
Approximate Suffix-Prefix Dictionary Queries
Wiktor Zuba #

CWI, Amsterdam, The Netherlands

Grigorios Loukides #

King’s College London, UK

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Sharma V. Thankachan #

North Carolina State University, Raleigh, NC, USA

Abstract
In the all-pairs suffix-prefix (APSP) problem [Gusfield et al., Inf. Process. Lett. 1992], we are given a
dictionary R of r strings, S1, . . . , Sr, of total length n, and we are asked to find the length SPLi,j of
the longest string that is both a suffix of Si and a prefix of Sj , for all i, j ∈ [1 . . r]. APSP is a classic
problem in string algorithms with applications in bioinformatics, especially in sequence assembly.
Since r = |R| is typically very large in real-world applications, considering all r2 pairs of strings
explicitly is prohibitive. This is when the data structure variant of APSP makes sense; in the same
spirit as distance oracles computing shortest paths between any two vertices given online.

We show how to quickly locate k-approximate matches (under the Hamming or the edit distance)
in R using a version of the k-errata tree [Cole et al., STOC 2004] that we introduce. Let SPLk

i,j be
the length of the longest suffix of Si that is at distance at most k from a prefix of Sj . In particular,
for any k = O(1), we show an O(n logk n)-sized data structure to support the following queries:

One-to-Onek(i, j): output SPLk
i,j in O(logk n log log n) time.

Reportk(i, d): output all j ∈ [1 . . r], such that SPLk
i,j ≥ d, in O(logk n(log n/ log log n + output))

time, where output denotes the size of the output.

In fact, our algorithms work for any value of k not just for k = O(1), but the formulas bounding
the complexities get much more complicated for larger values of k.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases all-pairs suffix-prefix, suffix-prefix queries, suffix tree, k-errata tree

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.85

Funding Wiktor Zuba: Received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement Grant Agreement No
101034253.
Solon P. Pissis: Supported in part by the PANGAIA and ALPACA projects that have received
funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.
Sharma V. Thankachan: Supported by the U.S. National Science Foundation (NSF) grant CCF-
2316691.

1 Introduction

Given a dictionary R of r strings, S1, . . . , Sr, of total length n, the all-pairs suffix-prefix
(APSP) problem asks us to find, for each string Si, i ∈ [1 . . r], its longest suffix that is a prefix
of string Sj , for all j ̸= i, j ∈ [1 . . r]. APSP is a classic problem in string algorithms [18] with
numerous applications in sequence assembly [18, 26, 31, 7, 10]. Gusfield et al. [19] presented

© Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 85; pp. 85:1–85:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wiktor.zuba@cwi.nl
https://orcid.org/0000-0002-1988-3507
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/LIPIcs.MFCS.2024.85
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

85:2 Approximate Suffix-Prefix Dictionary Queries

an algorithm running in the optimal O(n + r2) time for solving APSP, assuming all strings
in R are over an integer alphabet of size σ = nO(1). Many other optimal algorithms exist for
APSP aiming at a smaller memory footprint [27, 36, 24].

DNA sequences (fragments) read by sequencing machines are typically assembled by first
computing the maximal overlap between every pair of sequences. The size r of dictionary R

in this case is very large. In particular, r2 usually dominates n, and thus the r2 factor is the
bottleneck both in the time and the space complexity of assembly applications. For instance,
in typical benchmark datasets for genome assembly using short DNA fragments, r is in the
order of 106 to 108 and n is in the order of 108 to 1010. Hence r2 dominates n significantly.

In [25], we initiated a study on several data structure variants of APSP. Let SPLi,j , for
any i, j ∈ [1 . . r], denote the length of the longest suffix of Si that is a prefix of Sj . We
proposed O(n)-sized data structures to support the following queries:

One-to-One(i, j): output SPLi,j in O(log log r) time.
Report(i, d): output all distinct j ∈ [1 . . r] such that SPLi,j ≥ d, for some d ∈ N, in
O(log n/ log log n + output) time, where output denotes the size of the output.

We also proposed other O(n)-sized data structures for answering One-to-All(i), Count(i, ℓ),
and Top(i, K) queries efficiently (see [25] for the precise definitions of these queries).

This framework is interesting both from a practical and from a theoretical perspective.
By being able to answer different types of such queries efficiently, practitioners may be able
to design alternative algorithms that avoid the r2 factor in their time or space complexity;
see the recent work of Talera et al. [33], which investigates practical aspects of our framework.
Furthermore, the underlying data structure problems are also appealing from a theoretical
perspective: (i) they are analogous to distance oracles for networks [35, 28, 14, 13, 11, 17];
and (ii) they are special types of internal pattern matching data structures [21, 20, 2, 1, 12, 4].

In this work, we make the next natural yet challenging step, that is, extend the framework
we introduced in [25] to support k-approximate suffix-prefix queries. Indeed, these are the
most useful queries in real-world applications. Approximate variants of APSP, under the
Hamming or edit distance, have been considered in the literature. Barton et al. [5] showed
how to solve the problem for two strings (r = 2), under Hamming or edit distance k, in O(nk)
time. Thankachan et al. [34] showed how to solve the problem in O((n+r2) logk n) time under
Hamming or edit distance k, for any r and k = O(1). Many other proposed methods aimed at
practical efficiency and are thus based on filtering strategies [29, 37, 22]. They typically use
a two-step approach: candidate regions are identified that potentially correspond to sought
matches; and those candidates are checked to actually verify the desired matching condition.
These approaches do not yield strong theoretical time bounds but they are very efficient in
practice. In any case, none of the proposed methods addresses the data structure variant.

Problems Statements. Let us start with the following basic definition.

▶ Definition 1. For any given set R = {S1, . . . , Sr} of r strings, we define the longest
suffix-prefix of Si and Sj with k-errors as the longest suffix Ui of Si that is at Hamming/edit
distance at most k from some prefix Vj of Sj. We denote the length of Ui by SPLk

i,j.

By fixing k apriori, we want to efficiently compute the values SPLk
i,j for certain (Si, Sj)

pairs given in an online fashion. In particular, we consider the following queries:
One-to-Onek(i, j): output SPLk

i,j .
Reportk(i, d): output all distinct j ∈ [1 . . r] such that SPLk

i,j ≥ d, for some d ∈ N.

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:3

The offline version (that is, the k-approximate variant of APSP), which we denote by APSPk,
is defined as follows: output SPLk

i,j , for all 1 ≤ i, j ≤ r. Recall that APSPk has already been
solved by Thankachan et al. [34] in O((n + r2) logk n) time for any k = O(1).

▶ Observation 2. For Hamming distance we always have that |Ui| = SPLk
i,j = |Vi|. However,

for edit distance it does not need to be the case: we cannot always maximize the lengths
of both suffix and prefix simultaneously. For Si = xx · · · xabcd, Sj = bcdeyy · · · y, we have
SPL1

i,j = 4 as abcd is at edit distance 1 from bcd, but bcd is at edit distance 1 from bcde, and
abcd is at edit distance 2 from bcde. In this sense, edit distance is a bit more complicated.

Results and Paper Organization. We assume the standard word-RAM model of computa-
tions with word size w = Ω(log n), where n is the input size. We present our results below for
any k = O(1); our algorithms work for any arbitrary value of k but the formulas bounding
the complexities get much more complicated for larger values of k. For the exact time
complexities we defer the reader to the actual theorem statements (Theorems 13 and 14).

Query Space (words) Query time Note
One-to-Onek(i, j) O(n logk n) O(logk n log log n) Theorem 13
Reportk(i, d) O(n logk n) O(logk n(log n/ log log n + output)) Theorem 14

Let us introduce the central notion of extension-prefix pair for any two strings X and Y .

▶ Definition 3. A pair of strings (Y, X) is an extension-prefix pair, if X is a prefix of
Y ; and hence Y is called an extension of X. A pair of strings (Y, X) is a k-approximate
extension-prefix pair, if X is at (Hamming or edit) distance at most k from some prefix of Y .

Section 2 introduces the necessary definitions and notation as well as a few observations.
In Section 3, we introduce a version of the k-errata tree [15] and show its efficient construction
as well as some of its properties that are crucial to arrive at our main results. Specifically in
Section 3.1, we show the construction for edit distance, and then also state the changes for
the (easier) case of the Hamming distance. In Section 3.2, we show the key combinatorial
property of the extension-prefix pairs (Lemma 5) in our k-errata tree. Section 3.3 shows an
upper bound on the size of the k-errata tree introduced here for the interesting case where
k = O(log n

log log n), which is then used to bound the running time and space of the algorithms
– we are not interested in k = ω(log n

log log n) as in this case we have poly(n) = O(logk n), and
hence trivial algorithms become (at least) as efficient as our approach. Section 3.4 refines
the combinatorial Lemma 5 to its algorithmic applications (Corollaries 10–12). For the sake
of an application, consider that we have two dictionaries D1 and D2. We concentrate not
only on pairs of strings which are at distance at most k, but globally, for any string Y ∈ D2,
we show how to compute its longest prefix which is at distance at most k from any other
string X ∈ D1, and further show how to compute the set of lengths of all such prefixes.

