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Abstract
In this work we study quantum algorithms for Hopcroft’s problem which is a fundamental problem
in computational geometry. Given n points and n lines in the plane, the task is to determine whether
there is a point-line incidence. The classical complexity of this problem is well-studied, with the
best known algorithm running in O(n4/3) time, with matching lower bounds in some restricted
settings. Our results are two different quantum algorithms with time complexity Õ(n5/6). The first
algorithm is based on partition trees and the quantum backtracking algorithm. The second algorithm
uses a quantum walk together with a history-independent dynamic data structure for storing line
arrangement which supports efficient point location queries. In the setting where the number of
points and lines differ, the quantum walk-based algorithm is asymptotically faster. The quantum
speedups for the aforementioned data structures may be useful for other geometric problems.
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1 Introduction

In this work we investigate the quantum complexity of Hopcroft’s problem, a classic problem
in computational geometry. Given n lines and n points in the plane, it asks to determine
whether some point lies on some line. In a line of research spanning roughly 40 years
culminating with a recent paper by Chan and Zheng [19], the classical complexity has settled
on O(n4/3) time, with matching lower bounds in some models of computation [27]. Along
with its natural setting, the problem also captures the essence of a class of other geometric
problems with complexity Õ(n4/3) [26].

There are several reasons why we find Hopcroft’s problem interesting in the quantum
setting. Firstly, classical algorithms for this problem typically use data structures support-
ing some fundamental geometric query operations. For example, Hopcroft’s problem can
be reduced to the simplex range searching, in which the data structure stores the given
points and each query asks whether a given region contains any of the points [4]. Another
approach is to store the given lines instead and answer point location queries, that is, for a
given point, determine which region of the line configuration it belongs to [40, 25]. Thus,
Hopcroft’s problem gives a good playground for improving and comparing the complexity
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9:2 Quantum Algorithms for Hopcroft’s Problem

of ubiquitous geometric data structures quantumly. We are also interested in finding new
history-independent data structures that can be used in quantum walk algorithms, following
the ideas started with Ambainis’ element distinctness algorithm [7] (see also [1, 15]).

Secondly, Hopcroft’s problem is closely related to a large group of geometric tasks that
can be solved in the same time Õ(n4/3). A speedup for Hopcroft’s problem may automatically
give an improvement for some of those. Erickson studied the class of such problems [26], some
examples include detecting/counting intersections in a set of segments and detecting/counting
points in a given set of regions. The problem can be also reduced to various other geometric
problems, giving fine-grained lower bounds. For example, Hopcroft’s problem in d dimensions
(replacing lines with hyperplanes) can be reduced to halfspace range checking in d + 1
dimensions for d ≥ 4 (are all given points above all given hyperplanes?) and others [26].

In fact, Hopcroft’s problem in d dimensions can also be equivalently formulated as follows:
given two sets of vectors A, B ∈ Rd+1, determine whether there are a ∈ A, b ∈ B such that
⟨a, b⟩ = 0 [46]. The famous Orthogonal Vectors problem (OV) in fine-grained complexity
is a special case of Hopcroft’s when A, B = {0, 1}d [44, 3]. The complexities of these problems
differ; if |A| = |B| = n, then, classically, the complexity of OV is Θ(n) in O(1) dimensions
[45] and Θ(n2−o(1)) in polylog n dimensions under SETH [2, 18]. In contrast, the complexity
of Hopcroft’s problem in d dimensions is O(n2d/(d+1)) [19]. Quantumly, the complexity of OV
was settled in [1]; for O(1) dimensions, it is Θ(

√
n) and for polylog n dimensions, Θ(n1+o(1))

under QSETH, the quantum analogue of SETH. In this work we also examine the quantum
complexity of Hopcroft’s problem in an arbitrary number of dimensions d.

In general, we are interested in investigating quantum speedups for computational
geometry problems. In recent years, there have been several works researching this topic.
First, Ambainis and Larka gave a nearly optimal O(n1+o(1)) quantum algorithm for the
Point-On-3-Lines (detecting whether three lines are concurrent among the n given) and
similar problems [11]. This problem is closely connected to fine-grained complexity as well,
as it is an instance of the 3-Sum-Hard problem class. Classically, it is conjectured that
3-Sum cannot be solved faster than O(n2); the authors also conjectured a quantum analogue
that 3-Sum cannot be solved quantumly faster than O(n), and Buhrman et al. used this
conjecture to prove conditional quantum lower bounds on various geometrical problems [14].
Aaronson et al. studied the quantum complexity of the Closest Pair problem (finding
the closest pair of points among the n given), proving an optimal Θ̃(n2/3) running time in
O(1) dimensions using a quantum walk algorithm with a dynamic history-independent data
structure for storing points that is able to detect ϵ-close pairs of points [1]. For Bipartite
Closest Pair problem in d dimensions (finding the closest pair of points between two sets
of size n), they gave an O(n1−1/2d+δ) time quantum algorithm for any δ > 0. For more
results in quantum algorithms for computational geometry, see [39, 38, 12, 42, 43, 31].

