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Abstract
Call a sequence d = (d1, d2, . . . , dn) of positive integers graphic, planaric, outer-planaric, or forestic
if it is the degree sequence of some arbitrary, planar, outer-planar, or cycle-free graph G, respectively.
The two extreme classes of graphic and forestic sequences were given full characterizations. (The
latter has a particularly simple criterion: d is forestic if and only if its volume,

∑
d ≡

∑
i
di, satisfies∑

d ≤ 2n − 2.) In contrast, the problems of fully characterizing planaric and outer-planaric degree
sequences are still open.

In this paper, we discuss the parameters affecting the realizability of degree sequences by
restricted classes of sparse graph, including planar graphs, outerplanar graphs, and some of their
subclasses (e.g., 2-trees and cactus graphs). A key parameter is the volume of the sequence d, namely,∑

d which is twice the number of edges in the realizing graph. For planar graphs, for example, an
obvious consequence of Euler’s theorem is that an n-element sequence d satisfying

∑
d > 4n − 6

cannot be planaric. Hence,
∑

d ≤ 4n − 6 is a necessary condition for d to be planaric. What about
the opposite direction? Is there an upper bound on

∑
d that guarantees that if d is graphic then it

is also planaric. Does the answer depend on additional parameters? The same questions apply also
to sub-classes of the planar graphs.

A concrete example that is illustrated in the technical part of the paper is the class of outer-
planaric degree sequences. Denoting the number of 1’s in d by ω1, we show that for a graphic sequence
d, if ω1 = 0 then d is outer-planaric when

∑
d ≤ 3n − 3, and if ω1 > 0 then d is outer-planaric when∑

d ≤ 3n − ω1 − 2. Conversely, we show that there are graphic sequences that are not outer-planaric
with ω1 = 0 and

∑
d = 3n − 2, as well as ones with ω1 > 0 and

∑
d = 3n − ω1 − 1.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Degree Sequences, Graph Algorithms, Graph Realization, Outer-planar
Graphs
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1 Introduction

Background. Throughout, we consider a a nonincreasing sequence d = (d1, . . . , dn) of n

nonnegative integers. The sequence d is graphic if it is the degree sequence of some graph G.
The graph realization problem concerns deciding, for a given d, if it is graphic, and if so -
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1:2 On Key Parameters Affecting the Realizability of Degree Sequences

constructing a realizing graph for it. The problem has been studied extensively over the past
60 years, and was given both combinatorial characterizations and construction algorithms, cf.
[9, 13, 14]. In particular, by [9], a nonincreasing sequence d is graphic if and only if

ℓ∑
i=1

di ≤ ℓ(ℓ− 1) +
n∑

i=ℓ+1
min{ℓ, di}, for ℓ = 1, . . . , n. (1)

Beyond its theoretical interest, realization questions are also relevant in the context of
specification-based network design, where the users specify the desired network properties,
as well as in some scientific contexts where it is required to discover the unknown structure
of a network based on measurements on its various parameters.

The question can be asked also in the context of special graph families. In particular,
the realizability of a given sequence d by a planar graph was studied in [23] and some of
the sequences whose status was left undetermined in [23] were later resolved in [10, 11].
In addition, regular planar graphic sequences were classified in [15], and planar bipartite
biregular degree sequences were studied in [1]. Still, the realizability of a given sequence d by
a planar graph was not given a complete solution so far.

The same question can be asked with respect to other restricted classes of graphs. One
extreme example is that of trees and more generally forests. Whereas the characterization (1)
for graphic degree sequences (realizable by general graphs) is somewhat involved, composed
of n different conditions and affected individually by each of the degrees in the sequence, the
characterization for forestic sequences (namely, ones realizable by a forest) is very simple: an
n-element sequence d is forestic if and only if its volume, defined as

∑
d ≡

∑n
i=1 di, satisfies∑

d ≤ 2n− 2 (with equality if and only if the sequence is realizable by a tree). One might
conjecture that restricted graph classes should tend to have simpler characterizations, or
ones that depend on fewer parameters.

The current paper is motivated by the (intuitively clear) fact that the volume parameter
of the sequence d plays a significant role in its realizability by classes of sparse graphs. One
direction is easy: if the class G contains only graphs of M or fewer edges, then clearly,
sequences of volume larger than 2M cannot have a realization from G. Hence

∑
d ≤ 2M is a

necessary condition for realizability by a graph from G. Here, we discuss the converse question:
Can one derive sufficient conditions for realizability by G based on the volume parameter?

Indeed, for various low-volume graph classes G, there are known results, guaranteeing that
if d is graphic and

∑
d is sufficiently small, then d has a realizing graph in G. In particular,

consider the following hierarchy of graph classes and corresponding hierarchy of volume
bounds.

Forests [12]: A sequence d is forestic if and only if
∑

d ≤ 2n− 2 and
∑

d is even.
Uni-cyclic graphs [6]: These are connected graphs with precisely one cycle. A sequence d

is uni-cyclic if and only if
∑

d = 2n and d1 ≤ n− 1.
Bi-cactus graphs [2]: Here, there is a full characterization that involves two additional
parameters, ω1 and ωodd, where ωi is the number of i’s in d and ωodd is the number of
odd degrees in d. In particular, a necessary condition for a sequence d to be realizable by
a bi-cactus is that

∑
d < 8n/3. The sufficient condition is more complex, utilizing also

ω1 and ωodd.
Cactus graphs [20]: Here, again, there is a full characterization that involves ω1 and ωodd.
In particular, a necessary condition for a sequence d to be realizable by a cactus graph is
that

∑
d ≤ 3(n− 1), and the sufficient condition utilizes also ω1 and ωodd.

Outer-planar graphs: This is the main technical contribution of the current paper, to be
described shortly.



A. Bar-Noy, T. Böhnlein, D. Peleg, Y. Ran, and D. Rawitz 1:3

2-trees [7]: This class was given a full characterization, where the volume requirement is∑
d = 4n− 6 but the precise conditions depend also on ω1 and ω2, and involve also some

exceptions.
Planar graphs [4]: Full characterization is still out of reach. The natural necessary
condition based on volume is

∑
d ≤ 6n− 12. The sufficient condition given in [4] depends

also on ω1.

Our main technical contribution concerns sequences that can be realized by outer-planar
graphs. A graph is outer-planar if it can be embedded in the plane such that edges do not
intersect each other and additionally, each vertex lies on the outer face of the embedding, i.e.,
no vertex is fully surrounded inside an internal face (cf. [24]). Call a sequence d planaric
(respectively, outer-planaric) if it is the degree sequence of some planar (resp., outer-planar)
graph G.

Since it is known that every outer-planar graph has at most 2n− 3 edges, it follows that
every sequence d with

∑
d > 4n − 6 cannot be outer-planaric. In fact, as claimed in [3],

this bound can be improved if ω1, the multiplicity of degree 1, is taken into consideration.
Specifically, if the sequence d satisfies

∑
d > 4n − 6 − 2ω1 and d ̸= (n − 1, 1, . . . , 1), then

it is not outer-planaric (the exceptional sequence has n− 1 leaves and volume 2n− 2, and
is realizable by a star graph). It is also easy to show that this bound is tight, in the sense
that there are outerplanar sequences d with

∑
d = 4n− 6− 2ω1, for ω1 values in the range

[1, n− 2].
Focusing on the converse question, we look for a function f(n, ω1) guaranteeing that if d

is graphic and
∑

d ≤ f(n, ω1), then d is always outer-planaric. A straightforward such bound
is f(n, ω1) = 2n − 2, since as mentioned above, if

∑
d ≤ 2n − 2 then d has a realization

by a forest, hence it is trivially outer-planaric. Here, we present a tight answer to the
question, separated into two cases, depending on whether or not the sequence d contains
1’s. Specifically, we show that if ω1 = 0 then the desired property holds when

∑
d ≤ 3n− 3,

and if ω1 > 0 then the desired property holds when
∑

d ≤ 3n− ω1 − 2. Conversely, we show
that the set of graphic sequences that are not outer-planaric includes:
(1) sequences with ω1 = 0 and

∑
d = 3n− 2;

(2) sequences with ω1 > 0 and
∑

d = 3n− ω1 − 1.

Related Work. A number of papers studied the outerplanar degree realization problem in
the past. Forcibly outerplanar graphic sequences, i.e., sequences all of whose realizations
are outerplanar, were given a full characterization in [8]. The degree sequences of maximal
outerplanar graphs with exactly two 2-degree nodes were characterized in [19]. This was also
mentioned in [7] independently. The degree sequences of maximal outerplanar graphs with
at most four vertices of degree 2 were characterized in [17].

The special class 2-trees has also received some attention. A graph G is a 2-tree if
G = K3 or G has a vertex v with degree 2, whose neighbors are adjacent and G[V \ {v}] is
a 2-tree. Sufficient conditions for a sequence d to have a realization by a 2-tree were given
in [18]. The degree sequences of 2-trees were fully characterized in [7]. (The conditions are
surprisingly rather involved, and include a number of specific exceptions.) Note that 2-trees
have

∑
d = 4n− 6. This implies, using Theorem 1 of [7], that if a sequence d satisfies some

specific conditions, then d has a realizing 2-tree. Rengarajan and Veni Madhavan [22] have
shown that every 2-tree has a 2-page book embedding. Unfortunately, the class of 2-trees is
not hereditary (meaning that a subgraph of a 2-tree is not necessarily a 2-tree), so the result
of [7] does not extend to non-maximal degree sequences.
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1:4 On Key Parameters Affecting the Realizability of Degree Sequences

The planar degree realization problem also has a long history. Regular planar graphic
sequences and planar bipartite biregular degree sequences were given a classification in [15]
and [1] respectively. Schmeichel and Hakimi [23] identified the graphic sequences with
d1 − dn = 1 that are planaric, and did the same for d1 − dn = 2 with a small number of
unresolved exceptions, some of which were later resolved in [10, 11]. Additional studies on
special cases of the planaric degree realization problem are discussed in [21].

In [4] it is shown that for every sequence d with
∑

d ≤ 4n− 4− 2ω1, if d is graphic then
it is also planaric. Conversely, there are graphic sequences with

∑
d = 4n − 2ω1 that are

non-planaric. For the case ω1 = 0, it is shown therein that d is planaric when
∑

d ≤ 4n− 4,
and conversely, there is a graphic sequence with

∑
d = 4n− 2 that is non-planaric.

A cactus graph is a connected graph in which any edge may be a member of at most
one cycle, which means that different cycles do not share edges, but may share one vertex.
Rao [20] provided a full characterization for degree sequences realizable by cactus graphs,
and also gave a characterization for degree sequences realizable by cactus graphs whose cycles
are triangles and for degree sequences realizable by connected graphs whose blocks are cycles
of k vertices. Beineke and Schmeichel [5] characterized cacti degree sequences with up to
four cycles and also provided a sufficient condition for cactus realization. A characterization
for degree sequences realizable by bipartite cactus graphs was shown in [2].

2 Preliminaries and Known Results

Some Terminology. Two necessary (but not sufficient) conditions for a non-increasing
sequence d = (d1, . . . , dn) to be graphic are that

∑
d is even and d1 ≤ n − 1. We refer to

sequences that satisfy these two conditions as standard sequences. Hereafter, we consider
only standard sequences.

For a nonincreasing sequence d of n nonnegative integers, let pos(d) denote the prefix
consisting of the positive integers of d. We use the shorthand ak to denote a subsequence of
k consecutive a’s. Denote the volume of sequence d = (d1, . . . , dn) by

∑
d ≡

∑n
i=1 di.

Trees and Forests. Consider a sequence d = (d1, . . . , dn) of positive integers such that
∑

d

is an even number. It is known that if
∑

d ≤ 2n− 2, then d is graphic and moreover, G(d)
contains an acyclic graph (forest). In this case, we say that d is forestic. If

∑
d = 2n− 2,

then d can be realized by a tree and we say that d is treeic. We refer to a vertex of degree
one as a leaf.

We make use of a special type of realizations for treeic and forestic sequences, known as
caterpillar graphs. In a caterpillar graph G = (V, E), all non-leaves are arranged on a path
which we call the spine of G, i.e., the spine S = (x1, . . . , xs) ⊂ V is an ordered sequence
where (xi, xi+1) ∈ E, for i = 1, . . . , s− 1 (see Figure 1 for an example).

x1 x2 x3 x4 x5

Figure 1 Caterpillar graph with degree sequence (5, 43, 2, 111). Leaves are depicted in yellow.

The following (possibly folklore) observation appears in [3]. We provide a proof, since its
method will be instrumental in what follows.
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▶ Observation 1 ([3]). Any forestic sequence d can be realized by a forest composed of the
union of a caterpillar graph and a matching.

Proof. First consider a treeic sequence d (such that
∑

d = 2n− 2). Assume there are n− s

vertices of degree 1 in d. Denote by d∗ the prefix of d that contains all the degrees di > 1. It
follows that

∑
d∗ + (n−s) =

∑
d = 2n−2, or equivalently

∑
d∗−2s + 2 = n−s. To get the

caterpillar realization of d, first arrange s vertices corresponding to the degrees of d∗ in a path.
The path edges contribute 2s− 2 to the volume

∑
d∗. The missing

∑
d∗ − 2s + 2 = n− s

degrees are satisfied by attaching the n− s leaves to the path, which now forms the spine of
the caterpillar realization. Note that the order of the vertices on the spine can be arbitrary.

Now assume that d is forestic but not treeic, i.e.,
∑

d < 2n− 2. In this case, remove pairs
of 1 degrees from d until the volume of the reaming sequence d′ with n′ vertices is 2(n′ − 2).
This must happen because each pair removal reduces the volume by 2 while 2n− 2 decreases
by 4. Let G′ be the caterpilar realization of d′ as implied by the first part of the proof. To
get the realization of d, add (n− n′)/2 edges to G′ to satisfy the n− n′ removed 1 degrees
by a matching. ◀

Necessary Conditions for Outer-Planaric Sequences.

▶ Lemma 2 ([25]). If d = (d1, . . . , dn) is an outer-planaric degree sequence where n ≥ 2,
then

∑
d ≤ 4n− 6.

It is known that every outer-planar graph has at least two vertices of degree two or less,
and at least three vertices of degree three or less, see for example Sysło [24]. This implies
the following necessary condition for outer-planaric sequences.

▶ Lemma 3 ([24]). If d = (d1, . . . , dn) is an outer-planaric degree sequence, then
(i) dn−1 ≤ 2, and
(ii) dn−2 ≤ 3.

The Havel-Hakimi Algorithm and Outer-planaric Sequences. The lay-off techniques
developed by Havel and Hakimi, and subsequently extended by Kleitmann and Wang,
are among the fundamental tools for constructing realizations for degree sequences. One
might hope to be able to use such techniques for finding (outer-)planar realizations as well.
Unfortunately, it turns out that the lay-off operation does not, in general, preserve planarity
or outer-planarity (only graphicity), hence it cannot be applied directly to generate a realizing
outer-planar graph for a given outer-planaric sequence.

Nevertheless, we do make use of the lay-off technique, and specifically the minimum
pivot version of the Havel-Hakimi algorithm [13, 14]. It is used for realizing a nonincreasing
degree sequence d = (d1, d2, · · · , dn) associated with the vertices v1, v2, . . . , vn, and is based
on repeatedly performing the following operation, hereafter referred to as the MP-step, until
all the vertices reach their required degree. Suppose the current sequence of residual nonzero
degrees is d′ = (d′

1 ≥ d′
2 ≥ · · · ≥ d′

h) and the corresponding vertices are vi1 , vi2 , . . . , vih
.

Pick the vertex v = vih
with degree d′

h as pivot.
Set v’s neighbors to be the d′

h vertices vi1 , vi2 , . . . , vid′
h

.
Delete the pivot from d′, reduce by 1 the residual degrees of its selected neighbors, and
delete from d every vertex whose residual degree became zero.

The key observation is that, in case the MP-step transforms the residual degree sequence d

into d′, the following holds: d is graphic if and only if d′ is graphic.
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3 Outer-Planaric Degree Sequences

3.1 Necessary conditions
We first recall that Lemma 2 can be improved if ω1, the multiplicity of degree 1, is taken
into consideration. We add the proof for completeness.

▶ Lemma 4 ([3]). If d is an outer-planaric sequence such that
∑

d > 2n− 2, then
∑

d ≤
4n− 6− 2ω1.

Proof. Let d be as in the lemma and let G = (V, E) be an outerplanar graph realizing d.
Construct a graph G′ by deleting from G all the ω1 vertices of degree 1 together with their
incident edges, and subsequently deleting the vertices whose degree was reduced to zero.
Notice that the graph G′ may contain vertices whose degree became 1. Observe that G′ is
outerplanar, and let d′ = deg(G′). Note that n′ ≤ n− ω1, where n′ the number of vertices in
G′. We have that

∑
d′ ≤ 4n′ − 6 due to Lemma 2. Hence,∑

d =
∑

d′ + 2ω1 ≤ 4(n− ω1)− 6 + 2ω1 = 4n− 6− 2ω1 ,

where the first equality comes from the fact that ω1 vertices of degree 1 together with their
incident edges are deleted. ◀

We remark that Lemma 4 is false if we drop the assumption 2n− 2 <
∑

d. To see this,
consider the sequence d = (a, 1a) which is (uniquely) realized by a star graph and therefore
outer-planaric. The construction of G′ in the proof above, applied to d, yields an isolated
vertex. Note that Lemma 2 cannot be applied in this case. Indeed, we have that∑

d = 2a > 2a− 2 = 4(a + 1)− 6− 2a = 4n− 6− 2ω1.

Observe that sequences of the form d = (a, 1a+t) are the only sequences where G′ has order
one or less. If t ≥ 2 (note that t must be even), the bound can be shown directly with the
above calculation. We state the following corollary.

▶ Corollary 5. If d = (d1, . . . , dn) is an outer-planaric sequence such that d ̸= (a, 1a), then∑
d ≤ 4n− 6− 2ω1.

The next corollary gives us a useful necessary condition for outer-planaric sequences.

▶ Corollary 6 ([16]). If d = (d1, . . . , dn) is an outer-planaric sequences, then d1 + d2 ≤ n + 2.

3.2 Sufficient Conditions
In this section, we show sufficient condition for outer-planaric sequences.

The collection of low-volume (standard) sequences is defined as

LV = LV1 ∪ LV2 ,

where

LV1 =
{

d |
∑

d ≤ 3n− ω1 − 2, dn = 1, d is graphic
}

LV2 =
{

d |
∑

d ≤ 3n− 3, dn = 2
}

Notice that by assuming that the sequences are standard, we implicitly require that
∑

d is
even and that d1 ≤ n− 1.
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We now show that all sequences in LV are outer-planaric. For the proof we analyze a
slightly large collection than LV2, namely,

LV ′
2 =

{
d |

∑
d ≤ 3n− 2, dn = 2

}
,

Notice that LV2 ⊂ LV ′
2 . We prove that all the sequences in LV ′

2 except for a small set EX are
outer-planaric. As LV2 ⊂ LV ′

2 \EX, we get that all the sequences in LV2 are outer-planaric.
Moreover, we also use LV ′

2 to prove that all the sequences in LV1 are outer-planaric.
In order to analyze the collection LV ′

2 , we break it into four sub-collections A, B, C, D,
and handle each of them separately. Specifically, we define the following sets.

A =
{

(3s, 2n−s) | n ≥ 3, 0 ≤ s ≤ n− 2, and s is even
}

,

B =
{

(d1, 2n−1) | d1 ≥ 4 and d1 is even
}

,

CM
even =

{
(d1, d2, 2n−2) | d1, d2 ≥ 4, d1 + d2 = M and d1, d2 are even

}
,

CM
odd =

{
(d1, d2, 2n−2) | d1 ≥ 5, d2 ≥ 3, d1 + d2 = M and d1, d2 are odd

}
,

Ceven =
⋃

M≤n+2
CM

even,

Codd =
⋃

M≤n+2
CM

odd,

C = Ceven ∪ Codd,

D =
{

d | d1 ≥ 4, d3 ≥ 3, dn = 2,
∑

d ≤ 3n− 2
}

.

Note that all sequences in A, B, C, D are standard.

▶ Observation 7. LV ′
2 = A ∪B ∪ C ∪D.

Proof. One can check directly that A, B, C, D ⊆ LV ′
2 , and hence A ∪ B ∪ C ∪ D ⊆ LV ′

2 .
For the converse, consider some d ∈ LV ′

2 . If d ∈ LV ′
2 \D, then d3 = 2 or d1 ≤ 3, so d has

the form (d1, d2, 2n−2) or (3s, 2n−s). First assume that d3 = 2 and consider d of the form
(d1, d2, 2n−2). If d2 = 2, then d ∈ B. If d1 = d2 = 3, then d ∈ A. Otherwise d1 ≥ 4 and
d2 ≥ 3, we have d1 + d2 ≤ n + 2 since

∑
d ≤ 3n− 2. In this case, d ∈ C. Next consider d of

the form (3s, 2n−s). Since
∑

d ≤ 3n− 2, s ≤ n− 2. In this case, d ∈ A. Combining these
cases, we have LV ′

2 ⊆ A ∪B ∪ C ∪D. The observation follows. ◀

▶ Lemma 8. Every sequence d ∈ A is outer-planaric.

Proof. Let d be as in the lemma. By the definition of A, d = (3s, 2n−s) where s is even and
0 ≤ s ≤ n− 2. We construct an outer-planar realization G of d as follows. First, arrange n

vertices in a cycle, i.e., let G = Cn. If s = 0, then G is a valid realization of d (noting that
n ≥ 3 so G is a simple graph). Now suppose s > 0. Select one vertex y on the cycle and
denote its clockwise (respectively, counter-clockwise) neighbor of distance x by ux (resp., vx),
for x = 1, . . . , s/2. Observe that the vertices us/2 and vs/2 cannot be connected by an edge
in Cn, since s ≤ n− 2. To complete our construction, we add to E(G) a matching consisting
of the edges (vx, ux), for x = 1, . . . , s/2 Since these new edges can be placed inside the cycle,
G has an outer-planar embedding as shown in Figure 2. Verifying that deg(G) = d, the claim
follows. ◀

▶ Lemma 9. Every sequence d ∈ B is outer-planaric.

MFCS 2024
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u1

v1

u2

v2

u3

v3

us/2

vs/2

y

Figure 2 Schematic outer-planar realization of a sequence d = (3s, 2n−s) where s is even and
0 ≤ s ≤ n − 2. The yellow vertices have degree two and the gray vertices have degree three. Cycle
edges are drawn in black and matching edges are drawn in green.

Proof. Since d1 is even, d can be realized by the graph G = (V, E) where V = {v1, . . . , vn}
and the edge set E is constructed by the following steps:
(1) E1 ← {(v1, vi) | i = 2, . . . , d1 + 1} connects v1 to d1 other vertices.
(2) E2 ← {(v2j , v2j+1) | j = 2, . . . , d1/2} is a perfect matching among the neighbors of v1.
(3) Let W ← V \ {v1, . . . , vd1+1} be the set of remaining vertices. If W = ∅, then set

E3 ← {(v2, v3)}. Otherwise (i.e., if W = {vj | j = d1 + 2, . . . , n} where d1 + 2 ≤ n),
E3 ← {(v2, vd1+2), (vd1+2, vd1+3), . . . , (vn, v3)}.

(4) Set E ← E1 ∪ E2 ∪ E3.

Note that Steps (1) and (3) can be performed based on d since d1 ≤ n − 1. More
specifically, Step (1) yields well-defined edges, i.e., E1 ⊆ V × V , and in Step (3), W is
well-defined. Step (2) can be performed based on d i.e., E2 ⊆ V × V , since d1 is even.
Figure 3 illustrates these steps. Note that every vertex is located on the outer face, so G is
outerplanar. As G realizes the degree sequence d, it follows that d is outer-planaric. ◀

v1

v4 v5

v3

v2

vd1+2

vn

vd1+1 vd1

. . .

. .
.

Figure 3 An illustration of the graph G constructed in the proof of Lemma 9 where the set W

(vertices in yellow) is not empty.

Define EX = Cn+2
even = {(d1, d2, 2n−2) | d1, d2 ≥ 4, d1 + d2 = n + 2 and d1, d2 are even}.

▶ Lemma 10. Let d ∈ C \ EX. Then d is outer-planaric.

Proof. Suppose d ∈ C \ EX. Since
∑

d ≤ 3n− 2, necessarily d1 + d2 ≤ n + 2.
First suppose d ∈ Codd. Construct a realizing graph G on the vertex set V = {v1, . . . , vn}

by taking the following steps. Let v1 and v2 be the vertices with degree d1 and d2 respectively.
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(1) E1 = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4)}. These edges connect v1 to v2 and also
connect v1 and v2 to two common neighbors, v3 and v4.

(2) E2 ← {(v1, vi) | i = 5, . . . , d1 + 1} connects d1 − 3 extra neighbors from the remaining
vertices to v1, and E3 ← {(v5+2j , v6+2j) | j = 0, . . . , d1−5

2 } sets a perfect matching among
the vertices {vi | i = 5, . . . , d1 + 1}.

(3) If d2 = 3, then E4, E5 ← ∅.
Otherwise, E4 ← {(v2, vi) | i = d1 + 2, . . . , d1 + d2 − 2} connects d2 − 3 extra neighbors
from the remaining vertices to v2, and E5 ← {(vd1+2+2j , vd1+3+2j) | j = 0, . . . , d2−5

2 } is
a perfect matching among the vertices {vi | i = d1 + 2, . . . , d1 + d2 − 2}.

(4) Let W ← V \ {v1, . . . , vd1+d2−2} be the set of remaining vertices. If W = ∅, then set
E6 ← {(v1, v3)}
Otherwise, plant the vertices of W on the edge (v1, v3), or more formally, replace
(v1, v3) with the edges in the path (v1, vd1+d2−1, . . . , vn, v3), namely with the edge set
E6 ← {(v1, vd1+d2−1), (vd1+d2−1, vd1+d2), . . . , (vn, v3)}

(5) Set E ← (E1 \ {(v1, v3)} ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6.

Note that Step (1) can be performed based on d, in the sense that no vertex is assigned
more edges than its degree, since d1, d2 ≥ 3 and d3 = d4 = 2. Steps (2) and (3) use d1 +d2−6
distinct vertices (from v5 to vd1+d2−2) to serve as the remaining neighbors of v1 and v2.
Since d1 + d2 ≤ n + 2, Steps (2) and (3) can be performed based on d, i.e., d1 + d2 − 2 ≤ n

so E2 ∪ E3 ⊆ V × V . Besides, the matchings in Steps (2) and (3) can be performed based
on d, i.e., E4 ⊆ V × V , since d1 and d2 are both odd. Figure 4 illustrates the steps of the
construction. One can check that constructed graph G realizes d and is outer-planaric, since
all vertices are located on the outer face.

v2v1

vd1+2 vd1+3

vℓ−2

vℓ−3

v5v6

vd1 vd1+1

v3

v4

vℓ−1

vn
. .

. . . .

. .
.. . .

Figure 4 An illustration of the graph G constructed in the proof of Lemma 10 for the case where
d ∈ Codd. Let ℓ = d1 + d2. The graph for the case where d ∈ Ceven is obtained by removing the red
dashed edges.

Now suppose d ∈ Ceven \ EX. Hence, d1 + d2 ≤ n + 1. Let d′ = (d1 + 1, d2 + 1, 2n−1).
Notice that n′ = n + 1 and that d′

1 + d′
2 = d1 + d2 + 2 ≤ n + 1 + 2 = n′ + 2. Hence, d′ ∈ Codd.

Construct a realizing outerplanar graph G′ for the sequence d′. Let G be the graph we get
by removing v4 and its two edges the edges (v1, v4) and (v2, v4) from G′. (The dashed red
edges in Figure 4.) Observe that G realizes d and it is outer-planar. ◀

▶ Lemma 11. Let d ∈ EX. Then d is not outer-planaric.
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Proof. Recall that d = (d1, d2, 2n−2), where 4 ≤ d1 ≤ n− 1, d2 ≥ 3, d1 + d2 = n + 2, and
both d1 and d2 are even. Assume towards contradiction that d is outer-planaric, and let
G = (V, E) be a realizing outerplanar graph for it. Let v1 and v2 be the vertices of degree d1
and d2 in G, respectively.

Let k ≤ d2 be the number of common neighbors of v1 and v2. If v1 and v2 are not
adjacent, then

n− 2 = (d1 − k) + (d2 − k) + k = d1 + d2 − k = n + 2− k .

Hence, k = 4. In this case, G contains a subgraph homeomorphic to K2,3, and therefore it is
not outer-planar [24], leading to a contradiction.

Otherwise, if v1 and v2 are adjacent, then

n− 2 = (d1 − k − 1) + (d2 − k − 1) + k = d1 + d2 − 2− k = n− k .

Hence, k = 2. Consequently, denoting the two common neighbors of v1 and v2 in G by v3
and v4, let N ′[v1] (respectively, N ′[v2]) be the set of neighbours of v1 (resp., v2) except for
v3, v4 and v2 (resp., v1). See Figure 5. |N ′[v1]| and |N ′[v2]| are odd, since d1, d2 are even.
Since the vertices in N ′[v1] ∪N ′[v2] all have degree 2, there must exist (at least) one vertex
in N ′[v1] and one vertex in N ′[v2] that are connected. (In Figure 5, these are marked as v5
and v6.) It follows that there are three paths from v1 to v2, the first contains v3, the second
contains v4, and the third contains v5 and v6. In this situation, in any planar embedding of
G, at least one of the common neighbors v3 or v4 or the pair v5 and v6 is not in the outer
face. (In Figure 5, the vertex v3 is blocked.) This leads to a contradiction. ◀

v2v1

v4

v3

v5 v6

. .
. . . .

. .
.. . .

N ′[v1] N ′[v2]

Figure 5 The non outer-planar graph G constructed in the proof of Lemma 11. N ′[v1] and N ′[v2]
are, respectively, the vertex sets to the left of v1 and to the right of v2.

To prove the next lemma, we construct an outer-planar graph by starting from a caterpillar
graph and adding a matching, increasing the degree of each vertex by one. The next
observation describes a part of the construction used repetitively.

▶ Observation 12. Let G = (V, E) be a caterpillar graph with an outer-planar embedding as
depicted in Figure 1. If L ⊆ V is an even set of leaf vertices that appear consecutively in the
embedding, then one can add a matching between the vertices of L such that the resulting
graph has an outer-planar embedding.

Proof. Let L = {ℓ1, . . . , ℓh} be the leaf vertices in consecutive order, for even h. Note
that vertices in L are pairwise non-adjacent. We add the matching edges (ℓ2i−1, ℓ2i), for
i = 1, . . . , h/2, i.e., we add every second edge of the path (ℓ1, . . . , ℓh). ◀
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The next lemma proves the most general case where dn ≥ 2.

▶ Lemma 13. Every sequence d ∈ D is outer-planaric.

Proof. Consider d ∈ D. Denote k =
∑

d− (2n− 2). Observe that k is even and that k ≥ 2,
since

∑
d ≥ 2n. Also, k ≤ 3n− 2− (2n− 2) = n.

Our proof consists of two major steps:
(1) Create a treeic sequence d′ from d and find an (outer-planar) caterpillar realization G of

d′ as described in Observation 1.
(2) Modify G by adding edges such that deg(G) = d and G remains outer-planar.

For step (1), construct the sequence d′ = (d′
1, d′

2, . . . , d′
n) as follows:

d′
i =

{
di, i ≤ n− k,

di − 1, i > n− k.

d′ is well defined since k ≤ n, and also note that
∑

d′ =
∑

d− k = 2n− 2.
We first assume that ω′

2 ≤ 2.
Relying on Observation 1, we find a caterpillar realization G = (V, E) of d′. Let

S = {v1, . . . , vs} ⊆ V be the vertices on the spine of G. Note that |S| ≥ 3 since d3 ≥ 3,
implying that (at least) the three highest-degree vertices are non-leaves. Let ℓ denote the
number of leaves in the caterpillar. Notice that ℓ + s = n. Also, observe that k ≥ ℓ. Out goal
is to increase the degree of all leaves and of k− ℓ vertices in the spine by 1 while maintaining
outer-planarity.

As a preliminary step we rearrange the spine such that vertices high degree vertices are
closer to the center of the spine. Specifically, if s is even, the order is vs−1, . . . , v3, v1, v2, . . . , vs,
and if s is odd, the order is vs−1, . . . , v2, v1, v3, . . . , vs. Notice that only vs and vs−1 may be
of degree 2. We refer to such a construction as an ordered caterpillar.

For step (2), we consider two cases:
Case A: k < n.

Case A.1: ℓ and k − ℓ are even.
We add a perfect matching of consecutive leaves as described in Observation 12. We
also add the (matching) edges (vi, vi−1), for i = s, s− 2, . . . , s− (k − ℓ) + 2 between
the vertices on the spine. The latter is feasible since k < n (or k − ℓ < s).

Figure 6 Illustration of the construction in Case A.1.

Case A.2: If ℓ and k − ℓ are odd, we add one leaf of vs−1 to the spine. Since ℓ − 1 is
even, we can add edges as in case A.1.

Case B: k = n.
Observe that n must be even, since k is even. Also, in this case, s = k − ℓ. Let m be the
number of leaves connected to spine vertices to the left of v1 up to v1 (including v1).
Case B.1: s and ℓ are odd.
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Figure 7 Illustration of the construction in Case A.2.

Case B.1(i): m is even.
Add a perfect matching of the consecutive leaves connected to vs−1, vs−3, . . . , v1 as
described in Observation 12, add an edge connecting v1 to the leftmost leaf of the
vertex to its right (v2 or v3), and then add perfect matching of the rest of the leaves.
In addition, add the (matching) edges (vi, vi−1), for i = s, s− 2, . . . , 3 between the
vertices on the spine.

m

Figure 8 Illustration of the construction in Case B.1(i).

Case B.1(ii): m is odd.
Add the leftmost leaf of vs−1 and the rightmost leaf of vs to the spine. Now use the
same construction as in the case B.1(i).

m− 1

Figure 9 Illustration of the construction in Case B.1(ii).

Case B.2: s and ℓ are even.
Case B.2(i): m is odd.

Add the leftmost leaf of vs−1 to the spine, and use the construction of case B.1(i).
Case B.2(ii): m is even.

Add the edges (vi, vi−1), for i = s− 1, s− 3, . . . , 3 between the vertices on the spine.
Also, add the edge (vs−1, vs). In addition, replace the edge (vs−1, u) with the edge
(v1, u), where u be the leftmost leaf of vs−1. Add a perfect matching of consecutive
leaves as described in Observation 12.

It remains to consider the case where ω′
2 > 2. There are two options regarding the 2’s in

d′. Either all of them appear in d, or all of them originate from 3’s in d.
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m− 1

Figure 10 Illustration of the construction in Case B.2(i).

m− 1

Figure 11 Illustration of the construction in Case B.2(ii).

In the first case, we obtain a sequence d′′ by removing all 2’s from d′, and construct an
outer-planar embedding for the first n′′ entries by using the construction for case where
ω′′

2 ≤ 2. Consider any edge (x, y) connecting two former leaves in the above construction.
We replace the edge with a path of length ω′

2 + 1.
In the second case, we remove t = 2 ⌊ω′

2/2⌋ 2’s from d′, and construct an outer-planar
embedding for the first n′′ entries by using the construction for case where ω′′

2 ≤ 2.
Consider any edge (x, y) connecting two former leaves in the above construction. We
replace (x, y) with a path (x = u0, u1, . . . , ut, ut+1 = y). Then, we add the edges
{(ui, ut+1−i) : i = 0, 1, . . . , t/2− 1}, but not in the outer-face. ◀

u0 u1 u2 u3 u4 u5

vi

Figure 12 Illustration for the case where ω′
2 > 2, where t = 4.

Combining Lemmas 8, 9, 10, 11, 13 and Observation 7, we have the following corollary.

▶ Corollary 14. Let d ∈ LV ′
2 .

1. The sequence d is outer-planaric except for d ∈ EX.
2. If d ∈ LV2, then d is outer-planaric.

Finally, we deal with sequences where dn = 1.

▶ Lemma 15. Every sequence d ∈ LV1 is outer-planaric.

MFCS 2024
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Proof. Consider d ∈ LV1. If
∑

d ≤ 2n − 2, then the claim follows from Observation 1.
So now assume that

∑
d > 2n − 2. Applying the MP-step of the HH method on d (see

Section 2) with pivot 1 connecting to the largest degree ω1 times yields a new sequence d′,
with n′ := |pos(d′)| = n− ω1 nonzero degrees.

We claim that all the degrees in pos(d′) are at least 2. If d′
n′ = 1, then the other degrees

in pos(d′) have value 1 or 2 by the MP-step of the HH method. Therefore,
∑

pos(d′) ≤
2(n′− 1) + 1 = 2n− 2ω1− 1, and consequently

∑
d =

∑
d′ + 2ω1 ≤ 2n− 1, contradicting the

assumption on
∑

d. Furthermore, by the MP-step of the HH method, pos(d′) is graphic, so
d′

1 ≤ n′ − 1. Also,
∑

pos(d′) =
∑

d− 2ω1 ≤ 3(n− ω1)− 2 = 3n′ − 2. Hence, pos(d′) ∈ LV ′
2 .

This and Corollary 14 imply that pos(d′) is outer-planaric except for pos(d′) ∈ EX.
Notice that if pos(d′) can be realized by an outer-planar graph G′, then d is also outer-

planaric, since a realizing graph G can be obtained from G′ by inserting di − d′
i new leaves

to each vertex of degree d′
i. This completes the proof of the lemma for all cases except

when pos(d′) ∈ EX, in which case it may be that d is outer-planaric yet pos(d′) is not. For
example, the sequence d = (8, 4, 26, 12) is outer-planaric, as illustrated in Figure 13, but for
the sub-sequence d′ obtained by applying the MP-step of the HH method on d, the positive
prefix pos(d′) = (6, 4, 26) is not outer-planaric, by Lemma 11. So it remains to show that d

is outer-planaric even if pos(d′) ∈ EX.

Figure 13 Outer-planar realization of the sequence d = (8, 4, 26, 12).

A sequence pos(d′) ∈ EX has the form pos(d′) = (d′
1, d′

2, 2n′−2) where d′
1 + d′

2 = n′ + 2
and d′

1 and d′
2 are even. Since d′

2 ≥ 3, we have d′
2 ≥ 4.

Convert d′ to d′′ = (d′
1 + 1, d′

2 − 1, 2n′−2). Note that d′′ is non-increasing since d′
2 ≥ 4.

Then d′′
1 + d′′

2 = d′
1 + d′

2 = n′ + 2. As d′′
2 ≥ 3, we have d′′

1 ≤ n′ − 1 = n′′ − 1. Also,∑
d′′ =

∑
pos(d′) ≤ 3n′ − 2 = 3n′′ − 2, so d′′ ∈ LV ′

2 . One can check that d′′ /∈ EX, since
d′′

1 , d′′
2 are odd. By Corollary 14 (1), d′′ is outer-planaric. Returning to our example of the

outer-planaric d = (8, 4, 26, 12) where pos(d′) = (6, 4, 26) is not outer-planaric, the conversion
yields d′′ = (7, 3, 26), which is outer-planaric by the construction in Lemma 10.

By the construction of d′ and d′′, di ≥ d′
i for 1 ≤ i ≤ n′ and d′

i ≥ d′′
i for 2 ≤ i ≤ n′. As

d1 > d′
1, we have di ≥ d′′

i for any 1 ≤ i ≤ n′. Let G′′ be an outer-planaric realizing graph for
d′′. Insert di − d′′

i leaves to the vertex with degree d′′
i in G′′ for any 1 ≤ i ≤ n′. This yields

an outer-planar graph G with degree sequence d. The lemma follows. ◀

In summary, combining Corollary 14 and Lemma 15, we get the following.

▶ Theorem 16. Consider a nonincreasing n-integer graphic sequence d. If
(1) ω1 = 0 and

∑
d ≤ 3n− 3, or

(2) ω1 > 0 and
∑

d ≤ 3n− ω1 − 2,
then d is outer-planaric.

Finally, we complement the positive results of Corollary 14 and Lemma 15 by tight
negative examples. Let us first consider the case of ω1 = 0. A tight example is any sequence
in EX, which is not outer-planaric by Lemma 11. The volume of any sequence d ∈ EX is
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∑
d = 3n− 2. Next consider the case of ω1 > 0. A tight example is d′ = (3n−1, 1) for even

n ≥ 6, which is planaric (See Figure 14) but not outer-planaric by Lemma 3. This sequence
satisfies that

∑
d′ = 3n− ω1 − 1.

Figure 14 A non-outer-planar realization of the sequence d = (3n−1, 1).
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Challenges of the Reachability Problem in
Infinite-State Systems
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Abstract
The reachability problem is a central problem for various infinite state systems like automata with
pushdown, with different kinds of counters or combinations thereof. Despite its centrality and
decades of research the community still lacks a lot of answers for fundamental and basic questions
of that type. I briefly describe my personal viewpoint on the current state of art and emphasise
interesting directions, which are worth investigating in my opinion. I also formulate several easy to
formulate and understand challenges, which might be pretty hard to solve but at the same time
illustrate fundamental lack of our understanding in the area.
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Introduction

Since the early days of computer science the reachability problem is in its core interest.
One of the first known undecidable problems was the halting problem for Turing Machines
(TM), which is actually exactly the reachability problem for TM. We are given an initial
configuration and final configuration and we ask whether there is a path of the TM between
them. It is quite easy to come up with simpler automata models for which the reachability
problem is also undecidable. The undecidability will follow from the fact that the simpler
models can actually simulate TM, so are Turing powerful.

The first such a model is automaton with two pushdowns or in other words with two
stacks. It has two stacks and each transition can change a state and push or pop on the top
of the stacks. One can easily see that the transition of a TM can be simulated by automaton
with two stacks. Let us say that the TM has one tape. One stack keeps the part of the
tape of the TM to the left of the head and the other stack keeps the part of the tape to
the right of the head. The top elements of both stacks are the cells of the TM, which are
close to its head. To simulate a transition of a TM, say one step of the head to the left, the
first stack pops the top symbol and the second stack pushes the same symbol. It is rather
straightforward to see that this simulation indeed works well, which shows that automata
with two stacks have undecidable reachability problem.

One can however simplify further and show that the reachability problem is undecidable
already for the automaton with two counters, which can be zero-tested. Configuration of such
an automaton consists of a finite state and two nonnegative integer counters. A transition
can change the state and increase or decrease the counters. One can assume that increases
and decreases are just by one or by some arbitrary value, it does not change the strength of
the model. There are also special transitions called zero-tests. Such a transition can be fired
only if a specific counter (the first or the second one) equals exactly zero. This model was
shown to be undecidable by Marvin Minsky [19], so it is sometimes called a Minsky machine.
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The reduction from the automaton with two stacks to the automaton with two zero-tested
counters is not very complicated. A very brief sketch is the following: one stack can be
simulated easily by two counters with zero-tests, one keeping value of the stack as a B-ary
number (where B is the number of different stack symbols) and the other one being auxiliary.
Indeed, with the help of an auxiliary counter with zero-tests one can multiply or divide the
value of the first counter by B and this roughly speaking corresponds to a push or pop of a
symbol from the top of the stack. Thus one can simulate automaton with two stacks by an
automaton with four counters with zero-tests. Further, one can observe that the auxiliary
counter can be shared, so only three counters are needed for the simulation of two stacks.
Finally, one can simulate values of three counters x, y and z on two counters, one counter
keeping value 2x3y5z and the other one being an auxiliary counter, which helps simulating
incrementing and decrementing of the three counters. The above construction can be easily
made precise, and it shows that the reachability problem for automata with two zero-tested
counters is indeed undecidable.

Decidable models

Automata models with undecidable reachability problem are of not much use: even the
simplest fundamental problem cannot be decided for them. Therefore in order to understand
the computation better, the infinite-state community searched for decidable restrictions of the
above models. Of course there is plenty of ways one can restrict pushdowns or counters, but
there are a few natural ones, which were considered for decades. Quite natural restrictions
are in my opinion the following:
(1) disallow zero-tests and consider just nonnegative integer counters without zero-tests
(2) simplify the counters even further and allow them go to below zero
(3) consider nonnegative integer counters with just one counter being zero-tested or some

other restricted version of zero-tests
(4) consider one stack with possible other counters (nonnegative integer lub just integer),

but without zero-tests
Of course one can come up with other models, but it turns out that the above models were
widely considered.

Below we briefly discuss all the four options and also some other interesting models.
Along the way I share with you my personal feelings what seems to be interesting in my
opinion. I also list several challenges, which are easy to formulate, but I think require new
understanding of the models we work with. Solving them might be very hard or maybe easy,
but definitely would lead to new insights in the area.

Vector addition systems

An automaton with d counters, which cannot be zero-tested on each transition just increments
or decrements its counters by fixed values. It can be seen as an automaton adding vectors
from Zd. Indeed, a configuration of such an automaton consists of a state and values of the
d nonnegative integer counters, which can be seen as a vector in Nd. A transition just adds
a vector in Zd to the current vector, it can be fired if the result of the addition is still a
vector in Nd. Such automata are called Vector Addition Systems with States, shortly VASS.
If there is just one state they are called Vector Addition Systems, shortly VAS. It turns
out that the reachability problems for VASS, for VAS and for Petri nets, a popular model
of parallel computation are easily interreducible. The most robust model of out them is,
in my opinion, the VASS model, so I will refer to the reachability problem in VASS. The
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reachability problem was shown decidable in 1981 [18], but only recently its complexity was
settled to be Ackermann-complete. The upper bound was shown in 2019 [15], while the
Ackermann-hardness in 2021 [6, 17]. The complexity class Ackermann is roughly speaking
the class of problems, which can be solved in time around the Ackermann function. One
can define easily the Ackermann function (some version of it, there are different versions,
but they do not change the definition of the Ackermann complexity class as explained
in [21]) using the so called hierarchy of fast growing functions Fk. We write F1(n) = 2n

and Fk(n) = Fk−1 ◦ . . . ◦ Fk−1︸ ︷︷ ︸
n

(1) for any k ≥ 2. One can see that in particular F2(n) = 2n

and F3(n) = Tower(n). Then we define the Ackermann function A(n) = Fn(n). Notice that
A(1) = 2, A(2) = 4, A(3) = 16, while already A(4) = Tower(Tower(Tower(Tower(1)))) =
Tower(Tower(Tower(2))) = Tower(Tower(4)) = Tower(65536), which is an incredibly huge
number. It is hard to imagine how fast the Ackermann function grows. Based on the Fk

functions one can define the complexity classes Fk, which contain roughly speaking problems
solvable in time around Fk of the input size. Details can be found here [21].

Despite the fact that the complexity of the reachability problem for VASS have been
settled we still lack a lot of knowledge about the reachability properties in VASS. This can
be easily seen if we look into VASS with d counters, which we also call d-dimensional VASS
or shortly d-VASS. In general the complexity of the reachability problem for d-VASS is
known to be in Fd [10]. The best currently known lower bound is Fd-hardness in dimension
2d + 3 [4]. The gap does not look big till we look at d-VASS for some small fixed d. Notice
however, that the mentioned bounds give us Tower upper complexity bound for 3-VASS, but
Tower-hardness only for 9-VASS, which is quite a big gap in understanding.

Let us summarise what is known about the reachability problem for d-VASS for small
dimensions d. For small complexities it matters whether the numbers on transitions are
represented in unary or in binary. Clearly binary representation is more concise, so possibly
complexity of any problem for VASS with numbers represented in binary (shortly binary
VASS) can be higher than the complexity for VASS with numbers represented in unary
(shortly unary VASS). For dimension one it is rather easy to see that if there is a path in
unary 1-VASS then there is also a path of at most cubic length, which easily implies NL
algorithm and therefore also NL-completeness of the reachability problem. The complexity
for binary 1-VASS is known to be NP-complete since 2009 [13]. A few years later came a big
progress for 2-VASS. For binary 2-VASS it was shown in [2] that if there is a path between
two configurations then there is also a path of at most exponential length. This easily implies
existence of a PSpace algorithm, which just guesses this path step by step. Altogether the
problem was shown in [2] to be PSpace-complete. One year later authors of [9] have proved
that in unary 2-VASS if there is a path between two configurations then there is also a path
of at most polynomial length, which implies algorithm in NL and thus NL-completeness.

It is a major challenge to go beyond dimension two. One particular reason for that is that
reachability sets (and actually relations as well) are semilinear in 2-VASS, while it is not true
for 3-VASS [14]. Recall that a set is linear of it is of a form b + P ∗ for some vector b ∈ Nd

and finite set P ⊆ Nd and a set is semilinear if it is a finite union of linear sets. The following
example of a 3-VASS is probably the simplest way to see this and comes from the work of
Hopcroft and Pansiot [14], thus we call it the HP-example. One can check that the set of
configurations reachable from p(1, 0, 0) in state p is of a form {p(x, y, z) | 1 ≤ x + y ≤ 2z},
which is clearly not semilinear. Another challenge is that already in dimension three one can
get VASS with finite reachability set, but of size k-fold exponential, so it is hard to obtain
complexity bound below the size of the finite reachability set, so below Tower. To see that
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p q(−1, 1, 0) (2, −1, 0)

(0, 0, 0)

(0, 0, 1)

such 3-VASS exist consider an example of a composition of a bit modified (transition from q

to p now subtracts one, not adds one) two copies of the HP-example composed with itself.
One can quite easily check that the reachability set from p1(1, 0, n) is doubly-exponential in n.

p1 q1

r

p2 q2

(−1, 1, 0) (2, −1, 0)

(0, 0, −1)

(−1, 0, 1)

(1, 0, 0)

(−1, 1, 0) (2, −1, 0)

(0, 0, −1)

So see this notice that in particular any configuration of the form p2(x, y, 0) for x + y = 22n

can be reached from p1(1, 0, n). Compositing k copies of the HP-example in the same fashion
would result in getting (k − 1)-fold exponential size finite reachability set.

Unfortunately, not much upper or lower bounds are known for 3-VASS and for other
d-VASS for low fixed d ∈ N. I believe it is an important direction and I keep working in
this area since a few years. We have some partial results with co-authors. In [5] we have
shown that there exist a unary 3-VASS with two configurations such that the shortest path
between them is of an exponential length. This distinguishes the situation from the unary
2-VASS, where the shortest path is always polynomial. Therefore the same way of proving
membership in NL cannot work for unary 3-VASS. In fact recently together with Dmitry
Chistikov, Filip Mazowiecki, Łukasz Orlikowski, Henry Sinclair-Banks and Karol Węgrzycki
we have shown that the reachability problem for unary 3-VASS is NP-hard, it is a part of a
paper just accepted to FOCS 2024.

On the other hand together with Ismaël Jecker, Sławomir Lasota and Łukasz Orlikowski
we seem to have shown that in binary 3-VASS if there is a path between two configurations
then there is one of at most doubly-exponential length. This would imply an ExpSpace
membership for the reachability problem. However, the result is not yet written down, so
there might be some mistake there. But, even if this result is true it might not be optimal.
In every example of a 3-VASS we know, the shortest paths between two configurations are at
most exponential, which would suggest PSpace algorithm. The lowest dimension in which
we know that sometimes the shortest paths are of doubly-exponential length is four, in [5]
we have shown an example of a 4-VASS with shortest path between some two configurations
being doubly-exponential. Thus, I think that the following challenge is a very interesting
one and could lead to getting a tight complexity bound for 3-VASS, which are still quite a
simple and natural computation model.
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▶ Challenge 1. Find an example of a binary 3-VASS with doubly-exponential shortest path
between two configurations.

Another interesting challenge is to decide for which dimensions d reachability in d-VASS
is elementary, so below Tower. The paper [4] gives us Fd-hardness in dimension 2d + 3, so
Tower-hardness for 9-VASS. However, we have managed to show Tower-hardness already for
8-VASS in [7]. The question remains for d-VASS when d ∈ {4, 5, 6, 7} (and also for d = 3
if our supposed ExpSpace membership for 3-VASS would turn wrong). Of course to get
Tower-hardness for d-VASS we need to know examples of d-VASS with at least Tower-long
shortest paths between two configurations. However, we even know no example below
dimension eight with such a property. This leads to another interesting challenge.

▶ Challenge 2. Find an example of a binary d-VASS with at least tower-long shortest path
between two configurations for d ≤ 7.

Of course it might be that solving Challenges 1 and 2 is impossible, because there exist no
such examples. This would however be probably hard to show, as designing faster algorithms
is usually rather sophisticated. I list here challenges, which possibly might be resolved
positively during one afternoon. That is why I have formulated the challenges in such a form.

Another interesting open problem for reachability in VASS is the question for fixed VASS.
There is a conjecture that for every VASS V there is a constant CV such that if there is
a path from a configuration s to a configuration t then there is also one of length at most
CV times the sum of sizes of s and t [8]. Such a conjecture, if true, would imply a PSpace
algorithm for the reachability problem for any fixed binary VASS V . The PSpace-hardness
was already shown in [8]. I personally believe in this conjecture, but I might be wrong, so
there is another hard challenge.

▶ Challenge 3. Find an example of a binary VASS for which shortest paths in between its
configurations are longer than linear.

Integer VASS

Another way of relaxing infinite-state systems is to consider automata with integer counters,
which cannot be zero-tested and moreover can drop below zero. Such systems are called
Z-VASS or integer VASS. Even though it is not entirely obvious, it is easy to reduce the
reachability for Z-VASS to the reachability for VASS. Every Z-VASS counter can be simulated
as a difference of two VASS counters. However, the reachability of Z-VASS is much easier
than the reachability for VASS, it is known to be NP-complete [12].

The reachability problem for automata with only Z-counters have been well understood,
as seen above. However, the power of adding Z-counters to other systems is definitely not so
fully understood. Actually, it is not clear whether an automaton with d VASS-counters and
k integer-counters is closer in behaviour to a d-VASS or to (d + k)-VASS. One particularly
interesting model is a 2-VASS with many Z-counters. There are no known examples of these
systems for which the shortest path is longer than exponential, so it is very possible that
the reachability problem is in PSpace, thus PSpace-complete. On the other hand, to my
best knowledge, there is no known upper complexity bound below Ackermann. Thus it is a
natural challenge to investigate these systems.

▶ Challenge 4. Find an example of a binary 2-VASS with additional Z-counters with shortest
path being longer than exponential.
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My personal conjecture is that there exists no system as mentioned above in Challenge 4,
but I might be very wrong, it is always hard to imagine sophisticated examples. Notice that
in the HP-example the third counter can be treated as a Z-counter (as it never drops below
zero), so reachability sets in 2-VASS with Z-counters are not necessarily semilinear.

VASS with zero-tests

As mentioned at the beginning of this text, automata with two zero-tested counters already
have undecidable reachability problem. But maybe we can allow for one zero-tested counter?
If we have just an automaton with one zero-tested unary-encoded counter it is easy to
show that if there is a path between two configurations then there is also a path of at
most polynomial length. This means that the reachability problem is NL-complete for such
automata. But, if we add more VASS-counters on top of the zero-tested counter then the
situation is more sophisticated. However, in 2008 Klaus Reinhard have shown that the
reachability problem for VASS with one zero-tested counter is decidable [20]. Actually, he
has shown even more: decidability for VASS with hierarchical zero-tests. A d-VASS with
hierarchical zero-tests (hierarchical VASS) have the following zero-tests: for each k ≤ d one
can test whether all the first k counters are equal to zero at the same time. Interestingly, this
model also has decidable reachability problem, even though it is so closed to the automaton
with two zero-tested counters. Unfortunately, the proof of Reinhard was very complicated and
hard to understand, so there were other tries to explain the nature of VASS with zero-tests.
In 2011 Bonnet reproved the result using other techniques [3], but his work considered only
VASS with one zero-test, not a hierarchical VASS. Very recently Guttenberg came up with
another proof of decidability of the reachability problem for hierarchical VASS [11], this time
hopefully more understandable.

Even though the decidability status of the reachability problem for hierarchical VASS
is resolved its complexity is unclear. It cannot be better than Ackermann, as already the
reachability problem for VASS is Ackermann-hard. However, it is interesting whether the
problem is in Ackermann or maybe much higher. In particular, it would be interesting to
know whether hierarchical zero-tests add anything to the power of VASS, namely whether
hierarchical d-VASS are harder at some dimensions than the classical d-VASS. Interestingly,
it was shown that in dimension two both models are very similar and the reachability problem
for hierarchical 2-VASS is in PSpace [16]. Could this be true also in higher dimensions? It is
an interesting challenge to find this out.

Pushdown VASS

Similarly as for zero-tests one can consider automata with just one stack. Reachability in
a pushdown automaton is easy and can be performed in polynomial time, for example by
the famous CYK algorithm. However, things become much harder if we add additional
VASS-counters to this stack. An automaton with a stack and d VASS-counters is called a
d-dimensional Pushdown VASS (d-PVASS). Similarly as pushdown automata are equivalent
to context-free grammars the PVASS are equivalent to Grammar VAS (GVAS), which are
just context-free grammars with terminals being vectors in Zd. A derivation of a GVAS is
correct if starting in the initial vector in Nd and reading leaves in the prefix order one never
drops below zero and finally reaches the target vector in Nd.

Little is known about the reachability problem for PVASS. It is conjectured to be
decidable, but there is no known algorithm even for 1-dimensional PVASS. An interesting
result was shown by Atig and Ganty [1]. They have proved that for so called finite-index
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GVAS the reachability problem is decidable. Concretely speaking they have reduced the
reachability problem for finite-index d-GVAS with k nonterminals to the reachability problem
for hierarchical dk-VASS, which is known to be decidable [20, 11].

Recently with Clotilde Bizière we have considered the reachability problem for 1-GVAS
and we have an impression that we can show decidability by a reduction to the finite-index
case. However, this result is also not confirmed and may contain a flaw. Even if it is correct
the complexity of the problem for 1-GVAS remains open. We do not know any example of a
1-GVAS in which a path of length longer than exponential is needed, which would suggest
low complexity. On the other hand even very simple 1-GVAS may have finite, but huge
reachability sets. For example this 1-GVAS with just three nonterminals have a reachability
set of Tower-size

X −→ 0, X −→ −1X2; and
Y −→ 1, Y −→ −1Y X; and
Z −→ 1; Z −→ −1ZY .

Indeed, with the starting nonterminal Z and starting value n we might reach up to Tower(n)
values. To see this observe that nonterminal X with starting value n might output value up
to 2n. It turn the nonterminal Y with starting value n may produce up to n variables X

and output value up to 2n. Therefore nonterminal Z with starting value n may produce up
to n variables Y and output value up to Tower(n). Similar grammars with d nonterminals
may have finite reachability sets of size up to Fd(n). So it looks interesting that we do not
have any example of 1-GVAS with longer than exponential shortest path.

▶ Challenge 5. Find an example of a 1-GVAS such that shortest derivations are longer than
exponential.

Other models

There are also other very interesting and natural models of infinite-state systems. One
popular such system is Branching VAS (BVAS), for which the reachability problem is
open in general, but was recently shown decidable in 2-dimensional BVAS. The results are
not yet published, but they were referred here by Clotilde Bizière: https://youtu.be/
aKIxlgQAa2w?si=V7yWXsj8_JaoiBHv.

Another interesting model, which illustrated how much we are in trouble with automata,
which have both additive and multiplicative (or recursive) behaviour is a model about which I
have heard from Anthony Lin. Consider a model, let us call it the Lin automaton, which is an
automaton with one counter. A transition can increase or decrease this counter, as normally,
but it can also multiply it or divide by two. Then it is unclear whether the reachability
problem for such a simple automaton is decidable. Together with Moses Ganardi, Łukasz
Orlikowski and Georg Zetzsche we think about this problem and we have some partial results.
However, we still do not have any example of a Lin automaton, which has a path longer than
exponential. Thus the following might be an interesting challenge.

▶ Challenge 6. Find an example of a Lin-automaton such that shortest derivations are
longer than exponential.

To summarise, it seems that there are still many fundamental and natural challenges
in the field of infinite-state systems, some of which are asking about deep properties of the
computation. It might be that we are still at the beginning of our way to understand the
computation even from this very high level perspective.
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On Low Complexity Colorings of Grids
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Abstract
A d-dimensional configuration is a coloring of the infinite grid Zd using a finite number of colors. For
a finite subset D ⊆ Zd, the D-patterns of a configuration are the patterns of shape D that appear in
the configuration. A configuration is said to be admitted by these patterns. The number of distinct
D-patterns in a configuration is a natural measure of its complexity. We focus on low complexity
configurations, where the number of distinct D-patterns is at most |D|, the size of the shape. This
framework includes the notorious open Nivat’s conjecture and the recently solved Periodic Tiling
problem. We use algebraic tools to study the periodicity of low complexity configurations. In the
two-dimensional case, if D ⊆ Z2 is a rectangle or any convex shape, we establish an algorithm to
determine if a given collection of |D| patterns admits any configuration. This is based on the fact
that if the given patterns admit a configuration, then they admit a periodic configuration. We also
demonstrate that a two-dimensional low complexity configuration must be periodic if it originates
from the well-known Ledrappier subshift or from several other algebraically defined subshifts.
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1 Overview

In the domino problem, one is given a finite collection of allowed m × n arrays of colors, or
patterns, and must determine whether it is possible to color the infinite grid Z2 such that
only the allowed m × n patterns appear in the coloring. A classical result by Robert Berger
states that the domino problem is undecidable: no algorithm can provide the correct answer
to every instance of the problem. An underlying structural property is aperiodicity, where
some choices of allowed patterns force the valid colorings to be non-periodic [1].

However, the situation is different in the low complexity setting where the number of
allowed patterns is at most mn, the size of the array. In this case, there are no aperiodic
systems, meaning that if a valid coloring of Z2 exists, then a periodic coloring also exists [5].
This fact leads to an algorithm to solve the domino problem in the low complexity setting.
Similar results hold if, instead of m × n rectangles, one considers patterns of any convex
shape D ⊆ Z2.

The low complexity setting also encompasses two interesting problems: Nivat’s conjecture
and the Periodic Tiling problem. These specific questions are of independent interest and
have driven our research on this topic in recent years. Nivat’s conjecture remains open, while
the Periodic Tiling problem was recently solved positively by Siddhartha Bhattacharya [2]
in the two-dimensional case and negatively in sufficiently high-dimensional grids by Rachel
Greenfeld and Terrence Tao [3].
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To address the low complexity setting, we initiated an algebraic approach in [6]. In
this approach, we represent colors as integers and colorings of Zd as formal Laurent power
series with d variables. If the coloring has low complexity with respect to some finite shape
D ⊆ Zd, a simple linear algebra argument shows that the corresponding power series has
a non-trivial annihilator: a d-variate Laurent polynomial whose formal product with the
power series vanishes. Moreover, periodicity can be simply formulated in terms of having a
difference binomial annihilator. By studying the structure of the multivariate polynomial
ideal of annihilators, we prove that a two-dimensional uniformly recurrent configuration with
low complexity with respect to a convex shape must be periodic [5], implying the decidability
of the domino problem in such a low complexity setting. We also show that low complexity
elements of certain algebraic subshifts are all periodic [4].
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From TCS to Learning Theory
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Abstract
While machine learning theory and theoretical computer science are both based on a solid mathemat-
ical foundation, the two research communities have a smaller overlap than what the proximity of the
fields warrant. In this invited abstract, I will argue that traditional theoretical computer scientists
have much to offer the learning theory community and vice versa. I will make this argument by
telling a personal story of how I broadened my research focus to encompass learning theory, and
how my TCS background has been extremely useful in doing so. It is my hope that this personal
account may inspire more TCS researchers to tackle the many elegant and important theoretical
questions that learning theory has to offer.
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1 A Personal Story

My goal with this invited abstract, is to inspire more theoretical computer science (TCS)
researchers to engage in topics in machine learning theory. Being a TCS researcher myself, I
hope that by telling my own personal story – of how I adopted the field of learning theory –
may provide a unique and more compelling argument than if a core learning theorist was
to attempt to convince you. Being a personal story, I will focus on some of the research
results I obtained along the way, and not so much on the broader learning theory and TCS
literature. The results I present have been chosen because they tell an interesting story and
showcase how core TCS concepts have proven useful in learning theory. Along the way, I will
tell some anecdotes on how these research projects started, and I will try to give you an idea
of some of the thought processes I initially went through when trying to enter a new field.
I have also tried to sprinkle in some advice for more junior researchers based on my own
experiences. Finally, I will also formally define some of the learning theory questions I have
studied, giving you an idea of what such questions may look like. I sincerely hope that you
find this somewhat unusual abstract refreshing.

1.1 My TCS Background and Connections Between Fields
For those who do not know me, let me start by briefly giving you my background, while also
trying to convince you that many fields of TCS are deeply connected, and that it pays off to
have a broad interest in TCS.

I started my Ph.D. studies in 2008 under the supervision of Professor Lars Arge at Aarhus
University, Denmark. My initial research was on data structures, in particular so-called
I/O-efficient data structures [2, 5], that take the memory hierarchy of modern hardware
into account. Ever since I started my studies, I have always been curious and eager to learn
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new areas by interacting with great colleagues in the TCS community. This openness to
collaborations and sharing of ideas is one of the strongest and most rewarding traits of our
community.

Initially, my interactions with other researchers were through fellow students at the
department. I explicitly remember Allan Grønlund coming to my office with one of Mihai
Pǎtraşcu’s beautiful papers [33] on data structure lower bounds in the cell probe model [35],
excitedly proclaiming that “this is so cool, we need to do this too!”. At the time, I had never
had a complexity course or seen a real lower bound proof, and I was immediately hooked.
This led me on a long research journey trying to understand and develop the techniques for
proving lower bounds on the efficiency (space, query time, update time) of data structures,
see e.g. [23, 24, 29] for some highlights.

While cell probe lower bounds were my main focus for years, I always found research that
bridges several fields the most exciting. The earliest such example in my own research started
with a visit by Jeff M. Phillips in our research group. During his visit, Jeff introduced me to
discrepancy theory while explaining some of his recent work. As discrepancy theory will be
important later, let me give a rough definition of it here. At its core, discrepancy theory
studies the following problem: Given a matrix A ∈ Rm×n, compute a coloring x ∈ {−1, 1}n

minimizing the discrepancy ∥Ax∥∞. Understanding the best achievable discrepancy for
various types of matrices is an old and very well-studied topic in TCS [3, 34, 10, 7, 31]. In
particular, I recall Jeff telling me about a result of Banaszczyk [6] showing that matrices with
sparse columns always have low discrepancy colorings. While being intellectually intrigued
by this result, I did not see any immediate applications of it in my own research. However, a
couple of months later, Elad Verbin, a post doc in our group at the time, suggested to me
that I should try to prove data structure lower bounds in the group model. Without going
into details here, it turns out that Banaszczyk’s discrepancy result could be used to directly
translate decades of research on discrepancy lower bounds into group model data structure
lower bounds [25]. The connection even improved some of the discrepancy upper bounds
using data structure upper bounds as well.

This theme of connecting areas has proven very useful over the years. It for instance
got me started on streaming algorithms when Jelani Nelson and Huy L. Nguyen asked
whether we could use cell probe lower bound techniques to prove time lower bounds for
streaming algorithms [27]. In later work with Jelani [26], we similarly proved optimality of the
Johnson-Lindenstrauss (JL) lemma [21] in dimensionality reduction using an encoding-based
argument. Such arguments were typically used in cell probe data structure lower bounds. As
it will be important later, let us recall that the JL lemma says that any set of n points in
Rd can be embedded into O(ε−2 log n) dimensions while preserving all pairwise distances to
within a factor 1 ± ε.

Another interesting example was initiated during a visit at MIT in 2017 where Vinod
Vaikuntanathan was telling me how “data structures and crypto are a match made in heaven”.
This claim got me curious, and after returning home, I read a bit on data structure in
cryptography and stumbled on Oblivious RAMs (ORAMs) [17]. An ORAM is basically a
primitive for obfuscating the memory access pattern of an algorithm, such that the memory
accesses reveal nothing about the data stored. Checking the references of the papers I was
reading, it turned out that a crypto Professor sitting just down stairs, Jesper Buus Nielsen,
had made multiple contributions to ORAMs. After some brief initial discussions, we quickly
realized that cell probe lower bound techniques could be tweaked to prove strong lower
bounds for ORAMs [28]. This connection started a whole line of research into lower bounds
for ORAMs and related primitives in crypto.
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Finally, let me mention one last example outside learning theory. Back in 2017, I was
attending a communication complexity workshop in Banff, where Mark Braverman was giving
a talk about some work of his [11] on a conjecture in information theory/network coding [30].
The conjecture relates to communication networks, where a network is modeled by a graph
with capacities on the edges, designating how many bits may be sent across. The conjecture
then says that for undirected graphs (messages may be sent in both directions), if we are
given k source-sink pairs that each need to send an r bit message from source to sink, then
the largest number of bits r we can handle without violating capacity constraints, is equal to
the multi-commodity flow rate. Intuitively, this means that the best you can do is to simply
forward your messages as indivisible bits. Mark’s talk was excellent, but at the time, I had
no immediate applications of his result. However, while spending a semester at the Simons
Institute in 2018, a coincidental conversation with MohammadTaghi Hajiaghayi led us [15]
to proving conditional lower bounds for I/O-efficient algorithms using the information theory
conjecture that Mark presented. Needless to say, it was quite satisfactory to come full circle
and address the topic that started my Ph.D. studies. In addition to the lower bounds for
I/O-efficient algorithms, the conjecture also gave a clean conditional Ω(n log n) lower bound
for constant degree boolean circuits for multiplication [1]. I find it quite fascinating how two
such seemingly different problems of multiplication and communication in graphs may prove
to be so intimately connected.

If there is one message to take away from my own experiences, in particular for junior
researchers, it must be that many things are deeply connected and you never know when
results in one branch of TCS may prove useful in another. That is one of its beauties. I
would thus strongly recommend that you attend talks, seminars, and generally engage in
discussions with the many brilliant TCS researchers, also in fields outside your own immediate
interest. Build your expertise in one area, but always be curious and look for connections
and inspiration from others.

1.2 Entering Learning Theory

Now let me get to the promised topic of entering learning theory from a TCS background,
and how this background proved extremely useful. For me, this journey started around
2019. As you all know, machine learning was the big hype at the time, and probably still
is. Like many others, I initially found deep neural networks and what they could do quite
fascinating. This led me to consider whether I should get into machine learning and work on
this extremely hot topic. However, after getting a slightly better understanding of the field, I
quickly found that training a deep neural net and running some experiments on a benchmark
data set, to be much more engineering and craftsmanship than deep stimulating thoughts.
And with all the obligations that come with a faculty position, I just did not have the time
to learn the practical skills that it takes to make efficient and competitive implementations.
And probably was not that interested in it after all. I almost abandoned machine learning,
had it not been for a student of mine, Alexander Mathiasen. Alexander was very independent
and eager to get into machine learning. He had realized that I was more interested in theory
questions and had on his own discovered the great source of open problems in learning theory
that are published with the COLT proceedings. The open problem Alexander had found
was related to a technique called boosting. Let me start by introducing the general idea in
boosting and the setup for binary classification in supervised learning.
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Supervised Learning and Boosting

In supervised learning, a binary classification problem is specified by an input domain X , an
unknown target function f : X → {−1, 1} and an unknown data distribution D over X . A
learning algorithm receives as input a training data set of n i.i.d. samples (xi, f(xi)) with
each xi ∼ D. The goal of the learning algorithm is to output a classifier h : X → {−1, 1}
minimizing the probability of misprediction the label of a new sample from D, i.e. where
erD(h) := Prx∼D[h(x) ̸= f(x)] is as small as possible. To have an example in mind, think
of X as the set of all images of a particular size and f as the hard-to-specify function that
maps every image of a mammal to −1 and every other image to 1. The learning problem is
thus to train a classifier that can detect whether an image contains a mammal or not.

Boosting is then a powerful and elegant idea that allows one to combine multiple inaccurate
classifiers into a highly accurate voting classifier. Boosting algorithms such as AdaBoost [16]
work by iteratively running a base learning algorithm on reweighed versions of the training
data to produce a sequence of classifiers h1, . . . , ht. After obtaining hi, the weighting of the
training data is updated to put larger weights on samples misclassified by hi, and smaller
weights on samples classified correctly. This effectively forces the next training iteration to
focus on points with which the previous classifiers struggle. After sufficiently many rounds,
the classifiers h1, . . . , ht are finally combined by taking a (weighted) majority vote among
their predictions. This idea also goes under the name of multiplicative weight updates and
has many applications in TCS.

Boosting works exceptionally well in practice and much theoretical work has gone into
explaining its huge success. One important line of work in this direction is based on the
notion of margins [8]. A voting classifier g may be written as g(x) = sign(

∑t
i=1 αih(x)) with

αi ∈ R. If we normalize the weights so that
∑

i |αi| = 1, then
∑t

i=1 αihi(x) ∈ [−1, 1]. The
margin of g on a sample (x, y) ∈ X × {−1, 1} is then defined as y

∑t
i=1 αihi(x). The margin

is thus a number in [−1, 1] and can be thought of as a confidence in the prediction. If the
margin is 1, then all classifiers combined by g agree and are correct. If the margin is 0, then
we have a (weighted) 50-50 split between the two possible predictions −1/1, and so on. It
has then been proved that voting classifiers g with large margins on all training samples
(xi, yi) have a small erD(g) [8].

Boosting and Discrepancy Theory

Now let me return to the open problem Alexander approached me with. Since voting classifiers
with large margins have a small erD(g), it seems natural to develop boosting algorithms that
obtain large margins by combining few base classifiers, i.e. with a small t. This leads to faster
predictions and possibly also faster training. The question now is as follows: If the best
possible margin on all training samples is γ⋆ when one is allowed to combine arbitrarily many
base classifiers hi, then how large margins can we obtain by combining t base classifiers?
The best known algorithm obtained margins of γ⋆ − O(

√
log(n)/t) with n training samples,

and the best known lower bound showed that this is tight whenever t ≤ n1/2. The conjecture
stated that this remains tight for t ≤ n log n.

In my first learning theory paper [32], we observed an interesting connection between
this question and discrepancy theory. In more detail, we considered the matrix A obtained
by forming a row for each training sample (xi, yi) and a column for each hi in a voting
classifier g(x) = sign(

∑t
j=1 αjhj(x)). The entry corresponding to (xi, yi) and hj stores the

value yiαjhj(x). Notice that the sum of the entries in the i’th row is precisely the margin of
g on (xi, yi). Next, if we can find a coloring x ∈ {−1, 1}t such that ∥Ax∥∞ ≈ 0, then this
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means that for every single row of A, the sum over the columns j where xj = 1 is almost
exactly the same as the sum over columns where xj = −1. Thus if we replace g by a new
voting classifier where we set all αj to 0 when xj equals the majority of −1/1’s in x, and to
2 when xj is the minority, then the new g′ has almost exactly the same margins as before
but uses only half as many base classifiers. Recursively finding a low discrepancy coloring
x using the celebrated Spencer’s six standard deviations suffice result [34], we were able to
refute the conjecture on the tradeoff between t and the achievable margin while establishing
yet an interesting connection between discrepancy theory and other areas.

Support Vector Machines, Sketching and Teaching

Around the same time as our first learning theory results, I had voluntarily started teaching
the Machine Learning undergraduate course at Aarhus University. Never having followed
such a course myself, this was a great way of forcing myself to learn the basics. But beyond
learning the basics, teaching also led to new research questions. After having completed
the first project on boosting, we naturally started reading up on the references proving that
large margins lead to small erD(g). Such results are referred to as generalization bounds
and are a cornerstone of learning theory. Studying the classic proofs of generalization for
large margin voting classifiers [8], there seemed to be an underlying idea of sketching or
compressing the voting classifier g while exploiting that it has large margins. Intuitively, if
there is a small-bit representation of g, then there are only few choices for g. A union bound
over all these choices shows that it is unlikely that there is even a single g that performs
great on the training data (has large margins) and poor on new data (has large erD(g)).

Around the same time, I had just taught Support Vector Machines (SVMs) [14]. SVMs
are another type of learning algorithm where the input domain X is Rd. In the simplest
setup, when given a training set of n samples (xi, yi) ∈ Rd × {−1, 1} with ∥xi∥ ≤ 1 for all
i, SVM searches for the separating hyperplane with the largest margin to the data. In the
context of SVMs, if we assume for simplicity that a hyperplane passes through the origin and
has unit length normal vector w ∈ Rd, then we predict the label of a new point x ∈ Rd by
returning sign(wT x). The margin of the hyperplane on a labeled point (x, y) is then defined
as yxT w. The margin is positive if the hyperplane correctly predicts the label of (x, y) and
the absolute value of the margin measures how far the point is from the hyperplane itself.

Similarly to the case for boosting, there were known generalization bounds [9] stating
that if a hyperplane h has large margins, then erD(h) is small. However, these bounds were
proved in a completely different way than the boosting bounds and seemed to be sub-optimal.
In our work [18], we improved these generalization bounds by observing a connection to
the Johnson-Lindenstrauss (JL) lemma [21] that I previously worked on [26]. Shortly after
the lower bound for JL by Jelani and I, Noga Alon and Bo’az Klartag [4] presented an
alternative proof that at its core gives a randomized sketch for representing a set of n unit
length vectors in Rd using O(ε−2 log n) bits for each vector, while preserving their pairwise
inner products up to additive ε. Our idea was then to apply this sketch to w and the training
data. Since wT x changes by only additive ε, the sketched hyperplane w̃ remains correct (i.e.
sign(w̃T x) = sign(wT x) = y) if the margin was larger than ε before sketching. In this way,
we get a compression whose size depends on the margin. Combining this with the union
bound idea mentioned earlier led to improved generalization bounds for SVMs.
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Replicable Learning and Sketching

Let me give another example where the JL lemma proved useful in learning theory. In a
very exciting line of work, starting with [20], core TCS researchers introduced the notion
of replicable learning as an attempt at addressing issues with reproducibility of results in
machine learning. Here the basic setup is that you want to develop learning algorithms A,
such that if A is run on two sets S and S′ of n i.i.d. samples from the same distribution D,
then we should get the same output with high probability. The intuition is thus, if you rerun
someones replicable algorithm on your own data set, you will get the same results as they
did on their data set, provided that the data set is sampled from the same distribution. To
help you in this seemingly difficult task, the two executions of A share a random seed. This
may be justified in practice by publishing the seed of a pseudorandom generator along with
your machine learning paper and experimental results. There is naturally a ton of problems
to revisit in replicable learning and some strong connections with differential privacy have
already been established [12].

In a recent result [22], we considered SVMs in the replicable setting. Here we are
promised that there exists a hyperplane with all margins at least γ on the support of the
data distribution D, and must replicably compute a hyperplane h with small erD(h). The
key idea in our work is quite simple: partition the training data into t chunks and run SVM
on each to obtain hyperplanes with normal vectors w1, . . . , wt. Average these normal vectors
w = t−1 ∑

i wi and apply the sketching technique by Alon and Klartag [4] to w. The first
main observation is that computing the average w reduces variance compared to each wi.
Thus for two independent but identically distributed training data sets S and S′, the resulting
w and w′ will be close. The key property of the sketching technique of Alon and Klartag is
that such close vectors are very likely to be “rounded” to the same hyperplane/sketch if we
share a carefully chosen random seed.

Multi-Distribution Learning, Discrepancy Theory and NP-Hardness

Let me conclude with one last example of TCS techniques playing a key role in learning
theory results. A recent line of work in learning theory has studied learning in a setup with
multiple data distributions. Formally, we have k distributions D1, . . . , Dk over X × {−1, 1}
and the goal is to train a classifier that performs well on all k distributions simultaneously.
For this purpose, we are given a hypothesis set H containing hypotheses h : X → {−1, 1}.
As an example, think of H as all hyperplanes in Rd. If we let τ = minh∈H maxi erDi

(h)
denote the best achievable max-error of any h ∈ H, then the goal is produce a classifier
f : X → {−1, 1} with maxi erDi

(f) ≤ τ + ε using as few training samples as possible.
It is known that for a single distribution D, this task requires Θ(d/ε2) samples and it is

straight forward to generalize the algorithm to O(dk/ε2) samples for k distributions. Very
surprisingly, it turns out that this can be improved to essentially O((d + k)/ε2) samples using
boosting ideas [19]. However, the upper bounds achieving this number of samples are cheating
a little. Concretely, they do not output a single hypothesis f with maxi erDi

(f) ≤ τ + ε.
Instead, they output a distribution Df over hypotheses such that maxi Ef∼Df

[erDi(f)] ≤ τ +ε.
Attempting to derandomize this does not seem to work as we only have Markov’s inequality
to argue that with constant probability, a random f ∼ Df has maxi erDi

(f) = O(k(τ + ε)).
In a current manuscript, we show that there is a good reason why this is the case. Concretely,
we prove via a reduction from discrepancy minimization that it is NP-hard to compute an
f : X → {−1, 1} with maxi erDi(f) ≤ τ + ε. Here we use a result of Charikar et al. [13]
stating that it is NP-hard to distinguish whether, for a given a 0/1 matrix A, there exists
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an x ∈ {−1, 1}n with Ax = 0, or whether all x ∈ {−1, 1}n have ∥Ax∥∞ = Ω(
√

n). In our
reduction, we think of the columns as the input domain X and we form a distribution for each
row of A. The key idea is to show that if a learning algorithm computes an f : X → {−1, 1}
with maxi erDi(f) ≤ τ + ε, then the predictions made by f on the columns must give a low
discrepancy coloring that can distinguish the two cases.

While showing NP-hardness is by now completely standard in TCS, let me add that my
two coauthors are both from Statistics. They had heard NP-hardness mentioned before, but
never used it, and found quite some joy in getting to apply it on a relevant problem. I guess
the experience shows that what may be common tools in one discipline may be highly novel
in another.

1.3 Conclusion and Thoughts
To summarize my research journey into learning theory, I hope that I convinced you that
many techniques and tricks from TCS are extremely useful. Not only do they help in
addressing learning theory questions, but they also bring an interesting new direction to the
field, such as e.g. arguing computational hardness of training a classifier. Furthermore, this
transfer of techniques is not isolated to learning theory, but has been a guiding principle in
all my research since the early days of my Ph.D. studies. Keep your eyes open for surprising
connections between seemingly disjoint topics - they are often hiding just below the surface.

To me, the questions studied in learning theory are as clean, elegant, beautiful and
well-defined as any TCS topic, and are very well fit for anyone with a TCS background.
What has worked well for me, has been to start in some corner (coincidentally boosting
for me) and get to know the literature and related questions. Then as you have a better
understanding and overview, you can start approaching neighboring questions and growing
your focus. I suppose this is not much different from starting your Ph.D. studies by working
on a narrow topic and broadening out as you mature. Finally, do not underestimate the
value of talking to peers and attending talks for inspiration. As a newcomer, it is sometimes
hard to ask the right question, and calibrating with an expert is very useful. Also, the COLT
open problems have been a good source of inspiration as you at least know that some experts
in the field find the question interesting.

I strongly hope that this abstract may inspire some of you to work on learning theory, or
give you the courage to enter a new field that you find intriguing, knowing that your TCS
skills are useful in many surprising places.
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Abstract
There is a well-known “cubic bottleneck” in program analysis and language theory: many program
analysis problems can be solved in time cubic in the size of the input but, despite years of effort, there
are no known sub-cubic algorithms. For example, context-free reachability (whether there is a path in
a labeled graph that is labeled with a word from a context-free language), the emptiness problem for
pushdown automata, and the recognition problem for two-way nondeterministic pushdown automata
all belong to the cubic class. We survey the status of these problems through the lens of fine-grained
complexity.

We study the related certification task: given an instance of any of these problems, are there
small and efficiently checkable certificates for the existence and for the non-existence of a path? We
show that, in both scenarios, there exist succinct certificates (O(n2) in the size of the problem) and
these certificates can be checked in subcubic (matrix multiplication) time. Thus, all these problems
lie in nondeterministic and co-nondeterministic subcubic time.

We also study a hierarchy of program analysis problems above the cubic bottleneck. A repres-
entative problem here is the recognition problem for two-way nondeterministic pushdown automata
with k heads. We show fine-grained hardness results for this hierarchy.

We also discuss purely language-theoretic consequences of these results: for example, we obtain
hardest languages accepted by two-way nondeterministic multihead pushdown automata, as well as
separations between language classes.
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Abstract
We study a variation of the cops and robber game characterising treewidth, where in each round at
most one cop may be placed and in each play at most q rounds are played, where q is a parameter of
the game. We prove that if k cops have a winning strategy in this game, then k cops have a monotone
winning strategy. As a corollary we obtain a new characterisation of bounded depth treewidth, and
we give a positive answer to an open question by Fluck, Seppelt and Spitzer (2024), thus showing
that graph classes of bounded depth treewidth are homomorphism distinguishing closed.

Our proof of monotonicity substantially reorganises a winning strategy by first transforming it
into a pre-tree decomposition, which is inspired by decompositions of matroids, and then applying
an intricate breadth-first “cleaning up” procedure along the pre-tree decomposition (which may
temporarily lose the property of representing a strategy), in order to achieve monotonicity while
controlling the number of rounds simultaneously across all branches of the decomposition via a
vertex exchange argument. We believe this can be useful in future research.
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1 Introduction

Search games were introduced by Parsons and Petrov in [36, 37, 38] and since then gained
much interest in many (applied and theoretical) areas of computer science and in discrete
mathematics [6, 10, 9, 28, 17, 35, 25, 15, 24, 21]. In search games on graphs, a fugitive
and a set of searchers move on a graph, according to given rules. The searchers’ goal is to
capture the fugitive, and the fugitive tries to escape. Here the interest lies in minimising
the resources needed to guarantee capture. Typically this means minimising the number of
searchers, but we also seek to bound the number of rounds of the game, if the searchers
can only move one by one. Search games have proven very useful for providing a deep
understanding of structural and algorithmic properties of width parameters of graphs, such
as treewidth [8, 43], pathwidth [9], cutwidth [30], directed treewidth [26], treedepth [33], and
b-branched treewidth [14, 32].

The crux in relating a given variant of a search game to a width parameter often lies
in the question of whether the game is monotone, i. e. whether the searchers always have
a winning strategy in which a previously cleared area never needs to be searched again –
without needing additional resources. Furthermore, monotonicity of a search game provides
a polynomial space certificate for proving that determining the winner is in NP.

In their classic paper [43], Seymour and Thomas proved monotonicity of the cops and
robber game characterising treewidth. They use a very elegant inductive argument via the
dual concept of brambles. In this paper we study a variation of this game, where k cops try
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to capture a robber, but they are limited to placing at most one cop per round and playing
at most q rounds, for a fixed number q ∈ N. It is an open question from [13], whether this
game is monotone. We give a positive answer to this question.

The notion of treedepth was first introduced by Nešetřil and Ossona de Mendes [33]. They
exhibit a number of equivalent parameters, and a characterisation by a monotone game is
implicitely given. This was subsequently made more explicit in [19]. In [18], a characterisation
by a different game called lifo game is given for which monotonicity is proven. The game
we study can be seen as generalising the monotone game implicit in [33]. However, it also
captures treewidth and it is not monotone by definition.

Recently, width parameters received a renewed interest in the context of counting ho-
momorphisms and the expressive power of logics [12, 20, 11, 41, 13]. In this context a
non-monotone search game characterisation of the width parameter is useful to ensure that
there are no graphs of higher width that can be added to the graph class without changing the
expressive power of the logic [34, 13]. The main obstacle then is to find such a non-monotone
characterisation, as the natural characterisation as a search-game of many graph parameters
is inherently monotone. Bounded depth treewidth and the game studied in this paper were first
defined in [13]. An equivalent characterisation of these graph classes by so-called k-pebble
forest covers of depth q, which is bounded width treedepth, was already given in [1].

Homomorphism Counts. Homomorphism counts are an emerging tool to study equivalence
relations between graphs. Many equivalence relations between graphs can be characterized
as homomorphism indistinguishability relations, these include graph isomorphism [29], graph
isomorphism relaxations [31, 22, 40], cospectrality (folklore) and equivalence with respect to
first-order logic with counting quantifiers [12, 20, 11, 13]. In order to study the expressiveness
of such equivalence relations, it is crucial to know under which circumstances distinct graph
classes yield distinct equivalence relations. Towards this question one considers the closure
of a graph class under homomorphism indistinguishability. Let F be a graph class. Two
graphs G, H are homomorphism indistinguishable over F , if for all F ∈ F the number of
homomorphisms from F to H equals the number of homomorphisms from F to G. The graph
class F is homomorphism distinguishing closed, if for every graph F /∈ F there exists two
graphs G, H, that are homomorphism indistinguishable over F but that do not have the
same number of homomorphisms from F . It has been conjectured by Roberson [39], that all
graph classes that are closed under taking minors and disjoint unions are homomorphism
distinguishing closed. So far the list of graph classes for which the conjecture is confirmed
is short: the class of all planar graphs [39], graph classes that are essentially finite [42], the
classes of all graphs of treewidth at most k − 1 [34] and the classes of all graphs of treedepth
at most q [13]. The latter two results rely on characterisations of the graph classes in terms
of non-monotone cops-and-robber games. We study bounded depth treewidth, which bounds
both the width and the depth simultaneously. We give a game characterisation that does
not rely on monotonicity, and as a consequence we obtain that the classes of all graphs of
bounded depth treewidth are also homomorphism distinguishing closed.

Our Contribution. We show the following (cf. Theorem 27).

Fix integers k, q ≥ 1. For every graph G the following are equivalent.
G has a tree decomposition of width at most k − 1 and depth at most q.
k cops have a monotone winning strategy in the cops and robber game on G with at most
q placements.
k cops have a winning strategy in the cops and robber game on G with at most q placements.
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The equivalence between the last two statements gives a positive answer to an open question
from [13]. Our proof of monotonicity gives both a proof of monotonicity for the classical cops
and robber game characterising treewidth as well as for the game characterising treedepth as
special cases, by removing the bound on the number of rounds or respectively the number of
cops. As a corollary, we obtain the following (cf. Theorem 18).

Let k, q ≥ 0 be integers. The class of all graphs having a tree decomposition of width at most
k − 1 and depth at most q is homomorphism distinguishing closed.

Proof Techniques. In contrast to the proof of monotonicity of the classic cops and robber
game [43], our proof does not use a dual concept such as brambles. Instead, we modify
a (possibly non-monotone) winning strategy, turning it first into what we call a pre-tree
decomposition, and then cleaning it up while keeping track of width and depth, thus finally
transforming the pre-tree decomposition into a monotone winning strategy. Our concept of
pre-tree decomposition is inspired by decompositions of matroids and it is based on ideas
from [3, 7]. Our cleaning-up technique is similar to the proof of monotonicity of the game
for b-branching treewidth [32]. However, the cleaning-up technique in [32] loses track of the
number of cop movements, as local modifications may have non-local effects that are not
controlled. We need to keep track in order to control the depth.

This poses a major challenge which we resolve in our proof by a fine grained cleaning-up
technique in our pre-tree decomposition based on a careful decision of which vertices to “push
up and through the tree” and which to “push down”. The vertices “pushed up” may have an
effect on the part of the pre-tree decomposition that was processed in previous steps, which
we manage to control by a vertex exchange argument. Additionally we keep track of how the
first modification at some node in the pre-tree decomposition relates back to the original
strategy. We believe that our techniques will also help in future research.

Our proof provides an independent proof of monotonicity of the classic game characterising
treewidth as a special case, namely when q is greater than or equal to the number of vertices
of the graph. Our proof strategy is entirely different of the original proof of [43], as it does
not use an equivalence via a dual object such as brambles. Instead, we provide a more direct
transformation of a (possibly non-monotone) winning strategy.

Further Related Research. Search games are used to model a variety of real-world problems
such as searching a lost person in a system of caves [36], clearing contaminated tunnels [28],
searching environments in robotics [24], and modelling bugs in distributed environments [17],
cf. [16] for a survey.

There is a fine line between games that are monotone and those that are not. For example,
the marshalls and robber game played on a hypergraph is a natural generalisation of the
cops and robber game, it is related to hypertreewidth, but it is not monotone [2]. However,
the monotone and the non-monotone variants are strongly related [5] to each other. In a
directed graph setting the games are also not monotone [27].

Structure of the Paper. In Section 2 we fix our notation and we define tree decompositions
of bounded depth and width. Section 3 introduces pre-tree decomposition, relevant properties,
and establishes a relation to tree decompositions. The game is introduced in Section 4, and
in Section 5 we give the main construction, showing how to make a strategy tree exact while
maintaining the bounds on width and depth. The insights given by our answer to the open
question in the area of homomorphism counts are briefly discussed in Section 6. Due to space
restrictions all proofs are deferred to the appendix.
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2 Preliminaries

Sets and Partitions. Let A be a finite set. We write 2A to denote the power-set of A and,
for k ∈ N,

(
A

≤k

)
to denote all subsets of A of size ≤ k. Part(A) is the set of all ordered

partitions of A, where we allow partitions to contain multiple (but finitely many) copies of
the empty set. Let π = {X1, . . . , Xd} ∈ Part(A) and F ⊆ A. For i ∈ [d], the partition

iXi→F := {X1 \ F, . . . , Xi−1 \ F, Xi ∪ F, Xi+1 \ F, . . . , Xd \ F},

is called the F -extension in Xi of π. A function w : Part(A) → N is submodular if, for all
π, π′ ∈ Part(A), for all sets X ∈ π and Y ∈ π′ with X ∪ Y ̸= A, it holds that

w(π) + w(π′) ≥ w(πX→Y ) + w(π′
Y →X

).

Let f : A → B be a function and C ⊆ A. By f |C we denote the restriction of f to C,
i. e. f |C : C → B and f |C(c) = f(c), for all c ∈ C.

Graphs. A graph G is a tuple (V (G), E(G)), where V (G) is a finite set of vertices and
E(G) ⊆

(
V (G)

≤2
)

is the set of edges. We usually write uv or vu to denote the edge {u, v} ∈ E(G).
We write

−−−→
E(G), when we orient the edges of G, that is

−−−→
E(G) := {(u, v), (v, u) | uv ∈ E(G)},

and call (u, v) ∈
−−−→
E(G) an arc. If G is clear from the context we write V, E instead of

V (G), E(G). By G◦ we denote the graph obtained from G by adding all self-loops that
are not present in G, that is V (G◦) := V (G) and E(G◦) := E(G) ∪ {vv | v ∈ V (G)}. For
U ⊆ V we write G[U ] to denote the subgraph of G induced by U . For v ∈ V we write
EG(v) := {uv | uv ∈ E(G)} for the edges incident to v and NG(v) := {u | uv ∈ E(G)} for its
neighbours.