Finally, in Sections 4.1 and 4.2, we apply our techniques to construct the data structures
for answering One-to-Onek and Reportk queries, respectively. Full detailed proofs omitted
from the main text are included in Appendix A.

2 Preliminaries

We consider strings over an integer alphabet Σ = [1 . . σ] of size σ. The elements of Σ are
called letters. A string X = X[1 . . n] is a sequence of letters from Σ; we denote by |X| = n

the length of X. The fragment X[i . . j] of X is an occurrence of the underlying substring
S = X[i] · · · X[j] occurring at position i in X. A prefix of X is a substring of X of the form

MFCS 2024

85:4 Approximate Suffix-Prefix Dictionary Queries

X[1 . . j] and a suffix of X is a substring of X of the form X[i . . n]. The reverse of X is
the string XR = X[n] · · · X[1]. By LCP(X, Y), we denote the length of the longest common
prefix of strings X and Y . The Hamming distance of two equal-length strings is the number
of positions where the strings differ. The edit distance (or Levenshtein distance) of two
strings X and Y is the minimum number of edit operations required to transform X into Y .
Here, by edit operation we mean an insertion, a substitution, or a deletion of a single letter.
A set D of strings is called a dictionary.

The following edit-distance property (Lemma 4) underlies most string algorithms on edit
distance; e.g., [23]. We provide a proof of this property in Appendix A for completeness.

▶ Lemma 4. For any two strings X and Y , there exists a smallest sequence of edit operations
changing X to Y satisfying recursively that the first operation occurs at position LCP(X, Y)+1.
By recursively, we mean that after applying the first operation on X to obtain X ′, the leftmost
operation to get from X ′ to Y occurs at position LCP(X ′, Y) + 1 ≥ LCP(X, Y) + 1.

Let D be a dictionary of n = |D| strings. A node in the trie of D is called branching if
it has at least two children and terminal if it represents a string in D. The compacted trie
T of D is obtained from the underlying trie by removing all nodes except the root node,
the branching and the terminal nodes. The removed nodes are called implicit while the
remaining ones are called explicit. Each terminal node corresponding to a string X from D

is labeled with the identifier of X: a pointer to X in D. Edge labels are stored as pointers
to fragments of strings in D and so the compacted trie takes |T | = O(n) extra space.

Our algorithms use a version of the famous k-errata tree of Cole et al. [15]. The tree nodes
store information about strings and a representation of edit operations applied on them. In
order to efficiently operate on those edit operations we define their representation here as an
abstract structure and describe the operations that are performed on such structures later.

For convenience we represent multisets of edit operations by lists sorted non-decreasingly.
A Hamming distance list consists of up to k elements, where every element is denoted by
lS , for l ∈ [1 . . n]. An edit distance list consists of up to k elements, where every element is
denoted by lE for l ∈ [1 . . n], E ∈ {S, I, D}; elements are first sorted by l, then by D < S < I,
and lD elements may repeat (denoting that several letter deletions occur at the same position
l). A single list does not contain both lS and lI , or multiple such elements, for the same l.
By |ℓ| we denote the number of elements in list ℓ (counting the multiplicities). For any two
lists ℓ1, ℓ2, by ℓ1 ⊆ ℓ2, we denote that every element of ℓ1 appears in ℓ2 and the multiplicity
of any element in ℓ1 does not exceed its multiplicity in ℓ2. By ℓ1 ∪ ℓ2 we denote the union of
the two lists; for each element of ℓ1 or ℓ2 its multiplicity is equal to its maximum multiplicity
in ℓ1 and ℓ2. By max+(ℓ) we denote the smallest element that can be inserted at the end
of list ℓ without breaking the specified condition of the list being non-decreasing; that is,
the maximum element of the list if this element may appear multiple times and the smallest
larger element if the currently maximal element cannot appear multiple times (max+(ℓ) = lD
when the last element of ℓ is equal to lD, (l − 1)S or (l − 1)I , max+(∅) = 1D). By ℓd we
denote the prefix of list ℓ containing only the elements lE such that l ≤ d, and by surpl(ℓ) we
denote the surplus of lD operations over lI operations in ℓ, that is |{lD ∈ ℓ}| − |{lI ∈ ℓ}|; i.e.,
by how many letters the length of the string decreases after applying the operations from ℓ.

3 Finding Approximate Extension-Prefix Pairs using the k-Errata Tree

For any dictionary D, extension-prefix pairs can be found by using a trie of D. Every such
pair corresponds to a descendant-ancestor node pair in the trie. By using this property, all
such pairs can be listed in the optimal time. In this section, we show that for k-approximate

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:5

extension-prefix pairs, a similar property holds for a version of the k-errata tree of the trie of
D. We start by showing the tree construction, then we show the counterpart of this property,
and we end by showing how to use the tree for finding k-approximate extension-prefix pairs.

The Hamming distance can be treated as a special case of edit distance, where only
substitution operations are allowed; we thus focus on the edit distance construction, and then
comment on the differences that should be made to obtain the tree for Hamming distance.
Let D be a dictionary of n = |D| strings and T be the compacted trie of D. In the complexity
analysis of our construction, we assume that k ≤ log n

2 log log n [15]. (The construction itself and
the combinatorial lemmas do not assume any bound on k.)

We compute the heavy-light decomposition of T in O(n) time [32]. Let s(w) denote the
number of node labels in the subtree of T rooted at w (these labels identify the full strings
from D). We call an edge (u, v) of T heavy if s(v) is maximal among every edge originating
from u (breaking ties arbitrarily). All other edges are called light. We call a node that is
reached from its parent through a heavy edge heavy; otherwise, it is called light. The heavy
path of T is the path that starts at the root of T and at each node on the path descends to the
heavy child as defined above. The heavy path decomposition is then defined recursively: it is
a union of the heavy path of T and the heavy path decompositions of the off-path subtrees of
the heavy path. The crucial well-known property of this decomposition is that every root to
node path in T passes through O(log n) light nodes. Our k-errata tree construction actually
refers to the heavy-light decomposition of the uncompacted trie of D – in particular to the
direct children of the branching nodes even if those are implicit. The decompositions of both
the uncompacted and the compacted versions of T are in a bijection: a child of a branching
node of the uncompacted version is light if and only if its closest explicit descendant is light
in the compacted version. Therefore we refer to the nodes of the uncompacted version of
T , and access all children of the branching nodes in time proportional to the size of its
compacted version, obtaining the compacted version of the errata tree in the process.

3.1 The k-Errata Tree Construction

T

a

b
c

d
e

f
g

h

c
d
e
b
f

Y

X

T (1)

a

b

c
d

e

f
g

h

b
f

d
e
b
f

c

d
e

b
f

d

e
b

f

Y

(X, 2I)
(X, 2S) X

(X, 2D)

T (2)

a

b

c

d
e

f

g
h

b

f
g

h

g
h

g

h

e
b

f

d

e
b

f

e

b
f

c

d
e

b
f

d

e
b

f

e

b
f

Y(X, 2I),
(X, 2S , 3I)(Y, 6I)

(Y, 6S)
(Y, 6D)

(X, 2S , 3S) (X, 2S),
(X, 2D, 2I)

(X, 2D, 2S),
(X, 2S , 3D)

X
(X, 2D)

(X, 2D, 2D)

Figure 1 Example of an edit distance 1- and 2-errata tree for trie T of strings {Y = abcdefgh, X =
acdebf}. The rectangles mark the nodes with multiple distinct labels. Notice that a node with label
(Y, 6I) has an ancestor with two labels (X, ℓ), since |{2I} ∪ {6I}| ≤ 2, X is at edit distance at most
2 from some prefix of Y . Label (X, 2S , 3I) does not provide such result as |{2S , 3I} ∪ {6I}| = 3 > 2.