For Hopcroft’s problem, the best classical results give complexity O((nm)2/3 + m log n +
n log m), where n and m are the number of lines and points, respectively. In d dimensions,
these generalize to O((nm)d/(d+1) + m log n + n log m) complexity [19]. The first complexity
is unconditionally optimal if the algorithm needs to list all incidences, since there exists a
planar construction with Ω((nm)2/3) incidence pairs ([25], Section 6.5.). It is also believed
to be optimal for detection as well, with matching lower bounds in some models [27]. The
dependence on n and m is symmetric since Hopcroft’s problem is self-dual, in the sense
that there is a geometric transformation which maps lines to points and vice versa, while
preserving the point-line incidences ([25], Section 14.3.).

Finally, quite often the quantum query complexity of a problem matches its time complex-
ity, like in Unstructured Search [29, 13], Element Distinctness [9, 8, 32], Closest
Pair [1], Claw Finding [41, 47], just to name a few. In other cases even the precise query
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complexity is not yet clear, for example, Triangle Finding [33] or Boolean Matrix
Product Verification [16, 24]. In the case of Hopcroft’s problem, its quantum query
complexity can be easily characterized to be Θ((nm)1/3 +

√
n +

√
m) from known results, see

Theorem 5. The query-efficient algorithm does not immediately generalize to time complexity;
therefore, the main focus here falls to improving the performance of the relevant classical
data structures quantumly, which we find interesting.

1.1 Our results
In this work we show two quantum algorithms for Hopcroft’s problem with time complexity
Õ(n5/6). This constitutes a polynomial speedup over the classical O(n4/3) time. We obtain
our results by speeding up classical geometric data structures using different quantum
techniques. We look at two underlying fundamental problems one usually encounters on the
way to solve Hopcroft’s problem.
1. Simplex range searching. In simplex range searching, the input is a set of n points

in the d-dimensional space. A query then asks whether a given simplex contains any
of the given points. The query may also ask to list or count the points in the simplex,
among other variants [4]. Usually, there is some preprocessing time to precompute the
data structure and some query time to answer each query. Classically, these complexities
are well-understood; in a nutshell, a data structure of size m can be constructed in Õ(m)
time and each query can then be answered in Õ(n/m1/d) time [35], and this is matched
by lower bounds in the semigroup model [23, 22]. If the allowed memory size is linear,
then preprocessing and query times become respectively O(n log n) and O(n1−1/d) [17].
In this paper we require a variant of simplex range queries which we call hyperplane
emptiness queries, where we have to determine whether a query hyperplane contains any
of the given points. We show that quantumly we can speed up query time quadratically
by using Montanaro’s quantum algorithm for searching in the backtracking trees [36]:
▶ Theorem 1. There is a bounded-error quantum algorithm that can answer hyperplane
emptiness queries in Õ(

√
n1−1/d) time.

We note that this result is not really specific to the hyperplane emptiness queries, as all
what we are doing is speeding up search in the partition tree data structure [17], thus
this result can applied to other types of queries as well. However, this speedup does
not extend to the counting version of simplex queries, since essentially, our procedure
implements a search for a marked vertex in a tree using quantum walk. Using this result,
we show a quantum speedup for Hopcroft’s problem in d dimensions:
▶ Theorem 2. There is a bounded-error quantum algorithm which solves Hopcroft’s
problem with n hyperplanes and m ≤ n points in d dimensions in time:

Õ(n
d

2(d+1) m1/2), if m ≥ n
d

d+1 ;
Õ(n1/2m

d−1
2d ), if m ≤ n

d
d+1 .

If n = m, then the algorithm has complexity Õ(n1− 1
2(d+1) ).

In particular, the complexity is Õ(n5/6) in 2 dimensions for n = m.
2. Planar point location. The second approach is to use point location queries. One can

use usually use classical point location data structures to determine whether a query point
lies on the boundary of a planar region it belongs to. More specifically, we consider only
planar point location data structures in the line arrangements. A set of n lines partitions
the plane into O(n2) regions; this an old and well-researched topic, with many approaches
to construct a data structure that holds the description of these regions in O(n2) time,
the same amount of space and polylog n point location query time [25] (in fact, O(nd)
preprocessing time and space and O(log n) query time in d dimensions [21, 20]).