A tree is a graph where any two vertices are connected by exactly one path. A rooted
tree (T, r) is a tree T together with some designated vertex r ∈ V (T ), the root of T . At
times, the following alternative definition is more convenient. We can view a rooted tree
(T, r) as a pair (V (T ), ⪯), where ⪯ is a partial order on V (T ) and for every v ∈ V (T ) the
elements of the set {u ∈ V (T ) | u ⪯ v} are pairwise comparable: The minimal element
of ⪯ is precisely the root of T , and we let v ⪯ w if v is on the unique path from r to w.
Let t, t′ ∈ V (T ), we call t∗ ∈ V (T ) the greatest common ancestor if t∗ ⪯ t, t′ but for all
t′′ ∈ V (T ) with t∗ ≺ t′′ either t′′ ̸⪯ t or t′′ ̸⪯ t′. By L(T ) we denote the set of all leaves of T ,
that is L(T ) := {ℓ ∈ V (T ) | there is no s ∈ V (T ) such that ℓ ≺ s} is the set of all maximal
elements of ⪯. All vertices that are not leafs are called inner vertices.
▶ Definition 1. Let G be a graph, let (T, r) be a rooted tree and let β : V (T ) → 2V (G) be a
function from the nodes of T to sets of vertices of G. We call (T, r, β) a tree decomposition
of G, if
(T1)

⋃
t∈V (T ) G[β(t)] = G, and

(T2) for every vertex v ∈ G, the graph Tv := T [{t ∈ V (T ) | v ∈ β(t)}] is connected.
The sets β(t) are called the bags of this tree decomposition.

The width of a tree decomposition (T, r, β) is wd(T, r, β) := maxt∈V (T ) |β(t)| − 1, the
depth is dp(T, r, β) := maxℓ∈L(T ) |

⋃
t⪯ℓ β(t)|. The treewidth of a graph G is the minimum

width of any tree decomposition of G, the treedepth of a graph G is the minimum depth
of any tree decomposition (see [13]). For k, q ≥ 1 we define the class T k

q to be all graphs
that have a tree decomposition (T, r, β) with wd(T, r, β) ≤ k − 1 and dp(T, r, β) ≤ q. The
following lemma is a well known consequence from (T2).
▶ Lemma 2. Let G be a graph and U ⊆ V (G) connected in G. Let (T, r, β) be a tree
decomposition of G, then TU := T [{t ∈ V (T ) | U ∩ β(t) ̸= ∅}] is connected.
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3 Pre-Tree Decomposition, Exactness and Submodularity

Here we consider a definition of tree decompositions that is inspired by matroid tree decom-
positions [23]. We relax this definition into what we call a pre-tree decomposition.

▶ Definition 3. Let G = (V (G), E(G)) be a graph. Let X ⊆ E(G). We define the boundary
of a set of edges δ(X) := {v ∈ V (G) | ∃e ∈ X, e′ ∈ E(G) \ X, v ∈ e ∩ e′}. Let π be a partition
of E(G). We define the boundary of a partition

δ(π) :=
⋃

X∈π

δ(X).

A tuple (T, r, β, γ), where (T, r) is a (rooted) tree, β : V (T ) → 2V (G) and γ :
−−−→
E(T ) → 2E(G),

is a (rooted) pre-tree decomposition if:
(PT1) β(r) = ∅ and for every connected component C of G, there is a child c of the root

with γ(r, c) = E(C).
(PT2) For every leaf ℓ ∈ L(T ) with neighbour t, it holds that |γ(t, ℓ)| ≤ 1.
(PT3) For every t ∈ V (T ), the tuple πt is a partition of E(G) and δ(πt) ⊆ β(t).

For every internal node t ∈ V (T ) \ L(T ), we define πt := (γ(t, t1), . . . , γ(t, td)), where
N(t) = {t1, . . . , td} is an arbitrary enumeration of the neighbours of t. For a leaf ℓ ∈ L(T )
with parent p we define πℓ := (γ(ℓ, p), γ(ℓ, p)).

(PT4) For every edge st ∈ E(T ), it holds that γ(s, t) ∩ γ(t, s) = ∅.
We call an edge st ∈ E(T ) exact if γ(s, t) ∪ γ(t, s) = E(G), we call (T, r, γ, β) exact, if every
edge is exact and β(t) = δ(πt), for all t ∈ V (T ). We call β(t) the bag at node t and γ(s, t)
the cone at arc (s, t).

The reader may note that the boundary of a set of edges is symmetric, that is for all
X ⊆ E(G) it holds that δ(X) = δ(E(G) \ X). Furthermore it holds that v ∈ δ(X) if and
only if ∅ ≠ EG(v) ∩ X ̸= EG(v), for all v ∈ V (G). The function γ describes a partition of the
edges of the graph at every inner node, whereas the function β gives a vertex separator for
this partition. This separator may contain more vertices than necessary at a certain node,
which is needed to define the depth of a pre-tree decomposition, as seen below. For some edge
st ∈ E(T ) with s ≺ t, we can view γ(s, t) as the set of edges that need to be decomposed in
the subtree below and γ(t, s) as the set of edges that is for sure decomposed somewhere else
within the tree. With this point of view the axioms correspond to the following ideas:
(PT1) We start by separating the different connected components of the graph and assign

one distinct subtree to decompose each component. This way we also ensure that all of
the graph is decomposed in some subtree.

(PT2) We want to decompose the graph into single edges. We do allow empty leafs and
even empty subtrees, to ease our cleaning up procedure in the following sections. The
reader may recall that the root of a rooted tree is never a leaf, by definition.

(PT3) At every node of the tree we make sure that all edges of the original graph are
accounted for and that β is indeed a separator for the given partition.

(PT4) If a parent node assigns an edge to the set that still has to be decomposed, the child
node can not assign this edge to the set that is already decomposed somewhere else.
But the other direction is possible, if the parent node assigns an edge to the set that
is decomposed somewhere else, the child can still assign it to one of its subtrees. If the
latter is also not the case the edge is exact.

Similar to the definition of width and depth for tree decompositions we define the width
and depth of a pre-tree decomposition. We slightly adapt the definition of depth as (T2)
does not hold in pre-tree decompositions.
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6:6 Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

▶ Definition 4. The width of a partition π of the edges of a graph is

wd(π) := |δ(π)|.

The width of a pre-tree decomposition is

wd(T, r, β, γ) := max
t∈V (T )

|β(t)| − 1.

The depth of a rooted pre-tree decomposition is

dp(T, r, β, γ) := max
t∈V (T )

∑
r≺s⪯t

|β(s) \ β(ps)|,

where ps is the parent of s.

The reader may note that the width of a pre-tree decomposition only gets smaller if one
sets β(t) := δ(πt), for all nodes t ∈ V (T ), but the depth can get larger. We show that the
width of a partition of the edges as defined above is submodular. We need this property to
show that our main construction does not enlarge the width of the pre-tree decomposition.

▶ Lemma 5 ([7]). For every graph G, wd is submodular.

We continue this section with some lemmas, that help us to get comfortable with the
definition of a pre-tree decomposition and are useful to prove that our cleaning up procedure
in the following sections is correct. We start with a lemma about the cones along a path of
exact edges. It is a direct consequence of exactness and the fact that the cones incident to a
node form a partition of the edges.

▶ Lemma 6. Let (T, r, β, γ) be a pre-tree decomposition of a graph G. Let P = t1, . . . , tℓ

be a path in T , such that every edge titi+1, for i ∈ [ℓ − 1], is exact. Then it holds that
γ(t1, t2) ⊇ γ(t2, t3) ⊇ . . . ⊇ γ(tℓ−1, tℓ).

The following lemma shows, that (PT3) spreads over exact edges, that is any subtree of
T that only contains exact edges induces a partition of the edges of the original graph. It is
again a direct consequence of exactness and the partitions at the nodes together with the
previous lemma.

▶ Lemma 7. Let (T, r, β, γ) be a pre-tree decomposition of a graph G and let (T ′, r′)
be a subtree of (T, r), where r′ is the minimal node of T ′ with respect to ⪯, such that
all edges of T ′ are exact. We pick arbitrary enumerations of NT (V (T ′)) := {t1, . . . , ta}
and of L(T ) ∩ L(T ′) := {ℓ1, . . . , ℓb}. We define U := {t1, . . . , ta, ℓ1, . . . , ℓb} and define
s : U → V (T ′) to be the natural mapping to the corresponding neighbour in V (T ′). Then
(γ(s(t1), t1), . . . γ(s(ta), ta), γ(s(ℓ1), ℓ1), . . . , γ(s(ℓ1), ℓ1))) is an ordered partition of E(G).

The next lemma is needed to prove how one can translate exact pre-tree decompositions
into tree-decompositions. Furthermore it will help us bound the depth within our cleaning up
procedure in the following sections. The Lemma follows from the combination of Lemma 6
with the fact that the boundary of the partition is the union of the boundaries of the cones.

▶ Lemma 8. Let (T, r, β, γ) be a pre-tree decomposition of a graph G and let (T ′, r′) be a
subtree of (T, r), where r′ is the minimal node of T ′ with respect to ⪯, such that all edges
of T ′ are exact. It holds that the induced subgraph T ′

v := T [t ∈ V (T ′) | v ∈ δ(πt)], for every
vertex v ∈ V (G), is connected. In particular, if r = r′, for every t ∈ V (T ′) it holds that∑

s⪯t
s̸=r

|δ(πs) \ δ(πps)| = |
⋃
s⪯t

δ(πs)|,

where ps is the parent of s.
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We conclude this section with a lemma that shows that a pre-tree decomposition of a
graph G is indeed a relaxation of a tree-decomposition of G. If every edge is exact and all
bags are exactly the boundary of the partition then we can construct a tree decomposition.
We need to start with a pre-tree decomposition of the graph G◦ with all self-loops added
to ensure that every non-isolated vertex does appear in some bag and that the components
corresponding to isolated vertices are covered by the pre-tree decomposition. If we drop
the cones from the tuple we get a tree decomposition by Lemmas 7 and 8. On the other
hand we can transform a tree-decomposition into a pre-tree decomposition, by copying the
tree-decomposition of each connected component of G and adding leaves that correspond to
the edges of G◦.

▶ Lemma 9. Let k, q ≥ 1. Let G = (V, E) be a graph. Any tree-decomposition of G of width
≤ k − 1 and depth ≤ q gives rise to an exact pre-tree decomposition of G◦ of width ≤ k − 1
and depth ≤ q and vice versa.

Proof. Let (T, r, β, γ) be an exact pre-tree decomposition of G◦ of width ≤ k − 1 and depth
≤ q. We define β′ : V (T ) → 2V (G) as follows

β′(t) :=
{

{v} if t ∈ L(T ) and r is parent of t and γ(r, t) = {vv},

β(t) otherwise.

▷ Claim 10. (T, β′) is a tree-decomposition of width ≤ k − 1 and depth ≤ q.

Proof. From (PT1), (PT2) and Lemma 7 applied to the complete tree (T, r) we get that for
every edge uv ∈ E(G◦) there is some leaf ℓ with parent p and γ(p, ℓ) = {uv}. Thus if u = v,
then β′(ℓ) = {v} and thus vv ∈ E(G[β′(ℓ)]). Otherwise it holds that uu, vv ∈ E(G◦) \ {uv}
and thus u, v ∈ β′(ℓ) and uv ∈ E(G[β′(ℓ)]). All in all we get that (T1) holds.

By Lemma 8 applied to the complete tree (T, r) we know that all Tv are connected.
Therefore (T2) also holds and (T, β′) is a tree-decomposition.

The width and depth are obvious as k, q ≥ 1. ◁

Now let (T, r, β) be a tree-decomposition of G of width ≤ k − 1 and depth ≤ q. W.l.o.g.
β is tight, that is for all t ∈ V (T ) and v ∈ β(t), that (T, r, β′), where β′(t) := β(t) \ {v}
and β′(s) = β(s), for all s ∈ V (T ) \ {t}, is not a tree-decomposition of G. We construct
a new tree T ′ with root r′ and functions β′ : V (T ′) → 2V (G), γ :

−−−→
E(T ′) → 2E(G◦) and

f : V (T ′) \ (L(T ′) ∪ {r′}) → V (T ) as follows. Let C be a connected component of G and
let VC := {t ∈ V (T ) | V (C) ∩ β(t) ̸= ∅}. By Lemma 2 VC is connected. If C contains only
an isolated vertex v, then VC = {t}, for some t ∈ V (T ). We add a new node tv to T ′ and
connect it to the root. We set β′(tv) = ∅, γ(r′, tv) = {vv} and γ(tv, r′) = E(G◦) \ {vv}.
Otherwise let TC be a copy of the subtree induced by VC with root rC and vertices V ∗

C and
f |V ∗

C
: V ∗

C → VC the natural bijection between the copies and their originals. We attach rC

to the root r′. For every v ∈ V (C), there is some tv ∈ VC such that v ∈ β(tv), as C is not
an isolated vertex. We add a new leaf t′

v that we attach to f |−1
V (TC )(tv) and set β′(t′

v) = {v},
γ(f |−1

V ∗
C

(tv), t′
v) = {vv} and γ(t′

v, f |−1
V ∗

C
(tv)) = E(G◦) \ {vv}. For every e ∈ EG(C) there is

some te ∈ VC such that e ⊆ β(te). We add a new leaf t′
e that we attach to f |−1

V ∗
C

(te) and
set β′(t′

e) = e, γ(f |−1
V ∗

C
(te), t′

e) = {e} and γ(t′
e, f |−1

V ∗
C

(te)) = E(G◦) \ {e}. For every node
t ∈ V ∗

C with parent p we add all edges e ∈ EG(C), where t′
e is a descendant of t, and

all self-loops vv ∈ EG◦(C), where t′
v is a descendant of t, to γ(p, t). Furthermore we set

γ(t, p) := E(G◦) \ γ(p, t) and β′(t) := δ(πt) ⊆ β(f(t)) ∩ V (C). By tightness of β there is some
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v ∈ β(f(ℓ)) such that Tv = {f(ℓ)}, for every ℓ ∈ L(TC), thus no leaf of TC is a leaf in T ′, thus
(T ′, r′, β′, γ) satisfies (PT2). (PT1), (PT3) and (PT4) hold by construction. Furthermore
every edge is exact by construction. Thus we get that (T ′, r′, β′, γ) is an exact pre-tree
decomposition of G◦.

The width is obvious as every bag in β′ is a subset of some bag in β. To see that the
depth bound also holds we observe two things. For every leaf ℓ ∈ L(T ′) with parent p we
get that β′(ℓ) \ β′(p) = ∅. For every inner node t ∈ V (T ′) \ L(T ′) with parent p we get
that β′(t) \ β′(p) ⊆ β(f(t)) and, if p ̸= r′, β′(t) \ β′(p) ⊆ β(f(t)) \ β(f(p)), by the tightness
of β. ◀

4 The Game

In the cops and robber game on a graph G, the cops occupy sets X of at most k vertices of
G, and the robber moves on edges of G. In order to make the rules precise, we need edge
components of G that arise when the cops are blocking a set X.

▶ Definition 11. Let G = (V, E) be a graph and X ⊆ V . We let the edge component graph
of G with respect to X be the graph GX obtained as the disjoint union of the following graphs.
(In order to make all graphs disjoint we introduce copies of vertices where needed.)

For every uv ∈ E(G[X]), the graph Guv := ({u, v}, {uv}), and
for every connected component C of G\X, the graph GC , with V (GC) := V (C)∪NG(V (C))
and E(GC) := E(C) ∪ E(V (C), X), where E(V (C), X) is the set of edges of G incident
to both a vertex of C and a vertex in X.

The reader may note that GX may contain multiple copies of the vertices in X, but
exactly one copy of each edge in G.

▶ Observation 12. There is a natural bijection Ψ: E(GX) → E(G) between the edges of GX

and the edges of G.

▶ Definition 13 (q-rounds k-cops-and-robber game). Let G be a graph and let k, q ≥ 1. The
q-rounds k-cops-and-robber game CRk

q (G) is defined as follows:
If G does not contain any edges the cop player wins immediately.
The cop positions are sets X ∈ V (G)≤k.
The robber position is an edge uv ∈ E(G).
The initial position (X0, u0v0) of the game is X0 = ∅ and u0v0 ∈ E(G), thus the game
starts with no cops positioned on G and the robber on an arbitrary edge in a connected
component of G of his choice.
For X ⊆ V (G) and uv ∈ E(G), we write esc(X, uv) := Ψ(E(C)) for the component C of
the graph GX , such that uv ∈ E(C). We call this component the robber escape space.
Thus if the cops are at positions X and robber at an edge uv we write (X, esc(X, uv)) for
the position of the game.
In round i the cop player can move from the set Xi−1 to a set Xi, if |Xi \ Xi−1| ≤ 1, that
is the cop player can add at most one new vertex to his position.
In round i the robber player can move along a path with no internal vertex in Xi−1 ∩ Xi.
Thus the robber player can move to some edge uivi, such that the edge Ψ−1(uivi) is in
a connected component of GXi that is contained in Ψ−1(esc(ui−1vi−1, Xi−1 ∩ Xi)) via
a path p = w1, . . . , wℓ where {w1, w2} = {ui−1, vi−1} and {wℓ−1, wℓ} = {ui, vi} and
{w2, . . . , wℓ−1} ∩ Xi ∩ Xi−1 = ∅.
The cop-player wins in round i, if {ui, vi} ⊆ Xi, and we say the cop player captures the
robber in round i. The robber-player wins if the cop player has not won in round q.
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We call the game monotone q-round k-cops-and-robber game, if we further restrict the
movement of the cop player such that always esc(Xi−1, ui−1vi−1) ⊇ esc(Xi−1 ∩ Xi, ui−1vi−1)
and write mon-CRk

q (G).

This notion of monotone is also known as robber-monotone. One can also define the
notion of cop-monotone, that is during a single play, the cop player may never revisit a
vertex they have previously left. This is the stronger notion of monotone as a cop-monotone
play is also robber-monotone. Our construction goes through unchanged with the notion of
cop-monotone as the strategy that is derived from the final decomposition is cop-monotone.
The game played on the graph G◦ corresponds to a game on G, where the robber can hide
both inside a vertex or an edge. It is easy to see that this does not benefit the robber
player, that is he wins the game CRk

q (G) if and only if he wins the game CRk
q (G◦), as the

components that are reachable by the robber player are essentially the same. In [13], the
authors introduce a cops-and-robber game, where the robber player can only hide in the
vertices. Again this does not pose a restriction for the robber player with the same argument
as above. There is a tight connection between the cops and robber game defined above and
tree decompositions of graphs.

▶ Lemma 14 ([13]). Let G be a graph and k, q ∈ N. The cop player wins mon-CRk
q (G) if

and only if G ∈ T k
q .

Towards strengthening the above connection to also include the non-monotone game we
first introduce how to construct a pre-tree decomposition from a winning strategy of the cop
player.

▶ Definition 15 (strategy tree). Let G be a graph without isolated vertices and let k, q ∈ N.
Let σ : V (G)≤k × E(G) → V (G)≤k a cop strategy such that that for all X ∈ V (G)≤k, for
all uv ∈ E(G) and for all u′v′ ∈ esc(X, uv) we have that σ(X, uv) = σ(X, u′v′). We write
σ(X, esc(X, uv)) instead of σ(X, uv).

The strategy tree of σ is a pre-tree decomposition (T, r, β, γ), inductively defined as
follows:

β(r) = ∅,
for every connected component C of G, there is a child c of the root r and γ(r, c) = E(C),
for every node t ∈ V (T ) \ {r} with parent s ∈ V (T ),

if the robber player is caught, we set β(t) = e, where γ(s, t) = {e},
else β(t) = σ(β(s), γ(s, t)) and
for every connected component C of Gβ(t), that has a non-empty intersection with
Ψ−1(γ(s, t)), there is a child c of t and γ(t, c) = Ψ(E(C)),
γ(t, s) := E(G) \

⋃
c child of t γ(t, c), if t /∈ L(T ), and

γ(t, s) := E(G) \ γ(s, t), if t ∈ L(T ).
We call t ∈ V (T ) a branching node if the cop player placed a new cop incident to the robber
escape space.

Observe that if t ∈ V (T ) is a leaf, then the robber is captured and the depth of (T, r, β, γ)
is ≤ q if and only if σ is a winning strategy in CRk

q (G).

Note that w.l.o.g. every child of the root is a branching node, as the cop player w.l.o.g.
only plays positions that are inside the component the robber player chose in the first round.
If the game is played on G◦, then every branching node that does not correspond to the
placement of a cop onto an isolated vertex has more than one child. We observe that the
monotone moves of the cop player correspond to the exact edges in the strategy tree by
construction.
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Ti =
Ti−1
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ti
1 ti

ai

. . .

. . .

Figure 1 The subtree Ti appearing in the construction.

▶ Lemma 16. For edge st ∈ E(T ), where s ≺ t it holds that the move σ(β(s), γ(s, t)) is
monotone if and only if st is exact.

The following lemma about the self-loops of the graph G◦ is key to prove the construction
in the next section does not enlarge the depth of the pre-tree decomposition. To prove this
one finds the node where the vertex incident to the self-loop was introduced into the bag. At
this node the self-loop either was not in the robber escape space in the first place or gets
removed from the robber escape space. Then as long as the cops occupy the vertex incident
to the self-loop, the self-loop is not reachable by the robber.

▶ Lemma 17. Considering the game on G◦ and some s ∈ V (T ) \ L(T ). For all self-loops
vv incident to β(s) it holds that either vv ∈ γ(s, ps) or there is a child c of s such that
γ(s, c) = {vv}. Furthermore s has a child c with γ(s, c) = {vv}, for some non-isolated vertex
v if and only if s is a branching node and v ∈ β(s) \ β(ps).

5 Making a Strategy Tree Exact

Our goal is to prove the following theorem.

▶ Theorem 18. Let G = (V (G), E(G)) be a graph, let k, q ≥ 1 and let (T, r, β, γ) be a
strategy tree for some cop strategy σ : V (G◦)k × E(G◦) → V (G◦)k. If σ is a winning strategy
in CRk

q (G◦), then there is a tree decomposition of G with width ≤ k − 1 and depth ≤ q.

To prove this we construct an exact pre-tree decomposition of G◦ from the strategy tree,
starting at the root r and traversing the tree nodes in a breadth-first-search. We then use
Lemma 9 to get the desired tree decomposition. When we consider a node we change the
pre-tree decomposition so that all incident edges are exact afterwards. Note that by the
choice of the traversal we only need to consider outgoing edges.

The Construction. Let (T, r, β, γ) be the pre-tree decomposition of G◦ from a winning
strategy as in Theorem 18. Let s1, . . . , snT

be an order of the nodes of T in bfs where s1 = r.
Let β0 := β and γ0 := γ. We construct a sequence (T, r, β0, γ0), . . . , (T, r, βnT

, γnT
) of pre-tree

decompositions, such that (T, r, βnT
, γnT

) is exact. We say si is considered in step i. Let

Ti := T [{s1, . . . , si} ∪ NT ({s1, . . . , si})] = T [V (Ti−1) ∪ NT (si)].

See Figure 1 for an illustration of Ti. (It will become clear that this is the subtree of all
nodes where the pre-tree decomposition is modified in or before step i. We also point out
that edges from Ti to T \ Ti may become non-exact during our modification process.)

If si is a leaf, there are no outgoing edges that are not exact, and we set βi := βi−1 and
γi := γi−1. Otherwise let ti

1, . . . , ti
ai

∈ NT (si) be all children of si.
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We pick pairwise disjoint F i
1, . . . , F i

ai
⊆ E(G◦), with

F i
j ⊆ γi−1(ti

j , si) ∩ γi−1(si, ti
j),

such that the partition π∗ that results from taking the F i
j -extensions in γi−1(si, ti

j) (in
arbitrary order) has the minimum size boundary. If there are multiple optimal choices
for F i

1, . . . , F i
ai

we select the one that minimizes the size of
⋃

j∈[ai] F i
j , if there are still

several options we break ties arbitrarily.
Let F i :=

⋃
j∈[ai] F i

j and Ri
j :=

((
γi−1(ti

j , si) ∩ γi−1(si, ti
j)

)
∪ F i

)
\ F i

j . For every vertex
p ∈ V (Ti) with child c we set

γi(p, c) :=



(
γi−1(si, ti

j) \ F i
)

∪ F i
j if (p, c) = (si, ti

j), for some j ∈ [ai],
γi−1(p, c) \ Ri

j if p = ti
j , for some j ∈ [ai],

γi−1(p, c) ∪ F i if p ≺ si,

γi−1(p, c) \ F i otherwise,

and

γi(c, p) :=


γi−1(c, p) ∪ Ri

j if (p, c) = (si, ti
j), for some j ∈ [ai],

γi−1(c, p) if p = ti
j , for some j ∈ [ai],

γi−1(c, p) \ F i if p ≺ si,

γi−1(c, p) ∪ F i otherwise,

and all other uv ∈
−−−→
E(T ) we set γi(u, v) := γi−1(u, v). Furthermore we set

βi(t) :=
{

δ(πi
t) if t ∈ V (Ti),

βi−1(t) otherwise.

Intuitively in the construction above we pick F i
j , that is the set of edges that we add to

the cone at the arc pointing towards ti
j , from the set of edges that are not covered by the

cones along the arcs in such a way that the boundary at si is minimized. Ri
j then corresponds

to the edges that we need to remove from all cones at arcs that point away from si at the
child ti

j and in turn add to the cone at the arc pointing towards si to make the edge exact.
Then we push the change at si through Ti−1, that is for all edges in Ti−1 we add F i to the
arc that points towards si and remove F i from the arcs in the other direction. This push can
also be interpreted in terms of extensions.

▶ Lemma 19. Let t ∈ V (Ti) \ {si} and t′ is next node on the path from t to si in T . Then

πi
t =

(
πi−1

t

)
γi−1(t,t′)→γi(t′,t)

and if additionally t ∈ V (Ti−1) also

πi
t =

(
πi−1

t

)
γi−1(t,t′)→F i .

Observe furthermore that if βi(si) = βi−1(si), then there are no changes to the bags at
other nodes than the ti

j by minimality of |F i|, and if βi(si) ̸= βi−1(si), we have |βi(si)| <

|βi−1(si)| again by the minimality of the choice. For every i ∈ [nT ], before step i we only
remove edges from the cones pointing downwards from si, thus we obtain the following
observation.

▶ Lemma 20. Let i, j ∈ [nT ] such that si is the parent of sj . Then γα(si, sj) ⊆ γ(si, sj), for
all α < i.
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The Proof Idea. We prove Theorem 18 in three steps. First we prove that the construction
indeed yields an exact pre-tree decomposition. Next we show that the width can be bounded
as desired and lastly we prove that the construction yields the desired depth.

In step i, every edge incident to si is made exact and for every other edge in Ti we remove
from one arc exactly what we add to the other arc. We get that our construction indeed
yields an exact pre-tree decomposition.
▶ Lemma 21. For all i ∈ [nT ], (T, r, βi, γi) is a pre-tree decomposition. Furthermore all
edges in E(Ti) are exact.

Hence, for i = nT , we get that (T, r, βnT
, γnT

) is an exact pre-tree decomposition. Note
that it is possible that γnT

(s, t) is empty for an arc (s, t) ∈
−−−→
E(T ). By Lemma 9 we obtain a

tree decomposition, from this pre-tree decomposition. We show below that the width and
depth are as stated in the theorem.

Our construction does not change the width of the decomposition. To prove this we
observe that in step i the bound in si is minimal. We then push the change through the
subtree Ti and find that if a change would increase the width, we could push this change
back to the node si and find an even smaller bound there, which contradicts the minimality
of our choice. This argument yields the following lemma.
▶ Lemma 22. wd(T, r, βi, γi) ≤ wd(T, r, β, γ), for all i ∈ [nT ].
Proof. γi(t′, t) We prove the statement for all 0 ≤ i ≤ nT by induction. As (T, r, β0, γ0) =
(T, r, β, γ), the statement clearly holds for i = 0. Next we show that wd(T, r, βi, γi) ≤
wd(T, r, βi−1, γi−1), for all i ∈ [nT ]. Obviously |βi(t)| = |βi−1(t)|, for all t /∈ Ti. Furthermore
by construction |βi(si)| ≤ |βi−1(si)|. Let j ∈ [ai], let X := γi(si, ti

j) and let Y := γi−1(ti
j , si).

By Lemma 19 it holds that

|βi(ti
j)| = wd

((
πi−1

ti
j

)
Y →X

)
≤ wd(πi−1

ti
j

) ≤ |βi−1(ti
j)|

as otherwise by submodularity for the partitions πi−1
ti

j

and πi
si

, we get that

wd
((

πi
si

)
X→Y

)
< wd(πi

si
),

which contradicts the minimality of the bound for F i
1, . . . , F i

ai
.

Lastly assume there is a node t in V (Ti) \ {si, ti
1, . . . , ti

ai
} such that |βi(t)| > |βi−1(t)|.

We assume t is of minimal distance to si with this property. Let x0 = t, x1, . . . , xb = si be
the path from t to si. By minimality of the distance we know that |βi(x1)| ≤ |βi−1(x1)|.
Additionally we know that all edges on the path from si to x1 are exact in γi, as well as
the edge x1t in γi−1. Now let Y := γi−1(t, x1), Xα := γi(xα+1, xα) and Zα := γi(xα, xα+1),
for all 0 ≤ α < b. From Lemma 19 we get

(
πi−1

t

)
Y →F i =

(
πi−1

t

)
Y →X0

. Thus assuming
that wd

((
πi−1

t

)
Y →F i

)
= |βi(t)| > |βi−1(t)| = wd(πi−1

t ) using submodularity we get that
wd(πi

x1
) > wd

((
πi

x1

)
X0→Y

)
. As the edge x1t was exact at step i − 1, we know that

F ′ := Y \ X0 = F i \ Y ⊆ F i.

We now push this change back to si along the path x1, . . . , xb and we again find a contradiction
to the minimality of the bound of F i

1, . . . , F i
ai

. For this, let us assume we have pushed
the change to xα, that is we changed πi

xα
to π∗

xα
=

(
πi

xα

)
Xα−1→F ′ and we know that

wd(π∗
xα

) < wd(πi
xα

). As xαxα+1 is exact in γi, we get that
(
π∗

xα

)
(Zα\F ′)→Xα

= πi
xα

. Let

π∗
xα+1

:=
(

πi
xα+1

)
Xα→(Zα\F ′)

=
(

πi
xα+1

)
Xα→F ′

,

then by submodularity wd(π∗
xα+1

) < wd(πi
xα+1

). When we have pushed the change to α = b,
we find the desired contradiction. ◀
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To prove that our construction does not increase the depth we show that in every step i the
depth up to the nodes in Ti is bounded by the depth up to these nodes in the original tree. We
prove this by induction on the number of steps. We recall that V (Ti) = V (Ti−1)∪{ti

1, . . . , ti
ai

}
and that si ∈ L(Ti−1). For the nodes t ∈ V (Ti−1) we can directly build upon the induction
hypothesis. But the nodes ti

j , with j ∈ [ai], are added into the subtree. Here we need to
compare directly to the original bags, as we can no longer use that in step i − 1 the depth at
these nodes is bounded by the depth in the original strategy tree. We can prove for these
nodes that every vertex newly placed at one of these nodes in step i is also newly placed in
the original strategy. Then we can show that the difference between depth at these nodes
and their parent in step i can be bounded by the difference in the original strategy tree.

▶ Lemma 23. Every j ∈ [ai] satisfies βi(ti
j) \ βi(si) ⊆ β(ti

j) \ β(si).

Proof. Let v ∈ βi(ti
j) \ βi(si). Since v ∈ βi(ti

j) it holds that EG◦(v) ̸⊆ γi(ti
j , si). As v /∈ βi(si)

we get that v /∈ δ(γi(ti
j , si)) and thus EG◦(v) ∩ γi(ti

j , si) = ∅. By construction we have that
γi(ti

j , si) ⊇ γi−1(ti
j , si) = γ(ti

j , si), and thus vv /∈ γ(ti
j , si). As v ∈ βi(ti

j) = δ(πi
ti

j
), there are

two distinct children c1, c2 of ti
j such that v ∈ δ(γi(ti

j , cℓ)) and thus EG◦(v) ∩ γi(ti
j , cℓ) ̸= ∅,

for ℓ = 1, 2. By construction we have γi(ti
j , cℓ) ⊆ γi−1(ti

j , cℓ) = γ(ti
j , cℓ), for ℓ = 1, 2. And

thus v ∈ δ(πti
j
) ⊆ β(ti

j). By Lemma 17 there thus is a child c of ti
j such that γ(ti

j , c) = {vv}
and, by Lemma 17, v ∈ β(ti

j) \ β(si). ◀

For the nodes t ∈ V (Ti−1) we show that the depth is not only bounded by the depth
within the original pre-tree decomposition, but within the previous step. We do this by a
vertex exchange argument, that is we track all vertices added or removed from any bag within
Ti−1. For the vertices that are added to any bag in V (Ti−1) we get the following lemma.

▶ Lemma 24. Let i ∈ [nT ] and let t ∈ V (Ti−1). If v ∈ βi(t) \ βi−1(t), then v ∈ βi(t∗), for
all t∗ on the path from t to si.

Proof. Let t∗ ≠ t. Let t′ be the next node on the path from t to si. Per definition it
holds that γi(t, t′) = γi−1(t, t′) ∪ F i. As γi(t, t′) is the only set incident to t where edges
are added in step i, we get that v ∈ δ(γi(t, t′)). Combined with v /∈ δ(γi−1(t, t′)) we
get that EG◦(v) ∩ γi−1(t, t′) = ∅ and thus ∅ ≠ EG◦(v) ∩ F i ̸= EG◦(v). Now suppose that
v /∈ βi(t∗), and thus also v /∈ δ(γi(t∗, p)), where p is the next node on the path from t∗ to t. As
∅ ≠ EG◦(v)∩F i ̸= EG◦(v) this implies that EG◦(v)∩γi(t∗, p) = EG◦(v)∩(γi−1(t∗, p) \ Fi) = ∅.
We know from Lemma 21 that all edges in Ti are exact and thus that γi(t′, t) ⊆ γi(t∗, p) by
Lemma 6. Thus we get that EG◦(v) ∩ γi(t′, t) = ∅. This is a contradiction to the assumption
that v ∈ δ(γi(t, t′)) = δ(γi(t′, t)) and thus v ∈ βi(t∗). ◀

The next lemma is used to show that a vertex that disappears from a Observe that
if βi(si) = βi−1(si), then there are no changes to the bags at other nodes than the ti

j

by minimality of |F i|, and if βi(si) ̸= βi−1(si), we have |βi(si)| < |βi−1(si)| again by the
minimality of the choice.bag in V (Ti−1) at step i also disappears from the union of bags that
determine the depth at that bag, especially if a vertex disappears from the bag at si, then it
disappears from every bag in V (Ti).

▶ Lemma 25. Let i ∈ [nT ] and let t ∈ V (Ti−1). If v ∈ βi−1(t) \ βi(t), then v /∈ βi(t∗), for
all t∗ ∈ V (Ti−1) such that t is contained in the path from t∗ to si.

MFCS 2024



6:14 Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

Proof. We have EG◦(v) ∩ F i ̸= ∅.
Let t = si. Since v ∈ βi−1(si) = δ(πi−1

si
) it holds that EG◦(v) ̸⊆ γi−1(si, psi

). As v /∈ βi(si)
we get that v /∈ δ(γi(si, psi)) and thus EG◦(v) ∩ γi(si, psi) = EG◦(v) ∩ γi−1(si, psi) ∩ F i = ∅.
Now let t∗ ∈ V (Ti−1) and t′ be the next node on the path from t∗ to si. Then by Lemma 21
we get that γi(t∗, t′) ⊇ γi(psi

, si) ⊇ EG◦(v) and thus v /∈ βi(t∗).
Otherwise let t ̸= si Let t′ be the next node on the path from t to si. Since v ∈ δ(πi−1

t ),
we get that EG◦(v) ̸⊆ γi−1(t, t′). As v /∈ δ(γi(t, t′)) and EG◦(v) ∩ F i ̸= ∅ it follows that
EG◦(v) ⊆ γi(t, t′) = γi−1(t, t′) ∪ F i and that EG◦(v) ∩ γi−1(t′, t) ⊆ EG◦(v) ∩ F i. Assume
there is some t∗ ∈ V (Ti−1) such that v ∈ βi(t∗). We observe that due to Lemma 21 and
because all edges incident to v are contained in γi(t, t′), we get that t is not contained in the
path from t∗ to si. ◀

This induction then yields the following lemma.

▶ Lemma 26. For all i ∈ [nT ] and all t ∈ V (Ti), it holds that∑
r≺s⪯t

|βi(s) \ βi(ps)| ≤
∑

r≺s⪯t

|β(s) \ β(ps)|.

Proof. Let ℓ ∈ [nT ]. As by construction βℓ(t) = δ(πℓ
t ), for all t ∈ V (Tℓ), we get from Lemma 8

and Lemma 21 that |
⋃

s⪯t βℓ(s)| =
∑

r≺s⪯t |βℓ(s) \ βℓ(ps)|. Thus it suffices to show that
|
⋃

s⪯t βi(s)| ≤
∑

r≺s⪯t |β(s) \ β(ps)|.
We prove the statement by induction on the steps i. Recall that (T, r, β0, γ0) = (T, r, β, γ),

thus the statement holds for i = 0. Now assume the statement holds for i − 1, thus
for all t ∈ V (Ti−1) it holds that |

⋃
s⪯t βi−1(s)| ≤

∑
r≺s⪯t |β(s) \ β(ps)|. We recall that

V (Ti) = V (Ti−1) ∪ {ti
1, . . . , ti

ai
} and that si ∈ L(Ti−1). We consider all vertices that appear

at a bag at any node in Ti due to the changes in step i.
Let t ∈ V (Ti−1). Let U :=

(⋃
s⪯t βi(s)

)
\

(⋃
s⪯t βi−1(s)

)
. Let t∗ be the greatest common

ancestor of t and si. As t∗ is on every path from some node s ⪯ t to si, from Lemma 24
we know that u ∈ βi(t∗) \ βi−1(t∗), for all u ∈ U . Let W := βi−1(t∗) \ βi(t∗). As by
Lemma 22 |βi(t∗)| ≤ |βi−1(t∗)|, we know that |U | ≤ |W |. Applying Lemma 25 we get
that W ⊆

(⋃
s⪯t βi−1(s)

)
\

(⋃
s⪯t βi(s)

)
and using this vertex exchange we conclude that∣∣∣⋃s⪯t βi(s)

∣∣∣ ≤
∣∣∣⋃s⪯t βi−1(s)

∣∣∣.
Otherwise it holds that t = ti

j for some j ∈ [ai]. By construction we can conclude that⋃
s⪯t βi(s) =

⋃
s⪯si

βi(s)∪βi(t)\βi(si). We know that |
⋃

s⪯si
βi(s)| ≤

∑
r≺s⪯si

|β(s)\β(ps)|
and by Lemma 23 we have βi(t) \ βi(si) ⊆ β(t) \ β(si). Thus we can bound the union
|
⋃

s⪯t βi(s)| ≤
∑

r≺s⪯t |β(s) \ β(ps)|. ◀

Summarising all results we get the following equivalences.

▶ Theorem 27. Let k, q ≥ 1 and G be a graph. The following are equivalent:
(1) G admits a tree decomposition of width at most k − 1 and depth at most q.
(2) G◦ admits a tree decomposition of width at most k − 1 and depth at most q.
(3) G◦ admits an exact pre-tree decomposition of width at most k − 1 and depth at most q.
(4) The cop player wins mon-CRk

q (G◦).
(5) The cop player wins CRk

q (G◦).
(6) The cop player wins mon-CRk

q (G).
(7) The cop player wins CRk

q (G).
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6 Excursion on Counting Homomorphisms

In this section we give an overview over the field of counting homomorphisms and the
equivalence relations on graphs, that can be derived from these counts. We focus ourselves
to the results and open questions regarding the homomorphism counts from graphs in the
class T k

q , for fixed k, q ≥ 0.
We recall the definition of homomorphism distinguishing closed from the introduction.

In [13] the authors have reduced the question whether the class T k
q is homomorphism

distinguishing closed down to the question if monotonicity is a restriction for the cop player.
The following lemma is thus implied in [13].

▶ Lemma 28 ([13]). Let k, q ≥ 1. The graph class C := {G | cop player wins CRk
q (G)} is

homomorphism distinguishing closed.

In this paper we show that the cop player wins CRk
q (G) if and only if G ∈ T k

q , thus the
we get the following.

▶ Theorem 29. Let k, q ≥ 0. The class T k
q is homomorphism distinguishing closed.

7 Conclusion

We gave a new characterisation of bounded depth treewidth by the cops and robber game
with both a bound on the number of cops and on the number of rounds, where the cop
player is allowed to make non-monotone moves. As a corollary we gave a positive answer
to an open question on homomorphism counts. The core of our contribution is a proof of
monotonicity of this game. For this proof we substantially reorganise a winning strategy.
First we transform it into a pre-tree decomposition. Then we apply a breadth-first “cleaning
up” procedure along the pre-tree decomposition (which may temporarily lose the property of
representing a strategy), in order to achieve monotonicity while controlling the number of
cop rounds simultaneously across all branches of the decomposition via a vertex exchange
argument. As an interesting observation we obtain that cop moves onto some vertex not
incident to the robber escape space, i. e. to positions that are not part of the boundary, can
be ignored and the depth of the exact pre-tree decomposition is the number of cops placed
into the robber escape space. To see that consider the proof of Lemma 23 where we compute
how much larger the depth at some node ti

j at step i is than at the considered node si. The
depth increases only if the node ti

j is branching by Lemma 17 as ti
j has a child where the

cone contains only a self-loop and hence this is a move into the robber escape space.

▶ Corollary 30. dp(T, r, βnT
, γnT

) ≤ maxℓ∈L(T ) |{t ∈ V (T ) | t ⪯ ℓ and t is branching}|.

We note that we use a slightly different notion of branching node as [32], as we use a
different game characterisation. On a graph without isolated vertices our branching nodes are
branching nodes in the sense of [32], but not the other way around, as in the non-deterministic
cops and robber game, the cop player can chose if he whats to branch in the strategy tree,
that is if he wants to know the position of the robber or not.

In the future, it would be interesting to know if it is possible to give a proof that entirely
argues with game strategies (not requiring pre-tree decompositions), and we leave this open.
We also leave open whether a dual object similar to brambles can be defined for bounded
depth treewidth. Finally, given a winning strategy for k cops with q rounds, it would be
interesting to know if it is possible to bound the number of cops necessary for winning with
only q − 1 rounds in terms of k and q, given that the cop player still can win.
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7:2 Quantum Polynomial Hierarchies

1 Introduction

Introduced by Stockmeyer in 1976 [28], the Polynomial-Time Hierarchy (PH) is one of the
foundation stones of classical complexity theory. Intuitively, the levels of PH, denoted Σp

i

(respectively, Πp
i ) for i ≥ 1, yield progressively harder, yet natural, “steps up” from NP

(respectively, coNP). Specifically, a Σpi verifier is a deterministic poly-time Turing Machine
M which, given input x ∈ {0, 1}n, takes in i proofs yi ∈ {0, 1}poly(n), and satisfies:

if x is a YES input: ∃y1∀y2∃y3 · · ·Qiyi s.t. M(x, y1, . . . , yi) = 1 (1)
if x is a NO input: ∀y1∃y2∀y3 · · ·Qiyi s.t. M(x, y1, . . . , yi) = 0. (2)

Above, Qi is ∀ (∃) if i is even (odd). PH has played a prominent (and often surprising!) role
in capturing the complexity of various computing setups, including the power of BPP [26,
23], low-depth classical circuits [11], counting classes [29], and even near-term quantum
computers [9, 1, 8].

In contrast, the role of quantum analogues of PH in quantum complexity theory remains
embarrassingly unknown. So, where is the bottleneck? Defining “quantum PH” is not
the problem – indeed, Yamakami [31], Lockhart and González-Guillén [18], and Gharibian,
Santha, Sikora, Sundaram and Yirka [13] all gave different definitions of quantum PH.
Instead, the difficulty lies in proving even basic properties of quantum PH, which often runs
up against difficult phenomena lurking about open problems such as ∃ · BPP ?= MA and
QMA ?= QMA(2).

In this work, we resolve open questions regarding some fundamental properties of quantum
PH. We focus on three definitions of quantum PH, chosen because they naturally generalize1

QCMA and QMA. The first two definitions are from [13] (formal definitions in Section 2),
and the third is new to this work. The definitions all use a poly-time uniformly generated
quantum verifier V , and are given as follows (for brevity, here we only state the YES case
definitions):

QCPH: ∃y1∀y2∃y3 · · ·Qiyi s.t. V (x, y1, . . . , yi) outputs 1 with probability ≥ 2/3.
QPH: ∃ρ1∀ρ2∃ρ3 · · ·Qiρi s.t. V (x, ρ1, . . . , ρi) outputs 1 with probability ≥ 2/3.
pureQPH: ∃|ψ1⟩∀|ψ2⟩∃|ψ3⟩ · · ·Qi|ψi⟩ s.t. V (x, |ψ1⟩, . . . , |ψi⟩) outputs 1 with probability
≥ 2/3.

In words, QCPH, QPH, and pureQPH utilize poly-size quantum verifiers taking in classical,
mixed quantum, and pure quantum proofs, respectively. It is immediate from the definitions
that QCMA ⊆ QCPH, QMA ⊆ QPH, and QMA ⊆ pureQPH. Beyond this, not much is clear.
For example, a standard use of PH is via its collapse theorem – if for any i, Σpi = Πp

i , then
PH = Σpi . Do any of QCPH, QPH, or pureQPH satisfy such a collapse theorem? Does error
reduction hold for QPH or pureQPH? What is the relationship between QCPH, QPH, and
pureQPH? Note that standard convexity arguments (as used for e.g. QMA) cannot be used
to argue QPH = pureQPH, due to the presence of alternating quantifiers (which make the
verification non-convex in the proofs). Can one recover celebrated results for these hierarchies
analogous to the Karp-Lipton [20] Theorem for PH?

Our results. 1. Collapse Theorem for QCPH. We first resolve an open question of [13] by
giving a collapse theorem for QCPH.

1 QCMA and QMA are quantum generalizations of Merlin-Arthur (MA), with a classical proof and quantum
verifier and a quantum proof and quantum verifier, respectively.
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▶ Theorem 1. If for any k ≥ 1, QCΣk = QCΠk, then QCPH = QCΣk.

This is in contrast to QPH, for which a collapse theorem is believed difficult to show, as it
would imply a subsequent collapse2 QMA(2) ⊆ PSPACE.

2. Quantum-Classical Karp-Lipton Theorem for QCPH. The celebrated Karp-Lipton the-
orem [20] states that if SAT can be solved by polynomial-size circuits, then PH collapses to
Σp2. We next leverage Theorem 1 and other techniques to obtain a Karp-Lipton Theorem for
QCPH:

▶ Theorem 2 (Karp-Lipton for QCPH). If QCMA ⊆ BQP/mpoly, then QCPH = QCΣ2 =
QCΠ2.

Here, BQP/mpoly is BQP with poly-size classical advice (Definition 11). In words, Theorem 2
says QCMA cannot be solved by (even non-uniformly generated) poly-size quantum circuits,
unless QCPH collapses to its second level. This resolves a second open question of [13].

3. Error reduction for pureQPH. While error reduction for QCPH follows from parallel
repetition (due to its classical proofs), achieving it for pureQPH is non-trivial for the same
reason it is non-trivial for QMA(2) – the tensor product structure between proofs is not
necessarily preserved when postselecting on measurements across proof copies in the NO case.
Here, we show one-sided error reduction for pureQPH (e.g. exponentially small soundness):

▶ Theorem 3. For all i > 0 and c− s ≥ 1/p(n) for some polynomial p,
1. For even i > 0:

a. pureQΣi(c, s) ⊆ pureQΣSEP
i (1/np(n)2, 1/en)

b. pureQΠi(c, s) ⊆ pureQΠSEP
i (1 − 1/en, 1 − 1/np(n)2)

2. For odd i > 0:
a. pureQΣi(c, s) ⊆ pureQΣSEP

i (1 − 1/en, 1 − 1/np(n)2)
b. pureQΠi(c, s) ⊆ pureQΠSEP

i (1/np(n)2, 1/en)
Above, pureQΣSEP

i and pureQΠSEP
i have the promise that in the YES case, the verifier’s

acceptance measurement is separable (see Section 4.2). We remark the proof of this uses
a new asymmetric version of the Harrow-Montanaro [16] Product Test, which may be of
independent interest (see Lemma 13). The reason we are unable to recover exponentially
small error simultaneously for both completeness and soundness is because our approach
requires the final quantifier to be ∃.

4. Upper and lower bounds on pureQPH. Having introduced pureQPH in this work, we next
give bounds on its power.

▶ Theorem 4. QCPH ⊆ pureQPH ⊆ EXPPP.
While the upper bound above is not difficult to show (Theorem 17; this may be viewed as
an “exponential analogue” of Toda’s theorem), the lower bound is surprisingly subtle. The
naive strategy of replacing each proof yi of QCPH with pure state proof |ψi⟩, which is then
measured in the standard basis, does not work, as the measurement gives rise to mixed
states. Mixed states, in turn, are difficult to handle in QPH, as the latter is not a convex
optimization due to alternating quantifiers. We remark that while QPH ⊆ pureQPH follows
easily via purification of proofs, we do not know how to show the analogous lower bound
QCPH ⊆ QPH (our approach uses our asymmetric product test, which requires pure states).

2 QMA(2) is QMA with two proofs in tensor product. Since its introduction in 2001 by Kobayashi,
Matsumoto, and Yamakami [21, 22], its complexity remains stubbornly open. The current best bounds
are QMA ⊆ QMA(2) ⊆ QΣ3 ⊆ NEXP, where the second and third containments are from[13].
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Related Work. Yamakami [31] gave the first definition of a quantum PH, which takes
quantum inputs (in contrast, we use classical inputs). The same paper [31] also discusses
a variant of pureQPH (which they call QPH). However, their QPH is very powerful and
its first level already captures QMA(2) (which is contained in the third level of pureQPH),
and error reduction is trivial for this complexity class. Gharibian and Kempe [12] defined
and obtained hardness of approximation results for QCΣ2, obtaining the first hardness of
approximation results for a quantum complexity class. (See [7] for a recent extension to
QCMA-hardness of approximation results.) Lockhart and González-Guillén [18] defined a
class QCPH′ similar to QCPH, except using existential and universal operators. Thus, in [18]
QCΣ′

1 = ∃ · BQP, which is not known to equal QCMA (for the same reason ∃ · BPP ?= MA
remains open). In exchange for not capturing QCMA, however, the benefit of QCPH′ is
that its properties are easier to prove than QCPH. Gharibian, Santha, Sikora, Sundaram
and Yirka [13] defined QCPH and QPH, and showed weaker variants of the Karp-Lipton
theorem (Precise-QCMA ⊆ BQP/mpoly implies QCΣ2 = QCΠ2) and Toda’s theorem [29]
(QCPH ⊆ PPPPP). They also showed QMA(2) ⊆ QΣ3 ⊆ NEXP, giving the first class sitting
between QMA(2) and NEXP, and observed that QΣ2 = QΠ2 = QRG(1) ⊆ PSPACE (due to
work of Jain and Watrous [19]). Finally, Aaronson, Ingram and Kretschmer [4] showed that

relative to a random oracle, PP is not in the “QMA hierarchy”, i.e. in QMAQMA. . .

. The
relationship between this QMA hierarchy and any of QCPH, QPH, or pureQPH remains open.

The Karp-Lipton theorem has been studied in the setting of quantum advice. Prior works
by Aaronson and Drucker [3], and Aaronson, Cojocaru, Gheorghiu, and Kashefi [2] studied
the consequences of solving NP-complete problems using polynomial-sized quantum circuits
with polynomial quantum advice. Nishimura and Yamakami [25] define the language class
BQP with classical advice and compare it to BQP with quantum advice. In this paper,
however, we study promise problems in BQP with classical advice (called BQP/mpoly).

Finally, the Product Test was first introduced by Mintert, Kus̀ and Buchleitner [24],
and rigorously analyzed and strikingly leveraged by Harrow and Montanaro[16] to show
QMA(k) = QMA(2) for polynomial k, as well as error reduction for QMA(2). (See also
Soleimanifar and Wright [27].)

Concurrent Work. We mention two concurrent works on quantum variants of the polynomial
hierarchy. First, our collapse theorem for QCPH (Theorem 1 ) was proven concurrently
by Falor, Ge, and Natarajan [10]. Second, we upper bound QCPH by showing that for
all k, QCΠk ⊆ pureQΣk ⊆ pureQΣi ⊆ NEXPNPi−1

, implying QCPH ⊆ pureQPH ⊆ EXPPP

(Theorem 4 and Theorem 17). Grewal and Yirka [15] show the stronger bound QCPH ⊆ QPH,
at the expense of the minor caveat that their proof does not obtain level-wise containment for
all k, but rather requires constant factor blowup in level. Beyond this, our papers diverge. We
show a Quantum-Classical Karp-Lipton Theorem for QCPH and error reduction for pureQPH.
Grewal and Yirka [15] define a new quantum polynomial hierarchy called the entangled
quantum polynomial hierarchy (QEPH), which allows entanglement across alternatively
quantified quantum proofs. They show that QEPH collapses to its second level (even with
polynomially many proofs), and is equal to QRG(1), the class of one round quantum-refereed
games. They also define a generalization of QCPH, denoted DistributionQCPH, in which
proofs are not strings but distributions over strings. They show QCPH=DistributionQCPH.

Techniques. We sketch our approach for each result mentioned above.

1. Collapse Theorem for QCPH. Collapse theorems for PH are shown via inductive argument
– by fixing an arbitrary proof for the first quantifier of Σpi , one obtains an instance of Πp

i−1.
Reference [13] noted this approach does not obviously work for QCPH, as fixing the first
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proof of QCΣi does not necessarily yield a valid QCΠi−1 instance (i.e. the latter might not
satisfy the desired promise gap). We bypass this obstacle by observing that even if most
choices for existentially quantified proofs are problematic, there always exists at least one
“good” choice, for which the recursion works. Formally, we are implicitly using a promise
version of NP which is robustly3 defined relative to any promise oracle.

2. Quantum-Classical Karp-Lipton Theorem. The classical Karp-Lipton theorem crucially
uses the search-to-decision reduction for SAT. Given a (non-uniform) circuit family that can
decide a SAT instance, we can use the circuit family to find a witness for a SAT instance.
However, this search-to-decision reduction does not work in the quantum-classical setting
since we are working with promise problems instead of languages. As a result, we cannot
replicate the classical proof in the quantum-classical setting. Instead, we first convert the
QCMA problem (obtained by fixing the universally quantified proof) to a UniqueQCMA
(UQCMA) problem. For this, we use the quantum-classical analogue of Valiant-Vazirani’s
isolation lemma [30] given by Aharonov, Ben-Or, Brandão, and Sattath [6]. We then use
a single-query (quantum) search-to-decision reduction for UQCMA that was presented in a
recent work by Irani, Natarajan, Nirkhe, Rao and Yuen [17].

3. Error reduction for pureQPH. As with QMA(2), the challenge with error reduction via
parallel repetition for pureQPH is the following: Given proof |ψ⟩A1,B1 ⊗|ϕ⟩A2,B2 , postselecting
on a joint measurement outcome on registers {A1, B1} may entangle registers {A2, B2}. To
overcome this, we give an asymmetric version of the Product Test [16], denoted APT. The
APT takes in an n-system state |ψ⟩ in register A, and (ideally) m copies of |ψ⟩ in register B.
It picks a random subsystem i of A, as well as a random copy j of i in B, and applies the
SWAP test (Figure 1) between them. We prove (Lemma 13) that if this test passes with
high probability, then |ψ⟩A ≈ |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ for some {|ψi⟩}ni=1, i.e. |ψ⟩A was of tensor
product form.

With the APT in hand, we can show error reduction for (e.g.) pureQΠi. Here, the aim of
an honest ith (existentially quantified) prover is to send many copies of proofs 1 through
i− 1. With probability 1/2, the verifier runs the APT with register A being proofs 1 to i− 1
and register B being all their copies bundled with the ith proof, and with probability 1/2,
the verifier runs parallel repetition on all copies of proofs bundled with the ith proof. This
crucially leverages the fact that the ith proof is existential in the YES case, and thus can
be assumed to be of this ideal form. In the NO case, however, the ith proof is universally
quantified – thus, we cannot assume anything about its structure, which is why we do not
get error reduction for the soundness parameter (in this case).

4. Upper and lower bounds on pureQPH. We focus on the more difficult direction, QCPH ⊆
pureQPH, for which we actually show that for all even k ≥ 2, QCΠk ⊆ pureQPHk (Lemma 16).
When simulating QCPH, the challenge is again how to deal with universally quantified proofs,
denoted by index set U ⊆ [k]. Unlike existentially quantified proofs, which can be assumed
to be set honestly to some optimal string yi, for any index j ∈ U the proof |ψj⟩ can be any
pure quantum state. This causes two problems: (1) Measuring |ψj⟩ in the standard basis
yields a distribution Dj over strings, and due to non-convexity of pureQPH, it is not clear if

3 Formally, let M be a deterministic machine with access to a promise oracle O. We say M is robust [14]
if, regardless of how any invalid queries to O (i.e. queries violating the promise gap of O) are answered,
M returns the same answer. One can define “PromiseNP” for non-deterministic M with access to
O similarly: In the YES case, M has at least one robust accepting branch, and in the NO case, all
branches of M are robust and rejecting. For clarity, we do not formally define and use PromiseNP in
this work, but the viewpoint sketched here is equivalent to our approach for Theorem 1.
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this can help a cheating prover succeed with higher probability that having sent a string. (2)
Conditioned on distribution Dj , what should the next, existentially quantified, prover j + 1
set its optimal proof/string to? We overcome these obstacles as follows. The initial setup
is similar to Theorem 3 – prover k (which is existentially quantified in the YES case) send
copies of all previous proofs 1 to k − 1, and with probability 1/2, we run the APT. However,
now with probability 1/2, we measure all proofs in the standard basis. The key step is to
immediately accept if for any universally quantified proof index i ∈ U , measuring proof |ψi⟩
does not match all of its copies bundled in proof k. In contrast, for existentially quantified
proofs, we reject if a mismatch occurs. Finally, assuming no mismatches occur, we simply run
the original QCPH verifier on the corresponding strings obtained via measurement. Showing
correctness is subtle, and requires a careful analysis for both YES and NO cases, since recall
the location of universally quantified proofs changes between cases.

Discussion and open questions. Many questions remain open for QCPH, QPH, and
pureQPH. Perhaps the most frustrating for QCPH is a lack of a genuine Toda’s theorem –
[13] shows QCPH ⊆ PPPPP , but what one really wants is containment in PPP. Is this possible?
And if not, can one show an oracle separation between QCPH and PPP? Moving to QPH, its
role in this mess remains rather murky. Is pureQPH ⊆ QPH (recall the converse direction
follows via purification)? For this, our proof technique for QCPH ⊆ pureQPH appears not
to apply, as it requires pure states for the SWAP test. QPH does have one advantage over
pureQPH, however – while the third level of both contains QMA(2), only QΣ3 is known to
be in NEXP [13], providing a class “between” QMA(2) and NEXP. Reference [13]’s proof
breaks down for pureQPH, as its semidefinite-programming approach requires mixed state
proofs.4 Finally, for pureQPH, can one show two-sided error reduction? Is there a collapse
theorem for pureQPH? Can one improve our bound pureQPH ⊆ EXPPP? As a first step, is
pureQΣ3 ⊆ NEXP? If not, this would suggest the combination of “unentanglement” across
proofs and alternating quantifiers yields a surprisingly powerful proof system, as it trivially
holds that QMA(2) ⊆ NEXP.

Organization. Section 2 begins with notation and definitions. Section 3.1 and Section 3.2
give our collapse theorem and Karp-Lipton theorem for QCPH, respectively. Section 4 shows
error reduction for pureQPH. Section 5 gives upper and lower bounds for pureQPH.

2 Preliminaries

Notation. Let conv(S) denote the convex hull of set S. Then, the set of separable operators
acting on Cd1 ⊗ · · · ⊗ Cdi is

conv
(
|ψ1⟩⟨ψ1| ⊗ · · · ⊗ |ψi⟩⟨ψi| | ∀j ∈ [i], |ψj⟩ ∈ Cdj is a unit vector

)
. (3)

Throughout this paper, we study promise problems. A promise problem is a pair A =
(Ayes, Ano) such that Ayes, Ano ⊆ {0, 1}∗ and Ayes ∩Ano = ∅, but Ayes ∪Ano = {0, 1}∗ does
not necessarily hold.

4 Briefly, in NEXP one can guess the first existentially quantified proof of QΣ3, leaving a QΠ2 computation.
Since we are using mixed states, via duality theory one can rephrase this via an exponential-side SDP,
which can be solved in exponential time. Note this “convexification” does not seem to apply for larger
values of k.
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2.1 Quantum-Classical Polynomial Hierarchy (QCPH)
We first recall the quantum analogue of PH that generalizes QCMA, i.e. has classical
proofs [13].

▶ Definition 5 (QCΣi). Let A = (Ayes, Ano) be a promise problem. We say that A is in
QCΣi(c, s) for poly-time computable functions c, s : N 7→ [0, 1] if there exists a poly-bounded
function p : N 7→ N and a poly-time uniform family of quantum circuits {Vn}n∈N such that
for every n-bit input x, Vn takes in classical proofs y1 ∈ {0, 1}p(n)

, . . . , yi ∈ {0, 1}p(n) and
outputs a single qubit, such that:

Completeness: x ∈ Ayes ⇒ ∃y1∀y2 . . . Qiyi s.t. Prob[Vn accepts (y1, . . . , yi)] ≥ c.
Soundness: x ∈ Ano ⇒ ∀y1∃y2 . . . Qiyi s.t. Prob[Vn accepts (y1, . . . , yi)] ≤ s.

Here, Qi equals ∃ when m is odd and equals ∀ otherwise and Qi is the complementary
quantifier to Qi. Finally, define

QCΣi :=
⋃

c−s∈Ω(1/ poly(n))

QCΣi(c, s). (4)

Comments: Note that the first level of this hierarchy corresponds to QCMA. The complement
of the ith level of the hierarchy, QCΣi, is the class QCΠi defined next.

▶ Definition 6 (QCΠi). Let A = (Ayes, Ano) be a promise problem. We say that A ∈
QCΠi(c, s) for poly-time computable functions c, s : N 7→ [0, 1] if there exists a polynomially
bounded function p : N 7→ N and a poly-time uniform family of quantum circuits {Vn}n∈N such
that for every n-bit input x, Vn takes in classical proofs y1 ∈ {0, 1}p(n)

, . . . , yi ∈ {0, 1}p(n)

and outputs a single qubit, such that:
Completeness: x ∈ Ayes ⇒ ∀y1∃y2 . . . Qiyi s.t. Prob[Vn accepts (y1, . . . , yi)] ≥ c.
Soundness: x ∈ Ano ⇒ ∃y1∀y2 . . . Qiyi s.t. s.t. Prob[Vn accepts (y1, . . . , yi)] ≤ s.

Here, Qi equals ∀ when m is odd and equals ∃ otherwise, and Qi is the complementary
quantifier to Qi. Finally, define

QCΠi :=
⋃

c−s∈Ω(1/ poly(n))

QCΠi(c, s). (5)

Now the corresponding quantum-classical polynomial hierarchy is defined as follows.

▶ Definition 7 (Quantum-Classical Polynomial Hierarchy (QCPH)).

QCPH =
⋃
m∈N

QCΣi =
⋃
m∈N

QCΠi. (6)

2.2 (Pure-State) Quantum Polynomial Hierarchy (pureQPH)
Next, we introduce Quantum PH with pure-state proofs (for clarity, the definition below is
new to this work). Prior work [13] defined QPH using mixed-state quantum proofs. Unlike
QMA or QMA(2) (where one may argue due to convexity that pure states suffice) it is not
clear how to use convexity arguments in the presence of alternating quantifiers.

▶ Definition 8 (pureQΣi). A promise problem A = (Ayes, Ano) is in pureQΣi(c, s) for poly-
time computable functions c, s : N 7→ [0, 1] if there exists a polynomially bounded function
p : N 7→ N and a poly-time uniform family of quantum circuits {Vn}n∈N such that for every
n-bit input x, Vn takes p(n)-qubit states |ψ1⟩, . . . , |ψi⟩ as quantum proofs and outputs a single
qubit, then:
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7:8 Quantum Polynomial Hierarchies

Completeness: If x ∈ Ayes, then ∃|ψ1⟩∀|ψ2⟩ . . . Qi|ψi⟩ : Vn accepts |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψi⟩
with probability ≥ c.
Soundness: If x ∈ Ano, then ∀|ψ1⟩∃|ψ2⟩ . . . Qi|ψi⟩ : Vn accepts |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψi⟩
with probability ≤ s.

Here, Qi equals ∀ when m is even and equals ∃ otherwise, and Qi is the complementary
quantifier to Qi. Define

pureQΣi =
⋃

c−s∈Ω(1/ poly(n))

pureQΣi(c, s). (7)

▶ Definition 9 (pureQΠi). A promise problem A = (Ayes, Ano) is in pureQΠi(c, s) for poly-
time computable functions c, s : N 7→ [0, 1] if there exists a polynomially bounded function
p : N 7→ N and a poly-time uniform family of quantum circuits {Vn}n∈N such that for every
n-bit input x, Vn takes p(n)-qubit states |ψ1⟩, . . . , |ψi⟩ as quantum proofs and outputs a single
qubit, then:

Completeness: If x ∈ Ayes, then ∀|ψ1⟩∃|ψ2⟩ . . . Qi|ψi⟩ : Vn accepts |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψi⟩
with probability ≥ c.
Soundness: If x ∈ Ano, then ∃|ψ1⟩∀|ψ2⟩ . . . Qi|ψi⟩ : Vn accepts |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψi⟩
with probability ≤ s.

Here, Qi equals ∃ when m is even and equals ∀ otherwise, and Qi is the complementary
quantifier to Qi. Define

pureQΠi =
⋃

c−s∈Ω(1/ poly(n))

pureQΠi(c, s). (8)

The Quantum Polynomial Hierarchy with pure-state proofs can now be defined as follows.

▶ Definition 10 (Pure Quantum Poly-Hierarchy (pureQPH)).

pureQPH =
⋃
m∈N

pureQΣi =
⋃
m∈N

pureQΠi.

2.3 Other complexity classes
▶ Definition 11 (BQP/mpoly). A promise problem Π = (Ayes, Ano) is in BQP/mpoly if there
exists a poly-sized family of quantum circuits {Cn}n∈N and a collection of binary advice
strings {an}n∈N with |an| = poly(n), such that for all n ∈ N and all strings x ∈ {0, 1}n,

Pr[Cn(|x⟩, |an⟩) = 1] ≥ 2/3 if x ∈ Ayes and Pr[Cn(|x⟩, |an⟩) = 1] ≤ 1/3 if x ∈ Ano.

3 Collapse theorems and Quantum Karp-Lipton

3.1 Collapse Theorem for QCPH
For the quantum-classical hierarchy, QCPH, we now show a quantum analogue of the standard
collapse theorem for classical PH, i.e. Σp2 = Πp2 implies PH = Σp2, resolving an open question
of [13].

▶ Lemma 12. If for any k ≥ 1, QCΣk = QCΠk, then for all i ≥ k, QCΣi = QCΠi = QCΣk.

Proof. We proceed by induction. For j ≥ k, define P (j) := QCΣj = QCΠj = QCΣk. The
base case P (k) holds by the assumption of the lemma. For the inductive case, assume P (j)
holds for all k ≤ j ≤ i − 1. We show P (j) holds for j = i. Consider arbitrary promise
problem L = (Lyes, Lno, Linv) ∈ QCΣi and let {Vn} be the verifier circuits for the promise
problem. Define new promise problem L′ = (L′

yes, L
′
no, L

′
inv):
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L′
yes =

{
(x, y1) | ∀y2∃y3 . . . Qiyi Pr[V (x, y1, y2, . . . , yi) = 1] ≥ 2

3

}
(9)

L′
no =

{
(x, y1) | ∃y2∀y3 . . . Qiyi Pr[V (x, y1, y2, . . . , yi) = 1] ≤ 1

3

}
(10)

L′
inv = {0, 1}∗ \ (L′

yes ∪ L′
no). (11)

Clearly, L′
yes ∩ L′

no = ∅, and so (L′
yes, L

′
no, L

′
inv) ∈ QCΠi−1. By the induction hypothesis,

there exists promise problem L′′ = (L′′
yes, L

′′
no, L

′′
inv) ∈ QCΣi−1 such that L′

no ⊆ L′′
no and

L′
yes ⊆ L′′

yes. Letting {V ′′
n } denote the verification circuits for L′′, we have

(x, y1) ∈ L′
yes ⇒ (x, y1) ∈ L′′

yes ⇒ ∃y2∀y3 . . . Qiyi : Pr[V ′′(x, y1, . . . , yi) = 1] ≥ 2
3 ,

(x, y1) ∈ L′
no ⇒ (x, y1) ∈ L′′

no ⇒ ∀y2∃y3 . . . Qiyi : Pr[V ′′(x, y1, . . . , yi) = 1] ≤ 1
3 .

(12)

Now considering again L = (Lyes, Lno, Linv), we have

x ∈ Lyes ⇒ ∃y1 : (x, y1) ∈ L′
yes ⇒ ∃y1∃y2∀y3 . . . Qi−1yi Pr[V ′(x, y1, . . . , yi) = 1] ≥ 2

3

x ∈ Lno ⇒ ∀y1 : (x, y1) ∈ L′
no ⇒ ∀y1∀y2∃y3 . . . Qi−1yi Pr[V ′(x, y1, . . . , yi) = 1] ≤ 1

3 .
(13)

We conclude L ∈ QCΣi−1 = QCΣi. So QCΣj = QCΣk. Similarly, QCΠi ⊆ QCΠi−1 = QCΣk.
Thus, P (i) holds, as claimed. ◀

Theorem 1 follows from Lemma 12.

3.2 Quantum-Classical Karp-Lipton Theorem
We will show that if there exists a polynomial size circuit family {Cn}n∈N that can decide
a QCMA complete problem, then QCΠ2 ⊆ QCΣ2. Using Theorem 1, it follows that if
QCMA ⊆ BQP/mpoly, then QCPH collapses to the second level.

▶ Theorem 2 (Karp-Lipton for QCPH). If QCMA ⊆ BQP/mpoly, then QCPH = QCΣ2 =
QCΠ2.

The formal proof is presented in the full version of the paper, together with some immediate
applications of the quantum-classical Karp-Lipton theorem. Here, we present an overview of
the proof.

Proof-sketch. Let L = (Lyes, Lno, Linv) ∈ QCΠ2, and let V be the corresponding (quantum)
verifier. Since the proofs are classical, we assume V has small error. We show that L ∈ QCΣ2
by using the following (quantum) verifier V ′: it takes as input an instance x, a quantum
circuit C, a string y1. The verifier V ′ runs the circuit C on input (x, y1) and receives a string
y2. It then accepts x if V accepts (x, y1, y2). If x ∈ Lno, then there exists a y1 such that for
all y2, V (x, y1, y2) accepts with negligible probability. Therefore, for any circuit C, there
exists a y1 such that V ′(x,C, y1) = V (x, y1, C(x, y1)) is 1 with very low probability.

For any x ∈ Lyes, we have that for all y1, the pair (x, y1) is a YES-instance of a QCMA
problem. Using the [6] isolation procedure, we obtain an instance ϕ(x,y1) such that with
non-negligible probability ϕ(x,y1) has a unique witness. Next, using the assumption that
QCMA ⊆ BQP/mpoly, we get that there exists a circuit C̃ that can decide ϕ(x,y1). Finally,
using the UQCMA search-to-decision procedure of [17], we can use C to find the unique
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|0⟩ H • H

|ψ⟩
SWAP|ϕ⟩

Figure 1 The SWAP test, whose output is the measurement result on the first wire.

witness for ϕ(x,y1). Let C be the circuit that, on input, (x, y1), first performs the witness
isolation from [6], followed by the UQCMA search-to-decision reduction from [17]. Putting
these together, we get that there exists a circuit C that, for any y1, finds a y2 with non-
negligible probability such that V (x, y1, y2) = 1. Therefore, there exists C such that for any
y1, V ′(x,C, y1) = 1 with non-negligible probability. ◀

4 Error reduction for pureQPH

We next study (weak) error reduction for pureQPH (pure proofs). For this, we first require
an asymmetric generalization of the Product Test [24, 16], given in Section 4.1. We then
give one-sided error reduction results in Section 4.2.

4.1 Asymmetric product test
We first give a generalization of the Product Test [24, 16], which we denote the Asymmetric
Product Test (APT), stated as follows:
1. The input is |ψ⟩ ∈ Cd1 ⊗ · · · ⊗ Cdn in register A, and |ϕ⟩ ∈ Cdm in register B, where for

brevity d := d1 · · · dn. We think of B as encoding m copies of A.
2. Choose (i, j) ∈ [n] × [m] uniformly at random.
3. Run the SWAP Test (Figure 1) between the ith register of A, and in B, the ith register

of the jth copy of A.
4. Accept if the SWAP Test outputs 0, reject otherwise.
In fact, above, one can also assume that |ϕ⟩ in the APT is potentially entangled across two
registers B and C, as we do for the main lemma of this section, given below.

▶ Lemma 13. [Asymmetric Product Test (APT)] Define d = d1 · · · dn. Consider |ϕ⟩BC ∈
Cdm ⊗ Cd′ for some d′ > 0. Suppose

max
|ψ⟩:=|ψ1⟩⊗···⊗|ψn⟩∈Cd

⟨ϕ|BC [(|ψ⟩⟨ψ|⊗m)B ⊗ IC ]|ϕ⟩BC = 1 − ε (14)

for ε ≥ 0. Then, given the state |η⟩ABC := |ψ⟩A ⊗ |ϕ⟩BC , the APT accepts with probability
at most 1 − ε/2mn.

Proof. Let {|αik⟩}k∈[di] be an orthonormal basis of Cdi with |αi1⟩ := |ψi⟩, and define index
set

X = {(xij)i∈[n],j∈[m] | ∀ij : xij ∈ [di]}. (15)

Then, rewrite |ϕ⟩BC in the {|αik⟩}k bases to obtain:

|ϕ⟩ =
∑
x∈X

ax

⊗
ij

|αi,xij
⟩


B

|γx⟩C (16)
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for some states |γx⟩C . Without loss of generality, consider the swap test between the first
register of A, Cd1 (which contains |ψ1⟩), and the first copy of Cd1 in B. Just prior to the
final measurement in the test, we have the state |η′⟩SABC given by (where S encodes the
control qubit for SWAP in the SWAP test)∑

x∈X
ax

(1
2 |0⟩S

(
|ψ1⟩|α1,x11⟩ + |α1,x11⟩|ψ1⟩

)
+ 1

2 |1⟩S
(
|ψ1⟩|α1,x11⟩ − |α1,x11⟩|ψ1⟩

))
⊗

⊗
i̸=1 or j ̸=1

|αi,xij
⟩|γx⟩ =:

∑
x∈X

ax|η′
x⟩SABC .

(17)

We now show that the cross terms of ⟨η′|η′⟩ vanish, as ⟨η′
x|η′

y⟩ = 0 with x ̸= y, where
x, y ∈ X: (1) If xij ̸= yij for (i, j) ̸= (1, 1), this follows immediately from orthonormality
of the basis sets {|αik⟩}k∈[di]. (2) The only remaining case is x11 ≠ y11. Without loss of
generality, y11 ̸= 1. Then |α1,y11⟩ is orthogonal to |ψ1⟩, again by choice of our basis set.
Hence, ⟨ψ1, α1,x11 |α1,y11 , ψ1⟩ = 0. Since trivially ⟨ψ1, α1,x11 |ψ1, α1,y11⟩ = 0, we again have
⟨η′
x|η′

y⟩ = 0.
As for the non-cross-terms, we first have again from our basis choice that for any x ∈ X,

⟨η′
x|(|0⟩⟨0|S)|η′

x⟩ =
{

1, if x11 = 1
1
2 , if x11 ̸= 1

. (18)

Recall now that the APT selects i ∈ [n] and j ∈ [m] uniformly at random and does a SWAP
test between |ψi⟩ (the ith register of A) and the jth copy of the i register of B. Thus,
conditioned on the APT randomly choosing (i, j) = (1, 1), we may bound its acceptance
probability as

Pr[APT(|η⟩) = 1 | i = 1, j = 1] = ⟨η′|(|0⟩⟨0|S)|η′⟩ =
∑
x∈X

s.t. x11=1

|ax|2 + 1
2

∑
x∈X

s.t. x11 ̸=1

|ax|2. (19)

By symmetry, an identical argument holds for any pair (i, j), and so

Pr[APT(|η⟩) = 1] = 1
mn

∑
ij

 ∑
x∈X

s.t. xij=1

|ax|2 + 1
2

∑
x∈X

s.t. xij ̸=1

|ax|2

 (20)

≤ |a1mn |2 + 2mn− 1
2mn

∑
x∈X\{1mn}

|ax|2 = 1 − ε

2mn. (21)

◀

4.2 One-sided error reduction
With Lemma 13 (APT) in hand, we now show one-sided error reduction for pureQΠi, which
suffices to obtain statements for all desired classes subsequently in Theorem 3. For this, we
define classes pureQΣSEP

i and pureQΠSEP
i as identical to pureQΣ and pureQΠ, respectively,

except the measurement POVM of the verifier in the YES case must additionally be a
separable operator relative to the cuts between each of the i proofs |ψ1⟩ to |ψi⟩. (This is
analogous to QMA(2) versus QMASEP(2) [16].)

▶ Lemma 14. [One-sided pureQΠi amplification] If i is even, then

pureQΠi(c, s) ⊆ pureQΠSEP
i

(
1 − 1

en
, 1 − 1

np(n)2

)
, (22)

for all functions c and s such that c− s ≥ 1/p(n) for some polynomial p.
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Proof. Let L = (Lyes, Lno, Linv) ∈ pureQΠi(c, s), with verifier V taking in i proofs denoted
|ψ1⟩, . . . |ψi⟩. Since i is even, the last proof, |ψi⟩, is existentially quantified. We define a
new verifier V ′ to decide L in pureQΠi(1 − 1/ exp, 1 − 1/ poly) as follows. V ′ receives the
following proofs from an honest prover:(

|ψ′
1⟩ ⊗ · · · ⊗ |ψ′

i−1⟩
)
A

= (|ψ1⟩ ⊗ · · · ⊗ |ψi−1⟩)A (23)

|ψ′
i⟩BC =

 i−1⊗
j=1

|ψj⟩

⊗m

B

⊗ |ψi⟩⊗m
C (24)

for m ∈ Θ(n(c − s)−2), and where A, B and C are used to align with the notation of
Lemma 13 (which we use shortly). In words, the last prover sends m copies of the first i− 1
proofs in register B, and m copies of the last proof |ψi⟩ in register C. Then, V ′ acts as
follows:
1. With probability 1/2, apply the APT (Lemma 13) between registers A and B. Accept iff

the test accepts.
2. With probability 1/2, apply verifier V m times, taking one proof |ψi⟩ from each respective

subregister of B. Accept iff at least (c+ s)/2 measurements accept.
Correctness. YES case. Since the ith prover is existentially quantified, it sends the state in
Equation (24). Thus, the APT accepts with certainty. Similarly, for parallel repetition of V,
each repetition is independent, hence the overall verifier accepts with probability at least
1 − exp(−(c− s)2m/2), as desired.

NO case. Now the ith prover is universally quantified, hence it can send us a state
entangled across BC.
Suppose the APT accepts with probability 1 − ε. By Lemma 13,

|ψ′
i⟩BC = α

 i−1⊗
j=1

|ψj⟩

⊗m

B

|ϕ⟩C + β|γ⟩BC =: α|η⟩B |ϕ⟩C + β|γ⟩BC (25)

for |α|2 ≥ 1 − 2m(i− 1)ε, and arbitrary states |ϕ⟩, |γ⟩ satisfying that |η⟩A|ϕ⟩B is orthogonal
to |γ⟩C . We have

Pr[parallel repetition of V accepts |η⟩A|ϕ⟩B ] ≤ e
−(c−s)2m

2 . (26)

We conclude the acceptance probability of V ′ is at most

1
2

(
(1 − ε) + (1 − 2m(i− 1)ε)e−(c−s)2m/2 + 2m(i− 1)ε (27)

+ 2
√

2m(i− 1)ε+ (2m(i− 1))2ε
)

≤ 1 − ε

2 , (28)

where the maximum is attained when ε = Θ(1/m(i− 1)).
Finally, that the measurement operator for the YES case is separable follows via the

argument of Harrow and Montanaro for QMA(2) amplification [16], since our use of the APT
is agnostic to whether proofs are universally or existentially quantified. ◀

Lemma 14 now easily generalizes to cover all classes regarding pureQPH we are concerned
with:

▶ Theorem 3. For all i > 0 and c− s ≥ 1/p(n) for some polynomial p,
1. For even i > 0:

a. pureQΣi(c, s) ⊆ pureQΣSEP
i (1/np(n)2, 1/en)

b. pureQΠi(c, s) ⊆ pureQΠSEP
i (1 − 1/en, 1 − 1/np(n)2)



A. Agarwal, S. Gharibian, V. Koppula, and D. Rudolph 7:13

2. For odd i > 0:
a. pureQΣi(c, s) ⊆ pureQΣSEP

i (1 − 1/en, 1 − 1/np(n)2)
b. pureQΠi(c, s) ⊆ pureQΠSEP

i (1/np(n)2, 1/en)

Proof. Statement 1b is from Lemma 14, and 1a follows from 1b since we can get a pureQΣi
verifier by flipping the answer of a pureQΠi verifier corresponding to the complement of
our promise problem. The remaining cases are analogous: 2a follows from 1b, and 2b from
1a. ◀

5 Upper and lower bounds on pureQPH

5.1 Lower bound: QCPH versus QPH
We first give a lower bound on pureQPH, by showing that alternatingly-quantified classical
proofs can be replaced by pure-state quantum proofs.

▶ Theorem 15. QCPH ⊆ pureQPH.

This follows immediately from the following lemma.

▶ Lemma 16. For all even k ≥ 2, QCΠk ⊆ pureQΠk.

Proof. That k is even implies the kth proof is existentially quantified in the YES case, a
fact we will leverage. To begin, Let V be a verifier for QCΠk, so that in the YES case
∀1x1 . . . ∃kxk : Pr[V (x1, . . . , xk) = 1] ≥ c and in the NO case ∃x1 . . . ∀xk : Pr[V (x1, . . . , xk) =
1] ≤ s, where we may assume without loss of generality that c and s are exponentially close
to 1 and 0, respectively. We construct a pureQPH verifier V ′ as follows:

V ′ receives k proofs, |ψ1⟩ ⊗ · · · ⊗ |ψk⟩.
The last proof |ψk⟩ consists of two registers denoted A and B. We think of A as containing
m copies of proofs 1, . . . , k − 1 (as in the APT, Lemma 13), and B as containing the kth
proof for V , xk.
V ′ acts as follows:

1. With probability 1/2, run the APT (Lemma 13), and accept if and only if the APT
accepts.

2. With probability 1/2, measure proofs |ψ1⟩⊗· · ·⊗|ψk−1⟩ in the standard basis to obtain
strings x1, . . . , xk−1, respectively, similarly measure all copies of these proofs in A,
and finally measure B in the standard basis to obtain xk,B . Let U = {1, 3 . . . , k − 1}
denote the indices of universally quantified proofs (in the YES case). Then:

a. If there exists an i ∈ [k − 1] such that the strings obtained by measuring all copies
of |ψi⟩ did not equal xi, let i denote the minimal such index. Accept if i ∈ U , and
reject otherwise.

b. Otherwise, simulate V (x1, . . . , xk−1, xk,B).

Correctness strategy. Since we are trying to simulate QCΠk, ideally we want all proofs to
be strings. This can be assumed without loss of generality for existentially quantified proofs,
but not for universally quantified proofs, which can be set to any pure state by definition of
pureQΠk. So, for any i ∈ U , write |ψi⟩ =

∑
x αi,x|x⟩, where we view |αi,x|2 as a distribution

over strings x for proof i. Denote for any i ∈ U by x∗
i the amplitude of highest weight, i.e.

x∗
i = arg maxx |αi,x| (ties broken arbitrarily). The key idea is that the existentially quantified

proof at index i+ 1 will now send string y∗
i+1, where y∗

i+1 is the same string that a prover
for the original QCΠk verifier V would have sent in response to x∗

i on proof i. (For clarity, if
i+ 1 = k, then y∗

i+1 is sent in register B.)
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YES case. Since the kth proof is existentially quantified, for Step 1 (APT), we may assume
all copies in |ψk,A⟩ (the state in register A) are correctly set, so the APT accepts with
probability 1, leaving all proofs invariant. As for Step 2, for each i ∈ U , let Xi be the random
variable resulting from measuring |ψi⟩ in the standard basis, and Xij the random variables
for the jth copy of |ψi⟩ in register A. The verification can now fail in one of two ways:
1. There exists an i ∈ U such that we did not measure the “right” result, i.e. Xi ̸= x∗

i ,
but that all measured copies of |ψi⟩ returned the same string, i.e. ∀j Xij = Xi. In this
case, our strategy for setting the existentially quantified proof i + 1 is not necessarily
the correct response to Xi. Thus, when Step 2(b) is run, we have no guarantee for the
acceptance probability of V .

2. Measuring all i ∈ U yields the desired outcomes x∗
i (as well as ∀j Xij = Xi), but V

nevertheless rejects due to imperfect completeness, i.e. c < 1.

Combining these, via the union bound we thus have for Step 2 that

Pr[reject] ≤ Pr[ ∃i ∈ U : Xi ̸= x∗
i AND ∀ij : Xi = Xij ] + (1 − c) (29)

≤ min{p, 1 − p}m + 1 − c (30)
≤ 2−m + 1 − c, (31)

where p := maxi|αi,xi
|2, since Pr[Xi ̸= x∗

i ] = Pr[Xij ̸= x∗
i ] ≤ max {p, 1 − p} because

|αi,y|2 ≤ 1 − p for y ̸= x∗
i . Since we assumed the APT accepts with perfect probability,

we conclude V ′ accepts with probability ≥ 1
2 + 1

2 (c − 2−m) =: c′. (As an aside, recall c is
exponentially close to 1.)

NO case. The analysis is more subtle in this case, as the set of indices U = {1, 3, . . . , k − 1}
now refers to existentially quantified proofs. Thus, in Step 2(a) when V ′ accepts iff i ∈ U ,
this now means it accepts on existentially quantified proofs. This is because V ′ does not
know whether it is in a YES or NO case. For the same reason, the actions and role of the
final proof |ψk⟩ on registers A and B remain the same, even though it is now universally
quantified. Finally, the strategy of any existential prover i ∈ U is the same as the YES case:
Prover i sends the optimal response y∗

i to universally quantified proof x∗
i−1. (If i = 1, then

there is no universal proof to condition on for |ψ1⟩.)
To proceed, assume for now that the APT would have succeeded in Step 1 with certainty.

In Step 2, define again for all i ∈ U , Xi the random variable resulting from measuring |ψi⟩
in the standard basis, and Xij the random variables for the jth copy of |ψi⟩ in register A.
The verifier can now fail in one of two ways, the first of which differs significantly from the
YES case:
1. There exists i ∈ U such that Xi mismatched one of its copies in A, i.e. ∃j such that

Xi ̸= Xij . A priori, this seems like a problem – since |ψk⟩ is universally quantified, most
choices of |ψk⟩ will cause a mismatch with Xi with high probability, causing V ′ to accept
with high probability. The crucial insight is that, in order for |ψ1⟩ ⊗ · · · ⊗ |ψk⟩ to pass
the APT, it must essentially set each copy of |ψi⟩ to string y∗

i . Thus, measuring the A
register is highly unlikely to produce mismatches on existentially quantified proofs!

2. Measuring all i ∈ U will yield the desired outcomes y∗
i , since U is existentially quantified.

If in addition ∀j Xij = Xi, running V may nevertheless accept due to imperfect soundness,
i.e. s > 0.

Then, by a similar argument as for the YES case that in Step 2, in which we first assume
the APT passes with certainty, Pr[accept] ≤ 2−m + s. Now, let us assume the APT accepts
with probability ≥ 1 − ε/2mn. By Lemma 13,

⟨ψk|(|ψ1, . . . , ψk−1⟩⟨ψ1, . . . , ψk−1|A ⊗ IB)|ψk⟩ ≥ 1 − ε. (32)
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Let {|βi⟩} be an orthonormal basis of register A with |β1⟩ = |ψ1, . . . , ψn−1⟩. Then we can
write |ψn⟩ =

∑
i αi|βi⟩A|γi⟩B with |α1|2 ≥ 1 − ε. Hence, V ′ accepts with probability at most

1
2

(
1 − ε

2mn

)
+ 1

2 (ε+ (1 − ε)s) ≤ 1 − 1
4mn + s =: s′, (33)

where the first inequality follows because, without loss of generality, we may assume ε ≤ 1/2,
as otherwise the prover cannot hope to succeed make V ′ accept with probability greater than
3/4 (whereas c′ ≈ 1). Finally, we can choose c, s,m such that c′ − s′ ≥ 1/ poly. ◀

5.2 Upper bound
To complement Section 5.1, we next give a simple but non-trivial upper bound on pureQPH,
which may be viewed as an “exponential analogue” of Toda’s theorem. For this, let NPk

denote a tower of NP oracles of height k. (For example, NP1 = NP and NP2 = NPNP.) Define
NEXPk analogously, by a tower of NEXP oracles. In [13], it was observed that QΣi ⊆ NEXPi.
We show a sharper bound here.
▶ Theorem 17. pureQPH ⊆ EXPPP.
▶ Observation 18. pureQΣi ⊆ NEXPNPi−1

.
Proof. Replace all proofs by by their exponential-size classical description (up to additive
additive inverse exponential additive error in the entries), and simulate the verifier’s action
on the proofs via exponential-time matrix multiplication. The standard proof technique for
showing Σpi ⊆ NPi now applies, except we only require NEXP at the base level of the oracle
tower, i.e. NEXPNPi−1

, since an exponential time base can “inflate” or pad the instance size
for its oracle exponentially. ◀

For comparison, the observed bound in [13] of QΣi ⊆ NEXPi is overkill, since it allows the
first NEXP oracle can use double exponential time to process its exponential size input.
▶ Observation 19. NEXP ⊆ EXPNP.
Proof. Since using an exponential time machine we can “inflate” the instance size to ex-
ponential, an NP machine can thereafter simulate the NEXP computation on the inflated
instance size. The EXP machine just returns the answer of the NP oracle. ◀

▶ Observation 20. NEXPO ⊆ EXPNPO

for an oracle to any language O.
Proof. It is easy to see that the argument in Observation 19 relativizes, since the NP oracle
to the EXP machine can make the NEXP queries directly to the oracle O. ◀

▶ Observation 21. EXPPPP
⊆ EXPPP.

Proof. The EXP machine can make at most exponentially many queries to the its oracle,
each of which can be of size at most exponential in the size of the input. Therefore an EXP
machine can simulate the action of a PPP machine (even on an exponential sized query) by
making queries to a PP oracle while simulating the action of a P machine (which will only
take time polynomial in size of the query). ◀

▶ Theorem 22. For all i ≥ 1, QΣi ⊆ EXPPP.
Proof. By Observation 18, Observation 20 and Toda’s Theorem [29],

QΣi ⊆ NEXPNPi−1
⊆ EXPNPi

⊆ EXPPPP
. (34)

The claim now follows from Observation 21. ◀

Theorem 17 now follows immediately from Theorem 22.
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1 Introduction

Computing shortest paths in an undirected unweighted graph is among the most fundamental
tasks in graph algorithms. In the single source case, the textbook breadth first search (BFS)
algorithm computes such shortest paths in O(m + n) time in a graph with n nodes and m

edges. Linear time is clearly also a lower bound on the running time of any algorithm that
is correct on all input graphs, even if we only consider computing a shortest s-t path for a
pair of nodes s, t, and not a shortest path from s to all other nodes. Initial intuition might
also suggest that linear time is necessary for computing a shortest path between two nodes
s, t in a random graph drawn from any reasonable distribution, such as an Erdős-Rényi
random graph or a random d-regular graph. However, this intuition is incorrect and there
exists an algorithm with a sublinear expected running time for many classes of random
graphs [6, 10, 18]. Moreover, the algorithm is strikingly simple! It is merely the popular
practical heuristic of bidirectional BFS [19]. In bidirectional BFS, one simultaneously runs
BFS from the source s and destination t, expanding the two BFS trees by one layer at a
time. If the input graph is e.g. an Erdős-Rényi random graph, then it can be shown that the
two BFS trees have a node in common after exploring only O(

√
n) nodes in expectation. If

the node v is first to be explored in both trees, then the path from s → v → t in the two
BFS trees form a shortest path between s and t. The fact that only O(

√
n) nodes need to be

explored intuitively follows from the birthday paradox and the fact that the nodes nearest
© Noga Alon, Allan Grønlund, Søren Fuglede Jørgensen, and Kasper Green Larsen;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nalon@math.princeton.edu
https://orcid.org/0000-0003-1332-4883
mailto:ag@kvantify.dk
mailto:sfj@kvantify.dk
mailto:larsen@cs.au.dk
https://orcid.org/0000-0001-8841-5929
https://doi.org/10.4230/LIPIcs.MFCS.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Sublinear Time Shortest Path in Expander Graphs

to s and t are uniform random in an Erdős-Rényi random graph (although not completely
independent). Note that for sublinear time graph algorithms to be meaningful, we assume
that we have random access to the nodes and their neighbors. More concretely, we assume
the nodes are indexed by integers [n] = {1, . . . , n} and that we can query for the number of
nodes adjacent to a node v, as well as query for the j’th neighbor of a node v. We remark
that several works have also extended the bidirectional BFS heuristic to weighted input
graphs and/or setups where heuristic estimates of distances between nodes and the source or
destination are known [19, 20, 12]. There are also works giving sublinear time algorithms for
other natural graph problems under the assumption of a random input graph [14].