We denote the k-errata tree of T by T (k) and construct it as a 1-errata of T (k−1), where T (0) =
T . Before constructing the 1-errata tree of T , we compute the heavy-light decomposition
of T . For every light node v at string depth l = d(v) in T that is reached from its parent
through an edge labeled with a ∈ Σ, we create three copies of its subtree (inspect Figure 1):

MFCS 2024

85:6 Approximate Suffix-Prefix Dictionary Queries

In one copy, corresponding to a substitution, we change the labels of the subtree nodes
from X to (X, lS) and merge it with the subtree of its heavy sibling.
In one copy, corresponding to a deletion, we change the labels of the subtree nodes from
X to (X, lD) and merge it with the subtree of its parent.
In one copy, corresponding to an insertion, we change the labels of the subtree nodes
from X to (X, lI) and merge it with the child of its heavy sibling reached through the
edge labeled with letter a (or create such a child if it does not exist).

A node of 1-errata with label: (X, lS) can be reached by replacing the l-th position of X by
the heavy letter (the letter used to reach the heavy child from the node reached by spelling
X[1 . . l − 1] in T); (X, lD) can be reached by deleting the letter at the l-th position in X;
and (X, lI) can be reached by inserting that heavy letter before the l-th position of X. It
should be clear that in the Hamming distance case only the first copy is required.

For convenience, we represent all the added parts of labels collectively with lists of
edit operations (see Section 2). To keep the data structure simpler, we avoid introducing
redundant labels that would later make proofs and implementations more complicated (in
particular an insertion or deletion would change the positions of the edits to the right).
Specifically, we produce a copy of a label (X, ℓ) only if the added element lE is greater or
equal to max+(ℓ). This means that the lists are sorted non-decreasingly. We do not miss any
significant sequence of edit operations due to Lemma 4 as shown in the proof of Lemma 5.

Since we may possibly delete a few next letters from the same position (after removing a
single letter the next one takes its position) we have to allow elements lD to appear in a list
multiple times. In case of insertions or substitutions this is not needed (and we can prioritize
deletions over other operations as there is no reason to first modify a letter and then delete
it), hence we do not allow two elements lI or lS (or lI and lS) for the same l ∈ [1 . . n]. As
such, the order of elements lE , l ∈ [1 . . n], E ∈ {S, D, I}, is defined by first comparing l, and
then D < S < I, thus the definition of max+(ℓ) (see Section 2).

In our construction of trie T , unlike the one used in the classic construction [15] where D

is made prefix-free, two terminal nodes can lie on the same heavy path (for an extension-prefix
pair (Y, X) for X, Y ∈ D the node representing X may in fact be an internal labeled node
that lies on a heavy path). This does not allow for checking if Y is a k-approximate prefix of
X in the same way since it is already an extension of X (in case of edit distance one can
always check if the difference of lengths is at most k, and in case of Hamming distance simply
respond negatively if |X| < |Y |); for example, when D = {X = abc, Y = abcde}, T (2) = T ,
there is a single heavy path since T has no light nodes. To mitigate this problem and still
have the nice properties of our construction (ancestor-descendant relations of the labeled
nodes), for a labeled node u with label (X, ℓ) that has (non-trivial) descendants, we also
create a copy with label (X, ℓ ∪ (d(u) + 1)I) and add it to its heavy child (insertion after the
last position of X). Substitution and deletion after the end of a string clearly do not make
sense, thus an insertion operation is the only one allowed. This change does not influence
our bounds on the k-errata tree size as the total size of all such subtrees is the number of
the labeled nodes; we change this from O(|T | logk |T |) to O(|T |(log |T | + 1)k).

We remark, that our structure differs substantially from the original k-errata from [15]. In
particular, we do not use extra letters outside of the alphabet to mark the edges transitioning
from the original tree to a copied part, and instead actually merge the nodes corresponding
to the same string. Thanks to this change we do not need to use the extra copies called group
trees, which makes the search algorithm simpler in the case of our structure (the first place
where the search can diverge from the heavy path is the place where the pattern actually
diverges from the heavy path) and running in asymptotically the same time (up to an f(k)

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:7

factor for some f and k = O(log n
log log n)). We do not describe the algorithm in detail however,

since in this paper we are only interested in internal queries (the data structure is constructed
for the fixed dictionary D and no other string is ever queried). All those simplifications
pose the cost of dealing with the lists of edit operations, which are not present in the data
structure from [15], but we show how to do that efficiently in the remainder of this section.

3.2 Extension-Prefix Pairs in a k-Errata Tree
We now prove the key combinatorial property of the described k-errata tree of dictionary D.

▶ Lemma 5. For any two elements X, Y ∈ D, X is at edit (resp. Hamming) distance at
most k from some prefix of Y if and only if there exist two nodes, u and its descendant v, in
T (k) with labels (X, ℓ1) and (Y, ℓ2) respectively, such that |ℓ1 ∪ ℓ2| ≤ k, where T (k) is the edit
(resp. Hamming) distance k-errata tree of D.

T

a
b

a
c

a
b

b

c

a
b

c
a

b
a

b
c

a

c
c

b
a

b
c

a
X

Y(X, 3S)
(Y, 3S , 5D) (Y, 3S)

Figure 2 Illustration of a part of the edit distance 2-errata tree T for dictionary D containing
X = abacab and Y = abccbabca with the choice of heavy paths depicted with thicker lines. X is
at edit distance 2 from Y ′ = abccbab, which is a prefix of Y ; the operations used to transform X

into Y ′ are substitution at position 3 and insertion at position 5. The lowest common ancestor of
nodes with labels X and Y is at string depth 2 (ab); as shown in the proof of Lemma 5 there exists
a child of this node that is a common ancestor of nodes with labels (X, ℓ′

1) and (Y, ℓ′
2) such that

ℓ′
1 ∪ ℓ′

2 = {3S}, and a descendant of this child with label (X, ℓ1) that is an ancestor of a node with
label (Y, ℓ2), such that |ℓ1 ∪ ℓ2| = 2. Conversely, since there exists such an ancestor-descendant pair
of nodes one can compute the list of at most 2 edit operations that transform X into Y ′.

Sketch of Proof. The proof of the forward implication follows a path down the k-errata
tree – one starts with empty lists ℓ1 and ℓ2. Each time an edit operation is applied to X one
adds an element to ℓ1 or ℓ2 or both (depending on the edit operation and the location of the
heavy child) and finds a descendant of the current node that is a common ancestor of nodes
with labels (X, ℓ1) and (Y, ℓ2). The backward implication can be obtained by reversing that
approach and producing a list of at most k edit operations that transform X into a prefix of
Y (see Appendix A for the full proof and Figure 2 for an example of the construction). ◀

The full proof shows that, if a prefix Y ′ of Y is at distance at most k from X, then
there exists a pair of nodes u and v with labels (X, ℓ1) and (Y, ℓ2), respectively, in an
ancestor-descendant relationship, such that f(d(u)) − k + |ℓ1 ∪ ℓ2| ≤ |Y ′| ≤ f(d(u)), where
f(l) = l + surpl(ℓl

2) is the actual length of the prefix of Y represented by the ancestor of v

at depth l. In particular, the longest prefix is represented by either such a pair for u = v

(the whole Y is at edit distance at most k from X), or a pair where |ℓ1 ∪ ℓ2| = k, and hence
ℓ2 = ℓ

d(u)
2 .

MFCS 2024

85:8 Approximate Suffix-Prefix Dictionary Queries

This property and the monotonicity of f(l) for a single label (Y, ℓ2) of node v imply that
to find the longest prefix of Y at distance at most k from X it is enough to focus on the
lowest ancestor u of v with label (X, ℓ1) such that |ℓ1 ∪ ℓ2| ≤ k. In fact, if ℓ2 ̸= ℓ

d(u)
2 , then

both u ̸= v and |ℓ1 ∪ ℓ
d(u)
2 | < |ℓ1 ∪ ℓ2| ≤ k, hence there must exist a pair u′, v′ with labels

(X, ℓ′
1) and (Y, ℓ′

2) respectively, for which d(u′) + surpl(ℓ′d(u′)
2) > d(u) + surpl(ℓd(u)

2) (we can
extend the prefix Y ′ by inserting the next letter of Y after its last position), hence we get the
following corollary. (The algorithm can easily use ℓ

d(u)
2 for the comparison between different

ℓ2, but it is neater this way.)

▶ Corollary 6. The length of the longest prefix of Y that is at edit distance at most k from
X is equal to the maximum over all node pairs (u, v) of value d(u) + surpl(ℓ2), where u has
label (X, ℓ1), v has label (Y, ℓ2), u is a (potentially trivial) ancestor of v, and |ℓ1 ∪ ℓ2| ≤ k.

This is also the case for the Hamming distance but then surpl(ℓ2) = 0.
When we are interested not only in the longest prefix of Y at edit distance at most k

from X, but in the set of all the prefixes with this property, it is enough to compute the
union of the intervals d(u) + surpl(ℓ2) + [−k + |ℓ1 ∪ ℓ2| . . 0] over all such pairs u and v.