MFCS 2024



9:4 Quantum Algorithms for Hopcroft’s Problem

In addition, there are also dynamic data structures with the same preprocessing and
query times. More specifically, one can insert or remove a line in time O(n) (or O(nd−1)
in d dimensions) [37]. We take an opportunity to employ such a data structure in a
quantum walk algorithm on a Johnson graph to solve Hopcroft’s problem. In particular,
we develop a history-independent randomized data structure for storing an arrangement
of an r-subset of n lines with ability to perform line insertion/removal in O(r polylog n)
time and point location in polylog n time, requiring O(r polylog n) memory storage.
To do that, we store k-levels of the line arrangement in the history-independent skip lists
a la Ambainis [9]. A k-level of a line arrangement is a set of segments of lines such that
there are exactly k lines above each edge. Turns out that skip lists are ideal for encoding
the k-levels. For example, when a new line is inserted, it splits each k-level in two parts,
one of which will still belong to the k-level, but the other will belong to the (k + 1)-level.
We can then “reglue” these two tails to the correct levels of the arrangements in polylog n

time by utilizing the properties of the skip list, all while keeping the history independence
of the data structure. Using this data structure, we show the following quantum speedup
for Hopcroft’s problem in 2 dimensions:
▶ Theorem 3. There is a bounded-error quantum algorithm that solves Hopcroft’s problem
with n lines and m ≤ n points in the plane in time:

Õ(n1/3m1/2), if n2/3 ≤ m;
Õ(n2/5m2/5), if n1/4 ≤ m ≤ n2/3;
Õ(n1/2), if m ≤ n1/4.

In particular, the complexity is Õ(n5/6) when n = m.

Both of Theorems 2 and 3 have their pros and cons. Theorem 2 is arguably simpler,
since it is a quite direct application of the quantum speedup for backtracking. It also has
a lower polylogarithmic factor hidden in the Õ notation, only log n compared to log6 n in
Theorem 3. However, Theorem 3 gives better asymptotic complexity if the number of lines
n differ from the number of points m. On the other hand, Theorem 2 gives a speedup in
the case of an arbitrary number of dimensions, while Theorem 3 has something to say only
about the planar case; we leave a possible generalization of the quantum walk approach to
larger dimensions for future research.

2 Preliminaries

We assume that the sets of points and lines are both in a general position (no two lines are
parallel, no three lines intersect at the same point, no three points lie on the same line). Our
algorithms work in the standard quantum circuit model augmented with Quantum Random
Access Gates that allow to perform read/write operations in superposition; for details, see
Appendix A. One of our building blocks is the following version of Grover’s search:

▶ Theorem 4 (Grover’s search with bounded-error inputs [5, 30]). Let A : [N ] → {0, 1} be a
bounded-error quantum procedure with running time T . Then there exists a bounded-error
quantum algorithm that computes

∨
i∈[N ] A(i) with running time O(

√
N(T + log N)).

Effectively, this result states that even if the inputs to Grover’s search are faulty with
constant probability, no error boosting is necessary, which would add another logarithmic
factor to the complexity. We say that an algorithm is bounded-error if its probability of
incorrect output is some constant strictly less than 1/2.
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3 Query complexity

Before examining time-efficient quantum algorithms, we take a look at the quantum query
complexity of Hopcroft’s problem, which in this case can be fully characterized. We assume
that with a single query, we can obtain the description of any given line or point. In Appendix
B, we prove the following:

▶ Theorem 5. The quantum query complexity of Hopcroft’s problem on n lines and m points
in two dimensions is Θ(n1/3m1/3 +

√
n +

√
m).

In particular, this proves that Theorem 3 is asymptotically optimal for m ≤ n1/4. The
query complexity and the complexities of our algorithms are shown graphically in Figure 1.
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Figure 1 Quantum complexity of Hopcroft’s problem in 2 dimensions on n lines and m points,
assuming m ≤ n. The blue line shows the complexity of the quantum algorithm with the partition
tree (Theorem 2); the green line shows the complexity of the quantum walk algorithm with the line
arrangement data structure (Theorem 3); the red line shows the query complexity (Theorem 5).

The upper bound in Theorem 5 is given by the algorithm of Tani [41]. There is an
obvious hurdle in implementing it in the same time complexity here. Their quantum walk
would require a history-independent dynamic data structure for storing a set of lines and
a set of points supporting the detection of incidence existence. Even assuming the most
optimistic quantum versions of the known data structures, the sufficiently powerful speedup
looks unfeasible. The next two sections describe the algorithms we have obtained by speeding
up two fundamental geometrical query data structures quantumly.

4 Algorithm 1: quantum backtracking with partition trees

We begin with a brief overview of the classical partition tree data structure and its quantum
speedup, and then proceed with the description of the quantum algorithm.

4.1 Partition trees
The partition tree is a classical data structure designed for the task of simplex range searching.
In this problem, one is given n points in a d-dimensional space; the task is to answer queries
where the input is a simplex and the answer is the number of points inside that simplex. The
partition tree is a well-known data structure which can be used to solve this task [4].

This data structure can be described as a tree in the following way. The tree stores n

points and each subtree stores a subset of these points. Each interior vertex v is attributed
with a simplex ∆(v) such that all of the points stored in this subtree belong to the interior

MFCS 2024



9:6 Quantum Algorithms for Hopcroft’s Problem

of ∆(v). For each interior vertex v, the subsets of the points stored in its children subtrees
form a partition of the points stored in the subtree of v. Each leaf vertex stores a constant
number of points in a list. For our purposes, each interior vertex is attributed only with
information about its children and no information about the points stored in its subtree.