A caveat of the previous works that give provable sublinear time shortest path algorithms,
is that they assume a random input graph. In this work, we identify “deterministic” properties
of graphs that may be exploited to obtain sublinear time s-t shortest path algorithms.
Concretely, we study shortest paths in expander graphs. An n-node d-regular (all nodes have
degree d) graph G, is an (n, d, λ)-graph if the eigenvalues λ1 ≥ · · · ≥ λn of the corresponding
adjacency matrix A satisfies maxi̸=1 |λi| ≤ λ. Note that the eigenvalues are real since A is
symmetric and real. We start by presenting a number of algorithmic results when the input
graph is an expander.

Shortest s-t Path

Our first contribution demonstrates that the simple bidirectional BFS algorithm efficiently
computes a shortest path between most pairs of nodes s, t in an expander:

▶ Theorem 1. If G is an (n, d, λ)-graph, then for every node s ∈ G, every 0 < δ < 1, it
holds for at least (1 − δ)n nodes t, that bidirectional BFS between s and t, finds a shortest
s-t path after visiting O((d − 1)⌈(1/4) lgd/λ(n/δ)⌉) nodes.

While the bound in Theorem 1 on the number of nodes visited may appear unwieldy at
first, we note that it simplifies significantly for natural values of d and λ. For instance, an
(n, d, λ)-graph is Ramanujan if λ ≤ 2

√
d − 1. For Ramanujan graphs, and more generally for

graphs with λ = O(
√

d), the bound in Theorem 1 simplifies to near-
√

n:

▶ Corollary 2. If G is an (n, d, O(
√

d))-graph, then for every node s ∈ G, every 0 < δ < 1,
it holds for at least (1 − δ)n nodes t, that bidirectional BFS between s and t, finds a shortest
s-t path after visiting O((n/δ)1/2+O(1/ ln d)) nodes.

We also demonstrate that the bound can be tightened even further for Ramanujan graphs:

▶ Theorem 3. If G is a d-regular Ramanujan graph where d ≥ 3, then for every node s ∈ G,
it holds for at least (1 − o(1))n nodes t, that bidirectional BFS between s and t, finds a
shortest s-t path after visiting O(

√
n · ln3/2(n)) nodes.

Short s-t Path

One drawback of bidirectional BFS in expanders, is that it is only guaranteed to find a
shortest path efficiently for most pairs of nodes s, t. One can show that this is inherent.
In particular, as we sketch in Section 4, for constant d and infinitely many n, there exists
(n, d, 3

√
d)-graphs with diameter at least 1.998 lgd−1 n. Picking two nodes s and t of maximum

distance in such a graph and running BFS from both will only terminate after having visited
Ω((d − 1)(1.998/2) lgd−1 n) = Ω(n0.999) nodes.

Motivated by this shortcoming, we also present a simple randomized algorithm for finding
a short, but not necessarily shortest, s-t path. For any parameter 0 < δ < 1, the algorithm
starts by growing a BFS tree from s until Θ(

√
n ln(1/δ)) nodes have been explored. It then
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performs O(
√

n ln(1/δ)/ lgd/λ(n)) random walks starting at t. Each of these random walks
run for O(lgd/λ(n)) steps. If any of these walks discover a node in the BFS tree, it has found
an s-t path of length O(lgd/λ(n)).

We show that this BFS + Random Walks algorithm has a high probability of finding an
s-t path:

▶ Theorem 4. If G is an (n, d, λ)-graph with λ ≤ d/2, then for every pair of nodes s, t,
every 0 < δ < 1, it holds with probability at least 1 − δ, that BFS + Random Walks between s

and t, finds an s-t path of length O(lgd/λ(n)) while visiting O(
√

n ln(1/δ)) nodes.

Finally, let us mention the two previous works [9, 7] that have also identified deterministic
properties of graphs which suffice for provable speedups from bidirectional BFS. The determ-
inistic properties they identify are vaguely related to expansion, but are not as standard
and clean-cut as our results using the standard definition of expanders. The work [16]
has also investigated short paths in expanders in the context of multicommodity flow and
approximating the maximum number of disjoint paths between pairs of nodes.

Lower Bounds

While bidirectional BFS, or BFS + Random Walks, are natural algorithms for finding s-t
paths efficiently, it is not a priori clear that better strategies do not exist. One could e.g.
imagine sampling multiple nodes in an input graph, growing multiple small BFS trees from
the sampled nodes and somehow use this to speed up the discovery of an s-t path. To
rule this approach out, we complement the algorithms presented above with lower bounds.
For proving lower bounds, we consider distributions over input graphs and show that any
algorithm that explores few nodes fails to find an s-t path with high probability in such a
random input graph. As Erdős-Rényi random graphs (with large enough edge probability)
and random d-regular graphs are both expanders with good probability, we prove lower
bounds for both these random graph models. The distribution of an Erdős-Rényi random
graph on n nodes is defined from a parameter 0 < p < 1. In such a random graph, each edge
is present independently with probability p. A random d-regular graph on the other hand, is
uniform random among all n-node graphs where every node has degree d.

Our lower bounds hold even for the problem of reporting an arbitrary path connecting
a pair of nodes s, t, not just for reporting a short/shortest path. Furthermore, our lower
bounds are proved in a model where we allow node-incidence queries. A node-incidence
query is specified by a node index v and is returned the set of all edges incident to v. Our
first lower bound holds for Erdős-Rényi random graphs:

▶ Theorem 5. Any (possibly randomized) algorithm for reporting an s-t path in an Erdős-
Rényi random graph, where edges are present with probability p ≥ 1.5 ln(n)/n, either makes
Ω(1/(p

√
n)) node-incidence queries or outputs a valid path with probability at most o(1) + p.

Note that the lower bound assumes p ≥ 1.5 ln(n)/n. This is a quite natural assumption
since for p ≪ ln(n)/n, the input graph is disconnected with good probability. The concrete
constant 1.5 is mostly for simplicity of the proof. We remark that the additive p in the
success probability is tight as an algorithm always reporting the direct path consisting of
the single edge (s, t) is correct with probability p. Also observe that the number of edges
discovered after O(1/(p

√
n)) node-incidence queries is about O(pn/(p

√
n)) = O(

√
n) since

each node has p(n − 1) incident edges in expectation.
For the case of random d-regular graphs, we show the following lower bound for constant

degree d:

MFCS 2024



8:4 Sublinear Time Shortest Path in Expander Graphs

▶ Theorem 6. Any (possibly randomized) algorithm for reporting an s-t path in a random
d-regular graph with d = O(1), either makes Ω(

√
n) node-incidence queries or outputs a valid

path with probability at most o(1).

We remark that a random d-regular graph is near-Ramanujan with probability 1 − o(1) as
proved in [13], confirming a conjecture raised in [1]. A near-Ramanujan graph is an (n, d, λ)-
expander with λ ≤ 2

√
d − 1 + o(1). Thus our upper bounds in Theorem 1 and Theorem 4

nearly match this lower bound.

Overview

In Section 2, we present our upper bound results and prove the claims in Theorem 1 and
Theorem 4. The upper bounds are all simple algorithms and also have simple proofs using
well-known facts about expanders.

In Section 3, we prove our lower bounds. These proofs are more involved and constitute
the main technical contributions of this work.

2 Upper Bounds

In the following, we present and analyse simple algorithms for various s-t reachability
problems in expander graphs.

2.1 Shortest Path
Let G be an (n, d, λ)-graph and consider the following bidirectional BFS algorithm for finding
a shortest path between a pair of nodes s, t: grow a BFS tree Ts from s and a BFS tree Tt

from t simultaneously. In each iteration, the next layer of Ts and Tt is computed and as soon
as a node v appears in both trees, we have found a shortest path from s to t, namely the
path s → v → t in the two BFS trees.

We show that this algorithm is efficient for most pairs of nodes s, t as claimed in Theorem 1.
To prove Theorem 1, we show that in any (n, d, λ)-graph G, it holds for every node s ∈ G

that most other nodes have a small distance to s. Concretely, we show the following

▶ Lemma 7. If G is an (n, d, λ)-graph, then for every node s ∈ G, it holds for every 0 < δ < 1
that there are no more than δn nodes with distance more than (1/2) lgd/λ(n/δ) from s.

Theorem 1 now follows from Lemma 7 by observing that for a pair of nodes s, t of distance k

in an (n, d, λ)-graph, the bidirectional searches will meet after expanding for ⌈k/2⌉ steps from
s and t. Since each node explored during breadth first search has at most d − 1 neighbors
outside the previously explored tree, it follows that the total number of nodes visited is
O((d − 1)⌈k/2⌉). Since it holds for every s ∈ G that dist(s, t) ≤ (1/2) lgd/λ(n/δ) for a 1 − δ

fraction of all other nodes t, the conclusion follows.
Corollary 2 follows from Theorem 1 by observing that when λ = O(

√
d), we have

(1/4) lgd/λ(n/δ) = (1/2) lgΩ(d)(n/δ). Noting that lgΩ(d)(n/δ) = ln(n/δ)/(ln(d) − O(1)) =
(1 + O(1/ ln d)) lgd−1(n/δ), the conclusion follows.

What remains is to prove Lemma 7. While the contents of the lemma is implicit in
previous works, we have not been able to find a reference explicitly stating this fact. We
thus provide a simple self-contained proof building on Chung’s [11] proof that the diameter
of an (n, d, λ)-graph is bounded by ⌈lgd/λ n⌉.
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Proof of Lemma 7. Let A be the adjacency matrix of an (n, d, λ)-graph G. Letting d =
λ1 ≥ λ2 ≥ · · · ≥ λn denote the (real-valued) eigenvalues of the real symmetric matrix A, we
may write A in its spectral decomposition A = UΣUT with λ1, . . . , λn being the diagonal
entries of the diagonal matrix Σ. By definition, we have max{λ2, |λn|} = λ.

Notice that (Ak)s,t gives the number of length-k paths from node s to node t in G.
Furthermore, we have Ak = UΣkUT . Now let s be an arbitrary node of G and let Z ⊆ [n]
denote the subset of columns t such that (Ak)s,t = 0. The eigenvalues of Ak are λk

1 , . . . , λk
n

and the all-1’s vector 1 is an eigenvector corresponding to λ1. Let 1Z denote the indicator
for the set Z, i.e. the coordinates of 1Z corresponding to t ∈ Z are 1 and the remaining
coordinates are 0. By definition of Z, we have that eT

s Ak1Z = 0. At the same time,
we may write 1Z = (|Z|/n)1 + βu where u is a unit length vector orthogonal to 1 and
β =

√
|Z| − |Z|2/n. Hence

0 = eT
s Ak1Z

= eT
s Ak((|Z|/n)1 + βu)

= eT
s λk

1(|Z|/n)1 + βeT
s Aku

≥ dk|Z|/n − β · ∥es∥ · ∥Aku∥
≥ dk|Z|/n − βλk.

From this we conclude |Z| ≤ (λ/d)knβ ≤ (λ/d)kn
√

|Z|, implying |Z| ≤ (λ/d)2kn2. For
k = (1/2) lgd/λ(n/δ), this is |Z| ≤ δn. ◀

For the special case of Ramanujan graphs, Theorem 3 claims an even stronger result than
Theorem 1. Recall that an (n, d, λ)-graph is Ramanujan if it satisfies that λ ≤ 2

√
d − 1. To

prove Theorem 3 we make use of the following concentration result on distances in Ramanujan
graphs:

▶ Theorem 8 ([17]). Let G be a d-regular Ramanujan graph on n nodes, where d ≥ 3. Then
for every node s ∈ G it holds that

|{t ∈ G : |dist(s, t) − lgd−1 n| > 3 lgd−1 lg n}| = o(n).

Using Theorem 8, we conclude that for every node s ∈ G, it holds for (1 − o(1))n choices of t

that dist(s, t) ≤ lgd−1 n + 3 lgd−1 lg n. The middle node v on a shortest path from s to t thus
has distance at most k = ⌈(lgd−1 n + 3 lgd−1 lg n)/2⌉ ≤ (1/2) lgd−1 n + (3/2) lgd−1 lg n + 1
from s and t. Since the nodes in a layer ℓ of a BFS tree in a d-regular graph G has at most
d − 1 neighbors in layer ℓ + 1, we conclude that the two BFS trees Ts and Tt contain at most
O((d − 1)k) ≤ O(

√
n · ln3/2(n)) nodes each upon termination. Note that the same proof

shows how to find a shortest path in time n1/2+o(1) between most pairs of vertices s and t in
near Ramanujan graphs, as it is also proved in [17] that in such graphs, for every node s

there are only o(n) nodes t of distance exceeding (1 + o(1)) lgd−1 n from s.

2.2 Connecting Path
In the following, we analyse our algorithm, BFS + Random Walks, for finding a short s-t
path in an (n, d, λ)-graph. The algorithm is parameterised by an integer k ≥

√
n and is as

follows: First, run BFS from s until k nodes have been discovered. Call the set of discovered
nodes Vs. Next, run τ = k/(3 lgd/λ(n)) random walks p1, . . . , pτ from t, with each random
walk having a length of 3 lgd/λ(n). If any of the random walks intersects Vs, we have found
an s-t path of length O(lgd/λ(n)) as the paths pi have length O(lgd/λ(n)) and the diameter,
and hence the depth of the BFS tree, in an (n, d, λ)-graph is at most ⌈lgd/λ(n)⌉ [11].

MFCS 2024



8:6 Sublinear Time Shortest Path in Expander Graphs

To analyse the success probability of the algorithm, we bound the probability that all
paths pi avoid Vs. For this, we use the following two results

▶ Theorem 9 ([15]). Let G be an (n, d, λ)-graph. For any two nodes s, t in G, the probability
pk

s,t that a random walk starting in s and of length k ends in the node t, satisfies |1/n−pk
s,t| ≤

(λ/d)k.

▶ Theorem 10 ([3]). Let G be an (n, d, λ)-graph and let W be a set of w vertices in G and
set µ = w/n. Let P (W, k) be the total number of length k paths (k + 1 nodes) that stay in
W . Then

P (W, k) ≤ wdk(µ + (λ/d)(1 − µ))k.

Now consider one of the length 3 lgd/λ(n) random walks p = pi starting in t. To show that
it is likely that the path intersects Vs, we split the random walk p = (t, v1, . . . , v3 lgd/λ(n)+1)
into two parts, namely the first 2 lgd/λ(n) steps p(1) = (t, v1, . . . , v2 lgd/λ(n)+1) and the
remaining lgd/λ(n) steps p(2) = (v2 lgd/λ(n)+1, . . . , v3 lgd/λ(n)+1). Note that we let the last
node e(p(1)) = v2 lgd/λ(n)+1 in p(1) equal the first node s(p(2)) = v2 lgd/λ(n)+1 in p(2). We
use p(1) to argue that p(2) has a near-uniform random starting node. We then argue that
p(2) intersects Vs with good probability.

By Theorem 9, it holds for any node r ∈ G that Pr[e(p(1)) = r] ≤ 1/n + 1/n2. Next,
conditioned on e(p(1)) = r, the path p(2) is uniform random among the dlgd/λ(n) length
lgd/λ(n) paths starting in r. It follows that for any fixed path p of length lgd/λ(n) in G,
we have Pr[p(2) = p] ≤ Pr[e(p(1)) = s(p)]d− lgd/λ(n) ≤ (1/n + 1/n2)d− lgd/λ(n). Now by
Theorem 10 with W = V (G) \ Vs and assuming λ ≤ d/2, there are at most ndlgd/λ(n)((1 −
k/n)+(λ/d)(k/n))lgd/λ(n) ≤ ndlgd/λ(n)(1−k/(2n))lgd/λ(n) ≤ ndlgd/λ(n) exp(− lgd/λ(n)k/(2n))
paths in G that stay within V (G) \ Vs. A union bound over all of them implies that the
probability that p(2) avoids Vs is at most

(1/n + 1/n2)d− lgd/λ(n)ndlgd/λ(n) exp(− lgd/λ(n)k/(2n)) ≤ exp(− lgd/λ(n)k/(2n) + 1/n).

Since the τ = k/(3 lgd/λ(n)) random walks p1, . . . , pτ are independent, we conclude that the
probability they all avoid Vs is no more than

exp(−k2/(6n) + k/(3 lgd/λ(n)n)).

Letting k =
√

7n ln(1/δ) and assuming n is at least some sufficiently large constant, we have
that at least one path pi intersects Vs with probability at least 1 − δ. This completes the
proof of Theorem 4.

3 Lower Bounds

In this section, we prove lower bounds on the number of queries made by any algorithm for
computing an s-t path in a random graph. Our query model allows node-incidence queries.
Here the n nodes of a graph G are assumed to be labeled by the integers [n]. A node-incidence
query is specified by a node index i ∈ [n], and the query algorithm is returned the list of
edges (i, j) incident to i.

We start by considering an Erdős-Rényi random graph, as it is the simplest to analyse.
We then proceed to random d-regular graphs. For the lower bounds, the task is to output
a path between nodes s = 1 and t = n. An algorithm for finding an s-t path works as
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follows: In each step, the algorithm is allowed to ask one node-incidence query. We make no
assumption about how the algorithm determines which query to make in each step, other
than it being computable from all edges seen so far (the responses to the node-incidence
queries). For randomized algorithms, the choice of query in each step is chosen randomly
from a distribution over queries computable from all edges seen so far.

3.1 Erdős-Rényi
Let G be an Erdős-Rényi random graph, where each edge is present independently with
probability p ≥ 1.5 ln(n)/n and let A⋆ be a possibly randomized algorithm for computing
an s-t path in G when s = 1 and t = n. Let α⋆ be the probability that A⋆ outputs a valid
s-t path (all edges on the reported path are in G) and let q be the worst case number of
queries made by A⋆ (for A⋆ making an expected q queries, we can always make it worst case
O(q) queries by decreasing α by a small additive constant). Here the probability is over both
the random choices of A⋆ and the random input graph G. By linearity of expectation, we
may fix the random choices of A⋆ to obtain a deterministic algorithm A that outputs a valid
s-t path with probability α ≥ α⋆. It thus suffices to prove an upper bound on α for such
deterministic A.

For a graph G, let π(G) denote the trace of running the deterministic A on G. If
i1(G), . . . , iq(G) denotes the sequence of queries made by A on G and N1(G), . . . , Nq(G)
denotes the returned sets of edges, then

π(G) := (i1(G), N1(G), i2(G), . . . , iq(G), Nq(G)).

Observe that if we condition on a particular trace τ = (i1, N1, i2, . . . , iq, Nq), then the
distribution of G conditioned on π(A, G) = τ is the same as if we condition on the set of
edges incident to i1, . . . , iq being precisely N1, . . . , Nq. This is because the algorithm A is
deterministic and the execution of A is the same for all graphs G with the same such sets of
edges incident to i1, . . . , iq. Furthermore, no graph G with a different set of incident edges
for i1, . . . , iq will result in the trace τ .

For a trace τ = (i1, N1, . . . , iq, Nq), call the trace connected if there is a path from s to t

using the discovered edges
q⋃

j=1
Nj .

Otherwise, call it disconnected. Intuitively, if a trace is disconnected, then it is unlikely that
A will succeed in outputting a valid path connecting s and t as it has to guess some of the
edges along such a path. Furthermore, if A makes too few queries, then it is unlikely that
the trace is connected. Letting A(G) denote the output of A on the graph G, we have for a
random graph G that

α = Pr[A(G) is valid] ≤ Pr[π(G) is connected]+Pr[A(G) is valid | π(G) is disconnected].

We now bound the two quantities on the right hand side separately.
The simplest term to bound is

Pr[A(G) is valid | π(A, G) is disconnected].

For this, let τ = (i1, N1, . . . , iq, Nq) be an arbitrary disconnected trace in the support of
π(G) when G is an Erdős-Rényi random graph, where each edge is present with probability
p ≥ 1.5 ln(n)/n. Observe that the output of A is determined from τ . Since τ is disconnected,
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8:8 Sublinear Time Shortest Path in Expander Graphs

the path reported by A on τ must contain at least one edge (u, v) where neither u nor v

is among ∪j{ij} or otherwise the output path is valid with probability 0 conditioned on τ .
But conditioned on the trace τ , every edge that is not connected to {i1, . . . , iq} is present
independently with probability p. We thus conclude

Pr[A(G) is valid | π(G) = τ ] ≤ p.

Since this holds for every disconnected τ , we conclude

Pr[A(G) is valid | π(G) is disconnected] ≤ p.

Next we bound the probability that π(G) is connected. For this, define for 1 ≤ k ≤ q

πk(G) := (i1(G), N1(G), i2(G), . . . , ik(G), Nk(G))

as the trace of A on G after the first k queries. As for π(G), we say that πk(G) is connected
if there is a path from s to t using the discovered edges

E(πk(G)) =
k⋃

j=1
Nj(G)

and that it is disconnected otherwise. We further say that πk(G) is useless if it is both
disconnected and |E(πk(G))| ≤ 2pnk. Since

Pr[πk(G) is disconnected] ≥ Pr[πk(G) is useless]

we focus on proving that Pr[πk(G) is useless] is large. For this, we lower bound

Pr[πk(G) is useless | πk−1(G) is useless].

Note that the base case π0(G) is defined to be useless as s and t are not connected
when no queries have been asked and also |E(π0(G))| = 0 ≤ 2pn0 = 0. Let τk−1 =
(i1, N1, . . . , ik−1, Nk−1) be any useless trace. The query ik = ik(G) is uniquely determined
when conditioning on πk−1(G) = τk−1 and so is the edge set Ek−1 = E(πk−1(G)). Fur-
thermore, we know that |Ek−1| ≤ 2pn(k − 1). We now bound the probability that the
query ik discovers more than 2pn new edges. If ik has already been queried, no new edges
are discovered and the probability is 0. So assume ik /∈ {i1, . . . , ik−1}. Now observe that
conditioned on πk−1(G) = τk−1, the edges (ik, i) where i /∈ {i1, . . . , ik−1} are independently
included in G with probability p each. The number of new edges discovered is thus a sum of
m ≤ n independent Bernoullis X1, . . . , Xm with success probability p. A Chernoff bound
implies Pr[

∑
i Xi > (1 + δ)µ] < (eδ/(1 + δ)1+δ)µ for any µ ≥ mp and any δ > 0. Letting

µ = np and δ = 1 gives

Pr[
∑

i

Xi > 2np] < (e/4)np < e−np/3.

Since we assume p > 1.5 ln(n)/n, this is at most 1/
√

n.
We next bound the probability that the discovered edges Nk(G) makes s and t connected

in E(πk(G)). For this, let Vs denote the nodes in the connected component of s in the
subgraph induced by the edges Ek−1. Define Vt similarly. We split the analysis into three
cases. First, if ik ∈ Vs, then Nk(G) connects s and t if and only if one of the edges {ik} × Vt

is in G. Conditioned on πk−1(G) = τk−1, each such edge is in G independently either
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with probability 0, or with probability p (depending on whether one of the end points is
in {i1, . . . , ik−1}). A union bound implies that s and t are connected in E(πk(G)) with
probability at most p|Vt|. A symmetric argument upper bounds the probability by p|Vs| in
case ik ∈ Vt. Finally, if ik is in neither of Vs and Vt, it must have an edge to both a node in
Vs and in Vt to connect s and t. By independence, this happens with probability at most
p2|Vt||Vs|. We thus conclude that

Pr[πk(G) is connected | πk−1(G) = τk−1] ≤ p max{|Vs|, |Vt|} ≤ p(|Ek−1| + 1) ≤ 2p2nk.

A union bound implies

Pr[πk(G) is useless | πk−1(G) is useless] ≥ 1 − 2p2nk − 1/
√

n.

This finally implies

Pr[π(G) is useless] =
q∏

k=1
Pr[πk(G) is useless | πk−1(G) is useless]

≥
q∏

k=1

(
1 − 2p2nk − 1/

√
n

)
≥ 1 −

q∑
k=1

(2p2nk + 1/
√

n)

≥ 1 − p2n(q + 1)2 − q/
√

n.

It follows that

Pr[π(G) is connected] = 1 − Pr[π(G) is disconnected]
≤ 1 − Pr[π(G) is useless]
≤ p2n(q + 1)2 + q/

√
n.

For q = o(1/(p
√

n)) and p ≥ 1.5 ln(n)/n, this is o(1). Note that for the lower bound to be
meaningful, we need p = O(1/

√
n) as otherwise the bound on q is less than 1. (Indeed, for

p = Ω(1/
√

n), s and t have a common neighbor with probability bounded away from 0 and
if so 2 queries suffice). This concludes the proof of Theorem 5.

3.2 d-Regular Graphs
We now proceed to random d-regular graphs. Assume dn is even, as otherwise a d-regular
graph on n nodes does not exist. Similarly to our proof for the Erdős-Rényi random graphs,
we will condition on a trace of A. Unfortunately, the resulting conditional distribution of
a random d-regular graph is more cumbersome to analyse. We thus start by reducing to a
slightly different problem.

Let Mn,d denote the set of all graphs on nd nodes where the edges form a perfect
matching on the nodes. There are thus nd/2 edges in any such graph. We think of the nodes
of a graph G ∈ Mn,d as partitioned into n groups of d nodes each, and we index the nodes
by integer pairs (i, j) with i ∈ [n] and j ∈ [d]. Here i denotes the index of the group. For a
graph G ∈ Mn,d and a sequence of group indices p := s, i1, . . . , im, t, we say that p is a valid
s-t meta-path in G, if for every two consecutive indices a, b in p, there is at least one edge
((a, j1), (b, j2)) in G. A meta-path is thus a valid path if and only if s and t are connected in
the graph resulting from contracting the nodes in each group.

MFCS 2024



8:10 Sublinear Time Shortest Path in Expander Graphs

Now consider the problem of finding a valid s-t meta-path in a graph G drawn uniformly
from Mn,d (we write G ∼ Mn,d to denote such a graph) while asking group-incidence queries.
A group-incidence query is specified by a group index i ∈ [n] and the answer to the query is
the set of edges incident to the nodes {i} × {1, . . . , d}.

We start by showing that an algorithm A⋆ for finding an s-t path in a random d-regular
n-node graph, gives an algorithm A for finding an s-t meta-path in a random G ∼ Mn,d

using group-incidence queries.

▶ Lemma 11. If there is a (possibly randomized) algorithm A⋆ that reports a valid s-t path
with probability α in a random d-regular graph on n nodes while making q node-incidence
queries, then there is a deterministic algorithm A that reports a valid s-t meta-path with
probability at least exp(−O(d2))α in a random graph G ∼ Mn,d while making q group-
incidence queries.

Proof. Given an algorithm A⋆ that reports a valid s-t path in a random d-regular graph on n

nodes with probability α, we start by fixing its randomness to obtain a deterministic algorithm
A′ with the same number of queries that outputs a valid s-t path with probability at least α.
Next, let G ∼ Mn,d. Let i1 ∈ [n] be the first node that A′ queries (which is independent of the
input graph). Our claimed algorithm A for reporting an s-t meta-path in G starts by querying
the group i1. Upon being returned the set of edges {((i1, 1), (j1, k1)), . . . , ((i1, d), (jd, kd))}
incident to {i1} × {1, . . . , d}, we contract the groups such that each edge ((i1, h), (j, k)) is
replaced by (i1, j). If this creates any duplicate edges or self-edges, A aborts and outputs an
arbitrarily chosen s-t meta-path. Otherwise, the resulting set of edges {(i1, j1), . . . , (i1, jd)}
is passed on to A′ as the response to the first query i1. The next query i2 of A′ is then
determined and we again ask it as a group-incidence query on G and proceed by contracting
groups in the returned set of edges and passing the result to A′ if there are no duplicate
or self-edges. Finally, if we succeed in processing all q queries of A′ without encountering
duplicate or self-edges, A outputs the s-t path reported by A′ as the s-t meta-path.

To see that this strategy has the claimed probability of reporting a valid s-t meta-path, let
G⋆ be the graph obtained from G by contracting all groups. Observe that if we condition on
G⋆ being a simple graph (no duplicate edges or self-edges), then the conditional distribution
of G⋆ is precisely that of a random d-regular graph on n nodes. It is well-known [5, 8, 22, 21]
that the contracted graph G⋆ is indeed simple with probability at least exp(−O(d2)) and
the claim follows. ◀

In light of Lemma 11, we thus set out to prove lower bounds for deterministic algorithms
that report an s-t meta-path in a random G ∼ Mn,d using group-incidence queries.

Let A be a deterministic algorithm making q group-incidence queries that reports a
valid s-t meta-path with probability α in a random G ∼ Mn,d. Similarly to our proof
for Erdős-Rényi graphs, we start by defining the trace of A on a graph G ∈ Mn,d. If
i1(G), . . . , iq(G) ∈ [n] denotes the sequence of group-incidence queries made by A on G and
N1(G), . . . , Nq(G) denotes the returned sets of edges, then for 1 ≤ k ≤ q, we define

πk(G) = (i1(G), N1(G), . . . , ik(G), Nk(G)).

We also let π(G) := πq(G) denote the full trace. Call a trace τk = (i1, N1, . . . , ik, Nk)
connected if there is a sequence of group indices p := s, i1, . . . , im, t such that for every two
consecutive indices a, b in p, there is an edge ((a, h), (b, k)) in ∪iNi. Otherwise, call the trace
disconnected. Letting A(G) denote the output of A on the graph G, we have

α = Pr[A(G) is valid] ≤ Pr[π(G) is connected]+Pr[A(G) is valid | π(G) is disconnected].
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We bound the two terms separately, starting with the latter. So let τ = (i1, N1, . . . , iq, Nq) be a
disconnected trace in the support of π(G). The output meta-path A(G) = p = s, i1, . . . , im, t

of A is determined from τ . Since τ is disconnected, there must be a pair of consecutive
indices a, b in p such that there is no edge ((a, h), (b, k)) ∈ ∪iNi. Fix such a pair a, b. We
now consider two cases. First, if either a or b is among i1, . . . , iq, then all edges incident
to that group are among ∪iNi conditioned on π(G) = τ . It thus follows that p is a valid
s-t meta-path with probability 0 conditioned on π(G) = τ . Otherwise, neither of a and b

are among i1, . . . , iq. The set of edges ∪iNi specify at most dq edges of the matching G.
For any node whose matching edge is not specified by ∪iNi, the conditional distribution of
its neighbor is uniform random among all other nodes whose matching edge is not in ∪iNi.
For each of the d2 possible edges ((a, h), (b, k)) between the groups a and b, there is thus
a probability at most 1/(nd − 1 − 2dq) that the edge is in G conditioned on π(G) = τ . A
union bound over all d2 such edges finally implies

Pr[A(G) is valid | π(G) = τ ] ≤ d2

nd − 1 − 2dq
.

Since this holds for every disconnected τ , we conclude

Pr[A(G) is valid | π(G) is disconnected] ≤ d2

nd − 1 − 2dq
.

Next, to bound Pr[π(G) is connected], we show that

Pr[πk(G) is disconnected | πk−1(G) is disconnected]

is large. So let τk−1 = (i1, N1, . . . , ik−1, Nk−1) be a disconnected trace in the support of
πk−1(G). The next query ik = ik(G) of A is fixed conditioned on πk−1(G) = τk−1. We have
a two cases. First, if ik ∈ {i1, . . . , ik−1} then no new edges are returned by the query and we
conclude

Pr[πk(G) is disconnected | πk−1(G) = τk−1] = 1.

Otherwise, let Vs denote the subset of group-indices j for which there is a meta-path from s

to j. Similarly, let Vt denote the subset of group-indices j for which there is a meta-path
from t to j. We have Vs ∩ Vt = ∅. Now if ik ∈ Vs, we have that πk(G) is connected only
if there is an edge between a node (ik, j) with j ∈ [d] and a node (b, k) with b ∈ Vt. Let
r ∈ {0, . . . , d} denote the number of nodes (ik, j) with j ∈ [d] for which the corresponding
matching edge is not in ∪iNi. Conditioned on πk−1(G) = τk−1, the neighbor of any such
node is uniform random among all other nodes for which the corresponding matching edge
is not in ∪iNi. There are at least nd − 1 − 2d(k − 1) such nodes. A union bound over at
most rd|Vt| ≤ d2|Vt| pairs ((ik, j), (b, k)) implies that πk(G) is connected with probability
at most d2|Vt|/(nd − 1 − 2d(k − 1)). A symmetric arguments gives an upper bound of
d2|Vs|/(nd − 1 − 2d(k − 1)) in case ik ∈ Vt. Finally, if ik is in neither of Vs and Vt, then there
must still be an edge ((ik, j), (a, k)) for a group a ∈ Vs. We thus conclude

Pr[πk(G) is connected | πk−1(G) = τk−1] ≤ d2 max{|Vs|, |Vt|}
nd − 1 − 2d(k − 1) ≤ d3k

nd − 1 − 2dq
.
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8:12 Sublinear Time Shortest Path in Expander Graphs

Since this holds for every disconnected trace τk−1, we finally conclude

Pr[π(G) is disconnected] ≥
q∏

k=1

(
1 − d3k

nd − 1 − 2dq

)

≥ 1 −
q∑

k=1

d3k

nd − 1 − 2dq

≥ 1 − d3q2

nd − 1 − 2dq
,

and thus

Pr[π(G) is connected] ≤ d3q2

nd − 1 − 2dq
.

For constant degree d, if q = o(
√

n), this is o(1). Together with Lemma 11, we have thus
proved Theorem 6.

4 Large Diameter Expanders

In this section, we sketch the claim from Section 1 that there exists large diameter expanders.
Concretely, using the techniques in [4] with a slightly different choice of parameters it is
not difficult to show that there are (n′, d, λ)-graphs with λ < 3

√
d and diameter larger than

(2 − 0.003) lgd−1 n′ for constant d. Here is a sketch of the argument proving this fact.
Start with a Ramanujan (n, d, 2

√
d − 1)-graph, with girth Ω(lgd−1 n) (for example, taking

an LPS expander). Choose in it a set X of 2(d − 1)0.999 lgd−1 n vertices so that the distance
between any pair of them is Ω(lgd−1 n). This can be done by choosing the vertices one by one,
always adding a vertex far from all vertices chosen already. Omit these vertices and identify
their 2d(d − 1)0.999 lgd−1 n neighbors with the leaves of two d-regular trees, each of depth
0.999 lgd−1 n and each having d(d − 1)0.999 lgd−1 n leaves. The graph obtained is d-regular
and has n′ vertices (the original n plus the vertices of the two trees). The distance between
the roots of the two trees is clearly bigger than (2 − 0.002) lgd−1 n > (2 − 0.003) lgd−1 n′.

By the argument in [4] (see also [2], Lemma 3.2) based on the delocalization of eigenvectors
of high girth graphs it is not difficult to show that the absolute value of every nontrivial
eigenvalue of the graph obtained is smaller than 3

√
d, implying the required fact. We omit

the detailed computation.

References

1 Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
2 Noga Alon. Explicit expanders of every degree and size. Combinatorica, 41, February 2021.
3 Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph products.

Comput. Complex., 5(1):60–75, January 1995.
4 Noga Alon, Shirshendu Ganguly, and Nikhil Srivastava. High-girth near-ramanujan graphs

with localized eigenvectors. Israel Journal of Mathematics, 246(1), 2021.
5 Edward A. Bender. The asymptotic number of non-negative integer matrices with given row

and column sums. Discret. Math., 10:217–223, 1974.
6 Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-

Retana, and Marianne Thieffry. Efficient shortest paths in scale-free networks with underlying
hyperbolic geometry. ACM Trans. Algorithms, 18(2), March 2022. doi:10.1145/3516483.

https://doi.org/10.1145/3516483


N. Alon, A. Grønlund, S. F. Jørgensen, and K. G. Larsen 8:13

7 Thomas Bläsius and Marcus Wilhelm. Deterministic performance guarantees for bidirectional
bfs on real-world networks. In Combinatorial Algorithms: 34th International Workshop,
IWOCA 2023, Tainan, Taiwan, June 7–10, 2023, Proceedings, pages 99–110. Springer-Verlag,
2023.

8 Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. European Journal of Combinatorics, 1:311–316, 1980.

9 Michele Borassi, Pierluigi Crescenzi, and Luca Trevisan. An axiomatic and an average-case
analysis of algorithms and heuristics for metric properties of graphs. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages
920–939. Society for Industrial and Applied Mathematics, 2017.

10 Michele Borassi and Emanuele Natale. Kadabra is an adaptive algorithm for betweenness via
random approximation. ACM J. Exp. Algorithmics, 24, February 2019. doi:10.1145/3284359.

11 Fan R. K. Chung. Diameters and eigenvalues. Journal of the American Mathematical Society,
2:187–196, 1989.

12 Dennis de Champeaux. Bidirectional heuristic search again. J. ACM, 30(1):22–32, January
1983.

13 Joel Friedman. A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems.
American Mathematical Society, 2008.

14 Dorit S. Hochbaum. An exact sublinear algorithm for the max-flow, vertex disjoint paths and
communication problems on random graphs. Operations Research, 40(5):923–935, 1992.

15 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43(04):439–562, August 2006.

16 J. Kleinberg and R. Rubinfeld. Short paths in expander graphs. In Proceedings of the 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, page 86. IEEE Computer
Society, 1996.

17 Eyal Lubetzky and Yuval Peres. Cutoff on all ramanujan graphs. Geometric and Functional
Analysis, 26:1190–1216, 2015.

18 Michael Luby and Prabhakar Ragde. A bidirectional shortest-path algorithm with good
average-case behavior. Algorithmica, 4(1–4):551–567, March 1989.

19 Ira Sheldon Pohl. Bi-Directional and Heuristic Search in Path Problems. PhD thesis, Stanford
University, Stanford, CA, USA, 1969.

20 Lenie Sint and Dennis de Champeaux. An improved bidirectional heuristic search algorithm.
J. ACM, 24(2):177–191, April 1977.

21 N. C. Wormald. Models of Random Regular Graphs, pages 239–298. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1999.

22 Nicholas C. Wormald. Some problems in the enumeration of labelled graphs. Bulletin of the
Australian Mathematical Society, 21(1):159–160, 1980.

MFCS 2024

https://doi.org/10.1145/3284359




Quantum Algorithms for Hopcroft’s Problem
Vladimirs Andrejevs #

Centre for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Aleksandrs Belovs #

Centre for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia
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Abstract
In this work we study quantum algorithms for Hopcroft’s problem which is a fundamental problem
in computational geometry. Given n points and n lines in the plane, the task is to determine whether
there is a point-line incidence. The classical complexity of this problem is well-studied, with the
best known algorithm running in O(n4/3) time, with matching lower bounds in some restricted
settings. Our results are two different quantum algorithms with time complexity Õ(n5/6). The first
algorithm is based on partition trees and the quantum backtracking algorithm. The second algorithm
uses a quantum walk together with a history-independent dynamic data structure for storing line
arrangement which supports efficient point location queries. In the setting where the number of
points and lines differ, the quantum walk-based algorithm is asymptotically faster. The quantum
speedups for the aforementioned data structures may be useful for other geometric problems.
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1 Introduction

In this work we investigate the quantum complexity of Hopcroft’s problem, a classic problem
in computational geometry. Given n lines and n points in the plane, it asks to determine
whether some point lies on some line. In a line of research spanning roughly 40 years
culminating with a recent paper by Chan and Zheng [19], the classical complexity has settled
on O(n4/3) time, with matching lower bounds in some models of computation [27]. Along
with its natural setting, the problem also captures the essence of a class of other geometric
problems with complexity Õ(n4/3) [26].

There are several reasons why we find Hopcroft’s problem interesting in the quantum
setting. Firstly, classical algorithms for this problem typically use data structures support-
ing some fundamental geometric query operations. For example, Hopcroft’s problem can
be reduced to the simplex range searching, in which the data structure stores the given
points and each query asks whether a given region contains any of the points [4]. Another
approach is to store the given lines instead and answer point location queries, that is, for a
given point, determine which region of the line configuration it belongs to [40, 25]. Thus,
Hopcroft’s problem gives a good playground for improving and comparing the complexity
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9:2 Quantum Algorithms for Hopcroft’s Problem

of ubiquitous geometric data structures quantumly. We are also interested in finding new
history-independent data structures that can be used in quantum walk algorithms, following
the ideas started with Ambainis’ element distinctness algorithm [7] (see also [1, 15]).

Secondly, Hopcroft’s problem is closely related to a large group of geometric tasks that
can be solved in the same time Õ(n4/3). A speedup for Hopcroft’s problem may automatically
give an improvement for some of those. Erickson studied the class of such problems [26], some
examples include detecting/counting intersections in a set of segments and detecting/counting
points in a given set of regions. The problem can be also reduced to various other geometric
problems, giving fine-grained lower bounds. For example, Hopcroft’s problem in d dimensions
(replacing lines with hyperplanes) can be reduced to halfspace range checking in d + 1
dimensions for d ≥ 4 (are all given points above all given hyperplanes?) and others [26].

In fact, Hopcroft’s problem in d dimensions can also be equivalently formulated as follows:
given two sets of vectors A, B ∈ Rd+1, determine whether there are a ∈ A, b ∈ B such that
⟨a, b⟩ = 0 [46]. The famous Orthogonal Vectors problem (OV) in fine-grained complexity
is a special case of Hopcroft’s when A, B = {0, 1}d [44, 3]. The complexities of these problems
differ; if |A| = |B| = n, then, classically, the complexity of OV is Θ(n) in O(1) dimensions
[45] and Θ(n2−o(1)) in polylog n dimensions under SETH [2, 18]. In contrast, the complexity
of Hopcroft’s problem in d dimensions is O(n2d/(d+1)) [19]. Quantumly, the complexity of OV
was settled in [1]; for O(1) dimensions, it is Θ(

√
n) and for polylog n dimensions, Θ(n1+o(1))

under QSETH, the quantum analogue of SETH. In this work we also examine the quantum
complexity of Hopcroft’s problem in an arbitrary number of dimensions d.

In general, we are interested in investigating quantum speedups for computational
geometry problems. In recent years, there have been several works researching this topic.
First, Ambainis and Larka gave a nearly optimal O(n1+o(1)) quantum algorithm for the
Point-On-3-Lines (detecting whether three lines are concurrent among the n given) and
similar problems [11]. This problem is closely connected to fine-grained complexity as well,
as it is an instance of the 3-Sum-Hard problem class. Classically, it is conjectured that
3-Sum cannot be solved faster than O(n2); the authors also conjectured a quantum analogue
that 3-Sum cannot be solved quantumly faster than O(n), and Buhrman et al. used this
conjecture to prove conditional quantum lower bounds on various geometrical problems [14].
Aaronson et al. studied the quantum complexity of the Closest Pair problem (finding
the closest pair of points among the n given), proving an optimal Θ̃(n2/3) running time in
O(1) dimensions using a quantum walk algorithm with a dynamic history-independent data
structure for storing points that is able to detect ϵ-close pairs of points [1]. For Bipartite
Closest Pair problem in d dimensions (finding the closest pair of points between two sets
of size n), they gave an O(n1−1/2d+δ) time quantum algorithm for any δ > 0. For more
results in quantum algorithms for computational geometry, see [39, 38, 12, 42, 43, 31].

For Hopcroft’s problem, the best classical results give complexity O((nm)2/3 + m log n +
n log m), where n and m are the number of lines and points, respectively. In d dimensions,
these generalize to O((nm)d/(d+1) + m log n + n log m) complexity [19]. The first complexity
is unconditionally optimal if the algorithm needs to list all incidences, since there exists a
planar construction with Ω((nm)2/3) incidence pairs ([25], Section 6.5.). It is also believed
to be optimal for detection as well, with matching lower bounds in some models [27]. The
dependence on n and m is symmetric since Hopcroft’s problem is self-dual, in the sense
that there is a geometric transformation which maps lines to points and vice versa, while
preserving the point-line incidences ([25], Section 14.3.).

Finally, quite often the quantum query complexity of a problem matches its time complex-
ity, like in Unstructured Search [29, 13], Element Distinctness [9, 8, 32], Closest
Pair [1], Claw Finding [41, 47], just to name a few. In other cases even the precise query
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complexity is not yet clear, for example, Triangle Finding [33] or Boolean Matrix
Product Verification [16, 24]. In the case of Hopcroft’s problem, its quantum query
complexity can be easily characterized to be Θ((nm)1/3 +

√
n +

√
m) from known results, see

Theorem 5. The query-efficient algorithm does not immediately generalize to time complexity;
therefore, the main focus here falls to improving the performance of the relevant classical
data structures quantumly, which we find interesting.

1.1 Our results
In this work we show two quantum algorithms for Hopcroft’s problem with time complexity
Õ(n5/6). This constitutes a polynomial speedup over the classical O(n4/3) time. We obtain
our results by speeding up classical geometric data structures using different quantum
techniques. We look at two underlying fundamental problems one usually encounters on the
way to solve Hopcroft’s problem.
1. Simplex range searching. In simplex range searching, the input is a set of n points

in the d-dimensional space. A query then asks whether a given simplex contains any
of the given points. The query may also ask to list or count the points in the simplex,
among other variants [4]. Usually, there is some preprocessing time to precompute the
data structure and some query time to answer each query. Classically, these complexities
are well-understood; in a nutshell, a data structure of size m can be constructed in Õ(m)
time and each query can then be answered in Õ(n/m1/d) time [35], and this is matched
by lower bounds in the semigroup model [23, 22]. If the allowed memory size is linear,
then preprocessing and query times become respectively O(n log n) and O(n1−1/d) [17].
In this paper we require a variant of simplex range queries which we call hyperplane
emptiness queries, where we have to determine whether a query hyperplane contains any
of the given points. We show that quantumly we can speed up query time quadratically
by using Montanaro’s quantum algorithm for searching in the backtracking trees [36]:
▶ Theorem 1. There is a bounded-error quantum algorithm that can answer hyperplane
emptiness queries in Õ(

√
n1−1/d) time.

We note that this result is not really specific to the hyperplane emptiness queries, as all
what we are doing is speeding up search in the partition tree data structure [17], thus
this result can applied to other types of queries as well. However, this speedup does
not extend to the counting version of simplex queries, since essentially, our procedure
implements a search for a marked vertex in a tree using quantum walk. Using this result,
we show a quantum speedup for Hopcroft’s problem in d dimensions:
▶ Theorem 2. There is a bounded-error quantum algorithm which solves Hopcroft’s
problem with n hyperplanes and m ≤ n points in d dimensions in time:

Õ(n
d

2(d+1) m1/2), if m ≥ n
d

d+1 ;
Õ(n1/2m

d−1
2d ), if m ≤ n

d
d+1 .

If n = m, then the algorithm has complexity Õ(n1− 1
2(d+1) ).

In particular, the complexity is Õ(n5/6) in 2 dimensions for n = m.
2. Planar point location. The second approach is to use point location queries. One can

use usually use classical point location data structures to determine whether a query point
lies on the boundary of a planar region it belongs to. More specifically, we consider only
planar point location data structures in the line arrangements. A set of n lines partitions
the plane into O(n2) regions; this an old and well-researched topic, with many approaches
to construct a data structure that holds the description of these regions in O(n2) time,
the same amount of space and polylog n point location query time [25] (in fact, O(nd)
preprocessing time and space and O(log n) query time in d dimensions [21, 20]).
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9:4 Quantum Algorithms for Hopcroft’s Problem

In addition, there are also dynamic data structures with the same preprocessing and
query times. More specifically, one can insert or remove a line in time O(n) (or O(nd−1)
in d dimensions) [37]. We take an opportunity to employ such a data structure in a
quantum walk algorithm on a Johnson graph to solve Hopcroft’s problem. In particular,
we develop a history-independent randomized data structure for storing an arrangement
of an r-subset of n lines with ability to perform line insertion/removal in O(r polylog n)
time and point location in polylog n time, requiring O(r polylog n) memory storage.
To do that, we store k-levels of the line arrangement in the history-independent skip lists
a la Ambainis [9]. A k-level of a line arrangement is a set of segments of lines such that
there are exactly k lines above each edge. Turns out that skip lists are ideal for encoding
the k-levels. For example, when a new line is inserted, it splits each k-level in two parts,
one of which will still belong to the k-level, but the other will belong to the (k + 1)-level.
We can then “reglue” these two tails to the correct levels of the arrangements in polylog n

time by utilizing the properties of the skip list, all while keeping the history independence
of the data structure. Using this data structure, we show the following quantum speedup
for Hopcroft’s problem in 2 dimensions:
▶ Theorem 3. There is a bounded-error quantum algorithm that solves Hopcroft’s problem
with n lines and m ≤ n points in the plane in time:

Õ(n1/3m1/2), if n2/3 ≤ m;
Õ(n2/5m2/5), if n1/4 ≤ m ≤ n2/3;
Õ(n1/2), if m ≤ n1/4.

In particular, the complexity is Õ(n5/6) when n = m.

Both of Theorems 2 and 3 have their pros and cons. Theorem 2 is arguably simpler,
since it is a quite direct application of the quantum speedup for backtracking. It also has
a lower polylogarithmic factor hidden in the Õ notation, only log n compared to log6 n in
Theorem 3. However, Theorem 3 gives better asymptotic complexity if the number of lines
n differ from the number of points m. On the other hand, Theorem 2 gives a speedup in
the case of an arbitrary number of dimensions, while Theorem 3 has something to say only
about the planar case; we leave a possible generalization of the quantum walk approach to
larger dimensions for future research.

2 Preliminaries

We assume that the sets of points and lines are both in a general position (no two lines are
parallel, no three lines intersect at the same point, no three points lie on the same line). Our
algorithms work in the standard quantum circuit model augmented with Quantum Random
Access Gates that allow to perform read/write operations in superposition; for details, see
Appendix A. One of our building blocks is the following version of Grover’s search:

▶ Theorem 4 (Grover’s search with bounded-error inputs [5, 30]). Let A : [N ] → {0, 1} be a
bounded-error quantum procedure with running time T . Then there exists a bounded-error
quantum algorithm that computes

∨
i∈[N ] A(i) with running time O(

√
N(T + log N)).

Effectively, this result states that even if the inputs to Grover’s search are faulty with
constant probability, no error boosting is necessary, which would add another logarithmic
factor to the complexity. We say that an algorithm is bounded-error if its probability of
incorrect output is some constant strictly less than 1/2.
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3 Query complexity

Before examining time-efficient quantum algorithms, we take a look at the quantum query
complexity of Hopcroft’s problem, which in this case can be fully characterized. We assume
that with a single query, we can obtain the description of any given line or point. In Appendix
B, we prove the following:

▶ Theorem 5. The quantum query complexity of Hopcroft’s problem on n lines and m points
in two dimensions is Θ(n1/3m1/3 +

√
n +

√
m).

In particular, this proves that Theorem 3 is asymptotically optimal for m ≤ n1/4. The
query complexity and the complexities of our algorithms are shown graphically in Figure 1.
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Figure 1 Quantum complexity of Hopcroft’s problem in 2 dimensions on n lines and m points,
assuming m ≤ n. The blue line shows the complexity of the quantum algorithm with the partition
tree (Theorem 2); the green line shows the complexity of the quantum walk algorithm with the line
arrangement data structure (Theorem 3); the red line shows the query complexity (Theorem 5).

The upper bound in Theorem 5 is given by the algorithm of Tani [41]. There is an
obvious hurdle in implementing it in the same time complexity here. Their quantum walk
would require a history-independent dynamic data structure for storing a set of lines and
a set of points supporting the detection of incidence existence. Even assuming the most
optimistic quantum versions of the known data structures, the sufficiently powerful speedup
looks unfeasible. The next two sections describe the algorithms we have obtained by speeding
up two fundamental geometrical query data structures quantumly.

4 Algorithm 1: quantum backtracking with partition trees

We begin with a brief overview of the classical partition tree data structure and its quantum
speedup, and then proceed with the description of the quantum algorithm.

4.1 Partition trees
The partition tree is a classical data structure designed for the task of simplex range searching.
In this problem, one is given n points in a d-dimensional space; the task is to answer queries
where the input is a simplex and the answer is the number of points inside that simplex. The
partition tree is a well-known data structure which can be used to solve this task [4].

This data structure can be described as a tree in the following way. The tree stores n

points and each subtree stores a subset of these points. Each interior vertex v is attributed
with a simplex ∆(v) such that all of the points stored in this subtree belong to the interior
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9:6 Quantum Algorithms for Hopcroft’s Problem

of ∆(v). For each interior vertex v, the subsets of the points stored in its children subtrees
form a partition of the points stored in the subtree of v. Each leaf vertex stores a constant
number of points in a list. For our purposes, each interior vertex is attributed only with
information about its children and no information about the points stored in its subtree.

In this work, we are interested in the hyperplane emptiness queries. Given n points in the
d-dimensional space, the task is to answer queries where the input is an arbitrary hyperplane
and the answer is whether there is a point that lies on the given hyperplane. These queries
can also be answered using partition trees:

▶ Lemma 6 (Hyperplane emptiness query procedure). Let T be a partition tree storing a set of
points. Let the tree query cost c(T ) be the maximum number of simplices of T that intersect
an arbitrary hyperplane. Then the hyperplane emptiness query can be answered in O(c(T ))
time.

Proof. The procedure for answering a query is as follows. We start at the root and traverse
T recursively. If the current vertex is an interior vertex v and the query hyperplane is h,
then we recurse only in the children of v such that ∆(v) intersects h. If the current vertex is
a leaf vertex, we check whether any of its points lies on h. The running time is evidently
linear in the number of simplices intersecting h. ◀

There are different ways to construct partition trees, but a long chain of works in
computational geometry resulted in an optimal version of the partition tree [17]. Even
though their goal is to answer simplex queries, in fact the main result gives an upper bound
on c(T ) for their partition tree:

▶ Theorem 7 (Partition tree [17]). For any set of n points in d dimensions, there is a
partition tree T such that:

it can be built in O(n log n) time and requires O(n) space;
c(T ) = O(n1−1/d); hence, a hyperplane emptiness query requires O(n1−1/d) time;
each vertex has O(1) children and the depth of the tree is O(log n).

To speed up the emptiness query time of the partition tree quantumly we use the
quantum backtracking algorithm [36]. Their quantum algorithm searches for a marked
vertex in a tree S. The markedness is defined by a black-box function P : V (T ) →
{true, false, indeterminate}. For leaf vertices v, we have P (v) ∈ {true, false}. A
vertex v is marked if P (v) = true, and the task is to determine whether S contains a marked
vertex.

The root of S is known and the rest of the tree is given by two other black-box functions.
The first, given a vertex v, returns the number of children d(v) of v. The second, given v

and an index i ∈ [d(v)], returns the i-th child of v. The main result is a quantum algorithm
for detecting a marked vertex in S:

▶ Theorem 8 (Quantum algorithm for backtracking [36, 10]). Suppose you are given a tree
S by the black boxes described above and upper bounds T and h on the size and the height
of the tree. Additionally suppose that each vertex of S has O(1) children. Then there is a
bounded-error quantum algorithm that detects a marked vertex in S with query and time
complexity O(

√
Th).

When we apply it to the partition tree from Theorem 7, we get:

▶ Theorem 1. There is a bounded-error quantum algorithm that can answer hyperplane
emptiness queries in Õ(

√
n1−1/d) time.
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Proof. The procedure of Lemma 6 examines a subtree S of T . We will apply Theorem 8 to
S. Suppose that h is a query hyperplane. The black box P returns intermediate for any
interior vertex v and for a leaf vertex v returns true iff some point stored in v lies on h.
The second black box returns the number of children of v in T if ∆(v) intersects h and 0
otherwise. The black box returning the i-th child simply fetches it from the partition tree
that is stored in memory. All of these black boxes require only constant time to implement.
Since we know that |S| = O(n1−1/d) and the height of S is O(log n) from Theorem 7, there is
a quantum algorithm that solves the problem in O(

√
n1−1/d · log n) time by Theorem 8. ◀

4.2 Quantum algorithm
Now we can apply the previous theorem to Hopcroft’s problem.

▶ Theorem 2. There is a bounded-error quantum algorithm which solves Hopcroft’s problem
with n hyperplanes and m ≤ n points in d dimensions in time:

Õ(n
d

2(d+1) m1/2), if m ≥ n
d

d+1 ;
Õ(n1/2m

d−1
2d ), if m ≤ n

d
d+1 .

If n = m, then the algorithm has complexity Õ(n1− 1
2(d+1) ).

Proof. In the first case, we partition the whole set of points into m/r groups of size r = n
d

d+1 .
Using Grover’s search, we search for a group that contains a point belonging to some line.
To determine whether it’s true for a fixed group, first we build a partition tree of Theorem 7
to store these points. Then we run Grover’s search over all lines and determine whether a
line contains some point from the group using the quantum query procedure from Theorem
1. Overall, the complexity of this algorithm (without logarithmic factors) is

O

(√
m

r

(
r +

√
n ·
√

r1−1/d · log r
))

= O

(√
mr +

√
nm

r1/d
log r

)
= O

(√
mn

d
d+1 log n

)
If we use the variation of Grover’s search with bounded-error inputs (Theorem 4), then we
do not incur extra logarithmic factors. If m ≤ n

d
d+1 , then we simply build the partition tree

on all m points, then use Grover’s search over all lines and query the partition tree for each
of them. The complexity in that case is

O
(

m log m +
√

n ·
(√

m1−1/d · log m + log n
))

= O
(√

nm1−1/d · log n
)

,

because the second term dominates the first (up to logarithmic factors). ◀

5 Algorithm 2: quantum walk with line arrangements

First we describe a classical history-independent data structure for storing an arrangement
of a set of lines. After that, we describe the quantum walk algorithm that uses it for solving
Hopcroft’s problem.

5.1 Line arrangements
We begin with a few definitions (for a thorough treatment, see e.g. [25]). For a set of lines L,
the line arrangement A(L) is the partition of the plane into connected regions bounded by
the lines. The convex regions with no other lines crossing them are called cells and their
sides are called the edges of the arrangement (note that some cells may be infinite). The
intersection points of the lines are called the vertices of the arrangement.
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9:8 Quantum Algorithms for Hopcroft’s Problem

For a set of lines L in a general position, the k-level is the set of edges of A(L) such that
there are exactly k lines above each edge (for the special case of a vertical line, we consider
points to the left of it to be “above”). By this construction each k-level forms a polygonal
chain. Our data structure will store the line arrangement of a subset S of lines by keeping
track of all |S| levels, with each level being stored in a skip list. We will be able to support
the following operations:

Answering whether a point lies on some line in O(log6 n) time.
Inserting or removing a line in O(|S| log4 n + log6 n) time.

5.2 Skip lists
We will need a history-independent data structure which can store a set of elements and
support polylogarithmic time insertion/removal operations. For that purpose use the skip
list data structure by Ambainis from the Element Distinctness algorithm [9]. Among
other applications, it was also used by [1] for the Closest Pair problem, where they also
gave a brief description. Here we shortly describe only the details required in our algorithm
and rely on the facts already proved in these papers.

Suppose that the skip list stores some set of elements S ⊆ [N ], according to some order
such that comparing two elements requires constant time. In a skip list, each element i ∈ S

is assigned an integer ℓi ∈ [0, . . . , ℓmax], where ℓmax = ⌈log2 N⌉. The skip list itself then
consists of ℓmax + 1 linked lists where the k-th list contains all i ∈ S such that ℓi ≥ k. We
will call the k-th linked list by the k-th layer (to not confuse them with k-levels). In other
words, each element i ∈ S is attributed with ℓi + 1 pointers, where the k-th of them points to
the smallest element j such that j > i and ℓj ≥ k, or to Null, if there is no such j. The first
element of the skip list is called the head and it only stores the ℓmax pointers, the beginnings
of each layer (it is convenient to imagine this element storing value 0, which is smaller then
any element of S).

The search of an element i ∈ S is implemented in the following way. First, we traverse
the ℓmax-th layer to find the last element j such that j ≤ i. If j = i, we are done; otherwise,
traverse the layer below starting from j to find the last element j′ ≤ i there. By repeating
such iterations, we will find i. Insertion of i /∈ S is implemented similarly: first we find the
last element jk ∈ S such that j < i, for all layers k. Then we update the pointers: for each
layer k ≤ li, we set the pointer from i to be be equal to the pointer from jk; then we set the
pointer from jk to i. If an operation requires more than O(log4 N) time, it is terminated.

To store the elements in memory, a specific hash table is used. Element’s entry contains
the description of the element together with other data attributed to it (in particular, the
values of the pointers). We will not describe the details of the implementation, as it is the
same as Ambainis’. The whole data structure can sometimes malfunction (e.g., the hash
table buckets can overflow or the operation of the skip list can take too long), but it is shown
in [9] that probability of such is small. More specifically, the probability that at least one
operation malfunctions among O(N) operations is only O(1/

√
N). Thus, as we are aiming

at a sublinear algorithm, we don’t need to worry about the error probability of the skip lists.
We also note that the memory requirement of Ambainis’ skip list is O(r log3 N), if at most r

elements need to be stored.

5.3 Data structure
Our data structure will operate mainly using the intersection points of the lines. To keep the
unique description of the data for history independence, we describe each intersection point
in the following way. Suppose the given lines are labeled ℓ1, . . ., ℓn. For any two lines ℓi and
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ℓj , let Pi,j be its intersection point. In an arrangement which includes both of these lines,
we describe the left and right edges of ℓi connected to Pi,j by left(ℓi, ℓj) and right(ℓi, ℓj).
In that case there will be a k such that the k-level contains the edges left(ℓi, ℓj) and
right(ℓj , ℓi), and the (k + 1)-level contains the edges left(ℓj , ℓi) and right(ℓi, ℓj). We
describe Pi,j in the first case by the by the pair of integers νi,j = (i, j) and by νj,i = (j, i)
in the second case, see Figure 2. We call these pairs path points of Pi,j . Note that we can
calculate the coordinates of any path point in constant time as it description consists of the
indices of the lines.

νi,j

νj,i
ℓi

ℓj

k-level

(k + 1)-level

Figure 2 Path points of a line intersection.

Now we will describe the data structure, which stores an arrangement of a subset of
given lines. It will operate with multiple skip lists each storing a set of path points of the
arrangement. To ensure the unique representation of the data, we encode the pointers of the
skip lists with the values of the path points themselves. To represent the beginning of a level
from line ℓi, we use a “fictitious” starting path point νi,i = (i, i). The last element of skip
lists we encode with a special “null” path point νNull. We implement the following skip lists:

The skip lists that contain the path points of the current k-levels in order from left to
right. These skip lists are stored implicitly, since adding and removing lines changes the
indexing of the levels and the levels themselves. For each path point ν stored in such a
skip list, we additionally store an array Nextν [0 . . . lmax] storing the values of next path
points of its skip list for each skip list layer.
Start – contains the heads of all level skip lists in the current arrangement. If the first
edge of a k-level belongs to ℓi, the head of its skip list is νi,i, and we additionally store
Nextνi,i

to access the respective level skip list. The heads are ordered by the slope of the
lines with the x-axis corresponding to the head path points.

Further we will describe the implementation of the operations.

5.3.1 Point location
To detect whether a point belongs to some line, we essentially binary search through all
k-levels and check whether the given point is strictly above, below or belongs to that level.
The binary search is implicitly performed by searching in the skip list Start. For a given
level, we then search for its edge such that the x-coordinate of the point belongs to the
projection of that edge on the x-axis. When this edge is found, we check the relative vertical
position of this point in constant time.

Essentially we have two nested searches in the skip list structure, so the complexity of this
step is O(log8 n), but we can show a better estimate. Ambainis ([9], see the proof of Lemma
6) showed that in a skip list operation, at most O(log2 n) pointer accesses are necessary.
We run the search in the inner skip list only after accessing a pointer. Therefore, the outer
search requires O(log4 n) steps and the inner searches altogether require O(log6 n) steps, so
we improve our estimate to O(log6 n).
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5.3.2 Line insertion and removal
We will only describe the procedure of inserting a line in the data structure, as removing a
line can be implemented by a reverse quantum circuit. Suppose the line to be inserted is ℓi;
our task is to correctly update the pointers of the skip lists. As we will see, conveniently it
suffices to update only the pointers of the new edges created by the insertion of the new line.

Our first step is to construct the edge along the given line. Figure 3 shows an example of
the new edges collinear with ℓi being created. Suppose that Pi,j1 and Pi,j2 are two consecutive
intersection points with ℓi (Pi,j1 is left of Pi,j2). Some k-level will pass through an edge
connecting Pi,j1 and Pi,j2 . This level will also pass through left(ℓj1 , ℓi) and right(ℓj2 , ℓi),
as all edges of a level are directed from left to right. Therefore, the edge should connect
νj1,i with νi,j2 . There are two special cases for the first and the last edge; in the first case,
the first path point is νi,i and for the second, the second path point is νNull. According to
this order, we insert all path points to the skip list starting with νi,i (and using the pointers
Next). However, we don’t insert νi,i into Start yet.

νi,i

νi,a

νa,i

νb,i

νi,b

νc,i

νi,c

νi,d

νd,i

νi,e

νe,i
νNull

ℓa ℓb ℓc ℓd ℓe

Figure 3 New edges along the inserted line.

Next we will correct all of the level skip lists according to the updated arrangement.
Essentially, our algorithm performs a sweep line from right to left which swaps the tails of
skip lists at the intersection points of ℓi with other lines. First, we create an array containing
the same set of path points as the skip list of ℓi except νi,i and νNull and sort them by the x

coordinate (at the end of the procedure we null the array by applying this in reverse). We
then examine the intersection points of ℓi with the other lines from right to left.

Suppose we examine the intersection point Pi,j of ℓi with ℓj .Then there is some edge from
the old arrangement from ν(1) to ν(2) along ℓj which intersects ℓi at Pi,j . The respective
pair of path points is νi,j and νj,i. Then some k-level will pass along ℓi through νi,j and ν(2),
and some adjacent level (either (k + 1)-level or (k − 1)-level) will pass along ℓj from ν(1) to
νj,i. Observe that the tails of these levels (from this intersection point to the right) have
been correctly updated by the sweep line. Therefore, we just need to swap the tails of these
two level skip lists.

To find the edge from ν(1) to ν(2), we use the point location operation with Pi,j . Since we
know that this point will belong to some k-level, we modify the point location operation so
as to return the head νh,h of this k-level. Note that although the level skip lists are partially
updated, they still represent the old arrangement to the left of the previously examined
intersection point, since the sweepline operates from right to left. Now we have to swap the
tails of the skip list with head νi,i after νi,j and the skip list with head νh,h after ν(1).

Generally, suppose that we wish to swap the tails of skip lists with heads ν(ah) and ν(bh)

after elements ν(at) and ν(bt), respectively. By searching ν(at) in the ν(ah) skip list, we find
all lmax path nodes ν(al) such that Nextν(al) [l] points to a path node after ν(at), for each
l ∈ [lmax]. Similarly we define and find ν(bl) path nodes. Then we simply swap the values of
Nextν(al) [l] and Nextν(bl) [l] for all l ∈ [0, lmax].
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To conclude the procedure, we insert νi,i (together with Nextνi,i) into Start. As we only
performed O(r) skip list searching and insertion operations (swapping the tails has the same
complexity as an element insertion, as it’s only updating 2lmax + 2 pointers) and a point
location operation, the complexity of the procedure is O(r log4 n + log6 n). If r = np for
some p > 0, this simplifies to O(r log4 n).

5.4 Quantum algorithm
We use the MNRS framework quantum walk on the Johnson graph [9, 34]. In this framework,
we search for a marked vertex in an ergodic reversible Markov chain on a state space X

defined by the transition matrix P = (px,y)x,y∈X . Let the subset of marked states be M ⊆ X.
To perform the quantum walk, the following procedures need to be implemented:

Setup operation with complexity S. This procedure prepares the initial state of the
quantum walk:

|0⟩ |0⟩ 7→
∑
x∈X

√
πx |x⟩ |0⟩ ,

where πx is the stationary distribution of P .
Update operation with complexity U . This procedure essentially performs a step of the
quantum walk by applying the transformation:

|x⟩ |0⟩ 7→ |x⟩
∑
y∈X

√
px,y |y⟩ .

Checking operation with complexity C. This procedure performs the phase flip on the
marked vertices:

|x⟩ |y⟩ 7→

{
− |x⟩ |y⟩ if x ∈ M ,
|x⟩ |y⟩ otherwise.

We examine the Johnson graph on the state space X being the set of all size r subsets of
[n]. Two vertices x, y ∈ X are connected in this graph if the intersection of the corresponding
subsets has size r − 1. For the Markov chain, the transition probability is px,y = 1

r(n−r) for
all edges. Then we have the following theorem:

▶ Theorem 9 (Quantum walk on the Johnson graph [9, 34]). Let P be the random walk on
the Johnson graph on size r subsets of [n] with intersection size r − 1, where r = o(n). Let
M be either empty or the set of all size r subsets that contain a fixed element. Then there is
a bounded-error quantum algorithm that determines whether M is empty, with complexity

O

(
S + 1√

r/n

(
1√
1/r

· U + C

))
= O

(
S +

√
n · U +

√
n

r
· C

)
.

We can now prove our result:

▶ Theorem 3. There is a bounded-error quantum algorithm that solves Hopcroft’s problem
with n lines and m ≤ n points in the plane in time:

Õ(n1/3m1/2), if n2/3 ≤ m;
Õ(n2/5m2/5), if n1/4 ≤ m ≤ n2/3;
Õ(n1/2), if m ≤ n1/4.

In particular, the complexity is Õ(n5/6) when n = m.
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Proof. By the duality of Hopcroft’s problem, we can exchange n and m; from here on,
suppose that m ≥ n. We do this, since in Theorem 2 it is important that the number of
lines is larger and here it is important that the number of points is larger, but we wish to
keep the meaning of n and m to avoid confusion. Our algorithm is a quantum walk on the
Johnson graph of size r subsets of the given n lines. We will choose r depending on m, but r

will always be mp for some p > 0. A set S is marked if it contains a line such that there
exists a point from the set of m given points that belongs to this line.

For the implementation, we follow the description of [1] for the quantum algorithm for
closest points. For a set S, the state of the walk will be |S, d(S)⟩, where d(S) is our data
structure for the line arrangement of S. We then implement the quantum walk procedures:

For the Johnson graph, π is the uniform distribution. Thus, we first generate a uniform
superposition over all subsets S in O(log

(
n
r

)
) = O(r log n) time. Then we create d(S) by

inserting all lines of S into an initially empty data structure, requiring O(r2 log4 n) time.
Suppose that S and S′ are two size r subsets with |S ∩ S′| = r − 1 so that S′ =
(S \ {i}) ∪ {j}. We then represent a state |S, d(S)⟩ |S′, d(S′)⟩ with |S, d(S)⟩ |i, j⟩. As
the Markov chain probabilities are the same for all edges, we need to implement the
transition |S, d(S)⟩ |0, 0⟩ 7→

∑
i∈S

∑
j /∈S |S′, d(S)′⟩ |j, i⟩ . To do that, first we create a

uniform superposition of all i ∈ S and j /∈ S in O(r log4 n) time (see Appendix C),
obtaining

∑
i∈S

∑
j /∈S |S, d(S)⟩ |i, j⟩. Then, for fixed i and j, we remove ℓi from d(S) and

insert ℓj , obtaining d(S′); this takes O(r log4 n) time. Finally, we swap the indices i and
j in the second register in O(log n) time.
The checking operation runs Grover’s search over all m points and for each of them
performs the point location operation. The complexity is O(

√
m log6 n).

By Theorem 9 the complexity of the algorithm is

O

(
r2 log4 n +

√
nr log4 n +

√
n

r

√
m log6 n

)
.

Suppose that m2/3 ≤ n and pick r = m1/3. Then the second term dominates the first
and we can simplify the expression to

O

(√
n log4 n

(
r +

√
m

r
log2 n

))
= O(n1/2m1/3 log6 n).

If we have m1/4 ≤ n ≤ m2/3 we pick r = (nm)1/5. Then we have r ≥ (n1+3/2)1/5 =
√

n,
and this time the first term in the complexity dominates the second, and the complexity is

O

(
r2 log4 n +

√
nm

r
log6 n

)
= O(n2/5m2/5 log6 n).

Finally, for n ≤ m1/4, we don’t have to use either the quantum walk or the history-
independent data structure. First, we build any classical data structure for point location in
a line arrangement with O(n2 log n) build time and space and O(log n) query time (e.g. see
[25], Chapter 11). Then we run Grover’s search over all points and for each check whether it
belongs to some line. The complexity in this case is

O(n2 log n +
√

m(log m + log n)) = O(
√

m log m). ◀
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(QRAG) (see, for example, [6]). This gate implements the following mapping:

|i⟩ |b⟩ |x1, . . . , xN ⟩ 7→ |i⟩ |xi⟩ |x1, . . . , xi−1, b, xi+1, . . . , xN ⟩ .

Here, the last register represents the memory space of N bits. Essentially, QRAG gates allow
both for reading memory in superposition as well as writing operations. We note that both
our algorithms require “read-write” quantum memory, so it is not sufficient to use the weaker
“read-only” QRAM gate, which is enough for some quantum algorithms.
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To keep the analysis of the algorithms clean, we abstract the complexity of basic underlying
operations under the “unit cost”. This includes the running time of:

basic arithmetic operations on O(log n) bits;
the implementation of QRAG and elementary gates;
the running time of a quantum oracle, which with a single query can return the description
of any point or line.

In the end, we measure the time complexity in the total amount of unit cost operations. The
unit cost can be taken as the largest running time of the operations listed above, which will
add a multiplicative factor in the complexity.

Assuming that an application of a QRAG gate takes unit time is also useful for utilizing
the existing classical algorithms in the RAM model. The classical algorithms that we use
work in the real RAM model, where arithmetic operations and memory calls on O(log n) bits
are considered to be executed in constant time. Thus, we work in the quantum analogue of
the real RAM, and if there is a time T classical real RAM algorithm, then we can use it in
time O(T ) in this model. The actual implementation of QRAG is an area of open research
and debate; however, there exist theoretical proposals that realize such operations in time
polylogarithmic in the size of the memory, like the bucket brigade architecture of [28].

B Query complexity

Proof of Theorem 1. For the upper bound, Hopcroft’s problem can be seen as an instance
of the bipartite subset-finding problem, in which one is given query access to two sets X

and Y of sizes n and m, respectively, and needs to detect whether there is a pair x ∈ X,
y ∈ Y satisfying some predicate R : X × Y → {0, 1}. For this problem, Tani gave a quantum
algorithm with query complexity O(n1/3m1/3 +

√
n +

√
m) [41].

For the lower bound, we can reduce the bipartite element distinctness problem (also
known as Claw Finding) to Hopcroft’s problem. In this problem, we have two sets of
variables x1, . . . , xn ∈ [N ] and y1, . . . , ym ∈ [N ] and we need to detect whether xi = yj for
some i, j. Zhang proved that for this problem Ω(n1/3m1/3 +

√
n +

√
m) quantum queries are

needed [47]. We reduce each xi to a line x = xi and each yj to a point (yj , 0). Then xi = yj

only iff some point belongs to some line, so the statement follows. ◀

C Implementation details

To generate a uniform state proportional to
∑

i∈S |i⟩ from |S, d(S)⟩, we can proceed as follows.
First generate the uniform superposition

∑
k∈[r] |k⟩ in O(log n) time. Then we can find the

number of the k-th line in S by iterating over the elements of the Start skip list as in the
usual linked list until we find the k-th one; this requires O(r log4 n) time. We then null the
register |k⟩ by applying a reverse procedure and decrementing k in each step. Overall, we
obtain the state proportional to

∑
i∈S |i⟩ in O(r log4 n) time.

To generate a uniform state proportional to
∑

j /∈S |j⟩ from |S, d(S)⟩, we can apply a
different procedure. First, we can generate the state

∑
k∈[n] |k⟩ |0⟩ in O(log n) time. For

a fixed k, we can check whether k ∈ S using d(S) in O(log4 n) time and write 1 in that
case in the second register. By measuring the second register, we obtain the required state
with probability 1 − r/n > 1/2. We can use O(log n) copies of such state to obtain the
required state with error probability only O(1/n), which doesn’t impact the final constant
success probability. Overall, this step requires O(log5 n) time, which is negligible compared
to O(r log4 n).
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work is precisely that of generalizing this approach to parallel computation, obtaining an original
ODE-characterization for the small circuit classes FAC0 and FTC0.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Circuit complexity

Keywords and phrases Implicit computational complexity, parallel computation, ordinary differential
equations, circuit complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.10

Funding Melissa Antonelli: Supported by HIIT and Maupertuis’ SMR Programme, on behalf of
the Institute Français in Helsinki, the French Embassy to Finland, the French Ministry of Higher
Education, Research and Innovation in partnership with the Finnish Society for Science and Letters
and the Finnish Academy of Sciences and Letters.
Arnaud Durand: Supported by Maupertuis’ SMR Programme.
Juha Kontinen: Supported by the Academy of Finland grant 345634.

1 Introduction

As computability theory investigates the limits of what is algorithmically computable,
complexity theory classifies functions based on the amount of resources, typically time and
space, required by a machine to compute them. Taking a different point of view, implicit
computational complexity (ICC) aims at providing machine-independent characterizations,
which in turn have offered remarkable insights on the corresponding classes and led to relevant
meta-theorems in various domains, such as database theory and constraint satisfaction.

One of the major approaches to computability and (implicit) complexity theory is
constituted by the study of recursion. A foundational work in this area is due to Cobham [15],
who gave a characterization of the class of poly-time computable functions FP, relying
on a restricted recursion mechanism, called bounded recursion on notation (BRN). This
groundbreaking result has inspired several characterizations based on limited recursion
schemas for various other classes, but also alternative implicit ways to capture FP, for
instance, via safe recursion [5] and ramification [25, 26].
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Cobham’s work [15], together with other early results in recursion theory [20, 6, 29, 27],
have even paved the way to recursion-theoretic characterizations for small circuit classes [11,
12, 16, 1, 14, 9]. Specifically, in [11, 12], an algebra based on the so-called concatenation
recursion on notation schema (CRN) was introduced and shown able to capture functions
computable in (Dlogtime-uniform) AC0 (i.e. computable by families of polynomial size
and constant depth circuits) [11, 12]. This result was extended to ACi and NCi due to
the notions of k-bounded and weak bounded recursion on notation [12]. A few years later, a
similar function algebra to capture TC0 was introduced [14]. Other characterizations for
subclasses of NC were independently presented in [16, 1, 9].

Related, but alternative, approaches to capture small circuit classes have also been
provided in the framework of model- and proof-theory. In particular, it is well-known that
there is an equivalence between AC0 and first-order logic, which naturally generalizes to
extensions of the latter and larger circuit classes [23, 4, 22, 21, 28]. In [16], both a function
algebra, based on so-called upward recursion tree, and a logical system to capture NC1 are
presented. On the proof-theoretical side, in [1], together with the corresponding algebra,
Allen defined a proof system à la Buss to capture NC. Another bounded theory to capture
NC is introduced in [13] and then extended to several small circuit classes [14]. Theories
for TC0 have been developed in [24] and, in the setting of second-order theories, in [18].
Alternative, proof-theoretical characterizations for NC1 were presented in [2], and, in the
context of two-sorted theories, in [17].

A different descriptive approach to complexity, based on discrete ordinary differential
equations (ODEs), was recently introduced in [10]. Informally speaking, its objective is to
characterize functions computable in a given complexity class as solutions of a corresponding
type of ODE. In this vein, in [10] a purely syntactic characterization of FP was given by
linear systems of equations deriving along a logarithmically growing function. Intuitively, the
latter condition controls the number of steps, while linearity controls the growth of objects
generated during the computation. Recently, this approach has also been generalized to the
continuous setting [7, 8].

Although small circuit classes have been characterized in multiple ways, it is an interesting
and challenging question whether they can be studied through an ODE-based approach and
whether this would shed some new light on these well-known classes. Interesting, because
for a descriptive approach based on ODEs to make sense and be fruitful it has to be able
to cope with very subtle and restricted modes of computation. Challenging, because even
simple and useful mathematical functions may not be computable (e.g. multiplication is not
in AC0), thus tools at hand and the naturalness of the approach are drastically restricted.
In the present paper, we investigate these questions, and show that, in fact, natural ways
to introduce ODE-oriented function algebras to capture small circuit classes can be found.
Our approach relies on the introduction of ODE-schemas, still using derivation along the
logarithmic function and allowing for bit shifting operations through restricted forms of linear
equations. Our case study focuses on the smallest classes AC0 and TC0, but is intended
as the first step towards a uniform characterization of other relevant classes in the AC and
NC hierarchies.

Structure of the paper. The paper is divided into two main sections. In Section 2, we
introduce notions and results at the basis of our ODE-style characterizations. In particular, in
Section 2.1, we summarize salient aspects of the approach by [10], which we aim to generalize
from the study of FP to that of small circuit classes. In Section 2.2, we briefly recap
basic notions in parallel complexity and recall the function algebra approach of [11, 12, 14]
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to capture AC0 and TC0. In Section 3, we present our ODE-characterizations for the
mentioned classes. Specifically, in Section 3.1, we introduce restricted ODE-schemas, and,
using them, in Sections 3.2 and 3.3, we define ODE-function algebras capturing the analog
for functions of AC0 and TC0, respectively. Then, in Section 3.4, we provide alternative
and direct completeness proofs for both classes in the non-uniform setting, namely assuming
that functions describing the circuits are given as basic functions. Finally, in Section 4, we
briefly point at possible directions of future research.

2 Preliminaries

2.1 Capturing Complexity Classes via ODEs
We suppose the reader familiar with the basics of complexity theory [3, 30]. In order to
introduce the approach to complexity delineated in [10], we start by cursorily recalling
Cobham’s result, capturing FP by the following BRN schema.

▶ Definition 1 (Bounded Recursion on Notation, BRN). Given g : Np → N, k : Np+1 → N and
hi : Np+2 → N, with i ∈ {0, 1}, f : Np+1 → N is defined by BRN from g, h0, h1 and k if

f(0, y) = g(y) and f(si(x), y) = hi(f(x, y), x, y), for x ̸= 0

with f(x, y) ≤ k(x, y) and sj(x) = 2x + j (j ∈ {0, 1}) being the binary successor functions.

The growth of f is controlled by the function k (in FP), while the number of induction steps
is kept under control by the application of the binary successor functions si. Such a schema
is not fully satisfactory as it imposes an explicit bound on recursion in the form of an already
known function.

As anticipated, Cobham’s paper not only led to a variety of implicit characterizations
for classes other that FP, but also inspired alternative approaches to capture this class.
Among them, the proposal by [10] has the specificity of not imposing any explicit bound on
the recursion schema or assigning specific role to variables. Instead, it is based on Discrete
Ordinary Differential Equation (a.k.a. Difference Equations) and combines two peculiar
features: derivation along specific functions, so to control the number of computation steps,
and a special syntactic form of the equation itself (here linearity), allowing to control the
object size. We present the basics of the method as necessary to formulate our new results.

Recall that the discrete derivative of f(x) is defined as ∆f(x) = f(x + 1) + f(x), and that
ODEs are expressions of the form:

∂f(x, y)
∂x

= h(f(x, y), x, y),

where ∂f(x,y)
∂x stands for the derivative of f(x, y) considered as a function of x, for a fixed

value for y. When some initial value f(0, y) = g(y) is added, this is called Initial Value
Problem (IVP). Then, in order to deal with complexity, some restrictions are needed. First,
the notion of derivation has to be generalized, allowing to derive along functions.

▶ Notation 1. For x ̸= 0, let ℓ(x) denote the length of x written in binary, i.e. ⌈log2(x + 1)⌉,
and ℓ(0) = 0. For u ≥ 0, α(u) = 2u − 1 denotes the greatest integer the binary length of
which is u. Also, we use ÷2 to denote integer division by 2, i.e. for all x ∈ Z, x ÷ 2 =

⌊
x
2
⌋
.

▶ Definition 2 (λ-ODE Schema). Let f , λ : Np → Z and h : Np+1 → Z be functions. Then,
∂f(x, y)

∂λ
= ∂f(x, y)

∂λ(x, y) = h
(
f(x, y), x, y

)
(1)

is a formal synonym of f(x + 1, y) = f(x, y) +
(
λ(x + 1, y) − λ(x, y)

)
× h(f(x, y), x, y). When

λ(x, y) = ℓ(x), we call (1) a length-ODE.
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Intuitively, one of the key properties of the λ-ODE schema is its dependence on the number
of distinct values of λ, i.e., the value of f(x, y) changes only when the value of λ(x, y) does.

The computation of solutions of λ-ODEs have been fully described in [10]. Here, we
focus on the special case of λ = ℓ, which is particularly relevant for our characterizations.
First, observe that the value of ℓ(x) changes (i.e. increases by 1) when x goes from 2t − 1
to 2t, i.e. from α(t) to α(t) + 1. So, if f is a solution of (1) with λ = ℓ and initial value
f(0, y) = g(y), then f(1, y) = f(0, y) + h

(
f(α(0), y), α(0), y

)
, and, more generally, for all x

and y, f(x, y) = f(x − 1, y) + ∆(ℓ(x − 1)) × h
(
f(x − 1, y), x − 1, y

)
= f(α(ℓ(x) − 1), y) +

h
(
f
(
α
(
ℓ(x) − 1

)
, y
)
, α(ℓ(x) − 1), y

)
, where ∆

(
ℓ(t − 1)

)
= ℓ(t) − ℓ(t − 1). Starting from

t = x ≥ 1 and taking successive decreasing values of t, the first difference such that ∆(t) ̸= 0
is given by the biggest t − 1 such that ℓ(t − 1) = ℓ(x) − 1, i.e. t − 1 = α(ℓ(x) − 1). Hence, by
induction, it is established that:

f(x, y) =
ℓ(x)−1∑
u=−1

h
(
f(α(u), y), α(u), y

)
,

with h(·, α(−1), y) = f(0, y) and, as seen, α(u) = 2u − 1.
The second crucial novelty is the introduction of a special concept of linearity, utilized

to control the growth of functions defined by ODEs. First, we present the notion of degree
for a polynomial expression, which is a generalized (and slightly modified) version of the
corresponding definition in [10]. Here, the degree of an expression is considered in relation to
a set of variables, instead of a single one.

Let sg : Z → Z be the sign function over Z, taking value 1 for x > 0 and 0 otherwise.

▶ Definition 3. A sg-polynomial expression P (x1, . . . , xh) is an expression built over the
signature {+, −, ×}, the sg function and a set of variables X = {x1, . . . , xh} plus integer
constants. Given a list of variables x = xi1 , . . . , xim , for i1, . . . , im ∈ {1, . . . , h} the degree of
a set x in a sg-polynomial expression P , deg(x, P ), is inductively defined as follows:

deg(x, P ) = 0 for P constant
deg(x, xij ) = 1, for xij ∈ {xi1 , . . . xim}, and deg(x, xij ) = 0, for xij ̸∈ {xi1 , . . . , xim}
deg(x, P + Q) = deg(x, P − Q) = max{deg(x, P ), deg(x, Q)}
deg(x, P × Q) = deg(x, P ) + deg(x, Q)
deg(x, sg(P )) = 0.

A sg-polynomial expression P is said to be essentially constant in a set of variables x when
deg(x, P ) = 0. A sg-polynomial expression P is said to be essentially linear in a set x, when
deg(x, P ) = 1.

In what follows, we consider functions f : Np+1 → Zd, i.e. vectors of functions f = f1, ..., fd

from Np+1 to Z, and we introduce the linear λ-ODE schema.

▶ Definition 4 (Linear λ-ODE). Given g : Np → Nd, h : Np+1 → Z and u : Z × Np+1 → Zd,
the function f : Np+1 → Zd is linear λ-ODE definable from g, h and u if it is the solution of
the IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂λ

= u
(
f(x, y), h(x, y), x, y

)
,

where u is essentially linear in f(x, y). For λ = ℓ, such schema is called linear length ODE.
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If u is essentially linear in f(x, y), there exist matrices A and B, whose coefficients are
essentially constant in f(x, y) and such that:

f(0, y) = g(y)
∂f(x, y)

∂ℓ
= A

(
f(x, y), h(x, y), x, y

)
× f(x, y) + B

(
f(x, y), h(x, y), x, y

)
.

Then, for all x and y,

f(x, y)=
ℓ(x)−1∑
u=−1

( ℓ(x)−1∏
t=u+1

(
1+A

(
f(α(t), y), h(α(t), y), α(t), y

)))
×B
(
f(α(u), y), h(α(u), y), α(u), y

)
,

with the convention that
∏x−1

x κ(x) = 1 and B(·, ·, α(−1), y) = f(0, y).

▶ Example 5 (Function 2ℓ(x)). The function x 7→ 2ℓ(x) can be seen as the solution of the
IVP with initial value f(0) = 1 and such that ∂f(x)

∂ℓ = f(x), i.e. where A = 1, B = 0. Indeed,
the solution of this system is of the form f(x) =

∏ℓ(x)−1
u=0 2 = 2ℓ(x). In addition, the function

(x, y) : x, y 7→ 2ℓ(x) × y can be captured by the same equation, with initial value f(0, y) = y.

One of the main results of [10] is the implicit characterization of FP by the algebra made
of basic functions 0, 1, πp

i , ℓ, +, −, ×, sg and closed under composition (◦) and ℓ-ODE:

LDL = [0, 1, πp
i , ℓ, +, −, ×, sg; ◦, ℓ-ODE].

2.2 On Parallel Computation and Function Algebras for FAC0

Boolean circuits are vertex-labeled directed acyclic graphs whose nodes are either input nodes
(no incoming edges), output nodes (no outgoing edges) or labeled with a Boolean function
from the set {∧, ∨, ¬}. A Boolean circuit with majority gates allows in addition gates labeled
by the function Maj, that outputs 1 when the majority of its inputs are 1’s. A family of
circuits (Cn) is Dlogtime-uniform if there is a Turing machine (with a random access tape)
that decides in deterministic logarithmic time the direct connection language of the circuit,
i.e. which, given 1n, a, b and t ∈ {∧, ∨, ¬}, decides if a is of type t and b is a predecessor of
a in the circuit (and analogously for input and output nodes). When dealing with circuits,
the resources of interests are size, i.e. the number of its gates, and depth, i.e. the length of
the longest path from the input to the output (see [30] for more details and related results).

▶ Definition 6 (Classes FACi and FTCi). For i ∈ N, the class ACi (resp., TCi) is the class
of languages recognized by a Dlogtime-uniform family of Boolean circuits (resp. circuits
including majority gates) of polynomial size and depth O((log n)i). We denote by FACi and
FTCi the corresponding function classes.

For FAC0, a particularly relevant recursion-theoretic characterization was provided by
Clote [11, 12]. It relies on the schema of concatenation recursion on notation.

▶ Definition 7 (Concatenation Recursion on Notation, CRN). A function f is defined by
concatenation recursion on notation from g and hi, with i ∈ {0, 1}, if for all x, y:

f(0, y) = g(y) and f(si(x), y) = shi(x,y)(f(x, y)), for x ̸= 0.

Then, Clote’s function algebra is defined as the class:

A0 = [0, πp
i , s0, s1, ℓ, BIT, #; ◦, CRN],

where BIT(x, y) returns the yth value in the binary representation of x, and x#y = 2ℓ(x)×ℓ(y)

is the smash function. This class was also proved able to capture FAC0 [11, 12].
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▶ Theorem 8 ([11, 12]). A0 = FAC0.

That A0 ⊆ FAC0 is proved by passing through the (function version of the) logarithmic time
hierarchy FLH, which is known to be equivalent to FAC0. Then, A0 ⊆ FLH is established
by showing that basic functions are computable in log-time and that FLH is closed under
composition and CRN. That FLH ⊆ A0 is proved by the arithmetization of log-time bounded
RAM. Remarkably, in [14], these results are even generalized to FTC0, which is proved
equivalent to the function algebra:

T C0 = [0, πp
i , s0, s1, ℓ, BIT, ×, #; ◦, CRN].

3 Towards an ODE-Characterization of FAC0

In this section, we provide the first implicit characterization of FAC0 in the ODE-setting.
We start by introducing the new ODE-schemas which are at the basis of our characterizations
of FAC0 and FTC0 and intuitively corresponding to left- and right-shifting (Sec. 3.1). Due
to them, we introduce the function algebra ACDL, the defining feature of which is precisely
the presence of these special ODE-schemas, and prove this class able to capture FAC0

(Sec. 3.2). This is established passing through Clote’s A0. As a byproduct, we obtain a
similar ODE-characterization for FTC0 (Sec. 3.3). Finally, an alternative, direct proof of
completeness is provided for both classes in a non-uniform setting (Sec. 3.4).

▶ Remark 9. Here, functions can take images in Z. Accordingly, a convention for the binary
representation of integers must be adopted, e.g. by assuming that, in any binary sequence,
the first bit indicates the sign. Then, all arithmetic operations can be easily re-designed to
handle encodings of possibly negative integers by circuits of the same size and depth.

3.1 Discrete ODE-Schemas for Shifting
We start by considering the ODE-schemas which are at the basis of our characterizations

of FAC0 and FTC0. Observe that they will sometimes include ×. This is admissible since,
as we shall see, the “kind of multiplication” we consider is actually limited to special cases
(namely, multiplication by 2i), which are proved to be computable in FAC0.

The ℓ-ODE1 and ℓ-ODE2 Schemas. We start with the limited ℓ-ODE1 schema, intuitively
corresponding to left shifting(s) and (possibly) adding a bit.

▶ Definition 10 (ℓ-ODE1 Schema). Given g : Np → N and h : Np+1 → N, such that h takes
values in {0, 1} only, the function f : Np+1 → N is defined by ℓ-ODE1 from functions g and
h when it is the solution of the IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

= f(x, y) + h(x, y).

The definition of the function 2ℓ(x) (and 2ℓ(x) × y) given in Example 5 is a special case of a
ℓ-ODE1 (with h(x, y) = 0).

▶ Remark 11. An equivalent, purely-syntactical formulation of Definition 10 is obtained by
substituting the explicit constraint that h(x, y) ∈ {0, 1} with the assumption that h(x, y)
is of the form sg

(
B(h1, . . . , hm, x, y)

)
, where B is an expression built over the signature

{+, −, ÷2, sg} and calling previously defined FAC0 functions h1(x, y), . . . , hm(x, y).
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In terms of circuits, this schema intuitively allows us to iteratively left-shifting (the binary
representation of) a given number, each time possibly adding 1 to its final position. This is
clarified by the proof below, establishing that FAC0 is closed under the mentioned schema.