▶ Corollary 7. The set of lengths of prefixes of Y that are at edit distance at most k from X

is equal to the union of intervals d(u) + surpl(ℓ2) + [−k + |ℓ1 ∪ ℓ2| . . 0] over all node pairs
(u, v), where u has label (X, ℓ1), v has label (Y, ℓ2), u is a (potentially trivial) ancestor of v,
and |ℓ1 ∪ ℓ2| ≤ k.

For Hamming distance the same property is simpler as the intervals are singletons {d(u)}.

3.3 Size of the k-Errata Tree
For completeness of the k-errata tree construction, we show a bound on the size of the data
structure for a compacted trie T with at most n explicit nodes and n distinct node labels.
We assume k ≤ log n

2 log log n (for all further complexity considerations), but the properties and
the correctness of the algorithms shown further do not require this assumption on k. For
such a value of k, the size of our data structure is asymptotically the same as of the k-errata
tree from [15] up to an f(k) factor (the bound is not necessarily tight – optimizing the f(k)
value is not a focus of this paper). The proof of Lemma 8 can be found in Appendix A.

▶ Lemma 8. For any compacted trie T with at most n explicit nodes and n distinct node
labels, and for any k ≤ log n

2 log log n , the k-errata tree T (k) has O(nk!(cδ log n)k) explicit nodes
and labels, where cδ = 1 for Hamming distance and cδ = 3 for edit distance.

In particular, a single node label of T has O(k!(cδ log n)k) copies in T (k).

▶ Corollary 9. For any k ≤ log n
2 log log n , we have log |T (k)| = O(k log n).

In what follows, we give the complexity of our algorithms including the proven bound on
the f(k) factor, and additionally the formulas in the most interesting case k = O(1).

3.4 Finding Approximate Prefixes
In Section 3.2, we were interested in a single extension-prefix pair (Y, X), such that X, Y ∈ D.
Here, say that we are given two subdictionaries D1 and D2 such that D1, D2 ⊆ D, and want
to find for every element of D2 its longest prefix that is at distance at most k from some
element of D1 using Corollary 6, or the lengths of all such prefixes using Corollary 7. Let
n = |D|, n1 = |D1|, n2 = |D2|, and let m be the length of the longest string in D.

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:9

By running a DFS on T (k) and storing the labels from all the ancestors of a given node
labeled (Y, ℓ2), Y ∈ D2, we can find all the pairs where this node is the descendant. We need,
however, to take care of the lists of edit operations: for the label (Y, ℓ2), we have to look for
the elements (X, ℓ1), X ∈ D1, stored in the set of ancestor labels, such that |ℓ1 ∪ ℓ2| ≤ k. We
do not want to check all the elements from this set separately however (potentially there are
Ω(n) such elements). We can group the elements based on their lists ℓ1; still for a single ℓ2
there can be

(
m
k

)
such fitting lists ℓ1 for Hamming distance (and even more for edit distance).

Corollary 6 tells us that as long as |ℓ1 ∪ ℓ2| ≤ k it does not matter what is the content of
ℓ1, nor what is the X in the label as long as X ∈ D1. In order to avoid looking for each list
ℓ1 separately, we can store the elements (string depths of nodes with labels (X, ℓ1) for any
X ∈ D1 and ℓ1) grouped by the size of ℓ1 and its intersection with every possible ℓ2.

More formally we can store the information about the ancestors of the current node of
the DFS traversal in stacks indexed with pairs (ℓ, x), where ℓ is a valid list of elements and
x ∈ [0 . . k − |ℓ|]. For a single label (X, ℓ1) of node u we store d(u) in stacks (ℓ, x), such that
ℓ ⊆ ℓ1, |ℓ1|−|ℓ| ≤ x ≤ k−|ℓ| (ℓ1 contains all elements of ℓ plus at most x other elements) upon
reaching u (and remove it when returning to its parent). Since a list can have up to k elements,
every single label (X, ℓ1) is responsible for 2|ℓ1| · (k − |ℓ1| + 1) ≤ 2k(k + 1) elements in stacks,
hence in total the DFS traversal will perform O(2k(k + 1) · |T (k)|) = O(n(k + 1)!(2 · cδ log n)k)
operations on stacks. Notice that we use a sparse representation (hash table) to store only
the non-empty stacks explicitly – the universe of all possible stacks is of size at least mk. We
can access a stack in O(1) worst-case time by using perfect hashing [8].

Now, for a single label (Y, ℓ2) of a node v, Y ∈ D2, to find the deepest node u with label
(X, ℓ1) over all X ∈ D1, such that |ℓ1 ∪ ℓ2| ≤ k, one only needs to take the maximum of the
top elements over at most 2|ℓ2| = O(2k) stacks (ℓ, k − |ℓ2|) for ℓ ⊆ ℓ2. Through the whole
DFS, we need to perform a total of O(n2 · 2kk!(cδ log n)k) such operations for all Y ∈ D2 as
there are O(k!(cδ log n)k) copies of label Y in T (k) by Lemma 8.

▶ Corollary 10. For any two dictionaries D1 and D2 such that D1, D2 ⊆ D, we can find the
longest prefix of Y , for every Y ∈ D2 at (Hamming or edit) distance at most k from some
string X ∈ D1, in O(n(k + 1)!(2 · cδ log n)k) total time; for any k = O(1), this is O(n logk n).

If we rather want to find the list of all the prefixes of Y which are at distance at most k

from any X ∈ D1, we need to look through the whole stacks, not only at the top elements,
and also pay attention to the size of ℓ1 ∪ ℓ2, for labels (Y, ℓ2).

For a single label (Y, ℓ2) of a node v, if a node u with label (X, ℓ1), such that |ℓ1∪ℓ2| = x ≤
k, is an ancestor of v, then upon visiting v, d(u) will be stored on stack (ℓ, y), where ℓ = ℓ1∩ℓ2,
and y = |ℓ1|−|ℓ| = |ℓ1∪ℓ2|−|ℓ2| (as |ℓ1∪ℓ2| = |ℓ1|+|ℓ2|−|ℓ|). For such an element on the stack,
we produce an interval d(u)+surpl(ℓ2)+[−k+|ℓ1∪ℓ2| . . 0] = d(u)+surpl(ℓ2)+[−k+y+|ℓ2| . . 0]
of lengths of prefixes of Y that are at edit distance at most k from X (by Corollary 7), or
simply a length d(u) of a prefix of Y at Hamming distance at most k from X.

The element (X, ℓ1) can be also represented on other stacks (ℓ′, y′) for ℓ′ ⊆ ℓ1 ∩ ℓ2 and
y′ ≥ |ℓ1| − |ℓ′|, but then y′ + |ℓ2| ≥ |ℓ1| + |ℓ2| − |ℓ′| ≥ |ℓ1| + |ℓ2| − |ℓ| = |ℓ1 ∪ ℓ2| = y + |ℓ2|;
hence the interval generated this way is a subset of the interval represented by (ℓ, y) and
thus does not change the union of such intervals (still we do not know what is the right ℓ or
y, so we need to check all valid pairs).

This way we can compute the union of those at most m · 2k(k + 1) elements of stacks for
Hamming distance or of at most (m + k) · 2k(k + 1) intervals for edit distance for a single
label (Y, ℓ2) of node v in time proportional to those values (in case of edit distance using the
sweep line technique).

MFCS 2024

85:10 Approximate Suffix-Prefix Dictionary Queries

▶ Corollary 11. For any two dictionaries D1 and D2 such that D1, D2 ⊆ D, we can find the
lengths of all the prefixes of Y at (Hamming or edit) distance at most k from some string
X ∈ D1 for every Y ∈ D2 in O((n + n2(m + k))(k + 1)!(2 · cδ log n)k) total time; for any
k = O(1), this is O((n + n2m) logk n), where m is the length of the longest string in D.

If the focus of the output is oriented towards D1 instead (we want to know what strings
from D1 are at distance at most k from some prefix of a string in D2), then we can store in
the stacks for each label (X, ℓ1) the identifier of X instead. In this case if we run a DFS,
and for each label (Y, ℓ2) we collect the union of sets represented by the stacks (ℓ, y), then
the union of those results over all Y ∈ D2 and all ℓ2 would be equal to exactly the elements
of D1 at distance at most k from some prefix of some Y ∈ D2.