In this work, we are interested in the hyperplane emptiness queries. Given n points in the
d-dimensional space, the task is to answer queries where the input is an arbitrary hyperplane
and the answer is whether there is a point that lies on the given hyperplane. These queries
can also be answered using partition trees:

▶ Lemma 6 (Hyperplane emptiness query procedure). Let T be a partition tree storing a set of
points. Let the tree query cost c(T ) be the maximum number of simplices of T that intersect
an arbitrary hyperplane. Then the hyperplane emptiness query can be answered in O(c(T ))
time.

Proof. The procedure for answering a query is as follows. We start at the root and traverse
T recursively. If the current vertex is an interior vertex v and the query hyperplane is h,
then we recurse only in the children of v such that ∆(v) intersects h. If the current vertex is
a leaf vertex, we check whether any of its points lies on h. The running time is evidently
linear in the number of simplices intersecting h. ◀

There are different ways to construct partition trees, but a long chain of works in
computational geometry resulted in an optimal version of the partition tree [17]. Even
though their goal is to answer simplex queries, in fact the main result gives an upper bound
on c(T ) for their partition tree:

▶ Theorem 7 (Partition tree [17]). For any set of n points in d dimensions, there is a
partition tree T such that:

it can be built in O(n log n) time and requires O(n) space;
c(T ) = O(n1−1/d); hence, a hyperplane emptiness query requires O(n1−1/d) time;
each vertex has O(1) children and the depth of the tree is O(log n).

To speed up the emptiness query time of the partition tree quantumly we use the
quantum backtracking algorithm [36]. Their quantum algorithm searches for a marked
vertex in a tree S. The markedness is defined by a black-box function P : V (T ) →
{true, false, indeterminate}. For leaf vertices v, we have P (v) ∈ {true, false}. A
vertex v is marked if P (v) = true, and the task is to determine whether S contains a marked
vertex.

The root of S is known and the rest of the tree is given by two other black-box functions.
The first, given a vertex v, returns the number of children d(v) of v. The second, given v

and an index i ∈ [d(v)], returns the i-th child of v. The main result is a quantum algorithm
for detecting a marked vertex in S:

▶ Theorem 8 (Quantum algorithm for backtracking [36, 10]). Suppose you are given a tree
S by the black boxes described above and upper bounds T and h on the size and the height
of the tree. Additionally suppose that each vertex of S has O(1) children. Then there is a
bounded-error quantum algorithm that detects a marked vertex in S with query and time
complexity O(

√
Th).

When we apply it to the partition tree from Theorem 7, we get:

▶ Theorem 1. There is a bounded-error quantum algorithm that can answer hyperplane
emptiness queries in Õ(

√
n1−1/d) time.
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Proof. The procedure of Lemma 6 examines a subtree S of T . We will apply Theorem 8 to
S. Suppose that h is a query hyperplane. The black box P returns intermediate for any
interior vertex v and for a leaf vertex v returns true iff some point stored in v lies on h.
The second black box returns the number of children of v in T if ∆(v) intersects h and 0
otherwise. The black box returning the i-th child simply fetches it from the partition tree
that is stored in memory. All of these black boxes require only constant time to implement.
Since we know that |S| = O(n1−1/d) and the height of S is O(log n) from Theorem 7, there is
a quantum algorithm that solves the problem in O(

√
n1−1/d · log n) time by Theorem 8. ◀

4.2 Quantum algorithm
Now we can apply the previous theorem to Hopcroft’s problem.

▶ Theorem 2. There is a bounded-error quantum algorithm which solves Hopcroft’s problem
with n hyperplanes and m ≤ n points in d dimensions in time:

Õ(n
d

2(d+1) m1/2), if m ≥ n
d

d+1 ;
Õ(n1/2m

d−1
2d ), if m ≤ n

d
d+1 .

If n = m, then the algorithm has complexity Õ(n1− 1
2(d+1) ).

Proof. In the first case, we partition the whole set of points into m/r groups of size r = n
d

d+1 .
Using Grover’s search, we search for a group that contains a point belonging to some line.
To determine whether it’s true for a fixed group, first we build a partition tree of Theorem 7
to store these points. Then we run Grover’s search over all lines and determine whether a
line contains some point from the group using the quantum query procedure from Theorem
1. Overall, the complexity of this algorithm (without logarithmic factors) is

O

(√
m

r

(
r +

√
n ·
√

r1−1/d · log r
))

= O

(√
mr +

√
nm

r1/d
log r

)
= O

(√
mn

d
d+1 log n

)
If we use the variation of Grover’s search with bounded-error inputs (Theorem 4), then we
do not incur extra logarithmic factors. If m ≤ n

d
d+1 , then we simply build the partition tree

on all m points, then use Grover’s search over all lines and query the partition tree for each
of them. The complexity in that case is

O
(

m log m +
√

n ·
(√

m1−1/d · log m + log n
))

= O
(√

nm1−1/d · log n
)

,

because the second term dominates the first (up to logarithmic factors). ◀

5 Algorithm 2: quantum walk with line arrangements

First we describe a classical history-independent data structure for storing an arrangement
of a set of lines. After that, we describe the quantum walk algorithm that uses it for solving
Hopcroft’s problem.