▶ Proposition 12. If f is defined by ℓ-ODE1 from g and h in FAC0, then f is in FAC0.

Proof Sketch. By Def. 10, for all x and y: f(x, y) =
∑ℓ(x)−1

u=−1

(∏ℓ(x)−1
t=u+1 2

)
× h
(
α(u), y

)
=∑ℓ(x)−1

u=−1 2ℓ(x)−u−1 × h(α(u), y), with the convention that α(u) = 2u − 1,
∏x−1

x κ(x) = 1 and
h
(
α(−1), y

)
= f(0, y). Clearly, the multiplication here involved is always by a power of 2

(which basically corresponds to left-shifting, so is computable in FAC0). Since h(x, y) ∈ {0, 1},
the outermost sum amounts to a concatenation (which again can be computed in FAC0). ◀

Notice that this schema is not as weak as it may seem since, together with sg, it is enough
to express bounded quantification.

▶ Remark 13. Let R ⊆ Np+1 and hR be its characteristic function. Then, for all x and y, it
holds that (∃z ≤ ℓ(x))R(z, y) = sg

(
f(x, y)

)
, where f is such that f(0, y) = hR(0, y) and

∂f(x, y)
∂ℓ

= f(x, y) + hR

(
ℓ(x + 1), y

)
.

Clearly, f(x, y) is an instance of ℓ-ODE1. Intuitively, f(x, y) ̸= 0 when, for some z smaller
than x, R(z, y) is satisfied (i.e. hR(z, y) = 1): when such instance exists, our bounded search
ends with a positive answer. Universally bounded quantification can be expressed in a similar
way, considering cosg(f(x, y)), where f is defined substituting the value of hR with its co-sign
(such that, cosign(x) = 1 − sg(x)).

The more general schema ℓ-ODE2 allows multiple left-shifting, such that each “basic
operation” corresponds to shifting a given value of a number of digits determined by ℓ(k(y)).

▶ Definition 14 (ℓ-ODE2 Schema). Given g : Np → N, h : Np+1 → N and k : Np → N, the
function f : Np+1 → N is defined by ℓ-ODE2 from g, h and k if it is the solution of the IVP
with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

=
(
2ℓ(k(y)) − 1

)
× f(x, y) + h(x, y),

where h(x, y) ∈ {0, 1}, and if, for some x and y, h(x, y) ̸= 0, then k(y) ̸= 0.

Since this schema is introduced to characterize FAC0, the constraint imposing k(y) ̸= 0,
when at some point h(x, y) takes value 1, is really essential. Indeed, as we shall see (Sec. 3.3),
if we omit it, ℓ-ODE2 will be too strong, as able to capture binary counting (which is not in
FAC0).

Observe that ℓ-ODE1 is a special case of ℓ-ODE2, such that ℓ(k(y)) = 1, and that, also
for it, the following closure result holds.

▶ Proposition 15. If f is defined by ℓ-ODE2 from FAC0-functions g, k and h, then f is in
FAC0.

Proof Sketch. There are two cases: if k(y) ̸= 0, the proof is analogous to that of Prop. 12;
if k(y) = 0 (and h(x, y) = 0), for all x and y, f(x, y) = g(y), in FAC0 by hypothesis. ◀

MFCS 2024



10:8 A New Characterization of FAC0 via Discrete ODEs

The Schema ℓ-ODE3. Let us now consider ℓ-ODE3, intuitively corresponding to (basic)
right-shifting operations.

▶ Definition 16 (ℓ-ODE3 Schema). Given g : Np → N, the function f : Np+1 → N is defined
by ℓ-ODE3 from g if it is the solution of the IVP with initial value f(0, y) = g(y) and such
that:

∂f(x, y)
∂ℓ

= −
⌈

f(x, y)
2

⌉
where ⌈ z

2 ⌉ is a shorthand for z − (z ÷ 2).

▶ Proposition 17. If f is defined by ℓ-ODE3 from g in FAC0, then f is in FAC0 as well.

Proof Sketch. The proof is similar to the one for Prop. 12. By Def. 16 and since (a÷2b)÷2 =
a ÷ 2b+1, it can be shown by induction that for all x and y: f(x, y) = g(y) ÷ 2ℓ(x)−1. This
intuitively corresponds to right-shifting g(y) a number of times equal to ℓ(x) − 1 and can be
easily shown computable by a constant-depth circuit. ◀

3.2 An ODE-Characterization of FAC0

We now define a new class of functions, crucially relying on the ODE-schemas just introduced:

ACDL = [0, 1, πp
i , ℓ, +, −, ÷2, sg; ◦, ℓ-ODE2, ℓ-ODE3].

Observe that all its basic functions and (restricted) schemas are natural in the context
of differential equations and calculus. In ACDL, multiplication is, of course, not allowed.
Compared to LDL, the linear-length ODE schema is substituted by the two schemas ℓ-ODE2
and ℓ-ODE3, characterized by a very limited form of “multiplication” and intuitively allowing
to capture left and right shifting.

In order to prove that ACDL captures FAC0 we start by providing an indirect proof
that FAC0 ⊆ ACDL. This is established by showing that any basic function and schema
defining Clote’s A0 (so its arithmetization of log-time bounded RAM) can be simulated in
our setting by functions and schemas of ACDL. Preliminarily, observe that some important
operations “come for free” by composition. For instance, the modulo 2 operation is defined as
(x mod 2) = x −

⌊
x
2
⌋

−
⌊

x
2
⌋
, while binary successor functions are expressed in our setting as

s0(x) = x + x and s1(x) = s0(x) + 1 (being the constant 0 and + basic functions of ACDL).

The smash function 2ℓ(x)×ℓ(y). The smash function x#y : x, y 7→ 2ℓ(x)×ℓ(y) is rewritten
as the solution of the IVP defined by the initial value f(0, y) = 1 and such that ∂f(x,y)

∂ℓ =
(2ℓ(y) − 1) × f(x). This is clearly an instance of ℓ-ODE2, such that g(y) = 1, k(y) = y and
h(x, y) = 0. Recall that, since h(x, y) = 0, even the limit case of y = 0 is properly captured.

The BIT function. Intuitively, the function BIT(x, y) returns the yth bit in the binary
representation of x. In order to capture it, a series of auxiliary functions are needed:

the log most significant part function msp(x, y) : x, y 7→
⌊

y
2ℓ(x)

⌋
, which can be rewritten

via ℓ-ODE3,
the basic conditional function if(x, y, z), returning y if x = 0 and z otherwise, can be
rewritten in our setting by composition, using, in particular, the “shift function” 2ℓ(x) × y

(defined using ℓ-ODE1),
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the special bit function bit(x, y), returning 1 when the ℓ(y)th bit of x is 1, can be rewritten
in ACDL due to msp,
the bounded exponentiation function bexp(x, y), that, for any y ≤ ℓ(x), returns 2y, can be
obtained relying on functions in ACDL, including, in particular, msp, if and 2ℓ(·) together
with ODE-schemas.

Then, using bexp and bit, the desired BIT function can be rewritten in our setting by
composition: BIT(x, y) = bit(x, bexp(x, y) − 1).

The CRN Schema. A function f defined by CRN from g, h0 and h1 can be simulated in
ACDL via the ℓ-ODE1 schema. Let us consider the IVP with initial value F (0, x, y) = g(y)
and such that:

∂F (t, x, y)
∂ℓ(t) = F (t, x, y) + h(t + 1, x, y)

where h(t, x, y) ∈ {0, 1} is, in turn, defined as:

if
(
bit(x, 2ℓ(x)−ℓ(t) − 1), h0(msp(2ℓ(x)−ℓ(t), x), y), h1(msp(2ℓ(x)−ℓ(t), x), y)

)
.

The function F (t, x, y) is clearly an instance of ℓ-ODE1, and h(t, x, y) is defined by composi-
tion from functions proved to be in ACDL. Then, we set f(x, y) = F (x, x, y).

We now have all the ingredients to prove our main result.

▶ Theorem 18. ACDL = FAC0.

Proof. ACDL ⊆ FAC0. All basic functions of ACDL are computable in FAC0. Moreover,
the class is closed under composition and, by Prop. 15 and 17, under ℓ-ODE2 and ℓ-ODE3.
FAC0 ⊆ ACDL since, as we just proved, functions and schemas constituting A0 have been
rewritten in ACDL. ◀

A careful analysis of the above definitions shows that ℓ-ODE2 is actually used only to
capture the smash # function. One obtains a class equivalent to ACDL by allowing # and
by replacing ℓ-ODE2 with the simpler ℓ-ODE1 schema.

▶ Corollary 19. FAC0 = [0, 1, πp
i , ℓ, +, −, ÷2, sg, #; ◦, ℓ-ODE1, ℓ-ODE3]

3.3 An ODE-Characterization of FTC0

As a byproduct, an ODE-characterization for FTC0 is easily obtained, this time passing
through T C0 [14]. We consider an extension of ACDL endowed with the basic function ×:

TCDL = [0, 1, πp
i , ℓ, +, −, ÷2, ×, sg; ◦, ℓ-ODE2, ℓ-ODE3].

▶ Proposition 20. Let f be defined by ℓ-ODE2 from functions in FTC0. Then, f is in
FTC0.

Proof Sketch. The proof is similar to that of Prop. 15. The main difference concerns
the computation of level 0, i.e. that of the initial values g(y) and h(x, y), which are now
expressions possibly including ×. This does not affect the overall structure of the circuit. ◀

▶ Proposition 21. Let f be defined by ℓ-ODE3 from functions in FTC0. Then, f is in
FTC0.
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Proof Sketch. Straightforward generalization of Prop. 17, with the same provisos of Prop. 20.
◀

Then, the desired characterization easily follows from Propositions 20 and 21 and from [14],
rewritten in our ODE-setting (see Sec. 3.2).

▶ Theorem 22. TCDL = FTC0.

An alternative characterization of FTC0 is obtained by considering the following class:

TCDL∗ = [0, 1, πp
i , ℓ, +, −, ÷2, sg; ◦, ℓ-ODE∗

2, ℓ-ODE3].

where TCDL∗ does not include × as a basic function, but allows the generalized schema
ℓ-ODE∗

2, with no constraint over the function k:

▶ Definition 23 (ℓ-ODE∗
2 Schema). Let g : Np → N, h : Np+1 → N and k : Np → N, where h

takes values in {0, 1}. Then, the function f : Np+1 → N is defined by ℓ-ODE∗
2 from g, h and

k when it is the solution of the IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

=
(
2ℓ(k(y)) − 1

)
× f(x, y) + h(x, y).

▶ Example 24 (bcount). Observe that if k(y) = 0, then ℓ-ODE∗
2 is enough to express

the binary counting function bcount(x), that outputs the sum of the bits of x. Indeed,
bcount(x) = f(x, x) where f is the solution of the IVP with initial value f(0, y) = bit(0, y)
and such that:

∂f(x, y)
∂ℓ

= bit(x, y).

Since such function is not in FAC0 (see [19]), this also illustrates that ℓ-ODE∗
2 is really more

expressive than ℓ-ODE2.

It is easy to see that ℓ-ODE∗
2 is enough to capture majority (and to “simulate” multiplication,

see [30]), which is the essential step to show that TCDL∗ = FTC0.
This observation, together with the fact that what really makes ℓ-ODE∗

2 more expressive
than ℓ-ODE2 is its behavior for k(y) = 0, leads us to an alternative characterization for
FTC0, in line with the one of Corollary 19. Let’s consider the following schema.

▶ Definition 25 (ℓ-ODE∗
1 Schema). Let g : Np → N and h, k : Np+1 → {0, 1}. Then the

function f : Np+1 → N is defined by ℓ-ODE∗
1 from g, h and k, when it is the solution of the

IVP with initial value f(0, y) = g(y) and such that:

∂f(x, y)
∂ℓ

= k(x, y) × f(x, y) + h(x, y).

By straightforward inspection and Example 24, it is easily seen that FTC0 is again captured
by adding the basic function # and by replacing ℓ-ODE∗

2 with the simpler schema ℓ-ODE∗
1.

▶ Corollary 26. FTC0 = TCDL∗ = [0, 1, πp
i , ℓ, +, −, ÷2, sg, #; ◦, ℓ-ODE∗

1, ℓ-ODE3].

3.4 Alternative Direct Proofs
In this section, we introduce alternative classes ACDLC and TCDLC , (resp.) extending ACDL
and TCDL with new basic functions that arithmetize the circuit families of polynomial size
and constant depth (Cn)n≥0 used for computation. In this non-uniform context, we prove
both FAC0 ⊆ ACDLC (Sec. 3.4.1) and FTC0 ⊆ TCDLC (Sec. 3.4.2) directly, i.e. without
any references to results in [11, 14], .
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3.4.1 Direct Completeness for ACDLC

Let C = (Cn)n≥0 be a class of circuits of polynomial size nk, for some k ∈ N, and constant
depth d. We assume that each circuit Cn is in a special normal form, such that it strictly
alternates between ∧ and ∨ (and edges are only between gates of consecutive layers): input
gates are all at level 0, negation gates are all at level 1, even levels are all ∧ gates, odd levels
(other than 1) are all ∨ gates, and the depth d is even (so output gates are ∧ gates).

In this context we keep the basic functions of ACDL, but add a set circC = {C, Lin
0 , L¬

0 , Le}
of characteristic functions associated to the following predicates. The predicate C ⊆ N×N×N
describes the underlying graph of the circuit: for any integers x, α, β, (x, α, β) ∈ C when,
in Cℓ(x), the αth ≤ ℓ(x)k gate of some level is a predecessor of the βth ≤ ℓ(x)k gate of the
next level (thus, in this encoding, α and β are exponentially smaller than x). The relations
Lin

0 , L¬
0 , Le ⊆ N × N, for e ∈ {1, . . . , d}, describe the level of gates (and, implicitly, their

type): Lin
0 refers to input gates, L¬

0 to negation gates, and Le to ∧ and ∨ gates, depending
on e being odd or even. Since we aim at defining functions over integers, we assume that
input gates are numbered from n − 1 to 0 and output gates from m − 1 to 0, with m ≤ ℓ(x)k.
By considering the functions corresponding to the given relations, we obtain the desired
ODE-style family of classes (parameterized by C):

ACDLC = [0, 1, πp
i , ℓ, +, −, ÷2, sg, circC ; ◦, ℓ-ODE2, ℓ-ODE3].

▶ Remark 27. If the family C is Dlogtime-uniform, then the functions in circC are computable
in A0. Consequently, in this case, it holds that ACDLC = ACDL.

In this non-necessarily uniform context, a completeness proof still holds.

▶ Proposition 28. If a function f : N → N is computable by a family C = (Cn)n≥0 of
polynomial size and constant-depth circuits, then it is in ACDLC.

To prove it we need the following lemma (which is easily established relying on Remark 13).

▶ Lemma 29. Let g and h be functions computable in ACDLC and k ∈ N. Then, the function
mini≤ℓ(x1)k {g(i, x) : h(i, x) ▷ j}, for ▷ ∈ {<, ≤, >, ≥, =} and j ∈ {0, 1}, is in ACDLC.

Proof of Prop. 28. Let Eval(t, x) be a function that returns the value of the tth output gate
of the circuit Cℓ(x) of input x when t ≤ m − 1 (and Eval(t, x) = 0 for t > m − 1). Then,
the following expression defines a function f such that f(2ℓ(x)k

, x) outputs the value of the
computation of Cn (for n = ℓ(x)) on input x:

∂f(y, x)
∂ℓ(y) = f(y, x) + Eval(ℓ(x) − ℓ(y) − 1, x)

with f(0, x) = 0. Intuitively, the function above computes the successive suffixes of the
output word, starting from the bits of bigger weights. Remarkably, this is an instance of the
ℓ-ODE1 schema (indeed, Eval(y, x) ∈ {0, 1}). So, the given f can be rewritten in ACDLC .

It remains to describe how the function Eval(t, x) is computed. Again, we assume that
Cn has depth d, is in the normal form described above, and d is even. Concretely, we start
by defining a special (bounded) minimum operator function such that, given k ∈ N and two
functions g and h, with h(t, x) ∈ {0, 1} for t ∈ N and x = x1, . . . , xh,

mini≤ℓ(x1)k {g(i, x) : h(i, x) ▷ 0},

with ▷ ∈ {<, ≤, >, ≥, =} and j ∈ {0, 1}. Intuitively, given i ∈ {0, . . . , ℓ(x1)}, this function
computes the minimum of the values of g(i, x), for i and x such that h(i, x) ▷ j.

The inductive definition of Eval relies on those of the d + 1 functions Eval0, . . . , Evald,
with Evald = Eval:

MFCS 2024
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Eval0(t, x) is equal to BIT(t, x) if Lin
0 (t, x) holds and to 1 − BIT(t, x) if L¬

0 (t, x) does. For
t not corresponding to gate index, Eval0(t, x) is set to an arbitrary value, say 0. Recall
that, since BIT can be rewritten in ACDL (Sec. 3.2), Eval0 is in ACDLC as well.
Eval2e(y, x) is equal to mini≤ℓ(x)k {Eval2e−1(i, x) : C(x, i, t) = 1}, for L2e(t, x) (i.e., if t is
the index of a gate at this level). The evaluation for the ith gate of the level 2e (a ∧-gate)
is the minimum of the evaluations of its predecessor gates of level 2e − 1. As seen, min is
in ACDL (Lemma 29), so Eval2e can also be rewritten in this class.
Similarly, Eval2e+1(y, x) is the 1 − mini≤ℓ(x)k {1 − Eval2e(i, x) : C(x, i, t) = 1}. The
evaluation for the tth gate of level 2e + 1 (a ∧-gate) is the maximum among evaluations of
its predecessor gates of level 2e. As for Eval2e, Eval2e+1 can be rewritten in ACDL. ◀

▶ Remark 30. The following converse to Proposition 28 also holds (by inspecting the proofs
of Proposition 15 and 17): If a function f : N → N is in ACDLC for some family C of
polynomial size and constant-depth circuits, then there exists a family C′ of polynomial size
and constant-depth circuits that computes it.

3.4.2 Direct Completeness for FTC0

Let us now consider the similar, direct characterization for FTC0. Suppose that Cn strictly
alternates between ∧, ∨ and Maj gates, and that input gates and their negation are all at
level 0, ∨ gates are at levels 3e + 1, ∧ gates at levels 3e + 2, and Maj gates at levels 3e.
Accordingly, in this case Le describes the level of a gate of a type not limited to ∧, ∨, but
including Maj. Then, the desired family of classes is defined as:

TCDLC = [0, 1, πp
i , ℓ, +, −, ÷2, sg, circC ; ◦, ℓ-ODE∗

2, ℓ-ODE3]

where, with a slight abuse of notation, we use circC to denote the function corresponding
to a (set of) relation(s), this time including the extended Le. The proof that non-uniform
FTC0 ⊆ TCDLC is similar to the one from Section 3.4.1.

▶ Proposition 31. If a function f : N → N is computable by a family C = (Cn)n≥0 of
polynomial-size and constant-depth circuits including Maj gates, then it is in TCDLC.

Proof Sketch. The functions f and Eval are globally defined as before. Modifications only
affect the definition of Evald and, in particular, the inductive levels corresponding to Maj.
Specifically, it is obtained as follows:

for a given function h and integer k, bcounth(t, x) =
∑

i≤ℓ(x)k h(i, t, x). Notice that this
function is in TCDLC, since it can be rewritten as an instance of ℓ-ODE∗

2, and h is in
TCDL∗ (due to Lemma 29),
for any i such that L3e−1(i) and 3e − 1 < d: v0

3e−1(i, t, x) = sg(C(x, i, t)) and
v1

3e−1(i, t, x) = if(C(x, i, t), Eval3e−1(i,x), 0). The value of v0
3e−1(i, t, x) is 1 when i is

a predecessor of gate t, and v1
3e−1(i, t, x) is 1 when, in addition, the value of gate i, on

input x, is 1,
for t such that L3e(t), Eval3e(t, x) is defined as sg

(
bcountv0

3e−1
(t, x)−2×bcountv1

3e−1
(t, x)

)
.

The function outputs 1 when more than half of the inputs of gate t are 1. ◀

4 Conclusion

We have presented new characterizations for FAC0 and FTC0 through the prism of discrete
differential equations. Although the use of classical arithmetical functions is intrinsically
limited by the low computational power of these classes, the ODEs used are surprisingly
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natural restrictions of linear ODEs. More generally, this work is intended as the first
step of a project aiming at characterizing other relevant classes, starting with FACk and
FNCk. Another challenging direction of future research would be to develop logical and
proof-theoretical counterparts to ODE-style algebras, e.g. by defining natural rule systems
(oriented by the ODE design) to syntactically characterize the corresponding classes.
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A Proofs from Section 3

A.1 The Schemas ℓ-ODE1 and ℓ-ODE2

Proof of Proposition 12. By Definition 10, for all x and y:

f(x, y) =
ℓ(x)−1∑
u=−1

( ℓ(x)−1∏
t=u+1

2
)

× h
(
α(u), y

)
=

ℓ(x)−1∑
u=−1

2ℓ(x)−u−1 × h(α(u), y)

with the convention that α(u) = 2u − 1,
∏x−1

x κ(x) = 1 and h
(
α(−1), y

)
= f(0, y). Notice

that the given multiplication is always by a power of 2 decreasing for each increasing value
of u, which basically corresponds to left-shifting (which can be computed in FAC0). Hence,
since by Definition 10, h(x, y) ∈ {0, 1}, the outermost sum amounts to a concatenation
(which again can be computed in FAC0).

Concretely, for any inputs x and y, the desired polynomial-sized and constant-depth
circuit to compute f(x, y) is defined as follows:

In parallel compute the values of g(y) and of each h(α(u), y), for any u ∈ {0, . . . , ℓ(x)−1}.
For hypothesis, g and h are computable in FAC0, and, since there are ℓ(x) + 1 initial
values to be computed, the whole desired computation can be done in polynomial size
and constant depth.
In one step, (left-)shift the value of h

(
α(−1), y)

)
= g(y) by padding ℓ(x) zeros on the

right and, for u ≥ 0, (left-)shift each value h
(
α(u), y

)
by padding on the right ℓ(x) − u − 1

zeros (this corresponds to multiply by 2ℓ(x)−u−1) and padding on the left u + ℓ(g(y))
zeros.
Compute, bit-by-bit, the disjunction of all values computed above. Clearly, this is done
in constant depth. ◀

https://arxiv.org/abs/2309.06926
https://arxiv.org/abs/2309.06926
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Proof of Proposition 15. There are two main cases to be taken into account. If k(y) ̸= 0,
the proof is similar to that of Proposition 12. Indeed, for all x and y:

f(x, y) =
ℓ(x)−1∑
u=−1

(
ℓ(x)−1∏
t=u+1

2ℓ(k(y))

)
× h
(
α(u), y

)
=

ℓ(x)−1∑
u=−1

2ℓ(k(y))×(ℓ(x)−u−1) × h
(
α(u), y

)
with the convention that α(u) = 2u − 1,

∏x−1
x κ(x) = 1 and h

(
α(−1), y

)
= f(0, y). Observe

that here multiplication corresponds to a left-shifting where “basic shifting” corresponds
to a left movement of ℓ(k(y)) digits. As for the basic case, it can be easily shown that
this operation can be implemented by a constant-depth circuit. Then, analogously to
Proposition 12, the outermost iterated sum amounts to concatenation (as, by construction,
h(α(u), y) ∈ {0, 1}).

Concretely, we can construct a constant-depth circuit generalizing the procedure defined
for the special case of ℓ-ODE1:

In parallel, compute the values of g(y) and h(α(u), y), for each u ∈ {0, . . . , ℓ(x) − 1}.
This can be done in constant depth by hypothesis.
In one step, shift the value of g(y) by padding ℓ(k(y)) × ℓ(x) zeros on the right, and, for
u ≥ 0, shift all values h(α(u), y) by padding on the right ℓ(k(y)) × (ℓ(x) − u − 1) zeros
(i.e. multiplying by 2ℓ(k(y))×(ℓ(x)−u−1)) and by padding on the left ℓ(g(y)) + ℓ(k(y)) ×
(u + 1) − 1 zeros.
Compute, bit-by-bit, the disjunction of all the values above.

In the special case of k(y) = 0 and h(x, y) = 0, it holds that for all x and y, f(x, y) = g(y).
This is clearly computable in FAC0, as corresponding to compute g(y), which is computable
in constant depth by hypothesis. ◀

A.2 The Schema ℓ-ODE3

For x > 0, the equation characterizing Definition 16 can be re-written as:

f(x, y) = f(x − 1, y) − ∆ℓ(x − 1) ×
⌈

f(x − 1, y)
2

⌉
,

where, as seen, ∆ℓ(x − 1) = ℓ(x) − ℓ(x − 1). Observe that also in this case we are using
× with a slight abuse of notation: indeed, we are dealing with “bit multiplication” and
multiplying a number by 0 or 1 can be easily done in FAC0 (and easily rewritten in our
setting using the basic conditional function if, which, in turn, can be defined in ACDL, see
Sec. 3.3). In other words,

f(x, y) =

f(x − 1, y) if ℓ(x) = ℓ(x − 1)
f(x − 1, y) −

⌈
f(x−1,y)

2

⌉
otherwise

=

f(x − 1, y) if ℓ(x) = ℓ(x − 1)⌊
f(x−1,y)

2

⌋
otherwise

=
{

f(x − 1, y) if ℓ(x) = ℓ(x − 1)
f(x − 1, y) ÷ 2 otherwise.

MFCS 2024



10:16 A New Characterization of FAC0 via Discrete ODEs

A bit more formally,

f(x, y) =
⌊

f(β(ℓ(x) − 1), y)
2

⌋
=
⌊

f(2ℓ(x)−1 − 1, y)
2

⌋
= f

(
2ℓ(x)−1 − 1, y

)
÷ 2

where β
(
ℓ(z)

)
= 2ℓ(z) −1 is the greatest integer the length of which is ℓ(z), i.e. here, 2ℓ(x)−1 −1

is the greatest integer the length of which is ℓ(x) − 1. Hence, starting with x > 0, there are
ℓ(x) − 1 jumps of values.

Proof of Proposition 17. By Definition 16 (as clarified by the remarks above),and, since
(a ÷ 2b) ÷ 2 = a ÷ 2b+1, it is easily shown by induction that, for all x and y:

f(x, y) =
⌊ ℓ(x)−1∏

u=1

g(y)
2

⌋
=
⌊

g(y)
2ℓ(x)−1

⌋
= g(y) ÷ 2ℓ(x)−1.

This corresponds to right-shifting g(y) a number of times equal to ℓ(x) − 1, which can be
easily implemented by a constant-depth circuit. ◀

A.3 Rewriting the Function BIT in ACDL

First, the log most significant part function msp(x, y) : x, y 7→
⌊

y
2ℓ(x)

⌋
can be rewritten as

the solution of the IVP:

f(0, y) = y

∂f(x, y)
∂ℓ

= −
⌈

f(x, y)
2

⌉
which is clearly an instance of ℓ-ODE3.

Second, we introduce the basic conditional function:

if(x, y, z) =
{

y if x = 0
z otherwise.

Notice that this function is also crucial to rewrite the CRN schema. As seen, the “shift
function” 2ℓ(x) × y can be easily rewritten via ℓ-ODE1. Thus, if(x, y, z) is simulated in our
setting by composition from shift, addition and subtraction:

if(x, y, z) =
(
2ℓ(1−sg(x)) × y − y

)
+
(
2ℓ(sg(x)) × z − z

)
.

Indeed, as desired, if x = 0, then sg(x) = 0 and ℓ(sg(x)) = 0, so that if(0, y, z) =
(
2ℓ(1) × y −

y
)

+
(
2ℓ(0)×z−z) = y; similarity, for x ≠ 0, if(0, y, z) =

(
2ℓ(0) × y − y

)
+
(
2ℓ(1) × z − z) = z.

Generalizing this definition we can capture a more general conditional function below:

cond(x, v, y, z) =
{

y if x < v

z otherwise

Then, we consider the special bit function bit(x, y) returning 1 when the ℓ(y)th bit of x

is 1. This can be rewritten in ACDL due to msp:

bit(x, y) = msp(y, x) − 2 × msp(2y + 1, x).
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Finally, we introduce the function bexp(x, y), that, for any y ≤ ℓ(x), returns 2i. We start
by defining faux(t, x, i) by the ℓ-ODE1 schema below:

faux(0, x, i) = if(i, 1, 0)
∂faux(t, x, i)

∂ℓ(t) = faux(t, x, i) + haux(t, i)

where

haux(t, i) = if(ℓ(t) − i, 1, 0).

Observe that, as seen, if can be rewritten in ACDL (while ℓ and subtraction are basic
functions). Then, for i ≤ ℓ(x), we obtain faux(x, x, i) = 2ℓ(x)−i. The function bexp is then
defined as follows:

bexp(x, i) = msp
(
faux(x, x, i) − 1, 2ℓ(x)) =

⌊
2ℓ(x)

2ℓ(x)−i

⌋
= 2i,

as the length of faux(x, x, i) − 1 is ℓ(x) − i. Clearly, the function bexp is also in ACDL as all
the functions involved in its definitions (namely, msp, faux and 2ℓ(·)) are in ACDL.

We conclude by showing that, due to bexp and bit, the desired BIT function can be
rewritten in our setting by composition:

BIT(x, y) = bit(x, bexp(x, y) − 1).

Observe that alternative proofs are possible, but the one proposed here, and based on the
introduction of bexp, not only has the advantage of being straightforward, but also avoids
the unnatural use of function most significant part function, MSP.

A.4 On the ODE-Characterization of FTC0

Proof of Proposition 20. The proof is similar to that of Proposition 15. The main difference
concerns g(y) and h(x, y), which are now expressions possibly including ×.

As seen, for all x and y:

f(x, y) =
ℓ(x)−1∑
u=−1

(
ℓ(x)−1∏
t=u+1

2ℓ(k(y))

)
× h
(
α(u), y

)
with the convention that α(u) = 2u − 1,

∏x−1
x κ(x) = 1 and h

(
α(−1), y

)
= f(0, y). In-

tuitively, the (constant-depth) circuit we are going to construct is equivalent to that of
Proposition 15, but the values to be initially computed in parallel are obtained even via ×.
Yet, the introduction of multiplication does not affect the overall structure of the circuit, as
h
(
α(u), y

)
∈ {0, 1}, so that the final sum again corresponds to a simple bit-concatenation

(without carries).
More precisely, the desired constant-depth circuit is defined as follows:
In parallel, compute the values of g(y) and, for any u = 0, . . . , ℓ(x) − 1, of h

(
α(u), y

)
.

Observe that this can be done in FTC0, but possibly not in FAC0, as now these
arithmetic expressions may include ×.
The value of g(y) is shifted by padding 2ℓ(k(y))×ℓ(x) zeros on the right and, for u ≥ 0, all
values h

(
α(u), y

)
are shifted by padding on the right ℓ(k(y)) zeros ℓ(x) − u − 1 times,

and by padding on the left ℓ(k(y)) zeros ℓ(g(y)) + u times.
the disjunction of the above values is computed bit by bit. ◀
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Proof of Proposition 22. TCDL ⊆ FTC0. All basic functions are computable in FTC0,
and the class is closed under composition and, by Propositions 20 and 21, under ℓ-ODE2
and ℓ-ODE3.

FTC0 ⊆ TCDL. By mimicking the arithmetization proof provided in [14] (see Sec. 2.2),
as all the functions defining T C0 can be rewritten in TCDL (this time including ×, which is
basic in TCDL). ◀
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1 Introduction

In a graph 𝐺, the operation of switching a subset 𝐴 of vertices is to reverse the adjacencies
between 𝐴 and 𝑉 (𝐺) \ 𝐴. Two vertices 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝑉 (𝐺) \ 𝐴 are adjacent in the resulting
graph if and only if they are not adjacent in 𝐺. The switching operation, introduced by van
Lint and Seidel [35] (see more at [29, 30, 31]), is related to many other graph operations,
most notably variations of graph complementation. The complement of a graph 𝐺 is a graph
defined on the same vertex set of 𝐺, where a pair of distinct vertices are adjacent if and
only if they are not adjacent in 𝐺. The subgraph complementation on a vertex set 𝐴 is
to replace the subgraph induced by 𝐴 with its complement, while keeping the other part,
including connections between 𝐴 and the outside, unchanged [2]. Switching 𝐴 is equivalent
to taking the complement of the graph itself and the subgraphs induced by 𝐴 and 𝑉 (𝐺) \ 𝐴.
Indeed, the widely used bipartite complementation operation of a bipartite graph is nothing
but switching one part of the bipartition. A special switching operation where 𝐴 consists
of a single vertex is also well studied. It is a nice exercise to show that switching 𝐴 is
equivalent to switching the vertices in 𝐴 one by one. This is somewhat related to the local
complementation operation [28].
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Two graphs are switching equivalent if one can be obtained from the other by switching.
Colbourn and Corneil [9] proved that deciding whether two graphs are switching equivalent
is polynomial-time equivalent to the graph isomorphism problem. Another interesting topic
is to focus on graphs from a hereditary graph class G – a class is hereditary if it is closed
under taking induced subgraphs. There are two natural questions in this direction. Given a
graph 𝐺,

whether 𝐺 can be switched to a graph in G? and
whether all switching equivalent graphs of 𝐺 are in G?

We use the upper G switching class and the lower G switching class, respectively, to denote
the set of positive instances of these two problems. Since switching the empty set does
not change the graph, the answer of the first question is yes for every graph in G, while
the answer of the second question can only be yes for a graph in G. Thus, the class G is
sandwiched in between these two switching classes. Note that the three classes collapse into
one when G is closed under switching, e.g., complete bipartite graphs.

Both switching classes are also hereditary. For the upper switching class, if a graph 𝐺
can be switched to a graph 𝐻 in G, then any induced subgraph of 𝐺 can be switched to
an induced subgraph of 𝐻, which is in G because G is hereditary. For the lower switching
class, recall that a hereditary graph class G can be characterized by a (not necessarily finite)
set F of forbidden induced subgraphs. A graph is in G if and only if it does not contain
any forbidden induced subgraph. If 𝐺 contains any induced subgraph that is switching
equivalent to a graph in F , then 𝐺 cannot be in the lower G switching class. Thus, the
forbidden induced subgraphs of the lower G switching class are precisely all the graphs that
are switching equivalent to some graphs in F .

Even when G has an infinite set of forbidden induced subgraphs, the lower G switching
class may have very simple structures. The list of forbidden induced subgraphs obtained
as above is usually not minimal. For example, Hertz [18] showed that the lower perfect
switching class has only four forbidden induced subgraphs, all switching equivalent to the
five-cycle. In the same spirit as Hertz [18], we characterize the lower G switching classes of a
number of important graph classes.

▶ Theorem 1. The lower G switching class is characterized by a finite number of forbidden
induced subgraphs when G is one of the following graph classes: weakly chordal, comparabil-
ity, co-comparability, permutation, distance-hereditary, Meyniel, bipartite, chordal bipartite,
complete multipartite, complete bipartite, chordal, strongly chordal, interval, proper interval,
Ptolemaic, and block.

Indeed, since the forbidden induced subgraphs of threshold graphs are 2𝐾2, 𝐶4, and 𝑃4 [8],
by the arguments given above, the forbidden subgraphs of the lower threshold switching class
are all graphs on four vertices (every graph on four vertices is switching equivalent to a graph
in {2𝐾2, 𝐶4, 𝑃4}). This class, consisting of only graphs of order at most three, is finite. Also
finite are lower switching classes of minor-closed graph classes that are nontrivial1 (there
exists at least one graph not in this class).

▶ Theorem 2. Let G be a nontrivial minor-closed graph class, and let 𝑝 be the smallest
order of a forbidden minor of G. Then |𝑉 (𝐺) | = 𝑂 (𝑝√𝑝), for graphs 𝐺 in lower G switching
class.

1 We thank an anonymous reviewer for the bound in Theorem 2, which improves the bound in a previous
version of this manuscript.
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Theorems 1 and 2 immediately imply polynomial-time and constant-time algorithms,
respectively, for recognizing these lower switching classes, i.e., deciding whether a graph is in
the class. We remark that there are classes G such that the lower G switching class has an
infinite number of forbidden induced subgraphs.

The upper G switching classes turn out to be more complicated. These classes are
nontrivial even for the class of 𝐻-free graphs for a fixed graph 𝐻. Although G has only one
forbidden induced subgraph, the number of forbidden induced subgraphs of the upper G
switching class is usually infinite. Based on our current knowledge, exceptions do exist but
are rare [19]. Even so, for many graph classes G, polynomial-time algorithms for recognizing
the upper G switching class exist, e.g., bipartite graphs [16]. Our understanding of this
problem is very limited, even for classes defined by forbidding a single graph 𝐻. For all graphs
𝐻 on at most three vertices, polynomial-time algorithms are known for recognizing the upper
𝐻-free switching class [16, 17, 24]. Of a graph 𝐻 on four vertices, the four-path [18] and the
claw [19] have been settled. We present a polynomial-time algorithm for paw-free graphs.
If two graphs 𝐻1 and 𝐻2 are complements to each other, then the recognition of the upper
𝐻1-free switching class is polynomially equivalent to that of the upper 𝐻2-free switching class.
Thus, the remaining cases on four vertices are the diamond, the cycle, and the complete
graph. We made attempt to them by solving the class of forbidding the four-cycle and its
complement, which is known as pseudo-split graphs.

▶ Theorem 3. The upper G switching class can be recognized in polynomial time when
G is one of the following graph classes: paw-free graphs, pseudo-split graphs, split graphs,
{𝐾1, 𝑝 , 𝐾1,𝑞}-free graphs, and bipartite chain graphs.

In Theorem 3, we want to highlight the algorithms for pseudo-split graphs and for split
graphs. We actually show a stronger result. Any input graph 𝐺 has only a polynomial
number of ways to be switched to a graph in these two classes, and we can enumerate them
in polynomial time. Thus, the algorithms can apply to hereditary subclasses of pseudo-split
graphs, provided that these subclasses themselves can be recognized in polynomial time.
This is only possible when the lower switching classes of them are finite. It is unknown
whether the other direction also holds true.

Jelínková and Kratochvíl [19] found graphs 𝐻 such that the upper 𝐻-free switching class
is hard to recognize. The smallest graph they found is on nine vertices. More specifically,
they showed that, for all 𝑘 ≥ 3, there is a graph of order 3𝑘 with this property. The graph is
obtained from a three-vertex path by substituting one degree-one vertex with an independent
set of 𝑘 vertices, and each of the other two vertices with a clique of 𝑘 vertices. We show
that the recognition of the upper 𝐻-free switching class is already hard when 𝐻 is a cycle on
seven vertices or a path on ten vertices. Our proofs can be adapted to longer ones.

▶ Theorem 4. Deciding whether a graph is switching equivalent to a 𝑃10-free graph or a
𝐶7-free graph is NP-complete, and it cannot be solved in subexponential time (on |𝑉 (𝐺) |)
assuming the Exponential Time Hypothesis.

Since the problem admits a trivial 2 |𝑉 (𝐺) | · |𝑉 (𝐺) |𝑂 (1) -time algorithm, by enumerating
all subsets of 𝑉 (𝐺), our bound in Theorem 4 is asymptotically tight. We conjecture that it
is NP-complete to decide whether a graph can be switched to an 𝐻-free graph when 𝐻 is a
cycle or path of length six.

Theorem 1 and 2 are proved in Section 3, Theorem 3 is proved in Section 4, and Theorem 4
is proved in Section 5. Due to space constraints, most of the proofs are left to a full version
of the paper.
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Other related work
Jelínková et al. [20] studied the parameterized complexity of the recognition problem of the
upper switching classes. Let us remark that there is also study on the upper switching classes
for non-hereditary graph classes. For example, we can decide in polynomial time whether a
graph can be switching equivalent to a Hamiltonian graph [11] or to an Eulerian graph [16],
but it is NP-complete to decide whether a graph can be switching equivalent to a regular
graph [23]. Cameron [6] and Cheng and Wells Jr. [7] generalized the switching operation to
directed graphs. Foucaud et al. [13] studied switching operations in a different setting.

Seidel [30] showed that the size of a maximum set of switching inequivalent graphs on 𝑛
vertices is equivalent to the number of two-graphs of size 𝑛. This is further shown to be the
same as the number Eulerian graphs on 𝑛 vertices [25] and graphs on 2𝑛 vertices admitting
certain coloring [26]. Bodlaender and Hage [4] showed that the switching operation does not
change the cliquewidth of a graph too much, though it may change the treewidth significantly.
The switching equivalence between graphs in certain classes can be decided in polynomial
time. For example, acyclic graphs because two forests are switching equivalent if and only
if they are isomorphic [14]. In a complementary study, Hage and Harju [15] characterized
graphs that cannot be switched to any forest. They are either a small graph on at most nine
vertices, or switching equivalent to a cycle.

From a graph 𝐺 on 𝑛 vertices, we can obtain 𝑛 graphs by switching each vertex, called the
switching deck of 𝐺. The switching reconstruction conjecture of Stanley [32] asserts that for
any 𝑛 > 4, if two graphs on 𝑛 vertices have the same switching deck, they must be isomorphic.
The conjecture remains widely open, and we know that it holds on triangle-free graphs [12].
A similar question in digraph is also studied [5].

2 Preliminaries

All the graphs discussed in this paper are finite and simple. The vertex set and edge set of a
graph 𝐺 are denoted by, respectively, 𝑉 (𝐺) and 𝐸 (𝐺). Let 𝑛 = |𝑉 (𝐺) | and 𝑚 = |𝐸 (𝐺) |. For
a subset 𝑈 ⊆ 𝑉 (𝐺), we denote by 𝐺 [𝑈] the subgraph of 𝐺 induced by 𝑈, and by 𝐺 −𝑈 the
subgraph 𝐺 [𝑉 (𝐺) \𝑈], which is shortened to 𝐺 − 𝑣 when 𝑈 = {𝑣}. The neighborhood of a
vertex 𝑣, denoted by 𝑁𝐺 (𝑣), comprises vertices adjacent to 𝑣, i.e., 𝑁𝐺 (𝑣) = {𝑢 | 𝑢𝑣 ∈ 𝐸 (𝐺)},
and the closed neighborhood of 𝑣 is 𝑁𝐺 [𝑣] = 𝑁𝐺 (𝑣) ∪ {𝑣}. The closed neighborhood and
the neighborhood of a set 𝑋 ⊆ 𝑉 (𝐺) of vertices are defined as 𝑁𝐺 [𝑋] =

⋃
𝑣∈𝑋 𝑁𝐺 [𝑣] and

𝑁𝐺 (𝑋) = 𝑁𝐺 [𝑋] \ 𝑋, respectively. We may drop the subscript if the graph is clear from the
context. We write 𝑁 (𝑢, 𝑣) and 𝑁 [𝑢, 𝑣] instead of 𝑁 ({𝑢, 𝑣}) and 𝑁 [{𝑢, 𝑣}]; i.e., we drop the
braces when writing the neighborhood of a vertex set. Two vertex sets 𝑋 and 𝑌 are complete
(resp., nonadjacent) to each other if all (resp., no) edges between 𝑋 and 𝑌 are present.

For positive ℓ, we use 𝐶ℓ (ℓ ≥ 3), 𝑃ℓ , and 𝐾ℓ to denote the cycle, path, and complete
graph, respectively, on ℓ vertices. When ℓ ≥ 4, an induced 𝐶ℓ is called an ℓ-hole. A complete
bipartite graph with 𝑝 and 𝑞 vertices in the two parts are denoted as 𝐾𝑝,𝑞.

The disjoint union of two graphs 𝐺1 and 𝐺2 is denoted by 𝐺1 + 𝐺2. The complement
graph 𝐺 of a graph 𝐺 is defined on the same vertex set 𝑉 (𝐺), where a pair of distinct vertices
𝑢 and 𝑣 is adjacent in 𝐺 if and only if 𝑢𝑣 ∉ 𝐸 (𝐺). By G𝑐, we denote the set of graphs not in
G. The switching of a vertex subset 𝐴 of a graph 𝐺 is denoted by 𝑆(𝐺, 𝐴). It has the same
vertex set as 𝐺 and its edge set is 𝐸 (𝐺 [𝐴]) ∪𝐸 (𝐺 − 𝐴) ∪ {𝑢𝑣 | 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉 (𝐺) \ 𝐴, 𝑢𝑣 ∉ 𝐸 (𝐺)}.
The following observations are immediate from the definition. The symmetric difference of
two sets is defined as 𝐴Δ𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴).
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▶ Proposition 5 (folklore). Let 𝐺 be a graph, and 𝐴, 𝐵 ⊆ 𝑉 (𝐺).
𝑆(𝐺, 𝐴) = 𝑆(𝐺, (𝑉 (𝐺) \ 𝐴)).
𝑆(𝑆(𝐺, 𝐴), 𝐴) = 𝐺.
𝑆(𝑆(𝐺, 𝐴), 𝐵) = 𝑆(𝑆(𝐺, 𝐵), 𝐴) = 𝑆(𝐺, 𝐴Δ𝐵).
𝑆(𝐺, 𝐴) = 𝑆(𝐺, 𝐴).

Two graphs 𝐺 and 𝐺′ are called switching equivalent if 𝑆(𝐺, 𝐴) = 𝐺′ for some 𝐴 ⊆ 𝑉 (𝐺).
By Proposition 5, switching is an equivalence relation. For example, the eleven graphs of
order 4 can be partitioned into the following three sets

{𝐶4, 𝐾3 + 𝐾1, 4𝐾1}, {2𝐾2, 𝐾3 + 𝐾1, 𝐾4}, {𝑃4, 𝐾2 + 2𝐾1, 𝐾2 + 2𝐾1, 𝑃3 + 𝐾1, 𝑃3 + 𝐾1}.

Note that 𝐾3 + 𝐾1 is the claw, 𝑃3 + 𝐾1 is the paw, and 𝐾2 + 2𝐾1 is the diamond; see Figure 1
and 2a. For a graph 𝐺, we use S(𝐺) to denote the set of non-isomorphic graphs that can be
obtained from 𝐺 by switching. Figure 2 illustrates S(𝐶4) and S(𝐶5). For a set G of graphs,
by S(G) we denote the union of S(𝐺) for 𝐺 ∈ G.

A graph 𝐺 is a split graph if the vertex set of 𝐺 can be partitioned in such a way that
one is a clique and the other is an independent set. Split partitions of a split graph refer to
such (clique, independent set) partitions. An edgeless graph is a graph without any edges.

In general, for two sets G and H of graphs, we say that G is H -free if 𝐺 is 𝐻-free for
every 𝐺 ∈ G and for every 𝐻 ∈ H . By F (H), we denote the class of H -free graphs. Note
that F (H ∪H ′) = F (H) ∩ F (H ′).

For a graph property G, the lower G switching class, denoted by L(G), consists of all
graphs 𝐺 with S(𝐺) ⊆ G. Note that every graph in L(G) is also in G. Thus, L(G) is
the maximal subset G′ of G such that S(G′) = G′. The upper G switching class, denoted
by U(G), consists of all graphs 𝐺 with S(𝐺) ∩ G ≠ ∅. Clearly, every graph in G is in
U(G). Therefore, U(G) is the minimal superset G′ of G such that S(G′) = G′. We note that
U(G) = S(G). The following proposition is immediate from the definitions and Proposition 5.

▶ Proposition 6. Let G and G′ be graph classes. Then the following hold true.
1. (L(G))𝑐 = U(G𝑐).
2. If G′ ⊆ G, then L(G′) ⊆ L(G) and U(G′) ⊆ U(G).
3. L(G) ∩ L(G′) = L(G ∩ G′).

▶ Proposition 7. For a set H of graphs, L(F (H)) = F (U(H)).

(a) paw (b) diamond (c) house (d) net (e) sun (f) domino

Figure 1 Small graphs.

3 Lower switching classes

Every (odd) hole of length at least seven contains an induced 𝑃4 + 𝐾1, and its complement
contains an induced gem. Both 𝑃4 + 𝐾1 and the gem are in S(𝐶5); see Figure 2b. Thus, all
the forbidden induced subgraphs of perfect graphs, namely, odd holes and their complements,
boil down to S(𝐶5), and the lower perfect switching class is equivalent to the lower 𝐶5-free

MFCS 2024



11:6 Switching Classes: Characterization and Computation

(a) S(𝐶4 ) = {𝐶4, claw, 4𝐾1} (b) S(𝐶5 ) = {𝐶5, bull, gem, 𝑃4 + 𝐾1}

Figure 2 Switching equivalent graphs of 𝐶4 and 𝐶5. Switching the solid nodes (or the rest)
results in the first graph in the list.

switching class [18]. In the same spirit, we characterized the lower G switching classes of
a number of important graph classes listed in Figure 3. The results are listed in Table 1.
Since all these lower switching classes have finite characterizations, they can be recognized
in polynomial time. For the class of chordal graphs and several of its subclasses, we show
a stronger structural characterization of their lower switching classes. They have to be
proper interval graphs with a very special structure. The following lemma, a consequence of
Proposition 6(2), is crucial for our arguments.

▶ Lemma 8. Let G1,G2, and G3 be three classes of graphs such that G1 ⊆ G2 ⊆ G3. If L(G3)
= L(G1), then L(G2) = L(G1). In particular, the following is true. Let H1,H2, and H3 be
three sets of graphs such that H3 ⊆ H2 ⊆ H1. If L(F (H3)) = L(F (H1)), then L(F (H2)) =
L(F (H1)).

weakly chordal Meyniel

chordaldistance-hereditary

strongly chordalPtolemaic

block

proper interval

interval

co-comparability

chordal bipartite

permutation

comparability

bipartite

complete bipartite

Figure 3 The Hasse diagram of graph classes studied in Section 3.

To see a simple application of Lemma 8, let G be the class of complete bipartite graphs
and G′ be the class of bipartite graphs. Since 𝐾3 and 𝐾2 + 𝐾1 are switching equivalents, and
bipartite graphs are 𝐾3-free, we obtain that lower bipartite switching class is {𝐾3, 𝐾2 + 𝐾1}-
free. Recall that {𝐾3, 𝐾2 + 𝐾1}-free graphs are exactly the class of complete bipartite graphs.
Further, switching a complete bipartite graph results in a complete bipartite graph. Therefore,
lower G′′ switching class is equivalent to the class of complete bipartite graphs, where G′′ is
a subclass of bipartite graphs and a superclass of complete bipartite graphs, such as bipartite
graphs, complete bipartite graphs, and chordal bipartite graphs (bipartite graphs in which
every cycle longer than 4 has a chord).

▶ Lemma 9. Let G be any subclass of bipartite graphs and any superclass of complete bipartite
graphs. Then L(G) is the class of complete bipartite graphs.
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Table 1 Lower switching classes of various graph classes.

G L(G) By

weakly chordal, permutation {𝐶5, 𝐶6, 𝐶6}-free

Corollary 11
distance-hereditary {domino, house, 𝐶5, 𝐶6}-free
comparability {𝐶5, 𝐶6}-free
co-comparability {𝐶5, 𝐶6}-free
Meyniel graphs {𝐶5, house}-free
complete bipartite, chordal bi-
partite, bipartite

complete bipartite Lemma 9

chordal, strongly chordal, inter-
val, proper interval, Ptolemaic

C0 Corollary 13

block (+), (+, 0, +), (1, 1, 1), and (1, 0, 1, 0, 1) Lemma 14

Let H be the set of all graphs having an induced subgraph isomorphic to at least one
graph in S(𝐶5). A building is obtained from a hole by adding an edge connecting two vertices
of distance two; e.g., the house, see Figure 1. An odd building is a building with odd number
of vertices.

▶ Observation 10. H contains 𝐶5, holes of length at least seven, complements of holes of
length at least seven, and buildings of at least six vertices.

Lemma 8 and Observation 10 lead us to Corollary 11.

▶ Corollary 11. The forbidden induced subgraphs of the lower G switching class of G
being weakly chordal, distance-hereditary, comparability, co-comparability, permutation, and
Meyniel graphs are {𝐶5, 𝐶6, 𝐶6}, {domino, house, 𝐶5, 𝐶6}, {𝐶5, 𝐶6}, {𝐶5, 𝐶6}, {𝐶5, 𝐶6, 𝐶6},
{𝐶5, house}, respectively.

Next we deal with the class of chordal graphs and its subclasses. We start with showing
that the lower {𝐶4, 𝐶5, 𝐶6}-free switching class is a subclass of proper interval graphs and
has very simple structures. Let 𝑎1, . . ., 𝑎𝑝 be 𝑝 nonnegative integers. For 1 ≤ 𝑖 ≤ 𝑝, we
substitute the 𝑖th vertex of a path on 𝑝 vertices with a clique of 𝑎𝑖 vertices. We denote the
resulting graph as (𝑎1, 𝑎2, . . . , 𝑎𝑝). For example, the paw and the diamond are (1, 1, 2) and
(1, 2, 1), respectively, while the complement of the diamond can be represented as (2, 0, 1, 0, 1).
We use “+” to denote an unspecified positive integer, and hence (+) stands for all complete
graphs.

The forbidden induced subgraphs of proper interval graphs are holes, sun, net, and claw.
Note that a sun and a net (see Figure 1) contains an induced bull (∈ S(𝐶5)), while any
cycle on at least seven vertices contains an induced 𝑃4 + 𝐾1 ∈ S(𝐶5). A claw is in S(𝐶4).
Therefore, lower {𝐶4, 𝐶5, 𝐶6}-free switching class is a subclass of proper interval graphs. A
careful analysis shows that the structure is much simpler.

▶ Lemma 12. The lower {𝐶4, 𝐶5, 𝐶6}-free switching class consists of graphs (+), (+, +, 1),
(+, 1, +), (+, 0, +), (+, +, 1, 0, +), (+, 0, +, 0, 1), (+, +, 1, +), and (+, +, 1, +, +).

Let C0 denote the lower {𝐶4, 𝐶5, 𝐶6}-free switching class. Since chordal graphs are {𝐶4, 𝐶5, 𝐶6}-
free, lower chordal switching class is a subclass of C0. By Lemma 12, C0 is a subclass of lower
chordal switching class. Therefore, they are equivalent. This same observation applies to
subclasses of chordal graphs that contain all the graphs in C0 and by Lemma 8 to superclasses
of chordal graphs which are {𝐶4, 𝐶5, 𝐶6}-free.
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11:8 Switching Classes: Characterization and Computation

▶ Corollary 13. The following switching classes are all equivalent to C0: lower chordal
switching class, lower strongly chordal switching class, lower interval switching class, lower
proper interval switching class, and lower Ptolemaic switching class.

Proof. Since chordal graphs, strongly chordal graphs, interval graphs, and proper interval
graphs are all hole-free, all the lower switching classes are subclasses of C0 by Proposition 6.
On the other hand, by Lemma 12, all the graphs in C0 are proper interval graphs. Thus,
C0 is a subclass of proper interval switching graphs, hence also a subclass of the first three
switching classes. Ptolemaic graphs are gem-free chordal graphs. Since gem is in S(𝐶5), the
lower Ptolemaic switching class is also C0. Thus, they are all equal. ◀

The class of line graphs has nine forbidden induced subgraphs [3], two of which are
switching equivalent to 𝐶6, and one 𝐶4. Although 𝐶5 is not forbidden, we show that a graph
in the lower line switching class contains an induced 𝐶5 if and only if it is a 𝐶5. Thus, this
switching class consists of S(𝐶5) and a subclass of C0.

▶ Lemma 14. The lower block switching class consists of graphs (+), (+, 0, +), (1, 1, 1), and
(1, 0, 1, 0, 1). The lower line switching class comprises of (+), (1,1,1), (2,1,1), (1,2,1), (2,1,2),
(+,0,+), (1,1,1,0,1), (2,1,1,0,1), (1,0,1,0,1), (2,0,1,0,1), (2,0,2,0,1), (1,1,1,1), (1,2,1,1),
(1,1,1,1,1), and S(𝐶5).

A graph 𝐹 is a minor of a graph 𝐺 if 𝐹 can be obtained from a subgraph of 𝐺 by
contracting edges (identifying the two ends of the edge and keeping one edge between the
resulting vertex and each of the neighbors of the end points of the edge). For example, any
cycle contains all shorter cycles as minors. A graph class G is minor-closed if every minor of
a graph in G also belongs to G. In other words, there is a set M of forbidden minors such
that a graph belongs to G if and only if it does not contain as a minor any graph inM. Since
an induced subgraph of a graph 𝐺 is a minor of 𝐺, a minor-closed graph class is hereditary.
We say that a graph class is nontrivial if there is at least one graph not in the class.

Kostochka [21, 22] and Thomason [33] proved that, there exists an absolute constant
𝑐 > 0 such that every graph 𝐺 with at least 𝑐 · |𝑉 (𝐺) | · 𝑝√𝑝 edges has 𝐾𝑝 as a minor. See [34]
for an overview. This helps us to prove Theorem 2:

▶ Theorem 2. Let G be a nontrivial minor-closed graph class, and let 𝑝 be the smallest
order of a forbidden minor of G. Then |𝑉 (𝐺) | = 𝑂 (𝑝√𝑝), for graphs 𝐺 in lower G switching
class.

Proof. Let 𝐺 ∈ L(G) be a graph with 𝑛 vertices. It is straight-forward to verify that there
exists a constant 𝑐′ > 0 such that either 𝐺 or 𝑆(𝐺, 𝐴) has 𝑐′ · 𝑛2 edges, where 𝐴 is any subset
of 𝑉 (𝐺) with cardinality ⌊𝑛/2⌋. If 𝑐′ · 𝑛2 ≥ 𝑐 · 𝑛 · 𝑝√𝑝, then 𝐺 has a 𝐾𝑝-minor. Therefore,
𝑛 = 𝑂 (𝑝√𝑝). ◀

We have found that, for the class of outerplanar graphs, planar graphs, and series-parallel
graphs, the maximum orders of graphs in the lower switching classes are five, seven, and at
most 12, respectively.

Let us mention that there are classes G such that the lower G switching class has an
infinite number of forbidden induced subgraphs.

▶ Lemma 15. For any infinite set 𝐼 ⊆ {9, 10, . . .}, the forbidden induced subgraphs of the
lower {𝐶ℓ , ℓ ∈ 𝐼}-free switching class are

⋃
ℓ∈𝐼 S(𝐶ℓ).
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4 Upper switching classes: algorithms

For the recognition of the upper G switching class, the input is a graph 𝐺, and the solution
is a vertex subset 𝐴 ⊆ 𝑉 (𝐺) such that 𝑆(𝐺, 𝐴) ∈ G.

We start with split graphs. If the input graph 𝐺 is a split graph, then we have nothing
to do. Suppose that 𝐺 is in the upper split switching class. Let 𝐴 be a solution, and 𝐾 ⊎ 𝐼 a
split partition of 𝑆(𝐺, 𝐴). Note that if 𝐴 ∈ {𝐾, 𝐼}, then 𝐺 is a split graph. We may assume
that 𝐴 intersects both 𝐾 and 𝐼: if 𝐴 is a proper subset of 𝐾 or 𝐼, we replace 𝐴 with 𝑉 (𝐺) \ 𝐴.
We can guess a pair of vertices 𝑢 ∈ 𝐴 ∩ 𝐾 and 𝑣 ∈ 𝐴 ∩ 𝐼. The vertex set 𝑉 (𝐺) \ {𝑢, 𝑣} can be
partitioned into four parts, namely, 𝑁 (𝑢) \𝑁 [𝑣], 𝑁 (𝑣) \𝑁 [𝑢], 𝑁 (𝑢) ∩𝑁 (𝑣), and 𝑉 (𝐺) \𝑁 [𝑢, 𝑣].
It is easy to see that the first is a subset of 𝐴 while the second is disjoint from 𝐴. The
subgraphs 𝐺 [𝑁 (𝑢) ∩ 𝑁 (𝑣)] and 𝐺 − 𝑁 [𝑢, 𝑣] must be split graphs, and each admits a special
split partition with respect to 𝐴. The algorithm is described in Figure 4. We can modify the
algorithm so that it enumerates all solutions.

▶ Theorem 16. Let 𝐺 be a graph. There are a polynomial number of subsets 𝐴 of 𝑉 (𝐺)
such that 𝑆(𝐺, 𝐴) is a split graph, and they can be enumerated in polynomial time.

1. if 𝐺 is a split graph then return “yes”;
2. for each pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) do
2.1. if 𝐺 [𝑁 (𝑢) ∩ 𝑁 (𝑣)] is not a split graph then continue;
2.2. if 𝐺 − 𝑁 [𝑢, 𝑣] is not a split graph then continue;
2.3. for each split partition 𝐾1 ⊎ 𝐼1 of 𝐺 [𝑁 (𝑢) ∩ 𝑁 (𝑣)] do
2.3.1. for each split partition 𝐾2 ⊎ 𝐼2 of 𝐺 − 𝑁 [𝑢, 𝑣] do
2.3.1.1. if 𝑆(𝐺, {𝑢, 𝑣} ∪ (𝑁 (𝑢) \ 𝑁 [𝑣]) ∪ 𝐾1 ∪ 𝐼2) is a split graph

then return “yes”;
3. return “no.”

Figure 4 The algorithm for split graphs.

A pseudo-split graph is either a split graph, or a graph whose vertex set can be partitioned
into a clique 𝐾, an independent set 𝐼, and a set 𝐻 that (1) induces a 𝐶5; (2) is complete
to 𝐾; and (3) is nonadjacent to 𝐼. We say that 𝐾 ⊎ 𝐼 ⊎ 𝐻 is a pseudo-split partition of the
graph, where 𝐻 may or may not be empty. If 𝐻 is empty, then 𝐾 ⊎ 𝐼 is a split partition of
the graph. When 𝐻 is nonempty, the pseudo-split partition is unique.

For pseudo-split graphs, we start with checking whether the input graph can be switched
to a split graph. We are done if the answer is “yes.” Henceforth, we are looking for a resulting
graph that contains a hole 𝐶5. Suppose that 𝐺 is in the upper pseudo-split switching class.
Let 𝐴 be a solution, and 𝐾 ⊎ 𝐼 ⊎ 𝐻 is a pseudo-split partition of 𝑆(𝐺, 𝐴). We may assume
that |𝐴 ∩ 𝐻 | ≥ 3: otherwise, we replace 𝐴 with 𝑉 (𝐺) \ 𝐴. The subgraph 𝐺 [𝐻] must be one
of Figure 2b, and 𝐴 ∩ 𝐻 are precisely the vertices represented as empty nodes. We can guess
the vertex set 𝐻 as well as its partition with respect to 𝐴, and then all the other vertices are
fixed by the following observation:

𝐾 is complete to 𝐻 ∩ 𝐴 and nonadjacent to 𝐻 \ 𝐴, and
𝐼 is complete to 𝐻 \ 𝐴 and nonadjacent to 𝐻 ∩ 𝐴.

The algorithm is described in Figure 5. We can modify the algorithm so that it enumerates
all solutions.
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1. if 𝐺 can be switched to a split graph then return “yes”;
2. for each vertex set 𝐻 such that 𝐺 [𝐻] ∈ S(𝐶5) do
2.0. 𝐻1 ← the empty nodes of 𝐺 [𝐻] as in Figure 2b; 𝐻2 ← 𝐻 \ 𝐻1;
2.1. for each vertex 𝑥 in 𝑉 (𝐺) \ 𝐻 do
2.1.1. if 𝑁 (𝑥) ∩ 𝐻 is neither 𝐻1 nor 𝐻2 then continue;
2.2. if 𝑁 (𝐻1) \ 𝐻 does not induce a split graph then continue;
2.3. if 𝑁 (𝐻2) \ 𝐻 does not induce a split graph then continue;
2.4. for each split partition 𝐾1⊎𝐼1 of the subgraph induced by 𝑁 (𝐻1)\𝐻 do
2.4.1. for each split partition 𝐾2⊎𝐼2 of the subgraph induced by 𝑁 (𝐻2)\𝐻 do
2.4.1.1. if 𝑆(𝐺, 𝐻1 ∪ 𝐾1 ∪ 𝐼2) is a pseudo-split graph then return “yes”;
3. return “no”.

Figure 5 The algorithm for pseudo-split graphs.

▶ Theorem 17. Let 𝐺 be a graph. There are a polynomial number of subsets 𝐴 of 𝑉 (𝐺)
such that 𝑆(𝐺, 𝐴) is a pseudo-split graph, and they can be enumerated in polynomial time.

As a result, we have an algorithm for any hereditary subclass G of pseudo-split graphs
that can be recognized in polynomial time. Since a graph has 2𝑛 subsets, and the switching
of only a polynomial number of them leads to a pseudo-split graph, every graph of sufficiently
large order can be switched to a graph that is not a pseudo-split graph. Thus, the lower
pseudo-split switching class is finite.

Next we give an algorithm for recognizing upper paw-free switching class. Since a paw
contains an induced 𝐶3 and an induced 𝑃3, both 𝐶3-free graphs and 𝑃3-free graphs are
paw-free. Olariu [27] showed that a connected paw-free graph is 𝐶3-free or 𝑃3-free (i.e.,
complete multipartite). We start with checking whether 𝐺 can be switched to a 𝐶3-free
graph [17] or a 𝑃3-free graph [24]. When the answers are both “no”, we look for a set
𝐴 ⊆ 𝑉 (𝐺) such that 𝑆(𝐺, 𝐴) is not connected and contains a triangle. It is quite simple
when 𝑆(𝐺, 𝐴) has three or more components. We can always assume that 𝐴 intersects two
of them. We guess one vertex from each of these intersections, and an arbitrary vertex
from another component (which can be in 𝐴 or not). The three vertices are sufficient to
determine 𝐴. It is more challenging when 𝑆(𝐺, 𝐴) comprises precisely two components. The
crucial observation here is that one of the components is 𝐶3-free and the other 𝑃3-free. We
have assumed the graph contains a triangle. If both components contain triangles, hence
𝑃3-free, then 𝑆(𝐺, 𝐴) can be switched to a complete multipartite graph, contradicting the
assumption above. We guess a triple of vertices that forms a triangle in 𝑆(𝐺, 𝐴), and they
can determine 𝐴. The algorithm is described in Figure 6. A co-component of a graph 𝐺 is a
component of the complement of 𝐺. Indeed, a graph is complete multipartite if and only
if every co-component is an independent set. With two tailored algorithms we prove that
recognizing upper {𝐾1, 𝑝 , 𝐾1,𝑞}-free switching class and upper bipartite chain switching class
can be solved in polynomial-time.

We end this section with the following remark. By Proposition 6(1), we know that
recognizing L(G) is polynomially equivalent to recognizing U(G𝑐). This implies polynomial-
time algorithms for U(G𝑐) for all the classes G for which we proved (in Section 3) the
finiteness of L(G) or finiteness of the set of forbidden induced subgraphs of L(G). In
particular, this implies that we have polynomial-time algorithms for recognizing upper
non-planar switching class and upper non-chordal switching class.
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1. if 𝐺 can be switched to a 𝑃3- or 𝐶3-free graph then return “yes”;
2. for each pair of nonadjacent vertices 𝑢1, 𝑢2 do // three or more components.
2.1. for each 𝑢3 ∈ 𝑉 (𝐺) \ 𝑁 [𝑢1, 𝑢2] do
2.1.1. 𝐴← {𝑥 ∈ 𝑉 (𝐺) | |𝑁 [𝑥] ∩ {𝑢1, 𝑢2, 𝑢3} ≤ 1};
2.1.2. if 𝑆(𝐺, 𝐴) is paw-free then return “yes”;
2.2. for each 𝑢3 ∈ 𝑁 (𝑢1) ∩ 𝑁 (𝑢2) do
2.2.1. 𝐴← (𝑉 (𝐺) \ 𝑁 [𝑢1, 𝑢2]) ∪ ((𝑁 [𝑢1]Δ𝑁 [𝑢2]) \ 𝑁 (𝑢3));
2.2.2. if 𝑆(𝐺, 𝐴) is paw-free then return “yes”;
3. for each pair of adjacent vertices 𝑢1, 𝑢2 do // two components,

one containing 𝐶3.
3.1. 𝑝 ← number of components of 𝐺 [𝑁 (𝑢1) ∩ 𝑁 (𝑢2)];
3.2. 𝑞 ← number of components of 𝐺 − 𝑁 [𝑢1, 𝑢2];
3.3. for each 𝐼 ⊆ {1, . . . , 𝑝} and 𝐽 ⊆ {1, . . . , 𝑞} with |𝐼 |, |𝐽 | ≤ 2 do
3.3.1. 𝑋 ← ⋃

𝑖∉𝐼 𝑖th co-component of 𝐺 [𝑁 (𝑢1) ∩ 𝑁 (𝑢2)];
3.3.2. 𝑌 ← ⋃

𝑗∈𝐽 𝑗th co-component of 𝐺 − 𝑁 [𝑢1, 𝑢2];
3.3.3. if 𝑋 ≠ ∅ then
3.3.3.1. 𝑢3 ← an arbitrary vertex from 𝑋;
3.3.3.2. 𝐴← 𝑋 ∪ 𝑌 ∪ ((𝑁 (𝑢1)Δ𝑁 (𝑢2)) ∩ 𝑁 (𝑢3));
3.3.4. else
3.3.4.1. 𝑢3 ← an arbitrary vertex from 𝑉 (𝐺) \ (𝑁 [𝑢1, 𝑢2] ∪ 𝑌 );
3.3.4.2. 𝐴← 𝑋 ∪ 𝑌 ∪ ((𝑁 (𝑢1)Δ𝑁 (𝑢2)) \ 𝑁 (𝑢3));
3.3.5. if 𝑆(𝐺, 𝐴) is paw-free then return “yes”;
4. return “no.”

Figure 6 The algorithm for paw-free graphs.

5 Upper switching classes: hardness

In this section, we prove hardness results for recognition problems for U(G), for G being
the class of 𝑃10-free graphs or the class of 𝐶7-free graphs. For convenience, we denote the
recognition problem for U(G) as Switching-to-G. We prove that Switching-to-F (𝑃10)
and Switching-to-F (𝐶7) are NP-complete and cannot be solved in time subexponential
in the number of vertices, assuming the Exponential Time Hypothesis (ETH). We refer to
the book [10] for an exposition to ETH and linear reductions which can be used to transfer
complexity lower bounds.

Our reductions are from Monotone NAE 𝑘-SAT. A Monotone NAE 𝑘-SAT instance
is a boolean formula Φ with 𝑛 variables and 𝑚 clauses where each clause contains exactly
𝑘 positive literals (and no negative literals). The objective is to check whether there is a
truth assignment to the variables so that there is at least one TRUE literal and at least one
FALSE literal in each clause in Φ. It is folklore that the problem is NP-complete and cannot
be solved in subexponential-time assuming ETH.

▶ Proposition 18 (folklore). For every 𝑘 ≥ 3, Monotone NAE 𝑘-SAT is NP-complete.
Further, the problem cannot be solved in time 2𝑜 (𝑛+𝑚) , assuming ETH.

We use the following construction for a reduction from Monotone NAE 5-SAT to
Switching-to-F (𝑃10).
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▶ Construction 1. Let Φ be a Monotone NAE 5-SAT formula with 𝑛 variables
𝑋1, 𝑋2, · · · , 𝑋𝑛, and 𝑚 clauses 𝐶1, 𝐶2, · · · , 𝐶𝑚. We construct a graph 𝐺Φ as follows:

For each variable 𝑋𝑖 in Φ, introduce a variable vertex 𝑥𝑖. Let 𝐿 be the set of all variable
vertices, which forms an independent set of size 𝑛.
For each clause 𝐶𝑖 in Φ of the form {ℓ𝑖1, ℓ𝑖2, ℓ𝑖3, ℓ𝑖4, ℓ𝑖5}, introduce a set of clause vertices,
also named 𝐶𝑖, consisting of an independent set of size 5, denoted by 𝐼𝑖, and 5 disjoint 𝑃9s
each of which is denoted by 𝐵𝑖 𝑗 , for 1 ≤ 𝑗 ≤ 5. Let 𝐵𝑖 =

⋃5
𝑗=1 𝐵𝑖 𝑗 . The adjacency among

the set 𝐵𝑖 𝑗 and 𝐼𝑖, for 1 ≤ 𝑗 ≤ 5, is in such a way that the set of vertices in the 𝑃9 induced
by the 𝐵𝑖 𝑗 , except one of the end vertex 𝑣𝑖 𝑗 , is complete to 𝐼𝑖. Note that 𝐶𝑖 = 𝐵𝑖 ∪ 𝐼𝑖. The
set of union of all clause vertices is denoted by 𝐶. Let the 5 vertices introduced (in the
previous step) for the variables ℓ𝑖1, ℓ𝑖2, ℓ𝑖3, ℓ𝑖4, ℓ𝑖5 be denoted by 𝐿𝑖 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5}.
Make the adjacency between the vertices in 𝐿𝑖 and the sets of 𝑃9s in 𝐵𝑖s in such a way
that, taking one vertex from each set 𝐵𝑖 𝑗 along with the variable vertices in 𝐿𝑖 induces a
𝑃10, where the vertices in 𝐿𝑖 correspond to an independent set of size 5 in 𝑃10. More
precisely, 𝑥𝑖1 is complete to 𝐵𝑖1 and 𝑥𝑖 𝑗 is complete to 𝐵𝑖 ( 𝑗−1) ∪𝐵𝑖 𝑗 , for 2 ≤ 𝑗 ≤ 5. Further,
make the adjacency among the set 𝐼𝑖 and 𝐿𝑖 in such a way that, if exactly one of the set
𝐿𝑖 or 𝐼𝑖 is in the switching set 𝐴, then the vertices in 𝐿𝑖 ∪ 𝐼𝑖 together induce a 𝑃10 in
𝑆(𝐺Φ, 𝐴).
For all 𝑖 ≠ 𝑗 , 𝐶𝑖 is complete to 𝐶 𝑗 .

This completes the construction of the graph 𝐺Φ (see Figure 7 for an example of the
construction).

𝐵11 𝐵12 𝐵13 𝐵14 𝐵15 𝐵21 𝐵22 𝐵23 𝐵24 𝐵25

𝐼11 𝐼12 𝐼13 𝐼14 𝐼15 𝐼21 𝐼22 𝐼23 𝐼24 𝐼25

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝐵1

𝐼1 𝐼2

𝐿1

𝐶1

𝐵2

𝐿2

𝐶2

Figure 7 An example of Construction 1 with the formula Φ = 𝐶1∧𝐶2, where 𝐶1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}
and 𝐶2 = {𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8}. Single lines connecting two rectangles indicate that each vertex in one
rectangle is adjacent to all vertices in the other rectangle. The double line connecting two rectangles
indicates that each vertex in one rectangle is adjacent to the vertices in the other rectangle in such
a way that if a switching set 𝐴 contains all the vertices of one rectangle and no vertex of the other
rectangle, then a 𝑃10 is induced by these two sets of vertices after switching.

We recall that the vertices in 𝐿𝑖 and one vertex each from 𝐵𝑖 𝑗s (1 ≤ 𝑗 ≤ 5) induce a 𝑃10.
If we have a truth assignment which satisfies Φ, then the vertices in 𝐿 corresponding to the
TRUE literals can be switched to obtain a 𝑃10-free graph. The backward direction is easy
and is proved in Lemma 19.

▶ Lemma 19. Let Φ be an instance of Monotone NAE 5-SAT. If 𝑆(𝐺Φ, 𝐴) is 𝑃10-free,
for some 𝐴 ⊆ 𝑉 (𝐺Φ), then there exists a truth assignment satisfying Φ.
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Proof. We claim that assigning TRUE to the variables corresponding to the variable vertices
in 𝐴∩ 𝐿 satisfies Φ. It is sufficient to prove that 𝐴∩ 𝐿𝑖 ≠ ∅ and 𝐿𝑖 \ 𝐴 ≠ ∅, for every 1 ≤ 𝑖 ≤ 𝑚.

For a contradiction, assume that 𝐴 ∩ 𝐿𝑖 = ∅, for some 1 ≤ 𝑖 ≤ 𝑚. Since 𝐿𝑖 and one vertex
each from 𝐵𝑖 𝑗 induces a 𝑃10, we obtain that 𝐵𝑖 𝑗 ⊆ 𝐴, for some 1 ≤ 𝑗 ≤ 5. Then 𝐼𝑖 ⊆ 𝐴

(otherwise, there is a 𝑃10 induced in 𝑆(𝐺Φ, 𝐴) by 𝐵𝑖 𝑗 and a vertex in 𝐼𝑖 not in 𝐴 - recall that
one end vertex 𝑣𝑖 𝑗 of the 𝑃9 formed by 𝐵𝑖 𝑗 is not adjacent to 𝐼𝑖). Then at least one vertex
from 𝐿𝑖 is in 𝐴, otherwise there is a 𝑃10 induced in 𝑆(𝐺Φ, 𝐴) by 𝐼𝑖 ∪ 𝐿𝑖. This gives us a
contradiction.

Next we show that 𝐿𝑖 is not a subset of 𝐴. For a contradiction, assume that 𝐿𝑖 \ 𝐴 = ∅.
Then at least one vertex 𝐼𝑖ℓ ∈ 𝐼𝑖 (for some 1 ≤ ℓ ≤ 5) is in 𝐴 - otherwise there is an 𝑃10
induced in 𝑆(𝐺Φ, 𝐴) by 𝐿𝑖 ∪ 𝐼𝑖. Then at least one vertex from each 𝐵𝑖 𝑗 (for 1 ≤ 𝑗 ≤ 5) must
be in 𝐴 - otherwise there is a 𝑃10 induced in 𝑆(𝐺Φ, 𝐴) by 𝐼𝑖ℓ and 𝐵𝑖 𝑗 , where 𝐵𝑖 𝑗 ∩ 𝐴 = ∅.
Then there is a 𝑃10 induced by 𝐿𝑖 and one vertex, which is in 𝐴, from each 𝐵𝑖 𝑗 (for 1 ≤ 𝑗 ≤ 5).
This is a contradiction. ◀

With a similar reduction from Monotone NAE 3-SAT, we prove that Switching-to-
F (𝐶7) is NP-complete and cannot be solved in subexponential-time.

6 Concluding remarks

There are many interesting questions one can ask about the characterization and computation
of lower and upper switching classes of various graph classes. Here we list a few of them.

Since recognizing U(F (𝑃10)) and recognizing U(F (𝐶7)) are NP-complete, by Proposi-
tion 6(1), we obtain that recognizing L(G) is NP-complete, where G is the class of graphs
containing an induced 𝑃10 or the class of graphs containing an induced 𝐶7. Note that these
classes are non-hereditary. For a hereditary graph class G, is it true that whenever G is
recognizable in polynomial-time, lower G switching class is also recognizable in polynomial-
time? We know by Proposition 7 that this is true whenever G is characterized by a finite set
of forbidden induced subgraphs.

Is it true that recognizing upper 𝐻-free switching class is polynomially equivalent to
recognizing the upper 𝐻′-free switching class, where 𝐻 and 𝐻′ are switching equivalent? We
know that the answer to the corresponding question for lower switching class is trivial, as
both lower 𝐻-free and lower 𝐻′-free switching classes can be recognized in polynomial-time.
In particular, can we recognize the upper 𝐻-free switching class in polynomial time when 𝐻

is 𝐶4, 𝐾4, or diamond? For each of them, we know a switching equivalent 𝐻′ such that the
upper 𝐻′-free switching class can be recognized in polynomial time.

Let G be a graph class. Assume that, for any graph 𝐺, there are only polynomial number
of ways to switch 𝐺 to a graph in G. Then every large enough graph 𝐺 can be switched to
a graph not in G. Therefore, L(G) is finite. Is it true that whenever L(G) is finite, then
U(G) can be recognized in polynomial-time?

What is the smallest integer ℓ such that the recognition of U(F (𝑃ℓ)) is NP-complete?
We know that 5 ≤ ℓ ≤ 10. Similarly, what is the smallest integer ℓ such that the recognition
of U(F (𝐶ℓ)) is NP-complete? We know that 4 ≤ ℓ ≤ 7.
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1 Introduction

Interval graphs are the intersection graphs of intervals on the real line: every vertex represents
an interval and there is an edge between two vertices if and only if their corresponding
intervals intersect. The class of interval graphs is one of the most important classes of
intersection graphs, mostly due to their numerous applications in scheduling or allocation
problems and in bioinformatics, see for examples these monographs [11, 23, 25].

Already in the late 70s, situations arising naturally in scheduling and allocation motivated
the generalization of interval graphs to multiple interval graphs, where every vertex is
associated to the union of d intervals on the real line (called a d-interval), for some natural
number d, instead of to a single interval. This allowed a more robust modeling of problems
such as multi-task scheduling or allocation of multiple associated linear resources [15, 22, 29],
and led to several interesting problems [10, 12, 17, 18, 19]. The applications of 2-interval
graphs to bioinformatics also increased the interest on this class of graphs [20, 30].

These concrete applications of multiple interval graphs, specifically 2-interval graphs,
suggested a focus on different restrictions, such as unit 2-interval graphs [2], or balanced
2-interval graphs [7]. For both interval and multiple interval graphs, we say that they are unit
if all the intervals in the representation, i.e. the set of intervals associated to the graph, have
unit length. For multiple interval graphs, we also define the subclass of balanced d-interval
graphs, where all intervals forming the same d-interval have equal length, but intervals of
different d-intervals can have different lengths. Finally, for both interval and multiple interval
graphs, we say that they are proper if there exists an interval representation where no interval
properly contains another one. The class of unit 2-interval graphs is known to be properly
contained in the class of balanced 2-interval graphs [13].

Let us remark that in the literature, d-intervals have been defined both as the union of
d disjoint intervals [2, 5, 31], as the union of d not necessarily disjoint intervals [29], and
simply as the union of d intervals, without specifying whether they are disjoint or not [9, 27].
This ambiguity is not relevant in the general case, since both definitions lead to the same
class of graphs. However, in this paper we focus on subclasses of multiple interval graphs,
namely unit and balanced, for which this equivalence is not known to be true. Therefore,
we will distinguish between the two possible definitions of d-intervals. The first definition
is denoted as disjoint d-intervals while the second is simply denoted as d-intervals (further
details are discussed in Section 2).

From an algorithmic perspective, another reason why interval graphs have been widely
studied is because many problems that are NP-hard become solvable in polynomial time when
restricted to this class of graphs. This is not the case for d-interval graphs [2, 5, 12]. The
problem of recognizing d-interval graphs is no exception: it is NP-complete for every natural
number d ⩾ 2 [31], even for unit 2-interval graphs [1] and balanced 2-interval graphs [13]. In
sharp contrast, the recognition of interval graphs (both in the unit and unrestricted case)
can be done in polynomial time [4, 16], and there exist multiple characterizations of them,
including a characterization in terms of forbidden induced subgraphs [21, 24]. In particular,
in 1969, Roberts proved that the class of proper interval graphs and the class of unit interval
graphs coincide [24], and showed that unit interval graphs are exactly K1,3-free interval
graphs (i.e., interval graphs that do not contain the star with three leaves as an induced
subgraph). To do so, he used the Scott-Suppes characterization of semiorders (see [3, 14]
for short constructive proofs of this result). This is a remarkable result as it gives a simple
characterization of unit interval graphs. It also implies that if G = (V, E) is a unit interval
graph, then there exists a semiorder S(V, P ) on the vertices of V such that (u, w) ∈ P if and
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only if (u, w) /∈ E, which justifies the original name of “indifference graphs” for unit interval
graphs (as they can represent indifference relations by joining two elements by an edge if
neither is preferred over the other one).

It is straight-forward to check that being K1,3-free is a necessary condition for being a unit
interval graph, as an interval of unit length cannot intersect three pairwise disjoint intervals of
length one. The reader can observe that this necessary condition extends naturally to multiple
interval graphs: a unit 2-interval graph cannot contain a K1,5 as an induced subgraph; and
more generally, a unit d-interval graph cannot contain a K1,2d+1 as an induced subgraph.
Thus the following natural question arises: can we generalize Roberts characterization of unit
interval graphs to multiple interval graphs? Perhaps the most straight-forward generalization
would be to characterize unit d-interval graphs as K1,2d+1-free d-interval graphs, but this
has already been proven false in [28]: there exists a graph which is 2-interval and K1,5-free,
but not unit 2-interval. But not all hope of generalizing Roberts characterization must be
lost yet! What if we add some additional constraints?

Already in 2016, Durán et al. decided to focus on d-interval graphs which are also
interval [8]. In a presentation at VII LAWCG, they claimed that if G is an interval graph,
then G is a disjoint unit d-interval graph if and only if it is K1,2d+1-free 1. In this paper,
we show that the aforementioned statement is actually false, and that, perhaps surprisingly,
Roberts characterization can only be generalized depending on the chosen definition of
d-interval graphs! (See Figure 1 for a summary of the main results).

We also study the subclasses obtained under the two definitions of d-intervals in the
balanced case, expanding the knowledge of the relationships between the different subclasses
of 2-interval graphs.

K1,5-free intervaldisjoint unit
2-interval

unit 2-interval

Figure 1 K1,5-free interval graphs are not contained in the class of disjoint unit 2-interval graphs.
The class of unit 2-interval graphs is a superclass of disjoint unit 2-interval graphs, and spans the
whole intersection of K1,5-free and interval graphs.

The structure of the paper is as follows: Section 2 briefly introduces the necessary
definitions and discusses the definition of d-interval. In Section 3, we prove that if G is an
interval graph, then it is unit d-interval if and only if it is K1,2d+1-free. We then show that
this result cannot be generalized for disjoint multiple intervals in Section 4, which implies
that the class of disjoint unit d-interval graphs is actually properly contained in the class
of unit d-interval graphs. Finally, we study the balanced case in Section 5, and show that
the definition of d-interval also matters, as the classes of disjoint balanced 2-intervals and
balanced 2-intervals coincide, but this is no longer true for d > 2. We conclude with some
open questions in Section 6. Due to space constraints, some proofs, marked with a (⋆), are
deferred to the full version of this paper.

1 Note that they refer to disjoint unit d-intervals simply as unit d-intervals, but they are explicitly defined
beforehand as the union of d disjoint intervals.
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2 Preliminaries

In the following, G = (V, E) will denote a simple undirected graph on the set of vertices V

and with edges E, and an interval will be a set of real numbers of the form [a, b] := {x ∈ R |
a ⩽ x ⩽ b}.

A graph G is an interval graph if there exists a bijection from the vertices of G to a
multiset of intervals, f : V → I, such that there exists an edge between two vertices if
and only if their corresponding intervals intersect. The multiset I is called an interval
representation of G.

For any natural number d > 0, a (disjoint) d-interval is the union of d (disjoint) intervals
on the real line.

For any natural number d > 0, a graph G is a (disjoint) d-interval graph if there exists
a bijection from the vertices of G to a multiset of (disjoint) d-intervals, f : V → I, such
that there exists an edge between two vertices if and only if their corresponding d-intervals
intersect. The multiset I of d-intervals is called a d-interval representation of G, and the
family of all intervals that compose the d-intervals in I is called the underlying family of
intervals of I.

A (disjoint) d-interval graph is unit if there exists a (disjoint) d-interval representation
where all the intervals of the underlying family have unit length, and it is proper if there
exists a representation where no interval of the underlying family is properly contained in
another one. A (disjoint) d-interval graph is balanced if there exists a (disjoint) d-interval
representation where the d intervals of a same d-interval have the same length, but intervals
of different d-intervals can differ in length.

The graph K1,t is the star with t leaves (also referred to as t-claw in the following). For
any t ⩾ 3, if the set of vertices {v0, v1, . . . , vt} induces a K1,t with center v0, we will denote
it by [v0; v1, . . . , vt]. We say that a graph is K1,t-free if it does not contain any induced
K1,t’s. Furthermore, we say that an induced t-claw K1,t is maximal if it is not contained in
an induced K1,m with m > t.

Discussion on the definition of d-intervals. As mentioned in the introduction, d-interval
graphs have been defined in the literature both as the union of d disjoint intervals and as the
union of d not necessarily disjoint intervals. This might be related to the fact that when
there are no length restrictions on the intervals, both definitions lead to the same class of
graphs (as one can simply stretch the intervals associated to a same vertex that intersect to
make them disjoint without changing any of the other intersections).

▶ Observation 1. (⋆) The classes of disjoint d-interval and d-interval graphs are equivalent.

However, if there are length restrictions, the previous observation does not hold. For unit
intervals, one cannot replace two intersecting intervals [a, b] and [c, d], with a < c < b < d,
by [a, d], as the resulting interval would not be of unit length, and stretching it to make it
unit might disrupt the rest of the intersections. Thus, in this case, it cannot be inferred that
both definitions of multiple intervals lead to the same class of graphs. In fact, our results
prove that they do not. Therefore, we study the generalization of Roberts characterization
separately for both definitions of d-intervals.

3 Unit d-interval graphs

In this section, we generalize Roberts characterization of unit interval graphs for d-interval
graphs. Recall that by d-interval graphs we refer to intersection graphs of d-intervals where
the d intervals are not necessarily disjoint, or in other words, to the most general definition.



V. Ardévol Martínez, R. Rizzi, A. Saffidine, F. Sikora, and S. Vialette 12:5

▶ Theorem 2. Let G be an interval graph. Then, for any natural number d ⩾ 2, G is a
unit d-interval graph if and only if G does not contain a copy of a K1,2d+1 as an induced
subgraph. Furthermore, given a K1,2d+1-free interval graph, a unit d-interval representation
can be constructed in O(n + m) time, where n and m are the number of vertices and edges
of the graph, respectively.

We present a polynomial-time algorithm that, given an arbitrary interval representation
I of a K1,2d+1-free graph, returns a d-interval representation I ′ of the graph where no
interval of the underlying family of I ′ intersects three or more pairwise disjoint intervals.
This ensures that the underlying family of intervals returned corresponds to an interval
representation of a K1,3-free graph, so we can use the algorithm described in [3] to turn it
into a proper representation (and then to a unit one in linear time [14]). Note that if an
interval representation of the graph is not given, we can always compute it in linear time [6].

Before presenting the algorithm formally, let us give the idea behind it. The algorithm
constructs a family I ′ of d-intervals in the following way: for every interval I ∈ I that
intersects m (and no more than m) pairwise disjoint intervals, we create a t-interval I1∪. . .∪It,
where t = ⌈ m

2 ⌉. Note that for every interval I that intersect only two disjoint intervals,
we have t = 1, and the interval I1 added to I ′ will be exactly I. We will refer to such
intervals as original intervals, as they are equal to the ones in I. After creating the t-intervals
described above, to obtain a d-interval representation of the graph, it suffices to add d − t

“dummy” intervals for each vertex that is represented by t < d intervals (where by “dummy”
intervals we mean that they do not intersect any other interval from the representation).
Each d-interval I1 ∪ . . . ∪ Id introduced will preserve the same intersections as the interval
I ∈ I, and each Ii will possess three key properties: it intersects at most two disjoint original
intervals, it contains an original interval, and each of its endpoints coincides with an endpoint
of an original interval. These properties ensure that the representation I ′ can be made unit.

Algorithm

Let the family of intervals I be an interval representation of G. For every interval I ∈ I,
let l(I) and r(I) stand for its left and right endpoint, respectively. Furthermore, define a
partial order as follows: given two intervals I, J ∈ I, let I ≺ J if and only if r(I) < l(J) (i.e.
interval J is fully to the right of interval I). Two intervals are incomparable if they intersect.
Step 1 Initialize a set of intervals C with all the intervals of I, set I ′ := ∅, and go to Step 2.
Step 2 Pick an interval I of C, remove it from the set and define its neighborhood N (I) =

{J ∈ I : J ∩ I ̸= ∅}. Let m be the maximum number of pairwise disjoint intervals
that I intersects. If m ⩽ 2, go to Step 3; if m = 3, go to Step 4; and if m > 3, go
to Step 5.

Step 3 If m ⩽ 2, add the interval I1 = I to the family I ′ and call I1 an original interval.
Then go to Step 6.

Step 4 If m = 3, define four auxiliary intervals:

A1 = arg min
J∈N (I)

{r(J)} A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)} A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Then add to I ′ the 2-interval I1 ∪ I2, with I1 = [l(I), r(A2)] and I2 = [l(A3), r(I)].
Note that A2 and A3 necessarily intersect, as otherwise we would have m ⩾ 4, so
I1 ∪ I2 is not a disjoint 2-interval. After adding it to I ′, go to Step 6.
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I

I1 I2 I3 I4

A1 A2 A3 A4 A5 A6 A7 A8

B3

Figure 2 Interval I intersects 8 disjoint intervals. In red, the 4-interval returned by the algorithm.
Note that if l(I2) were defined as l(A3) instead of l(B3), it would create a forbidden K1,3.

Step 5 If m > 3, define two families of auxiliary intervals. The first family A := {Ai | i ∈
{1, . . . , m}} forms a maximum set of pairwise disjoint intervals intersecting I, and
it will ensure that all the intersections are preserved. It is defined as follows:

A1 = arg min
J∈N (I)

{r(J)} Ai = arg min
{J∈N (I) : Ai−1≺J}

{r(J)} , ∀ i ∈ {2, . . . , m − 2}

Am = arg max
J∈N (I)

{l(J)} Am−1 = arg max
{J∈N (I) : J≺Am}

{l(J)}

The second family B := {Bi | i ∈ {1, . . . , m}} is a tool to ensure that each new
interval Ii intersects only two disjoint intervals in I ′. Note that restricting each Ii to
intersect only two disjoint intervals from the family A is not enough: for example, in
Figure 2, if I2 were defined as [l(A3), r(A4)], then it would intersect three pairwise
disjoint intervals in I ′ (as all the intervals except I are original intervals in this
example), whereas if the left endpoint of I2 were chosen as r(A2i−1), then an original
interval that was not the center of a claw in I might become the center of a new
claw in I ′. Thus, for every i ∈ {1, . . . , m}, Bi is defined as follows:

Bi = arg max
J∈N (Ai)∪Ai

{l(J)}

In other words, Bi is the interval in the closed neighborhood of Ai starting the
latest. Note that if there does not exist any interval intersecting Ai which starts
after Ai, then Bi = Ai since we are considering the closed neighborhood. Now,
add to I ′ the t-interval I1 ∪ ... ∪ It, defined as follows. We distinguish two slightly
different cases:
a. If m is even, i.e., m = 2t for some t > 1, define I1 = [l(I), r(A2)], Ii =

[l(B2i−1), r(A2i)] for every i ∈ {2, . . . , t − 1}, and It = [l(A2t−1, r(I)].
b. If m is odd, i.e., m = 2t − 1 for t > 2, define It−1 and It differently, as

It−1 = A2t−3 and It = [l(A2t−2, r(I)], and the rest of the intervals as before.
Notice that by definition, the intervals I1, ..., It are actually pairwise disjoint, so if
m > 3, the t-interval added to I ′ is a disjoint d-interval. After adding the t-interval,
go to Step 6.