To avoid handling unnecessary duplicates of strings X for a single (ℓ, y) (with different
lists ℓ1 ⊇ ℓ and ℓ′

1 ⊇ ℓ), or for many different Y , instead of stacks, we store the information
in a multiset data structure: a hash table storing as keys the elements of D1 and as satellite
data the multiplicity of every element. When an element X ∈ D1 is read (and hence also
returned), we delete it from every hash table and store it separately, so that it is never added
again. The removal of those copies from every multiset is easy since we additionally store
pointers to all of them partitioned by the elements of D1. For the label (Y, ℓ2), when reading
this multiset, we iterate over the elements in the hash table in time proportional to their
number (the deleted elements are stored separately). We implement multisets as dynamic
perfect hash tables with O(1)-time worst-case operations [8].

▶ Corollary 12. For any two dictionaries D1 and D2 such that D1, D2 ⊆ D, we can find all
the elements of D1 at (Hamming or edit) distance at most k from a prefix of some Y ∈ D2
in O(n(k + 1)!(2 · cδ log n)k) total time; for any k = O(1), this is O(n logk n).

4 Application to Approximate Suffix-Prefix Dictionary Queries

Recall that we are given a dictionary R = {S1, . . . , Sr} of r strings whose total length is n,
and we want to find, for a given set of pairs i, j, the value SPLk

i,j equal to the length of the
longest suffix of Si that is at (Hamming or edit) distance at most k from some prefix of Sj .

We focus on finding the longest prefix of Sj that is at distance at most k from some
suffix of Si, as our k-errata structures are more focused on the prefix lengths than suffix
lengths; by Observation 2, those values are not necessarily maximized simultaneously in the
edit distance case. Still the two problems reduce to one another by reversing all the strings
in R. Henceforth, SPLk

i,j denotes the length of the longest prefix of Sj that is at (Hamming
or edit) distance at most k from some suffix of Si.

In preprocessing, we construct the generalized suffix tree STR of R (without the commonly
used $ /∈ Σ separators) [16]: STR is the compacted trie of the suffixes of all strings in R. A
node u in STR is labeled by i if and only if u represents a suffix of string Si from R. Provided
that we are given an integer k > 0, we also construct the k-errata tree ST

(k)
R of STR. We also

distinguish the labels corresponding to the full strings Si (and not their non-trivial suffixes) –
we mark all their copies and store links to them for O(1)-time access.

4.1 Approximate One-to-One Queries
We first describe the full data structure for answering One-to-Onek queries; then we give
the querying algorithm; and, finally, we analyze the data structure size and the query time.
Recall that One-to-Onek(i, j) returns SPLk

i,j , for two i, j ∈ [1 . . r].

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:11

Data Structure. After preprocessing ST
(k)
R , we construct the data structure for answering

One-to-Onek queries. It consists of O((k + 1)2k) trees, in total, of three types:
the main tree ST

(k)
R ;

trees STi,ℓ, which contain nodes of ST
(k)
R with labels (i, ℓ1), such that ℓ ⊆ ℓ1, for i ∈ [1 . . r];

trees STi,ℓ,x, for x ∈ [0 . . k − |ℓ|], which contain nodes with labels (i, ℓ1), such that ℓ ⊆ ℓ1
and x ≥ |ℓ1| − |ℓ|.

Note that |ℓ| ≤ k and that we do not actually construct the empty trees (i.e., trees that contain
no labels in the instance of the problem). Even though STi,∅ is basically the counterpart
of the tree STi from the One-to-One without errors solution [25], it is not necessarily equal
to the k-errata tree of the suffix tree of Si, since the heavy-light decomposition of STi and
of the generalized suffix tree (and hence the errata trees) may differ. That is, to obtain a
smaller tree, we make a copy of a larger tree, remove the labels that do not fit, remove the
nodes that do not have any labels in their subtree, and finally compactify the tree.

The trees of the first two types are enhanced with rank-select (RS) [6] and lowest common
ancestor (LCA) data structures [9]; the trees of the third type are enhanced with a weighted
ancestor (WA) data structure [3] plus a pointer from each node to its closest ancestor with a
label. (The latter information can be trivially computed by using a DFS tree traversal.)

While the LCA and WA data structures are by default defined on (rooted) trees, we need
to specify how the RS data structures are defined on trees (as they are usually defined on
arrays). In our case, the RS data structures span over all the node labels (in one of the
constructions a single label will actually be given a few next positions). In particular, the
positions are first ordered by the position of the node (left to right DFS first visit order), and
next its labels (i, ℓ) are ordered lexicographically. In case of ST

(k)
R , the RS data structure

is over the alphabet [1 . . r], where the letter representing the node label (i, ℓ) is i. Each
label of ST

(k)
R is linked with its counterpart from STi,∅. The tree STi,ℓ is connected to

trees STi,ℓ∪{lE}, where lE ≥ max+(ℓ) and trees STi,ℓ,x, where x ≤ k − |ℓ|, and hence it
contains two separate RS data structures. The first one is over the alphabet of valid elements:
[max+(ℓ) . . nS] for Hamming distance; [max+(ℓ) . . (n + k)I] for edit distance. Each label
(i, ℓ1) is given a position for every element lE ∈ ℓ1 greater or equal to max+(ℓ) and this
element lE is its representative. This position in the RS array is linked with the corresponding
terminal node of tree STi,ℓ∪{lE}. The second one is over alphabet [0 . . k − |ℓ|]. Each node
label (i, ℓ1) is given k − |ℓ1| + 1 positions that contain values x ∈ [|ℓ1| − |ℓ| . . k − |ℓ|]. Each
such position is connected to the corresponding node label of the tree STi,ℓ,x.

Querying. We want to find SPLk
i,j , i.e., the longest prefix of Sj that is at (Hamming or

edit) distance at most k from some suffix of Si (if we store some additional information
with the labels we can also find the length of this suffix). By Lemma 8, Sj corresponds
to O(k!(cδ log n)k) different node labels (j, ℓ2) in ST

(k)
R ; we will consider each such label

independently, and then choose the optimal result.
For a single node v with label (j, ℓ2), we want to find its lowest ancestor with label (i, ℓ1)

such that |ℓ1 ∪ ℓ2| ≤ k. We know that the ancestor is contained in one of the trees STi,ℓ,k−|ℓ2|
for some ℓ ⊆ ℓ2. If we know a node v′ with a label that is stored in that tree, and is the
closest to v in the DFS order of ST

(k)
R (they have the deepest LCA among all such nodes

v′), then we know that any ancestor of v that belongs to STi,ℓ,k−|ℓ2| is also an ancestor of v′,
and that every ancestor of v′ at depth at most LCA(v, v′) is also an ancestor of v. Thus for
knowing the location of v′ in STi,ℓ,k−|ℓ2| and the value of LCA(v, v′), it suffices to ask a WA
query in STi,ℓ,k−|ℓ2| for node v′ and depth LCA(v, v′) and then ask for the lowest ancestor of
the node with a label (this information is stored in the node as a pointer) - the answer is

MFCS 2024

85:12 Approximate Suffix-Prefix Dictionary Queries

ST
(3)
R

(i, 2S , 4I)

(i, 2S)
(i, 2S , 3I , 5D)

(Sj , 2S , 3D)
(i, 1D, 4S , 6I)

STi,∅

(i, 2S , 4I)

(i, 2S)
(i, 2S , 3I , 5D)

(i, 1D, 4S , 6I)

STi,2S

(i, 2S , 4I)

(i, 2S)
(i, 2S , 3I , 5D)

STi,2S ,1

(i, 2S , 4I)

(i, 2S)

Figure 3 An example traversal through the trees to reach the lowest ancestor (i, ℓ1) of label
(Sj , 2S , 3D), such that 2S ∈ ℓ1 and |ℓ1 ∪ {2S , 3D}| ≤ 3. The green node depicts the label that is
closest to (Sj , 2S , 3D) in ST

(3)
R , out of the ones existing in the tree, while the blue one depicts the

lowest common ancestor of the two nodes (equal to green in ST
(3)
R). The next green node is obtained

via a rank-select query, while the blue nodes depth is obtained via an LCA query. After reaching a
terminating tree, we ask for the depth of the lowest ancestor of the blue node that contains a label.

the sought ancestor of v. To obtain the location of v′ and the value of LCA(v, v′), we jump
through the trees in between, always storing the two pieces of information: the labeled node
v′′ closest to v that appears in the tree; and the value LCA(v, v′′).

In ST
(k)
R we want to find the closest label (i, ℓ1) for any ℓ1; we simply ask an RS query to

find the closest such node to the left and to the right of v. We compare those two nodes by
the string depth of their LCA with v, choose the one for which this depth is larger (breaking
ties arbitrarily), and then we proceed to the node with this label in STi,∅.