5.1 Line arrangements
We begin with a few definitions (for a thorough treatment, see e.g. [25]). For a set of lines L,
the line arrangement A(L) is the partition of the plane into connected regions bounded by
the lines. The convex regions with no other lines crossing them are called cells and their
sides are called the edges of the arrangement (note that some cells may be infinite). The
intersection points of the lines are called the vertices of the arrangement.

MFCS 2024



9:8 Quantum Algorithms for Hopcroft’s Problem

For a set of lines L in a general position, the k-level is the set of edges of A(L) such that
there are exactly k lines above each edge (for the special case of a vertical line, we consider
points to the left of it to be “above”). By this construction each k-level forms a polygonal
chain. Our data structure will store the line arrangement of a subset S of lines by keeping
track of all |S| levels, with each level being stored in a skip list. We will be able to support
the following operations:

Answering whether a point lies on some line in O(log6 n) time.
Inserting or removing a line in O(|S| log4 n + log6 n) time.

5.2 Skip lists
We will need a history-independent data structure which can store a set of elements and
support polylogarithmic time insertion/removal operations. For that purpose use the skip
list data structure by Ambainis from the Element Distinctness algorithm [9]. Among
other applications, it was also used by [1] for the Closest Pair problem, where they also
gave a brief description. Here we shortly describe only the details required in our algorithm
and rely on the facts already proved in these papers.

Suppose that the skip list stores some set of elements S ⊆ [N ], according to some order
such that comparing two elements requires constant time. In a skip list, each element i ∈ S

is assigned an integer ℓi ∈ [0, . . . , ℓmax], where ℓmax = ⌈log2 N⌉. The skip list itself then
consists of ℓmax + 1 linked lists where the k-th list contains all i ∈ S such that ℓi ≥ k. We
will call the k-th linked list by the k-th layer (to not confuse them with k-levels). In other
words, each element i ∈ S is attributed with ℓi + 1 pointers, where the k-th of them points to
the smallest element j such that j > i and ℓj ≥ k, or to Null, if there is no such j. The first
element of the skip list is called the head and it only stores the ℓmax pointers, the beginnings
of each layer (it is convenient to imagine this element storing value 0, which is smaller then
any element of S).

The search of an element i ∈ S is implemented in the following way. First, we traverse
the ℓmax-th layer to find the last element j such that j ≤ i. If j = i, we are done; otherwise,
traverse the layer below starting from j to find the last element j′ ≤ i there. By repeating
such iterations, we will find i. Insertion of i /∈ S is implemented similarly: first we find the
last element jk ∈ S such that j < i, for all layers k. Then we update the pointers: for each
layer k ≤ li, we set the pointer from i to be be equal to the pointer from jk; then we set the
pointer from jk to i. If an operation requires more than O(log4 N) time, it is terminated.

To store the elements in memory, a specific hash table is used. Element’s entry contains
the description of the element together with other data attributed to it (in particular, the
values of the pointers). We will not describe the details of the implementation, as it is the
same as Ambainis’. The whole data structure can sometimes malfunction (e.g., the hash
table buckets can overflow or the operation of the skip list can take too long), but it is shown
in [9] that probability of such is small. More specifically, the probability that at least one
operation malfunctions among O(N) operations is only O(1/

√
N). Thus, as we are aiming

at a sublinear algorithm, we don’t need to worry about the error probability of the skip lists.
We also note that the memory requirement of Ambainis’ skip list is O(r log3 N), if at most r

elements need to be stored.

5.3 Data structure
Our data structure will operate mainly using the intersection points of the lines. To keep the
unique description of the data for history independence, we describe each intersection point
in the following way. Suppose the given lines are labeled ℓ1, . . ., ℓn. For any two lines ℓi and
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ℓj , let Pi,j be its intersection point. In an arrangement which includes both of these lines,
we describe the left and right edges of ℓi connected to Pi,j by left(ℓi, ℓj) and right(ℓi, ℓj).
In that case there will be a k such that the k-level contains the edges left(ℓi, ℓj) and
right(ℓj , ℓi), and the (k + 1)-level contains the edges left(ℓj , ℓi) and right(ℓi, ℓj). We
describe Pi,j in the first case by the by the pair of integers νi,j = (i, j) and by νj,i = (j, i)
in the second case, see Figure 2. We call these pairs path points of Pi,j . Note that we can
calculate the coordinates of any path point in constant time as it description consists of the
indices of the lines.

νi,j

νj,i
ℓi

ℓj

k-level

(k + 1)-level

Figure 2 Path points of a line intersection.