Step 6 If C = ∅, return I ′, else go to Step 2.
Figure 2 illustrates the algorithm on a concrete interval which intersects eight pairwise

disjoint intervals. Before proceeding to the proof of correctness of the algorithm, we highlight
the properties of the intervals constructed that will be useful to prove the next three claims.
In the following, we say that an interval I of I has been transformed into a t-interval
I1 ∪ · · · ∪ It by the algorithm after it has been processed.
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▶ Observation 3. Let I ∈ I be an interval transformed into I1 ∪ · · · ∪ It by the algorithm,
for some 1 < t ⩽ d. Then, for every i ∈ {1, . . . , t}:
1. The left (resp., right) endpoint of every interval Ii coincides with the left (resp., right)

endpoint of an original interval.
2. There is an original interval contained in Ii.

Now, to prove the correctness of the algorithm, we need to show that for every interval
I ∈ I, the t-interval Ii ∪ ... ∪ It ∈ I ′ preserves the same intersections as I, and that no
interval in the underlying family of I ′ intersects three pairwise disjoint intervals. In the next
claim, we prove that intersections are preserved:

▷ Claim 4. Let I be an interval transformed into I1 ∪ · · · ∪ It by the algorithm, for some
1 ⩽ t ⩽ d. Then, the t-interval I1 ∪ . . . ∪ It preserves the intersections of I.

Proof. It is clear that no new intersections are created as I1 ∪ . . . ∪ It ⊆ I. To see that
no intersection is lost, suppose that there exists an interval L that intersects I in the
original representation I, and after the algorithm finishes, L is transformed into a t0-interval
L1 ∪ . . . ∪ Lt0 (for some 1 ⩽ t0 ⩽ d, where if t0 = 1, the interval remains as in the
original representation) such that the t-interval I1 ∪ . . . ∪ It does not intersect the t0-interval
L1 ∪ . . .∪Lt0 in I ′. Since l(I1) = l(I) and r(It) = r(I) (and the same holds for L), this means
that there exists an Lj (with 1 ⩽ j ⩽ t0) such that Ii ≺ Lj ≺ Ii+1 for some 1 ⩽ i ⩽ t − 1.

For 1 ⩽ t ⩽ 2, this cannot occur because I ⊆ I1 ∪ . . . ∪ It. For t > 3, since the set of
intervals Ak used to defined the t-interval associated to I forms a maximal set of pairwise
disjoint intervals intersecting I, we cannot have that Ak ≺ Lj ≺ Ak+1 for any 1 ⩽ k ⩽ 2t − 1.
Indeed, this would contradict maximality, as Lj is either an original interval or it contains
an original interval (by Observation 3). Thus, the only possible option is that there exists
an i such that A2i ≺ Lj ≺ B2i+1 (where B2i+1 is different from A2i+1). Then, since B2i+1
intersects A2i+1 and Lj ≺ B2i+1, we have that r(Lj) < r(A2i+1). But this contradicts the
choice of A2i+1, which should have been Lj or the original interval contained in Lj , as
A2i ≺ Lj . ◁

The next two claims are dedicated to proving that no interval in the underlying family of
I ′ intersects three or more pairwise disjoint intervals. We distinguish the cases when the
center of the claw is an original interval and when it is not.

▷ Claim 5. Let I ∈ I be an original interval (i.e., transformed to I1 by the algorithm).
Then, I1 intersects at most two disjoint intervals in the underlying family of I ′.

Proof. Suppose, towards a contradiction, that there exists an original interval I1 that
intersects three pairwise disjoint intervals L1, L2 and L3 in the underlying family of I ′, with
L1 ≺ L2 ≺ L3. By Observation 3, there exists an original interval L′

1 with the same right
endpoint as L1, an original interval L′

2 contained in L2, and an original interval L′
3 with

the same left endpoint as L3. Note that if any of the Li are original, then L′
i = Li. But

then, L′
1 ≺ L′

2 ≺ L′
3 are three pairwise disjoint original intervals that intersect I1, which

contradicts the fact that it is an original interval. Indeed, this implies that the interval I

intersects three pairwise disjoint intervals in I, and so the algorithm would have transformed
it into a t-interval with t strictly greater than 1. ◁

▷ Claim 6. Let I ∈ I be an interval transformed into the t-interval I1 ∪ · · · ∪ It by the
algorithm, for some 1 < t ⩽ d. For every 1 ⩽ i ⩽ t, Ii intersects at most two disjoint intervals
of the underlying family of I ′.
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Proof. We proceed by contradiction. Suppose that there exists an interval Ii, with 1 ⩽
i ⩽ t that intersects three pairwise disjoint intervals L1, L2, L3, with L1 ≺ L2 ≺ L3. By
Observation 3, there exists an original interval L′

1 with the same right endpoint as L1, an
original interval L′

2 contained in L2, and an original interval L′
3 with the same left endpoint

as L3.
Assume first that t = 2. Then, if i = 1, this contradicts the choice of the interval A2

(resp. A3 if i = 2), which should have been L′
2.

Let us now study the general case for t > 2. Suppose first that 1 < t < d and Ii is defined
as [B2i−1, A2i] with B2i−1 ̸= A2i−1. We distinguish two cases:
1. r(L1) > r(A2i−1). Then, since we are assuming that L1 and L2 are disjoint, l(L2) >

r(A2i−1). Furthermore, as L3 also intersects Ii, we need r(L2) < r(A2i). But this
contradicts the choice of A2i, which should have been L′

2.
2. r(L1) < r(A2i−1). If l(L2) > r(A2i−1), we are in the same case as before. Thus, L2 and

A2i−1 must intersect. However, we have l(L2) > l(B2i−1) (since otherwise Ii would not
be able to intersect L1 on its left extreme). This contradicts the choice of B2i−1 if L′

2
intersects A2i−1, or the choice of A2i otherwise.

On the other hand, if B2i−1 = A2i−1, then by construction, since we take the two disjoint
intervals that finish first, we cannot have three pairwise disjoint intervals intersecting Ii. This
is also the case for I1 and It (although in the latter case, we take the two disjoint intervals
starting last). Finally, for odd claws, it is also clear that It−1 intersects at most two disjoint
intervals, as it is equal to an original interval. ◁

Combining Claims 4, 5 and 6, plus the fact that we can trivially transform a t-interval
with t < d into a d-interval, we obtain that the algorithm returns a d-interval representation
of the input graph where no interval of the underlying family intersects more than two
disjoint intervals, which as explained before can be converted into a unit representation. The
last part of Theorem 2 follows because an efficient implementation of the algorithm described
above requires O(1 + deg(v)) operations for each vertex v (where deg(v) denotes the degree
of vertex v), as it suffices to iterate over the neighborhood of a given interval to transform it
into the corresponding d-interval. Finally, the obtained representation can be converted to a
unit representation in linear time, which yields the stated runtime O(n + m). This concludes
the proof of Theorem 2.

We have proven that the algorithm constructs a unit d-interval representation, but it is not
a disjoint one. Indeed, as mentioned before, in the case of maximal K1,3’s, the constructed
intervals I1 and I2 intersect each other. However, in the case of maximal K1,m’s with m > 3,
the t intervals of the t-interval created are actually pairwise disjoint. Thus, we obtain as a
direct corollary that if G is a K1,2d+1-free interval graph not containing any maximal K1,3’s,
then G is a disjoint unit d-interval graph. In fact, with a more careful analysis, we can
infer an even stronger corollary, which instead of requiring the absence of maximal 3-claws
altogether, only forbids a subset of them. We refer to these forbidden claws, which are
exactly those maximal 3-claws contained in an induced E graph, as E-claws. Recall that an
E graph (or star1,2,2) is a graph on six vertices which has as edge set a path v1, v2, v3, v4, v5
and an additional edge (v3, v6).

▶ Corollary 7. Let G be a K1,2d+1-free graph that does not contain any E-claws. Then, G is
a disjoint unit d-interval graph.
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Proof. To prove the theorem, we modify Step 4 of the previous algorithm so that it produces
a disjoint 2-interval.
Step 4’ Let I be an interval and let m = 3 be the maximum number of pairwise disjoint

intervals that it intersects. By assumption, the vertex associated to I is a center of
a maximal claw which is not an E-claw. We define

A1 = arg min
J∈N (I)

{r(J)}

A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)}

A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Note that A2 and A3 necessarily intersect (or are the same interval). Now, since
the vertex associated to I is a center of a claw that is not an E-claw, this means
that at least one of A1 or A4 does not intersect an interval which is disjoint from I.
Thus, we can modify the representation so that A1 (resp. A4) is properly contained
in I without loosing any intersections, by simply stretching them. Then, if A1 is
properly contained in I, we define I1 = A1 and I2 = [l(A3), r(I)]. On the other
hand, if A4 is properly contained in I instead, we define I1 = [l(I), r(A2)] and
I2 = A4. If both of them are properly contained in I, we can define I1 and I2 either
way.

Notice that the 2-intervals introduced in this step have the same properties as in Observation 3,
so the proof of correctness of the previous algorithm can be directly adapted for this
extension. ◀

4 Disjoint unit d-interval graphs

In this section, we prove that Theorem 2 cannot be generalized for disjoint unit d-interval
graphs. Note that by Corollary 7, if we have a graph which does not contain any E-claws,
then the generalization still holds for disjoint unit d-interval graphs, but this is not the case in
general. Indeed, suppose there is an interval I that intersects exactly three pairwise disjoint
intervals, A1, A2 and A3, and both A1 and A3 intersect each an interval disjoint from I.
Then, the algorithm presented in the previous section would return a 2-interval I1 ∪ I2, where
I1 and I2 are not disjoint. If we try to extend the algorithm in the most natural way, that
is, stretching these two intervals until they are disjoint, we would still not succeed. This is
because, since I1 and I2 cannot intersect, then either r(I1) will be to the left of the right
endpoint returned by the algorithm, or l(I2) will be to the right of the endpoint returned by
the algorithm. But then, one of I1 or I2 might not properly contain a complete interval from
the original representation, which can cause I1 or I2 – the interval which does not properly
contain a complete original interval – to be contained in an interval that intersects three
pairwise disjoint intervals (see Figure 3).

In the following, we show that there is no way to extend the algorithm to make it work
in the general case for disjoint unit d-interval graphs. In particular, we prove the following
theorem.

▶ Theorem 8. There exists a K1,5-free interval graph that is not a disjoint unit 2-interval
graph.
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Figure 3 Interval representation of a K1,5-free graph that cannot be turned into a disjoint unit
2-interval representation just by “cutting” intervals that intersect more than three pairwise disjoint
intervals. In the figure, the intervals in red are all obtained using a natural extension of the algorithm.
We can see that in this way, 32 intersects three disjoint intervals: 81, 82, 11. The reader can check
that no other way of stretching the intervals works if 81 and 82 are required to be disjoint.

To prove Theorem 8, we offer the graph G in Figure 4 as a certificate. The reader can
check that G has no induced K1,5, and an interval representation of G is provided in Figure 5.
The proof that G is not a disjoint unit 2-interval graph is the challenging part. Indeed,
checking whether a graph is disjoint unit 2-interval is a computationally expensive task,
and even with the aid of computer search, a naive ILP implementation already takes too
much time to consider an exhaustive search. Needless to say, checking manually by brute
force leads to a very long branching process. The proof presented here is based on a careful
analysis of the graph, and the technique employed (which uses the characterization of unit
2-interval graphs in [[1], Lemma 5]) may be applied to establish that other graphs are not
disjoint unit 2-interval graphs. We also verify the proof computationally, using an encoding
in answer set programming based on the semiorder characterization of unit interval graphs,
which proves to be way more efficient than an ILP encoding. Our code and experimental
setting can be found on our git repository 2. Furthermore, there exist five other K1,5-free
interval graphs on the same number of vertices, and with a very similar structure, that are
not disjoint unit 2-interval (see the full version of this paper). The proof that they are not
disjoint unit 2-interval is omitted, but it is analogous to the one presented here. These six
graphs are the only such graphs on 14 vertices, and there does not exist a graph satisfying
the conditions of Theorem 8 with fewer vertices. These assertions were verified by computer
search over all interval graphs of a given size without induced K1,5’s [32].

Theorem 8 follows directly from the next lemma.

▶ Lemma 9. (⋆) The graph G in Figure 4 is not a disjoint unit 2-interval graph.

We conclude this section showing that Theorem 8 can actually be generalized for disjoint
unit d-interval graphs for any d > 2.

▶ Corollary 10. (⋆) There exists a K1,2d+1-free interval graph that is not a disjoint unit
d-interval graph.

2 https://github.com/AbdallahS/unit-graphs

https://github.com/AbdallahS/unit-graphs
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Figure 4 One of the 6 graphs with 14 vertices (the one with the fewest edges) which is an interval
graph (see Figure 5) and K1,5-free, but not disjoint unit 2-interval.
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Figure 5 An interval representation of the graph in Figure 4.

5 Inclusions between the different subclasses of d-interval graphs

In this section, we analyze the relationships between different subclasses of multiple interval
graphs. We have already seen that 2-interval graphs and disjoint 2-interval graphs are
equivalent. Furthermore, the results from the previous two sections imply that the class of
disjoint unit 2-interval graphs is properly contained in the class of unit 2-interval graphs. In
the following, we summarize the containment relationships between unit 2-interval graphs,
disjoint unit 2-interval graphs, balanced 2-interval graphs and disjoint balanced 2-interval
graphs (see Figure 6 for a graphical illustration).

disjoint 3-interval = 3-interval

balanced 3-interval

disjoint balanced 3-interval
disjoint 2-interval = 2-interval

disjoint balanced 2-interval
= balanced 2-interval

unit 2-interval

disjoint unit 2-interval

Figure 6 Landscape of graph subclasses of 3-interval graphs. An arrow from a graph class C to a
C′ indicates that C′ ⊂ C. The relationships between the class of 2-interval graphs and the classes of
balanced 3-interval graphs and disjoint balanced 3-interval graphs are not known.

▶ Theorem 11. (⋆)
1. The classes of 2-interval and disjoint 2-interval graphs are equivalent.
2. The classes of balanced 2-interval and disjoint balanced 2-interval graphs are equivalent.
3. The class of unit 2-interval graphs is properly contained in the class of disjoint balanced

2-interval graphs.
4. The class of disjoint unit 2-interval graphs is properly contained in the class of unit

2-interval graphs.
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We finish by showing that the previous theorem cannot be completely generalized for the
subclasses of d-interval graphs, as the class of balanced d-interval graphs is not equivalent to
the class of disjoint balanced d-interval graphs for d > 2. We first construct a graph that is
balanced 3-interval but not disjoint balanced 3-interval and then show how to generalize this
construction for every d > 3.

▶ Theorem 12. The class of disjoint balanced 3-interval graphs is properly contained in the
class of balanced 3-interval graphs.

Proof. We construct a graph G which is balanced 3-interval but not disjoint balanced 3-
interval. The high-level idea of the construction is that for a particular vertex, one of its
intervals is forced to a given length, while the other two are forced to be placed somewhere
where there is not enough space for both of them, and thus they cannot be disjoint (note
that the difference with the case d = 2 is that now, if we stretch two of the intervals so that
they do not intersect, we also have to modify the length of the third interval, and as we show
here, this is not always possible). To enforce these constraints, we use the complete bipartite
graph K11,4 as a gadget and exploit the fact that any 3-interval representation of this gadget
must be continuous (i.e., the union of the intervals in its underlying family is an interval) [31,
Lemma 2] (see also [13, Fig. 3] for the idea of its representation).

We construct G as follows: we connect in a chain five K11,4’s, to which we add six vertices
v1, v2, v3, v4, v5, v6 (Figure 7 shows how to link v1, v2, v3, v4 to the chain, while vertices
v5 and v6 mimic the behavior of v3 and v4 with a different set of neighbors, namely, v5 is
connected to the corresponding vertices of the first two K11,4’s, and v6 is connected to the
corresponding vertices of the second and the third K11,4’s). More precisely, let Ci, with
i ∈ {1, . . . , 5}, be the five K11,4’s forming the chain, enumerated from left to right. Moreover,
for every Ci, let f j

i with j ∈ {1, . . . , 11} be the eleven vertices of one side of the bipartition,
and tk

i , with k ∈ {1, 2, 3, 4}, the four vertices of the other side of the bipartition. We assume
that the chain is connected such that f11

i is linked to f1
i+1. Then, v1 is connected to all the

vertices of C2 and C4, and to f11
3 and f1

5 , plus another independent vertex. Similarly, v2 is
connected to all the vertices of C2 and C4, to v1 and to f11

1 and f1
3 . On the other hand, v3 is

connected to f11
3 , t4

3, t1
4 and f j

4 for j ∈ {1, . . . , 9}; while v4 is connected to f1
5 , t4

4, t1
5 and f j

4
for j ∈ {3, . . . , 11}. Finally, v5 is connected to f11

1 , t3
1, t1

2 and f j
2 for j ∈ {1, . . . , 7}, as well

as f8
4 and f9

4 , whereas v6 is connected to f1
3 , t4

2, t1
3 and f j

2 for j ∈ {5, . . . , 11}, as well as f8
4

and f9
4 . The vertices v1 and v2 are both connected to v3, v4, v5 and v6.

Now, as any 3-interval representation of a K11,4 is continuous, any realization of G groups
the five K11,4’s in a block [31]. For j ∈ {1, 2, 3}, let Ij be the intervals associated to v1, Jj

the intervals associated to v2, and Kj the intervals associated to v3. First, it is clear that we
need three different intervals to cover the neighbors of v1 (and these three intervals must be
disjoint). Instead, the neighbors of v2 could be covered only with two intervals. However, we
will see that the two segments of the real line that need to be covered cannot have the same
length (assuming that the 3-interval associated to v1 is balanced). We will show that we
need two intersecting intervals to cover the first segment.

Suppose that only two intervals are needed to represent the adjacencies of v2, and let J

be the interval displaying the edges between C2 and v2, and J3 the interval displaying the
edges between C4 and v2. Similarly, let I1 be the interval associated to v1 used to represent
the edges with C2, let I2 the interval used to represent the edges with C4, and I3 the interval
displaying the edge with the isolated vertex. One can easily see that J3 is properly contained
in I2 (since I2 must also intersect an interval associated to f11

3 on its left and an interval
associated to f1

5 on its right), while I1 is properly contained in J (by an analogous argument).
Thus, len(J3) < len(I2) = len(I1) < len(J). In order for the representation to be balanced,
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v3 v4

v1v2
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v3 v4
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Figure 7 G is balanced 3-interval but not disjoint balanced 3-interval. K11,4 graphs are drawn
abstractly and are chained. A thick edge stopping at the border of the ellipse means that the vertex
is connected to every vertex in the corresponding part of the K11,4. Vertices v5 and v6 are omitted
for readability purposes.

the segment of the real line covered by J needs to be covered by two different intervals, say
J1 and J2. To prove that G is balanced 3-interval but not disjoint balanced 3-interval, we
need to bound len(J) − len(J3). In particular, we need len(J) − len(J3) < len(J3). Vertices
v3 and v4 will allow us to find constants a and a′ to bound len(I2) − len(J3) ⩽ a + a′, while
vertices v5 and v6 will serve to find constants b and b′ to bound len(J) − len(I1) ⩽ b + b′.
By showing that we can force the constants such that a + a′ + b + b′ < len(J3), we have the
result. This will follow since we will have eight pairwise disjoint intervals properly contained
in J3: two of length a, two of length a′, two of length b and two of length b′.

Indeed, let a and a′ be the lengths of the intervals associated to v3 and to v4, respectively.
The next claim implies that there are two disjoint intervals associated to v3 properly contained
in J3, and another disjoint interval that properly contains the segment between l(I2) and
l(J3), and so l(J3) − l(I2) < a.

▷ Claim 13. (⋆) Let G be a graph formed by the union of a K11,4 and a vertex v which is
adjacent to nine vertices in S11, where S11 denotes the side of the bipartition with eleven
vertices. Then, vertex v must be represented by three pairwise disjoint intervals, two of
which are each properly contained in an interval representing a vertex of S11.

Similarly, the segment between r(I2) and r(J3) is also contained in an interval associated
to v4, which has the same properties as v3 and does not intersect any interval associated to
v3. This proves that there are two intervals of length a and two intervals of length a′ (all
pairwise disjoint) contained in J3. Doing the same to bound l(I1) − l(J) and r(J) − l(I1), we
get the result. Thus, to represent v2, we need two intervals associated to v2 to intersect. If
we do not allow intersection, the length of these two intervals will be smaller than the length
of the third interval associated to v2, contradicting the fact that they are balanced. ◀

▶ Corollary 14. (⋆)The class of disjoint balanced d-interval graphs is properly contained in
the class of balanced d-interval graphs for every natural number d ⩾ 3.
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6 Concluding remarks

We have shown that the natural generalization of Roberts characterization for unit interval
graphs remains valid for the most general definition of d-interval graphs that are interval
graphs. However, quite surprisingly, if we require the d intervals to be disjoint, then the
result does not hold anymore. It remains as an open question whether disjoint d-interval
graphs that are also interval can be characterized in some other way, or simply if they can be
recognized in polynomial time. Finally, we have obtained a relatively complete landscape of
the containment relationships between different subclasses of 2-interval graphs, that cannot
be fully generalized for d > 2. In particular, for d > 2, it is still unknown whether the class
of unit d-interval graphs is contained in the class of disjoint balanced d-interval graphs.
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Abstract
We present a translation from linear temporal logic with past to deterministic Rabin automata. The
translation is direct in the sense that it does not rely on intermediate non-deterministic automata,
and asymptotically optimal, resulting in Rabin automata of doubly exponential size. It is based
on two main notions. One is that it is possible to encode the history contained in the prefix of a
word, as relevant for the formula under consideration, by performing simple rewrites of the formula
itself. As a consequence, a formula involving past operators can (through such rewrites, which
involve alternating between weak and strong versions of past operators in the formula’s syntax tree)
be correctly evaluated at an arbitrary point in the future without requiring backtracking through
the word. The other is that this allows us to generalize to linear temporal logic with past the
result that the language of a pure-future formula can be decomposed into a Boolean combination of
simpler languages, for which deterministic automata with simple acceptance conditions are easily
constructed.
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1 Introduction

Finite-state automata over infinite words, commonly referred to as ω-automata, have been
studied as models of computation since their introduction in the 1960s. Their introduction
was followed by extensive investigations into their expressive power, closure properties,
and the decidability and complexity of related decision problems, such as non-emptiness
and language containment. In particular, it was soon established that determinization
constructions of such automata are considerably more complex than they are for their finite
word counterparts, for which a simple subset construction is sufficient.

In the 1970s, Pnueli [15] proposed linear temporal logic (LTL) as a specification language
for the analysis and verification of programs, based on the idea that a program can be
viewed in the context of a stream of interactions between it and its environment. It has since
become ubiquitous in both academia and the industry due to the perceived balance of its
expressive power and the computational complexity of its related decision procedures. The
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intimate semantic connection between LTL and ω-automata further motivated research into
the properties of both, also from a practical point of view. In addition to being of theoretical
interest, the fact that multiple automata-based applications of LTL as a specification language
– such as reactive synthesis and probabilistic model checking – require deterministic automata,
has drawn additional attention to the study of efficient translation procedures from LTL to
deterministic ω-automata.

In the classic approach to determinization, the given LTL formula is first translated
to a non-deterministic Büchi automaton. This automaton is subsequently determinized,
for example using Safra’s procedure [16], or the more modern Safra/Piterman variant [13].
Such constructions are both conceptually complex and difficult to implement. Moreover,
information about the structure of the given formula is lost in the initial translation to Büchi
automata; in particular, because of the generality of such determinization procedures, they
cannot take advantage of the fact that LTL is less expressive than ω-automata.

In 2020, Esparza et al. [5] presented a novel translation from LTL to various automata,
that is asymptotically optimal in both the deterministic and non-deterministic cases. The
translation is direct in the sense that it avoids the intermediate steps of the classic approach,
which involve employing a variety of separate translation procedures. In particular, for
deterministic automata, it forgoes Safra-based constructions. Instead, the language of the
formula under consideration is decomposed into a Boolean combination of simpler languages,
for which deterministic automata with simple acceptance conditions can easily be constructed
using what the authors have dubbed the “after-function”; that such a decomposition exists
is a fundamental result named the “Master Theorem”. These simpler automata are then
combined into the desired final automaton using basic product or union operations according
to the structure of the decomposition.

In this paper, we consider past linear temporal logic (pLTL); the extension of LTL that
includes the past operators “Yesterday” and “Since”, analogous to the standard operators
“Next” and “Until”, respectively. We adapt the Master Theorem and generalize the derived
LTL-to-deterministic-Rabin-automata translation to pLTL, while maintaining its optimal
asymptotic complexity. The merits of LTL extended with past operators were argued by
Lichtenstein et al. [9], who also showed that their addition does not result in a more expressive
logic with respect to initial equivalence of formulae. At the same time, the complexity of
satisfiability/validity- and model checking remains PSPACE-complete for pLTL [17]. When
it comes to determinization, as Esparza’s approach [5] applies only to (future) LTL, the only
option is the two-step approach: translate pLTL to nondeterministic Büchi automata [14]
and convert to deterministic parity/Rabin automata [16, 13]. Our generalization to pLTL
is of both theoretical and practical interest, for two main reasons. First, certain properties
are more naturally and elegantly expressed with the help of past operators. Secondly, there
exist formulae in pLTL such that all (initially) equivalent LTL formulae are exponentially
larger [11]. Both of these properties can be exemplified by considering the natural language
specification “At any point in time, p should occur if and only if q and r have occurred at
least once in the past”. Expressing this in LTL requires explicitly describing the possible
desired orders of occurrences of p, q, and r:(

(¬p ∧ ¬q) W (r ∧ ((¬p ∧ ¬q) W (p ∧ q))) ∨ (¬p ∧ ¬r) W (q ∧ ((¬p ∧ ¬r) W (p ∧ r)))
)

∧ G(p ⇒ XGp).

The same specification is very intuitively and succinctly expressed in pLTL by the formula
G(p ⇔ Oq ∧ Or).
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The main contributions of this paper are an adaptation of the Master Theorem for pLTL
and a utilization of this in the form of an asymptotically optimal direct translation from
pLTL to deterministic Rabin automata. The paper is structured in the following manner:
In Section 2, we define the syntax and semantics of linear temporal logic with past, infinite
words and ω-automata, and the notion of propositional equivalence. As the automata we
aim to construct are one-way, we need a way to encode information about the input history
directly into the formula being translated; the machinery required to accomplish this is
introduced in Section 3. The foundation of the translation from pLTL to Rabin automata
is the after-function of Section 4. The subsequent Sections 5 and 6 are adaptations of the
corresponding sections in Esparza et al. [5]. The decomposition of the language of the formula
to be translated into a Boolean combination of simpler languages requires considering the
limit-behavior of the formula. This notion is made precise in Section 5, which finishes with a
presentation of the Master Theorem for pLTL. Section 6 describes how to create deterministic
automata from the simpler languages of the decomposition, and how to combine them into a
deterministic Rabin automaton. Finally, we conclude with a brief discussion in Section 7.

2 Preliminaries

2.1 Infinite Words and ω-automata
An infinite word w over a non-empty finite alphabet Σ is an infinite sequence σ0, σ1, . . .

of letters from Σ. Given an infinite word w, we denote the finite infix σt, σt+1, . . . , σt+s−1
of w by wts. If t = s, then wts is defined as representing the empty word ϵ. Note that no
ambiguity will arise as we use parentheses whenever required; for example, w(st)(en) rather
than wsten We denote the infinite suffix σt, σt+1, . . . of w by wt. We will also consider finite
words, using the same infix- and suffix notation.

An ω-automaton over an alphabet Σ is a quadruple (Q,Q0, δ, α), where Q is a finite set
of states, Q0 ⊆ Q a non-empty set of initial states, δ ∈ Q× Σ → 2Q a (partial) transition
function, and α a set constituting its acceptance condition. In the case where |Q0| = 1
and |δ(q, σ)| ≤ 1 for all q ∈ Q and all σ ∈ Σ, the automaton is called deterministic. For
deterministic automata we write δ : Q× Σ → Q. Given an ω-automaton A = (Q,Q0, δ, α)
and an infinite word w = σ0, σ1, . . . , both over the same alphabet, a run of A on w is a
sequence of states r = r0, r1, . . . of Q such that r0 ∈ Q0 and ri+1 ∈ δ(ri, σi) for all i ≥ 0.
Given such a run r, we write Inf (r) to denote the set of states appearing infinitely often in r.

In this paper, we consider three particular classes of ω-automata, which differ only by
their acceptance condition α. Büchi- and co-Büchi automata are ω-automata with α as a
set Q′ ⊆ Q. A Büchi automaton accepts the infinite word w iff there exists a run r on w

such that Inf (r) ∩Q′ ̸= ∅, while a co-Büchi automaton accepts w iff there exists a run r on
w such that Inf (r) ∩Q′ = ∅. We will also consider Rabin automata. A Rabin automaton
has a set of subsets R ⊆ 2Q × 2Q as acceptance condition, and accepts w iff there exists a
run r on w and a pair (A,B) ∈ R such that Inf (r) ∩A = ∅ and Inf (r) ∩B ̸= ∅. We write
DBA, DCA, and DRA to refer to deterministic Büchi-, co-Büchi-, and Rabin automata,
respectively.

We use a specialized form of cascade composition of two automata: bed automaton and
runner automaton. Bed automata are automata without an acceptance condition. Runner
automata read input letters and (next) states of bed automata: given a bed automaton A with
S as set of states, a runner automaton is B = (S,Q,Q0, δ, α), where Q, Q0, and α are as before
and δ : Q× S × Σ → 2Q is the transition function. The composition A⋉B is the automaton
(Q× S,Q0 × S0, δ, α), where δ(q, s, σ) = {(q′, s′) | q′ ∈ δB(q, s′, σ), s′ ∈ δA(s, σ)} and either
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α = α×S if B is a Büchi- or co-Büchi automaton, or α =
⋃

{(A×S) × (B×S) | (A,B) ∈ α}
if B is a Rabin automaton. Note that A⋉B is an ω-automaton with B’s acceptance, e.g., if
A is deterministic and B is a deterministic co-Büchi runner automaton, then A⋉B is a DCA.

2.2 Linear Temporal Logic with Past
Given a non-empty finite set of propositional variables AP , the well-formed formulae φ of
pLTL are generated by the following grammar:

φ ::= ⊤ | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | Yφ | φSφ,

where p ∈ AP . Given a formula φ, we write Var(φ) to denote the set of all atomic propositions
appearing in φ. Given a formula φ, natural number t, and infinite word w = σ0, σ1, . . . over
2Var(φ), we write (w, t) |= φ to denote that w satisfies φ at index t. The meaning of this is
made precise by the following inductive definition:

(w, t) |= ⊤ (w, t) ̸|= ⊥
(w, t) |= p iff p ∈ σt (w, t) |= ¬φ iff (w, t) ̸|= φ

(w, t) |= φ ∧ ψ iff (w, t) |= φ and (w, t) |= ψ (w, t) |= φ ∨ ψ iff (w, t) |= φ or (w, t) |= ψ

(w, t) |= Xφ iff (w, t+ 1) |= φ (w, t) |= Yφ iff t > 0 and (w, t− 1) |= φ

(w, t) |= φUψ iff ∃r ≥ t . ((w, r) |= ψ and ∀s ∈ [t, r) . (w, s) |= φ)
(w, t) |= φSψ iff ∃r ≤ t . ((w, r) |= ψ and ∀s ∈ (r, t] . (w, s) |= φ) .

When t = 0 we omit the index and simply write w |= φ. Observe that Y is almost exactly
the past analog of X, with a similar relationship between S and U. They differ in that the
past is bounded; in particular, a formula Yφ is never satisfied at t = 0. The language of
a formula φ, denoted L(φ), is the set of all infinite words w such that w |= φ. Two pLTL
formulae φ and ψ are semantically equivalent, denoted φ ≡ ψ, iff L(φ) = L(ψ).

In addition to the above, we will also consider the following derived operators:

Fφ := ⊤ Uφ Oφ := ⊤ Sφ Gφ := ¬F¬φ
Hφ := ¬O¬φ φWψ := φUψ ∨ Gφ φ S̃ψ := φSψ ∨ Hφ

φMψ := ψU (φ ∧ ψ) φBψ := ψ S (φ ∧ ψ) φRψ := ψW (φ ∧ ψ)
φ B̃ψ := ψ S̃ (φ ∧ ψ) Ỹφ := Yφ ∨ ¬Y⊤.

The past operators above are defined in analogy with their standard future counterparts. An
important exception is the weak yesterday operator Ỹ, which is similar to Y. However, a
formula Ỹφ is always satisfied at t = 0.

A pLTL formula that is neither atomic nor whose syntax tree is rooted with a Boolean
operator is called a temporal formula, and a pLTL formula whose syntax tree is rooted with
an element of {Y, Ỹ,S, S̃,B, B̃} a past formula. Finally, a pLTL formula that is a proposition
or the negation thereof is propositional. We write sf (φ) to denote the set of propositional
and temporal subformulae of φ, and psf (φ) the set of past subformulae of φ. The size of a
pLTL formula φ, denoted |φ|, is defined as the number of nodes of its syntax tree that are
either temporal or propositional.

A pLTL formula where negations only appear before atomic propositions is in negation
normal form. Observe that with the derived operators above, an arbitrary pLTL formula
can be rewritten in negation normal form with a linear increase in size. For the remainder of
the paper, when we write “formula” we implicitly refer to pLTL formulae in negation normal
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form, with no occurrences of F,G,O or H. Subformulae rooted with either of these four
operators can be replaced by equivalent formulae of the same size: every subformula of the
form Fψ can be replaced with ⊤ Uψ and every subformula of the form Gψ with ψW ⊥,
and analogously for Oψ and Hψ. While these four derived operators are not part of the
syntax under consideration – for the purpose of keeping the presentation more concise – we
will occasionally use them as convenient shorthand. When we write “word” we implicitly
refer to infinite words, unless otherwise stated.

We conclude this section by defining the notion of propositional equivalence, which is
a stronger notion of equivalence than that given by the semantics of pLTL. It is relatively
simple to determine whether two formulae are propositionally equivalent, which makes the
notion useful in defining the state spaces of automata as equivalence classes of formulae. We
also state a lemma that allows us to lift functions defined on formulae to the propositional
equivalence classes they belong to. Both are due to Esparza et al. [5].

▶ Definition 1 (Propositional Semantics of pLTL). Let I be a set of formulae and φ a formula.
The propositional satisfaction relation I |=p φ is inductively defined as

I |=p ⊤ I |=p ψ ∧ ξ iff I |=p ψ and I |=p ξ

I ̸|=p ⊥ I |=p ψ ∨ ξ iff I |=p ψ or I |=p ξ,

with I |=p φ iff φ ∈ I for all other cases. Two formulae φ and ψ are propositionally
equivalent, denoted φ ∼ ψ, if I |=p φ ⇔ I |=p ψ for all sets of formulae I. The (propositional)
equivalence class of a formula φ is denoted [φ]∼. The (propositional) quotient set of a set of
formulae Ψ is denoted Ψ/∼.

▶ Lemma 2. Let f be a function on formulae such that f(⊤) = ⊤, f(⊥) = ⊥, and for all
formulae φ and ψ, f(φ ∧ ψ) = f(φ) ∧ f(ψ) and f(φ ∨ ψ) = f(φ) ∨ f(ψ). Then, for all pairs
of formulae φ and ψ, if φ ∼ ψ then f(φ) ∼ f(ψ).

3 Encoding the Past

Informally, given a formula φ and word w, our aim is to define a function that consumes a
given finite prefix of w, of arbitrary length t, and produces a new formula φ′, such that the
suffix wt satisfies φ′ iff w satisfies φ. This function will serve as the foundation for defining
the state spaces and transition relations of the automata that we are to construct. For
standard LTL, defining such a function is straightforward using the local semantics of LTL.
With the introduction of past operators the situation becomes more complicated. As a prefix
of w is consumed we lose the information about the past therein, and must instead encode
this information in the rewritten formula. The key insight is that this can be accomplished
by rewriting strong past operators of φ – the operators Y, S , and B – into their weak
counterparts Ỹ, S̃ , and B̃ , respectively, and vice versa, based on the consumed input. This
section makes this idea precise.

▶ Definition 3 (Weakening and strengthening formulae). The weakening φW and strengthening
φS of a formula φ is defined by case distinction on φ as

(Yψ)W := Ỹψ (ψ S ξ)W := ψ S̃ ξ (ψB ξ)W := ψ B̃ ξ

(Ỹψ)S := Yψ (ψ S̃ ξ)S := ψ S ξ (ψ B̃ ξ)S := ψB ξ.

For all other cases we have φW := φ and φS := φ.
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▶ Definition 4 (Rewriting past operators under sets). Given a formula φ and set of past
formulae C, we write φ⟨C⟩ to denote the result of weakening or strengthening the past
operators in the syntax tree of φ according to C while otherwise maintaining its structure, as
per the following inductive definition:

a⟨C⟩ := a (a atomic)

(opψ)⟨C⟩ :=
{

(opψ⟨C⟩)W (opψ ∈ C)
(opψ⟨C⟩)S (otherwise) (op unary)

(ψ op ξ)⟨C⟩ :=
{

(ψ⟨C⟩ op ξ⟨C⟩)W (ψ op ξ ∈ C)
(ψ⟨C⟩ op ξ⟨C⟩)S (otherwise). (op binary).

We overload this definition to sets: given a set of formulae S, we define S⟨C⟩ := {s⟨C⟩ |s ∈ S}.

▶ Example 5. Consider the formula φ = Y(p S̃ q) and set C = {φ}. We then have
φ⟨C⟩ = Ỹ(pS q). For the same formula φ and set C = {p S̃ q), we instead have φ⟨C⟩ = φ.

▶ Definition 6 (Weakening conditions). Given a past formula φ, we define the weakening
condition function wc(φ):

wc(Yψ) := ψ wc(ψ S ξ) := ξ wc(ψB ξ) := ψ ∧ ξ

wc(Ỹψ) := ψ wc(ψ S̃ ξ) := ψ ∨ ξ wc(ψ B̃ ξ) := ξ.

The weakening condition for a past formula serves as a requirement that must hold immediately
in order to justify weakening the formula for the next time step. More precisely, if w |= wc(φ)
then it is enough to check that w1 |= φW to conclude that (w, 1) |= φ.

▶ Example 7. Let φ = X(pS q) and w be a word such that w02 = {q}{p}. By establishing
that w |= wc(pS q) = q, we can “forget” about the initial letter {q}; it is enough to check
that w1 |= p S̃ q to conclude that (w, 1) |= pS q, and hence that w |= φ.

This suggests that there exists a set of past subformulae of φ that precisely captures the
information contained in the initial letter of w required to evaluate all past subformulae of φ
at every point in time. This is the main result of this section, which we now summarize.

▶ Definition 8 (Sets of entailed subformulae). Let φ be a formula, w a word, and t ∈ N. The
set of past subformulae of φ entailed by w at t is inductively defined as

Cwφ,0 := {ψ ∈ psf (φ) | ψ = ψW} Cwφ,t := {ψ ∈ psf (φ⟨Cwφ,t−1⟩) | wt |= wc(ψ)} (t > 0).

When the word w above is clear from the context, we simply write Cφ,t. Given t ∈ N we denote
the sequence Cφ,0, . . . , Cφ,t of length t+ 1 by C⃗φ,t. Given a sequence C⃗ = C0, C1, . . . , Ct of
sets of past formulae, there exists a set C ⊆ psf (φ) that has the same effect in a rewrite as
the sequential application of rewrites of C⃗, i.e., such that φ⟨C⟩ = φ⟨C0⟩⟨C1⟩ . . . ⟨Ct⟩. This is
the set {ψ ∈ psf (φ) | ψ⟨C0⟩⟨C1⟩ . . . ⟨Ct⟩ = (ψ⟨C0⟩⟨C1⟩ . . . ⟨Ct⟩)W}, which we denote by ◦ C⃗.
In particular, there exists a set that captures the sequence of sets of entailed subformulae,
denoted ◦ C⃗φ,t.

▶ Lemma 9. Given a formula φ, word w, and t ∈ N, we have (w, t) |= φ iff wt |= φ⟨◦ C⃗φ,t⟩.

With these definitions in place, we are ready to define the after-function for pLTL.
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4 The after-function for pLTL

The after-function is the foundation for defining the states and transition relations of all
automata used in our pLTL-to-DRA translation. We begin by defining the local after-function:

▶ Definition 10 (The local after-function). Given a formula φ, a letter σ ∈ 2Var(φ), and a
set of past formulae C, we inductively define the local after-function afℓ mutually with the
local past update-function puℓ as follows:

afℓ(⊤, σ, C) := ⊤
afℓ(⊥, σ, C) := ⊥
afℓ(p, σ, C) := if (p ∈ σ) then ⊤ else ⊥

afℓ(¬p, σ, C) := if (p ∈ σ) then ⊥ else ⊤
afℓ(Xψ, σ,C) := puℓ(ψ, σ, C)
afℓ(Yψ, σ,C) := ⊥
afℓ(Ỹψ, σ,C) := ⊤

afℓ(ψ op ξ, σ, C) := afℓ(ψ, σ, C) op afℓ(ξ, σ, C) (op ∈ {∧,∨})
afℓ(ψ op ξ, σ, C) := afℓ(ξ, σ, C) ∨ afℓ(ψ, σ, C) ∧ puℓ(ψ op ξ, σ, C) (op ∈ {U,W})
afℓ(ψ op ξ, σ, C) := afℓ(ξ, σ, C) ∧ (afℓ(ψ, σ,C) ∨ puℓ(ψ op ξ, σ, C)) (op ∈ {R,M})
afℓ(ψ op ξ, σ, C) := afℓ(wc(ψ op ξ), σ, C)) (op ∈ {S, S̃ ,B, B̃}),

where

puℓ(φ, σ, C) := φ⟨C⟩ ∧
∧

ψ∈psf (φ)∩C

afℓ(wc(ψ), σ, C).

Intuitively, in the context of reading the initial letter σ of the word w, the local after-function
decomposes φ into parts that can be fully evaluated using σ and immediately be replaced
with ⊤ or ⊥, and parts that can only be partially evaluated using σ. The resulting formula is
then left to be further evaluated in the future; in the automaton, it corresponds to the state
reached upon reading σ from the state corresponding to φ. Crucially, the past subformulae
of the partially evaluated part are updated by puℓ, using the information in C. Here, C is to
be thought of as a guess of the past subformulae of φ whose weakening conditions hold upon
reading σ. Finally, the weakening conditions that must hold to justify the guess are added
conjunctively. Observe that, as these weakening conditions may contain subformulae referring
to the future, it may not be possible to fully evaluate them immediately; this motivates the
recursive application of afℓ in puℓ.

▶ Definition 11 (The extended local after-function). Given a (possibly empty) finite word w
of length n and sequence of sets of past formulae C⃗ of length n+ 1, we extend afℓ to w and
C⃗ as follows:

afℓ(φ, ϵ, C⃗01) := φ (n = 0)

afℓ(φ,w0n, C⃗0(n+1)) := afℓ
(
φn−1, w(n−1)n, C⃗n(n+1)

)
(n > 0),

where φn = afℓ
(
φ,w0n, C⃗0(n+1)

)
.
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Observe that the initial set of C⃗ in the above definition is discarded; this is to match the
sequence of Definition 8. For formulae where no future operators are nested inside past
operators, the set of entailed subformulae is completely determined by the prefix w0n. This
is not the case in general, however, and so the (global) after-function is defined to consider
all possible subsets of past subformulae of φ as a disjunction.

▶ Definition 12 (The after-function). Let φ be a formula and σ a letter. The after-function
af is defined as:

af (φ, σ) :=
∨

C∈2psf (φ)

afℓ(φ, σ, C).

The extension of af to finite words is done in the natural way: given a formula φ and word
w of length n, we define

af (φ, ϵ) := φ (n = 0)
af (φ,w0n) := af (af (φ,w0(n−1)), w(n−1)n)) (n > 0).

▶ Example 13. Let φ = X(pS Xq). Observe that φ ≡ X(p ∧ q ∨ Xq). Upon reading a letter
σ we can guess that the “since” started holding at the current point, corresponding to the set
C = {pS Xq} and formula p S̃ Xq ∧ q. Alternatively, we may guess that the “since” did not
start holding upon reading σ, corresponding to the set C = ∅ and formula pS Xq. Hence
af (φ, σ) = p S̃ Xq ∧ q ∨ pS Xq. This is equivalent (at t = 0) to p ∧ q ∨ Xq, which is what
must be satisfied by w1, as desired.

The correctness of af is established by the following theorem:

▶ Theorem 14. For every formula φ, word w, and t ∈ N we have w |= φ iff wt |= af (φ,w0t).

5 Stability and the Master Theorem

We consider two fragments of pLTL: µ-pLTL, the set of formulae whose future operators are
members of {X,U,M}, and ν-pLTL, the set of formulae whose future operators are members
of {X,W,R}. Given a formula φ, we define the set µ(φ) of subformulae of φ whose syntax
trees are rooted with U or M. Similarly, we define the set ν(φ) of subformulae of φ whose
syntax trees are rooted with W or R.

The Master Theorem for pLTL establishes that the language of a pLTL formula can be
decomposed into a Boolean combination of simple languages. It is motivated by two ideas:

i) Assume that φ is a formula and w is a word such that all subformulae in µ(φ) that
are eventually satisfied by w are infinitely often satisfied by w, and all subformulae in
ν(φ) that are almost always satisfied by w never fail to be satisfied by w. In this case,
we say that w is a stable word of φ, as will be properly defined shortly. Under these
circumstances, a subformula of φ of the form ψU ξ is satisfied by w iff both ψW ξ and
GF(ψU ξ) are. Dually, a subformula of φ of the form ψW ξ is satisfied by w iff either
ψU ξ or FG(ψW ξ) are. Hence, we can partition all words over Var(φ) into partitions
of the form PM,N , where w ∈ PM,N iff M is the set of µ-pLTL-subformulae of φ satisfied
infinitely often by w, and N the set ν-pLTL-subformulae of φ that are almost always
satisfied by w. Given two such sets M and N , the above implies that φ can be rewritten
into a formula that belongs to either the fragment µ-pLTL or ν-pLTL, as desired.

ii) Given a formula φ and word w, there exists a point in the future from which the above
holds. Indeed, if we look far ahead into the future, all subformulae of φ that are satisfied
by w only finitely often will have been satisfied for the last time. In particular, this is
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true for the µ-pLTL-subformulae of φ. Similarly, there exists a point in the future at
which all subformulae of φ that are almost always satisfied by w will have failed to be
satisfied by w for the last time. In particular, this is true for the ν-pLTL-subformulae
of φ.

These two notions suggest that, given a formula φ and word w ∈ PM,N , it is possible to
transform φ using the after-function until w becomes stable, and then rewrite it according to
either M or N . Since these sets are unknown, we need to consider all possible combinations of
such subsets, which ultimately manifests as a number of Rabin pairs exponential in the size of
the formula. For more details and further examples we refer the reader to Section 5 of Esparza
et al. [5]. The exposition of this section follows the similar exposition therein. However, the
Master Theorem and the lemmata that imply it require considerable “pastification”.

We now make precise the idea expressed in ii). Given a formula φ, word w, and t ∈ N,
we define the set of subformulae in µ(φ) that are satisfied by w at least once at t and the set
of subformulae in µ(φ) that are satisfied by w infinitely often at t. Similarly, we define the
set of subformulae in ν(φ) that are always satisfied by w at t and the set of subformulae in
ν(φ) that are almost always satisfied by w at t:

Fφ
w,t := {ψ ∈ µ(φ) | (w, t) |= Fψ} GFφ

w,t := {ψ ∈ µ(φ) | (w, t) |= GFψ}
Gφw,t := {ψ ∈ ν(φ) | (w, t) |= Gψ} FGφw,t := {ψ ∈ ν(φ) | (w, t) |= FGψ}.

As mentioned, we are in particular interested in the point at which the two sets in each row
coincide. We express this as the word being stable at that point.

▶ Definition 15 (Stable words). A word w is µ-stable (ν-stable) with respect to a formula φ
at index t if Fφ

w,t = GFφ
w,t (Gφw,t = FGφw,t). If w is both µ-stable and ν-stable with respect to

φ at index t, then it is stable with respect to φ at index t.

▶ Lemma 16. Let φ be a formula and w a word. Then there exists an index r ∈ N such that
w is stable with respect to φ at all indices t ≥ r.

The following two definitions specify how to rewrite a formula according to sets M and
N , as indicated in i):

▶ Definition 17. Let φ be a formula and M a set of µ-pLTL-formulae. The formula φ[M ]ν
is inductively defined as

a[M ]ν := a (a atomic)
(opψ)[M ]ν := op (ψ[M ]ν) (op unary)

(ψ op ξ)[M ]ν := (ψ[M ]ν) op (ξ[M ]ν) (op ∈ {W,R,S, S̃,B, B̃})

(ψU ξ)[M ]ν :=
{

(ψ[M ]ν) W (ξ[M ]ν) (ψU ξ ∈ M)
⊥ (otherwise)

(ψM ξ)[M ]ν :=
{

(ψ[M ]ν) R (ξ[M ]ν) (ψM ξ ∈ M)
⊥ (otherwise),

▶ Definition 18. Let φ be a formula and N a set of ν-pLTL-formulae. The formula φ[N ]µ
is inductively defined as

(ψW ξ)[N ]µ :=
{

⊤ (ψW ξ ∈ N)
(ψ[N ]µ) U (ξ[N ]µ) (otherwise)

(ψR ξ)[N ]µ :=
{

⊤ (ψR ξ ∈ N)
(ψ[N ]µ) M (ξ[N ]µ) (otherwise).

The other cases are defined by recursive descent similarly to Definition 17.
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Notice that once a formula has been rewritten by M , it becomes a ν-formula. Dually,
once a formula has been rewritten by N , it becomes a µ-formula. In terms of the hierarchy
of Manna and Pnueli [10], these are safety and guarantee formulae, respectively. It is
relatively simple to construct deterministic automata for such formulae as they do not require
complicated acceptance conditions.

▶ Theorem 19 (The Master Theorem for pLTL). Let φ be a formula and w a word stable
with respect to φ at index r. Then w |= φ iff there exist M ⊆ µ(φ) and N ⊆ ν(φ) such that
1) wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,r⟩]ν .
2) ∀ψ ∈ M .∀s .∃t ≥ s . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ).
3) ∀ψ ∈ N .∃t ≥ 0 . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν).

The statements of the Master Theorem in the only if-direction can be significantly
strengthened. The existential quantification over t in premise 2 can be made universal. The
statement wt |= . . . in premise 3 holds for all t′ ≥ r. Given the semantics of F and G, this is
not a surprise. However, the ability to do the rewrites at every given moment is technically
involved due to the incorporation of the past. In the next section we show how to use the
Master Theorem in the construction of a DRA.

6 From pLTL to DRA

We are now ready, based on the Master Theorem, to construct a DRA for the language of a
formula φ. We decompose the language of φ into a Boolean combination of languages, each
of which is recognized by a deterministic automaton with the relatively simple acceptance
condition of Büchi or co-Büchi. For every possible pair of sets M and N of µ- and ν-
subformulae we try to establish the premises of the Master Theorem. Premise 1 can be
checked by trying to identify a stability point r from which the safety automaton for
afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,t⟩]ν continues forever. Whenever this safety check fails, simply try
again. Overall, this corresponds to a co-Büchi condition and a DCA. Premise 2 can be
checked for every ψ ∈ M by identifying infinitely many points from which the guarantee
automaton for F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ) finishes its check. Overall, this corresponds to a
Büchi condition and a DBA. Premise 3 is dual to premise 2 and leads to a DCA. The three
together are combined to a DRA with one pair. Overall, we get a DRA with exponentially
many Rabin pairs; one for each choice of M and N . We will as shorthand make use of the
operators F and G in the construction of these automata, as described in Section 2.2.

The major difficulty of incorporating the past into this part, is that the rewriting using the
set M and N needs to be done with the past subformulae correctly weakened. To facilitate
this, we begin by defining an auxiliary automaton in Section 6.1 that serves to track the
weakening conditions that must hold in order to justify rewrites by ·⟨·⟩.

The state spaces of the automata we construct are defined in terms of the following notions.
Given a formula φ we denote by B(φ) the set of formulae ψ satisfying sf (ψ) ⊆ sf (φ)∪{⊤,⊥}.
Similarly, consider a formula that is a disjunction of formulae with the property that for each
such disjunct ψ there exists a C ∈ 2psf (φ) such that ψ ∈ B(φ⟨C⟩). We denote by B∨(φ) the
set of all such formulae. A key observation is that the sizes of the quotient sets B(φ)/∼ and
B∨(φ)/∼ are doubly exponential in the size of φ.

For the remainder of this section we consider a fixed formula φ that is to be translated
into a Rabin automaton and a fixed ordering C1, C2, . . . , Ck of the elements of 2psf (φ). For
simplicity, we assume C1 = {ψ ∈ psf (φ) | ψ = ψW} = Cφ,0. We freely make use of af , ·[·]ν ,
and ·[·]µ lifted to equivalence classes of formulae. This is justified by Lemma 2.
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6.1 The Weakening Conditions Automaton
The weakening conditions automaton (WC automaton) is a bed automaton that tracks the
development of weakening conditions under rewrites of the local after-function. Its states are
k-tuples of formulae, each of which describes the requirements that remain to be verified in
order to justify a sequence of rewrites. To facilitate the construction of the WC automaton,
we define the following function:

▶ Definition 20. Given a k-tuple of formulae ψ× = ⟨ψ1, ψ2, . . . , ψk⟩ and a letter σ, the
rewrite condition function is defined as rc(ψ×, σ) := ⟨ψ′

1, ψ
′
2, . . . , ψ

′
k⟩, where

ψ′
i =

∨
j∈Ji

(
afℓ(ψj , σ, Ci⟨Cj⟩) ∧

∧
ξ∈Ci

afℓ(wc(ξ⟨Cj⟩), σ, Ci⟨Cj⟩)
)
,

and where Ji :=
{
j ∈ [1..k] | ∀ξ, ξ′ ∈ psf (φ) . ξ⟨Cj⟩ = ξ′⟨Cj⟩ ⇒ ξ⟨Ci⟩ = ξ′⟨Ci⟩

}
.

The definition of Ji ensures that ψ′
i ∈ B(φ⟨Ci⟩). The rewrite condition function takes

a k-tuple of formulae and a letter, and returns an updated k-tuple. In the resulting tuple,
the ith item ψ′

i is a formula that encodes the updated requirements for further applying the
rewrite ·⟨Ci⟩. We remark that, for every t > 0, there exist indices i ≤ k and j ∈ Ji such that
Ci = ◦ C⃗φ,t, Cj = ◦ C⃗φ,t−1, and Ci⟨Cj⟩ = Cφ,t.

We now define the WC automaton Hφ := (S, S0, δH) over 2Var(φ). Its set of states S is
Πk
i=1 B(φ⟨Ci⟩)/∼. The initial state S0 is the k-tuple ⟨[⊤]∼, [⊥]∼, . . . , [⊥]∼⟩, which represents

that the set used to rewrite φ into its initial form is known to be C1. Finally, the transition
relation δ is defined by δH(ψ×, σ) = rc(ψ×, σ), with rc lifted to propositional equivalence
classes of formulae in the natural way.

6.2 Verifying the Premises of the Master Theorem
We now describe the automata that are capable of verifying the premises of the Master
Theorem. They are all runner automata with bed automaton Hφ := (S, S0, δH).

Given a formula ψ ∈ µ(φ) and set N ⊆ ν(φ) we define the runner automaton Bψ2,N :=
(S,Q,Q0, δ, α) over 2Var(φ) with set of states Q := B∨(φ[N ]µ ∧ F(ψ[N ]µ))/∼, initial state
Q0 := [F(ψ[N ]µ)]∼, and Büchi acceptance condition α := [⊤]∼. Finally, its transition relation
is defined as

δ(ζ, ξ×, σ) :=


∨

i∈[1..k]

F(ψ⟨Ci⟩[N⟨Ci⟩]µ) ∧ ξi[N⟨Ci⟩]µ (ζ ∼ ⊤)

af (ζ, σ) (otherwise),

where ξ× = ⟨ξ1, ξ2, . . . , ξk⟩. For readability, we express δ in terms of formulae, but ask the
reader to note that they represent their corresponding propositional equivalence classes.

Informally, the automaton Bψ2,N begins by checking that the input word w satisfies the
formula F(ψ[N ]µ). Because this formula is in the fragment µ-pLTL, it is satisfied by w iff
the after-function eventually rewrites it into a propositionally true formula. At this point,
the automaton restarts, checking the formula again. Because the subset of psf (φ) that puts
ψ[N ]µ in the correct form at this point – with respect to its past subformulae – is unknown,
all possible such sets are considered in the form of a disjunction. To each disjunct the
corresponding weakening conditions, as tracked by the WC automaton, are added. It follows
that Hφ⋉Bψ2,N is able to verify premise 2) of the Master Theorem for the considered formula
ψ and sets M and N .
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Given a formula ψ ∈ ν(φ) and set M ⊆ µ(φ) we define the runner automaton Cψ3,M :=
(S,Q,Q0, δ, α) over 2Var(φ) with set of states Q := B∨(φ[M ]ν ∧ G(ψ[M ]ν))/∼, initial state
Q0 := [G(ψ[M ]ν)]∼, and co-Büchi acceptance condition α := [⊥]∼. Finally, its transition
relation is defined as

δ(ζ, ξ×, σ) :=


∨

i∈[1..k]

G(ψ⟨Ci⟩[M⟨Ci⟩]ν) ∧ ξi[M⟨Ci⟩]ν (ζ ∼ ⊥)

af (ζ, σ) (otherwise),

where ξ× = ⟨ξ1, ξ2, . . . , ξk⟩. As before, the formulae of δ represent their corresponding
equivalence classes. By a similar argument as before, the automaton H ⋉ Cψ3,M is able to
verify premise 3) of the Master Theorem for the formula ψ and sets M and N .

We now turn to constructing automata for verifying the first premise of the Master
Theorem. Given a setM ⊆ µ(φ), we define the runner automaton C1

φ,M := (S,Q,Q0, δ, α) over
2Var(φ) with set of states Q := B∨(φ)/∼ ×B∨(φ[M ]ν)/∼, initial state Q0 := ⟨[φ]∼, [φ[M ]ν ]∼⟩,
and co-Büchi acceptance condition α := B∨(φ)/∼ × {[⊥]∼}. Its transition relation is defined
as

δ(⟨ψ, ζ⟩, ξ×, σ) :=


〈

af (ψ, σ),
∨

i∈[1..k]

af (ψ, σ)[M⟨Ci⟩]ν ∧ ξi[M⟨Ci⟩]ν
〉

(ζ ∼ ⊥)〈
af (ψ, σ), af (ζ, σ)

〉
(otherwise),

where ξ× = ⟨ξ1, ξ2, . . . , ξk⟩. Again, we remind the reader that the formulae in the above
definition represent equivalence classes of formulae. The purpose of the above automaton
is to “guess” an index at which w is stable with respect to φ, starting with the guess that
it is initially stable. Both φ and φ[M ] are evaluated in tandem. If the current guess of
point of stability is incorrect, the second component will eventually collapse into a formula
propositionally equivalent to ⊥. At this point, the automaton proceeds with a new guess by
reapplying ·[M ]ν to φ as it has currently been transformed by the after-function. As with
the other automata, the formulae that make up the states of the WC automaton are used to
justify the rewrite by each set Ci. The automaton Hφ ⋉ C1

φ,M is able to verify premise 1) of
the Master Theorem for the formula φ and the set M .

6.3 The Rabin Automaton

We now construct the final deterministic Rabin automaton. The automaton is the disjunction
of up to 2n simpler Rabin automata; one for every possible choice of M ⊆ µ(φ) and N ⊆ µ(φ).
Taking the disjunction of deterministic Rabin automata is possible by running automata for
all disjuncts in parallel (via a product construction) and taking the acceptance condition
that checks that at least one of them is accepting. Each simpler Rabin automaton checks
the three premises of the Master Theorem for its specific M and N : (a) M ⊆ GFφ

w,0, (b)
N ⊆ FGφw,0, and (c) w satisfies a version of φ simplified by M . Each of the three is checked
by a Büchi or co-Büchi automaton. In order to check all three we have to consider their
conjunction. For a Rabin automaton (with one pair) it is possible to check the conjunction of
Büchi and co-Büchi by running automata for all conjuncts in parallel (product construction)
and using the Rabin acceptance condition (one pair) to ensure that all co-Büchi automata
and all Büchi automata are accepting.
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▶ Theorem 21. Let φ be a formula. For each M ⊆ µ(φ) and N ⊆ ν(φ), define

B2
M,N :=

⋂
ψ∈M

Hφ ⋉ Bψ2,N C3
M,N :=

⋂
ψ∈N

Hφ ⋉ Cψ3,M

Rφ,M,N := (Hφ ⋉ C1
φ,M ) ∩ B2

M,N ∩ C3
M,N ,

where Rφ,M,N has one Rabin pair. Then the following DRA over 2Var(φ) recognizes φ:

ADRA(φ) :=
⋃

M⊆µ(φ)
N⊆ν(φ)

Rφ,M,N .

▶ Corollary 22. Let φ be a formula of size n + m, where n is the number of future- and
propositional subformulae of φ, and m is the number of past subformulae of φ. There exists
a deterministic Rabin automaton recognizing φ with doubly exponentially many states in the
size of the formula and at most 2n Rabin pairs.

7 Discussion

We presented a direct translation from pLTL to deterministic Rabin automata. Starting from
a formula with n future subformulae and m past subformulae, we produce an automaton with
an optimal 22O(n+m) states and 2O(n) acceptance pairs. Our translation relies on extending
the classical “after”-function of LTL to pLTL by encoding memory about the past through
the weakening and strengthening of embedded past operators. We extended the Master
Theorem about decomposition of languages expressed for LTL to pLTL.

The only applicable approach (prior to our work) to obtain deterministic automata from
pLTL formulae was to convert the formula to a nondeterministic automaton [14] and then
determinize this automaton [16, 13]. The first can be done either directly [9, 14] or through
two-way very-weak alternating automata [7]. In any case, the first translates a formula with
n future operators and m past operators to an automaton with 2O(n+m) states and the
second translates an automaton with k states to a parity automaton with O(k!2) states and
O(k) priorities. It follows that the overall complexity of this construction is 22O((n+m)·log(n+m))

states and 2O(n+m) priorities. Our approach improves this upper bound to 22O(m+n) . It is
well known that pLTL does not extend the expressive power of LTL. However, conversion
from pLTL to LTL is not viable algorithmically. The best known translation is worst-case
non-elementary [6], and the conversion is provably exponential [11]. So using a conversion to
LTL as a preliminary step to determinization could result in a triple exponential construction.
We note that in the case where there are no future operators nested within past operators, it
is possible to convert the past subformulae directly to deterministic automata. Then, the
remaining future can be determinized independently. This approach has been advocated for
usage of the past in reactive synthesis [3, 4] and implemented recently in a bespoke tool [2].

As future work, we note that the approach of Esparza et al. [5] additionally led to
translations from LTL to nondeterministic automata, limit-deterministic automata, and
deterministic automata. The same should be done for pLTL. Their work also led to a normal
form for LTL formulae, which we believe could be generalized to work for pLTL. The latter
could have interesting relations to the temporal hierarchy of Manna and Pnueli [10]. Such a
normal form could also be related to more efficient translations from pLTL to LTL. Finally,
this approach has led to a competitive implementation of determinization [8] and reactive
synthesis [12]. Extending these implementations to handle past is of high interest.
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Abstract
Fagin’s seminal result characterizing NP in terms of existential second-order logic started the
fruitful field of descriptive complexity theory. In recent years, there has been much interest in the
investigation of quantitative (weighted) models of computations. In this paper, we start the study
of descriptive complexity based on weighted Turing machines over arbitrary semirings. We provide
machine-independent characterizations (over ordered structures) of the weighted complexity classes
NP[S], FP[S], FPLOG[S], FPSPACE[S], and FPSPACEpoly[S] in terms of definability in suitable
weighted logics for an arbitrary semiring S. In particular, we prove weighted versions of Fagin’s
theorem (even for arbitrary structures, not necessarily ordered, provided that the semiring is
idempotent and commutative), the Immerman–Vardi’s theorem (originally for P) and the Abiteboul–
Vianu–Vardi’s theorem (originally for PSPACE). We also discuss a recent open problem proposed by
Eiter and Kiesel.

Recently, the above mentioned weighted complexity classes have been investigated in connection
to classical counting complexity classes. Furthermore, several classical counting complexity classes
have been characterized in terms of particular weighted logics over the semiring N of natural numbers.
In this work, we cover several of these classes and obtain new results for others such as NPMV, ⊕P,
or the collection of real-valued languages realized by polynomial-time real-valued nondeterministic
Turing machines. Furthermore, our results apply to classes based on many other important semirings,
such as the max-plus and the min-plus semirings over the natural numbers which correspond to the
classical classes MaxP[O(log n)] and MinP[O(log n)], respectively.
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1 Introduction

Descriptive complexity is a branch of computational complexity, as well as finite model
theory, where the difficulty in solving a problem by a Turing machine is characterized not
by the amount of resources required (such as time, space and so on) but rather in terms
of the complexity of describing the problem in some logical formalism. This field was
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initially started in 1974 by Ronald Fagin with the celebrated result in [19] (coined by Neil
Immerman as “Fagin’s theorem”) which stated that the class of NP languages coincides with
the class of languages definable in existential second-order logic. Many further surprising
results followed this development, particularly the Immerman–Vardi’s theorem characterizing
P over ordered structures using fixed-point logic [31, 48] and the Abiteboul–Vianu–Vardi
characterization of PSPACE in terms of partial fixed-point logic [1, 48]. Today there are
several textbooks that cover the fundamentals of the area as a line of research within finite
model theory [15, 38, 25, 32]. In this paper, we propose to study quantitative versions of some
of these key results in this important field in connection with weighted computation. We
work over finite structures that come with a linear ordering, which is a standard restriction
in descriptive complexity.

Weighted automata are nondeterministic finite automata augmented with values from a
semiring as weights on the transitions [45]. These weights may model, e.g. the cost involved
when executing a transition, the amount of resources or time needed for this, or the probability
or reliability of its successful execution. The theory of weighted automata and weighted
context-free grammars was essential for the solution of such classical automata-theoretic
problems as the decidability of the equivalence of unambiguous context-free languages and
regular languages [43] (in fact, the only known proofs of this involve weighted automata),
the decidability of two given deterministic multitape automata [30], and the decidability
of two given deterministic pushdown automata [39, 46]. This led to quick development of
this field, described in the books [6, 12, 16, 36, 42, 43]. Furthermore, weighted automata
and weighted context-free grammars have been used as basic concepts in natural language
processing and speech recognition, as well as in algorithms for digital image compression [2].
Weighted logic [11], with weights in an arbitrary semiring, was developed originally to obtain
a weighted version of the Büchi–Elgot–Trakhtenbrot theorem, showing that a certain weighted
monadic second-order logic has the same expressive power on words as weighted automata.
Consequently, this weighted logic over suitable semirings like fields has similar decidability
properties on words as unweighted monadic second-order logic. It is worth remarking that the
classical Büchi–Elgot–Trakhtenbrot theorem is usually regarded as part of the “prehistory”
of descriptive complexity [25, p. 145].

Weighted Turing machines extend the concept of weighted automata as natural quant-
itative counterparts of classical Turing machines. They were first introduced under the
name “algebraic Turing machines” in [10, 9] and they have attracted further attention in [34].
Instances of this concept include the so called “fuzzy Turing machines” [49, 4]. Recently, the
articles [18, 17] have introduced a related notion of “semiring Turing machine” and explicitly
asked for the development of descriptive complexity in such framework as an open problem,
focusing specifically on Fagin’s theorem in connection to weighted logic [18, p. 255]. We will
address this problem at the end of Section 5.

Our contribution. The present paper develops a theory of weighted descriptive complexity
and establishes quantitative versions of some celebrated classical theorems. The novel
contributions of this work can be summarized in the following characterizations (for an
arbitrary semiring S):

The weighted complexity class NP[S] coincides with the queries definable by weighted
existential second-order logic on ordered structures, with weights in S, respectively for
all structures if S is idempotent and commutative (Theorem 22).
The weighted complexity class FP[S] coincides with the queries definable by weighted
inflationary fixed-point logic, with weights in S (Theorem 26).
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The weighted complexity class FPSPACE[S] coincides with the queries definable by
weighted partial fixed-point logic with the addition of second-order multiplicative and
additive quantifiers, with weights in S (Theorem 29).
The weighted complexity class FPSPACEpoly[S] coincides with the queries definable by
weighted partial fixed-point logic, with weights in S (Theorem 31).
The weighted complexity class FPLOG[S] coincides with the queries definable by weighted
deterministic transitive closure logic (Theorem 33).

Related work. Despite the fact that some characterizations of counting complexity classes
using Boolean logics were known [33, 44, 14], observe that the article [3] (following up on the
work of [44]) already proposes the idea of using certain weighted logics (with weights in the
semiring N of natural numbers or, in a couple of cases, Z) to characterize well-known counting
complexity classes. The authors obtain several interesting results that are also covered by
our more encompassing work here (that is, they provide logical characterizations of #P, FP,
FPSPACE, FPSPACE(poly), GapP, and MaxP). There is, however, some orthogonality as they
cover some classical complexity classes that we do not and, similarly, we cover some that
they do not, as we do not restrict our semiring to being N or Z. Moreover, the investigation
in [3], by contrast to ours, concentrates on the study of classical counting classes for ordered
structures, while we consider both ordered and arbitrary structures (provided, in the latter
case, that the semiring is idempotent and commutative; examples include e.g. the max-plus-
and min-plus-semirings). In the present article, the central aim is rather starting the study of
weighted complexity classes via logic, and the corollaries characterizing classical complexity
classes are obtained as interesting byproducts of the work. In this way, we are also meeting
the challenge posed in [34, p.3] of developing “quantitative descriptive complexity theory
based on weighted logics [. . . ] over some fairly general class of semirings”. Further work
on the model theory of weighted logics includes a Feferman–Vaught result [13], but the
area remains largely unexplored despite being one of the open problems suggested in [11].
Finally, an approach related to the weighted logics discussed here has been recently proposed
in [26, 27] motivated by problems in database theory [23]. The idea there is that the atomic
facts of a model are annotated by values from a semiring whereas in the present paper this
aspect is fully classical.

2 Weighted Turing machines

In order to introduce the notion of a weighted Turing machine, first we need to define the
kind of algebraic structures that will provide the weights, that is, semirings.

▶ Definition 1 (Semirings). A semiring is a tuple S = ⟨S,+, ·,0,1⟩, with operations addition
+ and multiplication · and constants 0 and 1 such that

⟨S,+,0⟩ is a commutative monoid and ⟨S, ·,1⟩ is a monoid,
multiplication distributes over addition, and
s · 0 = 0 · s = 0 for every s ∈ S.

We say that S is commutative if the monoid ⟨S, ·,1⟩ is commutative, and we say that S is
idempotent if the monoid ⟨S,+,0⟩ is idempotent (that is, s+ s = s for each s ∈ S).

Some examples of semirings, including those that we will use in this paper, are the
following:

the Boolean semiring B = ⟨{0, 1},min,max, 0, 1⟩,
any bounded distributive lattice ⟨L,∨,∧, 0, 1⟩,
the semiring of natural numbers ⟨N,+, ·, 0, 1⟩,
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the semiring of extended natural numbers ⟨N ∪ {+∞},+, ·, 0, 1⟩ where 0 · (+∞) = 0,
the ring of integers, ⟨Z,+, ·, 0, 1⟩,
the ring of integers modulo n, ⟨Zn,+n, ·n, 0, 1⟩, for each n ∈ N,
the field of rational numbers ⟨Q,+, ·, 0, 1⟩,
the max-plus or arctic semiring Arct = ⟨R+ ∪ {−∞},max,+,−∞, 0⟩, where R+ denotes
the set of non-negative real numbers,
the restriction of the arctic semiring to the natural numbers Nmax =
⟨N ∪ {−∞},max,+,−∞, 0⟩,
the min-plus or tropical semiring Trop = ⟨R+ ∪ {+∞},min,+,+∞, 0⟩,
the restriction of the tropical semiring to the natural numbers Nmin =
⟨N ∪ {+∞},min,+,+∞, 0⟩,
the semiring F∗ = ⟨[0, 1],max, ∗, 0, 1⟩ given by a t-norm ∗ [49],
the semiring of finite languages 2Σ∗

fin = ⟨2Σ∗

fin ,∪, ·, ∅, {ε}⟩, for an alphabet Σ,
the semiring Smax = ⟨{0, 1}∗ ∪ {−∞},max, ·,−∞, ε⟩ of binary words in which max is
computed according to the radix order (for x, y ∈ {0, 1}∗, x ⪯ y iff |x| < |y| or |x| = |y|
and x is smaller than or equal to y in the lexicographic order) and max(x,−∞) =
max(−∞, x) = x for each x, · is the concatenation operation, and x · (−∞) = (−∞) · x =
−∞ for each x,
the semiring Smin = ⟨{0, 1}∗ ∪ {+∞},min, ·,+∞, ε⟩ analogous to the previous one.

▶ Definition 2 (Weighted Turing Machines). Let S be a semiring and Σ an alphabet. A
weighted (or algebraic) Turing machine over S and input alphabet Σ is a septuple M =
⟨Q,Γ,∆, ν, q0, F,□⟩, where

Q is a nonempty finite set whose elements are called states,
Γ ⊇ Σ is an alphabet (working alphabet),
∆ ⊆ (Q \ F ) × Γ ×Q× Γ × {−1, 0, 1} and its elements are called transitions,
ν : ∆ −→ S is called a transition weighting function, q0 ∈ Q is called the initial state,
F ⊆ Q and its elements are called accepting states, and □ ∈ Γ \ Σ is the blank symbol.

We call M a Turing machine if S is the Boolean semiring B. We call M deterministic if for
every pair ⟨p, a⟩ ∈ Q× Γ, there is at most one transition ⟨p, a, q, b, d⟩ ∈ ∆.

A configuration of M is a unique description of the machine’s state, contents of the
working tape, and the position of the machine’s head. If e = ⟨p, c, q, d, t⟩ ∈ ∆ is a transition
and C1, C2 are configurations of M, then we write C1 −→e C2 if C1 is a configuration
with state p and the head reading c, while C2 is obtained from C1 by changing state to q,
rewriting the originally read symbol c to d, and moving the head as prescribed by t. We
write C1 −→ C2 if C1 −→e C2 for some e ∈ ∆.

A computation of M is a word γ = C1e1C2e2C3 . . . CnenCn+1 such that C1, . . . , Cn+1
are configurations of M, e1, . . . , en ∈ ∆, Ck −→ek

Ck+1 for each k ∈ {1, . . . , n}, and C1 is a
configuration with state q0 and the head at the leftmost non-blank cell (if there is some). The
weight of γ is defined as ν(γ) := ν(e1)ν(e2) . . . ν(en). γ is called an accepting computation
if Cn+1 has an accepting state. We say that γ is a computation on w in Σ∗, and write
Σ(γ) = w if C1 is a configuration with w on the working tape. We denote the set of all
computations of M by C(M) and the set of all accepting computations by A(M).

▶ Convention 3. From now on we will assume that every Turing machine M is finitely
terminating, that is, the set Cw(M) = {γ ∈ C(M) | Σ(γ) = w} is finite for each w ∈ Σ∗. In
particular, the set Aw(M) = {γ ∈ A(M) | Σ(γ) = w} is finite.
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By a series σ we mean a mapping σ : Σ∗ −→ S where Σ is an alphabet, Σ∗ the corres-
ponding language and S is a semiring. Thanks to the convention, we can introduce the
following notion:

▶ Definition 4 (Behavior of a weighted Turing machine). Let M be a weighted Turing machine.
The behavior of M as the mapping ∥M∥ : Σ∗ −→ S defined as

∥M∥(w) :=
∑

γ∈Aw(M)

ν(γ).

We say that a series σ : Σ∗ −→ S is recognized by a weighted Turing machine M if ∥M∥ = σ.

The definition of weighted Turing machine we have used here is exactly the same as
that of algebraic Turing machines [10, Def. 5.1] (see also [34]). Similarly, the notion of the
behavior of the machine coincides. The semiring Turing machines of [17, 18], by contrast,
differ in that they impose some conditions on the allowed transitions [18, cf. Def. 12]. Given
distributivity of multiplication over addition, the notion of a semiring Turing machine function
in [18, Def. 13] coincides with that of the behavior we use here. Semiring Turing Machines
allow semiring values on the tape in somewhat of a black-box manner. Intuitively, one can
transition with the weight of the value on the tape, but cannot differentiate the values on
the tape or modify them. If semiring values are not allowed in the input string then the
definition of weighted and semiring Turing Machines are equivalent (in the sense that one
can be transformed into the other without a significant change of execution time). All these
definitions generalize the corresponding notions for weighted automata.

3 Some weighted complexity classes

Let M = ⟨Q,Γ,∆, ν, q0, F,□⟩ be a weighted Turing machine over S and Σ. For w ∈ Σ∗, we
denote by TIME(M, w) the maximal length of a computation of M on w, and define, for
n ∈ N, TIME(M, n) := max{TIME(M, w) : w ∈ Σ∗, |w| ≤ n}.

For a function f : N −→ N, we denote by SERIES[S,Σ](f) the set of all series σ such that
σ = ∥M∥ for some weighted Turing machine M over S and Σ with TIME(M, n) = O(f(n)).
Now we can define the complexity classes:

SERIES[S](f(n)) :=
⋃

{SERIES[S,Σ](f(n)) : Σ is an alphabet}.

▶ Definition 5. Let S be a semiring. We define the following weighted complexity class

NP[S] :=
⋃

{SERIES[S](nk) : k ∈ N}.

NP[S] (cf. [34, Def. 4.1]) coincides with the definition of the class S-#P in [10, Def. 5.2].
Furthermore, it is contained as a subclass in the similarly defined class NP[R] from [18,
Def. 14] when R is a commutative semiring. Below (Proposition 35), we will actually show
that this containment is proper, in the sense that NP[R] will contain some series that are
not in NP[S].

▶ Example 6. Following [10, Prop. 5.3] and [34, Examples 4.2–4.6], we can list some
prominent instances of NP[S]:

the usual complexity class NP, obtained when S = B is the two-element Boolean semiring
and each transition is weighted by 1 (this is the standard way of representing a classical
machine model in the weighted context),
the counting class #P [47], obtained when S = ⟨N,+, ·, 0, 1⟩ is the semiring of natural
numbers and each transition is weighted by 1,
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the complexity class
⊕

P [40], obtained when S = ⟨Z2,+2, ·2, 0, 1⟩ is the finite field of
two elements and each transition is weighted by 1,
the class GapP, closure of #P under subtraction [20, 28], obtained when S = ⟨Z,+, ·, 0, 1⟩
is the ring of integers and transitions are weighted by 1 and −1,
the class MODq − P (for q ≥ 2) [8], defined similarly to #P but with respect to counting
modulo q, obtained when S = ⟨Zq,+q, ·q, 0, 1⟩ and transitions are weighted by 1.

▶ Example 7. Some further instances of NP[S], this time following [34, Examples 4.7–4.11],
are:

the class NP[F∗] of all fuzzy languages realizable by fuzzy Turing machines [49] with
t-norm ∗ in polynomial time, obtained when the semiring is F∗ = ⟨[0, 1],max, ∗, 0, 1⟩ and
the weights correspond to degrees of membership in the fuzzy language,
the class NPMV of all multivalued functions realized by nondeterministic polynomial-time
transducer machines [7], obtained when, given alphabets Σ1 and Σ2, the semiring is
⟨2Σ∗

2
fin ,∪, ·, ∅, {ε}⟩ and weighted Turing machines have input alphabet Σ1,

the class of all multiset-valued functions computed by nondeterministic polynomial-time
transducer machines with counting, obtained as in the previous example but using the
free semiring ⟨N⟨Σ∗

2⟩,+, ·, 0, 1⟩ instead,
the class MaxP ⊆ OptP of problems in which the objective is to compute the value of a
solution to an optimization problem in NPO [35], obtained when the semiring is Smax,
and the class MinP ⊆ OptP, obtained when the semiring is Smin,
the class MaxP[[O(logn)]] ⊆ OptP[O(logn)] of problems in which the objective is to
compute the value of a solution to an optimization problem in NPO PB [35], obtained
when the semiring is Nmax, and MinP[[O(logn)]] ⊆ OptP[O(logn)], , obtained when the
semiring is Nmin.

A notion from universal algebra (cf. [5]) that we will make use of in defining some of the
complexity classes below (e.g. FP[S],FPSPACE[S] and FPLOG[S]) is the following:

▶ Definition 8 (Term algebra). Consider a semiring S = ⟨S,+, ·,0,1⟩ and a subset X ⊆ S.
The set of terms T (X) is the collection of all well-formed strings that can be constructed
using the symbols in X and +′, ·′,0,1 (in particular, 0,1 ∈ T (X)), that is, the smallest set
such that: (1) X ⊆ T (X) and (2) (t1 +′ t2) ∈ T (X) and (t1 ·′ t2) ∈ T (X) for every two terms
t1, t2 ∈ T (X); we abuse notation and omit parentheses whenever associativity permits. The
term algebra T (X) is the structure with universe T (X) and operations +′, ·′ defined in the
obvious way.

Recall that classically FP is the set of function problems that can be solved by a
deterministic Turing machine in polynomial time.

▶ Definition 9. We define the complexity class FP[S] as

FP[S] :=
⋃

{0,1}⊆G⊆finS
Σ is a finite alphabet

FP[G,Σ]

where FP[G,Σ] is the set of all series σ : Σ∗ −→ ⟨G⟩ (where ⟨G⟩ is the subsemir-
ing of S generated by G) such that there is a constant k ∈ N and a deterministic
polynomial-time Turing machine which outputs for every word w ∈ Σ∗ a word of the form∑m1
i1=1

∏n1
j1=1 · · ·

∑mk

ik=1
∏nk

jk=1 si1j1···ikjk
in the algebra of terms T (G) in S with value σ(w)

in S.
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In Definition 9, we employ a classical deterministic Turing machine which outputs, in
each transition, symbols from G ∪ {(, ),+′, ·′,0,1} or a blank. Thus, for our outputs we
could obtain arbitrarily complex expressions. Therefore, the constant k limiting the number
of alternations of sums and products is a proper restriction. Hence this definition of FP[S]
differs from the one of [34]. Later on, we will model logical formulas with alternating sum
and product quantifiers using Turing machines which compute functions in FP[S], hence
k = 1 would be insufficient to model these alternations. For the converse, in order to model
these Turing machines by formulas, the number of alternations of sums and products in each
such Turing machine needs to be bounded to obtain a formula with nested quantifiers.

▶ Example 10. If S = B is the two-element Boolean semiring, then FP[B] is just P [34,
Example 5.4]. Observe that the terms output by the machine in that example are already
trivially of the form

∑n
i=1

∏m
j=1 sij .

FP is to #P what P is to NP. Thus, considering NP[S] as a generalization of #P (as it is
done in [10]), the relationship between FP[S] and NP[S] is similar to that between P and NP.

▶ Example 11. If S = N is the natural numbers semiring, then FP[N] is just FP [34, Example
5.5]. As before, observe that the terms output by the machine in that example are already
of the form

∑n
i=1

∏m
j=1 sij .

▶ Definition 12. The class FPLOG[S] is defined as FP[S] except that we allow the machine
to have logarithmic space on the length of the input rather than polynomial time.

▶ Example 13. If S = B, then FPLOG[B] is just DLOGSPACE.

▶ Example 14. If S = N, then FPLOG[N] is just FPLOG, which is defined as FP but allowing
the machine to use logarithmic space on the size of the input (cf. [22]).

▶ Definition 15. The class FPSPACE[S] is defined as FP[S] except that we allow the machine
to have polynomial space on the length of the input rather than polynomial time.

▶ Example 16. If S = B, then FPSPACE[B] is just PSPACE.

▶ Example 17. If S = N, then FPSPACE[N] is just FPSPACE ([37]).

▶ Definition 18. The class FPSPACEpoly[S] is defined as FPSPACE[S] except that we require
the word

∑n
i=1

∏m
j=1 sij to have length bounded by a polynomial. Here, every semiring element

is considered to have length 1.

▶ Example 19. If S = B, then FPSPACEpoly[B] is just PSPACE.

▶ Example 20. If S = N, then FPSPACEpoly[N] is just FPSPACEpoly ([37]).

4 Weighted logics

A vocabulary (or signature) τ is a pair ⟨Relτ , arτ ⟩ where Relτ is a set of relation symbols and
arτ : Relτ −→ N+ is the arity function. A τ -structure A is a pair ⟨A, IA⟩ where A is a set,
called the universe of A, and IA is an interpretation, which maps every symbol R ∈ Relτ
to a set RA ⊆ Aarτ (R). We assume that each structure is finite, that is, its universe is a
finite set. A structure is called ordered if it is given for a vocabulary τ ∪ {<} where < is
interpreted as a linear ordering with endpoints. By Str(τ)< we denote the class of all finite
ordered τ -structures.

MFCS 2024



14:8 Logical Characterizations of Weighted Complexity Classes

We provide a countable set V of first and second-order variables, where lower case letters
like x and y denote first-order variables and capital letters like X and Y denote second-order
variables. Each second-order variable X comes with an associated arity, denoted by ar(X).
We define first-order formulas β over a signature τ and weighted first-order formulas φ over
τ and a semiring S, respectively, by the grammars

β ::= false | R(x1, . . . , xn) | ¬β | β ∨ β | ∃x.β
φ ::= β | s | φ⊕ φ | φ⊗ φ |

⊕
x.φ |

⊗
x.φ,

where R ∈ Relτ , n = arτ (R), x, x1, . . . , xn ∈ V are first-order variables, and s ∈ S. Likewise,
we define second-order formulas β over τ and weighted second-order formulas φ over τ and
S through

β ::= false | R(x1, . . . , xn) | X(x1, . . . , xn) | ¬β | β ∨ β | ∃x.β | ∃X.β
φ ::= β | s | φ⊕ φ | φ⊗ φ |

⊕
x.φ |

⊗
x.φ |

⊕
X.φ |

⊗
X.φ,

with R ∈ Relτ , n = arτ (R) = ar(X), x, x1, . . . , xn ∈ V first-order variables, X ∈ V a
second-order variable, and s ∈ S. We also allow the usual abbreviations ∧, ∀, →, ↔, and
true. By FO(τ) and wFO(τ, S) we denote the sets of all first-order formulas over τ and all
weighted first-order formulas over τ and S, respectively, and by SO(τ) and wSO(τ, S) we
denote the sets of all second-order formulas over τ and all weighted second-order formulas
over τ and S, respectively.

The notion of free variables is defined as usual, i.e., the operators ∃,∀,
⊕

, and
⊗

bind variables. We let Free(φ) be the set of all free variables of φ. A formula φ with
Free(φ) = ∅ is called a sentence. For a tuple φ̄ = ⟨φ1, . . . , φn⟩ ∈ wSO(τ, S)n, we define
Free(φ̄) =

⋃n
i=1 Free(φi).

We define the semantics of SO and wSO as follows. Let τ be a signature, A = ⟨A, IA⟩
a τ -structure, and V a set of first and second-order variables. A (V,A)-assignment ρ is a
function ρ : V −→ A ∪ P(A) such that, whenever x ∈ V is a first-order variable and ρ(x)
is defined, we have ρ(x) ∈ A, and whenever X ∈ V is a second-order variable and ρ(X) is
defined, we have ρ(X) ⊆ Aar(X). For a first-order variable, this restriction may cause the
variable to become undefined. Let dom(ρ) be the domain of ρ. For a first-order variable x ∈ V
and an element a ∈ A, the update ρ[x → a] is defined through dom(ρ[x → a]) = dom(ρ)∪{x},
ρ[x → a](X ) = ρ(X ) for all X ∈ V \ {x}, and ρ[x → a](x) = a. For a second-order variable
X ∈ V and a set I ⊆ Aar(X), the update ρ[X → I] is defined in a similar fashion. By AV we
denote the set of all (V,A)-assignments.

For ρ ∈ AV and a formula β ∈ SO(τ) the relation “⟨A, ρ⟩ satisfies β”, denoted by
⟨A, ρ⟩ |= β, is defined as

⟨A, ρ⟩ |= false never holds
⟨A, ρ⟩ |= R(x1, . . . , xn) ⇐⇒ x1, . . . , xn ∈ dom(ρ) and (ρ(x1), . . . , ρ(xn)) ∈ RA

⟨A, ρ⟩ |= X(x1, ..., xn) ⇐⇒ x1, ..., xn, X ∈ dom(ρ) and ⟨ρ(x1), . . . , ρ(xn)⟩ ∈ ρ(X)
⟨A, ρ⟩ |= ¬β ⇐⇒ ⟨A, ρ⟩ |= β does not hold
⟨A, ρ⟩ |= β1 ∨ β2 ⇐⇒ ⟨A, ρ⟩ |= β1 or ⟨A, ρ⟩ |= β2

⟨A, ρ⟩ |= ∃x.β ⇐⇒ ⟨A, ρ[x → a]⟩ |= β for some a ∈ A

⟨A, ρ⟩ |= ∃X.β ⇐⇒ ⟨A, ρ[X → I]⟩ |= β for some I ⊆ A.
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Let φ ∈ wSO(τ, S) and A ∈ Str(τ)<, a1, . . . , ak be an enumeration of the elements of
A according to the ordering that serves as the interpretation of <, and for every integer
n, let In1 , . . . , Inln be an enumeration of the subsets of An according to the lexicographic
ordering induced by the interpretation of <. The (weighted) semantics of φ is a mapping
JφK(A, ·) : AV −→ S inductively defined as

JβK(A, ρ) =
{

1 if ⟨A, ρ⟩ |= β

0 otherwise

JsK(A, ρ) = s

Jφ1 ⊕ φ2K(A, ρ) = Jφ1K(A, ρ) + Jφ2K(A, ρ)
Jφ1 ⊗ φ2K(A, ρ) = Jφ1K(A, ρ) · Jφ2K(A, ρ)

J
⊕
x.φK(A, ρ) =

∑
a∈A

JφK(A, ρ[x → a])

J
⊗
x.φK(A, ρ) =

∏
1≤i≤k

JφK(A, ρ[x → ai])

J
⊕
X.φK(A, ρ) =

∑
I⊆Aar(X)

JφK(A, ρ[X → I])

J
⊗
X.φK(A, ρ) =

∏
1≤i≤lar(X)

JφK(A, ρ[X → I
ar(X)
i ]).

Thanks to the lexicografic ordering our product quantifiers have a well-defined semantics.
Note that if the semiring is commutative, in the clauses of universal quantifiers, the semantics
is defined by using any order for the factors in the products.

We will usually identify a pair ⟨A, ∅⟩ (where ∅ is the empty mapping) with A. We will
also refer to the following expansions of FO:

Transitive closure logic (TC) is obtained by adding the following rule for building formulas:
if φ(x, y) is a formula with variables x = x1, . . . , xk and y = y1, . . . , yk, and u, v are
k-tuples of terms, then [tcx,y φ(x, y)](u, v) is also a formula, and its semantics is given as
A |= [tcx,y φ(x, y)](a, b) ⇐⇒ there exist an n ≥ 1 and c0, . . . , cn ∈ Ak such that c0 = a,
cn = b, and A |= φ(ci, ci+1) for each i ∈ {0, . . . , n− 1}.
Deterministic transitive closure logic (DTC) is obtained by adding the following rule for
building formulas: if φ(x, y) is a formula with variables x = x1, . . . , xk and y = y1, . . . , yk,
and u, v are k-tuples of terms, then [dtcx,y φ(x, y)](u, v) is also a formula, and its semantics
is defined by the equivalence [dtcx,y φ(x, y)](u, v) ≡ [tcx,y φ(x, y) ∧ ∀z(φ(x, z) → y =
z)](u, v).
Least fixed-point logic (LFP) is obtained by adding the following rules for building
formulas: if φ(R, x) is a formula of vocabulary τ ∪ {R} with only positive occurrences
of R, x is a tuple of variables, and t is a tuple of terms (both matching the arity of R),
then [lfpRx.ψ](t) and [gfpRx.ψ](t) are also formulas. For their semantics, we need to
define some auxiliary notions. The update operator Fψ : P(Ak) −→ P(Ak) is defined by
Fψ(R) := {a | ⟨A, R⟩ |= ψ(R, a)} for any relation R, and it is monotone because R occurs
only positively in ψ. A fixed point of Fψ is a relation R such that Fψ(R) = R. Since Fψ
is monotone, it has a least and a greatest fixed point (by Knaster–Tarski Theorem). The
semantics is given by: A |= [lfpRx.ψ](t) iff t

A is contained in the least fixed point of Fψ
(analogously for [gfpRx.ψ](t) and the greatest fixed point).
Partial fixed-point logic (PFP) is obtained by adding the following rule for building
formulas: if φ(R, x) is a formula of vocabulary τ ∪ {R}, x is a tuple of variables, and t is
a tuple of terms (both matching the arity of R), then [pfpRx.ψ](t) is also a formula. For
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the semantics, we consider again the update operator (now not necessarily monotone)
and the sequence of its finite stages: R0 := ∅ and Rm+1 := Fψ(Rm). In a finite structure
A, the sequence either reaches a fixed point or it enters a cycle of period greater than
one. We define the partial fixed point of Fψ as the fixed point reached in the former case,
or as the empty set in the latter case. Now, the semantics is given by: A |= [pfpRx.ψ](t)
iff t

A is contained in the partial fixed point of Fψ.
Inflationary fixed-point logic (IFP) is obtained by adding the following rules for building
formulas: if φ(R, x) is a formula of vocabulary τ ∪ {R}, x is a tuple of variables,
and t is a tuple of terms (both matching the arity of R), then [ifpRx.ψ](t) is also a
formula. For its semantics, we need to define some auxiliary notions. An operator
G : P(B) −→ P(B) is said to be inflationary if X ⊆ G(X) for all X ∈ P(B). With any
operator F : P(B) −→ P(B) one can associate an inflationary operator G by setting
G(X) := X ∪ F (X). Iterating G gives a fixed point that we will called the inflationary
fixed point of F . The semantics is given by: A |= [ifpRx.ψ](t) iff t

A is contained in the
inflationary fixed point of Fψ.