Now, in tree STi,ℓ, for ℓ ⊆ ℓ2, we start with the labeled node v′ closest to v in ST
(r)
R ,

and the string depth of their LCA. For each element lE ∈ ℓ2, such that lE ≥ max+(ℓ), we
find the closest node with label (i, ℓ3) such that ℓ ∪ {lE} ⊆ ℓ3 in STi,ℓ by asking the RS
data structure (the one over [max+(ℓ) . . (n + k)I]) for lE – both left and right. We compare
those two nodes based on the LCA string depth with v′ to get the node v′′, then compute
LCA(v, v′′) = min{LCA(v, v′), LCA(v′, v′′)}, and jump to the corresponding terminal node of
STi,ℓ∪{lE} with the new LCA value. Additionally we ask the other RS data structure for the
closest label represented by k − |ℓ2|, and jump to the labeled node of STi,ℓ,k−|ℓ2|. There we
find its lowest ancestor at depth at most the value of stored LCA string depth, and ask this
ancestor for the string depth of its lowest ancestor storing a label. If this value is larger than
the value of the currently stored candidate, we replace the candidate with the new one.

After the whole recursive procedure ends for each labeled node v corresponding to the
full string Sj , the stored candidate is the final answer. Inspect Figure 3, for an example.

Data Structure Size. Each node of ST
(k)
R belongs to O((k + 1) · 2k) different trees. In

total, the trees have size N = O(n(k + 1)!(2cδ log n)k). The RS [6], LCA [9], and WA [3]
data structures occupy O(N) space and can be constructed in O(N log log N) time.

Query Time. We have O(k!(cδ log n)k) node labels (Sj , ℓ2) for a full string Sj . For each
of those we reach at most 2k further trees. Each operation of reaching the next tree (from
the previous one) costs a constant number of RS, LCA and WA queries – that is, the cost
of reaching each tree is O(log log n); hence the total cost is O((2cδ log n)k log log n). In
particular, the RS [6] and WA [3] queries take O(log log n) time when O(n) space is used.

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:13

▶ Theorem 13. For any dictionary of strings of total length n and any k ≤ log n
2 log log n , we can

construct a data structure of O(n(k + 1)!(2cδ log n)k) words of space answering One-to-Onek

queries in O((k + 1)!(2cδ log n)k log log n) time. The data structure can be constructed in
O(n(k + 1)!(2cδ log n)k log log n) time.

For any k = O(1), the data structure size is O(n logk n), the query time is O(logk n log log n)
and the construction time is O(n logk n log log n).

4.2 Approximate Report Queries
Once again we use an inverted version of the problem that is equivalent to the original one;
i.e., we want to answer Reportk(j, d) queries that return all the values of i ∈ [1 . . r] such that
there exits a prefix of Sj at distance at most k from some suffix of Si of length at least d.
Recall that by Observation 2, for edit distance, this is not necessarily equivalent to finding all
j such there exists a prefix of Sj of length at least d at distance at most k from some suffix
of Si – this can be done using the idea of Corollary 12 within the same time complexity.

By Corollary 6, to find whether a prefix of length at least d of Sj is at distance at most
k from a suffix of Si, it suffices to check, for every label (j, ℓ2) of a node v representing
the full string Sj , if it has an ancestor u with label (i, ℓ1), such that |ℓ1 ∪ ℓ2| ≤ k and
d(u) ≥ d − surpl(ℓ2). We first describe the data structure for answering Reportk queries and
analyze its size; then we give the querying algorithm and analyze the query time.

Data Structure. We start by constructing ST
(k)
R . For each pair (ℓ, x), such that x ≤

k − |ℓ| and there exists a label with list ℓ in ST
(k)
R , we create a linear-space 2D rectangle

stabbing data structure [30]. For every node u with label (i, ℓ1), we create a rectangle
[L(u) . . R(u)] × [0 . . d(u)] with label i, where L(u) and R(u) are the numbers of the leftmost
and the rightmost label in the subtree of u in ST

(k)
R when ordered in the left-to-right DFS

traversal order, and insert it to data structures (ℓ, x) for each ℓ ⊆ ℓ1 and |ℓ1|−|ℓ| ≤ x ≤ k−|ℓ|.
Next in every structure we make the rectangles of the same type disjoint.

We have in total |ST
(k)
R | = O(nk!(cδ log n)k) labels, hence the total number of rectangles

in all the data structures is |ST
(k)
R | · (k + 1)2k = O(n(k + 1)!(2cδ log n)k), and the dimensions

of the rectangles are in [0 . . |ST
(k)
R |] × [0 . . n]. Hence the total size is O(n(k + 1)!(2cδ log n)k).

Querying. For each label (j, ℓ2) of a node v representing the full string Sj , and for each
ℓ ⊆ ℓ2, we ask a query (L(v), d − surpl(ℓ2)) to the 2D rectangle stabbing data structure
(ℓ, k − |ℓ2|). Over all labels (j, ℓ2), we have in total O(k!(2cδ log n)k) lists of total length
O(|Q| · k!(2cδ log n)k), where |Q| is the size of the output, and we want to output their union.
By using the 2D rectangle stabbing data structure from [30] we obtain the following result.

▶ Theorem 14. For any dictionary of strings of total length n and any k ≤ log n
2 log log n , we can

construct a data structure of O(nk!(2cδ log n)k) words of space answering Reportk queries in
O((k + 1)!(2cδ log n)k(log n/ log log n + |Q|)) time. For any k = O(1), the data structure size
is O(n logk n) and the query time is O(logk n(log n/ log log n + |Q|)).

References
1 Paniz Abedin, Arnab Ganguly, Solon P. Pissis, and Sharma V. Thankachan. Efficient data

structures for range shortest unique substring queries. Algorithms, 13(11):276, 2020. doi:
10.3390/A13110276.

2 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Dynamic and internal longest common substring. Algorithmica, 82(12):3707–3743, 2020.
doi:10.1007/s00453-020-00744-0.

MFCS 2024

https://doi.org/10.3390/A13110276
https://doi.org/10.3390/A13110276
https://doi.org/10.1007/s00453-020-00744-0

85:14 Approximate Suffix-Prefix Dictionary Queries

3 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

4 Golnaz Badkobeh, Panagiotis Charalampopoulos, Dmitry Kosolobov, and Solon P. Pissis.
Internal shortest absent word queries in constant time and linear space. Theor. Comput. Sci.,
922:271–282, 2022. doi:10.1016/j.tcs.2022.04.029.

5 Carl Barton, Costas S. Iliopoulos, Solon P. Pissis, and William F. Smyth. Fast and simple
computations using prefix tables under hamming and edit distance. In Jan Kratochvíl,
Mirka Miller, and Dalibor Froncek, editors, Combinatorial Algorithms - 25th International
Workshop, IWOCA 2014, Duluth, MN, USA, October 15-17, 2014, Revised Selected Papers,
volume 8986 of Lecture Notes in Computer Science, pages 49–61. Springer, 2014. doi:
10.1007/978-3-319-19315-1_5.

6 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015. doi:10.1145/2629339.

7 Ilan Ben-Bassat and Benny Chor. String graph construction using incremental hashing.
Bioinform., 30(24):3515–3523, 2014. doi:10.1093/bioinformatics/btu578.

8 Michael A. Bender, Alex Conway, Martin Farach-Colton, William Kuszmaul, and Guido
Tagliavini. Iceberg hashing: Optimizing many hash-table criteria at once. J. ACM, 70(6):40:1–
40:51, 2023. doi:10.1145/3625817.

9 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

10 Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella Rizzi.
FSG: fast string graph construction for de novo assembly. J. Comput. Biol., 24(10):953–968,
2017. doi:10.1089/cmb.2017.0089.

11 Panagiotis Charalampopoulos, Pawel Gawrychowski, Yaowei Long, Shay Mozes, Seth Pettie,
Oren Weimann, and Christian Wulff-Nilsen. Almost optimal exact distance oracles for planar
graphs. J. ACM, 70(2):12:1–12:50, 2023. doi:10.1145/3580474.

12 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen. Internal dictionary matching. Algorithmica, 83(7):2142–
2169, 2021. doi:10.1007/s00453-021-00821-y.

13 Shiri Chechik. Approximate distance oracles with constant query time. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 654–663. ACM, 2014. doi:10.1145/2591796.2591801.

14 Shiri Chechik. Approximate distance oracles with improved bounds. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 1–10.
ACM, 2015. doi:10.1145/2746539.2746562.

15 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 91–100.
ACM, 2004. doi:10.1145/1007352.1007374.