Now we will describe the data structure, which stores an arrangement of a subset of
given lines. It will operate with multiple skip lists each storing a set of path points of the
arrangement. To ensure the unique representation of the data, we encode the pointers of the
skip lists with the values of the path points themselves. To represent the beginning of a level
from line ℓi, we use a “fictitious” starting path point νi,i = (i, i). The last element of skip
lists we encode with a special “null” path point νNull. We implement the following skip lists:

The skip lists that contain the path points of the current k-levels in order from left to
right. These skip lists are stored implicitly, since adding and removing lines changes the
indexing of the levels and the levels themselves. For each path point ν stored in such a
skip list, we additionally store an array Nextν [0 . . . lmax] storing the values of next path
points of its skip list for each skip list layer.
Start – contains the heads of all level skip lists in the current arrangement. If the first
edge of a k-level belongs to ℓi, the head of its skip list is νi,i, and we additionally store
Nextνi,i

to access the respective level skip list. The heads are ordered by the slope of the
lines with the x-axis corresponding to the head path points.

Further we will describe the implementation of the operations.

5.3.1 Point location
To detect whether a point belongs to some line, we essentially binary search through all
k-levels and check whether the given point is strictly above, below or belongs to that level.
The binary search is implicitly performed by searching in the skip list Start. For a given
level, we then search for its edge such that the x-coordinate of the point belongs to the
projection of that edge on the x-axis. When this edge is found, we check the relative vertical
position of this point in constant time.

Essentially we have two nested searches in the skip list structure, so the complexity of this
step is O(log8 n), but we can show a better estimate. Ambainis ([9], see the proof of Lemma
6) showed that in a skip list operation, at most O(log2 n) pointer accesses are necessary.
We run the search in the inner skip list only after accessing a pointer. Therefore, the outer
search requires O(log4 n) steps and the inner searches altogether require O(log6 n) steps, so
we improve our estimate to O(log6 n).

MFCS 2024
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5.3.2 Line insertion and removal
We will only describe the procedure of inserting a line in the data structure, as removing a
line can be implemented by a reverse quantum circuit. Suppose the line to be inserted is ℓi;
our task is to correctly update the pointers of the skip lists. As we will see, conveniently it
suffices to update only the pointers of the new edges created by the insertion of the new line.

Our first step is to construct the edge along the given line. Figure 3 shows an example of
the new edges collinear with ℓi being created. Suppose that Pi,j1 and Pi,j2 are two consecutive
intersection points with ℓi (Pi,j1 is left of Pi,j2). Some k-level will pass through an edge
connecting Pi,j1 and Pi,j2 . This level will also pass through left(ℓj1 , ℓi) and right(ℓj2 , ℓi),
as all edges of a level are directed from left to right. Therefore, the edge should connect
νj1,i with νi,j2 . There are two special cases for the first and the last edge; in the first case,
the first path point is νi,i and for the second, the second path point is νNull. According to
this order, we insert all path points to the skip list starting with νi,i (and using the pointers
Next). However, we don’t insert νi,i into Start yet.

νi,i

νi,a

νa,i

νb,i

νi,b

νc,i

νi,c

νi,d

νd,i

νi,e

νe,i
νNull

ℓa ℓb ℓc ℓd ℓe

Figure 3 New edges along the inserted line.

Next we will correct all of the level skip lists according to the updated arrangement.
Essentially, our algorithm performs a sweep line from right to left which swaps the tails of
skip lists at the intersection points of ℓi with other lines. First, we create an array containing
the same set of path points as the skip list of ℓi except νi,i and νNull and sort them by the x

coordinate (at the end of the procedure we null the array by applying this in reverse). We
then examine the intersection points of ℓi with the other lines from right to left.

Suppose we examine the intersection point Pi,j of ℓi with ℓj .Then there is some edge from
the old arrangement from ν(1) to ν(2) along ℓj which intersects ℓi at Pi,j . The respective
pair of path points is νi,j and νj,i. Then some k-level will pass along ℓi through νi,j and ν(2),
and some adjacent level (either (k + 1)-level or (k − 1)-level) will pass along ℓj from ν(1) to
νj,i. Observe that the tails of these levels (from this intersection point to the right) have
been correctly updated by the sweep line. Therefore, we just need to swap the tails of these
two level skip lists.

To find the edge from ν(1) to ν(2), we use the point location operation with Pi,j . Since we
know that this point will belong to some k-level, we modify the point location operation so
as to return the head νh,h of this k-level. Note that although the level skip lists are partially
updated, they still represent the old arrangement to the left of the previously examined
intersection point, since the sweepline operates from right to left. Now we have to swap the
tails of the skip list with head νi,i after νi,j and the skip list with head νh,h after ν(1).