The weighted version of each of these logics is defined analogously as in the case of FO
and SO by expanding the logics TC, DTC, LFP, PFP, and IFP with the same weighted
constructs as given for wFO and wSO. By a famous result of Gurevich and Shelah [29], on
finite structures, LFP coincides with IFP and thus their weighted versions, wIFP and wLFP,
as we have defined them here, will also coincide in expressive power.

5 Logical characterizations of complexity classes

We are finally ready to present and prove the main results of the paper: the quantitative
versions of several logical characterizations of prominent complexity classes. We may assume
that every A ∈ Str(τ)< is encoded by a string of 0s and 1s. For example, where A =
⟨A,RA

1 , . . . , R
A
j ⟩ with |A| = n (and we may assume in fact that A = {0, . . . , n− 1}) we might

let

enc(A) = enc(RA
1 ) · · · · · enc(RA

j )

where if RA
i is an l-ary relation, then enc(RA

i ) is a string of symbols of length nl with a 1 in
its mth position if the mth tuple of nl is in RA

i and a 0 otherwise.

▶ Definition 21. Consider a weighted logic L[S] (with weights in a semiring S) and a
weighted complexity class C, which is simply a collection of series. We say that L[S] captures
C over ordered structures in the vocabulary τ = {R1, . . . , Rj} if:
(1) For every L[S]-formula ϕ, there exists P ∈ C such that P (enc(A)) = ∥ϕ∥(A) for every

finite ordered τ -structure A, and
(2) For every P ∈ C, there exists an L[S]-formula ϕ such that P (enc(A)) = ∥ϕ∥(A) for every

finite ordered τ -structure A.

The seminal Fagin’s Theorem characterizes NP for ordered structures by existential
second-order logic. Our goal is to present a weighted version of this result with arbitrary
semirings as weight structures. Whereas in the classical setting one obtains an equivalence
between the existence of runs of a Turing machine vs. the satisfiability of an existential
logical formula, in the weighted setting of general semirings we have to derive a one-to-one
correspondence between the runs of a Turing machine and satisfying assignments for the
formulas. Moreover, due to the absence of a natural negation function in the semiring, here,
beyond the classical setting, we need conjunctions and universal quantifications. For weighted
finite automata over words, in [11] weighted conjunction and universal quantification turned
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out to be too powerful in general and had to be restricted. Surprisingly, here we do not need
these restrictions, but we can show the expressive equivalence between weighted polynomial-
time Turing machines and the full weighted existential second-order logic. Moreover, we
do not need commutativity of the multiplication of S (essential in [11]), but can develop
our characterization for arbitrary, also non-commutative, semirings S. This is due to new
constructions, in this setting, for the involved weighted Turing machines. By wESO we mean
the fragment of wSO where the only second-order quantifiers appear at the beginning of the
formula and are additive existential.

▶ Theorem 22 (Weighted Fagin’s theorem). Let S be a semiring and τ a vocabulary.
(i) The logic wESO[S] captures NP[S] over ordered finite τ -structures.
(ii) Assume that S is idempotent and commutative. Then, the logic wESO[S] captures

NP[S] over all finite structures in the vocabulary τ .

Let us indicate some ideas for the proof. For (i), first, for a given wESO-formula ϕ, we
have to construct an NP Turing machine M with ∥ϕ∥ = ∥M∥. For Boolean formulas β,
we can follow the classical proof. Regarding weighted formulas ϕ, let us comment on the
interesting cases. For weighted conjunctions and universal quantifications, we employ new
constructions. Since we are dealing with Turing machines, we can execute weighted Turing
machines for the components successively, by saving the word and using transitions of weight
1 in a deterministic way to restore the initial tape configuration. We can show, using the
distributivity of the semiring, that the constructed nondeterministic machine M computes
precisely the values prescribed by the semantics of the weighted conjunction or the weighted
universal quantifications, respectively.

Second, given a weighted NP Turing machine M, by the assumption on its polynomial
time usage, we construct a second-order formula ψ reflecting the accepting computation
paths of M and their employed transitions in a one-to-one correspondence; this enables us to
incorporate the weights of the transitions by means of constants in the formula. The order is
used for the construction of the formula such that the interpretation of weighted universal
quantification reflects precisely the weights of the computation sequences of the given Turing
machine.

For (ii), the order in universal quantifications now is taken care of by the commutativity
of the multiplication, and the existence of an order is taken care of by an additional existential
second-order quantification where idempotency of S implies that we obtain the same value.

From Theorem 22 and Examples 6 and 7, we immediately obtain the following corollary:

▶ Corollary 23. For ordered structures in a finite vocabulary τ , we have that:
(1) wESO[B] captures NP (originally proved in [19]).
(2) wESO[N] captures #P (originally proved in [3] and [44]).
(3) wESO[Z] captures GapP (originally proved in [3]).
(4) wESO[Smax] (respectively, wESO[Smin]). captures MaxP (MinP) (originally proved

in [3]).
(5) wESO[Z2] captures

⊕
P.

(6) wESO[Zq] captures MODq − P.
(7) wESO[Nmax] (respectively, wESO[Nmin]) captures MaxP[O(logn)] (MinP[O(logn)]).
(8) wESO[F∗] captures the class of all fuzzy languages realizable by fuzzy Turing machines

with t-norm ∗ in polynomial time.
(9) wESO[2Σ∗

2
fin ] captures NPMV.

(10) wESO[N⟨Σ∗
2⟩] captures the class of all multiset-valued functions computed by non-

deterministic polynomial-time transducer machines with counting.
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▶ Remark 24. It is worth observing that the proofs of (2)-(4) in [3] (Prop. 4.2, Cor. 4.8, and
Thm. 4.10) are (as expected) different from ours. Our argument works in all those cases but
neither of the three arguments given in [3] works for our more general setting.

Our next application of the weighted Fagin’s theorem consist in providing a natural
computational problem complete for the class NP[S] for certain semirings S. Given a
semiring S, alphabets Σ1,Σ2, and series σ1 : Σ∗

1 −→ S and σ2 : Σ∗
2 −→ S, we say that σ1 is

polynomially many-one reducible to σ2 (σ1 ≤m σ2, in symbols) if there is an f : Σ∗
1 −→ Σ∗

2
computable deterministically in polynomial time such that σ2(f(w)) = σ1(w) for each w ∈ Σ∗

1.
A series σ : Σ∗ −→ S is said to be NP[S]-hard if σ′ ≤m σ for all σ′ in NP[S]. If, moreover, σ
belongs to NP[S], then it is called NP[S]-complete.

Fix an infinite set X. The language of the weighted propositional logic over a finitely
generated semiring S is built from X as propositional variables, elements of S as truth-
constants, and logical connectives ∧,∨,¬ (where negation is only applied to propositional
variables). Let Fmla[S] be the set of all formulas.

A truth assignment is a mapping V : X −→ {0, 1} extended to V for all formulas in the
following way:
1. For each propositional variable x ∈ X, let V (x) := V (x) and V (¬x) := 1 iff V (x) = 0.

Moreover, let V (a) := a for each a ∈ S.
2. V (φ ∨ ψ) := V (φ) + V (ψ) and V (φ ∧ ψ) := V (φ) · V (ψ).

For each formula φ ∈ Fmla[S], let Xφ be the set of propositional variables that occur in
φ. Clearly, V (φ) depends only the values of V on Xφ. The “problem” SAT[S] is the series
σ : Fmla[S] −→ S defined as follows: SAT[S](φ) =

∑
V ∈{0,1}Xφ V (φ).

The following corollary of our weighted version of Fagin’s theorem has also appeared
as [34, Thm. 6.3] with a direct proof. Our proof generalizes the reasoning for the Boolean
case in [25].

▶ Corollary 25 (Weighted Cook–Levin’s theorem). Let S be a finitely generated semiring.
Then, SAT[S] is NP[S]-complete.

Now it is natural to wonder what happens with other well-known descriptive complexity
results. In the reminder of this section we will tackle a few more of these. We start with
the Immerman–Vardi’s theorem, a result that first appeared in the Boolean case in the
papers [31, 48]. Our own approach is inspired by [3, Thm. 4.4] where a version of the result
for the counting complexity class FP is provided using a weighted logic with the semiring N.
We must observe, however, that our proof is a generalization of that in [3] that works for all
semirings and not only N.

▶ Theorem 26 (Weighted Immerman–Vardi’s theorem). The logic wLFP[S] (with weights in
a semiring S) captures FP[S] over ordered structures in the vocabulary τ .

▶ Corollary 27. For ordered structures in a finite vocabulary τ , we have that:
(1) wLFP[B] captures P (originally proved in [31, 48]).
(2) wLFP[N] captures FP (originally proved in [3]).

▶ Remark 28. Observe that using second-order Horn logic (which is known to capture P [24])
instead of least fixed-point logic, would not work for us, as in the weighted version one can
encode a #P-complete problem (namely #HORNSAT). This was already noted in [3].

In the next result, wPFP[S] + {
∏
X,

∑
X} will denote the logic that is obtained from

wPFP[S] by the addition of the second-order quantitative quantifiers
∏
X and

∑
X. Clearly,

when S = B, this is the same as second-order logic with partial fixed points. The Boolean
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counterpart of Theorem 29, namely that second-order logic extended with partial fixed points
characterizes PSPACE is folklore, but a proof can be found in [41, Thm. 4]. The classical
argument also uses the result for partial fixed-point logic in [1, 48] stating that the logic
characterizes PSPACE over ordered structures.

▶ Theorem 29. The logic wPFP[S] + {
∏
X,

∑
X} (with weights in a semiring S) captures

FPSPACE[S] over ordered structures in the vocabulary τ .

▶ Corollary 30. For ordered structures in a finite vocabulary τ , we have that:
(1) wPFP[B] + {

∏
X,

∑
X} captures PSPACE (folklore, cf. [41]).

(2) wPFP[N] + {
∏
X,

∑
X} captures FPSPACE (originally proved in [3]).

▶ Theorem 31. The logic wPFP[S] (with weights in a semiring S) captures FPSPACEpoly[S]
over ordered structures in the vocabulary τ .

▶ Corollary 32. For ordered structures in a finite vocabulary τ , we have that:
(1) wPFP[B] captures PSPACE (originally proved in [1, 48]).
(2) wPFP[N] captures FPSPACEpoly (originally proved in [3]).

▶ Theorem 33. The logic wDTC[S] (with weights in a semiring S) captures FPLOG[S] over
ordered structures in the vocabulary τ .

▶ Corollary 34. For ordered structures in a finite vocabulary τ , we have that:
(1) wDTC[B] captures DLOGSPACE (originally proved in [31]).
(2) wDTC[N] captures FPLOG.

To end the present section, we address the general and interesting open problem suggested
in [18] regarding a Fagin theorem that characterizes the class NP[R] from [18, Def. 14]. We
begin by observing that for the machine model in [18, Def. 12], Fagin’s theorem will fail
if the logic considered is wESO. This is essentially due to the fact that semiring Turing
machines allow for arbitrary semiring values on the tape and can transition with these values.
However, such a large set of transitions, is only actually needed when there are infinitely
many semiring values in the input words.

▶ Proposition 35. Let R be a commutative semiring. There is a series P ∈ NP[R] such
that for no φ ∈ wESO, ||φ|| = P .

Thus one might reasonably further ask what kind of logic would capture NP[R]. Observe
that an obvious challenge here is that in the proof of Fagin’s theorem at some point we need
to encode in the logic by means of a sentence involving a long (but finite) disjunction what
the legal transitions of our machine are. Consequently, in the presence of infinitely many
transitions, it is not clear how to achieve a Fagin-style characterization in a finitary language
as before. Furthermore, it appears that semiring Turing machines are more suitable for an
analysis that involves semirings that are not finitely generated.

By contrast to the above situation, we might ask a more restricted question if what we
are doing is trying to capture NP[R] over the class of all finite ordered structures. Recall
that we are considering finite structures to be given via their binary encodings and thus the
relevant series in NP[R] are those that take as input merely binary strings. These series are
not computed by SRTMs that involve infinitely many transitions because the input words
do not involve semiring values. So let us consider now the modification of [18, Def. 12] that
only allows semiring Turing machines to come with a finite set of transitions. In this case we
will easily see that their machine model coincides with ours.
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▶ Proposition 36. Let R be a commutative semiring and allow only finitely many transitions
in a semiring Turing machine. Then NP[R] = NP[R], i.e. the NP class in the sense of [18]
coincides with the NP class in our sense.

6 Conclusions and further work

In this paper, we have established a few central results in weighted descriptive complexity,
providing quantitative versions of Fagin’s theorem and the Immerman–Vardi’s theorem, among
other logical characterizations of complexity classes. We also plan to extend our weighted
Fagin’s theorem to the even larger class of valuation monoids containing all semirings and
supporting average calculations by the theory developed in [21] for weighted finite automata
over words and weighted EMSO logic.

Furthermore, in future work, we aim to characterize further weighted complexity classes.
For example, in the definition of NP[S], by changing the requirement about polynomial time
to logarithmic space on the size of the input, we can obtain a weighted complexity class
that generalizes the classical counting class #L. The latter has been characterized by means
of a logic weighted on the semiring N in [3, Thm. 6.4]. We suspect that this work can be
generalized.
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Abstract
The Subset Feedback Vertex Set problem (SFVS) is to delete k vertices from a given graph
such that in the remaining graph, any vertex in a subset T of vertices (called a terminal set) is not in
a cycle. The famous Feedback Vertex Set problem is the special case of SFVS with T being the
whole set of vertices. In this paper, we study exact algorithms for SFVS in Split Graphs (SFVS-S)
and SFVS in Chordal Graphs (SFVS-C). SFVS-S generalizes the minimum vertex cover problem
and the prize-collecting version of the maximum independent set problem in hypergraphs (PCMIS),
and SFVS-C further generalizes SFVS-S. Both SFVS-S and SFVS-C are implicit 3-Hitting Set
problems. However, it is not easy to solve them faster than 3-Hitting Set. In 2019, Philip, Rajan,
Saurabh, and Tale (Algorithmica 2019) proved that SFVS-C can be solved in O˚

p2k
q time, slightly

improving the best result O˚
p2.0755k

q for 3-Hitting Set. In this paper, we break the “2k-barrier”
for SFVS-S and SFVS-C by introducing an O˚

p1.8192k
q-time algorithm. This achievement also

indicates that PCMIS can be solved in O˚
p1.8192n

q time, marking the first exact algorithm for
PCMIS that outperforms the trivial O˚

p2n
q threshold. Our algorithm uses reduction and branching

rules based on the Dulmage-Mendelsohn decomposition and a divide-and-conquer method.

2012 ACM Subject Classification Theory of computation Ñ Parameterized complexity and exact
algorithms

Keywords and phrases Subset Feedback Vertex Set, Prize-Collecting Maximum Independent Set,
Parameterized Algorithms, Split Graphs, Chordal Graphs, Dulmage-Mendelsohn Decomposition

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.15

Related Version Full Version: https://arxiv.org/abs/2212.04726

Funding Mingyu Xiao: Mingyu Xiao acknowledges the National Science Foundation of China under
Grant No. 62372095.

1 Introduction

The Feedback Vertex Set problem (FVS), one of Karp’s 21 NP-complete problems [32], is
a fundamental problem in graph algorithms. Given a graph G with n vertices and a parameter
k, FVS is to decide whether there is a subset of vertices of size at most k whose deletion
makes the remaining graph acyclic. FVS arises in a variety of applications in various fields
such as circuit testing, network communications, deadlock resolution, artificial intelligence,
and computational biology [6, 11, 29]. Because of the importance of FVS, different variants
and generalizations have been extensively studied in the literature. The Subset Feedback
Vertex Set problem (SFVS), introduced by Even et al. [17] in 2000, is a famous case. In
SFVS, we are further given a vertex subset T Ď V called terminal set, and we are asked
to determine whether there is a set of vertices of size at most k whose removal makes each
terminal in T not contained in any cycle in the remaining graph. When the terminal set is the
whole vertex set of the graph, SFVS becomes FVS. SFVS also generalizes another famous

© Tian Bai and Mingyu Xiao;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tianbai@std.uestc.edu.cn
https://orcid.org/0000-0003-1669-285X
mailto:myxiao@uestc.edu.cn
https://orcid.org/0000-0002-1012-2373
https://doi.org/10.4230/LIPIcs.MFCS.2024.15
https://arxiv.org/abs/2212.04726
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Breaking the Barrier 2k for SFVS in Chordal Graphs

problem, i.e., Node Multiway Cut. Whether SFVS is FPT had been once a well-known
open problem [12]. Until 2013, Cygan et al. [11] proved the fixed-parameter tractability
of SFVS by giving an algorithm with running time O˚p2Opk log kqq. Recently, Iwata et al.
[30, 31] showed the first single-exponential algorithm with running time O˚p4kq for SFVS.
In 2018, Hols and Kratsch showed that SFVS has a randomized polynomial kernelization
with Opk9q vertices [25]. Besides, FVS admits a quadratic kernel [28, 40], whereas whether
there is a deterministic polynomial kernel for SFVS is still unknown.

SFVS has also been studied in several graph classes [35, 37, 2, 3, 4], such as interval graphs,
permutation graphs, chordal graphs, and split graphs. SFVS remains NP-complete even in
split graphs [18], while FVS in split and chordal graphs are polynomial-time solvable [44]. It
turns out that both SFVS in Split Graphs (SFVS-S) and SFVS in Chordal Graphs
(SFVS-C) can be regarded as implicit 3-Hitting Set. Its importance stems from the
fact that 3-Hitting Set can be used to recast a wide range of problems, and now it can
be solved in time O˚p2.0755kq [42]. On the other hand, when we formulate SFVS-S or
SFVS-C in terms of 3-Hitting Set, the structural properties of the input graph are
lost. We believe these structural properties can potentially be exploited to obtain faster
algorithms for the original problems. However, designing a faster algorithm for SFVS-S
and SFVS-C seems challenging. Only recently did Philip et al. [37] improve the running
bound to O˚p2kq, where they needed to consider many cases of the clique-tree structures
of the chordal graphs. In some cases, they needed to branch into seven branches. Note
that 2k is another barrier frequently considered in algorithm design and analysis. Some
preliminary brute force algorithms, dynamic programming, and advanced techniques, such as
inclusion-exclusion, iterative compression, and subset convolution, always lead to the bound
2k. Breaking the “2k-barrier” becomes an interesting question for many problems.

We highlight that SFVS-S and SFVS-C are important since they generalize a natural
variation of the maximum independent set problem called Prize-Collecting Maximum
Independent Set in hypergraphs (PCMIS). In PCMIS, we are given a hypergraph
H with n vertices. The object is to find a vertex subset S maximizing the size of S

minus the number of hyperedges in H that contain at least two vertices from S. In other
words, we may balance the size of the vertex subset against the number of hyperedges
on which S violates the independent constraints. The prize-collecting version of many
important fundamental problems has drawn certain attention recently, such as Prize-
Collecting Steiner Tree [36], Prize-Collecting Network Activation [21], and
Prize-Collecting Travelling Salesman Problem [5]. To the best of our knowledge, no
exact algorithm for PCMIS faster than O˚p2nq is known before.

Fomin et al. [19] showed that Cluster Vertex Deletion and Directed FVS in
Tournaments admit subquadratic kernels with Opk5{3q vertices and Opk3{2q vertices,
respectively; while the size of the best kernel for SFVS-C is still quadratic, which can
be easily obtained from the kernelization for 3-Hitting Set [1]. As for parameterized
algorithms, Dom et al. [14] first designed an O˚p2kq-time algorithm for Directed FVS in
Tournaments, breaking the barrier of 3-Hitting Set, and the running time bound of
which was later improved to O˚p1.6191kq by Kumar and Lokshtanov [33]. For Cluster
Vertex Deletion, in 2010, Hüffner et al. [27] first broke the barrier of 3-Hitting Set by
obtaining an O˚p2kq-time algorithm. Now it can be solved in O˚p1.7549kq time [41].

Contributions and Techniques

In this paper, we contribute to parameterized algorithms for SFVS-S and SFVS-C. Our
main contributions are summarized as follows.
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1. We firstly break the “2k-barrier” for SFVS-S and SFVS-C by giving an O˚p1.8192kq-time
algorithm, which significantly improves previous algorithms.

2. We show that an O˚pαkq-time algorithm (α ą 1) for SFVS-S leads to an O˚pαnq-
algorithm for PCMIS. Thus, we can solve PCMIS in time O˚p1.8192nq, also breaking
the “2n-barrier” for this problem for the first time.

3. We make use of the Dulmage-Mendelsohn decomposition of bipartite graphs to catch
structural properties, and then we are able to use a new measure µ to analyze the running
time bound. This is the most crucial technique for us to obtain a significant improvement.
Note that direct analysis based on the original measure k has encountered bottlenecks.
Any tiny improvement may need complicated case-analysis.

4. The technique based on Dulmage-Mendelsohn decomposition can only solve SFVS-S.
We also propose a divide-and-conquer method by dividing the instance of SFVS-C into
instances of SFVS-S. We show that SFVS-C can be solved in time O˚pαk ` 1.6191kq if
SFVS-S can be solved in time O˚pαkq.

2 Preliminaries

2.1 Graphs
Let G “ pV, Eq stand for an undirected graph with a set V of vertices and a set E of edges.
We adopt the convention that n “ |V | and m “ |E|. When a graph G1 is mentioned without
specifying its vertex and edge sets, we use V pG1q and EpG1q to denote these sets, respectively.
For a subset X Ď V of vertices, we define the following notations. The neighbour set of X,
denoted by NGpXq, is the set of all vertices in V zX that are adjacent to a vertex in X, and
the closed neighbour set of X is expressed as NGrXs – NGpXq Y X. The subgraph of G

induced by X is denoted by GrXs. We simply write G ´ X – GrV zXs as the subgraph
obtained from G removing X together with edges incident on any vertex in X. For ease of
notation, we may denote a singleton set t v u by v.

The degree of v in G is defined by degGpvq – |NGpvq|. An edge e is a bridge if it is not
contained in any cycle of G. A separator of a graph is a vertex set such that its deletion
increases the number of connected components of the graph. The shorthand rrs is expressed
as the set t 1, 2, . . . , r u for r P N`.

In an undirected graph G “ pV, Eq, a set X Ď V is a clique if every pair of distinct
vertices u and v in X are connected by an edge uv P E; X is an independent set if uv R E for
every pair of vertices u and v in X; X is a vertex cover if for any edge uv P E at least one of
u and v is in X. A subset S Ď V is a vertex cover of G if and only if V zS is an independent
set. A vertex v is called simplicial in G if NGrvs is a clique [13]. A clique in G is simplicial
if it is maximal and contains at least one simplicial vertex. A matching is a set of edges
without common vertices.

2.2 Chordal Graphs and Split Graphs
A chord of a cycle is an edge that connects two non-consecutive vertices of the cycle. A graph
G is said to be chordal if every cycle of length at least 4 contains a chord. A chordal graph
G holds the following properties that will be used in the paper: Every induced subgraph of a
chordal graph G is chordal, and every minimal separator of G is a clique [13].

Consider a connected chordal graph G, and let QG denote the set of all maximal cliques
in G. A clique graph of G is an undirected graph pQG, EG, σq with the edge-weighted function
σ : EG Ñ N satisfying that an edge Q1Q2 P EG if Q1 X Q2 is a minimal separator and
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σpQ1Q2q – |Q1 X Q2|. A clique tree TG of G is a maximum spanning tree of the clique graph
of G, and the following facts hold [7, 23, 43]: (1) Each leaf node of a clique tree TG is a
simplicial clique in G; (2) For a pair of maximal cliques Q1 and Q2 such that Q1Q2 P EG,
Q1 X Q2 separates each pair of vertices v1 P Q1zQ2 and v2 P Q2zQ1.

Whether a graph is chordal can be checked in linear time Opn ` mq [38]. The number
of maximal cliques in a chordal graph G is at most n [22], and all of them can be listed in
linear time Opn ` mq [23]. These properties will be used in our algorithm.

A graph is a split graph if its vertex set can be partitioned into a clique K and an
independent set I [39]. Such a partition pI, Kq is called a split partition. It is worth noting
that every split graph is chordal, and whether a graph is a split graph can also be checked in
linear time Opn ` mq by definition.

2.3 Subset Feedback Vertex Set in Split and Chordal Graphs
Given a terminal set T Ď V of an undirected graph G “ pV, Eq, a cycle in G is a T -cycle if
it contains a terminal from T , and a T -triangle is specifically a T -cycle of length three. A
subset feedback vertex set of a graph G with a terminal set T is a subset of V whose removal
makes G contain no T -cycle.

In this study, we focus on SFVS in split and chordal graphs. The problem takes as
input a chordal graph G “ pV, Eq, a terminal set T Ď V , and an integer k. The task is to
determine whether there is a subset feedback vertex set S of size at most k. Moreover, the
following lemma shows that the problem can be transformed into the problem of finding a
subset of vertices intersecting all T -triangles instead of all T -cycles.

▶ Lemma 1 ([37]). Let G “ pV, Eq be a chordal graph and T Ď V be the terminal set.
A vertex set S Ď V is a subset feedback vertex set of G if and only if G ´ S contains no
T -triangles.

For the sake of presentation, this paper considers a slight generalization of SFVS-C. In
this generalized version, a set of marked edges M Ď E is further given, and we are asked
to decide whether there is a subset feedback vertex set of size at most k, which also covers
all marked edges, i.e., each marked edge must have at least one of its endpoints included in
the set. This set is called a solution to the given instance. Among all solutions, a minimum
solution is the one with the smallest size. The size of a minimum solution to an instance I is
denoted by spIq. Formally, the generalization of SFVS-C is defined as follows.

(Generalized) SFVS-C
Input: A chordal graph G “ pV, Eq, a terminal set T Ď V , a marked edge set M Ď E,
and an integer k.
Output: Determine whether there is a subset of vertices S Ď V of size at most k,
such that neither edges in M nor T -cycles exist in G ´ S.

We have the following simple observations. Let abc be a T -triangle with a degree-2 vertex
b in the graph. Any solution must contain at least one of the vertices a, b, and c. If vertex b

is included in the solution, we can replace it with either a or c without affecting the solution’s
feasibility. Consequently, we can simplify the graph by removing b and marking edge ac.
This observation motivates the consideration of the generalized version.

We will simply use SFVS-C to denote the generalized version. When the input graphs
are restricted to split graphs, the problem becomes SFVS-S. An instance of our problem is
denoted by I “ pG, T, M, kq. During our algorithm, it may be necessary to consider some
sub-instances where the graph is a subgraph of G. We define the instance induced by X Ď V

or GrXs as pGrXs, T X X, M X EpGrXsq, kq.
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In this paper, our algorithms follow a standard branch-and-reduce paradigm. An operation
on the input instance, such as the reduction rule, is safe if the input instance is a Yes-instance
if and only if the output instance is a Yes-instance. A branching operation is safe if the
input instance is a Yes-instance if and only if at least one of the resulting sub-instances is a
Yes-instance. Additionally, we use branching vectors and branching factors in our analysis.
The definitions of these standard concepts can be found in [10].

3 The Dulmage-Mendelsohn Decomposition and Reduction

This section introduces the Dulmage-Mendelsohn decomposition of a bipartite graph [15, 16].
The Dulmage-Mendelsohn decomposition will play a crucial role in our algorithm for SFVS-S.

▶ Definition 2 (Dulmage-Mendelsohn Decomposition [34, 9]). Let F be a bipartite graph with
bipartition V pF q “ A Y B. The Dulmage-Mendelsohn decomposition (cf. Fig. 1) of F is a
partitioning of V pF q into three disjoint parts C, H and R, such that
1. C is an independent set and H “ NF pCq;
2. F rRs has a perfect matching;
3. H is the intersection of all minimum vertex covers of F ; and
4. any maximum matching in F includes all vertices in R Y H.

A
u1 u2 u3 u4 u5 u6 u7

B
v1 v2 v3 v4 v5 v6 v7

R H C

Figure 1 A bipartite graph F with bipartition V pF q “ A Y B, where A “ t ui u
7
i“1 and B “

t vi u
7
i“1. The thick edges form a maximum matching of F . The Dulmage-Mendelsohn decomposition

of F is pC, H, Rq with C “ t u6, u7, v5, v6, v7 u, H “ t u4, u5, v4 u, and R “ t u1, u2, u3, v1, v2, v3 u. If
F is an auxiliary subgraph of an instance of SFVS-S, then Â “ t u1, u2, u3, u6, u7 u (denoted by
blue vertices) and B̂ “ t v1, v2, v3, v4 u (denoted by green vertices).

The Dulmage-Mendelsohn decomposition always exists and is unique [34], which can
be computed in time Opm

?
nq by finding the maximum matching of the graph F [26].

Leveraging this decomposition, we propose a crucial reduction rule for SFVS-S.
Consider an instance I “ pG “ pV, Eq, T, M, kq of SFVS-S. Let pI, Kq be a split partition

of G, where I is an independent set and K is a clique. Based on the split partition pI, Kq of G,
we can uniquely construct an auxiliary bipartite subgraph F with bipartition V pF q “ A Y B.
In subgraph F , partition A is the subset of the vertices in I that are only incident to marked
edges and B “ NGpAq. In addition, EpF q is the set of all edges between A and B, i.e.,
EpF q – tab P E : a P A, b P Bu. Notice that F contains no isolated vertex, and all edges in
F are marked by the definitions of A and B.

Let pR, H, Cq denote the Dulmage-Mendelsohn decomposition of the auxiliary subgraph
F . Define Â – A X pR Y Cq and B̂ – B X pR Y Hq (see Fig. 1). We have B̂ “ NGpÂq,
and there exists a matching saturating all vertices in B̂. This indicates that every solution
contains at least |B̂| vertices in Â Y B̂. On the other hand, B̂ is a minimum vertex cover
of the subgraph induced by Â Y B̂. Consequently, there exists a minimum solution to I
containing B̂. Next, we introduce the reduction rule, which is called the DM Reduction.
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▶ Reduction Rule (DM Reduction). Let F be the auxiliary subgraph with bipartition V pF q “

A Y B, and let pR, H, Cq denote the Dulmage-Mendelsohn decomposition of F . If Â and B̂

are non-empty, delete Â and B̂ from the graph G and decrease k by |B̂| “ |R|{2 ` |H X B|.

▶ Lemma 3. The DM Reduction is safe.

Proof. Recall that Â – AXpRYCq and B̂ – B XpRYHq. According to the definition of the
Dulmage-Mendelsohn decomposition, we know that NF pÂq “ B̂, and B̂ is a minimum vertex
cover of the subgraph induced by Â Y B̂. For a solution S to the input instance I, the size of
S X pÂ Y B̂q is no less than |B̂| since S covers every edge in M . Let S1 “ pSzÂq Y B̂. Observe
that |Â| ą |B̂|; otherwise, A would be a minimum vertex cover of F , contradicting that H is
a subset of any minimum vertex cover. Consequently, we derive that |S1| ď |S|. In addition,
we can see that S1 is also a solution, leading to the safeness of the DM Reduction. ◀

▶ Lemma 4. Given an instance I “ pG, T, M, kq of SFVS-S, let F be the auxiliary subgraph
of G with bipartition V pF q “ A Y B. If the DM Reduction cannot be applied, for any
non-empty subset A1 Ď A, it holds that |A1| ă |NGpA1q|.

Proof. If the DM Reduction cannot be applied, the Dulmage-Mendelsohn decomposition of
F must be pR, H, Cq “ p∅, A, Bq. According to the definition of the Dulmage-Mendelsohn
decomposition, A is a vertex cover, and H “ A is the intersection of all minimum vertex
covers of F . As a result, we know that A is the unique minimum vertex cover of the
auxiliary subgraph F . We assume to the contrary that there exists a subset A1 Ď A such that
|A1| ě |NGpA1q|. Then we immediately know that pAzA1q Y NGpA1q is a minimum vertex
cover distinct from A, leading to a contradiction. ◀

▶ Lemma 5. Given an instance I “ pG, T, M, kq of SFVS-S, let F be the auxiliary subgraph
of G with bipartition V pF q “ A Y B. If the DM Reduction cannot be applied and k ă |A|,
the instance I is a No-instance.

Proof. The size of the solution to I “ pG, T, M, kq is no less than the size of the minimum
vertex cover of F since all marked edges need to be covered. If the DM Reduction cannot be
applied, Lemma 4 implies that A is the minimum vertex cover of F . Consequently, the size
of the minimum solution to I must be no less than |A|, which means that an instance I is a
No-instance if k ă |A|. ◀

4 Algorithms for SFVS in Split and Chordal Graphs

This section mainly presents an algorithm for SFVS-S. This algorithm plays a critical role
in the algorithm for SFVS-C.

4.1 Good Instances
We begin by introducing a special instance of SFVS-S, which we refer to as a good instance.
We show that solving good instances is as hard as solving normal instances of SFVS-S in
some sense.

▶ Definition 6 (Good Instances). An instance I “ pG “ pV, Eq, T, M, kq of SFVS-S is called
good if it satisfies the following properties:

(i) pT, V zT q is the split partition, where terminal set T is the independent set and V zT

forms the clique;
(ii) every marked edge connects one terminal and one non-terminal; and
(iii) the DM reduction cannot be applied on the auxiliary subgraph determined by pT, V zT q.
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▶ Lemma 7. For any constant α ą 1, SFVS-S can be solved in time O˚pαkq if and only if
SFVS-S on good instances can be solved in time O˚pαkq.

Proof. We only need to show that if there exists an algorithm GoodAlg solving good instances
in time O˚pαkq, there also exists an algorithm for SFVS-S running in the same time bound
O˚pαkq. The other direction is trivial.

Let I “ pG “ pV, Eq, T, M, kq be an instance of SFVS-S. Notice that α is a constant.
We select a sufficiently large constant C such that the branching factor of the branching
vector p1, C, Cq does not exceed the constant α. Our algorithm for SFVS-S is constructed
below.

First, we find the split partition pI, Kq of G in polynomial time. If |K| ď 2C, we solve
the instance directly in polynomial time by brute-force enumerating subsets of K in the
solution. Otherwise, we assume that the size of K is at least 2C ` 1. We consider two cases.

Case 1. There is a terminal t P K. In this case, we partition Kz t t u into two parts K 1 and
K2 such that |K 1| ě C and |K2| ě C. If t is not included in the solution, at most one vertex
in the clique Kz t t u is not contained in the solution. Consequently, either K 1 or K2 must
be part of the solution. We can branch into three instances by either

removing t, and decreasing k by 1;
removing K 1, and decreasing k by |K 1|; or
removing K2, and decreasing k by |K2|.

This branching rule yields a branching vector p1, |K 1|, |K2|q (w.r.t. the measure k) with the
branching factor not greater than α since |K 1| ě C and |K2| ě C.

Case 2. No terminal is in K. For this case, each non-terminal v P I is not contained in any
T -triangle. However, we cannot directly remove v since it may be incident to marked edges.
We can add an edge between v and each vertex u P K not adjacent to v without creating any
new T -triangle. This operation will change v from a vertex in I to a vertex in K, preserving
the graph as a split graph. After handling all non-terminal v P I, we know that the terminal
set and non-terminal set form a split partition. Subsequently, for each marked edge between
two non-terminals v and u, we add a new degree-2 terminal tuv adjacent to u and v and
unmark the edge uv. We then apply the DM Reduction and obtain a good instance. Finally,
we call the algorithm GoodAlg to solve the good instance in time O˚pαkq.

By either branching with a branching factor not greater than α or solving the instance
directly in O˚pαkq time, our algorithm runs in time O˚pαkq. ◀

In the rest of this section, we only need to focus on the algorithm, denoted as GoodAlg,
for good instances of SFVS-S.

4.2 The Measure and Its Properties

With the help of the auxiliary subgraph and DM Reduction (defined in Section 3), we use
the following specific measure to analyze our algorithm.

▶ Definition 8 (The Measure of Good Instances). Given a good instance I “ pG, T, M, kq of
SFVS-S, let F be the auxiliary subgraph of G with bipartition V pF q “ A Y B. We define the
measure of the instance I as

µpIq – k ´
2
3 |A|.
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A
t1 t2 t3 t4 t5 t6

B
u1 u2 u3 u4 v u6

Figure 2 The graph G, where black vertices are terminals, white vertices are non-terminals,
thick and red edges are marked edges, and edges between two non-terminals are not presented
in the graph; the auxiliary subgraph is F with bipartition V pF q “ A Y B, where A “ t t1, t2, t3 u

and B “ t u1, u2, u3, u4, v u (denoted by dotted boxes). After deleting v, the DM Reduction can be
applied. When doing the DM Reduction, Â “ t t2, t3 u and B̂ “ t u3, u4 u (denoted by dashed boxes)
are deleted.

In our algorithm GoodAlg, the DM Reduction will be applied as much as possible once
the graph changes to keep the instance always good. Additionally, according to Lemma 5, an
instance I can be solved in polynomial time when µpIq ď 0. Thus, we can use µp¨q, defined
in Definition 8, as our measure to analyze the algorithm.

We may branch on a vertex by including it in the solution or excluding it from the solution
in our algorithm. In the first branch, we delete the vertex from the graph and decrease the
parameter k by 1. In the second branch, we execute a basic operation of hiding the vertex,
which is defined according to whether the vertex is a terminal.
Hiding a terminal t: delete every vertex in NM ptq and decrease k by |NM ptq|.
Hiding a non-terminal v: delete every terminal in NM pvq and decrease k by |NM pvq|; for

each T -triangle vtu containing v, mark edge tu; and last, delete v from the graph.
Here, the notation NM pvq represents the set of the vertices adjacent to v via a marked edge.

▶ Lemma 9. If there exists a solution containing a vertex v, then it is safe to delete v,
decrease k by 1, and do the DM Reduction. If there exists a solution not containing a vertex
v, then it is safe to hide v and do the DM Reduction. Moreover, the resulting instance is
good after applying either of the above two operations.

Proof. Assuming a solution S contains v, it is trivial that Sz t v u is also a solution to the
instance pG ´ v, T z t v u , k ´ 1q. Moreover, since the DM Reduction is safe by Lemma 3, the
first operation in the lemma is safe.

Now, we assume that a solution S does not contain a vertex v. Since S must cover all
edges in M , we know that S contains all neighbours of v in M . This shows that hiding v is
safe if v is a terminal. Suppose that v is a non-terminal, for every T -triangle vut containing v,
we have that S X t u, t u ‰ ∅. Consequently, it is safe to mark the edge ut further. Moreover,
since the DM Reduction is safe by Lemma 3, the second operation in the lemma is safe.

Finally, either operation only deletes some vertices and marks some edges between
terminals and non-terminals. Hence, the terminal set and the non-terminal set still form
an independent set and a clique, repetitively. Additionally, the DM Reduction cannot be
applied on the resulting instances. Therefore, the resulting instance is good after applying
either of the above two operations. ◀

▶ Lemma 10. Given the good instance I “ pG “ pV, Eq, T, M, kq, let F be the auxiliary
subgraph of G with bipartition V pF q “ A Y B, and v be a vertex in V zA. Let I1 be the
instance obtained from I by first deleting v and then doing the DM Reduction (cf. Fig. 2).
Then I1 is a good instance such that µpIq ´ µpI1q ě 0.
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A
t1 t2 t t4 t5 t6

B
u1 u2 u3 u4 u5 v6 u7

Figure 3 The graph G, where black vertices are terminals, white vertices are non-terminals,
thick and red edges are marked edges, and edges between two non-terminals are not presented in
the graph; the auxiliary subgraph is F with bipartition V pF q “ A Y B, where A “ t t1, t2, t3 u and
B “ t u1, u2, u3, u4, u5 u (denoted by dotted boxes). After hiding t, the terminal t2 becomes isolated,
and the DM Reduction cannot be applied.

Proof. Let I0 “ pG0, T0, M0, k0q be the instance after deleting v from I. Then, I1 “

pG1, T1, M1, k1q is the instance after doing the DM Reduction from I0. Let Fi with bipartition
V pFiq “ Ai Y Bi be the auxiliary subgraph of Gi, where i P t 0, 1 u.

It is clear that µpI0q “ µpIq since no edge is newly marked and k0 “ k holds. Assume
that Â0 Ď A0 and B̂0 Ď B0 are deleted. We note that the DM Reduction cannot be applied
if and only if Â0 “ B̂0 “ ∅. Observe that A1 “ A0zÂ0, B1 “ B0zB̂0 and k1 “ k0 ´ |B̂0|.
Thus, we have

µpIq ´ µpI1q “ µpI0q ´ µpI1q “ pk0 ´ 2{3 ¨ |A0|q ´ pk1 ´ 2{3 ¨ |A1|q “ |B̂0| ´ 2{3 ¨ |Â0|.

If the DM Reduction cannot be applied, then Â0 “ B̂0 “ ∅, which already implies that
µpIq ´ µpI1q “ 0. Otherwise, the DM Reduction can be applied after deleting v. In this
case, we have v P B. Additionally, according to Lemma 4, I is a good instance implying that
NGpÂ0q “ B̂0 Y t v u and |B̂0 Y t v u | ą |Â0|. Therefore, we obtain that |Â0| “ |B̂0|. Thus
we get µpIq ´ µpI1q ě 0. The lemma holds. ◀

▶ Lemma 11. Given a good instance I “ pG “ pV, Eq, T, M, kq, let F be the auxiliary
subgraph of G with bipartition V pF q “ A Y B, and t be a terminal in T . Let I1 be the
instance obtained from I by first hiding t and then doing the DM Reduction (cf. Fig. 3).
Then I1 is a good instance such that

If t P A, it holds µpIq ´ µpI1q ě 4{3; and
If t R A, it holds µpIq ´ µpI1q ě 0.

Proof. Let instance I0 “ pG0, T0, M0, k0q denote the instance after hiding t from I. Then,
I1 “ pG1, T1, M1, k1q is the instance after doing the DM Reduction from I0. Let Fi with
bipartition V pFiq “ Ai Y Bi be the auxiliary subgraph of Gi, where i P t 0, 1 u.

After hiding terminal t, a non-terminal is removed if and only if it is adjacent to t via a
marked edge. Thus, B0 “ BzNM ptq and k0 “ k ´ |NM ptq| hold. It follows that

µpIq ´ µpI0q “ pk ´ 2{3 ¨ |A|q ´ pk0 ´ 2{3 ¨ |A0|q “ |NM ptq| ´ 2{3 ¨ p|A| ´ |A0|q.

Notice that after hiding t the only deleted terminal is t. Besides, a terminal t1 ‰ t is
removed from A if and only if it becomes an isolated vertex. It follows that NGpt1q Ď NM ptq

if t1 P AzA0.
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Assume that Â0 Ď A0 and B̂0 Ď B0 are deleted after doing the DM Reduction. We
note that the DM Reduction cannot be applied if and only if Â0 “ B̂0 “ ∅. Observe that
k1 “ k0 ´ |B̂0| and |A1| “ |A0| ´ |Â0|. Thus, we derive that

µpIq ´ µpI1q “ |NM ptq| ´ 2{3 ¨ p|A| ´ |A0|q ` |B̂0| ´ 2{3 ¨ |Â0|

ě |NM ptq Y B̂0| ´ 2{3 ¨ |AzA1|.

Consider a terminal t1 P AzA1. If t1 P AzA0, we know NGpt1q Ď NM ptq. Otherwise,
we have t1 P Â0, and all neighbours of t1 in G are deleted, which indicates that NGpt1q Ď

B̂0 Y NM ptq. It follows that NGpAzA1q Ď B̂0 Y NM ptq. Since I is good, by Lemma 4, we
have AzA1 “ ∅ or |NGpAzA1q| ą |AzA1|.

If AzA1 “ ∅ holds, every terminal in A is not deleted, which implies that t R A. In this
case, we have

µpIq ´ µpI1q ě |NM ptq Y B̂0| ě 0.

If |NGpAzA1q| ą |AzA1| holds, we have

µpIq ´ µpI1q ě |NGpAzA1q| ´ 2{3 ¨ |AzA1| ě 4{3.

Therefore, we complete our proof. ◀

▶ Lemma 12. Given a good instance I “ pG “ pV, Eq, T, M, kq, let F be the auxiliary
subgraph of G with bipartition V pF q “ A Y B, and v be a non-terminal in V zT . Let I1 be
the instance obtained from I by first hiding v and then doing the DM Reduction (cf. Fig. 4).
Then I1 is a good instance such that µpIq ´ µpI1q ě 0.

Furthermore, if every terminal (resp. non-terminal) is adjacent to at least two non-
terminals (resp. terminals) and no two 2-degree terminals have identical neighbours in G, it
satisfies that

If v P B, it holds

µpIq ´ µpI1q ě min
"

2
3 |NGpvq X T | ´

1
3 |NM pvq X A|,

4
3

*

.

If v R B, it holds

µpIq ´ µpI1q ě min
"

2
3 |NGpvq X T | `

1
3 |NM pvq X A|,

4
3

*

“
4
3 .

Proof. Let instance I0 “ pG0, T0, M0, k0q denote the instance after hiding v from I. Then,
I1 “ pG1, T1, M1, k1q is the instance after doing the DM Reduction from I0. Let Fi with
bipartition V pFiq “ Ai Y Bi be the auxiliary subgraph of Gi, where i P t 0, 1 u.

After hiding v, a vertex is removed if and only if it is a terminal adjacent to v via a
marked edge. Thus, k0 “ k ´ |NM pvq| and AzA0 “ A X NM pvq. It follows that

µpIq ´ µpI0q “ pk ´
2
3 |A|q ´ pk0 ´

2
3 |A0|q

“ pk ´ k0q `
2
3 |A0zA| ´

2
3 |AzA0|

“ |NM pvq| `
2
3 |A0zA| ´

2
3 |A X NM pvq|.

It is easy to see that µpIq ´ µpI0q ě 0 since |A X NM pvq| ď |NM pvq|. Thus, if the DM
Reduction cannot be applied, we have µpI0q “ µpI1q, leading that µpIq ´ µpI1q ě 0.
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A
t1 t2 t3 t4 t5 t6

B
u1 u2 u3 u4 u5 v u7

Figure 4 The graph G, where black vertices are terminals, white vertices are non-terminals,
thick and red edges are marked edges, and edges between two non-terminals are not presented
in the graph; the auxiliary subgraph is F with bipartition V pF q “ A Y B, where A “ t t1, t2, t3 u

and B “ t u1, u2, u3, u4, u5 u (denoted by dotted boxes). After hiding v, the DM Reduction can be
applied. When doing the DM Reduction, Â “ t t2, t3, t4 u and B̂ “ t u3, u4, u5 u (denoted by dashed
boxes) are deleted.

Next, we consider what terminals belong to set A0zA. On the one hand, a terminal
t P A0zA must be adjacent to v via an unmarked edge. On the other hand, t should not be
an isolated vertex after hiding v, which implies that the terminal t is adjacent to at least one
vertex distinct from v. Thus, if every terminal is adjacent to at least two non-terminals, we
derive that A0zA “ pNGpvq X T qzNM pvq. It follows that

µpIq ´ µpI0q “ |NM pvq| `
2
3 |A0zA| ´

2
3 |A X NM pvq|

“ |NM pvq| `
2
3 |pNGpvq X T qzNM pvq| ´

2
3 |A X NM pvq|

“ |NM pvq| `
2
3 p|NGpvq X T | ´ |NM pvq|q ´

2
3 |A X NM pvq|

ě
2
3 |NGpvq X T | ´

1
3 |A X NM pvq|.

If the DM Reduction cannot be applied on I0, we can derive that

µpIq ´ µpI1q “ µpIq ´ µpI0q ě
2
3 |NGpvq X T | ´

1
3 |A X NM pvq|.

Furthermore, if v R B, then v is not adjacent to any terminal in A, leading that |AXNM pvq| “

0. In the case that v belongs to B and it is adjacent to at least two terminals, we further
have

µpIq ´ µpI1q “ µpIq ´ µpI0q ě
2
3 |NGpvq X T | ě

4
3 . (1)

Now, we assume that the DM Reduction can be applied on I0. Suppose Â0 Ď A0 and
B̂0 Ď B0 are deleted. We know that Â0 and B̂0 are non-empty, and k1 “ k0 ´ |B̂0| “

k ´ |NM pvq| ´ |B̂0| holds. Consider a terminal t1 P AzA1. If t1 P A X NM pvq it is deleted
when hiding v; otherwise, it is deleted when doing the DM Reduction which means that
t1 P A X Â0. It follows that

µpIq ´ µpI1q “pk ´
2
3 |A|q ´ pk1 ´

2
3 |A1|q

“|NM pvq| ` |B̂0| `
2
3 |A1zA| ´

2
3 |AzA1|

ě|NM pvq| ` |B̂0| `
2
3 |A1zA| ´

2
3 p|A X Â0| ` |A X NM pvq|q

ě
1
3 |NM pvq| ` |B̂0| `

2
3 |A1zA| ´

2
3 |A X Â0|.

MFCS 2024



15:12 Breaking the Barrier 2k for SFVS in Chordal Graphs

Now, we analyze the lower bound of µpIq ´ µpI1q and there are two cases.

Case 1.1. A X Â0 is non-empty. We observe that in graph G, v is not adjacent to any
terminal in Â0. This is because all the terminals adjacent to v via a marked edge are deleted
after hiding v and they do not appear in the graph G0. Hence we know B̂0 “ NGpÂ0q.
Besides, we have B “ NGpAq, and thus B X B̂0 “ NGpA X Â0q holds. since I is good and
A X Â0 is non-empty, we get |B X B̂0| ą |A X Â0|. Then we derive that the decrease of the
measure is

µpIq ´ µpI1q ě |B̂0| ´
2
3 |A X Â0| ě 1 `

1
3 |A X Â0| ě

4
3 .

Case 1.2. A X Â0 is empty. In this case, we can directly obtain that

µpIq ´ µpI1q ě
1
3 |NM pvq| ` |B̂0| `

2
3 |A1zA| ě

1
3 |NM pvq| ` 1 ě 1. (2)

Thus, we have proven the measure does not increase.
Finally, we show that µpIq ´ µpI1q ě 4{3 always holds when the input graph satisfies the

condition in the lemma. We consider two subcases.

Case 2.1. v P B. For this subcase, v is adjacent to at least one terminal in A via a marked
edge. Hence, set NM pvq is non-empty, and we get µpIq ´ µpI1q ě 1{3 ` 1 “ 4{3. This
completes that the measure is decreased by at least 4{3 for v P B.

Case 2.2. v R B. We assume to the contrary that if the DM Reduction can be applied
and µpIq ´ µpI1q ă 4{3. According to (2), we can obtain that |NM pvq| “ 0, |B̂0| “ 1 and
|A1zA| “ 0. It means that for every terminal t adjacent to v, it satisfies that
1. degGptq ě 2 holds according to the condition in the lemma;
2. tv is unmarked and t R A since NM pvq is empty;
3. t is in A0 since degGptq ě 2 and v is the unique non-terminal deleted after hiding v;
4. t is deleted when doing the DM Reduction (i.e., t P Â0) since A1 Ď A but t R A; and
5. t has exactly two neighbours in G which are v and the unique vertex in B̂0 (i.e., NGptq “

t v u Y B̂0) since |B̂0| “ 1.
Above all, we derive that all terminals in NGpvq are 2-degree vertices and have the same
neighbours. By the condition in the lemma, vertex v is adjacent to at least two terminals,
contradicting the condition that no two 2-degree terminals have identical neighbours in G.
Combine with (1), we conclude that for any vertex v R B, it holds

µpIq ´ µpI1q ě min
"

2
3 |NGpvq X T |,

4
3

*

“
4
3 . ◀

4.3 An Algorithm for Good Instances
We now give the algorithm GoodAlg that solves the good instances. When introducing a
step, we assume all previous steps cannot be applied.

▷ Step 1. If |A| ą k or even µpIq ă 0, return No and quit. If |T | ď k, return Yes and quit.

▷ Step 2. Delete any vertex in G that is not contained in any T -triangle or marked edge,
and then do the DM Reduction on the instance.

▷ Step 3. If there exists a non-terminal v such that |NGpvq X T | “ 1, hide v and then do
the DM Reduction on the instance.
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Note that the input instance is good, and every terminal is in some T -triangle after Step 3.
Thus, every terminal (resp. non-terminal) is adjacent to at least two non-terminals (resp.
terminals).

▷ Step 4. This step deals with some degree-2 terminals in T zA, and there are two cases.
1. Let t be a degree-2 terminal in T zA. If t is adjacent to exactly one marked edge, hide t

and do the DM Reduction.
2. Let t and t1 be two degree-2 terminals in T zA. If t and t1 have the same neighbours and

none of them is adjacent to a marked edge, delete one of them and do the DM reduction.

After this step, one can easily find that the condition in Lemma 12 holds.

▷ Step 5. If there exists a non-terminal v P B adjacent to exactly one terminal t via a
marked edge and exactly one terminal t1 via an unmarked edge, we branch into two instances
by either

hiding the vertex v and doing the DM Reduction; or
hiding the vertex t and doing the DM Reduction.

▷ Step 6. If there exists a non-terminal v P V zT incident to at least one unmarked edge,
we branch into two instances by either

deleting the vertex v, decreasing k by 1, and doing the DM Reduction; or
hiding v and doing the DM Reduction.

Based on Lemmas 9-12, we can show that Steps 1-4 are safe and they do not increase
the measure. After applying any one of Steps 1-6, the resulting instance (or each resulting
instance of the branching rule) is good. The complete proofs can be found in the full version.

One can easily find that every edge between a terminal and a non-terminal is marked if
Step 6 cannot be applied. Thus, we have T “ A, and Step 1 will be applied and return the
answer. Therefore, we obtain the following result.

▶ Lemma 13. SFVS-S can be solved in time O˚p1.8192kq.

Proof. GoodAlg contains only two branching operations in Steps 5 and 6. By Lemmas 10, 11,
and 12, their branching vectors are not worse than p1, 4{3q whose branching factor is 1.81918.
Thus, we conclude that GoodAlg solves good instances of SFVS-S in time O˚p1.81918kq.
According to Lemma 7, SFVS-S can be solved in time O˚p1.81918kq ď O˚p1.8192kq. ◀

4.4 SFVS in Chordal Graphs
Our result for SFVS-S (i.e., the O˚p1.8192kq-time parameterized algorithm) can also be
effectively adapted to develop fast parameterized algorithms for SFVS-C.

Our algorithm for SFVS-C is divided into two parts. In the first part, we introduce some
reduction rules and branching rules to deal with several easy cases and simplify the instance.
If none of the steps in the first part can be applied, we call the instance a “thin” instance. In
a thin instance, if all terminals are simplicial, we can easily reduce it to a good instance of
SFVS-S and solve it by calling GoodAlg. However, if there are “inner” terminals (terminals
not being simplicial), we employ a divide-and-conquer approach based on the clique-tree
decomposition of chordal graphs in the second part. This technique involves branching on a
minimal separator containing inner terminals. In each branch, we will obtain a good instance
of SFVS-S for each sub-instance and call GoodAlg to solve it. We finally obtain Theorem 14.
The details of the algorithm and analysis can be found in the full version.
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▶ Theorem 14. For any constant α ą 1, SFVS-C can be solved in time O˚pαk ` 1.6191kq

if SFVS-S can be solved in time O˚pαkq.

▶ Corollary 15. SFVS-C can be solved in time O˚p1.8192kq.

5 Prize-Collecting Maximum Independent Set in Hypergraphs

Although we study the subset feedback vertex set problem in graph subclasses, SFVS-S
already generalizes other interesting problems.

Several graph connectivity problems [24, 8, 20] can be modeled as natural problems
in hypergraphs. In hypergraphs, an edge can connect any number of vertices, whereas in
an ordinary graph, an edge connects exactly two vertices. Given a hypergraph H, the set
of vertices and hyperedges are denoted by V pHq and EpHq, respectively. The maximum
independent set problem in hypergraphs aims to find a maximum vertex subset I Ď V pHq

such that every hyperedge contains at most one vertex from I. The maximum independent
set problem in hypergraphs can be easily reduced to the maximum independent set problem
in ordinary graphs: we only need to replace each hyperedge e P EpHq with a clique formed by
the vertices in e to get an ordinary graph. In terms of exact algorithms, we may not need to
distinguish this problem in hypergraphs and ordinary graphs. However, the prize-collecting
version in hypergraphs becomes interesting, which allows us to violate the independent
constraint with penalty. As mentioned above, the prize-collecting version of many central
NP-hard problems has drawn certain attention recently.

Prize-Collecting Maximum Independent Set in hypergraphs (PCMIS)
Input: A hypergraph H and an integer p.
Output: Determine whether there is a subset of vertices I Ď V pHq of the prize at
least p, where the prize of I is the size of I minus the number of hyperedges that
contain at least two vertices from I.

▶ Lemma 16. PCMIS is polynomially solvable for p ď 1, and PCMIS is NP-hard for each
constant p ě 2.

Proof. By definition, any singleton set has a prize of 1. Therefore, PCMIS is polynomially
solvable when p ď 1.

We will prove the NP-hardness of PCMIS with p ě 2 by reducing from the maximum
independent set problem in ordinary undirected graphs. Let pG, kq be an instance of the
maximum independent set problem. We construct an instance pH, pq of PCMIS, where
p ě 2 is a constant. Since p is a constant, we can assume that k ě p.

Suppose |V pGq| “ n and |EpGq| “ m. We now construct a hypergraph H with n vertices
and nm ` k ´ p hyperedges. Specifically, for each vertex v P V pGq, we introduce a vertex v1,
and thus we obtain V pHq “ tv1 : v P V pGqu. Next, for each edge uv P EpGq, we introduce
n identical hyperedges euv

i “ t u, v u (i P rns); we also add k ´ p identical hyperedges
e1

i “ V pHq (i P rk ´ ps). Hence, H contains nm ` pk ´ pq hyperedges: EpHq “ E1
1 Y E1

2,
where E1

1 “ teuv
i “ t u, v u : uv P EpGq, i P rnsu and E1

2 “ te1
i “ V pHq : i P rk ´ psu.

Finally, we show pG, kq is a Yes-instance if and only if pH, pq is a Yes-instance. On the
one hand, let I Ď V pGq be an independent set of G with the size k. Let I 1 “ tv1 : v P Iu,
and we have that every hyperedge in E1

1 contains at most one vertex from I 1. Additionally,
each hyperedge in E1

2 contains exactly k vertices from I 1. Since k ě p ě 2, we derive that
the prize of I 1 is k ´ |E1

2| “ k ´ pk ´ pq “ p, which means that pH, pq is a Yes-instance.
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On the other hand, let I 1 Ď V pHq be a vertex subset of H with the prize p. Let X be the
set of hyperedges containing at least two vertices from I 1. We have that p “ |I 1| ´ |X|. Note
that if one hyperedge evu

i P E1
1 (i P rns) is in X, then all the n hyperedges identical with evu

i

should be in X, which will make p ď |I 1| ´ n ď 0, a contradiction. Therefore, we derive that
I “ tv P V pGq : v1 P I 1u is an independent set in G and X X E1

1 “ H. Since X Ď E1
2, we

have |I| “ |I 1| “ p ` |X| ě p ` pk ´ pq ě k. We conclude that I is an independent set of G

with size at least k, leading that pG, kq is a Yes-instance. ◀

Previously, no exact algorithm for PCMIS faster than O˚p2nq is known. We show that
PCMIS can be solved by reducing it to SFVS-S, and then we break the “2n-barrier” for
PCMIS. For an instance pH, pq of PCMIS, we construct an instance pG, T, M, kq of SFVS-S.
Suppose that H contains n vertices and m hyperedges. We construct a split graph G as
follows. We first introduce a clique with vertices tv1 : v P V pHqu; then for each hyperedge
e P EpHq, introduce a new terminal t1

e whose neighbors are exactly the vertices in the clique
corresponding to the vertices in hyperedge e. The terminal set is set as T “ tt1

e : e P EpHqu,
the marked edge set is set as M “ ∅, and let k “ n ´ p.

▶ Lemma 17. For any constant α ą 1, an O˚pαkq-time algorithm for SFVS-S leads to an
O˚pαn´pq-algorithm for PCMIS.

Proof. For an instance pH, pq of PCMIS, we construct an instance pG, T, M, kq of SFVS-S.
Suppose that H contains n vertices and m hyperedges. We construct a split graph G as
follows. We first introduce a clique with vertices tv1 : v P V pHqu; then for each hyperedge
e P EpHq, introduce a new terminal t1

e whose neighbors are exactly the vertices in the clique
corresponding to the vertices in hyperedge e. The terminal set is set as T “ tt1

e : e P EpHqu,
the marked edge set is set as M “ ∅, and let k “ n ´ p.

We have the key idea: every hyperedge in a hypergraph contains at most one vertex if
and only if the corresponding split graph of the hypergraph contains no T -triangle. Let S be
a solution to pG, T, M, kq containing m1 terminals and n1 non-terminals. We can see that
I “ tv : v1 P V pGqzpT Y Squ is a vertex set with the prize at least pn ´ n1q ´ m1 “ n ´ k “ p

in pH, pq. As for the opposite direction, suppose I is a solution to pH, pq of size n1, and the
prize of I is p. We can derive that there are at most m1 “ n1 ´ p hyperedges containing at
least two vertices from I. This means that in G, we can remove m1 terminals and n ´ n1

non-terminals to obtain a subgraph without any T -triangle, leading that pG, T, M, kq has a
solution of size pn ´ n1q ` m1 “ n ´ p “ k. Therefore, pG, T, M, kq is a Yes-instance if and
only if pH, pq is a Yes-instance. We finish the proof of Lemma 17. ◀

Based on Lemma 13, we obtain an exact algorithm for PCMIS breaking the 2n barrier.

▶ Corollary 18. PCMIS can be solved in time O˚p1.8192nq.

6 Conclusion

In this paper, we broke the “2k-barrier” for SFVS in Chordal Graphs. As a corollary,
we obtained an exact algorithm faster than O˚p2nq for Prize-Collecting Maximum
Independent Set in hypergraphs. To achieve this breakthrough, we introduced a new
measure based on the Dulmage-Mendelsohn decomposition. This measure served as the basis
for designing and analyzing an algorithm that addresses a crucial sub-case. Furthermore, we
analyzed the whole algorithm using the traditional measure k, employing various techniques
such as a divide-and-conquer approach and reductions based on small separators. The
bottleneck of our algorithm occurs when dealing with SFVS in Split Graphs.
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We think it is interesting to break the “2k-barrier” or “2n-barrier” for more important
problems, say the Steiner Tree problem and TSP. For SFVS in general graphs, the best
result is O˚p4kq [30, 31]. It will also be interesting to reduce the gap between the results in
general graphs and chordal graphs.
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Abstract
Given an undirected graph G and a set A ⊆ V (G), an A-path is a path in G that starts and ends at
two distinct vertices of A with intermediate vertices in V (G) \ A. An A-path is called an (A, ℓ)-path
if the length of the path is exactly ℓ. In the (A, ℓ)-Path Packing problem (ALPP), we seek to
determine whether there exist k vertex-disjoint (A, ℓ)-paths in G or not.

The problem is already known to be fixed-parmeter tractable when parameterized by k + ℓ via
color coding while it remains Para-NP-hard when parameterized by k (Hamiltonian Path) or ℓ

(P3-Partition) alone. Therefore, a logical direction to pursue this problem is to examine it in
relation to structural parameters. Belmonte et al. initiated a study along these lines and proved
that ALPP parameterized by pw + |A| is W[1]-hard where pw is the pathwidth of G. In this paper,
we strengthen their result and prove that it is unlikely that ALPP is fixed-parameter tractable even
with respect to a bigger parameter (|A| + dtp) where dtp denotes the distance between G and a path
graph (distance to path). We use a randomized reduction to achieve the mentioned result. Toward
this, we prove a lemma similar to the influential “isolation lemma”: Given a set system (X, F) if
the elements of X are assigned a weight uniformly at random from a set of values fairly large, then
each subset in F will have a unique weight with high probability. We believe that this result will be
useful beyond the scope of this paper.

ALPP being hard even for structural parameters like distance to path+|A| rules out the possibility
of any FPT algorithms for many well-known other structural parameters, including FVS+|A| and
treewidth+|A|. There is a straightforward FPT algorithm for ALPP parameterized by vc, the vertex
cover number of the input graph. Following this, we consider the parameters CVD (cluster vertex
deletion)+|A| and CVD +|ℓ| and show the problem to be FPT with respect to these parameters.
Note that CVD is incomparable to the treewidth of a graph and has been in vogue recently.
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1 Introduction

Disjoint Path problems form a fundamental class within algorithmic graph theory. These
well-studied problems seek the largest collection of vertex-disjoint (or edge-disjoint) paths
that satisfy specific additional constraints. Notably, in the absence of such constraints, the
problem reduces to the classical maximum matching problem. One of the most well-studied
variants for disjoint path problems is the Disjoint s-t Path where given a graph G and two
vertices s and t, the objective is to find the maximum number of internally vertex-disjoint
paths between s and t. This problem is polynomial-time solvable by reducing to max-flow
problem using Menger’s Theorem.

Another classical version of the disjoint path problem is Mader’s S-Path. For a graph
G and a set S of disjoint subsets of V (G), an S-Path is a path between two vertices in
different members of S. Given G and S, the objective of Mader’s S-Path problem is to
find the maximum number of vertex-disjoint S-paths. It is solvable in polynomial time, as
demonstrated by Chudnovsky, Cunningham, and Geelen [5]. One closely related and well-
known variant of Mader’s S-Path problem is the A-Path Packing problem [1, 3, 6, 14, 12].
Given a graph G and a subset of vertices A, an A-path is a path in G that starts and ends
at two distinct vertices of A, and the internal vertices of the path are from V (G) \ A. The
A-Path Packing problem aims to find the maximum number of vertex disjoint A-paths
in G. A-Path Packing problem can be modelled as an S-path problem, where for every
vertex v, we create a set {v} in S. Consequently, the A-Path Packing problem becomes
polynomial-time solvable.

Recently, Golovach and Thilikos [11], have explored an interesting variant of the classical
s-t path problem known as Bounded s-t Path problem by introducing additional constraints
on path lengths. In this variant, given a graph G, two distinct vertices s and t, and an integer
ℓ, one seeks to find the maximum number of vertex disjoint paths between s and t of length
at most ℓ. Surprisingly, the problem becomes hard with this added constraint in contrast to
the classical s-t path problem. In a similar line of study, Belmonte et al. [1] considered the
following variant of the A-Path Packing problem.

(A, ℓ)-Path Packing (ALPP)
Input: An undirected graph G = (V, E), A ⊆ V (G) and integers k and ℓ.
Question: Are there k vertex-disjoint A-paths each of length ℓ in G?

This version of A-Path Packing problem is also proved to be intractable [1]. While
considering this problem in the parameterized framework, the two most natural parameters
for ALPP are the solution size k and the length constraint ℓ. While parameterized by the
combined parameter of k + ℓ, the problem admits an easy FPT algorithm via color-coding,
parameterized by the individual parameters k and ℓ, the problem becomes Para-NP-hard
due to reductions from Hamiltonian Path for k and P3-Packing for ℓ.

Although it may appear that one has exhausted the possibilities for exploration of the
problem within the parameterized framework, another set of parameters, known as structural
parameters, emerges, allowing for further investigation. Belmonte et al. [1] initiated this line
of study by considering the size of set A (|A|) as a parameter. They proved that the problem
is W[1]-hard parameterized by pw(G) + |A|, which translates to tw(G) + |A| as well, where
pw(G) and tw(G) denote the pathwidth and treewidth of G respectively.

The intractability result for the parameter tw(G)+|A| refutes the possibility of getting FPT
algorithms for many well-known structural parameters. Nonetheless, one of the objectives
of structural parameterization is to delimit the border of the tractability of the problem,
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i.e., determining the smallest parameter for which the problem becomes FPT or the largest
parameters that make the problem W-hard. Therefore one natural direction is to study ALPP
with respect to parameters that are either larger than tw(G) + |A| or incomparable with
tw(G) + |A|.

Our Contribution. As our first result, we improve upon the hardness result of Belmonte
et al. [1] by showing hardness for a much larger parameter, dtp(G) + |A|. Here dtp(G)
denotes the distance from G to a path graph (formal definitions of all the parameters can be
found in Section 2). We present a randomized reduction from a known W[1]-hard problem,
which establishes the hardness of (A, ℓ)-Path Packing under the assumption of randomized
Exponential Time Hypothesis (rETH). The randomized reduction technique employed in
our proof is highly adaptable and can be utilized to demonstrate the hardness of various
analogous problems. We use the following lemma to prove our hardness result, which can be
of independent interest.

▶ Lemma 1 (Separation Lemma). Let (X, F) be a set system where F is a family of subsets
of X. For an arbitrary assignment of weights w : X 7→ [M ], let w(S) =

∑
x∈S w(x) denote

the weight of the subset S ⊆ X. For any random assignment of weights to the elements of X

independently and uniformly from [M ], with probability at least 1 − (|F|
2 )

M , each set S ∈ F has
a unique weight.

In addition to refining the boundaries of hardness, we have also considered the problem
with respect to the parameter of cvd(G) denoting the cluster vertex deletion size of G in
combination with the natural parameters A and ℓ. The incomparability of cvd(G) with
tw and pw makes it an intriguing parameter to explore. We have proved that ALPP is
fixed-parameter tractable with respect to the parameters cvd(G) + |A| as well as cvd(G) + ℓ

where cvd(G) denotes the cluster vertex deletion size of G (see Section 2). Below we provide
brief overviews of these two algorithms.

cvd(G) + |A|. We start by combining |A| and the cvd(G) to form a “modulator” M . Now,
each A-path comprises subpaths between certain modulator vertices. Once we guess the
interaction of M with these paths, the role of the cliques in G − M reduces to providing
vertices for these subpaths. Next, we first employ a color-coding scheme and color the cliques.
This coloring determines the role of a clique to provide required subpaths of a certain kind.
And a clique within a color class is deemed feasible if it can provide the necessary subpaths
barring the length requirements. The feasibility of a clique is identified through its color
and modulator neighborhood. Following this, we make an important observation that the
largest feasible cliques are the optimal choices for providing these length-constrained paths.
Subsequently, we design an Integer Linear Program that checks their ability to provide
subpaths with necessary length requirements.

cvd(G) + ℓ. In the context of a modulator M of size m, each clique in G − M is termed
“local”. A path is labeled “local” if it contains no vertices from M and lies entirely within a
local component (clique). It is worth noting that there are at most m non-local paths in
any optimal solution. From each clique, we designate a few vertices with a marking scheme
that are utilized in providing these non-local paths. The remaining vertices from cliques
are utilized in providing local paths and possess very specific characteristics. Exploiting
this property, we can extract such local paths from unmarked vertices of cliques, effectively
bounding the size of each clique. Subsequently, we identify equivalent/indistinguishable
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16:4 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

cliques based on their modulator neighborhood and only need to retain a few of the equivalent
cliques (as almost all of them are used in providing local paths, and we can extract these
local paths). This bounds the size of the instance as the clique size, the number of equivalent
classes, and the number of equivalent cliques inside a class are bounded.

We design a cubic kernel for a larger parameter (than tw(G)) vertex cover vc(G) in a
manner very similar to the algorithm designed for cvd(G) + ℓ.

tw+ |A| pw+ |A|

fvs+ |A|

dtp+ |A|

cvd+ |A|FPT

Non-FPT

Known from [3] Known from [2]

our result

our result Parameter size

vc

ALPP

Poly Kernel

vc+ |A|

our result

dlf+ |A|

Figure 1 Structural Parameterizations of ALPP. The arrow represents the hierarchy of different
structural parameters, while the dashed line represents the parameters that have yet to be explored
in the context of our problems.

2 Preliminaries

Sets, Numbers and Graph Theory. We use N to denote the set of all natural numbers
and [r] to denote the set {1, . . . , r} for every r ∈ N. Given a finite set S and r ∈ N, we use(

S
r

)
and

(
S

≤r

)
to denote the collection of subsets of S with exactly r elements and at most r

elements respectively. We use standard graph theoretic notations from the book by Diestel
[9]. For any two vertices x, y and a path P , we denote V [x, y] as the number of vertices
in the subpath between x and y in P . And for a path P we denote the set of vertices in
P by V (P ). Further, for a collection P of paths, V (P) = {

⋃
Pi∈P V (Pi)}. In a graph G,

let Pi(v1, v2, · · · , vj) be a path and X ⊆ V be a set. An ordered intersection of Pi with X,
denoted as Xi = (va, vb, · · · , vp), is defined as V (Pi) ∩ X = Xi, where the ordering of the
vertices in Xi is the same as that in Pi. Additionally, we define X1, X2, · · · , Xx as an ordered
partition of X if each Xi is an ordered set and

⋃x
i=1 Xi = X. Given a path Pi(v1, v2, · · · , vj),

we denote Pi(v1, v2, · · · , vj−1) as Pi \ (vj−1,vj ).

Structural Parameters. Given a graph class H and a graph G, we define the distance of
G to H as the minimum number of vertices that need to be deleted to obtain a graph in
class H, denoted by dH(G). For instance, the vertex cover size vc(G) represents the distance
to the class of edgeless graphs or independent sets, the feedback vertex set size fvs(G) is
the distance to the class of forests and cluster vertex deletion set size cvd(G) denotes the
distance to the class of cluster graphs (collection of disjoint cliques). Furthermore, a graph is
called a path graph if it has only one connected component and that connected component is
an induced path. The class of all path graphs and all linear forests are denoted by Γ and
F , respectively. We denote dΓ(G) and dF (G) by dtp(G) and dlf(G), respectively. Formal
definitions of all these parameters can be found in [7].
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3 (A, ℓ)-Path Packing Parameterized by dtp(G) + |A|

This section establishes that ALPP is unlikely to be fixed-parameter tractable with respect
to the combined parameter (dtp(G) + |A|) under standard complexity theoretic assumptions.
We begin by presenting some key ideas that will be instrumental in our subsequent hardness
reduction.

ALPP Parameter: a + m

Input: A graph G, two subsets A, M ⊆ V of cardinality a and m respectively, and
integers k and ℓ such that G − M ∈ Γ, where Γ denotes the family of paths.
Question: Are there k vertex-disjoint A-paths each of length exactly ℓ in G?

3.1 Essential Results
We show the hardness for ALPP under the assumption that the randomized Exponential
Time Hypothesis (rETH) holds. The concept of rETH was introduced by Dell et al. [8],
which states the following. There exists a constant c > 0, such that no randomized algorithm
can solve 3-SAT in time O∗(2cn) with a (two-sided) error probability of at most 1

3 , where n

represents the number of variables in the 3-SAT instance. The O∗ notation hides polynomial
factors in the input size.

In the realm of parameterized complexity, rETH has been widely employed to prove
hardness for many well-known parameterized problems. The following theorem can be derived
from Theorem 12 in [4] when ϵ = 1/m in Conjecture 5.

▶ Theorem 2. Unless rETH fails, there is no randomized algorithm that decides k-Clique
in time f(k) · no(k) correctly with probability at least 2/3.

We establish the intractability result for ALPP parameterized by (|A| + dtp(G)) through
a “parameter preserving reduction” from the k-Independent Set problem on a 2-interval
graph, which in turn was shown to be W[1]-complete following a reduction from the k-Clique
problem by Fellows et al. [10]. A 2-interval Ii is a disjoint pair of intervals {Ia

i , Ib
i } on a real

line. We say that a pair of 2-intervals, Ii and Ij intersect if they have at least one point in
common, that is {Ia

i ∪ Ib
i } ∩ {Ia

j ∪ Ib
j } ̸= ∅. Conversely, if two 2-intervals do not intersect,

they are called disjoint.
A 2-interval representation of a graph G is a set of two intervals J such that there is a

one to one correspondence between J and V (G) such that there exists an edge between u

and v if and only if the 2-intervals corresponding to u and v intersect. A graph is a 2-interval
graph if there is a 2-interval representation for G. For a graph G, a set of vertices W ⊆ V (G)
is said to be independent if for any pair of vertices u and v in W , (u, v) /∈ E(G). Given a
graph G, the k-Independent Set problem asks whether there exists a k size independent
set in G. Observe that given a 2-interval graph G and a 2-interval representation J of G a
k-independent set W for G corresponds to a set of pairwise disjoint 2-intervals in J .

Fellows et al. [10] presented a parameterized reduction from an arbitrary instance (G, k)
of the k-Clique problem to an instance (J , k′) of the k′-Independent Set problem on
a 2-interval graph such that there exists a k size clique in G if and only if there exists a
k′ = k + 3

(
k
2
)

sized independent set in J . Thus, we have the following theorem.

▶ Theorem 3. Unless rETH fails, there is no randomized algorithm that decides k-
Independent Set on a 2-interval graph in f(k) · no(k)-time correctly with probability
at least 2/3.
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16:6 Tractability of Packing Vertex-Disjoint A-Paths Under Length Constraints

Next, we present a lemma, which we will use later on. We believe that this can be of
independent interest and applicable to various other problem domains. This lemma is similar
to the well-known isolation lemma [13]. Recall that [r] denotes the set {1, . . . , r} where
r ∈ N+.

▶ Lemma 1 (Separation Lemma). Let (X, F) be a set system where F is a family of subsets
of X. For an arbitrary assignment of weights w : X 7→ [M ], let w(S) =

∑
x∈S w(x) denote

the weight of the subset S ⊆ X. For any random assignment of weights to the elements of X

independently and uniformly from [M ], with probability at least 1 − (|F|
2 )

M , each set S ∈ F has
a unique weight.

Proof. Let w be a random assignment of weights to the elements of X independently and
uniformly from [M ] and S1 and S2 be two arbitrary sets in F . Our objective is to find the
probability of the event “w(S1) = w(S2)”. Observe that if S1 \ S2 = ∅ or S2 \ S1 = ∅, then
P

(
w(S1) = w(S2)

)
= 0. Let S1 \ S2 = {x1, x2, · · · , xa} and S2 \ S1 = {y1, y2, · · · yb}. We

define a random variable W12 as follows.

W12 = {w(x1) + · · · + w(xa)} − {w(y2) + · · · + w(yb)} = w(S1) − w(S2) + w(y1)

From the law of total probability, we have the following.

P
(
w(S1) = w(S2)

)
=

∑
P

(
w(S1) = w(S2)|W12 = z

)
· P(W12 = z)

=
∑

P
(
w(y1) = z

)
· P(W12 = z)

=
∑

z∈[M ]

P
(
w(y1) = z

)
· P(W12 = z) if z /∈ [M ] then P

(
w(y1) = z

)
= 0

=
∑

z∈[M ]

1
M
P(W12 = z) = 1

M

∑
z∈[M ]

P(W12 = z) ≤ 1
M

Using Boole’s inequality, we can prove that none of the two sets in F are of equal weight
with probability at least 1 − (|F|

2 )
M . Thus, the claim holds. ◀

3.2 Hardness Proof
We are ready to present a randomized reduction from the k-Independent Set problem in
2-interval graphs to the ALPP problem. Throughout this section, we denote the family of
path graphs by Γ. Let (GJ , k) be an instance of k-Independent Set problem in 2-interval
graph where the set of 2-intervals representing GJ be J .

Now, we present a randomized construction of an ALPP problem instance (G, A, M, ℓ, k)
from (GJ , k) where H = G \ M is in Γ and |M | = 4k. We assume that we are given J . The
construction of G is done in two phases. In the first phase, we generate a set of points P on
the real line R. In the second phase, we construct the graph G. Observe that the points in
P naturally induce a path graph H which is defined as follows. Corresponding to each point
in P , we define a vertex in V (H), and there is an edge between two vertices if the points
corresponding to them are adjacent in R. We additionally add 4k vertices. Before detailing
our construction, let us establish a few notations and assumptions that can be accommodated
without changing the combinatorial structure of the problem. Let J = {I1, I2, · · · , In}
where each 2-interval Ij is a collection of two intervals Ia

j and Ib
j . We presume that all the

intervals in J are inside the interval [0, 1] in the real line. Furthermore, we assume that all
the endpoints of the intervals are distinct, and the distance between any two consecutive
endpoints is at least 2ϵ, where ϵ is an arbitrarily small constant. We use L(I) and R(I) to
denote the left and right endpoints of an interval I, respectively.
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Construction Process

Construction Phase 1. We place a set of points P on R as follows. For each interval
Ic

j , where c ∈ {a, b} and j ∈ [n], we generate two random numbers nr(L(Ic
j )) and

nr(R(Ic
j )) between 1 and N . We will decide on the value of N at a later stage.

Let P (L(Ic
j )) be the set of nr(L(Ic

j )) equally spaced points in the interval [L(Ic
j ), L(Ic

j )+
ϵ]. The first point of P (L(Ic

j )) coincides with L(Ic
j ), and the last point coincides with

L(Ic
j ) + ϵ. Let PL =

⋃
c∈{a,b},j∈[n] P (L(Ic

j )). Similarly, let P (R(Ic
j )) be the set of

nr(R(Ic
j )) equally spaced points in the interval [R(Ic

j ) − ϵ, R(Ic
j )]. The first point

of P (R(Ic
j )) coincides with R(Ic

j ) − ϵ and the last point coincides with R(Ic
j ). Let

PR =
⋃

c∈{a,b},j∈[n] P (R(Ic
j )). An illustration of this process can be seen in Figure 2.

Observe that the cardinality of PL ∪ PR is at most 4nN .
Consider Ij = (Ia

j , Ib
j ) be a 2-interval, and nj be the total number of points from

PL∪PR that are inside Ij . Let nj = 8nN −nj for all j ∈ [n]. Define Cj as the collection
of nj points evenly distributed within the interval [2j, 2j + 1] and let PC = ∪j∈[n]Cj .
To ease the notations, we denote Lj = 2j, Rj = 2j + 1 and Ij as the interval (Lj , Rj).
Observe that the total number of points inside Ia

j , Ib
j and Ij is 8nN .

We add a large number of points (exactly 8nN + 4 many) between Rj and Lj+1 for
j ∈ [n] and denote all these points by PX . Let P = PL ∪ PR ∪ PC ∪ PX .

Ia1 Ib1

Ia1 Ib1

L(Ia1 ) R(Ia1 ) L(Ib1) R(Ib1)

nr(L(I
a
1 )) nr(R(Ib1))

|Ci| = 4nN − ni
C1

C2 C3 C4

ℓℓ
L1 R1

Figure 2 Illustration of Construction Phase 1. Note that |Ci| = ni = 8nN − ni.

Construction Process

Construction Phase 2. Consider the set of points P in R. Observe that there is a
natural ordering among the points in P . We define adjacency based on this ordering.
Consider the path graph GP induced by P . Specifically, we introduce a vertex for
each point in P and add an edge between two vertices if and only if the points
corresponding to them are adjacent. With slight abuse of notation, we denote the
vertex corresponding to a point p by p. For any interval I, let V (I) denote the number
of points/vertices within the interval I. For two points a and b in P , λ[a, b] denotes
the path from a to b in GP .
We construct G, by setting V (G) = V (GP ) ∪ VM where VM = {ai, bi, ci, di| i ∈ [k]}.
And, E(G) = E(GP )∪Ea∪Eb∪Ec∪Ed, where Ea = {(ai, L(Ia

j )) | j ∈ [n] and i ∈ [k]},
Eb = {(bi, R(Ia

j )), (bi, Lj) | j ∈ [n] and i ∈ [k]}, Ec = {(ci, L(Ib
j )), (ci, Rj) | j ∈

[n] and i ∈ [k]}, Ed = {(di, R(Ib
j )) | j ∈ [n] and i ∈ [k]}.

Informally, the edges are defined as follows. Each ai ∈ VM is adjacent to L(Ia
j ) for

all j ∈ [n] (see Figure 3). Similarly each bi ∈ VM is adjacent to R(Ia
j ) for all j ∈ [n].

Additionally, each bi is adjacent to every other Lj for all j ∈ [n]. Each ci is adjacent
to L(Ib

j ) and Rj , and each di is adjacent to R(Ib
j ).

We denote A = {ai, di| i ∈ [k]} and set ℓ = 8nN + 4.
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Ia1 Ib1

L(Ia1 ) R(Ia1 ) L(Ib1) R(Ib1)

nr(L(I
a
1 )) nr(R(Ib1))

|Ci| = 4nN − ni

R1

a1 b1 c1 d1
M

C1
C2 C3 C4ℓℓ

L1

x = 0 x = 1

Figure 3 Illustration of construction of (A, ℓ)-Path Packing. Note that |Ci| = ni = 8nN − ni.

Next, we demonstrate that if there exists a k-size independent set in GJ , then with
probability 1 there exist k many vertex-disjoint (A, ℓ)-paths in G where ℓ = 8nN + 4
(Lemma 4). Following this, we show that if there exist k many vertex-disjoint (A, ℓ)-paths in
G where ℓ = 8nN + 4, then with high probability there is a k-size independent set in GJ .

▶ Lemma 4. If there are k disjoint 2-intervals in J , then there are k vertex-disjoint
(A, ℓ)-paths in G.

Proof. Without loss of generality, let us assume that the k disjoint 2-intervals are
I1, I2, . . . , Ik. Recall that for two vertices a and b in the path graph GP , λ[a, b] denotes the
path from a to b in GP . Consider the following set of paths, defined for 1 ≤ i ≤ k,

λi = ai · λ[L(Ia
i ), R(Ia

i )] · bi · λ[Li, Ri] · ci · λ[L(Ib
i ), R(Ib

i )] · di

Observe that the paths in {λi|1 ≤ j ≤ k} are pairwise vertex-disjoint, each having ℓ

vertices, with two endpoints at two different vertices in A (See Figure 4 for an illustration).
By construction, they contain ℓ = 8nN + 4 many vertices. Thus, the claim holds. ◀

L(Iaj1) R(Iaj1)L(Iaj3) R(Iaj3) L(Ibj1) R(Ibj1))L(Ibj3) R(Ibj3)

a1 b1 c1 d1
M

a2 b2 c2 d2 a3 b3 c3 d3 a4 b4 c4 d4

L2 R2

Figure 4 Construction of the paths λi in the proof of Lemma 4.

Next, we show that if there exist k many vertex-disjoint (A, ℓ)-paths in G where ℓ =
8nN + 4, then with high probability there is a k size independent set in GJ .

Recall that the set of intervals {Ij |j ∈ [n]} where Ij = [Lj , Rj ]. Let Vj = V (Ij). And,
the path corresponding to Ij is λ[Lj , Rj ]. Let us define C = {Ci|1 ≤ i ≤ n}. Next, we have
the following observation.
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▶ Observation 5. For any A-path L of length exactly ℓ = 8nN + 4 in G, there exists an
integer y ∈ [n] such that Vy ⊂ V (L) and for any i ̸= y, Vi ∩ V (L) = ∅. Further L contains
the subpath bx· λ[Ly, Ry]· cz for some x, z ∈ [k].

Proof. As the total number of points/vertices in [0, 1] is at most 4nN < ℓ, note that every
(A, ℓ)-path should contain all points/vertices from at least one set of points from C. Observe
that any path with a length of exactly ℓ contains exactly one set of points Ci ∈ C as between
two consecutive set of points in C there are more than ℓ points. As only neighbors of Ci

which is not in H is bx and cz, where x, z ∈ [k], therefore, the path must include a subpath
of the form bx · λ[Ly, Ry] · cz for some y ∈ [n] and x, z ∈ [k]. ◀

Let P = {P1, . . . , Pk} be a set of k vertex-disjoint A-paths of length exactly ℓ in G. We
show that with high probability, there is a k size independent set in GJ .

▶ Observation 6. Each path Pi ∈ P is of the form p· λ[r, s]· bx· λ[Ly, Ry]· cz· λ[t, u] · q where
p, q ∈ A, r, s, t, u ∈ M , y ∈ [n] and x, z ∈ [k].

Proof. Since the total number of points in A is 2k, each path must contain exactly two
points from A. It follows from Observation 5 that any such path contains a subpath of the
form bx· λ[Ly, Ry]· cz. By construction, for any path P , that connects p with bx, P \ {p, bx}
induces a continuous set of points on the path graph with endpoints in M (see Figure 4). A
similar argument can be made for cz and q as well. Thus, the claim holds. ◀

Observation 6 indicates that from the disjoint paths in P, it is possible to construct a
disjoint set of 3-intervals J = {((xi, yi), (zi, wi), Ij)|1 ≤ i ≤ k} where xi, yi, zi, wi ∈ M and
Ij = (Lj , Rj). Next we prove that with high probability the interval (xi, yi) = Ia

yi
and the

interval (zi, wi) = Ib
yi

, which will give us the desired set of k disjoint 2-intervals.
Let a, b, c, d be any four points in M . Without loss of generality, assume that a < b < c < d.

Consider the 2-interval ((a, b), (c, d)) defined by a, b, c, d. Let JF be the set of all such intervals,
formally defined as JF = {((a, b), (c, d))|a, b, c, d ∈ and a < b < c < d}. Note that |JF | < n4.
From Lemma 1, we know that each 2-interval in JF contains a unique number of points

with probability at least 1 − (n4
2 )
N . If we set N = 3

(
n4

2
)
, with probability at least 2

3 every
2-interval in JF contains a unique number of points. Thus with probability at least 1

3 , for
every 1 ≤ j ≤ n, no other 2-interval except (Ia

j , Ib
j ) contains ℓ − V (Ij) − 4 many points where

V (I) denotes the number of points in the interval I. Therefore with probability at least 2
3 ,

for every 3-interval ((xi, yi), (zi, wi), Iyi
) in J , (xi, yi) = Ia

yi
and (zi, wi) = Ib

yi
. Hence we

have the following lemma.

▶ Lemma 7. If there are k vertex-disjoint (A, ℓ)-paths in G, then there are k disjoint
2-intervals in J .

The following conclusive theorem arises from the combination of Theorem 3, Lemma 4,
and Lemma 7.

▶ Theorem 8. Unless rETH fails, there is no randomized algorithm for (A, ℓ)-Path Packing
which runs in f(dtp(G) + |A|) · no(dtp(G)+|A|)-time correctly with probability at least 2/3.

4 (A, ℓ)-Path Packing Parameterized by cvd(G)+|A|

In this section, we design an FPT algorithm for the (A, ℓ)-Path Packing problem parame-
terized by combining the two following parameters: the size of a cluster vertex deletion set
and |A|. Our algorithm operates under the assumption that we are provided with a minimum
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size set M as input, satisfying the conditions A ⊆ M and G − M forms a cluster graph.
This assumption is justified by the fact that one can efficiently find the smallest size cluster
vertex deletion set of G − A in time 1.9102k · nO(1) [2]. We restate the problem definition
and illustrate a brief sketch of our algorithm.

ALPP Parameter: m = |M |
Input: A graph G, two subsets A, M ⊆ V of cardinality a and m respectively, and
integers k and ℓ such that A ⊆ M and G − M is a cluster graph.
Question: Does there exist k vertex-disjoint paths of length exactly ℓ that have
endpoints in A?

Overview of the Algorithm. Our algorithm starts by making an educated guess regarding
the precisely ordered intersection of each path within an optimal solution (P) with the
modulator set M . This involves exploring a limited number of possibilities, specifically on the
order of f(|M |) · nO(1) choices. Once we fix a choice, the problem reduces to finding subpaths
(of any given path in P) between modulator vertices satisfying certain length constraints. To
provide a formal description, let P ∈ P be a path of the form m1P1,2m2m3m4P4,5m5 (our
guess for P ∈ P) where each mi ∈ M and each Pi,i+1 is contained in G − M . Subsequently,
our algorithm proceeds to search for the subpaths P1,2 and P4,5 each contained in cliques
of G − M with endpoints adjacent to vertices m1, m2 and m4, m5 respectively. A collection
of constraints within our final integer linear program (ILP) guarantees that the combined
length of the paths P1,2 and P4,5 precisely matches ℓ − 5, satisfying the prescribed length
requirement. Before presenting the ILP formulation, we make informed decisions about the
cliques that are well-suited and most appropriate for providing these subpaths. Towards
that, we partition the at most |M | many subpaths (originating from all the paths in P), with
each partition containing subpaths exclusively from a single clique of G − M . Moreover, no
two subpaths in separate partitions come from the same clique. Once such a choice is fixed,
we apply a color coding scheme on the cliques in G − M where we color the cliques with the
same number of colors as the number of sets in the mentioned partition of subpaths into sets.
With a high probability, each clique involved in the formation of P is assigned a distinct color.
These assigned colors play a crucial role in determining the roles of the cliques in providing
subpaths and, consequently, in constructing the final solution P. We show that among all
the cliques colored with a single color, a largest size feasible clique is an optimal choice for
providing the necessary subpaths of P. A feasible clique is a clique that is able to provide
the necessary subpaths determined by its assigned color, barring the length requirements,
and, is identified by its adjacency relation with M . Therefore, we keep precisely one feasible
clique of the maximum size for each color and eliminate the others. Thus the number of
cliques in the reduced instance is bounded by a function f(m). Following these steps, our
problem reduces to finding required subpaths (with length constraints) for which we design
a set of ILP equations where the number of variables is a function of m. Below, we give a
detailed description of our algorithm.

Algorithm.

Phase 1: The Guessing Phase
1. Find a cluster vertex deletion set S of the minimum size in G − A. Then, set M = A ∪ S.
2. Generate all M ′ ⊆ M . For a fixed M ′, generate all its ordered partitions such that only the

first and last vertices of every set of the partitions are from A. Let M = {M ′
1, . . . , M ′

|M|}
be a fixed such partition of M ′.
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3. Without loss of generality, let M ′
i = (mg(i), mg(i)+1, . . . , ml(i)). For any two consecutive

vertices mj and mj+1 where j ∈ [g(i), l(i) − 1], we introduce a variable Pj,j+1. These
variables serve as placeholders representing subpaths within the optimal solution that we
are aiming to find. We use P to denote the collection of Pj,j+1.

