is a (1 + ε)-approximation algorithm running in nO(1)d((k + m)ε−1)O(kε−1)(kℓ)O(kℓ)L

time, where L is the bit-size of I.

6 Conclusions

In this paper, we present (1 + ε)-approximation algorithms with running times exponential
in k for Euclidean k-MeansOut and constrained generalizations of the problem, including
capacitated and fair k-MeansOut. For each considered problem, our proposed algorithm
stands for the first PTAS for constant k.

Considering the APX-hardness of Euclidean k-MeansOut [3], it is unlikely to design a
(1 + ε)-approximation algorithm without exponential dependence on k in high dimensions.
Nonetheless, exploring ways to improve the running time of our algorithm for Euclidean
k-MeansOut remains an interesting direction for future research. Especially, one can see
whether it is possible to develop a (1+ε)-approximation algorithm running in (ndm)O(1)f(k, ε)
time for some positive function f .
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