Generally, suppose that we wish to swap the tails of skip lists with heads ν(ah) and ν(bh)

after elements ν(at) and ν(bt), respectively. By searching ν(at) in the ν(ah) skip list, we find
all lmax path nodes ν(al) such that Nextν(al) [l] points to a path node after ν(at), for each
l ∈ [lmax]. Similarly we define and find ν(bl) path nodes. Then we simply swap the values of
Nextν(al) [l] and Nextν(bl) [l] for all l ∈ [0, lmax].
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To conclude the procedure, we insert νi,i (together with Nextνi,i) into Start. As we only
performed O(r) skip list searching and insertion operations (swapping the tails has the same
complexity as an element insertion, as it’s only updating 2lmax + 2 pointers) and a point
location operation, the complexity of the procedure is O(r log4 n + log6 n). If r = np for
some p > 0, this simplifies to O(r log4 n).

5.4 Quantum algorithm
We use the MNRS framework quantum walk on the Johnson graph [9, 34]. In this framework,
we search for a marked vertex in an ergodic reversible Markov chain on a state space X

defined by the transition matrix P = (px,y)x,y∈X . Let the subset of marked states be M ⊆ X.
To perform the quantum walk, the following procedures need to be implemented:

Setup operation with complexity S. This procedure prepares the initial state of the
quantum walk:

|0⟩ |0⟩ 7→
∑
x∈X

√
πx |x⟩ |0⟩ ,

where πx is the stationary distribution of P .
Update operation with complexity U . This procedure essentially performs a step of the
quantum walk by applying the transformation:

|x⟩ |0⟩ 7→ |x⟩
∑
y∈X

√
px,y |y⟩ .

Checking operation with complexity C. This procedure performs the phase flip on the
marked vertices:

|x⟩ |y⟩ 7→

{
− |x⟩ |y⟩ if x ∈ M ,
|x⟩ |y⟩ otherwise.

We examine the Johnson graph on the state space X being the set of all size r subsets of
[n]. Two vertices x, y ∈ X are connected in this graph if the intersection of the corresponding
subsets has size r − 1. For the Markov chain, the transition probability is px,y = 1

r(n−r) for
all edges. Then we have the following theorem:

▶ Theorem 9 (Quantum walk on the Johnson graph [9, 34]). Let P be the random walk on
the Johnson graph on size r subsets of [n] with intersection size r − 1, where r = o(n). Let
M be either empty or the set of all size r subsets that contain a fixed element. Then there is
a bounded-error quantum algorithm that determines whether M is empty, with complexity

O

(
S + 1√

r/n

(
1√
1/r

· U + C

))
= O

(
S +

√
n · U +

√
n

r
· C

)
.

We can now prove our result:

▶ Theorem 3. There is a bounded-error quantum algorithm that solves Hopcroft’s problem
with n lines and m ≤ n points in the plane in time:

Õ(n1/3m1/2), if n2/3 ≤ m;
Õ(n2/5m2/5), if n1/4 ≤ m ≤ n2/3;
Õ(n1/2), if m ≤ n1/4.

In particular, the complexity is Õ(n5/6) when n = m.

MFCS 2024
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Proof. By the duality of Hopcroft’s problem, we can exchange n and m; from here on,
suppose that m ≥ n. We do this, since in Theorem 2 it is important that the number of
lines is larger and here it is important that the number of points is larger, but we wish to
keep the meaning of n and m to avoid confusion. Our algorithm is a quantum walk on the
Johnson graph of size r subsets of the given n lines. We will choose r depending on m, but r

will always be mp for some p > 0. A set S is marked if it contains a line such that there
exists a point from the set of m given points that belongs to this line.

For the implementation, we follow the description of [1] for the quantum algorithm for
closest points. For a set S, the state of the walk will be |S, d(S)⟩, where d(S) is our data
structure for the line arrangement of S. We then implement the quantum walk procedures:

For the Johnson graph, π is the uniform distribution. Thus, we first generate a uniform
superposition over all subsets S in O(log

(
n
r

)
) = O(r log n) time. Then we create d(S) by

inserting all lines of S into an initially empty data structure, requiring O(r2 log4 n) time.
Suppose that S and S′ are two size r subsets with |S ∩ S′| = r − 1 so that S′ =
(S \ {i}) ∪ {j}. We then represent a state |S, d(S)⟩ |S′, d(S′)⟩ with |S, d(S)⟩ |i, j⟩. As
the Markov chain probabilities are the same for all edges, we need to implement the
transition |S, d(S)⟩ |0, 0⟩ 7→

∑
i∈S

∑
j /∈S |S′, d(S)′⟩ |j, i⟩ . To do that, first we create a

uniform superposition of all i ∈ S and j /∈ S in O(r log4 n) time (see Appendix C),
obtaining

∑
i∈S

∑
j /∈S |S, d(S)⟩ |i, j⟩. Then, for fixed i and j, we remove ℓi from d(S) and

insert ℓj , obtaining d(S′); this takes O(r log4 n) time. Finally, we swap the indices i and
j in the second register in O(log n) time.
The checking operation runs Grover’s search over all m points and for each of them
performs the point location operation. The complexity is O(

√
m log6 n).

By Theorem 9 the complexity of the algorithm is

O

(
r2 log4 n +

√
nr log4 n +

√
n

r

√
m log6 n

)
.