4. We enumerate all partitions of P. Let XP = {P1, P2, . . . , Px} be a partition of P with
x = |XP|.

5. Additionally, we generate all valid functions h : P → {0, 1, > 1}, i.e., we guess whether
the length of each subpath is exactly 0, 1, or more than 1. The function h is valid if
h(Pj,j+1) = 0, implies mj and mj+1 are adjacent. The validity of h concerning the other
two values (1 and > 1) is inherently assured by the presence of a feasible clique.

6. We create a function T : XP → 22M as follows. For each part Pi ∈ XP, create the set
T (Pi) = {{mj , mj+1} : Pj,j+1 ∈ Pi and h(Pj,j+1) = 1} ∪ {{mj} ∪ {mj+1} : Pj,j+1 ∈
Pi and h(Pj,j+1) > 1}.

At the conclusion of Step 6, we have generated all the tuples denoted as τ =
(M ′, M,P, XP, h, T ). For each specific τ , we proceed to Phase 2 in order to bound the
number of cliques and subsequently generate a set of ILPs.

Phase 2: Bounding the number of Cliques Phase
1. We color all the cliques in G − M with x many colors uniformly at random. From a set of

cliques colored with color i, we choose a largest feasible clique Qi. A clique with color i is
feasible if and only if it has |T (Pi)| distinct vertices, each being a neighbor to a different
set in T (Pi). Also, we denote the above coloring function by Cτ .

2. Following the Algorithm, we construct the following set of ILPs.

ILP (τ, Cτ ) :
l(i)−1∑
j=g(i)

xj,j+1 = ℓ − |M ′
i |, ∀M ′

i ∈ M

∑
Pj,j+1∈Pi

xj,j+1 ≤ |Qi|, ∀Pi ∈ XP

xj,j+1 = 1, iff h(Pj,j+1) = 1

Correctness of The Guessing Phase (Steps 1 to 6). Let P = {P1, . . . , Pp} be an optimal
solution of size p where any ℓ-path in P by definition has both its endpoints in A. In the
above ILP, note that the variable xj,j+1 represents the path Pj,j+1. The M ′ generated in
the Step 2 is V (P) ∩ M . Each M ′

i is the ordered intersection of a path Pi with M ′ , i.e., the
sequence of vertices of V (Pi) ∩ M appearing in the path is given by M ′

i (Step 2). In Step 3,
we create the variables (corresponding to the subpaths of P) for each pair of consecutive
vertices from M ′

i for every M ′
i ∈ M (Step 3). Any such subpath with a non-zero length

is contained in exactly one of the cliques in G − M . The subpaths of P that come from
single cliques together are denoted by the partition XP, i.e., the subpaths (in P) in a part
of the partition are exactly the subpaths that are contained in a single clique of G − M

(Step 4). We further divide these subpaths into three groups (h−1(0), h−1(1), h−1(> 1))
based on whether their lengths are exactly 0, 1, or more than 1 (Step 5). If h(Pj,j+1) = 0,
then the corresponding subpath has length zero implying mj and mj+1 are adjacent in P . If
h(Pj,j+1) = 1, then the corresponding subpath has length exactly one and the lone vertex in
the subpath is adjacent to both mj and mj+1 in P . When h(Pj,j+1) > 1, the correcponding
subpath has length more than one and has two vertices, one is adjacent to mj while another is
adjacent to mj+1. The set T (Pi) basically stores the adjacency relations (required) between
the endpoints of non-zero length subpaths of P and M . The correctness of the first 6 steps
follows directly because of the fact that we exhaust all possible choices at each step.
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Correctness of Phase 2. We apply the color-coding scheme in the first step of second
phase of our algorithm. Each clique Qi ∈ {Q1, . . . , Qx} that contains vertices from P gets a
different color with high probability. Moreover, each Qi colored with color i exactly contains
the subpaths denoted by Pi. We compute this exact probability later in the runtime analysis
of our algorithm. Notice the role of the cliques in G − M is to provide subpaths of certain
lengths between the vertices from M . And, a feasible clique of color i is able to provide all
the subpaths in Pi between the vertices of M , barring the length requirements. Thus, given
a feasible clique Q′

i of maximum size, we can reconstruct an equivalent optimal solution P ′

in which all its paths within Pi are entirely contained within Q′
i, all the while sticking to the

specified length requirements. This reconstruction can be systematically applied to guarantee
the existence of an optimal solution where all its subpaths are derived from a collection of
feasible cliques with the largest size available from each color class. Let τ be a correctly
guessed tuple, Cτ be a correct coloring scheme (coloring each of the x cliques involved in the
solution distinctly), and Q′

i be a feasible clique of the largest possible size colored with color
i respecting the guessed tuple for each color i. Then, there exists an optimal solution that is
entirely contained in the subgraph G[

⋃x
i=1 Q′

i ∪ M ]. To obtain the desired solution for a YES
instance, we narrow our attention to the subgraph and formulate the specified ILP denoted
as ILP(τ, Cτ ). The primary objective of the ILP equations is to guarantee that every path
we are seeking has an exact length of ℓ. The first set of constraints enforces the specified
length requirements for the subpaths, ensuring that each subpath adheres to its designated
length. And the second set of constraints ensures that the combined total of all vertices to
be utilized from a clique (across all subpaths) in a solution to the ILP does not surpass the
total number of vertices within the largest feasible clique.

Runtime Analysis. The total number of ordered partitions generated in Step 2 is O(2m ·mm).
In Step 3, |M ′

i | can be of O(m). Hence for a fixed M, the number of permutations enumerated
is of O(m!) · m. Notice the number of Pj,j+1 (|P|) is bounded by m. Therefore in the next
step, XP can be partitioned in mm ways. In Step 5, each Pj,j+1 ∈ P takes one of the three
values. Thus there can be at most 3m assignments for a fixed P. Hence total number of tuples
generated at the end of Step 6 is bounded by O(2m · mm · m! · m · mm · 3m) ≡ 2O(m log m).
Since x ≤ m, the probability that we get a coloring that colors all the x cliques properly
and distinctly is at least 1

m! . Once we have a good coloring instance, we formulate the
ILP(τ, Cτ ) to solve the problem. Since both |M| and |XP| are bounded by O(m), the ILP can
be solved in time mO(m). This immediately implies a randomized FPT algorithm running
in time 2O(m log m). Notice the randomization step (Phase 2) can be derandomized using
(m, x)-universal family [7]. And we have the following theorem.

▶ Theorem 9. (A, ℓ)-Path Packing is FPT parameterized by cvd(G)+|A|.

5 (A, ℓ)-Path Packing Parameterized by cvd(G) + ℓ

In this section, we design an FPT algorithm for the instance (G, S, A, k, ℓ) of ALPP parame-
terized by the combined parameter cvd(G) + ℓ.

(A, ℓ)-Path Packing Problem Parameter: |M |(= m) + ℓ

Input: A graph G, two subsets A, M ⊆ V of cardinality a and m respectively, and
integers k and ℓ such that G − M is a cluster graph.
Question: Does there exist k vertex-disjoint paths of length exactly ℓ that have
endpoints in A?
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We denote the set of cliques in G − M by Q and the vertices in the cliques by VQ =
∪Q∈QV (Q). Let I = (G, M, A, k, ℓ) be a YES instance of ALPP and let P be any arbitrary
solution for I. We denote the set paths in P that contain at least one vertex from M by PM

and the set of paths in P that are completely inside a clique by PQ. Note that PM ∩ PQ = ∅
and P = PM ∪ PQ.

▶ Observation 10. The total number of vertices present in the paths PM is at most ℓ · m,
i.e. | ∪P ∈PM V (P )| ≤ ℓ · m.

Next, we present a marking procedure followed by a few reduction rules to bound the
size of each clique.

Marking Procedure.
1. For each vertex u ∈ M , mark ℓm + 1 many of its neighbors from both A ∩ V (Q) and

V (Q) \ A for each clique Q ∈ Q. If any clique does not contain that many neighbors
of u, we mark all the neighbors of u in that clique.

2. For each pair of vertices u, v in M , mark ℓm + 1 many common neighbors of u and v

outside A, in every clique of Q.
3. Additionally, mark ℓm + 1 many vertices from both A ∩ V (Q) and V (Q) \ A for each

clique Q ∈ Q.

In the marking procedure the upper bound on the number of marked vertices for each
clique Q from A (in A ∩ V (Q)) is f1(ℓ, m) = (m + 1)(ℓm + 1) and the number of marked
vertices outside A (in V (Q) \ A) is f2(ℓ, m) = (m2 + m + 1)(ℓm + 1).

Exchange Operation. Consider any two arbitrary paths P1, P2 ∈ P and < a1, a2, a3 > and
< b1, b2, b3 > be any two subsequences of vertices in P1 and P2 respectively. Let a2 be a
neighbour of b1 and b3 and b2 be a neighbour of a1 and a3. We define the operation exchange
with respect to P1, P2, a2, and b2 as follows. We create the path P ′

1 by replacing the vertex
a2 with b2, and we create the path P ′

2 by replacing the vertex b2 with a2. Observe that
P \ {P1, P2} ∪ {P ′

1, P ′
2} also forms a solution.

▶ Lemma 11. There exists a solution P for (G, M, A, k, ℓ) such that all the vertices in PM

are either from M or are marked.

Proof. Suppose there is a path P in PM that contains an unmarked vertex w. There are at
most two neighbors of w in P . We assume here that there are exactly two neighbors of w.
The case when w has only one neighbor in P can be argued similarly. Let the neighbors of w

in P be w1 and w2. We have the following three exhaustive cases.

w1, w2 ∈ V (Q): Recall that we have marked an additional ℓm + 1 many vertices from
outside A in each clique (vertices that w may be replaced with) and from Observation 10,
we know at most mℓ many of them are contained in PM. Thus, there is at least one
marked vertex, say, w′ in V (Q), that is not contained in any path of PM. If w′ is also not
contained in any path of PQ, we simply replace w by w′ in P . If it is in a path P ′ ∈ PQ,
we do an exchange operation with respect to P , P ′, w and w′ and reconstruct a new
solution.

w1 ∈ V (Q) and w2 ∈ M : Recall that we have marked ℓm+1 many vertices from N(w2)∩
V (Q) \ A. From Observation 10, at most mℓ many of them are contained in PM. Hence,
there is at least one marked vertex in V (Q) \ A that is not contained in any path from
PM. Similar to the arguments outlined in the previous case, we replace the vertex w by
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w′ when w′ is not contained in any path of PQ, or perform an exchange operation with
respect to P , P ′, w and w′ and reconstruct a new solution when w′ is contained in some
P ′ ∈ PQ.

w1, w2 ∈ M : Using arguments similar to the previous case, we can again replace an un-
marked vertex in PM with a marked vertex and reconstruct a new solution for this case
as well.

After exhaustively replacing unmarked vertices of PM (that are not in M), we derive a
solution P in which paths from PM do not include unmarked vertices from the cliques. ◀

Henceforth, we seek for a solution P for (G, M, A, k, ℓ) such that all the vertices in any
path of PM are either from M or marked. Next, we have the following reduction rule.

▶ Reduction Rule 1. If there exists a clique Q containing a pair of unmarked vertices
u, v ∈ A and a set X of (ℓ − 2) unmarked vertices outside A, then delete u, v along with X

and return the reduced instance (G − {X ∪ {u, v}}, M, A \ {u, v}, k − 1, ℓ).

We prove the safeness of the reduction rule below.

▶ Lemma 12. (G, M, A, k, ℓ) is a YES instance if and only if (G − {X ∪ {u, v}}, M, A \
{u, v}, k − 1, ℓ) is a YES instance.

Proof. If (G − {X ∪ {u, v}}, M, A \ {u, v}, k − 1, ℓ) is a YES instance with a solution PR,
then (G, M, A, k, ℓ) is also a YES instance as PR along with the path formed by X ∪ {u, v}
forms a solution to the instance.

Conversely, let (G, M, A, k, ℓ) be a YES instance with a solution P . Now, we will obtain a
solution P ′ for G−{X ∪{u, v}} of size at least k −1. We denote the paths in P that intersect
with X ∪ {u, v} by PX (with slight abuse of notation). If |PX | ≤ 1 then P ′ = P \ PX is
the desired solution. From now on, we assume that |PX | > 1. Observe that as the vertices
in X ∪ {u, v} are unmarked, PX ∩ PM = ∅ (from Lemma 11). We can reconstruct a new
solution P1 from P where exactly one path P in P1 intersects X ∪ {u, v}, and the rest of the
paths in P1 do not intersect with X ∪ {u, v}, by repeatedly utilizing the exchange operation
among the paths in PX . Observe that P ′ = P1 \ {P} is the desired solution. Thus, the claim
holds. ◀

Note that the upperbound on the number of marked vertices from A ∩ V (Q) is f1(ℓ, m) =
(m+1)(ℓm+1) and the number of marked vertices V (Q)\A is f2(ℓ, m) = (m2+m+1)(ℓm+1).
And, after exhaustive application of Reduction Rule 1, in any clique Q, either there are at
most ℓ − 3 unmarked vertices in V (Q) \ A or at most one unmarked vertex in A ∩ V (Q).

Case (i): There is at most one unmarked vertex in A ∩ V (Q).
Case (ii): There are at most ℓ − 3 unmarked vertices in V (Q) \ A.

Based on the aforementioned cases, we introduce two reduction rules – one for each case
– that help us limit the overall number of unmarked vertices in Q, thereby bounding the
size of each clique in G − M . First we consider the Case (i) when the number of unmarked
vertices form A ∩ V (Q) is bounded by one and bound the number of the unmarked vertices
in V (Q) \ A with the following reduction rule.

▶ Reduction Rule 2. If there exists a clique Q containing at most one unmarked vertex from
A and at least (f1(ℓ, m) + 1) · ℓ

2 + 1 unmarked vertices outside A, then delete one unmarked
vertex u ∈ V (Q) \ A and return the reduced instance (G − {u}, M, A, k, ℓ).
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Let G′ = G − {u} be the new graph following an application of Reduction Rule 2. We
prove the safeness of the reduction rule in the following lemma.

▶ Lemma 13. (G, M, A, k, ℓ) is a YES instance if and only if (G′, M, A, k, ℓ) is a YES
instance.

Proof. If (G′, M, A, k, ℓ) is a YES instance, then (G, M, A, k, ℓ) is a YES instance since G′ is
a subgraph of G. Conversely, suppose (G, M, A, k, ℓ) is a YES instance, and P is a solution. If
u does not belong to any path in P , then P is a solution to (G′, M, A, k, ℓ) as well. Otherwise,
let P ∈ PQ contain u. This is true since any unmarked vertex can only be used in a path
in PQ. But any such path uses exactly 2 vertices from V (Q) ∩ A. Hence we can upper
bound the number of unmarked vertices outside A that are contained in PQ and hence P
by (f1(ℓ, m) + 1) · ℓ

2 . Hence, there is at least one unmarked vertex u′ ̸= u in V (Q) \ A

which is not used by any path in P. We replace u with u′ in P to get a desired solution to
(G′, M, A, k, ℓ). ◀

For the Case (ii) when the number of unmarked vertices form V (Q) \ A is bounded by
l − 3 and we bound the number of the unmarked vertices in V (Q) ∩ A with the following
reduction rule.

▶ Reduction Rule 3. If there exists a clique Q containing at most ℓ−3 unmarked vertices from
V (Q) \ A and at least (f2(ℓ, m) + (ℓ − 3)) · 1

ℓ−2 + 1 many unmarked vertices in A, then delete
an unmarked vertex u ∈ A ∩ Q and return the reduced instance (G − {u}, M, A \ {u}, k, ℓ).

Proof. If (G − {u}, M, A \ {u}, k, ℓ) is a YES instance, then (G, M, A, k, ℓ) is trivially a
YES instance since G′ is a subgraph of G. Conversely, suppose (G, M, A, k, ℓ) is a YES
instance, and P is a solution. If u does not belong to any path in P , then P is a solution to
(G′, M, A, k, ℓ) as well. Otherwise, let P ∈ PQ contain u. This is true since any unmarked
vertex can only be used in a path in PQ. But any such path uses exactly ℓ − 2 vertices
from V (Q) ∩ A. Hence we can upper bound the number of unmarked vertices from A that
are contained in PQ and hence P by (f2(ℓ, m) + (ℓ − 3)) · 1

ℓ−2 . Hence, there is at least one
unmarked vertex u′ ̸= u in V (Q) ∩ A which is not used by any path in P . We replace u with
u′ in P to get a desired solution to (G′, M, A, k, ℓ). ◀

After exhaustive application of Reduction Rules 2 and 3, the upper bound on the number
of vertices of different types in each clique is as follows:

Marked vertices in A: f1(ℓ, m) = (m + 1)(ℓm + 1)
Marked vertices in V (Q) \ A: f2(ℓ, m) = (m2 + m + 1)(ℓm + 1)
Unmarked vertices in A: (f2(ℓ, m) + (ℓ − 3)) · 1

ℓ−2 + 2
Unmarked vertices in V (Q) \ A: (f1(ℓ, m) · ℓ + 1

Hence the total number of vertices in each clique is bounded by O(ℓ2m2 + ℓm3).

Equivalent cliques. Now we aim to bound the number of cliques by introducing the concept
of equivalent cliques. Two cliques Qi and Qj , are equivalent (belong to the same equivalent
class) if and only if the number of vertices from the cliques that are in A, and that are
outside A with an exact neighborhood of M ′ ⊆ M is same for each M ′ ∈ 2M . Two cliques
Qi, Qj in an equivalence class are essentially indistinguishable from each other, i.e., there is a
bijective mapping gij : V (Qi) 7→ V (Qj), so that N(u) ∩ M = N(g(u)) ∩ M , for all u ∈ V (Qi).
This fact is crucial in the construction of our next reduction rule. Observe that the number
of equivalence classes is at most O(ℓ2m2 + ℓm3)2m=f(ℓ, m). The following reduction rule
bounds the number of cliques in each equivalent class.
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▶ Reduction Rule 4. If there exists an equivalent class C with at least ℓm + 1 cliques,
then delete one of the cliques Qi ∈ C and return the reduced instance (G − Qi, M, A \ (A ∩
V (Qi)), k − xi, ℓ) where, xi = min

{
|A∩V (Qi)|

2 , |V (Qi)\A|
ℓ−2

}
.

▶ Lemma 14. (G, M, A, k, ℓ) is a YES instance if and only if (G−Qi, M, A\(A∩V (Qi)), k−
xi, ℓ) is a YES instance.

Proof. In the forward direction, let (G, M, A, k, ℓ) be a YES instance. Recall that the number
of the vertices contained in paths of PM for any optimal solution P is bounded by ℓs. Thus,
there are at most ℓm many cliques in total and also from any equivalence class that has vertices
in paths from PM . Let Qj be one such clique in the equivalence class C that does not contain
any vertex in the paths from PM . From the definition of an equivalence class, it is evident
that the two cliques Qi, Qj in the equivalence class C are indistinguishable from each other,
i.e., there is a bijective mapping gij : V (Qi) 7→ V (Qj), so that N(u) ∩ M = N(g(u)) ∩ M , for
all u ∈ V (Qi). Let Xi = V (P) ∩ V (Qi) and Xj = V (P) ∩ V (Qj), i.e, the set of vertices from
Qi and Qj that are used in paths from P, respectively. We construct an alternate solution,
P ′, where we replace Xi with gij(Xi) and Xj with g−1

ij (Xj) in P. Since Xj ∩ M = ∅, we
have g−1

ij (Xj) ∩ M = ∅. Therefore in P ′, there is no path that contain vertices from both
M and V (Qi). In other words, vertices in Qi can only be contained in paths from P ′ \ P ′

M

(paths that are completely contained inside the clique). And, the number of such paths is
bounded by xi = min

{
|A∩V (Qi)|

2 , |V (Qi)\A|
ℓ−2

}
. Hence (G − Qi, M, A \ (A ∩ V (Qi)), k − xi, ℓ)

is a YES instance.
In the reverse direction, let (G−Qi, M, A\(A∩V (Qi)), k−xi, ℓ) be a YES instance with a

solution P . But there are xi many paths (say Pi) that are completely contained in Qi.Hence,
P ∪ Pi is a set of k vertex-disjoint (A, ℓ)-paths contained in G, making (G, M, A, k, ℓ) a YES
instance. ◀

After exhaustively applying all the aforementioned reduction rules, the following bounds
hold.

The number of vertices in each clique is bounded by O(ℓ2m2 + ℓm3).
The number of equivalence classes is at most O(ℓ2m2 + ℓm3)2m .
The number of cliques in each equivalence class is at most ℓm + 1.

Consequently, the size of the reduced instance is upper-bounded by a computable function
of ℓ and m, thus directly implying the following theorem.

▶ Theorem 15. ALPP parameterized by cvd(G) + ℓ admits an algorithm running in FPT
time.

6 (A, ℓ)-Path Packing parameterized by vc(G)

In this section, we design a polynomial kernel for (A, ℓ)-Path Packing parameterized by
the size of a vertex cover of the graph.

ALPP Parameter: m = |M |
Input: An undirected graph G = (V, E), A, M ⊆ V (G) such that M is a vertex cover
of G and integers k and ℓ.
Question: Are there k vertex-disjoint A-paths each of length ℓ in G?

For a YES instance (G, M, A, k), a solution P contains at most 3m vertices. This limitation
arises because there are no consecutive vertices from I = V (G) − M in any path within P.
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▶ Observation 16. Any solution P to a YES instance of (G, M, A, k, ℓ), has at most 3m

vertices.

Our kernelization approach comprises the following marking process followed by a reduc-
tion rule that bounds the instance size by a polynomial function of m.

Marking Procedure.
1. For each vertex u ∈ M , mark 3m + 1 many of its neighbors in I ∩ A. If any vertex

u ∈ M has less than 3m + 1 neighbors, we mark all of them.
2. For each pair of vertices u, v ∈ M , mark 3m + 1 many common neighbors in I \ A

for each clique. If any pair u, v ∈ M has less than 3m + 1 common neighbors, we
mark all of them.

Now we apply the following reduction rule to eliminate unmarked vertices in I.

▶ Reduction Rule 5. We delete any unmarked vertex u ∈ I from G, and return the reduced
instance (G − {u}, M, A, k, ℓ).

Let G′ = G − {u} be the new graph obtained after an application of Reduction Rule 5.
The safeness of the reduction rule is not very difficult to see and will be provided in the full
version.

Following the exhaustive application of the Reduction Rule 5, there are 3m + 1 vertices
marked in I for each pair of vertices as well as each individual vertex in M . Consequently, in
the reduced instance, |I| is bounded by O(m3). As a result, we have the following theorem.

▶ Theorem 17. ALPP parameterized by vc(G) admits a kernel with O(m3) vertices.

7 Conclusion

Our results have extended the works of Belmonte et al. [1] by addressing the parameterized
complexity status of (A, ℓ)-Path Packing (ALPP) across numerous structural parameters.
It was known from Belmonte et al. [1] that ALPP is W[1]-complete when parameterized by
pw + |A|. We prove an intractability result for a much larger parameter of dtp(G) + |A|.
Also, the parameterized complexity of ALPP when parameterized by the combined parameter
of cliquewidth and ℓ was an open question [1]. While that problem still remains open,
we have been successful in making slight progress by obtaining an FPT algorithm for the
problem when parameterized by the combined parameter of cvd(G) and ℓ. Another direction
to explore would be to determine the fixed-parameter tractability status of the problem
when parameterized by cvd(G) only. It would be interesting to explore if this FPT result
can be generalized to the combined parameter of cograph vertex deletion set size and ℓ

since cographs are graphs of cliquewidth at most two. We believe that the positive results
presented in this paper are not optimal and some of those results can be improved with more
involved structural analysis. Therefore, improving the efficiency of our positive results are
exciting research direction for future works.
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Abstract
Vertex deletion problems for graphs are studied intensely in classical and parameterized complexity
theory. They ask whether we can delete at most k vertices from an input graph such that the
resulting graph has a certain property. Regarding k as the parameter, a dichotomy was recently shown
based on the number of quantifier alternations of first-order formulas that describe the property.
In this paper, we refine this classification by moving from quantifier alternations to individual
quantifier patterns and from a dichotomy to a trichotomy, resulting in a complete classification of
the complexity of vertex deletion problems based on their quantifier pattern. The more fine-grained
approach uncovers new tractable fragments, which we show to not only lie in FPT, but even in
parameterized constant-depth circuit complexity classes. On the other hand, we show that vertex
deletion becomes intractable already for just one quantifier per alternation, that is, there is a formula
of the form ∀x∃y∀z(ψ), with ψ quantifier-free, for which the vertex deletion problem is W[1]-hard.
The fine-grained analysis also allows us to uncover differences in the complexity landscape when
we consider different kinds of graphs and more general structures: While basic graphs (undirected
graphs without self-loops), undirected graphs, and directed graphs each have a different frontier of
tractability, the frontier for arbitrary logical structures coincides with that of directed graphs.
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1 Introduction

A recent research topic in parametrized complexity are distance to triviality problems. We are
asked how many modification steps (the “distance”) we need to apply to a logical structure
in order to transform it into a “trivial” one – which can mean anything from “no edges at all”
to “no cycles” or even more exotic properties like “no cycles of odd length.” Such problems
have been found highly useful in modern algorithm design [1, 2, 11, 21] and are now an
important test bed for new algorithmic ideas and data reduction procedures [14, 15, 22, 23].

Many problems that have been studied thoroughly in the literature turn out to be vertex
deletion problems. The simplest example arises from vertex covers, which measure the
“distance in terms of vertex deletions” of a graph from being edge-free: A graph has a vertex
cover of size k iff it can be made edge-free by deleting at most k vertices. For a slightly more
complex example, the cluster deletion problem asks whether we can delete at most k vertices
from a graph so that it becomes a cluster graph, meaning that every connected component is
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a clique or, equivalently, is P3-free (meaning, there is no induced path on three vertices). The
feedback vertex set problem asks if we can delete at most k vertices, such that the resulting
graph has no cycles. The odd cycle transversal problem asks if there is a set of vertices of
size at most k, such that removing it destroys every odd cycle. Equivalently, the problem
asks if we can delete at most k vertices, such that the resulting graph is bipartite.

To investigate the complexity of vertex deletion problems in a systematic way, it makes
sense to limit the graph properties to have some structure. An early result in this direction [25]
is the NP-completeness of vertex deletion to hereditary graph properties that can be tested
in polynomial time. Intuitively, vertex deletion problems should be easier to solve for graph
properties that are simpler to express. Phrased in terms of descriptive complexity theory, if
we can describe a graph property using, say, a simple first-order formula, the corresponding
vertex deletion problem should also be simple. The intuition was proven to be correct in
2020, when Fomin et al. [17] established a dichotomy based on the number of quantifier
alternations that characterizes the classes of first-order logic formulas for which the vertex
deletion problem is fixed-parameter tractable.

The results of Fomin et al. directly apply to some of the above examples: Consider
the problem p-vertex-cover, whose “triviality” property is described by the formula
ϕvc = ∀x∀y(x ̸∼ y), or the problem p-cluster-deletion, whose triviality property is
described by ϕcd = ∀x∀y∀z

(
(x∼ y ∧ y∼ z) → x∼ z

)
. Both first-order formulas use no

quantifier alternations, which by [17] already implies that the problems lie in para-P = FPT.
Naturally, not all problems can be characterized so easily: Properties like acyclicity (which
underlies the feedback vertex set problem) cannot be expressed in first-order logic and, thus,
the results of Fomin et al. do not apply to them. Fomin et al. also show that if there are
enough quantifier alternations (three, to be precise) in the first-order formulas describing the
property, then the resulting vertex deletion problem can be W[1]-hard. Nevertheless, the
descriptive approach allows us to identify large fragments of logical formulas and hence large
classes of vertex deletion problems that are (at least fixed-parameter) tractable.

A first central question addressed in the present paper is whether the number of quantifier
alternations (the property studied in [17]) overshadows all other aspects in making problems
hard, or whether the individual quantifier pattern of the formula plays a significant role as
well. This question appears to be of particular importance given that formulas describing
natural problems (like ϕvc and ϕcd above) tend to have short and simple quantifier patterns:
We might hope that even though we describe a particular triviality property using, say, four
alternations, the fact that we use only, say, two existential quantifiers in total still assures us
that the resulting vertex deletion problem is easy.

A second central question is whether the kind of graphs that we allow as inputs has
an influence on the complexity of the problem. Intuitively, allowing only, say, basic graphs
(simple undirected graphs without self-loops) should result in simpler problems than allowing
directed graphs or even arbitrary logical structures as input. This intuition is known to be
correct in the closely related question of deciding graph properties described in existential
second-order logic. As we will see, in the context of vertex deletion problems it makes a
difference whether we consider basic graphs, undirected graphs, or directed graphs, but not
whether we consider directed graphs or arbitrary logical structures.

Our Contributions. We completely classify the parameterized complexity of vertex deletion
problems in dependence of the quantifier pattern of the formulas that are used to express
the triviality property and also in dependence of the kind of graphs that we allow as inputs
(basic, undirected, directed, or arbitrary logical structures). An overview of the results
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is given in Table 1, where the following notations are used (detailed definitions are given
later): For a first-order formula ϕ over the vocabulary τ = {∼2} of (directed, simple)
graphs, the parameterized problem pk-vertex-deletiondir(ϕ) (abbreviated p-vddir(ϕ))
asks us to tell on input of a directed graph G and a parameter k ∈ N whether we can
delete at most k vertices from G, so that for the resulting graph G′ we have G′ |= ϕ. The
problems p-vdundir(ϕ) and p-vdbasic(ϕ) are the restrictions where the input graphs are
undirected or basic graphs (undirected graphs without self-loops), respectively. For instance,
p-vertex-cover = p-vdbasic(ϕvc) = p-vdbasic

(
∀x∀y(x ̸∼ y)

)
. In the other direction, let

p-vdarb(ϕ) denote the generalization where we allow an arbitrary logical vocabulary τ and
arbitrary (finite) logical structures A instead of just graphs G (and where “vertex deletion”
should better be called “element deletion,” but we stick with the established name). For
a (first-order) quantifier pattern p, which is just a string of a’s and e’s standing for the
universal and existential quantifiers at the beginning of a formula ϕ, we write p-VDbasic(p)
for the class of all problems p-vdbasic(ϕ) where ϕ has all its quantifiers at the beginning and
they form the pattern p. For instance, p-vertex-cover ∈ p-VDbasic(aa) as ϕvc has two
universal quantifiers. The same notation is used for undirected graphs, directed graphs, and
arbitrary structures.

Table 1 Complete complexity classification of vertex deletion problems for first-order formulas
in dependence of the quantifier pattern p ∈ {a, e}∗ (where p ⪯ q means that p is a subsequence
of q). The four different considered restrictions on the allowed input structures lead to three distinct
complexity landscapes. Note that para-AC0 ⊊ para-AC0↑ ⊆ para-P = FPT holds and that it is a
standard assumption that FPT ∩ W[2]-hard = ∅ also holds.

p-VDbasic(p) ⊆ para-AC0, when p⪯ e∗a∗ or eae.
̸⊆ para-AC0 but ⊆ para-AC0↑, when eeae, aae or aee ⪯ p⪯ e∗a∗e∗.
∩ W[2]-hard ̸= ∅, when aea ⪯ p.

p-VDundir(p) ⊆ para-AC0, when p⪯ ae or e∗a∗.
̸⊆ para-AC0 but ⊆ para-AC0↑, when eae, aae or aee ⪯ p⪯ e∗a∗e∗.
∩ W[2]-hard ̸= ∅, when aea ⪯ p.

p-VDdir(p) and ⊆ para-AC0, when p⪯ e∗a∗.
p-VDarb(p) ̸⊆ para-AC0 but ⊆ para-AC0↑, when ae ⪯ p⪯ e∗a∗e∗.

∩ W[2]-hard ̸= ∅, when aea ⪯ p.

The results in Table 1 give an answer to the first central question formulated earlier,
which asked whether it is the number of alternations of quantifiers in patterns (and not so
much the actual number of quantifiers) that are responsible for the switch from tractable to
intractable observed by Fomin et al. [17], or whether the frontier is formed by short patterns
that “just happen” to have a certain number of alternations. As can be seen, the latter is
true: All intractability results hold already for very short and simple patterns. Thus, while
it was previously known that there is a formula in Π3 (meaning it has a pattern of the form
∀∗∃∗∀∗ or a∗e∗a∗ in our notation) defining an intractable problem, we show that already one
quantifier per alternation (the pattern aea) suffices. On the positive side, Table 1 shows
that all vertex deletion problems that are (fixed-parameter) tractable at all already lie in
the classes para-AC0 or at least para-AC0↑. From an algorithmic point of view this means
that all of the vertex deletion problems that we classify as fixed-parameter tractable admit
efficient parallel fixed-parameter algorithms.
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Concerning the second central question, which asked whether it makes a difference which
kind of graphs or logical structures we consider, Table 1 also provides a comprehensive
answer: First, the frontier of tractability (the patterns where we switch from membership
in FPT to hardness for W[1]) is the same for all kinds of inputs (namely from “does not
contain aea as a subsequence” to “contains aea as a subsequence”). Second, if we classify the
tractable fragments further, a more complex complexity landscape arises: While p-VDdir(p)
and p-VDarb(p) have the same classification for all p, the classes p-VDbasic(p) and p-VDundir(p)
each exhibit a different behavior. In other words: For simple patterns p, it makes a difference
whether the inputs are basic, undirected, or directed graphs.

The just-discussed structural results are different from classifications in dependence
of quantifier patterns p established in previous works: Starting with Eiter et al. [13] and
subsequently Gottlob et al. [20], Tantau [27] and most recently Bannach et al. [3], different
authors have classified the complexity of weighted definability problems by the quantifier
patterns used to describe them. In these problems, formulas have a free set variable and we
ask whether there is an assignment to the set variable with at most k elements such that
the formula is true. Since it is easy to see that the vertex deletion problems we study are
special cases of this question, upper bounds from earlier research also apply in our setting.
However, our results show that (as one would hope) for vertex deletion problems for many
patterns p we get better upper bounds than in the more general setting. Furthermore, there
is an interesting structural insight related to our second central question: While the results
in [3] for weighted definability show that, there, the complexities for undirected graphs,
directed graphs, and arbitrary logical structures all coincide (but differ for basic graphs),
for the vertex deletion setting, we get three different complexity characterizations for basic,
undirected, and directed graphs – but the latter coincide with arbitrary structures once more.

Related Work. The complexity-theoretic investigation of vertex deletion problems has a
long and fruitful history. Starting in classical complexity theory, results on vertex deletion
problems were established as early as in the late 1970s [24, 25, 28]. The focus was mostly on
deletion to commonly known graph properties, such as planarity, acyclicity or bipartiteness.

Since it is very natural to regard the number of allowed modifications as the parameter
of the problem, the investigation of vertex deletion problems quickly gained traction in
parameterized complexity, with continued research to this day [7, 19, 26]. Specifically for
graphs, similar problems like the deletion or modification of edges [8] or alternative distance
measures such as elimination distance [18] are also considered. Regarding first-order definable
properties, a dichotomy is shown in [17].

The quantifier patterns we employ in this paper have also received a lot of attention, espe-
cially in the context of descriptive complexity. Early uses go as far back as the classification
of decidable fragments of first-order logic [6]. They were then considered in the context of
classical complexity [13, 20, 27] and later also in the context of parameterized complexity [3].

Organization of this Paper. Following a review of basic concepts and terminology in
Section 2, we present the complexity-theoretic classification of the vertex deletion problems
for basic, undirected and directed graphs in Sections 3, 4 and 5, respectively. For theorems
and lemmas marked “▼ [4]”, the proofs can be found in the full version [4].
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2 Background in Descriptive and Parameterized Complexity

Terminology from Finite Model Theory. In this paper, we will use standard terminology
from finite model theory, for a thorough introduction, see, for example [12]. A relational
vocabulary τ (also known as a signature) is a set of relation symbols to each of which
we assign a positive arity, denoted using a superscript. For example, τ = {P 1, E2} is a
relational vocabulary with a monadic relation symbol P and a dyadic relation symbol E. A
τ -structure A consists of a universe A and for each relation symbol R ∈ τ of some arity r of
a relation RA ⊆ Ar. We denote the set of finite τ -structures as struc[τ ]. For a first-order
τ -sentence ϕ, we write models(ϕ) for the class of finite models of ϕ. A decision problem P

is a subset of struc[τ ] which is closed under isomorphisms. A formula ϕ describes P if
models(ϕ) = P .

For τ -structures A and B with universes A and B, respectively, we say that A is an
induced substructure of B if A ⊆ B and for all r-ary R ∈ τ , we have RA = RB ∩Ar. For a
set S ⊆ B, we denote by B \ S the substructure induced on B \ S.

We regard directed graphs G = (V,E) (which are pairs of a nonempty vertex set V
and an edge relation E ⊆ V × V ) as logical structures G over the vocabulary τdigraph =
{∼2} where V is the universe and ∼G = E. An undirected graph is a directed graph
that additionally satisfies ϕundirected := ∀x∀y(x∼ y → y∼x), while a basic graph satisfies
ϕbasic := ∀x∀y

(
x∼ y → (y∼x ∧ x ̸= y)

)
.

For a first-order logic formula in prenex normal form (meaning all quantifiers are at the
front), we can associate a quantifier prefix pattern (or pattern for short), which are words
over the alphabet {e, a}.1 For example, the formula ϕbasic has the pattern aa, while the
formula ϕdegree-≥2 := ∀x∃y1∃y2

(
(x∼ y1) ∧ (x∼ y2) ∧ (y1 ̸= y2)

)
has the pattern aee. As

another example, the formulas in the class Π2 (which start with a universal quantifier and
have one alternation) are exactly the formulas with a pattern p ∈ {a}∗ ◦ {e}∗, which we write
briefly as p ∈ a∗e∗. We write p ⪯ q if p is a subsequence of q.

Terminology from Parameterized Complexity. We use standard definitions from parame-
terized complexity, see for instance [9, 10, 16]. A parameterized problem is a set Q ⊆ Σ∗ × N
for an alphabet Σ. In an instance (x, k) ∈ Σ∗ × N we call x the input and k the parameter.
The central problem we consider in this paper is the following:

▶ Problem 2.1 (p-vdarb(ϕ), where ϕ is a first-order τ -formula).
Instance: (An encoding of) a logical τ -structure A and an integer k ∈ N.
Parameter: k.
Question: Is there a set S ⊆ A with |S| ≤ k such that A \ S |= ϕ?

As mentioned earlier, we also consider the problems p-vdbasic(ϕ), where the input structures
are basic graphs (formally, p-vdbasic(ϕ) = p-vdarb(ϕ) ∩

(
models(ϕbasic) ×N

)
), the problems

p-vdundir(ϕ), where the input structures are undirected graphs, and p-vddir(ϕ), where the
input structures are directed graphs. For a pattern p ∈ {a, e}∗, the class p-VDarb(p) contains
all problems p-vdarb(ϕ) such that ϕ has pattern p. The classes with the subscripts “basic”,
“undir”, and “dir” are defined similarly.

1 One uses “a” and “e” in patterns rather than “∀” and “∃” since in the context of second-order logic one
needs a way to differentiate between first-order and second-order quantifiers and, there, “E” refers to a
“second-order ∃” while “e” refers to a “first-order ∃”. In our paper, we only use first-order quantifiers so
only lowercase letters are needed.
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We will consider some parameterized circuit complexity classes. We define para-AC0 as
the class of parameterized problems that can be decided by a family of unbounded fan-in
circuits (Cn,k)n,k∈N of constant depth and size f(k) · nO(1) for some computable function f .
Similarly, para-FAC0 is the class of functions that can be computed by a family of unbounded
fan-in circuits (Cn,k)n,k∈N of constant depth and size f(k) · nO(1) for some computable
function f . For para-AC0↑, we allow the circuit to have depth f(k). Questions of uniformity
will not be important in the present paper. For these classes, we have the following inclusions:
para-AC0 ⊊ para-AC0↑ ⊆ para-P = FPT.

A parameterized problem Q ⊆ Σ∗ × N is para-AC0-many-one-reducible to a problem
Q′ ⊆ Γ∗ ×N, written Q ≤para-AC0

m Q′, if there is a function f : Σ∗ ×N → Γ∗ ×N, such that (1)
for all (x, k) ∈ Σ∗ × N we have (x, k) ∈ Q iff f(x, k) ∈ Q′, (2) there is a computable function
g : N → N such that for all (x, k) ∈ Σ∗ × N, we have k′ ≤ g(k), where f(x, k) = (x′, k′), and
(3) f ∈ para-FAC0. The more general para-AC0 disjunctive truth table reduction, written
Q ≤para-AC0

dtt Q′, is defined similarly, only f maps (x, k) to a sequence (x1, k1), . . . , (xℓ, kℓ)
of instances such that (1′) (x, k) ∈ Q iff there is an i ∈ {1, . . . , ℓ} with (xi, ki) ∈ Q′ and
(2′) ki ≤ g(k) holds for all i ∈ {1, . . . , ℓ}. Both para-AC0 and para-AC0↑ are closed under
≤para-AC0

m - and ≤para-AC0

dtt -reductions.

3 Basic Graphs

Basic graphs, that is, undirected graphs without self-loops, are one of the simplest non-trivial
logical structures one can imagine. Despite that, many NP-hard problems on graphs, like
vertex cover, clique or dominating set, are NP-hard even for basic graphs. This also transfers
in some sense to our setting: The “tractability frontier”, the dividing line between the
fragments which are tractable and those where we can express intractable problems, is
the same for all graph classes we consider. However, when we shift our attention to the
complexity landscape inside the tractable fragments, we also see that the complexity of the
logical structure has an impact on the complexity of the problems we can define: Basic,
undirected, and directed graphs all have provably distinct complexity characterizations.

We begin by stating the main theorem of the section, the complexity classification for
basic graphs. In the rest of the section, we show the upper and lower bounds that lead to
this classification.

▶ Theorem 3.1 (Complexity Trichotomy for p-VDbasic(p)). Let p ∈ {a, e}∗ be a pattern.
1. p-VDbasic(p) ⊆ para-AC0, if p ⪯ eae or p ⪯ e∗a∗.
2. p-VDbasic(p) ⊆ para-AC0↑ but p-VDbasic(p) ̸⊆ para-AC0, if eeae ⪯ p, aae ⪯ p or aee ⪯ p

holds, but also still p ⪯ e∗a∗e∗.
3. p-VDbasic(p) contains a W[2]-hard problem, if aea ⪯ p.

The theorem covers all possible patterns. It follows from the following lemma, where we
state the individual complexity characterizations we will prove:

▶ Lemma 3.2 (Detailed Bounds for p-VDbasic(p)).
1. p-VDbasic(eae) ⊆ para-AC0.
2. p-VDbasic(e∗a∗) ⊆ p-VDarb(e∗a∗) ⊆ para-AC0.
3. p-VDbasic(e∗a∗e∗) ⊆ p-VDarb(e∗a∗e∗) ⊆ para-AC0↑.
4. p-VDbasic(eeae) contains a problem not in para-AC0.
5. p-VDbasic(aae) contains a problem not in para-AC0.
6. p-VDbasic(aee) contains a problem not in para-AC0.
7. p-VDbasic(aea) contains a W[2]-hard problem.
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Notice that in particular, we know unconditionally that W[2] ̸⊆ para-AC0, and, hence,
a W[2]-hard problem cannot lie in para-AC0. It is furthermore widely conjectured that
W[2] ̸⊆ para-AC0↑, as para-AC0↑ ⊆ FPT. We devote the rest of this section to proving the
individual items of the lemma.

Upper Bounds. Previous work by Bannach et al. [3] showed that in the weighted definability
setting, formulas with the pattern ae already suffice to describe W[2]-hard problems. We
now show that the situation is more favorable in the vertex deletion setting, which is a
special case of weighted definability: All problems in p-VDbasic(e∗a∗e∗) are tractable and the
problems in p-VDbasic(e∗a∗) and in p-VDbasic(eae) are even in para-AC0, the smallest class
commonly considered in parameterized complexity. We start with the last claim:

▶ Lemma 3.3 (▼ [4]). p-VDbasic(eae) ⊆ para-AC0.

Proof idea. To check whether we can delete at most k vertices to satisfy a formula with
prefix pattern eae, we first branch over the possible assignments to the first existentially
quantified variable. Now, the neighborhood of this variable induces a 2-coloring on the rest
of the graph. For the rest of the prefix, ae, we prove that a vertex has to be deleted if and
only if there is no special set of constant size, called stable set. This can all be checked in
para-AC0. ◀

Since the algorithms used to prove the next two upper bounds do not make use of the
fact that the input structure is a basic graph, we prove them for arbitrary input structures.

▶ Lemma 3.4. p-VDarb(e∗a∗) ⊆ para-AC0.

Proof. For a given formula ϕ of the form ∃x1 · · · ∃xf ∀y1 · · · ∀yg(ψ) for a quantifier-free
formula ψ, we show that p-VDarb(ϕ) ≤para-AC0

dtt p-g-hitting-set, where the hitting set
problem is defined as shown below. Since p-g-hitting-set is known [5] to lie in para-AC0,
we get the claim.

▶ Problem 3.5 (p-d-hitting-set for fixed d ∈ N).
Instance: A universe U and a set E of subsets e ⊆ U (called hyperedges) with |e| ≤ d for

all e ∈ E, and a number k.
Parameter: k.
Question: Is there a hitting set X ⊆ V , meaning that X ∩ e ̸= ∅ holds for all e ∈ E, with

|X| ≤ k?

For an arbitrary input structure A with universe A, we proceed as follows: For the
existentially bound variables x1 to xf we consider all possible assignments to them in parallel.
For each of these, we prepare a query to the hitting set problem, resulting in nf queries in
total. For a given assignment, which fixes each xi to some constant ci, replace each occurrence
of xi in ϕ by ci. Build a hitting set instance H as follows: The universe is A \ {c1, . . . , cf }.
For each assignment (d1, . . . , dg) of to the g universally quantified variables, check if the
formula ψ is true, that is, whether A |= ψ(c1, . . . , cf , d1, . . . , dg). If this is not the case, add
the hyperedge {d1, . . . , dg} \ {c1, . . . , cf } to make sure that at least one element is deleted
from the universe of A that cause this particular violation. If {d1, . . . , dg} \ {c1, . . . , cf } is
empty, an empty hyperedge is generated and the hitting set solver correctly rejects the input.

We claim that A ∈ p-VDarb(ϕ) iff for at least one of the constructed H we have
(H, k) ∈ p-g-hitting-set: For the first direction, let S with |S| ≤ k be the elements
of A’s universe that we can delete, that is, for which A \ S |= ϕ. Then there are
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constants (c1, . . . , cf ) that we can assign to the existentially bound variables such that
A \ S |= ∀y1 · · · ∀yg

(
ψ(c1, . . . , cf , y1, . . . , yg)

)
. But, then, S is a hitting set of the instance

corresponding to these constants: If there were an edge e ⊆ A with e ∩ S = ∅ in the hitting
set instance, there would be an assignment to the yi to elements in A \ S that makes ψ false,
violating the assumption.

For the other direction, let X with |X| ≤ k be the solution of one of the produced hitting
set instances with (H, k) ∈ p-g-hitting-set (at least one must exist). Then A \ X |= ϕ,
since we can assign the existentially bound variables to the values that correspond to H

(which will not be in X by construction) and there can be no assignment to the universally
quantified variables that makes ψ false as any assignment where this would be case is hit by
X by construction and, thus, at least one element of the tuple that causes the violation gets
removed in A \X. ◀

▶ Lemma 3.6. p-VDarb(e∗a∗e∗) ⊆ para-AC0↑.

Proof. Let ϕ be fixed and of the form ∃x1 · · · ∃xf ∀y1 · · · ∀yg∃z1 · · · ∃zh(ψ) for a quantifier-free
formula ψ. We describe a para-AC0↑-algorithm that, given an arbitrary input structure A
with universe A, decides whether there is a set S with |S| ≤ k such that A \ S |= ϕ.

Now, we have for each assignment to the universally quantified variables a witness which is
bound by the block of h existential quantifiers. The problem compared to the e∗a∗-fragment
is that by the deletion of elements, we could potentially destroy witnesses needed to satisfy
other assignments. Because of this, we use a direct search tree algorithm to resolve violations
of the universal quantifiers.

In detail, we once more consider all possible assignments (c1, . . . , cf ) to the xi in parallel.
Then we use k layers to find and resolve violations: At the start of each layer, we will already
have fixed a set D of vertices that we wish to delete, starting in the first layer with D = ∅.
Then in the layer, we find the (for example, lexicographically) first assignment of the yi to
elements (d1, . . . , df ) that all lie in A \D for which we cannot find an assignment of the zi to
elements (e1, . . . , eh) in A\D such that A\D |= ψ(c1, . . . , cf , d1, . . . , dg, e1, . . . , eh). When we
cannot find such an assignment, we can accept since we have found a D for which A \D |= ϕ

holds. Otherwise, we have to delete one of the elements in {d1, . . . , dg} \ {c1, . . . , cf } to make
the formula true, so we branch over these at most g possibilities, entering g copies of the
next layers, where the ith copy starts with D ∪ {di}.

Since the block of universal quantifiers has constant length, the number of branches in
each level of the search tree is constant, so the total size of the search tree is at most gk. The
depth of the search tree is bounded by the number of vertices we can delete, which is our
parameter. In total, we get a para-AC0↑ circuit. ◀

Lower Bounds. We now go on to show the lower bounds claimed in Lemma 3.2. The
next lemmas all follow the same rough strategy: To show that some problems that can be
expressed in the given fragments are (unconditionally) not in para-AC0, we reduce from
a variant of the reachability problem. In contrast, the last lower bound is obtained via a
reduction from p-set-cover, and improves a result from Fomin et al. [17]. They establish
that there is a formula ϕ ∈ Π3, such that p-VDbasic(ϕ) is W[2]-hard. In terms of patterns,
the formula they construct has the pattern a5e26a. We show that there is a formula with
pattern aea for which this holds.

The reachability problem that will be central for the following lower bounds is:
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▶ Problem 3.7 (p-matched-reach).
Instance: A directed layered graph G with vertex set {1, . . . , n} × {1, . . . , k}, where the ith

layer is Vi := {1, . . . , n} × {i}, such that for each i ∈ {1, . . . , k − 1} the edges
point to the next layer and they form a perfect matching between Vi and Vi+1;
and two designated vertices s ∈ V1 and t ∈ Vk.

Parameter: k.
Question: Is t reachable from s in G?

(We require that in the encoding of G the vertex “addresses” (i, l) are given explicitly as,
say, pairs of binary numbers, so that even a AC0 circuit will have no trouble determining
which vertices belong to a layer Vi or what the number k of layers is.)

Observe that the input instance can be alternatively described as a collection of n directed
paths, each of length k. We call the paths in this graph original paths with original vertices
and edges. We call the vertices in the layers V1 and Vk the outer vertices and the vertices in
the layers Vi for i ∈ {2, . . . , k − 1} the inner vertices. The reductions add vertices and edges
to the graphs, which will be referred to as the new vertices and edges (and will be indicated
in yellow in figures).

▶ Fact 3.8 ([3]). p-matched-reach /∈ para-AC0 and, thus, for any problem Q with
p-matched-reach ≤para-AC0

m Q we have Q /∈ para-AC0.

The proof of every lemma using a reduction from the matched reachability problem will
consist of four parts:
1. The construction of a formula ϕ with the quantifier pattern p given in the lemma.
2. The construction of the instance for the vertex deletion problem (G′, k′) from the input

instance of the matched reachability problem (G, s, t) (typically by adding new vertices
and edges).

3. Showing (G, s, t) ∈ p-matched-reach implies (G′, k′) ∈ p-VDbasic(ϕ), called the forward
direction.

4. Showing (G′, k′) ∈ p-VDbasic(ϕ) implies (G, s, t) ∈ p-matched-reach, called the back-
ward direction.

We present the application of the above steps in detail in the following lemma. In
subsequent lemmas, which follow the same line of arguments, but with appropriate variations
in the constructions and correctness proofs, we only highlight the differences.

▶ Lemma 3.9. p-VDbasic(eeae) ̸⊆ para-AC0.

Proof. We want there to be a deletion strategy for (G′, k′) iff in the instance (G, s, t), the
vertices s and t lie on the same original path. We take k′ = k, the number of layers in G,
and construct a graph G′ from G by adding two special vertices c1 and c2, and regard the
adjacency of every vertex on the original paths to the vertices c1 and c2 as a 3-coloring with
colors i ∈ {0, 1, 2}. We then add appropriate gadgets at the start and the end of each original
path, with special gadgets being added at s and at t (although, in this proof, their “special
gadgets” are just the empty gadget).

The formula. Consider the following formulas, where ϕa specifies that every vertex that
is neither c1 nor c2 should be connected in a certain way to them, and ϕb asks that every
vertex of color i should have a neighbor of color (i− 1) (mod 3). We encode the color 0 with
(x∼ c1 ∧ x ̸∼ c2), the color 1 with (x ̸∼ c1 ∧ x∼ c2), and the color 2 with (x∼ c1 ∧ x∼ c2).
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ϕa(c1, c2, x) = (c1 ̸= c2) ∧ (c1 ∼x ∨ c2 ∼x)
ϕb(c1, c2, x, y) = x∼ y ∧ ((x∼ c1 ∧ x∼ c2) → (y ̸∼ c1 ∧ y∼ c2))

∧ ((x ̸∼ c1 ∧ x∼ c2) → (y∼ c1 ∧ y ̸∼ c2))
∧ ((x∼ c1 ∧ x ̸∼ c2) → (y∼ c1 ∧ y∼ c2))

ϕ3.9 = ∃c1∃c2∀x∃y
(
((x ̸= c1) ∧ (x ̸= c2)) →(

(y ̸= c1) ∧ (y ̸= c2) ∧
ϕa(c1, c2, x) ∧ ϕb(c1, c2, x, y)

))

t

s

7→

0

1

2

t

2 1

s

1

2

0

1

0

1

2

0

1

2 1

c1

c2

Figure 1 Example for the reduction from Lemma 3.9. The input graph on the left is a directed
layered graph with perfect matchings between consecutive layers. The reduction maps it to the
undirected graph shown right by forgetting about the direction of edges, by adding gadgets at the
beginnings and ends of the paths (with special empty gadgets at s and t), and by adding two special
vertices c1 and c2 that are connected in three different ways to the other vertices, corresponding
to three different colors. Newly added vertices and edges are indicated in yellow. Note that the
indicated colors, numbers, and labels are not part of the output, they are only for explaining how
the formula interprets the connection of the vertices to c1 and c2.

The reduction. On input (G, s, t) the reduction first checks that the graph is, indeed, a
layered graph with perfect matchings between consecutive levels (this can easily be done by
an AC0 circuit due to the way we encode G). Then, we let k′ be the number k of layers in
G = (V,∼) and construct G′ = (V ′,∼′) by first forgetting about the direction of the edges
(making the graph undirected). We then add the following gadgets:
1. At each end v ∈ Vk of a path, except for v = t, we add a vertex v′ to V ′ and connect v

to v′, so v∼′ v′. Let Vk+1 be the set of all new vertices added in this way. The gadget for
t ∈ Vk is empty: We do not add anything.

2. At each beginning v ∈ V1 of a path, except for v = s, add two vertices v′ and v′′ to V ′ and
connect the three vertices to a triangle, so v∼′ v′ ∼′ v′′ ∼′ v. Let V0 contain all vertices v′

added in this way and let V−1 contain all vertices v′′ added in this way. Once more, the
special gadget for s ∈ V1 is just the empty gadget.

3. Finally, we add two further vertices c1 and c2 and connect them to the other vertices as
follows: For v ∈ Vi with i ∈ {−1, 0, 1, 2, . . . , k + 1}:
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If i ≡ 0 mod 3, let c1 ∼′ v.
If i ≡ 1 mod 3, let c2 ∼′ v.
If i ≡ 2 mod 3, let c1 ∼′ v and c2 ∼′ v.

An example for the reduction is depicted in Figure 1. We claim that through this construction,
the instance (G′, k′) is in p-VDbasic(ϕ3.9) iff the input graph with vertices s and t is in
p-matched-reach:

Forward direction. Suppose that (G, s, t) ∈ p-matched-reach. We show that (G′, k′) ∈
p-VDbasic(ϕ3.9): In input G′, just delete every vertex in the original s-t-path. Then every
vertex v ∈ Vi for i ∈ {2, . . . , k} has its predecessor in the original path as a neighbor, and
the predecessor has the previous color regarding the ordering. Furthermore, every vertex
v ∈ V1 is part of a triangle where the three vertices each have a different color, so every one
of these three vertices has a neighbor of the previous color.

Backward direction. Suppose that (G′, k′) ∈ p-VDbasic(ϕ3.9). We show that (G, s, t) ∈
p-matched-reach. By assumption, there is a set D of size |D| ≤ k = k′ such that G′ \D is
a model of ϕ3.9. Observe that c1 /∈ D and c2 /∈ D must hold since they are the only vertices
satisfying the formula part ϕa, which requires that there are two different vertices that are
connect to everyone else. On the other hand, we have to delete s, since by construction, it
has no neighbor with the previous color (s has color 0, the successor of s has color 1). But,
now, the successor of s has no neighbor of the previous color, so we have to delete it as
well. We have to continue for the whole original path of s, so D has to contain at least the
vertices on the original path starting at s, which encompasses k vertices. If the last vertex
v ∈ Vk on the original path starting at s is not t (that is, if t is not reachable from s), then
there is another vertex v′ ∈ Vk+1 with v∼′ v′ and we also have to delete v′, contradicting the
assumption that we only have to delete k vertices. Thus, t must be reachable from s. ◀

▶ Lemma 3.10 (▼ [4]). p-VDbasic(aae) ̸⊆ para-AC0.

▶ Lemma 3.11 (▼ [4]). p-VDbasic(aee) ̸⊆ para-AC0.

▶ Lemma 3.12 (▼ [4]). p-VDbasic(aea) contains a W[2]-hard problem.

4 Undirected Graphs

Whether allowing self-loops has an impact on the complexity of the problems is hard to
predict: While in the setting of Fomin et al. [17], the same dichotomy arises for basic and
undirected graphs, in the setting of weighted definability considered by Bannach et al. [3],
one class of problems jumps from being contained in para-AC0 to containing para-NP-hard
problems just by allowing self-loops. In our setting, we get an intermediate blow-up of the
complexities by allowing self-loops: While the tractability frontier stays the same, the frontier
of fragments that are solvable in para-AC0 shifts.

Let us now classify the complexity of vertex deletion problems on undirected graphs.
We can use some of the upper and lower bounds established in the section before, and only
consider the differences.

▶ Theorem 4.1 (Complexity Trichotomy for p-VDundir(p)). Let p ∈ {a, e}∗ be a pattern.
1. p-VDundir(p) ⊆ para-AC0, if p ⪯ ae or p ⪯ e∗a∗.
2. p-VDundir(p) ⊆ para-AC0↑ but p-VDundir(p) ̸⊆ para-AC0, if one of eae ⪯ p, aae ⪯ p or

aee ⪯ p holds, but still p ⪯ e∗a∗e∗ holds.
3. p-VDundir(p) contains a W[2]-hard problem, if aea ⪯ p.
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▶ Lemma 4.2.
1. p-VDundir(ae) ⊆ para-AC0.
2. p-VDundir(e∗a∗) ⊆ para-AC0.
3. p-VDundir(e∗a∗e∗) ⊆ para-AC0↑.
4. p-VDundir(eae) contains a problem not in para-AC0.
5. p-VDundir(aae) contains a problem not in para-AC0.
6. p-VDundir(aee) contains a problem not in para-AC0.
7. p-VDundir(aea) contains a W[2]-hard problem.

Proof. Item 1 is proven below in Lemma 4.3. Items 2 and 3 follow directly from Lemmas 3.4
and 3.6. Item 4 is proven below in Lemma 4.4, Item 5 follows from Lemma 3.10, Item 6 from
Lemma 3.11 and Item 7 from Lemma 3.12. ◀

▶ Lemma 4.3 (▼ [4]). p-VDundir(ae) ⊆ para-AC0.

▶ Lemma 4.4 (▼ [4]). p-VDundir(eae) ̸⊆ para-AC0.

5 Directed Graphs and Arbitrary Structures

The final class of logical structures we investigate in this paper are directed graphs. Inter-
estingly, from the viewpoint of quantifier patterns, this class of structures is as complex as
arbitrary logical structures.

▶ Theorem 5.1 (Complexity Trichotomy for p-VDdir(p)). Let p ∈ {a, e}∗ be a pattern.
1. p-VDdir(p) ⊆ para-AC0, if p ⪯ e∗a∗.
2. p-VDdir(p) ⊆ para-AC0↑ but p-VDdir(p) ̸⊆ para-AC0, if ae ⪯ p ⪯ e∗a∗e∗.
3. p-VDdir(p) contains a W[2]-hard problem, if aea ⪯ p.

▶ Lemma 5.2.
1. p-VDdir(e∗a∗) ⊆ para-AC0.
2. p-VDdir(e∗a∗e∗) ⊆ para-AC0↑.
3. p-VDdir(ae) contains a problem not in para-AC0.
4. p-VDdir(aea) contains a W[2]-hard problem.

Proof. Items 1 and 2 follow directly from Lemmas 3.4 and 3.6. Item 3 is shown in Lemma 5.3,
and Item 4 follows from Lemma 3.12. ◀

▶ Lemma 5.3 (▼ [4]). p-VDdir(ae) ̸⊆ para-AC0.

6 Conclusion

In this paper, we fully classified the parameterized complexity of vertex deletion problems
where the target property is expressible by first-order formulas and where the inputs are basic
graphs, undirected graphs, directed graphs, or arbitrary logical structures. The classification
is based on the quantifier patterns of the formulas, and sheds additional light on the complexity
properties that emerge from these patterns: We have seen that while the tractability barrier is
the same for all logical structures, p-vdbasic(e∗a∗e∗), p-vdundir(e∗a∗e∗), p-vddir(e∗a∗e∗) and
p-vdarb(e∗a∗e∗) all being tractable and p-vdbasic(aea), p-vdundir(aea), p-vddir(aea) as well
as p-vdarb(aea) all containing intractable problems, in the tractable cases, basic, undirected
and directed graphs have provably different complexities, the latter coinciding with arbitrary
structures.
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The granularity we gained with the viewpoint of quantifier patterns could be useful
to examine the complexity of vertex deletions problems where the property is given by a
formula of a more expressive logic: For both monadic second-order logic (mso) and existential
second-order logic (eso), even the model checking problem becomes NP-hard. This would
allow us to express many more natural problems such as feedback vertex set, that have no
obvious formalization as a vertex deletion problem to plain fo-properties. Similarly, we could
allow extensions such as transitive closure or fixed point operators.

Compared to previous work on weighted definability, where the objective is to instantiate
a free set variable with at most, exactly, or at least k elements such that a formula holds, we
only considered deleting at most k elements. How does the complexity of vertex deletion
problems change, if we have to delete exactly k elements – or, for that matter, at least
k elements?
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Abstract
A sequence d = (d1, d2, . . . , dn) of positive integers is graphic if it is the degree sequence of some
simple graph G, and planaric if it is the degree sequence of some simple planar graph G. It is known
that if

∑
d ≤ 2n − 2, then d has a realization by a forest, hence it is trivially planaric. In this paper,

we seek bounds on
∑

d that guarantee that if d is graphic then it is also planaric. We show that
this holds true when

∑
d ≤ 4n − 4 − 2ω1, where ω1 is the number of 1’s in d. Conversely, we show

that there are graphic sequences with
∑

d = 4n − 2ω1 that are non-planaric. For the case ω1 = 0,
we show that d is planaric when

∑
d ≤ 4n − 4. Conversely, we show that there is a graphic sequence

with
∑

d = 4n − 2 that is non-planaric. In fact, when
∑

d ≤ 4n − 6 − 2ω1, d can be realized by a
graph with a 2-page book embedding.
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1 Introduction

Background. In a graph G with n vertices, the degree of a vertex is the number of edges
incident to it. Let deg(G) denote the sequence of length n of vertex degrees of G. The
Degree Realization problem concerns deciding, given a sequence d of n positive integers,
whether d has a realizing graph, namely, a graph G with n vertices such that deg(G) = d,
and finding such a graph if exists. A graphic sequence is one admitting a realizing graph. A
full characterization of graphic degree sequences was given by Erdös and Gallai [7]. Havel
and Hakimi [11, 12] described an algorithm that, given a sequence d, generates a realization,
or verifies that d is not graphic.

The realizability characterization of [7] for general graphs takes into account all the
elements of the sequence d. In contrast, the realizability of degree sequences by some special
graph classes can be characterized more economically. An extreme example is realizability by a
forest (cycle-free graph). Here, a single parameter suffices, namely, the volume

∑
d =

∑n
i=1 di

of d. Concretely, if
∑

d ≤ 2n− 2, then d can be realized by a forest, and if
∑

d ≥ 2n then
it cannot [10]. A slightly more involved and less economical characterization applies for
realizations by cacti graphs. A cactus graph is a connected graph in which every edge occurs
on at most one cycle, namely, different cycles do not share edges (but may share one vertex).
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18:2 Sparse Graphic Degree Sequences Have Planar Realizations

The paper [16] gives a full characterization for sequences that can be realized by a cactus
graph based only on the volume of the sequence, the number of 2’s in the sequence, and the
number of odd degrees in the sequence.

In this paper, we are interested in realizability by planar graphs, which turns out to be a
challenging task that is still an open problem after more than half a century. A sequence
d = (d1, d2, . . . , dn) of positive integers is planaric if it is the degree sequence of some planar
graph G. Planaric sequences were studied in, e.g., [13, 1, 18, 8, 9, 17] and more. At the
moment, however, a complete characterization for planaric sequences is not yet available.

Contributions. Let d be a sequence with n positive integers and let ωi be the multiplicity of
i in d. This paper investigates the impact of the volume

∑
d and the multiplicity parameters

ω1 and ω2 of the sequence d on its realizability by a planar graph. One direction follows
from [18] which implies that if

∑
d > 6n− 12− 2ω2 − 4ω1 then d is not planaric. (This is

tight in the sense that there are planaric sequences with
∑

d ≤ 6n − 12 − 2ω2 − 4ω1.) In
this paper, we focus on the converse direction, i.e., we seek bounds on these parameters that
guarantee that if d is graphic then it is also planaric. A simple bound is obtained by recalling
the above-mentioned known fact that if

∑
d ≤ 2n− 2, then d has a a realization by a forest

with (2n −
∑

d)/2 components, hence it is planaric [10]. Here, we give stronger bounds
for this problem, depending on

∑
d and ω1. It turns out that most of the technical effort

involves handling the leaf-free case (the case in which d does not contain 1s). We establish
the following.

▶ Theorem 1. Every graphic sequence d with ω1 = 0 and
∑

d ≤ 4n− 4 is planaric.

This in turn enables us to prove our more general main result.

▶ Theorem 2. Every graphic sequence d with
∑

d ≤ 4n− 4− 2ω1 is planaric.

In fact, when
∑

d ≤ 4n− 6− 2ω1, our constructed realizing graphs are not only planar
but also enjoy a 2-page book embedding, yielding the following corollary.

▶ Corollary 3. Every graphic sequence d with
∑

d ≤ 4n− 6− 2ω1 can be realized by a graph
with a 2-page book embedding.

This corollary can be interpreted as saying that the family D of all graphic sequences d

such that
∑

d ≤ 4n− 6− 2ω1 enjoy a 2-page book embedding realization. In comparison,
the main result of [2] gives a partition of D into non-outerplanaric sequences and sequences
enjoying a 2-book embedding realization. Moreover, by [2] if d is outerplanaric and

∑
d ≥ 2n,

then
∑

d ≤ 4n − 6 − 2ω1. Therefore, this corollary can be seen as an alternative way to
obtain the main result of [2].

Conversely, we show that there are graphic sequences with
∑

d ≤ 4n − 2ω1 that are
non-planaric. For the case of ω1 = 0, there is a known graphic but non-planaric sequence
with

∑
d = 4n− 2. The gap between the bounds for ω1 > 0 is left for future study.

Note that the parameters
∑

d, ω1 and ω2 are insufficient for charting the borderline
between planaric and non-planaric sequences, and leave a “grey area” in between our upper
and lower bounds, in which some sequences are planaric and some are not. This hints that a
full characterization may require using additional parameters, and perhaps involve all the
degrees, as is the case with realizability by general graphs.

Related work. Planaric sequences for regular planar graphs were classified in [13], and
planaric bipartite biregular degree sequences were studied in [1]. In [18], Schmeichel and
Hakimi determined which graphic sequences with d1 − dn = 1 are planaric, and presented
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similar results for d1 − dn = 2 with a small number of unsolved cases. Some of the sequences
left unsolved in [18] were later resolved in [8, 9]. Some additional studies on special cases of
the planaric degree realization problem are discussed in Rao’s survey [17].

An economical characterization is given in [5] for the class of 2-trees, which is a sub-
family of planar graphs, that is based on

∑
d, ω2, and ωodd. For the Outerplanar

Degree Realization problem, a full characterization of forcibly outerplanar graphic
sequences (namely, sequences each of whose realizations is outerplanar) was given in [6]. A
characterization of the degree sequence of maximal outerplanar graphs having exactly two
2-degree nodes was provided in [5]. A characterization of the degree sequences of maximal
outerplanar graphs with at most four vertices of degree 2 was given in [15]. In [3] it is shown
that a nonincreasing n-element graphic sequence d is outer-planaric if either ω1 = 0 and∑

d ≤ 3n− 3, or ω1 > 0 and
∑

d ≤ 3n− ω1 − 2. Conversely, there are graphic sequences
that are not outer-planaric with ω1 = 0 and

∑
d = 3n− 2, as well as ones with ω1 > 0 and∑

d = 3n− ω1 − 1

2 Preliminaries

Given a sequence d = (d1, . . . , dn) of n integers, we assume that it is non-increasing, namely
that di+1 ≤ di, for every i ∈ {1, . . . , n− 1}. Given two sequences d and d′, denote by
d⊖ d′ = (d1 − d′

1, . . . , dn − d′
n) their componentwise difference. For a nonincreasing sequence

d of n nonnegative integers, let pos(d) denote the prefix consisting of the positive integers of
d. We use the shorthand ak to denote a subsequence of k consecutive a’s. For any graph G,
let E(G) be the edge set of G.

Euler’s theorem implies that if d is planaric, where n ≥ 3, then
∑

d ≤ 6n− 12. Call d a
maximal Euler sequence if

∑
d = 6n− 12.

Known planaric sequences. A sequence d is called a k-sequence if d1 − dn = k. Schmeichel
and Hakimi [18] divided the analysis for 2-sequences into maximal and non-maximal 2-
sequences. They left a few open cases, some of which were resolved by Fanelli [8, 9].

▶ Lemma 4 ([9, 18]). Every graphic non-maximal Euler 2-sequence is planaric except for
(45, 2), (55, 33), (511, 3), (513, 3), (6n−7, 47) for n > 7, (7, 515), (7, 517), and possibly (73, 517),
whose status is unresolved.

The following lemma describess another (relatively small1) class of degree sequences
known to be planaric.

▶ Lemma 5 ([18],Theorem 5(a)). For n ≥ 3, if d such that d1 ≥ d2 ≥ · · · ≥ dn is graphic,∑
d ≤ 6n− 12 and d3 ≤ 3, then d is planaric.

▶ Observation 6. If G is a planar graph, then adding a parallel edge to E(G) maintains the
planarity of the resulting graph.

Minimum pivot Havel-Hakimi algorithm. The minimum pivot version of the Havel-Hakimi
algorithm [12, 11] for realizing a degree sequence d = (d1, . . . , dn) associated with the
vertices v1, . . . , vn, presented explicitly in [19] is based on repeatedly performing the following
operation, hereafter referred to as the MP-step, until all the vertices reach their required
degrees. Suppose that the current sequence of residual degrees is δ = (δ1, · · · , δh).

1 The condition d3 ≤ 3 implies that the number of sequences in the class is upper bounded by n4.
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18:4 Sparse Graphic Degree Sequences Have Planar Realizations

Figure 1 Realization of the forestic sequence (45, 116) by an alternating caterpillar and a matching.
The spine is depicted by bold black vertices and edges.

The MP-step.
Pick as a pivot one of the vertices with the minimum non-zero residual degree vi whose
degree is δi (break ties arbitrarily).
Set vi’s neighbors to be the δi vertices with the highest residual degrees vi1 , vi2 , . . . , viδi

(break ties arbitrarily).
Set δi ← 0 and reduce by 1 the residual degrees of its selected neighbors. That is, set
δij ← δij − 1 for j ∈ {1, . . . , δi}.

The Minimum pivot Havel-Hakimi algorithm terminates when all the n residual degrees are
zero, that is, when δj = 0 for j ∈ {1, . . . , n}. The key observation is that, whenever the
MP-step transforms the residual degree sequence δ into δ′, the following holds: δ is graphic
if and only if δ′ is graphic.

Caterpillar-based realizations. It is known that if
∑

d ≤ 2n− 2, then d can be realized by
a cycle-free graph (forest). In this case, d is called a forestic sequence. If

∑
d = 2n− 2, then

d can be realized by a tree and the sequence is called a treeic sequence. The following lemma
concerns the realization of forestic sequences. We make use of a special type of realizations
of forestic and treeic sequences by caterpillar trees. In a caterpillar tree G = (V, E), all the
non-leaves vertices are arranged on a path, called the spine.

▶ Lemma 7. A forestic sequence d = (d1, d2, . . . , dn) of positive integers can be realized by a
union of a caterpillar tree and a matching. Moreover, the order of the vertices on the spine
may be chosen arbitrarily.

For the sake of our later constructions, let us outline the way the realization of Lemma 7
is obtained. Run the minimum pivot version of the Havel-Hakimi algorithm while applying
the MP-step until all the degrees in the residual sequence are at most 2. Then realize the
residual sequence with a path (of arbitrary order) and a matching. The interior of the path
is the spine of the caterpillar while the pivots and the two end vertices of the path are the
leaves of the caterpillar. Our later constructions make critical use of the “arbitrary ordering”
property. It is convenient to illustrate a caterpillar tree with its spine drawn horizontally (in
a zigzagged fashion), and its groups of leaves drawn alternately above and below the spine.
We refer to this representation as an alternating caterpillar. (See Figure 1.)

Outer-planar graphs. An outer-planar graph is a graph that has a planar embedding in
which all the vertices occur on the outer face. A maximal outer-planar (MOP) graph is an
outer-planar graph such that adding any new edge to it results in a non-outer-planar graph.
Given a planar embedding in which all the vertices occur on the outer face, an external edge
is an edge residing on the outer face. If d = (d1, . . . , dn) is an outer-planaric degree sequence
where n ≥ 2, then

∑
d ≤ 4n− 6, with equality if and only if d is maximal outer-planaric [20].

A (directed) circuit in G is an ordered set of vertices C = {v0, v1, . . . , vk−1} such that
vi ̸= v(i+1) mod k and (vi, v(i+1) mod k) ∈ E for every i = 0, . . . , k − 1. In a directed circuit,
vertices may appear more than once while each edge may appear at most once. Note that
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e = (u, w) is an external edge if u and w are neighbors on a circuit which is part of the
outer face. All other edges of G are internal. An internal triangle in G is a triangle all of
whose edges are internal. Jao and West [14] show that the number of internal triangles in a
maximal outer-planar graph (MOP) is related to ω2.

▶ Lemma 8 ([14]). Let G be a MOP on n vertices, let d = deg(G), and let t be the number
of internal triangles. If n ≥ 4, then t = ω2 − 2.

Given a graph G = (V, E), let E = E1 ∪ . . . ∪ Ep be a partition of its edges such that
each subgraph Gi = (V, Ei) is outerplanar. For a book embedding of G, think of a book
in which the pages (half-planes) are filled by outerplanar embeddings of the Gi’s such that
the vertices are embedded on the spine of the book and in the same location on each page.
This constraint is equivalent to requiring that the vertices appear in the same order along
the cyclic order of each of the outerplanar embeddings of the Gi’s. The book thickness or
pagenumber [4] is the minimal number of pages for which a graph has a valid book embedding.
Note that a graph is outerplanar if and only if it has pagenumber 1, and it is known that the
pagenumber of planar graphs is at most 4 [21].

▶ Lemma 9 ([4]). A graph G has a 2-book embedding if and only if G is a subgraph of a
Hamiltonian planar graph.

3 Tools and sufficient conditions for OP and MOP realizations

3.1 Leaf-free sequences with ∑
d ≤ 4n − 6 and ω2 = 2 are

outer-planaric
We start with a special class of sequences for which we present a basic construction of an
outerplanar realization. A number of our later constructions of planar realizations start from
this basic construction (typically applied to a sub-sequence) and modify it in various ways
in order to derive the required planar realization. In many of these cases, the modification
requires adding a few more edges. For each additional edge, this requires finding a pair of
vertices u, w such that

(i) the edge (u, w) does not appear in the construction, and
(ii) adding it preserves planarity.

We make use of the following lemma, established in [2].

▶ Lemma 10 ([2]). Let d be a graphic sequence such that d1 ≥ d2 ≥ · · · ≥ dn with ω1 = 0,
ω2 = 2, and

∑
d ≤ 4n− 6. Then d is outer-planaric.

We outline the construction of the realizing graph, since it will be instrumental in what
follows. Let d′ = pos(d⊖ (2n)). Then n′ = n− 2 and

∑
d′ ≤ 2n′ − 2 because∑

d′ =
∑

d− 2n ≤ 2n− 6 = 2(n′ + 2)− 6 = 2n′ − 2 .

By Lemma 7, d′ can be realized by a graph G′ = (V ′, E′) composed of a union of an
alternating caterpillar T ′ and a matching M ′. Next, construct an outer-planar realization G

for d based on G′ as follows.
Let S = (x1, . . . , xs) be the vertices on the spine of T ′, and let Xi = {ℓi,1, . . . , ℓi,ki

} ⊆
V ′ be the leaves adjacent to the spine vertex xi, for i ∈ {1, . . . , s}. Note that in T ′,
deg(xi) = ki + 1 for i ∈ {1, s} and deg(xi) = ki + 2 otherwise. Assume that the matching is
M ′ = {(y1, z1), (y2, z2), . . . , (yt, zt)}. To construct an outer-planar realization of d, add to

MFCS 2024



18:6 Sparse Graphic Degree Sequences Have Planar Realizations

G′ a set of edges that form a Hamiltonian cycle (including two additional new vertices of
degree 2). The construction consists of two steps. We describe it for s = 0 and for an odd s;
an analogous construction applies for a positive even s.
(1) Construct two paths

P1 =(x1, ℓ2,1, . . . , ℓ2,k2 , x3, ℓ4,1, . . . , ℓ4,k4 , . . . , xs−2, ℓs−1,1, . . . , ℓs−1,ks−1 , xs, y1, y2, . . . , yt),
P2 =(zt, . . . , z2, z1, ℓs,ks

, . . . , ℓs,1, xs−1, . . . , ℓ3,k3 , . . . , ℓ3,1, x2, ℓ1,k1 , . . . , ℓ1,1),
connecting the spine vertices in odd and even positions, respectively. If s = 0, then
P1 = (y1, . . . , yt) and P2 = (zt, . . . , z1).

(2) Add two new vertices x0 and xs+1. If s > 0 and t > 0, then connect x0 with x1 and ℓ1,1
and connect xs+1 with yt and zt. If s = 0 and t > 0, then connect x0 with y1 and z1
and connect xs+1 with yt and zt. If t = 0 and s > 0, then connect x0 with x1 and ℓ1,1
and connect xs+1 with xs and ℓs,ks

. These two vertices form a cycle C together with P1
and P2. The new edges added to G′ to construct G are the edges of the cycle C (E(C))
which are the edges from the two paths P1 (E(P1)) and P2 (E(P2)) and the four edges
that connect x0 and xs+1 to these paths.

Observe that after adding the cycle to G′, the degree of each one of the n′ vertices is
increased by 2. Together, with the two new vertices of degree 2 the modified graph G is
an outer-planar realization of the original sequence d. For an illustration of the resulting
outer-planar graph G for s = 5 and t = 2, see Figure 2.

x1

x2

x3

x4

x5

x0 x6

y1 y2

z1 z2ℓ1,1 ℓ1,2 ℓ1,3

ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2

ℓ4,1 ℓ4,2

ℓ5,1 ℓ5,2 ℓ5,3

Figure 2 Illustration for the outer-planar construction described in Lemma 10.

3.2 Leaf-free sequences with ∑
d = 4n − 6 and ω2 = 3 are

outer-planaric
The following lemma is used in our analysis for sequences in which

∑
d = 4n− 4, w1 = 0

and w2 = 3.

▶ Lemma 11. Let d, such that d1 ≥ d2 ≥ · · · ≥ dn, be a degree sequence such that
(i)

∑
d = 4n− 6,

(ii) d1 ≥ 5,
(iii) d3 ≥ 4,
(iv) dn = 2, and
(v) ω2 = 3.

Then
(a) d can be realized by a maximal outer-planaric graph G,
(b) A vertex v ∈ V cannot be adjacent to three vertices of degree 2 in G.

Proof. Let d be as in the lemma. By (iii) and (v), n ≥ 6. Moreover, if n = 6 then d4 = 2 by
(iv) and (v), and combining it with (i) we get

∑
d = 18 = d1 +d2 +d3 +6, so d1 +d2 +d3 = 12,

which contradicts (ii) and (iii). Therefore, n ≥ 7. Also note that if d4 = 2 then n ≤ 6 by (iv)
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and (v), leading to the same contradiction. Hence, d4 ≥ 3. Due to Lemma 8, if d has a MOP
realization G, then G has exactly one internal triangle because ω2 − 2 = 1. To prove the
lemma, we construct a MOP realization of d in which the internal triangle is formed by the
vertices whose degrees are d1, d2, and d3. We divide the sequences satisfying the conditions
of the lemma into three (possibly overlapping) families, named A, B and C, a nd show the
realizations of sequences that belong to each class separately.

Family A. This family contains all the sequences that satisfy the requirements of the lemma
with the additional requirement that d1 + d2 < 10. Since d1 ≥ 5 and d3 ≥ 4, it follows that
in these sequences d1 = 5 and d2 = d3 = 4. Therefore, A contains all the sequences of the
type (5, 4ω4 , 3ω3 , 23) for ω4 ≥ 2. To satisfy the

∑
d = 4n− 6 requirement of the lemma, it

must be the case that ω3 = 1 as shown below.∑
d = 5 + 4ω4 + 3ω3 + 6 = 4ω4 + 3ω3 + 11

4n− 6 = 4(ω4 + ω3 + 4)− 6 = 4ω4 + 4ω3 + 10

This implies that ω3 = 1. To summarize, A contains all the sequences of the type

a(ω4) = (5, 4ω4 , 3, 23)

of length n = ω4 + 5 for ω4 ≥ 2.
The following describes how to construct a MOP graph with one inner triangle, denoted

by G(ω4), realizing the sequence a(ω4) for ω4 ≥ 3. Let the n = ω4 + 5 vertices of G(ω4) be

(u1, u2, u3, t0, t1, . . . , tω4−3, tω4−2, tω4−1, r1, r2)

and associate them respectively with the degrees (5, 4, 4,

ω4−2︷ ︸︸ ︷
4, . . . , 4, 3, 2, 2, 2). Note that the

ω4 vertices of degree 4 are u2, u3, t0, t1, . . . , tω4−3 while the degrees of tω4−2 and tω4−1
are 3 and 2 respectively. Let the 2ω4 + 7 (=

∑
d/2) edges of G(ω4) be the three edges

of the triangle (u1, u2, u3), the six edges (u1, t0), (u1, r1), (u2, r1), (u2, r2), (u3, r2), and
(u3, t0), the ω4 − 1 edges forming the path (t0, t1, . . . , tω4−2, tω4−1), and the ω4 − 1 edges
forming the two paths (t0, t2, t4 . . .) and (u1, t1, t3, . . .) of length ⌊(ω4 − 1)/2⌋ and ⌈(ω4 − 1)/2⌉
respectively. For an odd ω4 the first path is (t0, t2, t4 . . . , tω4−3, tω4−1) and the second path
is (u1, t1, t3, . . . , tω4−4, tω4−2) while for an even ω4 the first path is (t0, t2, t4 . . . , tω4−4, tω4−2)
and the second path is (u1, t1, t3, . . . , tω4−3, tω4−1).

Figure 3 illustrates the outer-planar layout of G(5). Observe that for an odd ω4 the outer
Hamiltonian cycle of G(ω4) that contains all of its vertices is

(u1, r1, u2, r2, u3, t0, t2, . . . , tω4−3, tω4−1, tω4−2, tω4−4, . . . , t3, t1, u1)

and for an even ω4 it is

(u1, r1, u2, r2, u3, t0, t2, . . . , tω4−4, tω4−2, tω4−1, tω4−3, . . . , t3, t1, u1)

In both cases, (u1, u2, u3) is the only inner triangle.

Family B. This family contains all the sequences that satisfy the requirements of the
lemma with an additional requirement that d4 = 3. Hence, d1 = 4 + j for j ≥ 1 because
d1 ≥ 5, d2 = 4 + i and d3 = 4 + h for i, h ≥ 0 because d2 ≥ d3 ≥ 4, and j ≥ i ≥ h

because d is a non-increasing sequence. Therefore, B contains all the sequences of the type
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u1u2

u3 t0

t1

t2

t3

r1

r2 t4

Figure 3 The MOP realization G(5) of the sequence (5, 45, 3, 23).

b(j, i, h) = ((4 + j), (4 + i), (4 + h), 3ω3 , 23) for j ≥ i ≥ h ≥ 0 and j ≥ 1. To satisfy the∑
d = 4n− 6 requirement of the lemma, it must be the case that ω3 = (j + i + h) as shown

below.∑
d = (4 + j) + (4 + i) + (4 + h) + 3ω3 + 6 = (j + i + h) + 3ω3 + 18

4n− 6 = 4(ω3 + 6)− 6 = 4ω3 + 18

This implies ω3 = (j + i + h). To summarize, B contains all the sequences of the type

b(j, i, h) = ((4 + j), (4 + i), (4 + h), 3j+i+h, 23)

of length n = j + i + h + 6 for j ≥ i ≥ h ≥ 0 and j ≥ 1.
The following describes how to construct a MOP graph with one inner triangle, denoted by

G(j, i, h), realizing the sequence b(j, i, h) for j ≥ i ≥ h ≥ 0 and j ≥ 1. Let the n = j +i+h+6
vertices of G(j, i, h) be

(u1, u2, u3, p0, . . . , pj−1, q0, . . . , qi−1, r0, . . . , rh−1, pj , qi, rh)

and associate them respectively with the degrees

((4 + j), (4 + i), (4 + h),
j︷ ︸︸ ︷

3, . . . , 3,

i︷ ︸︸ ︷
3, . . . , 3,

h︷ ︸︸ ︷
3, . . . , 3, 2, 2, 2)

Let the 2(j + i + h) + 9 (=
∑

d/2) edges of G(j, i, h) be the three edges of the triangle
(u1, u2, u3), the three edges (u1, q0), (u2, r0), and (u3, p0), the j+1 edges (u1, pℓ) for 0 ≤ ℓ ≤ j,
the i + 1 edges (u2, qℓ) for 0 ≤ ℓ ≤ i, the h + 1 edges (u3, rℓ) for 0 ≤ ℓ ≤ h, the j edges
forming the path (p0, p1, . . . , pj), the i edges forming the path (q0, q1, . . . , qi), and the h edges
forming the path (r0, r1, . . . , rh),

Figure 4 illustrates the outer-planar layout of G(4, 3, 2). Observe that the outer Hamilto-
nian cycle of G(j, i, h) that contains all of its vertices is

(u1, pj , pj−1, . . . , p0, u3, rh, rh−1, . . . , r0, u2, qi, qi−1, · · · , q0, u1)

and that (u1, u2, u3) is the only inner triangle.

Family C. This family contains all the sequences that satisfy the requirements of the lemma
but do not belong to A∪B. That is, the requirement (iii) is modified and a new requirement
(vi) is added as follows,
(iii) d4 ≥ 4
(iv) d1 + d2 ≥ 10
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u1

u2

u3 p0

p1

p2

p3

p4
q0q1q2q3

r0

r1

r2

Figure 4 The MOP realization G(4, 3, 2) of the sequence (8, 7, 6, 39, 23).

The outline of the construction of the MOP realization of d that satisfies the new set of
six requirements is as follows. The construction is done in two phases. In the first phase, d is
modified to a shorter sequence d′ of length n′ = n−3 by contracting the three largest degrees
in d into one degree and eliminating one appearance of 2 in the sequence d. We will show
that the new sequence d′ satisfies all the requirements of Lemma 10. As a result, this lemma
will provide an outer-planar realization G′ of d′. In the second phase, the construction of the
realization G of the sequence d of length n will be completed by replacing the highest degree
vertex in G′ with a triangle of vertices and adding another vertex of degree 2 while making
sure that all the n = n′ + 3 vertices in G has the required degrees from the sequence d.

Formally, generate the sequence d′ such that d′
1 ≥ d′

2 ≥ · · · ≥ d′
n of length n′ = n− 3 by

removing dn and merging d1, d2 and d3 as follows.

d′
i =

{
d1 + d2 + d3 − 10, for i = 1,

di+2, for i = 2, . . . , n− 3.

Note that since d1 + d2 ≥ 10, it follows that d1 + d2 + d3 − 10 ≥ d3 ≥ d4 = d′
2 and therefore

since d is non-increasing it follows that d′ is also non-increasing.
Note that

∑
d = 4n− 6 by the assumptions of the lemma and that ω′

2 = 2 and d′
n′ = 2

by the definition of d′. Consequently,∑
d′ =

∑
d− 10− 2 = 4n− 18 = 4(n′ + 3)− 18 = 4n′ − 6 .

By Lemma 10, d′ is outer-planaric.
By the proof of Lemma 10, d′′ = pos(d′ ⊖ (2n′)) can be realized by a caterpillar T and

there exists an outer-planar realization G′ of d′ that is based on a caterpillar T with vertices
S = (x1, . . . , xs) forming its spine and a cycle C composed of two paths P1 and P2 and
two new vertices x0 and xs+1. (An illustration of this outer-planar graph can be found in
Figure 5.) Recall that in T , Xi = {ℓi,1, . . . , ℓi,ki} ⊆ V ′ is the set of leaves adjacent to the
spine vertex xi, for i ∈ {1, . . . , s}. This realization G′ does not have an internal triangle.
We continue referring to these vertices as the spine vertices and leaves although G′ is not a
caterpillar.

Transforming G′ into a realization G of d involves two steps. In the first step, x1 whose
degree is d′

1 will be replaced by three vertices u1, u2, and u3. Note that by Lemma 7, the
order of the vertices on the spine can be chosen arbitrarily. As a result, it can be assumed
that the degree of x1 is d′

1. In the second step, the outer cycle of G′ will be modified to cover
the new vertices with the addition of a new vertex of degree 2.

By the construction of G′ from the caterpillar T and since d′
2 = d4 ≥ 4 by the new

requirement (iv), it follows that the spine of T has at lease two vertices x1 and x2 and x1 is
connected in G′ to the two vertices x0 (one of the two vertices of degree 2 in G′) and x2. In
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r2

r1

u1

u2

u3

x2

x3

Figure 5 Realization of the sequence d = (7, 62, 5, 38, 23). (Red and black edges are part of the
original construction.)

addition, x1 is connected in G′ to the k1 leaves {ℓ1,1, . . . , ℓ1,k1} from the set X1, as well as
to ℓ2,1 (or to x3 in case x2 does not have leaves). Therefore,

k1 = d′
1 − 3 = d1 + d2 + d3 − 13 . (1)

The expansion of x1 into a triangle of vertices is done as follows. Remove x0, x1, and
the leaves of X1 from G′. Add the three vertices u1, u2, and u3, add a triangle of edges
connecting them, namely, the edges (u1, u2), (u1, u3) and (u2, u3), and add the edge (u1, x2).
(See the green edges in Figure 5.)

Next, split the k1 leaves in X1 between the vertices u1, u2, and u3 toward satisfying their
degrees d1, d2, and d3, respectively. Specifically, add a set U1 of d1 − 5 new leaves adjacent
to u1, and a set Ui of di − 4 new leaves adjacent to ui, for i = 2, 3. (See the blue edges in
Figure 5.) The split is perfect since

∑3
i=1 |Ui| = k1 by Equation 1. In summary,

u1 is adjacent to u2, u3, x2, and the d1 − 5 vertices in U1;
u2 is adjacent to u1, u3, and the d2 − 4 vertices in U2; and
u3 is adjacent to u1, u2, and the d3 − 4 vertices in U3 .

Therefore, at this point deg(ui) = di − 2, for i = 1, 2, 3.
Finally, add two more degree-2 vertices r1 and r2 to complete the outer cycle. One of

them replaces x0 while the other is an additional degree 2 vertex, as dn was removed in the
definition of d′. For i = 1, 2, 3, connect the leaves in Ui to form a path whose starting and
ending vertices (of degree 1) are us

i and ue
i respectively. Next, add the edges (x2, us

1) and
(ue

1, u2) if |U1| > 0, otherwise add the edge (x2, u2). Analogously, add the edges (u2, r1),
(r1, us

2), (ue
2, u3) if |U2| > 0, otherwise add edges (u2, r1) and (r1, u3). Add edges (u3, r2),

(r2, us
3), and (ue

3, u1) if |U3| > 0, otherwise add edges (u3, r2) and (r2, u1). Finally, add the
edge (u1, ℓ2,1), or (u1, x3) in case x2 does not have leaves. (See the violet edges in Figure 5.)
At this stage the degrees of u1, u2, u3 are d1, d2, and d3 respectively and the degrees of r1
and r2 are 2.

See Figure 5 for an illustration of the realization G of d. One can verify that the
construction is a realization of d. ◀

3.3 Degree-Two Removal (Procedure Deg_2_Remove)
As it turns out, sequences with a small number of 2 degrees are easier to realize directly.
Consequently, when dealing with a sequence d with many 2’s, a convenient approach is to
first transform it into a “similar” sequence d′ with only a few 2’s, construct a graph G′

realizing d′, and then transform G′ into a graph G realizing the original d. We next present a
procedure called Degree-Two Removal (Deg_2_Remove) that will be used to that end in some
of our constructions. The input to this procedure is a graphic sequence for which d3 ≥ 4,



A. Bar-Noy, T. Böhnlein, D. Peleg, Y. Ran, and D. Rawitz 18:11

ω2 ≥ 3 and ω1 = 0. The procedure applies repeatedly the MP-step of the Havel-Hakimi
algorithm until in the residual sequence either ω2 < 3 or the second maximum degree is less
than 4. As a result, throughout its execution it is always the case that the residual sequence
is graphic. For any degree sequence d = (d1, d2, . . . , dn), let d(ℓ) be the ℓ’th largest degree in
d, for 1 ≤ ℓ ≤ n. (Note that possibly d(ℓ) = d(ℓ + 1) for some ℓ values.)