16 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

17 Sebastian Forster, Gramoz Goranci, Yasamin Nazari, and Antonis Skarlatos. Bootstrapping
dynamic distance oracles. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and
Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023,
September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 50:1–50:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.50.

https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1016/j.tcs.2022.04.029
https://doi.org/10.1007/978-3-319-19315-1_5
https://doi.org/10.1007/978-3-319-19315-1_5
https://doi.org/10.1145/2629339
https://doi.org/10.1093/bioinformatics/btu578
https://doi.org/10.1145/3625817
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1089/cmb.2017.0089
https://doi.org/10.1145/3580474
https://doi.org/10.1007/s00453-021-00821-y
https://doi.org/10.1145/2591796.2591801
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.4230/LIPIcs.ESA.2023.50

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:15

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

19 Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, 1992. doi:10.1016/0020-0190(92)
90176-V.

20 Tomasz Kociumaka. Efficient data structures for internal queries in texts. PhD thesis,
University of Warsaw, October 2018., 2018. URL: https://https://www.mimuw.edu.pl/
~kociumaka/files/phd.pdf.

21 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

22 Gregory Kucherov and Dekel Tsur. Improved filters for the approximate suffix-prefix overlap
problem. In Edleno Silva de Moura and Maxime Crochemore, editors, String Processing
and Information Retrieval - 21st International Symposium, SPIRE 2014, Ouro Preto, Brazil,
October 20-22, 2014. Proceedings, volume 8799 of Lecture Notes in Computer Science, pages
139–148. Springer, 2014. doi:10.1007/978-3-319-11918-2_14.

23 Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. J.
Algorithms, 10(2):157–169, 1989. doi:10.1016/0196-6774(89)90010-2.

24 Grigorios Loukides and Solon P. Pissis. All-pairs suffix/prefix in optimal time using Aho-
Corasick space. Inf. Process. Lett., 178:106275, 2022. doi:10.1016/j.ipl.2022.106275.

25 Grigorios Loukides, Solon P. Pissis, Sharma V. Thankachan, and Wiktor Zuba. Suffix-prefix
queries on a dictionary. In Laurent Bulteau and Zsuzsanna Lipták, editors, 34th Annual
Symposium on Combinatorial Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-
Vallée, France, volume 259 of LIPIcs, pages 21:1–21:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.CPM.2023.21.

26 Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl_2):ii79–ii85,
September 2005. doi:10.1093/bioinformatics/bti1114.

27 Enno Ohlebusch and Simon Gog. Efficient algorithms for the all-pairs suffix-prefix problem
and the all-pairs substring-prefix problem. Inf. Process. Lett., 110(3):123–128, 2010. doi:
10.1016/j.ipl.2009.10.015.

28 Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. SIAM J.
Comput., 43(1):300–311, 2014. doi:10.1137/11084128X.

29 Kim R. Rasmussen, Jens Stoye, and Eugene W. Myers. Efficient q-gram filters for finding all
epsilon-matches over a given length. J. Comput. Biol., 13(2):296–308, 2006. doi:10.1089/
cmb.2006.13.296.

30 Qingmin Shi and Joseph F. JáJá. Novel transformation techniques using q-heaps with
applications to computational geometry. SIAM J. Comput., 34(6):1474–1492, 2005. doi:
10.1137/S0097539703435728.

31 Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph using
the FM-index. Bioinform., 26(12):367–373, 2010. doi:10.1093/bioinformatics/btq217.

32 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

33 Saumya Talera, Parth Bansal, Shabnam Khan, and Shahbaz Khan. Practical algorithms for
hierarchical overlap graphs. CoRR, abs/2402.13920, 2024. doi:10.48550/arXiv.2402.13920.

34 Sharma V. Thankachan, Chaitanya Aluru, Sriram P. Chockalingam, and Srinivas Aluru.
Algorithmic framework for approximate matching under bounded edits with applications to
sequence analysis. In Benjamin J. Raphael, editor, Research in Computational Molecular
Biology - 22nd Annual International Conference, RECOMB 2018, Paris, France, April 21-
24, 2018, Proceedings, volume 10812 of Lecture Notes in Computer Science, pages 211–224.
Springer, 2018. doi:10.1007/978-3-319-89929-9_14.

MFCS 2024

https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1016/0020-0190(92)90176-V
https://https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1007/978-3-319-11918-2_14
https://doi.org/10.1016/0196-6774(89)90010-2
https://doi.org/10.1016/j.ipl.2022.106275
https://doi.org/10.4230/LIPIcs.CPM.2023.21
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1016/j.ipl.2009.10.015
https://doi.org/10.1016/j.ipl.2009.10.015
https://doi.org/10.1137/11084128X
https://doi.org/10.1089/cmb.2006.13.296
https://doi.org/10.1089/cmb.2006.13.296
https://doi.org/10.1137/S0097539703435728
https://doi.org/10.1137/S0097539703435728
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.48550/arXiv.2402.13920
https://doi.org/10.1007/978-3-319-89929-9_14

85:16 Approximate Suffix-Prefix Dictionary Queries

35 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
doi:10.1145/1044731.1044732.

36 William H. A. Tustumi, Simon Gog, Guilherme P. Telles, and Felipe A. Louza. An improved
algorithm for the all-pairs suffix-prefix problem. J. Discrete Algorithms, 37:34–43, 2016.
doi:10.1016/j.jda.2016.04.002.

37 Niko Välimäki, Susana Ladra, and Veli Mäkinen. Approximate all-pairs suffix/prefix overlaps.
Inf. Comput., 213:49–58, 2012. doi:10.1016/j.ic.2012.02.002.

A Omitted Proofs

Proof of Lemma 4. Say, that the leftmost operation in an optimal sequence of edit operations
between strings X and Y happens at position l1 ≤ LCP(X, Y), that is, in particular X[l1] =
Y [l1].

The positions 1, . . . , l1 − 1 of strings X and Y are matched respectively, and we need to
match the letter Y [l1] with something in X. Therefore, the leftmost operation (subset of
subsequent operations) is either an insertion of letter Y [l1] or a possibly empty sequence of
deletions followed by an identity or a substitution on the first not deleted position (if the
first operation after deletions was an insertion, then we can pull this insertion left).

If the first operation is insertion, then we can instead match letter Y [l1] with the letter
X[l1], and insert the letter one position further - since the inserted letter and X[l1] are
equal this does not change the number of operations nor the result.
If a sequence of deletions is followed by an identity, then we can instead match letter
Y [l1] with X[l1] and delete the matched letter X[l2] for l2 > l1 (if the sequence was empty
then the position of the first operation was not l1) shifting the left-most first operation
to the right.
If a sequence of deletions was followed by a substitution of letter X[l2], then we can
instead match letter Y [l1] with X[l1] and delete letter X[l2] obtaining a set of operations
of smaller size - a contradiction with the minimality of the set.

For the recursive part the same proof follows the same way after applying the first operation.
◀

Full proof of Lemma 5. (⇒) Let Y ′ be a prefix of Y at edit distance at most k from X. In
particular there exists a sequence of at most k operations that transform X into Y ′. Using
this sequence of edit operations, we find two nodes u and v in T (k) with labels (X, ℓ1) and
(Y, ℓ2) respectively, satisfying the conditions of the statement.

Recall that T denotes the compacted trie of D. We start our search at the root of T with
two empty lists ℓ1 and ℓ2. By Lemma 4 we can safely assume that the position of the first
edit operation used to change X into Y ′ is l = LCP(X, Y ′) + 1 = LCP(X, Y) + 1. The letter
at position l in X is changed: it is deleted; substituted with the l-th letter of Y ′; or the l-th
letter of Y ′ is inserted right before this letter.

Let us first assume that neither X is a prefix of Y nor Y ′ is a prefix of X (or that we do
not have any more edit operations to apply).

We know that in T the nodes with labels X and Y have their lowest common ancestor at
depth l − 1. Now, assume, that the heavy child of this common ancestor is reached from its
parent through an edge labeled with letter a. Now depending on the operation performed:

If the operation is a substitution, then if X[l] ̸= a, add lS to ℓ1, and if Y [l] ̸= a, add lS
to ℓ2 (possibly both lists gain the same element).
If the operation is a deletion, then if X[l] ̸= a, add lD to ℓ1, otherwise (Y [l] ̸= a), add lI
to ℓ2.
If the operation is an insertion, then, if Y [l] = a (X[l] ̸= a), add lI to ℓ1, otherwise
(Y [l] ̸= a), add lD to ℓ2.

https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1016/j.jda.2016.04.002
https://doi.org/10.1016/j.ic.2012.02.002

W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:17

Now the nodes with labels (X, ℓ1) and (Y, ℓ2) belong to the subtree of a node at depth
l − 1 in T (1) (and hence also in T (k)), and actually if the added label was not lD also of
the node at depth l (the heavy child of the one at depth l − 1), this ensures that the next
element will be no smaller than max+(ℓ1 ∪ ℓ2). Furthermore, we know that the edit distance
between X and Y ′, with the operations in lists ℓ1 and ℓ2 applied, is smaller by 1 than the
distance between X and Y ′.