Suppose that m2/3 ≤ n and pick r = m1/3. Then the second term dominates the first
and we can simplify the expression to

O

(√
n log4 n

(
r +

√
m

r
log2 n

))
= O(n1/2m1/3 log6 n).

If we have m1/4 ≤ n ≤ m2/3 we pick r = (nm)1/5. Then we have r ≥ (n1+3/2)1/5 =
√

n,
and this time the first term in the complexity dominates the second, and the complexity is

O

(
r2 log4 n +

√
nm

r
log6 n

)
= O(n2/5m2/5 log6 n).

Finally, for n ≤ m1/4, we don’t have to use either the quantum walk or the history-
independent data structure. First, we build any classical data structure for point location in
a line arrangement with O(n2 log n) build time and space and O(log n) query time (e.g. see
[25], Chapter 11). Then we run Grover’s search over all points and for each check whether it
belongs to some line. The complexity in this case is

O(n2 log n +
√

m(log m + log n)) = O(
√

m log m). ◀
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A Model

We use the standard quantum circuit model together with Quantum Random Access Gates
(QRAG) (see, for example, [6]). This gate implements the following mapping:

|i⟩ |b⟩ |x1, . . . , xN ⟩ 7→ |i⟩ |xi⟩ |x1, . . . , xi−1, b, xi+1, . . . , xN ⟩ .

Here, the last register represents the memory space of N bits. Essentially, QRAG gates allow
both for reading memory in superposition as well as writing operations. We note that both
our algorithms require “read-write” quantum memory, so it is not sufficient to use the weaker
“read-only” QRAM gate, which is enough for some quantum algorithms.
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9:16 Quantum Algorithms for Hopcroft’s Problem

To keep the analysis of the algorithms clean, we abstract the complexity of basic underlying
operations under the “unit cost”. This includes the running time of:

basic arithmetic operations on O(log n) bits;
the implementation of QRAG and elementary gates;
the running time of a quantum oracle, which with a single query can return the description
of any point or line.

In the end, we measure the time complexity in the total amount of unit cost operations. The
unit cost can be taken as the largest running time of the operations listed above, which will
add a multiplicative factor in the complexity.

Assuming that an application of a QRAG gate takes unit time is also useful for utilizing
the existing classical algorithms in the RAM model. The classical algorithms that we use
work in the real RAM model, where arithmetic operations and memory calls on O(log n) bits
are considered to be executed in constant time. Thus, we work in the quantum analogue of
the real RAM, and if there is a time T classical real RAM algorithm, then we can use it in
time O(T ) in this model. The actual implementation of QRAG is an area of open research
and debate; however, there exist theoretical proposals that realize such operations in time
polylogarithmic in the size of the memory, like the bucket brigade architecture of [28].

B Query complexity

Proof of Theorem 1. For the upper bound, Hopcroft’s problem can be seen as an instance
of the bipartite subset-finding problem, in which one is given query access to two sets X

and Y of sizes n and m, respectively, and needs to detect whether there is a pair x ∈ X,
y ∈ Y satisfying some predicate R : X × Y → {0, 1}. For this problem, Tani gave a quantum
algorithm with query complexity O(n1/3m1/3 +

√
n +

√
m) [41].

For the lower bound, we can reduce the bipartite element distinctness problem (also
known as Claw Finding) to Hopcroft’s problem. In this problem, we have two sets of
variables x1, . . . , xn ∈ [N ] and y1, . . . , ym ∈ [N ] and we need to detect whether xi = yj for
some i, j. Zhang proved that for this problem Ω(n1/3m1/3 +

√
n +

√
m) quantum queries are

needed [47]. We reduce each xi to a line x = xi and each yj to a point (yj , 0). Then xi = yj

only iff some point belongs to some line, so the statement follows. ◀

C Implementation details

To generate a uniform state proportional to
∑

i∈S |i⟩ from |S, d(S)⟩, we can proceed as follows.
First generate the uniform superposition

∑
k∈[r] |k⟩ in O(log n) time. Then we can find the

number of the k-th line in S by iterating over the elements of the Start skip list as in the
usual linked list until we find the k-th one; this requires O(r log4 n) time. We then null the
register |k⟩ by applying a reverse procedure and decrementing k in each step. Overall, we
obtain the state proportional to

∑
i∈S |i⟩ in O(r log4 n) time.

To generate a uniform state proportional to
∑

j /∈S |j⟩ from |S, d(S)⟩, we can apply a
different procedure. First, we can generate the state

∑
k∈[n] |k⟩ |0⟩ in O(log n) time. For

a fixed k, we can check whether k ∈ S using d(S) in O(log4 n) time and write 1 in that
case in the second register. By measuring the second register, we obtain the required state
with probability 1 − r/n > 1/2. We can use O(log n) copies of such state to obtain the
required state with error probability only O(1/n), which doesn’t impact the final constant
success probability. Overall, this step requires O(log5 n) time, which is negligible compared
to O(r log4 n).
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