We iterate this technique at most k times walking down the tree. At step x ≤ k we
start our work at a node of T (x−1) (a node of T (k) that was there before the x-th step of
the k-errata construction) that is an ancestor of nodes with labels (X, ℓ1) and (Y, ℓ2). After
at most k steps we get to a node in T (k), such that its descendant with label (X, ℓ1) is an
ancestor of the node with label (Y, ℓ2) as no further edit operations remain. Y ′ turns out to
the prefix of Y with the last d(v) − d(u) letters removed.

Now consider the case where, after applying x − 1 operations, the nodes with labels
(X, ℓ1) and (Y, ℓ2), respectively, are already in an ancestor descendant relationship, and there
are still operations changing X into Y ′ not processed yet.

If a node with label (X, ℓ1) is a (non-trivial) descendant of node with label (Y, ℓ2) the
only possible next operation is deletion (we need to remove the suffix of X). If the first edge
used to reach the node with label (X, ℓ1) from the node with label (Y, ℓ2) is heavy in T (x−1)

we can still add lI to ℓ2 (due to the extra copy of labeled nodes), otherwise a node with label
(X, ℓ1 ∪ {lD}) is a descendant of the node with label (Y, ℓ2) in T (x) of smaller depth. We
apply this until we reach a single node with both labels (X, ℓ1) and (Y, ℓ2).

If a node with label (X, ℓ1) is a (non-trivial) ancestor of a node with label (Y, ℓ2), we
already know that the claim is true (for some prefix Y ′′ of Y , that is at smaller edit distance
from X than Y ′). We may still want to pair X with a longer (or a shorter) prefix of Y , in
particular the longest possible. If the next applied operation is an insertion (we want to
make the prefix longer) of letter Y [l], then this is symmetric to the case considered in the
previous paragraph. We do not provide any modification that allows applying deletion in
this case since, in our main application, we care for the longest prefixes only. Still, we know,
that the shortest prefix of Y we could obtain this way would be k − x + 1 letters shorter
than Y ′′, and hence every such prefix is actually represented in T (k).

In case of Hamming distance the set of operations consists solely of substitutions, and
hence the proof reduces naturally (only elements lS are inserted to the lists, hence only copies
of labels with such lists are considered).

(⇐) This is the reversal of the forward (⇒) proof construction, that is, we change ℓ1 and
ℓ2 into a single list of edit operations.

In the Hamming distance case, the set of mismatches between X and Y [1 . . |X|] is
contained in the set {l : lS ∈ ℓ1 ∪ ℓ2}, hence X and a prefix of Y are at Hamming distance at
most |ℓ1 ∪ ℓ2| ≤ k (|ℓ1 ∪ ℓ2| may be greater than the actual Hamming distance if a suboptimal
pair of labeled nodes is chosen, but this is not a problem). In the edit distance case, the
construction is more complicated due to the shifts made by insertions and deletions.

We have two nodes u and v with labels (X, ℓ1) and (Y, ℓ2), respectively, such that u is
an ancestor of v. Let Y ′ be the prefix of Y of length |Y | − d(v) + d(u) = d(u) + surpl(ℓ2)
assuming that ℓ2 = ℓ

d(u)
2 (l ≤ d(u) for lE ∈ ℓ2) – otherwise we can remove those larger

elements as those only affect the part of Y that does not play a role in the transformation of
X into Y ′ (there exists a descendant of u with label (Y, ℓ

d(u)
2) which we can choose as our

v). We know that after applying operations from ℓ1 to X and operations from ℓ2 to Y ′ we
obtain the same string: the one obtained by reading the path from root to u in T (k).

MFCS 2024

85:18 Approximate Suffix-Prefix Dictionary Queries

Let ℓ = ℓ1 ∪ ℓ2, and for each element of ℓ we mark whether it comes from ℓ1, from ℓ2, or
from both. For ℓ it may actually be the case that both lS and lI appear (coming from two
different lists ℓ1, ℓ2); this will not be that much of a problem however since this is counted as
two edit operations in |ℓ|. We continue by showing that in fact ℓ encodes a transformation of
X into Y ′ with the use of at most |ℓ| edit operations.

We read ℓ and modify X step by step to reach Y ′ keeping an invariant that when element
lE is about to be processed the first l − 1 + i positions of the modified string X are equal to
the first l − 1 + i positions of Y , where the value i represents the imbalance between deletion
and insertion operations from ℓ2 already applied, and hence it starts from 0. We have that
i = surpl(ℓ′

2), where ℓ′
2 is the prefix of ℓ2 storing operations already applied - ℓ′

2 = ℓl
2 when

we move to the node at depth l for the first time.
If the element is lS , we substitute the letter at position l + i of the current version of X

with Y [l + i].
If the element lD comes from both lists ℓ1 and ℓ2 (multiple lD in both lists are matched
into pairs), we replace the letter at position l + i by Y [l + i] and increase i by 1 (deletion
of the corresponding letters of both strings is equivalent to a substitution, but the depth
of the node decreases by one).
If the element lD comes from list ℓ1 (a surplus in pairing), we remove the letter at position
l + i in the current version of X.
If the element lD comes from list ℓ2 (a surplus in pairing), we add letter Y [l + i] between
letters at positions l + i − 1 and l + i in X and increase i by 1.
If the element lI comes from both lists we do not modify X, and instead decrease i by 1
(inserting the same letter at corresponding positions in X and Y does not change the
edit distance).
If the element lI comes from list ℓ1, we insert letter Y [l + i] between letters at positions
l + i − 1 and l + i in X.
If the element lI comes from list ℓ2, we delete the letter at position l + i in X and decrease
i by 1.

Notice that when i decreases, the value l of the next lE must be strictly greater, hence the
sum l + i never decreases between operations; and when l + i increases, X[l + i] and Y [l + i]
(for X after the changes applied and the old value of l + i) must actually be equal.

Further notice that, as claimed, the prefix Y ′ obtained from X by applying those edit
operations (obtained from ℓ1 and ℓ

d(u)
2) has length equal to d(u) + surpl(ℓd(u)

2). ◀

Proof of Lemma 8. Let |T (k)| denote the size of the k-errata of T . The proof proceeds by
induction. |T (0)| = |T | ≤ 3n.

Assume, that |T (k−1)| ≤ cn,k−1 · n(k − 1)!(cδ log n)k−1, for a constant 3 ≤ cn,k−1 ≤ 16,
depending only on n and k, to be specified later.

A single node or label can be copied at most cδ log |T (k−1)|+1 times, since the heavy-light
decomposition of the (k − 1)-errata tree is weighted by the number of explicit nodes and
labels. Note that cδ comes from the number of copies made, and +1 comes from the extra
copy of a labeled node that is not a leaf.

Now cδ log |T (k−1)| + 1 ≤ cδ log[cn,k−1 · n(k − 1)!(cδ log n)k−1] + 1 ≤ cδ[log cn,k−1 + log n +
(k − 1) log k + (k − 1)[log cδ + log n]] + 1 ≤ cδ[k(log n + log k + 7)] = cδk log n[1 + log k+7

log n].
Hence, |T (k)| ≤ |T (k−1)| · (cδ log |T (k−1)|+1) ≤ cn,k−1 ·n(k −1)!(cδ log n)k−1 · cδk log n[1+

log k+7
log n] = cn,k−1 · [1 + log k+7

log n] · [nk!(cδ log n)k].
Hence for cn,k = cn,k−1 · [1 + log k+7

log n] the property |T (k)| ≤ cn,k · nk!(cδ log n)k is satisfied,
and it remains to show, that cn,k ≤ 16 if k ≤ log n

2 log log n . cn,0 = 3, cn,k ≤ 3 · [1 + log k+7
log n]k.

Recall, that (1 + 1
x)x → e, and that for k ≤ log n

2 log log n we have log k+7
log n ≤ 2 log log n

log n (for large
enough n), hence cn,k ≤ 3e < 16.

The bound on the number of copies of a single label follows analogously. ◀

	1 Introduction
	2 Preliminaries
	3 Finding Approximate Extension-Prefix Pairs using the k-Errata Tree
	3.1 The k-Errata Tree Construction
	3.2 Extension-Prefix Pairs in a k-Errata Tree
	3.3 Size of the k-Errata Tree
	3.4 Finding Approximate Prefixes

	4 Application to Approximate Suffix-Prefix Dictionary Queries
	4.1 Approximate One-to-One Queries
	4.2 Approximate Report Queries

	A Omitted Proofs