Procedure 1 Deg_2_Remove.

1 Set d̄← d

2 Set ω̄2 ← |{i | di = 2}|
3 while d̄(2) ≥ 4 and ω̄2 ≥ 3 do
4 Let j be such that d̄j = d̄(1) and let j′ be such that d̄j′ = d̄(2)
5 d̄j ← d̄j − 1
6 d̄j′ ← d̄j′ − 1
7 Change one degree-2 in d̄ to 0
8 set ω̄2 ← ω̄2 − 1
9 Set d̄s ← sort(d̄) /* The final d̄ sorted in non-increasing order */

Assume that Procedure Deg_2_Remove executes k iterations of its while-loop. Observe
that during the run of the Deg_2_Remove procedure, no new degree 2 vertices appear because
d̄(2) ≥ 4 is one of the conditions of the while-loop. As a result, ω̄2, which is initially the
number of degree-2 vertices in d, decreases by 1 after each iteration. Let ω̄i

2 be the value of
ω̄2 after the i’th iteration, for 0 ≤ i ≤ k. For 0 ≤ i ≤ k, let d̄i be the sequence d̄ after the i’th
iteration (note that d̄s is the sorted version of d̄k), and let n̄i be the length of pos(d̄i). We
make use of the set A indices of high degrees that were reduced by Procedure Deg_2_Remove
and the set B of indices of 2 degrees that were eliminated by the procedure. Formally,

A = {i | di > d̄i, di ≥ 4}, B = {i | di = 2, d̄i = 0}. (2)

▶ Observation 12.
(i) n̄i+1 = n̄i − 1,
(ii) ω̄i+1

2 = ω̄i
2 − 1,

(iii)
∑

d̄i+1 =
∑

d̄i − 4,

(iv) |B| = k,
(v)

∑
i∈A(di − d̄k

i ) = 2k,
(vi)

∑
d̄k − 4n̄k =

∑
d− 4n,

(vii) n̄k = n− k,

(viii) d̄i is graphic for 1 ≤ i ≤ k.

▶ Observation 13. When Procedure Deg_2_Remove terminates, the following properties hold.
(i) Either d̄k(2) ≥ 3 and ω̄2 = 2, or d̄k(2) = 3 and ω̄2 ≥ 3.
(ii) If d̄s

2 ≥ 5, then d̄k
i ≥ 4 for every i ∈ A.

The following lemma (whose proof is omitted) demonstrates the usefulness of Procedure 1
in reducing the number of degree 2 vertices to generate an outer-planar sequence. Later, it
will be shown how to add back the removed degree 2 vertices to get a planar realization for
the original sequence.

▶ Lemma 14. Applying Procedure Deg_2_Remove (Procedure 1) on a graphic sequence d

with
∑

d ≤ 4n − 6, ω1 = 0 and ω2 ≥ 3, the output sequence d̄k satisfies that pos(d̄k) is
outer-planaric.
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4 Main Result

This section presents our main result (Theorem 2). Specifically, Subsection 4.1 shows that
this theorem is implied directly by Theorem 1. The following two subsections establish
Theorem 1, where Subsection 4.2 handles the easy case of sequences with few 2 degrees
(ω2 ≤ 2) and Subsection 4.3 handles the more elaborate case of sequences with many 2
degrees (ω2 ≥ 3). Finally, Subsection 4.4 provides examples showing that our bounds are
almost tight.

4.1 The planarity of low-volume sequences with ω1 > 0
We first rely on Theorem 1 to prove our main result.

Proof of Theorem 2. If
∑

d ≤ 2n − 2, then d can be realized by a forest, hence it is
planaric [10]. For the case where

∑
d ≥ 2n, we prove the claim by induction on ω1. In the

base case, ω1 = 0, the claim follows by Theorem 1. Now assume that the claim holds for
ω1 ≤ i and consider ω1 = i + 1. Construct d′ by setting d′

1 = d1 − 1, d′
n = 0 and d′

i = di

for i ∈ {2, . . . , n− 1}. Since
∑

d ≥ 2n and ω1 > 0, we have that d1 ≥ 3 and hence d′
1 ≥ 2.

Let d′′ = pos(d′) and denote the number of 1-degrees in d′′ by ω′′
1 . Then ω′′

1 = ω1 − 1 and
n′′ = n− 1, implying that

∑
d′′ ≤ 4n′′− 4− 2ω′′

1 . Also note that when applying the MP-step
of the Havel-Hakimi method on d here, using dn as pivot, we get d′′, and hence d′′ is graphic.
Therefore, d′′ satisfies the conditions of induction hypothesis and hence can be realized by a
planar graph G′′. To complete the construction, add one leaf to the vertex with degree d′

1 in
G′′. This yields a planar graph G realizing d. The theorem follows. ◀

The following two subsections are dedicated to the leaf-free case (ω1 = 0), and prove
Theorem 1.

4.2 The planarity of leaf-free sequences with ∑
d ≤ 4n − 4 and ω2 ≤ 2

The case of “few degrees 2” is relatively easier, and is covered by the following lemma.

▶ Lemma 15. Every graphic sequence d such that d1 ≥ d2 ≥ · · · ≥ dn with ω1 = 0, ω2 ≤ 2,
and

∑
d ≤ 4n− 4 is planaric.

Proof. If d3 < 4, then d is planaric by Lemma 5. From now on assume in addition that
d3 ≥ 4. We consider three cases depending on ω2.

Case 1: ω2 = 0.
In this case, dn = 3 since dn ≥ 4 would imply

∑
d ≥ 4n. Let d′ = d ⊖ (2n). Then n′ = n

and
∑

d′ =
∑

d− 2n ≤ 2n′ − 4. Therefore, d′ is a forestic sequence. By Lemma 7, d′ can be
realized by a graph G′ = (V ′, E′) composed of a union of an alternating caterpillar T ′ and a
matching M ′. This matching contains at least one edge because when

∑
d′ ≤ 2n′ − 4, any

realization forest must contain at least two connected components.
Define the spine S, the leaf sets Xi in T ′ and the matching M ′ analogously to the proof

of Lemma 10. Observe that since d3 ≥ 4 and the spine contains all the vertices whose degree
in G′ is at least 2, it follows that the spine S contains at least three vertices.

To construct a planar realization of d, add to G′ a set of edges that form two disjoint
cycles. The construction consists of two steps. We describe it for odd s; an analogous
construction applies for even s.
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x1

x2

x3

x4

x5 y1 y2

z1 z2ℓ1,1 ℓ1,2 ℓ1,3

ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2

ℓ4,1 ℓ4,2

ℓ5,1 ℓ5,2 ℓ5,3

Figure 6 Illustration for a planar construction when ω2 = 0. This is essentially the outer-planar
graph of Figure 2 after omitting the vertices x0 and x6 with the addition of the green edges (x1, y2)
and (z2, ℓ1,1).

(1) Construct two paths P1 and P2 as in the proof of Lemma 10.
(2) Connect x1 with yt and ℓ1,1 with zt, thereby transforming the paths P1 and P2 into a

cycle.
For an illustration of the resulting outer-planar graph G for s = 5 and t = 2, see Figure 6.

Case 2: ω2 = 1.
In this case, dn = 2 and dn−1 = 3, since again dn−1 ≥ 4 would contradict the assumption∑

d ≤ 4n − 4. If d1 ≤ 4, then d = (4ω4 , 3ω3 , 2) with even ω3 ≥ 2 is planaric by Lemma 4.
Hereafter, we assume that d1 ≥ 5.

Define d′ by setting d′
1 = d1 − 1, d′

n−1 = 2 (replacing dn−1 = 3) and d′
i = di for all other

i ∈ {2, . . . , n − 2, n}. Then
∑

d′ ≤ 4n′ − 6 and n′ = n. Let d′′ = pos(d′ ⊖ (2n)). We have
n′′ = n′ − 2 and

∑
d′′ =

∑
d′ − 2n ≤ 2n′ − 6 = 2(n′′ + 2)− 6 = 2n′′ − 6. By Lemma 7, d′′

can be realized by a graph G′′ = (V ′′, E′′) composed of a union of an alternating caterpillar
T ′′ and a matching M ′′. Notice that d′′

1 ≥ 2 since d1 ≥ 5. Therefore, the vertex with degree
d′′

1 occurs on the spine of T ′′ and can be identified as x1 since by Lemma 7 the spine-vertices
may appear in any order.

Define the spine S, the leaf sets Xi in T ′′ and the matching M ′′ analogously to the proof
of Lemma 10. Since d3 ≥ 4, by the construction of d′ and d′′, there are at least two vertices
on the spine S and s ≥ 2. To construct a planar realization of d, we add a set of edges to
G′′ as done in the proof of Lemma 10 and one extra edge. The construction consists of two
steps. Again, we describe it only for odd s.
(1) Construct two paths P1, P2 and E(C) as in the proof of Lemma 10
(2) Connect xs+1 and x1 by an edge.

An illustration of the above steps is presented in Figure 7. Note that steps (1) and
(2) build an outer-planar graph G′ = (V, E′) with E(G′) = E(G′′) ∪ E(C) realizing d′.
Notice that (xs+1, x1) /∈ E(G′) since s ≥ 2. Therefore, step (3) yields a simple planar graph
G = (V, E) with E(G) = E(G′′) ∪ E(C) ∪ {(xs+1, x1)} realizing d.

Case 3: ω2 = 2 (i.e., dn = dn−1 = 2 and dn−2 ≥ 3).
In this case, for

∑
d ≤ 4n− 6, the result follows directly from Lemma 10.

Next consider
∑

d = 4n− 4. This case is divided into three sub-cases.

Case 3.1: d1 = 4.
In this case, d is a 2-sequence, i.e., it satisfies d1−dn = 2, and such d is known to be planaric,
see Lemma 4.
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x1

x2

x3

x4

x5

x0 x6

y1 y2

z1 z2ℓ1,1 ℓ1,2 ℓ1,3
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Figure 7 Illustration for planar construction when ω2 = 1. This is essentially the outer-planar
graph of Figure 2 with the addition of the green edge (x1, x6).

Case 3.2: d1 = 5 and d2 = 4.
In this case,

∑
d = 4n−4 dictates that d = (5, 4ω4 , 3, 22) for ω4 ≥ 2 since d3 ≥ 4. The follow-

ing describes how to construct a planar graph, denoted by G(ω4), realizing the sequence d for
ω4 ≥ 2. Let the n = ω4 + 4 vertices of G(ω4) be (u, x1, x2, . . . , xω4 , r1, r2, r3), and associate

them respectively with the degrees (5,

ω4︷ ︸︸ ︷
4, . . . , 4, 3, 2, 2). Let the 2ω4 + 6 (=

∑
d/2) edges of

G(ω4) be the five edges (u, r1), (u, r2), (u, r3), (u, x1), (u, x2), the four edges (r1, xω4−1),
(r1, xω4), (r2, xω4), and (r3, x1), the ω4 − 1 edges forming the path (x1, x2, . . . , xω4−1, xω4),
and the ω4−2 edges forming the two paths (x1, x3, . . .) and (x2, x4, . . .) of length ⌈(ω4 − 2)/2⌉
and ⌊(ω4 − 2)/2⌋ respectively. For an even ω4 the first path is (x1, x3, . . . , xω4−1) and the
second path is (x2, x4, . . . , xω4) while for an odd ω4 the first path is (x1, x3, . . . , xω4) and the
second path is (x2, x4, . . . , xω4−1). Figure 8 illustrates the planar layout of G(6).

u

x1

x2

x3

x4

x5

x6

r1

r2

r3

Figure 8 The planar realization of the sequence G(6) = (5, 46, 3, 22).

Case 3.3: d1 ≥ 6 or d2 ≥ 5.
If dn−2 ≥ 4, then

∑
d ≥ 4n − 2, which contradicts with

∑
d = 4n − 4. Therefore,

dn−2 = 3. Construct d′ from d by letting d′
1 = d1 − 1, d′

n−2 = 2 and d′
i = di for all other

i ∈ {2, . . . , n− 3, n− 1, n}. Then pos(d′) = d′, n′ = n,
∑

d′ = 4n′ − 6 and ω′
2 = 3.

Combining d3 ≥ 4 and the condition of this case, the maximum degree in d′ is at least 5
and the third maximum degree is at least 4. Hence, d′ satisfies the conditions of Lemma 11,
and therefore it can be realized by an outer-planar graph G′. In the construction of G′, there
exists a vertex u of degree 2 not adjacent to the vertex v of degree d′

1 by (b) of Lemma 11.
Construct the planar graph G realizing d by adding the edge (u, v) to G′.

Summarizing the above three cases, d is planaric. ◀

4.3 The planarity of leaf-free sequences with ∑
d ≤ 4n − 4 and ω2 ≥ 3

This subsection handles the more complex case of “many degrees 2”. The analysis is separated
into two main parts. First (Lemma 16), we consider sequences of volume

∑
d ≤ 4n − 6.

Later (Lemma 17) we analyze the extremal case where
∑

d = 4n− 4.
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▶ Lemma 16. Every graphic sequence d, such that d1 ≥ d2 ≥ · · · ≥ dn, with ω1 = 0, ω2 ≥ 3,
and

∑
d ≤ 4n− 6 is planaric.

For lack of space, we present an overview of the construction, deferring the complete
proof to the full version. The construction of this lemma involves four phases. Phase (1)
transforms d into a sequence d̄k with just two degrees 2 (or, d̄k(2) = 3). This is done by
using Procedure Deg_2_Remove. Phase (2) constructs an outer-planar graph Gk realizing d̄k,
which is illustrated in Figure 9(a). Phase (3) adds a multi-graph Ḡ with edges connecting
the vertices corresponding to indices in the set A defined in Eq. (2). It is illustrated in
Figure 9(b). For Phase (4) we need to use the vertex insertion operation, defined as follows.
For any multi-graph Ĝ, let I(Ĝ) denote the graph obtained from Ĝ by inserting one new
vertex zu,v into every edge e = (u, v) in E(Ĝ), namely, replacing e by the 2-edge path
(u, zu,v, v). Note that this operation cancels all parallel edges, so the resulting graph is simple.
Observe that if we transform Ḡ into I(Ḡ), then I(Ḡ) realizes pos(d⊖ d̄k) and the combined
graph I(Ḡ) ∪ Gk realizes d. Moreover, as Gk is outer-planar, if there are no cross edges
between vertices of Ḡ, then Gk ∪ I(Ḡ) is a planar realization for d, as shown in Figure 9(c).
However, the multi-graph Ḡ might contain crossing edges, as shown in Figure 9(b). In this
case, some preliminary processing is needed. At the beginning of Phase (4), apply procedure
Edge_Swap and replace Ḡ by a modified multi-graph GM with no edge crossings. Only then,
invoke the vertex insertion operation to insert k new vertices into the edges of GM and get
I(GM ). Since the inserted new vertices in I(GM ) do not exist in Gk, the graph Gk ∪ I(GM )
is simple. Consequently, Gk ∪ I(GM ) can be shown to be a simple planar graph realizing d,
as shown in Figure 9(d).

Figure 9 A schematic description of the realization process in Case 4. The preliminary step
involves separating the sequence d into a sequence d̄k with reduced high degrees and only two degrees
2 (depicted by the higher row of vertices in the figures, forming the spine of Gk), and k degrees 2
kept separately (the lower row in the figures).

Careful inspection of the proofs of Lemmas 5, 9 and 16 reveals that when
∑

d ≤
4n− 6− 2ω1, the constructed realizing graphs are not only planar but also enjoy a 2-page
book embedding, yielding Corollary 3.

The next lemma shows the case for
∑

d = 4n−4 and ω1 = 0, ω2 ≥ 3. A schematic descrip-
tion of the construction process in this case is as follows. First apply Procedure Deg_2_Remove
(Procedure 1 in Section 2) to create a modified degree sequence d̄k and sets A and B. Next
construct a simple graph Gk realizing d̄k, as a combination of an outer-planar graph G′ and
an edge (u, v), using the method described in the proof of Lemmas 10 and 11. Then, apply
procedure Deg_2_Recover on G′ and output a simple planar graph G. As a final step, con-
struct a graph G′′ with E(G′′) = E(G) ∪ {(u, v)}. Note that by Procedure Deg_2_Recover,
G′′ = Gk∪I(GM ). Since I(GM ) realizes pos(d⊖ d̄k), G′′ realizes d. Since (u, v) does not exist
in G, G′′ is a simple graph. Combining it with the fact that G is an “almost outer-planaric”
graph, if one can show that there are no cross edges between (u, v) and any edges in E(GM ),
then G′′ is a simple planar graph. The formal proof involves a rather complex case analysis,
and is omitted for lack of space.
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▶ Lemma 17. Every graphic sequence d with ω1 = 0, ω2 ≥ 3, and
∑

d = 4n− 4 is planaric.

Combining Lemmas 15, 16 and 17 yields the proof for our main Theorem 1.

4.4 Almost tight negative examples
We complement the positive result of Theorem 2 by almost tight negative examples. Consider
first the case of ω1 = 0, for which we present a tight example.

▶ Lemma 18. There exists a graphic sequence of volume 4n − 2 and ω1 = 0, which is
non-planaric.

Proof. The sequence d = (45, 2) is non-planaric by Lemma 4, and satisfies
∑

d = 4n− 2. ◀

However, we do not know non-planaric sequences for which ω1 = 0 and
∑

d = 4n − 2
for n > 6. Instead, the next lemma shows that for any n ≥ 5 there exists a non-planaric
sequence with ω1 = 0 and

∑
d = 4n.

▶ Lemma 19. For any non-negative integer k, the sequence d[k] = ((4 + k)2, 43, 2k), for
which

∑
d[k] = 4n, is graphic but not planaric.

Proof. See Figure 10a for the unique realization of the sequence d[k] = ((4 + k)2, 43, 2k).
This realization is non-planaric because it has a a K5 subgraph consisting of the two vertices
of degree 4 + k and the three vertices of degree 4. This is a unique realization becaus the
two degree 4 + k vertices each must be connected to all other n− 1 = 4 + k vertices. ◀

. . .

(a) The unique realization of ((4 + k)2, 43, 2k).

...

(b) The unique realization of (4 + k, 44, 1k).

Figure 10 Two non-planaric families of sequences.

Turning to sequences with ω1 > 0, there is again a small gap. The next lemma shows
that for any n ≥ 6 there exists a non-planaric sequence with ω1 > 0 and

∑
d = 4n− 2ω1.

▶ Lemma 20. For any non-negative integer k, the sequence d′[k] = (4 + k, 44, 1k), for which∑
d′[k] = 4n− 2ω1, is graphic but not planaric.

Proof. See Figure 10b for the unique realization of the sequence d′[k] = ((4 + k, 44, 1k). This
realization is non-planaric because it has a K5 subgraph consisting of the vertex of degree
4 + k and the four vertices of degree 4. This is a unique realization becaus the degree 4 + k

vertex must be connected to all other n− 1 = 4 + k vertices. ◀

Recall that Theorem 2 states that every graphic sequence d such that
∑

d ≤ 4n− 4− 2ω1
is planaric. In light of Lemma 19 and Lemma 20 it follows that the remaining gap for the
case ω1 = 0 involves sequences d with

∑
d = 4n− 2 while the remaining gap for the case

ω1 > 0 involves sequences d with
∑

d = 4n− 2− 2ω1.
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Abstract
We study the k-Canadian Traveller Problem, where a weighted graph G = (V, E, ω) with a source
s ∈ V and a target t ∈ V are given. This problem also has a hidden input E∗ ⊊ E of cardinality
at most k representing blocked edges. The objective is to travel from s to t with the minimum
distance. At the beginning of the walk, the blockages E∗ are unknown: the traveller discovers that
an edge is blocked when visiting one of its endpoints. Online algorithms, also called strategies, have
been proposed for this problem and assessed with the competitive ratio, i.e., the ratio between the
distance actually traversed by the traveller divided by the distance he would have traversed knowing
the blockages in advance.

Even though the optimal competitive ratio is 2k + 1 even on unit-weighted planar graphs of
treewidth 2, we design a polynomial-time strategy achieving competitive ratio 9 on unit-weighted
outerplanar graphs. This value 9 also stands as a lower bound for this family of graphs as we prove
that, for any ε > 0, no strategy can achieve a competitive ratio 9 − ε. Finally, we show that it is not
possible to achieve a constant competitive ratio (independent of G and k) on weighted outerplanar
graphs.
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1 Introduction

The k-Canadian Traveller Problem (k-CTP) was introduced by Papadimitriou and Yan-
nakakis [24]. It models the travel through a graph where some obstacles may appear. Given
an undirected weighted graph G = (V, E, ω), with ω : E → Q+, and two of its vertices
s, t ∈ V , a traveller walks from s to t on G despite the existence of blocked edges E∗ ⊊ E

(also called blockages), trying to contain the length of his walk. The traveller does not know
which edges are blocked when he begins his journey. He discovers that an edge e = uv is
blocked, i.e., belongs to E∗, when he visits one of its endpoints u or v. The parameter
k is an upper bound on the number of blocked edges: |E∗| ≤ k. Several variants have
also been studied: where edges are blocked with a certain probability [1, 5, 13, 19], with
multiple travellers [11, 25], where we can pay to sense remote edges [19], or where we seek
the shortest tour [20, 22]. This problem has applications in robot routing for various kinds
of logistics [1, 2, 8, 18, 23].

For a given walk on the graph, its cost (also called distance) is the sum of the weights of
the traversed edges. The objective is to minimize the cost of the walk used by the traveller
to go from s to t. A pair (G, E∗) is called a road map. All the road maps considered are
feasible: there exists an (s, t)-path in G \ E∗, the graph G deprived of E∗. In other words,
there is always a way to reach target t from source s despite the blockages.

A solution to the k-CTP is an online algorithm, called a strategy, which guides the
traveller through his walk on the graph : given the input graph, the history of visited nodes,
and the information collected so far (here, the set of discovered blocked edges), it tells which
neighbor of the current vertex the traveller should visit next. The quality of the strategy
can be assessed with competitive analysis [14]. Roughly speaking, the competitive ratio
is the quotient between the distance actually traversed by the traveller and the distance
he would have traversed knowing which edges are blocked in advance. The k-CTP is
PSPACE-complete [5, 24] in its decision version that asks, given a positive number r and
the input weighted graph, whether there exists a strategy with competitive ratio at most r.
Westphal [26] proved that no deterministic strategy achieves a competitive ratio less than
2k + 1 on all road maps satisfying |E∗| ≤ k. Said differently, for any deterministic strategy
A, there is at least one k-CTP road map for which the competitive ratio of A is at least
2k + 1. Randomized strategies have also been studied, see e.g. [10, 16].

Our goal is to distinguish between graph classes on which the k-CTP has competitive
ratio 2k + 1 (the optimal ratio for general graphs) and the ones for which this bound can be
improved. This direction of research has already been explored in [12]: there is a polynomial-
time deterministic strategy which achieves ratio

√
2k + O(1) on graphs with bounded-size

maximum (s, t)-cuts. We pursue this study by focusing on a well-known family of graphs:
outerplanar graphs, which are graphs admitting a planar embedding (without edge-crossing)
where all the vertices lie on the outer face. In [12], an outcome dedicated to a superclass
of weighted outerplanar graphs implies that there is a strategy with ratio 2 3

4 k + O(1) on
them. Interestingly, however, even very simple unit-weighted planar graphs of treewidth 2,
consisting only of disjoint (s, t)-paths, admit the general ratio 2k + 1 as optimal [15, 26].

https://arxiv.org/abs/2403.01872
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Our results and outline. After some preliminaries (Section 2), we describe in Section 3 a
polynomial-time strategy achieving a competitive ratio 9 on instances where the input graph
is a unit-weighted outerplanar graph:

▶ Theorem 1.1. There is a strategy with competitive ratio 9 for unit-weighted outerplanar
graphs.

In the input outerplanar graph, vertices s and t lie on the outer face. The latter can be
seen (provided 2-connectedness) as a cycle embedded in the plane, allowing to explore two
sides when we travel from s to t (the two sides are the two internally disjoint (s, t)-paths
forming the cycle). The core of the strategy consists in an exploration of both sides via a
so-called exponential balancing. Then, the most technical part consists in the handling of the
chords linking both sides. We maintain a competitiveness invariant of the strategy which
produces a final ratio of 9.

Note that Theorem 1.1 can be extended as a corollary to outerplanar graphs where the
stretch, defined as the ratio between the maximum and minimum weight, is bounded by some
fixed S. In this case, the strategy has ratio 9S.

Surprisingly, the k-CTP on unit-weighted outerplanar graphs has connections with another
online problem called the linear search problem [3, 7, 9] or the cow-path problem [21]. In this
problem, a traveller walks on an infinite line, starting at some arbitrary point, and its goal
is to reach some target fixed by the adversary. It was shown that applying an exponential
balancing on this problem is the optimal way, from the worst case point of view, to reach
the target [3]. We explain in Section 3.3 why, on unit-weighted outerplanar graphs, the
competitive ratio stated in Theorem 1.1 is optimal and how it can be deduced from the
literature on the linear search problem.

▶ Theorem 1.2. For any ε > 0, no deterministic strategy achieves competitive ratio 9− ε

on all road maps (G, E∗), where G is a unit-weighted outerplanar graph.

Finally, in Section 4, we show that no constant competitive ratio can be achieved on
outerplanar graphs where weights can be selected arbitrarily.

▶ Theorem 1.3. There is no constant C, independent from G and k, such that a deterministic
strategy achieves competitive ratio C on all road maps (G, E∗) where G is a weighted
outerplanar graph.

We summarize in Table 1 the state-of-the-art of the competitive analysis of deterministic
strategies for the k-CTP, giving for each family an upper bound of competitiveness (i.e., a
strategy with such ratio exists) and a lower bound (i.e., no strategy can achieve a smaller
ratio). Our contributions are framed.

Due to space limitation, the proofs of results marked with (*) are omitted here and
available in the full version [6].

2 Definitions and first observations

2.1 Graph preliminaries
We work on undirected connected weighted graphs G = (V, E, ω), where ω : E → Q+. A
graph is equal-weighted (resp. unit-weighted) if the value of ω(e) is the same (resp. 1) for
every edge e ∈ E. This article follows standard graph notations from [17]. We denote by
G [U ] the subgraph of G induced by U ⊆ V : G [U ] =

(
U, E [U ] , ω|E[U ]

)
; and by G \ U the

graph deprived of vertices in U : G \ U = G [V \ U ]. A simple (u, v)-path is a sequence of

MFCS 2024
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Table 1 Deterministic strategies performances for the k-CTP.

Family of graphs upper bound lower bound

unit-weighted planar of treewidth 2 2k + 1 [26] 2k + 1 [15, 26]
bounded maximum edge (s, t)-cuts

√
2k + O(1) [12] ?

outerplanar 2 3
4 k + O(1) [12] not constant

unit-weighted outerplanar 9 9

pairwise different vertices between u and v, while, in a (u, v)-walk, vertices can be repeated.
The cost (or traversed distance) of a walk or a path is the sum of the weights of the edges it
traverses. A vertex v is an articulation point if G \ {v} is not connected.

An (s, t)-separator X ⊊ V \ {s, t} in graph G is a set of vertices such that s and t are
disconnected in graph G \ X. We denote by RG(s, X) (resp. RG(t, X)) the source (resp.
target) component of separator X, which is a set made up of the vertices of X together with
all vertices reachable from s (resp. t) in G \X.

A graph is outerplanar if it can be embedded in the plane in such a way that all vertices
are on the outer face. An outerplanar graph is 2-connected if and only if the outer face forms
a cycle. Given an embedding of a 2-connected outerplanar graph G = (V, E) and two vertices
s and t, let s · p1 · p2 · · · ph · t · q1 · q2 · · · qℓ · s be the cycle along the outer face of G and let
S1 = {p1, p2, . . . , ph} and S2 = {q1, q2, . . . , qℓ} with V = {s, t} ∪ S1 ∪ S2. We can slightly
deform the embedding so that s and t are aligned along the horizontal axis; since the outer
face forms a cycle, we will refer to S1 (resp. S2) as the upper (resp. lower) side of G. A chord
xy of the cycle formed by the outer face is said to be (s, t)-vertical (resp. (s, t)-horizontal)
if x and y belong to different sides (resp. to the same side), see Figure 1. When x = s or
y = t, the chord is considered as (s, t)-horizontal and not (s, t)-vertical. Any (s, t)-vertical
chord (simply vertical chord when the context is clear) is an (s, t)-separator. Considering a
set of vertical chords, we say that the rightmost one has the minimal inclusion-wise target
component. Due to planarity, the rightmost vertical chord is unique for any such set.

s t

p1
p2

p3 ph−1
ph

q1q2q3q4

qℓqℓ−1 qℓ−2

Figure 1 Example of an outerplanar graph: p2qℓ, p2qℓ−1, p3qℓ−2, and ph−1q4 are vertical chords
and q1q3, q1q4 are horizontal chords.

2.2 Problem definition and competitive analysis
Let G = (V, E, ω) be a graph and E∗ represent a set of blocked edges. A pair (G, E∗) is a
road map if s and t are connected in G \ E∗.

▶ Definition 2.1 (k-CTP).
Input: A graph G = (V, E, ω), two vertices s, t ∈ V , and a set E∗ of blocked edges which

are unknown such that |E∗| ≤ k and (G, E∗) is a road map.
Objective: Traverse graph G from s to t with minimum cost.
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A solution to the k-CTP is an (s, t)-walk. The set of blocked edges E∗ is a hidden input
at the beginning of the walk. We say an edge is revealed when one of its endpoints has
already been visited. A discovered blocked edge is a revealed edge which is blocked. At any
moment of the walk, we usually denote by E′

∗ ⊆ E∗ the set of discovered blocked edges, in
other words the set of blocked edges for which we visited at least one endpoint. During the
walk, we are in fact working on G \ E′

∗ as discovered blocked edges can be removed from G.
We call a path blocked if one of its edges was discovered blocked; apparently open if no

blocked edge has been discovered on it for now (it may contain a blocked edge which has not
been discovered yet); open if we are sure that it does not contain any blocked edge (either all
of its edges were revealed open, or it is apparently open and |E′

∗| = k, or by connectivity
considerations since s and t must stay connected in road maps).

For any F ⊆ E∗ and two vertices x, y of G, let dF (G, x, y) be the cost of the shortest
(x, y)-path in graph G \ F . If the context is clear, we will use dF (x, y).

We denote by Popt some optimal offline path of road map (G, E∗): it is one of the shortest
(s, t)-paths in the graph G \E∗. Its cost, the optimal offline cost, given by dopt = dE∗ (s, t),
is the distance the traveller would have traversed if he had known the blockages in advance.
Given a strategy A for the k-CTP, the competitive ratio [14] cA(G, E∗) over road map (G, E∗)
is defined as the ratio between the cost dTr

A (G, E∗) of the traversed walk and dopt. Formally:

cA(G, E∗) = dTr
A (G, E∗)

dopt
.

Given a monotone family of graphs F (i.e. closed under taking subgraph), we say that a
strategy A admits a competitive ratio c(k) for the family F if it is an upper bound for all
values cA (G, E∗) over all k-CTP road maps (G, E∗) such that G ∈ F . Conversely, we say
that some ratio c(k) cannot be achieved for family F if, for every strategy A, there is a road
map (G, E∗) with G ∈ F such that cA(G, E∗) > c(k).

Westphal [26] identified, for any integer k, a relatively trivial family of graphs for which
any deterministic strategy achieves ratio at least 2k + 1. These graphs are made up of only
k + 1 identical disjoint (s, t)-paths: they are planar and have treewidth 2. As those paths
are indistinguishable, the traveller might have to traverse k of them before finding the open
one. This outcome still works if we restrict ourselves to unit weights [15]. Conversely, there
are two strategies in the literature achieving competitive ratio 2k + 1 on general graphs:
reposition [26] and comparison [27].

Note that articulation points allow a preliminary decomposition and simplification of any
input graph, before even exploring:

▶ Lemma 2.2. Let F be a monotone family of graphs, and assume that we have a strategy
A achieving competitive ratio C on graphs of F that do not contain any articulation point.
Then, there exists a strategy A′ achieving the same competitive ratio C on all graphs of F .

Proof. The strategy A′ goes as follows: let (G, E∗) be a road map with G ∈ F . If G does not
contain any articulation point, apply strategy A. Otherwise, let z be an articulation point of
G. If {z} is not an (s, t)-separator, then, recursively apply strategy A′ on RG(s, {z}), which
is both the source and the target component, to reach t from s. Otherwise (so {z} is an
(s, t)-separator), recursively apply strategy A′ on the source component RG(s, {z}) to reach
z from s, then recursively apply strategy A′ on the target component RG(t, {z}) to reach t

from z. The procedure is illustrated in Figure 2.
We prove by induction on the number p of articulation points that A′ terminates and

achieves competitive ratio C. The base case p = 0 holds by property of A. For the inductive
step, we distinguish two cases. If {z} is not an (s, t)-separator, the walk we obtain is of
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s t

s = s1
t1 s2 t2 s3

t3 = t

Figure 2 Decomposing the graph into components with no articulation points and removing the
useless components (the vertices in a dashed rectangle are the same in the original graph).

length at most Cdopt, which gives competitive ratio C. Otherwise, the length of the whole
walk at most CdE∗(s, z) + CdE∗(z, t). Since z is an (s, t)-separator, z ∈ Popt and we have
dopt = dE∗(s, z) + dE∗(z, t), which concludes the proof. ◀

3 Optimal competitive ratio 9 for unit-weighted outerplanar graphs

We propose a polynomial-time strategy called ExpBalancing dedicated to unit-weighted
outerplanar graphs. We show that it achieves competitive ratio 9 for this family of graphs,
which we will later prove is optimal (see Theorem 1.2).

3.1 Presentation of the strategy

First, note that Lemma 2.2 allows us to work on outerplanar graphs without articulation
points. The input is a unit-weighted 2-connected outerplanar graph G and two vertices s

and t. We provide a detailed description of the strategy ExpBalancing that we follow to
explore the graph G.

1. Reaching t. If, at any point in our exploration, we reach t, then we exit the algorithm
and return the processed walk.

2. Horizontal chords treatment. If, at any point in our exploration, we visit a vertex
u ∈ Si, i ∈ {1, 2}, incident with an open horizontal chord uv revealed for the first time,
then we can remove all the vertices on side Si that lie between u and v on the outer
face. Said differently, we get rid of the vertices which are surrounded by the chord uv. If
several horizontal chords incident with u are open, then it suffices to apply this rule to the
chord which surrounds all others. This procedure comes from the observation that, due
to both unit weights and planarity, the open horizontal chord uv with the rightmost v is
necessarily the shortest way to go from u to t on side Si, and thus visiting the vertices
surrounded by it will occur an extra, useless cost.
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3. Exponential balancing. The core exponential balancing principle of the strategy
consists in alternately exploring sides within a given budget that doubles each time we
switch sides. The budget is initially set to 1. Hence, we walk first on side S1 with budget
1, second on side S2 with budget 2, then on side S1 with budget 4, and so on. We say
each budget corresponds to an attempt. During each attempt, we traverse a path starting
from the source s and stay exclusively on some side Si, i ∈ {1, 2}. As evoked in the
previous step, at each newly visited vertex, we use an open horizontal chord from our
position which brings us as close as possible to t on our side. Either a horizontal chord is
open and we use the one which surrounds all other open chords, or if no such chord is
open, we pursue our walk on the outer face.
This balancing process can be described on an automaton depicted in Figure 3 which will
be particularly useful in the analysis of this strategy. Here, we assume that we neither
are completely blocked on one side nor reveal an open vertical chord. We will handle
these cases in Steps 4-6.
We start our walk on s (state E1), make an attempt on an arbitrary side (say S1) with
budget 1 (state E2), and decide to come back to s if t was not reached. During our first
attempt on side S2 with budget 2, we cross a first edge and reach state A. Then, we
cross a second edge if we are not blocked, but this part of the journey corresponds to the
transition between states A and B. The automaton works as follows:

In state A, we have explored D vertices on each side (in the description above, D = 1
when we first arrive in state A). Call x and y the last explored vertices on each side,
assume we are on x. The current budget is 2D and we pursue our attempt on the side
of x.
We then explore at most D more vertices on the side of x. We reach state B.
We then go back to y through s, reaching state C.
We explore at most D more vertices on the side of y. We go back to state A with an
updated value of D that is doubled, update x and y, and the sides are switched.

4. Bypassing a blocked side. If, during some attempt on side Si, we are completely
blocked (there is no open (s, t)-path on G[Si] \ E′

∗) before reaching the budget, hence
exploring αD (α < 1) instead of D (see Figures 4a and 4b), then we backtrack to s and
pursue the balancing on the other side Sj (j ∈ {1, 2}, j ≠ i). However, we forget any
budget consideration: we travel until we either reach t or visit the endpoint u of some open
vertical chord uv. In case there are several open vertical chords incident with u revealed
at the same time, we consider the rightmost one. At this moment, we update the current
graph G \E′

∗ by keeping only the target component of separator {u, v} and considering u

as a new source. Concretely, we concatenate the current walk computed before arriving
at u with a recursive call of ExpBalancing on input (G[RG(t, {u, v})], u, t).

5. Handling open vertical chords between states A and B. If, during some attempt
on side Si, especially in the transition between states A and B, we reveal an open vertical
chord uv, u ∈ Si, after having explored distance αD (parameter α is rational, 0 < α ≤ 1,
but αD is an integer), then we go to the other side Sj , j ̸= i, through uv and explore
side Sj from v towards s until we:

either “see” a vertex y already visited after distance βD (we fix βD ≤ αD − 1, so
0 ≤ β < α),
or explore distance αD − 1 and do not see any already visited vertex,
or are completely blocked on Sj before we reach distance αD − 1.

By “see”, we mean that we can reach - or not - a neighbor of y which reveals the status
of the edge between them: in this way, we actually know the distance to reach y from v

even if we did not visit v. Figure 4c describes this rule with an example.
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s t

E1

s t

E2

s t
D

D

x

y

A

s t
D

D

D

x x′

y

B

s t
D

D

D

x x′

y

C

update: D ← 2D

Figure 3 Representation of the exponential balancing divided into three different states. The
circled vertex is the one we are currently exploring.

The role of this procedure is to know which endpoint of the chord is the closest to s. If
we see, after distance βD = αD− 1, an already visited vertex (denoted by y in Figure 4c)
at distance αD from v, then, we continue the exponential balancing: we go back to v and
thus to state A in the automaton, update the budget value D which becomes D + αD.

Otherwise, we update G by keeping only the target component of separator {u, v}. The
current graph becomes G′ = G[R(t, {u, v})]. If we saw an already visited vertex y ∈ Sj

by exploring distance βD < αD − 1, then the new source becomes s′ = v. Otherwise,
the new source is s′ = u. We concatenate the current walk with the walk returned by
applying ExpBalancing on input (G′, s′, t).

6. Handling open vertical chords between states C and A. If, during the transition
between states C and A (when some attempt is launched on the side of y and the
traversed distance on the other side is larger, see Figure 3), an open vertical chord uv is
revealed (see Figure 4d), then we keep only the target component of {u, v} and set u as
the new source. More formally, we concatenate the current walk with the walk returned
by applying ExpBalancing on input (G′, u, t), where G′ = G[RG(t, {u, v})].

Steps 4–6 can be summarized in this way: when we reveal an open vertical chord uv

such that dE∗(s, v) = dE∗(s, u) + 1, we launch a recursive call on the target component of
separator {u, v} with source u and target t. Indeed, any optimal offline path must pass
through separator {u, v} and, as dE∗(s, v) = dE∗(s, u) + 1, we can say there is one optimal
offline path Popt such that u ∈ Popt. Hence, it makes sense to select u as a new source, there
is no interest in visiting vertices different from {u, v} belonging to their source component.
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(b) Step 4 : blocked edge e between states C and
A.
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D

αD

D ?
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(c) Step 5 : open vertical chord uv between states
A and B.

s t
D

D

D
αD

x x′

uy

v

(d) Step 6 : open vertical chord uv between states
C and A.

Figure 4 Four situations potentially met with ExpBalancing on some unit-weighted outerplanar
graph.

3.2 Competitive analysis

We now show that the strategy ExpBalancing presented above has competitive ratio 9
on unit-weighted outerplanar graphs. We prove this statement by minimal counterexample.
In this subsection, let G denote the smallest (by number of vertices, then number of edges)
unit-weighted outerplanar graph on which ExpBalancing does not achieve competitive
ratio 9. We will see that the existence of such a graph G necessarily implies a contradiction.

Examples of executions of ExpBalancing are given in Figures 5 and 6.

s t

upper side S1

lower side S2

s t

s t s t

Exploring the upper side with budget 1,
gaining information on open and blocked

edges. The red horizontal chord is
blocked, preventing us from reaching t.

Exploring the lower side with
budget 2,

we reveal an open horizo
ntal chord. We

rem
ove the now usele

ss vertic
es (Step

2).

Target reached, with T = 4 while
the optimal offline path has length 2.

Figure 5 Application of ExpBalancing on the first graph of the decomposition of Figure 2. At
each step, the circled vertex is the one we are currently exploring, and we know the status of the
bold edges: black is open, red is blocked.
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The two following technical lemmas prove that a recursive call has to happen when
ExpBalancing is applied on G (Lemma 3.1) and that such a recursive call implies certain
properties (Lemma 3.2).

▶ Lemma 3.1. During the execution of ExpBalancing, let T be the distance travelled at
a given point before the first recursive call (if any). Then, T ≤ 9dopt. Moreover, if we are
in state A, let x and y be the last two vertices explored on each side during the exponential
balancing. Then: (i) dE∗ (s, x) = D, (ii) dE∗ (s, y) = D and (iii) T ≤ 5D.

Proof. Assume that we have applied ExpBalancing on G until a certain point and that
no recursive call was launched so far. We first focus on the second part of the invariant we
want to show:

In state A, (i) dE∗ (s, x) = D, (ii) dE∗ (s, y) = D and (iii) T ≤ 5D.

Items (i) and (ii) are true, since no shortcut between s and either x or y can exist: any
open horizontal chord is used, and an open vertical chord opening up a shortcut leads to a
recursive call (Steps 5 and 6).

Item (iii) is trivially true when we kick-start the exponential balancing: when entering
A from E2, we have T = 3 and dE∗ (s, x) = dE∗ (s, y) = 1. Assume that it is true for a
given D ≥ 1, and let T0 be the value of T at this point. When we reach state B, we have
T = T0 + D ≤ 6D. When we reach state C, we have T = T0 + D + 3D ≤ 9D. In brief, from
state A to C, we have dopt ≥ D as distance D was explored on both sides without reaching
t. The largest ratio of T by D on these phases is 9 at state C, where we have T ≤ 9dopt.

During the transition from C to A, if D + αD denotes the traversed distance on current
side at any moment (see Figure 3), then dopt ≥ D + αD and T = 9D + αD. The ratio T

dopt
admits a decreasing upper bound, from 9 in state C to 5 in A. Indeed, when we are back to
state A, we have T = T0 + D + 3D + D, but the value of D is updated. Let D′ = 2D. We
have T = T0 + 5D ≤ 5D + 5D = 5D′, and so item (iii) remains true during the core loop.

We also have to check that it is true when we met an open vertical chord uv between states
A and B which satisfies dE∗(s, v) = dE∗(s, u) (case βD = αD−1 in Step 5). In this case, the
new value of D is D′ = D + αD and we have T ≤ 5D + αD + 1 + 2αD ≤ 5(D + αD) = 5D′

(since αD ≥ 1), so item (iii) remains true.
Thus, conditions (i)-(iii) hold in state A, and we always (during all states and transitions

between them) have T ≤ 9dopt, hence the statement holds. ◀

▶ Lemma 3.2. Assume that we are currently executing ExpBalancing on G and that
a recursive call is launched after revealing the vertical chord uv with new source u. Let
T be the distance traversed before the recursive call. Then, either T > 9dE∗ (s, u) or
dE∗ (s, v) < dE∗ (s, u) + 1.

Proof. If dE∗ (s, v) ≥ dE∗ (s, u) + 1, following the rules established in Steps 4-6, we will
launch a recursive call on the target component of {u, v} with new source u. Hence, we
will have dTr

exp (G, E∗) = T + T ′, where T ′ ≤ 9dE∗ (u, t) by minimality of G and exp
abbreviates ExpBalancing. By way of contradiction, suppose that T ≤ 9dE∗ (s, u). The
optimal offline path Popt necessarily goes through the separator {u, v} in graph G and,
since dE∗ (s, v) = dE∗ (s, u) + 1, u belongs to some optimal offline path. Consequently,
T + T ′ ≤ 9(dE∗ (s, u) + dE∗ (u, t)) = 9dE∗ (s, t). ◀

We are now ready to prove the major contribution of this article.



L. Beaudou et al. 19:11

s3 t3

upper side

lower side

s3 t3

s3 t3 s3 t3

upper side

lower side

s3 t3 s3 t3

s3 t3

upper side

lower side

s3 t3

Alternating between upper side
and lower side, we reveal a closed

edge which blocks this side (Step 4).

Going to the other side until we reach a

vertex
incident with an open vertic

al chord,

we can safely
ignore everything behind.

We apply ExpBalanc-
ing on the remaining graph.

We reveal an open vertic
al chord

between
states A and B: we check

the

distance on the opposite
side (Step

5).

We explore and do not see the last
known vertex on the other side.

We remove the vertic
es behind

the chord and apply ExpBal-

ancing on the remaining graph.

After exploring more, we reveal
a blocked edge and reach the

target vertex on the other side.
We have T = 22 while the op-
timal offline path has length 6.

Figure 6 Application of ExpBalancing on the third graph of the decomposition of Figure 2. At
each step, the circled vertex is the one we are currently exploring, and we know the status of the
bold edges: black is open, red is blocked.

▶ Theorem 1.1. There is a strategy with competitive ratio 9 for unit-weighted outerplanar
graphs.

Proof. A direct consequence of Lemma 3.1 is that, during some attempt, ExpBalancing
will launch a recursive call on G (otherwise, it has competitive ratio 9, a contradiction).
Let T be the distance traversed before the recursive call. Lemma 3.2 has an important
consequence: if we launch a recursive call on the open vertical chord uv with new source
u and can guarantee that both dE∗ (s, v) = dE∗ (s, u) + 1 and T ≤ 9dE∗ (s, u), then, we
have a contradiction. According to the description of ExpBalancing, a recursive call is
launched when we are sure that dE∗ (s, v) = dE∗ (s, u) + 1: this concerns Step 4, Step 5 when
βD < αD − 1 and Step 6.
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Assume first that we are blocked on one side between states A and B in Step 4 (see
Figure 4a). We know that dE∗ (s, v) = dE∗ (s, u) + 1 because u is an articulation point of
G \ E′

∗. Also, dE∗ (s, u) = D + dE∗ (y, u). Using Lemma 3.1:

T ≤ (5D + αD) + (αD + 2D) + dE∗ (y, u)
≤ (7 + 2α)D + dE∗ (y, u)
≤ 9(D + dE∗ (y, u)) (α ≤ 1)
≤ 9dE∗ (s, u)

which, by Lemma 3.2, leads to a contradiction.
Assume now that we are blocked on one side between states C and A in Step 4 (see

Figure 4b). Let x′ be the last vertex reached at the end of state A, we know that dE∗ (s, v) =
dE∗ (s, u) + 1 because u is an articulation point of G\E′

∗ and dE∗ (s, u) = 2D + dE∗ (x′, u).
Using Lemma 3.1:

T ≤ (9D + αD) + (αD + 3D) + dE∗ (x′, u)
≤ (12 + 2α)D + dE∗ (x′, u)
≤ 9(2D + dE∗ (x′, u)) ≤ 9dE∗ (s, u) (α ≤ 1)

which, by Lemma 3.2, leads to a contradiction.
Assume now that we reveal an open vertical chord uv between states A and B in Step 5

(see Figure 4c). Recall that dE∗ (s, u) ≤ D + αD, and we explore up to distance αD − 1
towards y. There are two possibilities: either we see y by exploring distance βD (with
βD < αD − 1), or we do not see y even if we explore distance αD − 1.

If we see y, then, we know that dE∗ (s, u) = dE∗ (s, v) + 1 since going to u through x will
yield distance D + αD while going through y and v will yield distance at most D + βD + 2,
and we know that βD < αD−1 and βD ≥ 0. So, dE∗ (s, v) = D +βD +1. Using Lemma 3.1:

T ≤ (5D + αD) + (1 + 2(βD + 1))
≤ (5 + α + 2β)D + 3
≤ 9(D + βD + 1) ≤ 9dE∗ (s, v) (β < α ≤ 1)

which, by Lemma 3.2 leads to a contradiction (the roles of u and v are reversed here, since v

is the new source).
If we do not reach y, either by blocked edges or because we have explored distance αD− 1

without reaching it, then, we know that dE∗ (s, v) = dE∗ (s, u) + 1. Using Lemma 3.1:

T ≤ (5D + αD) + (1 + 2(αD − 1) + 1)
≤ (5 + 3α)D
≤ 9(D + αD) ≤ 9dE∗ (s, u) (α ≤ 1)

which, by Lemma 3.2, leads to a contradiction.
Finally, assume that we reveal an open vertical chord uv between states C and A after

having explored αD vertices in Step 6 (see Figure 4d). Since uv was not revealed before, this
implies that the shortest path from s to v goes through u, and so dE∗ (s, v) = dE∗ (s, u) + 1.
Using Lemma 3.1:

T ≤ 9D + αD

≤ 9(D + αD) ≤ 9dE∗ (s, u) (α ≤ 1)

which, by Lemma 3.2, leads to a contradiction.
All the possible cases lead to contradictions, and so such a G cannot exist. ExpBalancing

thus achieves competitive ratio 9 on unit-weighted outerplanar graphs. ◀
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3.3 Lower bound 9 for unit-weighted outerplanar graphs
In this subsection we prove that the competitive ratio achieved with the ExpBalancing
strategy is optimal on unit-weighted outerplanar graphs.

▶ Theorem 1.2. For any ε > 0, no deterministic strategy achieves competitive ratio 9− ε

on all road maps (G, E∗), where G is a unit-weighted outerplanar graph.

This result can be obtained by a natural reduction from the linear search problem [9] (or,
equivalently, the cow-path problem on two rays [21]). The linear search problem is defined
as follows: an immobile hider is located on the real line. A searcher starts from the origin
and wishes to discover the hider in minimal time. The searcher cannot see the hider until
he actually reaches the point at which the hider is located and the time elapsed until this
moment is the duration of the game.

This problem reduces to the k-CTP on specific road maps that we call shell road maps.
The shell graph on 2n vertices, denoted by Shn (see Figure 7), is the graph obtained from
a cycle on 2n vertices {v0, v1, . . . , v2n−1} with all possible chords incident with vertex vn,
except v0vn. It is clearly outerplanar, and all edge weights are set to 1. In our setting, we
shall consider v0 as the source s and vn as the target t. We call shell road maps the specific
road maps (Shn, E∗) where E∗ is made up only of edges incident with t. Said differently, the
traveller cannot be blocked on the outer face on some edge vivi+1.

v1

v9

v2

v8

v3

v7

v4

v6

s = v0 v5 = t

Figure 7 The shell graph on 10 vertices Sh5.

The shell graph is 2-connected, so it contains an upper side S1 and a lower side S2 which
can simulate the positive and the negative sides of the real line. The position of the hider
will then intuitively correspond to the first encountered open chord to t : if the hider is at
position x > 0 (resp. x < 0), then E∗ will contain all vit ∈ E except v⌈x⌉t (resp. v⌊2n+x⌋t).
In such a way, any strategy for the k-CTP with some competitive ratio r, will give a strategy
for the linear search problem with asymptotic competitive ratio r + ε for any ε > 0. However,
it is known that the linear search problem has an optimal ratio of 9 [3] which gives the
lower bound we want on the k-CTP. Note however that, in the sketched reduction, small
details need to be cared of, for example the distance of the traveller has a unit additive term
compared to the searcher on the line (cost of crossing the discovered chord to t). In order to
remove any doubt related to these details, we provide in the full version [6] a complete proof
of Theorem 1.2 (without reducing to the linear search, but sharing some features with the
proof of [3]).

4 The case of arbitrarily weighted outerplanar graphs

Given our results on the unit-weighted case (which give as an easy corollary ratio 9S for fixed
stretch S), a natural question is whether we can design a deterministic strategy achieving a
constant competitive ratio for the more general family of arbitrarily weighted outerplanar
graphs. In this section, we prove that this is impossible since, for any constant C ≥ 1, there
exists a weighted outerplanar graph on which the competitive ratio obtained is necessarily
greater than C. Let us introduce a sub-family of outerplanar graphs that will be useful here.
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▶ Definition 4.1. An outerplanar graph G containing s and t is said to be (s, t)-unbalanced
if either it is a single st edge or one of its sides contains all vertices V of the graph.

In other words, an (s, t)-unbalanced outerplanar graph is such that s and t are neighbors
on the outer face. While one side (say w.l.o.g. the lower side) contains all vertices, the upper
one only contains s and t and simply consists of a single edge st. Thus, such a graph does not
have any vertical chord. We show in the remainder that constant competitive ratio cannot
be obtained even on weighted (s, t)-balanced outerplanar graphs.

We begin with the definition of a graph transformation T which takes as input a weighted
(s, t)-unbalanced outerplanar graph H = (V, E, ω), three positive rational values α, C, and η,
and an integer N . The construction of the output graph T (H, α, C, η, N) works as follows:

Create two vertices s and t with an edge st of weight C. This edge will stand as the
upper side of the graph.
Add N copies of the graph αH, where αH = (Vα, Eα, ωα) is a graph such that Vα = V ,
Eα = E and ωα(e) = αω(e) for every edge e ∈ E. These copies are denoted by
αH(1), . . . , αH(N) and the source/target pair of each αH(j) is denoted by (sj , tj).
Connect in series all copies αH(1), . . . , αH(N) from s to t in order to form the lower side
of the graph, using their source/target as input/output vertices. In brief, merge s with
s1, ti with si+1 for i ∈ {1, . . . , N − 1}, and tN with t.
Add all edges tjt for 1 ≤ j ≤ N − 1 with weight η.

Figure 8 illustrates the graph T (H, α, C, η, N) obtained. Observe that it is an (s, t)-
unbalanced outerplanar graph because the lower side of each αH contains all its own vertices.
Therefore, all vertices of T (H, α, C, η, N) lie on its lower side. We also set t0 = s.

C

αH (1)

αH (2) . . .
αH

(N)

η

η

η

s = s1 tN = t

t1 = s2
t2 = s3

tN−1 = sN

Figure 8 The graph T (H, α, C, η, N) with its outerplanar embedding.

For the remainder, we define a trivial arithmetic sequence generating all positive half-
integers: for any integer i ≥ 0, let Ci = 1

2 + i. For any value Ci, we are able to construct a
collection of road maps for which ratio Ci cannot be achieved by any deterministic strategy.

▶ Proposition 4.2 (*). For any nonnegative integer i, there exists a family Ri of road maps
which satisfies the following properties:

all the road maps of Ri are defined on the same weighted (s, t)-unbalanced outerplanar
graph,
no deterministic strategy can achieve ratio Ci on family Ri.

Sketch of the proof. By induction, we assume that the property holds for some i ≥ 1. We
focus on some graph Hi+1 = T (Hi, α, Ci, η, N). The reasoning consists in a trade-off on
the optimal distance between s and the last visited tj vertex on the lower side, denoted by
tq. If dE∗(s, tq) is at least Ci, then it appears that the st edge is the optimal offline path
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and we realize that exploring the lower side was too costly. We deduce that the obtained
competitive ratio is necessarily greater than Ci +1 using the induction hypothesis. Otherwise,
if dE∗(s, tq) < Ci, then it means that we did not explore far enough on the lower side, hence
the optimal offline path passes through it. We obtain the same conclusion that the ratio is
greater than Ci + 1. See full version [6] for the proof.

Hence, no deterministic strategy can achieve constant competitive ratio on weighted
outerplanar graphs since integer i can take arbitrarily large values:

▶ Theorem 1.3. There is no constant C, independent from G and k, such that a deterministic
strategy achieves competitive ratio C on all road maps (G, E∗) where G is a weighted
outerplanar graph.

Proof. By contradiction, for any C ≥ 1, apply Proposition 4.2 on i = ⌈C⌉. ◀

5 Perspectives

We highlighted a non-trivial unit-weighted family of graphs (outerplanar) for which there
exists a deterministic strategy with constant competitive ratio 9, which is optimal. However,
we proved that no constant competitive ratio can be achieved for arbitrarily weighted
outerplanar graphs. Several questions arise.

Since some sub-families of outerplanar graphs have constant competitive ratio in the
weighted case (trees and cycles, which imply cacti from Lemma 2.2) while a very close super-
family admits the general bound 2k + 1 in the unit-weighted case (planar of treewidth 2),
a natural question is to investigate where the competitive gaps lie in both cases. For the
unit-weighted case, future research could focus on the natural extension of p-outerplanar
graphs [4], with p successive outer faces, in order to generalize constant competitiveness.

To achieve constant competitive ratio on arbitrarily weighted graphs, a good candidate
could be graphs with bounded-sized minimal edge (s, t)-cuts, for which ratio

√
2k + O(1)

is known [12]. Observe that our construction T which disproves constant ratio increases
the size of edge (s, t)-cuts. We conjecture that there exists a polynomial-time deterministic
strategy achieving constant competitive ratio on graphs with edge (s, t)-cuts of bounded size.
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Abstract
The ZX calculus and ZH calculus use diagrams to denote and compute properties of quantum
operations, using “rewrite rules” to transform between diagrams which denote the same operator
through a functorial semantic map. Different semantic maps give rise to different rewrite systems,
which may prove more convenient for different purposes. Using discrete measures, we describe
semantic maps for ZX and ZH diagrams, well-suited to analyse unitary circuits and measurements
on qudits of any fixed dimension D >1 as a single “ZXH-calculus”. We demonstrate rewrite rules for
the “stabiliser fragment” of the ZX calculus and a “multicharacter fragment” of the ZH calculus.
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1 Introduction

The ZX calculus [10, 2, 28, 42] and ZH calculus [3, 40] are systems using annotated graphs
(“ZX diagrams” and “ZH diagrams”), to denote tensor networks for quantum computation,
and other problems involving tensors over C2 [16, 19, 39, 18, 17, 26]. They include rewrite
rules, to perform computations on diagrams without recourse to exponentially large matrices.
Complicated procedures may involve diagrams of mounting complexity to analyse, but the ZX-
and ZH-calculi often simplify the analysis of many-qubit procedures. It is also increasingly
common to consider versions of the ZX- and ZH-calculi for qudits [20, 44, 48, 6, 41, 27, 33, 32],
which promise similar benefits for the analysis of procedures on qudits.

Most treatments of these calculi [2, 3, 4, 5, 6, 11, 14, 21, 22, 23, 24, 25, 28, 29, 30, 33, 37,
38, 40, 42, 43, 45, 46, 47, 48, 49] are “scalar exact”: equational theories, that do not introduce
changes by scalar factors. Changes by scalar factors do not matter for some applications
(e.g., testing equivalence of unitary transformations), but are important for probabilistic
processes (e.g., postselection) or to compute specific numerical values [26]. But “scalar exact”
treatments may involve frequent accumulation or deletion of scalar gadgets: disconnected
sub-diagrams which obliquely denote normalisation factors. Presentations of these calculi
which avoid such book-keeping, are simpler for instruction and practical use, and may also
admit a unified rewrite system (a “ZXH calculus”) incorporating the rules of each [14, 19, 18].

In previous work [14], one of us addressed this issue of bookkeeping of scalars for ZX- and
ZH-diagrams on qubits through a carefully constructed semantic map. The result, described
as “well-tempered” versions of these calculi, are scalar exact while avoiding the modifications
of scalar gadgets for the most often-used rewrites. However, while the rewrite rules of this
“well-tempered” notation are simple, the notational convention itself (i.e., the semantics of
the generators of the calculi) is slightly unwieldly. Furthermore, it left open how to address
similar issues with scalars for versions of these calculi on qudits of dimension D > 2.
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In this work, we consider how different normalisations of the ZX- and ZH-calculus may be
expressed in a more uniform way, by representing operators on qudits (of any fixed dimension
D > 1) through the use of integrals with respect to a discrete measure.

For a finite set S, let #S denote its cardinality. Consider a measure µ(S) = #S · ν2 on
subsets S ⊆ Z, for ν > 0 to be fixed later. This is a “measure” on sets S (see Section 2.1)
which allows us to define a formal notion of integration of functions f : Z→ C ,∫

x∈S

f(x) :=
∫

x∈S

f(x) dµ(x) :=
∑
x∈S

f(x) ν2 . (1)

(For the sake of brevity, we often use the standard convention of suppressing the differential
dµ, as on left-hand expression below, when the measure of integration is understood.) Such
integrals allow us to express sums with certain normalising factors more uniformly, by
absorbing the factors into the measure µ by an appropriate choice of ν > 0. For a finite-
dimensional Hilbert space H with standard basis |x⟩ := ex for some index set x ∈ D, we
may define the (not-necessarily normalised) point-mass distributions |x⟩⟩ = ν−1 |x⟩ ∈ H, and
their adjoints ⟨⟨x| = |x⟩⟩†. Then, if we have some “state-function” |f⟩⟩ :=

∫
x∈D f(x) |x⟩⟩ for

an arbitrary function f : Z→ C, it is easy to show that

⟨⟨z ||f⟩⟩ :=
∫

x∈D

⟨⟨z ||x⟩⟩ f(x) = f(z), (2)

similar to how Dirac measures are used with integration over R. While a similar result
⟨z |f⟩ = f(z) holds if we simply define |f⟩ =

∑
x∈D f(x) |x⟩, couching this sort of analysis

in terms of discrete integrals and point-mass functions |x⟩⟩ allows us to accommodate
scalar factors which may arise when manipulating expressions involving operators such as∑

x∈D |x⟩
⊗n ⟨x|⊗m for m, n > 1. This is an example of the sort of operator, for which

book-keeping of scalar factors frequently arises in most versions of the ZX- or ZH-calculi.
By introducing the additional layer of abstraction, provided by discrete integrals and their

accompanying point-mass functions |x⟩⟩, we describe semantics for ZX- and ZH-diagrams
which are simple, and which admits a system of rewrites which largely dispenses with the
need for modifications to scalar gadgets in the diagrams. This approach to notation, and the
rewrites which we demonstrate, are applicable for generators representing operators on qudits
of any finite dimension, and enables the two calculi to be used interoperably as a single
“ZXH-calculus”. We present this approach in the hopes that it facilitates the development of
practically useful extensions of these calculi beyond qubits.

Structure of this article. Section 2 sets out number-theoretic preliminaries, some back-
ground in string diagrams, and common approaches to defining ZX and ZH calculi. Section 3
introduces discrete measures and integrals on D, including what little measure theory we
require, and considers the constraints that follow from a particular treatment of discrete
Fourier transforms. Section 4 demonstrates how using such discrete integrals as the basis for
a semantic map for ZX and ZH diagrams, leads to convenient representations of particular
unitary operators and convenient rewrites for both the ZX and ZH calculi. We frequently
refer to the Appendices of the full version [15] of this work, where we provide complete proofs,
more details about our constructions, and connections to related subjects.

Related work. As we note above, there is recent and ongoing work [20, 44, 48, 6, 41, 27,
33, 32, 34] on ZX, ZH, and related calculi on qudits of dimension D > 2 (though often
restricted to the case of D an odd prime). Our work is influenced in particular by Booth
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and Carette [6], and Roy [33], and we are aware of parallel work by collaborations involving
these authors [34, 31]. Our work is distinguished in presenting convenient semantics for both
ZX and ZH diagrams for arbitrary D>1, notably including the case where D is composite
or even.

2 Preliminaries

2.1 Number-theoretic preliminaries
Let D > 1 be a fixed integer, and ω = e2πi/D. We assume basic familiarity with number
theory, in particular with ZD, the integers modulo D. While it is common to associate
ZD with the set {0, 1, . . . , D−1} of non-negative “residues” of integers modulo D, one may
associate them ZD with any contiguous set of residues D = {L, L + 1, . . . , U − 1, U} where
U − L + 1 = D.1 We may then occasionally substitute ZD for D when this is unlikely to
cause confusion: this will most often occur in the context of expressions such as ωxy, which
is well-defined modulo D in each of the variables x and y (i.e., adding any multiple of D to
either x or y does not change the value of the expression). In such an expression, while we
may intend for one of x or y or both may be an element of ZD in principle, they would in
practise be interpreted as a representative integer x, y ∈ D ⊆ Z.

2.2 String diagrams
ZX- and ZH-diagrams are examples of string diagrams, which can be described as diagrams
composed of dots (or boxes) and wires, where the wires denote objects and the dots/boxes
denote maps on those objects.

In the string diagrams which we consider in this article, diagrams are composed of dots or
boxes, and wires. These diagrams can be described as being a composition of “generators”,
which typically consist of one (or zero) dots/boxes with some amount of meta-data, and
any number (zero or more) directed wires, where the direction is usually represented by an
orientation in the diagram. (In this article, wires are oriented left-to-right, though they are
also allowed to bend upwards or downwards.) For any two diagrams D1 and D2, we may
define composite diagrams D1⊗D2 and D1 ;D2, represented schematically by

D1 ⊗D2 =
D1

D2

; D1 ;D2 = D1 D2 , (3)

which we call the “parallel” and “serial” composition of D1 and D2. In the latter case we
require that the number of output wires of D1 (on the right of D1) equal the number of input
wires of D2 (on the left of D2), for the composition to be well-defined.

String diagrams may be used to denote maps in a monoidal category C (in which objects
can be aggregated to form composite objects through a parallel product, which we denote by
“⊗”). This is done through a semantic map [[ · ]] which maps each generator to a map in C.
This semantic map is defined to be consistent with respect to composition, in the sense that[[

D1 ⊗D2

]]
=
[[
D1
]]
⊗
[[
D2
]]

,
[[
D1 ;D2

]]
=
[[
D2
]]
◦
[[
D1
]]

. (4)

1 The reader may wonder why we do not simply adopt the conventional choice of D = {0, 1, . . . , D − 1}.
There are multiple reasons, the simplest of which being that allowing for the index to include negative
integers may be useful for representing certain “quantum numbers” in application to physics.

MFCS 2024
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Note the reversal of the order for sequential composition, which is just an artefact of
the difference in orientation of diagrams (left-to-right), and the conventional right-to-left
application order of functions that is common e.g. in quantum information theory.

2.3 Preliminary remarks on ZX and ZH diagrams
ZX and ZH diagrams are string diagrams which denote multi-linear operators on some
finite-dimensional vector space H ∼= CD, equipped with a standard basis |x⟩ for x ∈ D
and functionals ⟨x| = |x⟩†. (For D a set of D consecutive integers, we may use arithmetic
expressions, such as |x + y⟩, to index basis vectors; specifically in the labels of “kets” and
“bras”, such expressions can be understood to be evaluated mod D.) The parallel product
in this case is the usual tensor product ⊗, and the sequential product is composition of
operators. For a generator D with m input wires and n output wires, one assigns an operator
[[D]] : H⊗m → H⊗n. To represent string diagrams to represent maps in which some of the
“parallel” operands are being permuted or unaffected, we also consider generators consisting
only of wires. We consider four such generators, to which we assign semantics as follows:[[
θ
]]

=
∑
x∈D

|x⟩ ⟨x| ,
[[ ]]

=
∑

x,y∈D

|y,x⟩ ⟨x,y | ,
[[ ]]

=
∑
x∈D

|x,x⟩ ,
[[ ]]

=
∑
x∈D

⟨x,x| . (5)

ZX and ZH diagrams are designed with different priorities, but have common features.
ZX diagrams are effective for representing operations generated by single-qubit rotations and
controlled-NOT gates; in most cases (excepting, e.g., Refs. [46, 6]) it rests on the unitary
equivalence of two conjugate bases. ZH diagrams were developed to facilitate reasoning about
quantum circuits over the Hadamard-Toffoli gate set [36, 1]. Both were originally defined
so that the semantics is preserved by a change in the presentation of the underlying graph,
which preserves the connectivity of the diagram [10, 12].

ZX Diagrams. We define the following ZX generators on qudits with state-space H,
Θ..

.m

{
..
.

}
n ,

Θ..
.m

{
..
.

}
n , + , - , (6)

where m, n ∈ N, and for any function Θ : Z→ C. (Our approach of using functions mildly
extends the approach of Wang [48], who prefers to parameterise the generators with vectors
indexed from 1. For the constant function Θ(x) = 1, we may omit the label Θ entirely.)
We call these generators “green dots”, “red dots”, “Hadamard plus boxes”, and “Hadamard
minus boxes”. The usual approach to assigning semantics to ZX generators is by considering
the green and red dots to represent similar operations, subject to different (conjugate) choices
of orthonormal basis, and a unitary “Hadamard” gate relating the two bases. One defines a
semantic map [[ · ]] in which the (lighter-coloured) “green” dots are mapped to an action on
the basis |x⟩, and the (darker-coloured) “red” are mapped to an action on the basis |ωx⟩,
where |ωk⟩ = 1√

D

∑
x ω−kx |x⟩ for k ∈ D (and where again ω = e2πi/D).2The conventional

choice would be, for a green dot, to assign an interpretation such as
∑

x∈D Θ(x) |x⟩⊗n⟨x|⊗m;
and for a red dot, to assign the interpretation

∑
x∈D Θ(x) |ωx⟩⊗n⟨ωx|⊗m. Unfortunately, for

D > 2, such a conventional interpretation does not yield a “flexsymmetric” [7] calculus, in
effect because ⟨ωa|T = |ωa⟩∗ = |ω−a⟩. In particular, the conventional approach described
just above would mean that the equality[[

Θ
]]

=
[[

Θ
]]

=
[[

Θ

]]
(7)

2 In the notation of Ref. [6], we have |ωk⟩ = |k :X⟩, up to a relabeling of the basis elements of H.
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would not hold: the first diagram would denote
∑

x Θ(x) |ω−x, ωx⟩, the second would denote∑
x Θ(x) |ωx, ωx⟩, and the third would denote

∑
x Θ(x) |ωx, ω−x⟩. This represents a way

in which such a calculus would fail to have the useful syntactic property that “only the
connectivity matters” [10, 12]; and other inconveniences would also arise, which would make
these diagrams more difficult to work with. To avoid this problem, we endorse the convention
adopted by Refs. [6, 41] of involving a generator which is related to the green dot by different
unitary transformations on the inputs and outputs, but which differ only by a permutation.
We then interpret the generators of Eqn. (6) as operators using a model [[ · ]] which satisfies[[

Θ..
.m

{
..
.

}
n

]]
∝
∑
x∈D

Θ(x) |x⟩⊗n⟨x|⊗m ,
[[

+

]]
∝
∑∑

x,k∈D

ωkx |x⟩ ⟨k|

[[
Θ..

.m

{
..
.

}
n

]]
∝
∑
k∈D

Θ(k) |ω−k⟩⊗n⟨ωk |⊗m ,
[[

-

]]
∝
∑∑

x,k∈D

ω−kx |x⟩ ⟨k|

(8)

so that the “Hadamard” plus and minus boxes are proportional to the quantum Fourier
transform |ωk⟩ 7→ |k⟩ (i.e., the inverse discrete Fourier transform), and its adjoint.

ZH Diagrams. We define the following ZH generators on qudits with Hilbert space H,

..

.m

{
..
.

}
n ,

A..
.m

{
..
.

}
n ,

..

.m

{
..
.

}
n ,

c
, (9)

where m, n ∈ N, c ∈ Z, and for any function A : Z → C. (If A(t) = αt for some α ∈ C×,
we may write the scalar α in place of A, consistent with the notation for ZH generators
in Refs. [3, 14]. Following Roy [33], we later define a further short-hand notation for
A(t) = χc(t) = exp(2πict/D) with c ∈ Z.) We call these generators “white dots”, “H-boxes”,
“gray dots”, and “generalised-not dots”. 3 We interpret the generators of Eqn. (9) as operators
using a model [[ · ]] which satisfies the following:[[

A..
.m

{
..
.

}
n

]]
∝
∑∑

x∈Dm, y∈Dn

A(x1 ··· xmy1 ··· yn) |y⟩⟨x|
[[ c ]]

∝
∑
x∈D

|−c−x⟩ ⟨x|

[[
..
.m

{
..
.

}
n

]]
∝
∑
x∈D

|x⟩⊗n⟨x|⊗m

[[
..
.m

{
..
.

}
n

]]
∝
∑∑

x∈Dm, y∈Dn∑
h

xh+
∑

k

yk ≡ 0

|y⟩⟨x| ,

(10)

where for the gray dots, we constrain the indices x ∈ Dm and y ∈ Dn, so that the sum of
their entries is 0 mod D; and for the not-dots we interpret the index of the vector |−c− x⟩
modulo D. By contrast, note that for the H-boxes, we consider the products of the input and
output labels x1, . . . , xm, y1, . . . , ym as integers,4 i.e., elements of Z, whose product is the
argument of A in the the expression A(x1 · · · ym). In particular, we fix the semantics so that[[

α
]]

=
∑

(singleton)

α(empty product) · 1 = α1 = α, (11)

again using the short-hand that α ∈ C× stands for the function A(t) = αt.

3 We follow Ref. [14] in considering the gray and not dots to be (primitive) generators, rather than gadgets
or “derived generators”, e.g., as in Refs. [3, 33].

4 Note that our use of the index-set x ∈ D = {L, L + 1, . . . , U − 1, U} means that the exponential function
t 7→ αt for α = 0 is not well-defined if L < 0. We may instead consider a function X{0} : Z → C
given by X{0}(t) = 1 for t = 0, with X{0}(t) = 0 otherwise: this is substitution is adequate, e.g., for
applications to counting complexity [16, 26].

MFCS 2024
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Remarks on semantics, and rewriting systems. Eqns. (8) and (10) describe not one se-
mantic map [[ · ]] for ZX diagrams or ZH diagrams, but rather the conventional approach
(with minor elaborations) to choosing such semantic maps. A specific semantic map determ-
ines which pairs of diagrams have the same semantics, and therefore which diagrammatic
rewrites are sound (i.e., which local transformations one may perform to a diagram without
changing its semantics). We suggest that rewrite systems, in which the most commonly used
diagrammatic rewrites can be expressed simply, are to be preferred over others. However,
this depends on obtaining a semantic map [[ · ]] for which such a rewrite system is sound.

Some authors (e.g., [10, 12]) prefer to define semantics only up to proportionality, in
which case Eqns. (8) and (10) suffice to determine when two diagrams are equivalent up
to an neglected scalar factor. This has the virtue of simplicity, but does not provide the
precision needed for all applications one might wish to consider for these calculi.
Most “scalar exact” treatments of ZX and ZH fix a map [[ · ]] by replacing the proportional-
ities in Eqns. (8) and (10) with equalities – except for the “Hadamard” boxes of Eqn. (8),
where a factor of 1/

√
D is used to yield unitary operators. However, the rewrites in those

systems often involve book-keeping of auxiliary sub-diagrams (“scalar gadgets”).
In the case D = 2, Ref. [14] presents a different, unified semantic map [[ · ]]ν for both ZX
and ZH diagrams, in order to support rewrites involving fewer scalar gadgets. However,
the scalar factors involved in those semantics could be considered non-obvious, and does
not provide insights into how one would achieve the same goal for arbitrary D ⩾ 2.

The aim of this work is to extend the results of Ref. [14], providing a simple approach to
fixing a semantic map [[ · ]] for both ZX and ZH diagrams for arbitrary D ⩾ 2, which supports
a set of diagrammatic rewrites without much use of scalar gadgets.

3 Discrete integrals

Our main theoretical contribution is to demonstrate how discrete integrals provide a way
to fix a semantic map for ZX and ZH diagrams, with favourable properties. In this section,
we introduce discrete measures and discrete integrals independently of string diagrams, and
consider the constraints on discrete measures obtained through a particular representation of
discrete Fourier transforms.

3.1 Introducing discrete measures and discrete integrals
We begin by introducing more fully the concepts first described on page 2. For a set X, let
℘(X) be the power-set of X. We may define a σ-algebra on X to be a set Σ ⊆ ℘(X) which
contains X, which is closed under set complements (S ∈ Σ ⇐⇒ X \S ∈ Σ), and which is
closed under countable unions (if S1, S2, . . . ∈ Σ, then S1 ∪ S2 ∪ · · · ∈ Σ). – The purpose of
defining Σ is to allow the notion of a measure µ : Σ→ R ∪ {+∞} to be defined, where the
sets S ∈ Σ are the ones which have a well-defined measure. Such a function µ is a measure,
if and only if µ(∅) = 0, µ(S) ⩾ 0 for all S ∈ Σ, and if

µ
(
S1 ∪ S2 ∪ · · ·

)
= µ(S1) + µ(S2) + · · · (12)

for any sequence of disjoint sets Sj ∈ Σ. An example is the σ-algebra Σ consisting of all
countable unions of intervals over R, with µ defined by assigning µ(J) = b−a to any interval
J = (a, b), J = (a, b], J = [a, b), or J = [a, b] for a ⩽ b. A somewhat more exotic measure
is the Dirac distribution µδ on R, for which µδ(S) = 1 if 0 ∈ S, and µδ(S) = 0 otherwise.
(We remark on the Dirac distribution and related concepts in Appendix [15, Appendix D].)
However, we are mainly interested in measures µ defined on subsets S ⊆ D, for which
µ(S) ∝ #S.
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For the set D = {L, L + 1, . . . , U − 1, U}, consider the σ-algebra B = ℘(D) consisting of
all subsets of D. Define the measure µ : B → R on this σ-algebra given by µ(S) = #S · ν2,
where ν > 0 can in principle be chosen freely. This presents D as a measure space, the
purpose of which is to allow us to define (multi-)linear operators on H as arising from
integrals with respect to that measure. For a function f : Z→ C, we may define a notion of
integration of f over a subset S ⊆ D:∫

x∈S

f(x) dµ(x) =
∑
x∈S

f(x) µ({x}) =
∑
x∈S

f(x) ν2 . (13)

We may apply this notion of integration to operator-valued functions, as is typical for
wave-functions in quantum mechanics. For instance, one may define∫

x∈S

f(x) |x⟩ dµ(x) = ν2
∑
x∈S

f(x) |x⟩ . (14)

In the usual approach to describing wave-functions over R, one takes |x⟩ to represent a
point-mass distribution (i.e., not a vector v ∈ CR for which vx = 1), so that the equality

⟨z|

[ ∫
x∈R

f(x) |x⟩ dx

]
=
∫

x∈R

f(x)δz(x) dx = f(z), (15)

holds. Here δz(x) is a shifted Dirac distribution (see Ref. [15, Appendix D.1] for more
details).5 To avoid notational confusion, we prefer to reserve the symbol “|x⟩” to represent a
unit-norm standard basis vector in H (i.e., a vector v ∈ H such that vx = 1), and introduce
a symbol “|x⟩⟩” which denotes the vector |x⟩⟩ = 1

ν |x⟩, specifically so that

⟨⟨z|

[ ∫
x∈D

f(x) |x⟩⟩ dµ(x)
]

=
∫

x∈D

f(x) ⟨⟨z ||x⟩⟩ dµ(x) = ν2
∑
x∈D

f(x) ⟨z |x⟩
ν2 = f(z) , (16)

and also∫
x∈D

|x⟩⟩⟨⟨x| dµ(x) = ν2
∑
x∈D

|x⟩ ⟨x|
ν2 =

∑
x∈D

|x⟩ ⟨x| = 1 . (17)

The notation “|x⟩⟩” provides us the flexibility to consider which measures µ : B → R are
best suited for defining convenient semantics for ZX and ZH generators, while retaining the
features provided by Dirac distributions over R, and without constraining ν.

For maps U and V described in this way, one may analyse compositions UV in the same
way that one would do if U and V were given by sums of operators: by using the expressions
for U and V in terms of discrete integrals, manipulating expressions within the integrals, and
well-judged use of algebraic identities such as Eqns. (16) and (17). For instance, if we have

U =
∫∫

x,y∈D

ux,y |x⟩⟩⟨⟨y| V =
∫∫

w,z∈D

vw,z |w⟩⟩⟨⟨z| (18)

then we may express the composite operation UV by

5 While it is not necessary to understand our results, readers who are interested in connections between
the integrals and measures presented here with integration over compact groups, may be interested in
remarks which we make in Ref. [15, Appendix D.3].
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UV =
[ ∫∫

x,y∈D

ux,y |x⟩⟩⟨⟨y|

][ ∫∫
w,z∈D

vw,z |w⟩⟩⟨⟨z|

]

=
∫∫∫∫

w,x,y,z∈D

ux,yvw,z |x⟩⟩⟨⟨y ||w⟩⟩⟨⟨z| =
∫∫

x,z∈D

( ∫∫
w,y∈D

ux,yvw,z ⟨⟨y ||w⟩⟩

)
|x⟩⟩⟨⟨z|

=
∫∫

x,z∈D

( ∫
y∈D

ux,yvy,z

)
|x⟩⟩⟨⟨z| .

(19)

Composition of such integrals generalises straightforwardly for tensors of any signature:
examples can be seen in Appendix A.1 of Ref. [15] (and Appendix A.3 makes heavy use of
such analysis of compositions to prove the soundness of various diagrammatic rewrites of ZX
and ZH diagrams.) The only distinction between this approach and one expressed directly in
terms of summation, are the scalar factors which are subsumed in the integral notation and
operators such as |x⟩⟩⟨⟨z|, both of which are governed by the choice of measure µ.

3.2 Constraints on normalisation motivated by the Fourier transform
Having defined the discrete measure (and discrete integrals) over D, and the corresponding
point-mass distributions |x⟩⟩ to satisfy Eqn. (2), we may consider how this might influence our
approach to analysis of complex-valued functions over D (or ZD, using a similar measure).

In analogy to a common representation6 of the Fourier transform of functions on R, we
may describe the (discrete) Fourier transform of a function f : ZD → C by

f̂(k) =
∫

x∈ZD

e−2πikx/D f(x) dµ(x). (20)

In principle, the domain ZD of f̂ indexes a character χk(x) = e−2πikx/D in the dual group ẐD.
The dual group ẐD can itself be assigned a measure µ̃ which is in principle independent of µ.
As ZD is a finite abelian group, we use the fact that there is an isomorphism ε : ẐD → ZD

to describe f̂ as a function ZD → C. The isomorphism ε induces a measure µ′ = µ̃ ◦ ε−1

on ZD, which may differ from µ and which would be relevant to any integrals involving
the argument of f̂ .7 – Note that there are different conventions for normalising the Fourier
transform (over R or ZD): one might consider modifying Eqn. (20) to include a non-trivial
scalar factor on the right-hand side. This is related to the questions of whether we take the
Fourier transform f 7→ f̂ to preserve the ℓ2-norm ∥f∥2 =

(∫
x
|f(x)|2 dµ(x)

)
1/2, and whether

we take µ′ to differ from µ. We simply adopt the convention of defining the Fourier transform
of f : ZD → C as in Eqn. (20), and consider the constraints that this imposes on these other
considerations.

6 We emulate the presentation of the Fourier transform in terms of an oscillation frequency k (including
the minus sign in the exponent, which for historical reasons is absent in the definition of the quantum
Fourier transform). The main difference between Eqn. (20) and the usual Fourier transform over R
is the factor of 1/D in the exponent: this can be shown to arise from a representation of functions
f : ZD → C in terms of discrete distributions on R (see Ref. [15, Appendix D.3.4]).

7 The precise relationship between µ and µ′, corresponds to the question in physics of the choice of units
for x and k as continuous variables ranging over R.
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In analogy to standard practise in physics, we may use f to describe a “wave-function”,8

|f⟩⟩ :=
∫

x∈ZD

f(x) |x⟩⟩ dµ(x) . (21)

A similar “wave function” for f̂ would involve the measure µ′, the measure on the argument
of f̂ , which may in principle differ from µ:

|f̂ ⟩⟩ =
∫

k∈ZD

f̂(k) |k⟩⟩ dµ′(k) , (22)

integrating with respect to that different measure. Taking µ′ ̸= µ would imply that the
functions f : (ZD, µ)→ C, defined on ZD considered as a space with measure µ, are strictly
speaking not of the same type as their Fourier transforms f̂ : (ZD, µ′)→ C which are defined
over a space with a different measure. String diagrams representing the transformations of
such functions would then require wires of more than one type. While this is admissible in
principle, we prefer to consider f and f̂ to have the same measure space (ZD, µ) for their
domains, so that we may treat them using string diagrams with wires of a single type, as we
do in the ZX and ZH calculi. Identifying µ′ = µ, we obtain

|f̂ ⟩⟩ =
∫

k∈ZD

f̂(k) |k⟩⟩ dµ(k) =
∫∫

k,x∈ZD

e−2πikx/Df(x) |k⟩⟩ dµ(x) dµ(k) . (23)

This motivates the definition of the discrete Fourier transform operator F over ZD, as

F =
∫∫

k,x∈ZD

e−2πikx/D |k⟩⟩⟨⟨x| dµ(x) dµ(k) , (24)

so that |f̂ ⟩⟩ = F |f⟩⟩; this is the interpretation given to the “Hadamard minus box” in
Eqn. (28). We adopt the convention that F is unitary, to allow it to directly represent a
possible transformation of state-vectors over H. This has the benefit that the inverse Fourier
transform can be expressed similarly (now suppressing the differentials dµ, for brevity):

f(x) = ⟨⟨x|F †|f̂ ⟩⟩ =
∫∫∫

x,h,k∈ZD

e2πikx/D |x⟩⟩⟨⟨k|
(

f̂(h) |h⟩⟩
)

=
∫

k∈ZD

e2πikx/D f̂(x) . (25)

The definition of F in Eqn. (24) and the constraint that it should be unitary, imposes a
constraint on the measure µ on ZD. We first prove a routine Lemma (which is used often in
the Appendices of Ref. [15] in simplifying iterated integrals):

▶ Lemma 1. Let ω = e2πi/D and E ∈ D. Then
∫

k∈ZD

ωEk dµ(k) = ⟨⟨E ||0⟩⟩Dν4.

Proof. This holds by reduction to the usual exponential sum:

∫
k∈D

e2πiEk/D dµ(k) = ν2
∑
k∈D

(
ωE
)k =

ν2 · ωELD · (ωE)D − 1
ω − 1 , if ωE ̸= 1

ν2 ·D, if ωE = 1


= δE,0 Dν2 = ⟨E |0⟩ Dν2 = ⟨⟨E ||0⟩⟩Dν4 . ◀

8 Note that |f⟩⟩ may not be a unit vector; whether this is the case depends on the values taken by f .
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We may apply this in the case of the Fourier transform as follows. If F as expressed in
Eqn. (24) is unitary, we have

1 = F †F =
[ ∫∫

y,h∈D

e2πihy/D |y⟩⟩⟨⟨h| dµ(y) dµ(h)
][ ∫∫

k,x∈D

e−2πikx/D |k⟩⟩⟨⟨x| dµ(k) dµ(x)
]

=
∫∫∫∫

y,h,k,x∈D

e2πi(hy−kx)/D |y⟩⟩⟨⟨h||k⟩⟩⟨⟨x| dµ(y) dµ(h) dµ(k) dµ(x)

=
∫∫∫

y,k,x∈D

e2πik(y−x)/D |y⟩⟩⟨⟨x| dµ(y) dµ(k) dµ(x)

=
∫∫

y,x∈D

[ ∫
k∈D

e2πik(y−x)/D dµ(k)
]
|y⟩⟩⟨⟨x| dµ(y) dµ(x)

=
∫∫

y,x∈D

[
Dν4 · ⟨⟨y ||x⟩⟩

]
|y⟩⟩⟨⟨x| dµ(y) dµ(x)

= Dν4
∫

x∈D

|x⟩⟩⟨⟨x| dµ(x) = Dν4 · 1 . (26)

This implies that ν = D−1/4 (or equivalently, N = µ(ZD) = Dν2 =
√

D).
As there are multiple conventions for representing the discrete Fourier transform, one

might wish to consider how adopting a different convention to Eqn. (20) affects constraints
on the measure µ; we consider this question in Ref. [15, Appendix B.5].

4 Semantics for ZX- and ZH-diagrams using discrete interals

We present an approach to simply and systematically define semantic maps for ZX and
ZH generators, which (a) yields simple diagrams for unitary transformations of interest,
(b) admits scalar-exact diagrammatic rewrites involving few scalar gadgets, and (c) allows
the two notational systems to be used seamlessly together.

Our approach is to subsume all considerations of normalising factors into the measure
of a discrete integral, and its accompanying point-mass functions, as indicated on page 2.
Our use of integrals and discrete measures in this way is standard, if somewhat uncommon
in quantum information theory: see Ref. [35, 27] for comparable examples. Our intent is
explicitly to draw attention to the freedom involved in the choice of measure, as a way
forward to defining a semantic map [[ · ]] for ZX and ZH diagrams that has desirable features.

Defining a discrete integral on D with µ(D) =
√

D, as we do in the preceding Section,
allows us to easily define semantic maps for ZX and ZH diagrams with a number of convenient
properties. Let

|ωk⟩⟩ = F |k⟩⟩ =
∫

x∈D

ω−kx |x⟩⟩ (27)

be the non-normalised point-mass distributions analogous to the Fourier basis states |ωk⟩
introduced on page 4 (so that |ωk⟩⟩ is an ωk-eigenvector of the cyclic shift operator X given
by X |a⟩ = |a+1⟩). We then define a semantic map [[ · ]] on the ZX generators of Eqns. (6),
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[[
Θ..

.m

{
..
.

}
n

]]
=
∫

x∈D

Θ(x) |x⟩⟩⊗n⟨⟨x|⊗m
[[

+

]]
= F † =

∫∫
x,k∈D

e2πikx/D|k⟩⟩⟨⟨x|

[[
Θ..

.m

{
..
.

}
n

]]
=
∫

k∈D

Θ(k) |ω−k⟩⟩⊗n⟨⟨ ωk |⊗m
[[

-

]]
= F =

∫∫
x,k∈D

e−2πikx/D|k⟩⟩⟨⟨x|

(28)

and the ZH generators of Eqn. (9):[[
A..

.m

{
..
.

}
n

]]
=
∫∫

x∈Dm

y∈Dn

A(x1 ··· xmy1 ··· yn) |y⟩⟩⟨⟨x| ,

[[
..
.m

{
..
.

}
n

]]
=
∫∫

x∈Dm

y∈Dn

〈〈 ∑
h

xh +
∑
k

yk

∣∣ 0 〉〉 |y⟩⟩⟨⟨x| , (29)

[[
..
.m

{
..
.

}
n

]]
=
∫

x∈D

|x⟩⟩⊗n⟨⟨x|⊗m ,
[[ c ]]

=
∫

x∈D

|−c−x⟩⟩⟨⟨x| ,

These semantics are consistent with those set out in Eqns. (8) and (10), replacing the sums
and the vectors |x⟩ with discrete integrals and the corresponding point-mass distributions
|x⟩⟩, and substitute proportionality relations with equalities. The discrete integrals (and
point-mass functions) serve to specify specific scalar factors for the proportionalities.

These definitions are ones that we could choose to make, regardless of the measure µ

that we consider for D. Regardless of the choice made for ν, the above interpretations are
certainly similar in their simplicity to the standard interpretations. By taking ν = D−1/4

as suggested in the preceding section, we not only obtain rewrite systems involving very
few scalar gadgets – see Figs. 1 and 2 – but also, the most commonly considered states and
unitary operations of qudit circuits admit simple presentations using these semantics. We
may demonstrate this as follows.

4.1 The stabiliser sub-theory of ZX for arbitrary D > 1

We describe below a stabiliser subtheory of the ZX calculus, concerning ZX diagrams which
suffice to represent stabiliser states [13] on systems of arbitrary dimension D > 1. These are
characterised by ZX diagrams whose phase parameters are governed by restricted functions,
for which arithmetic modulo D plays a central role.

We begin by describing the stabiliser sub-theory of quantum circuits. Following Ref. [13],
define the complex unit τ = eπi(D2+1)/D, which is relevant to the analysis of stabiliser circuits
on qudits of dimension D. The scalar τ is defined in such a way that τ2 = ω, but also so
that τX†Z† is an operator of order D, where X and Z given by

X |t⟩ = |t + 1⟩ , Z |t⟩ = ωt |t⟩ , (30)

are the D-dimensional generalised Pauli operators. (As always, arithmetic performed in the
kets are evaluated modulo D.) Choosing τ in this way makes it possible [13] to define a
simple and uniform theory of unitary stabiliser circuits on qudits of dimension D, generated
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...
...

..

.

..

. ←→ ...
... [a]

... ←→
[a]

[a]

...

Θ.
..

...

Φ

.

.

.
..
.

←→
Θ·Φ.

..
.
..

Θ...
... ←→

Θ+

+

.

..

+

+

.

..

←→
[c] [a ; b] [c]

←→
[a−bc ; b]

[c][a ; b]

←→
[c] [c]

←→ + - ←→
[0 ; 1]

[0 ; 1]

[0 ; 1]

+

[0 ;−1]

←→ θ

Figure 1 A sample of the (scalar-exact) rewrites which are sound for ZX diagrams with semantics
as in Eqn. (28), when ν = D−1/4. Throughout, we have Θ, Φ : Z → C, and a, b, c ∈ Z. Node labels
of the form [a] or [a ; b] stand respectively for the amplitude functions x 7→ τ2ax and x 7→ τ2ax+bx2

,
where τ = exp(πi(D2+1)/D). A more complete list of rewrites, and proofs of their soundness, may
be found in Ref. [15, Appendix A.3.3].

..

.
..
.

...
...

←→
u

u

..

.

u

u

..

. ←→

c

c

.

..

c

c

.

.. ←→ ..
.

..

.

.

..
..
.

.

..
.
..

←→ .
..

.

.. ←→
u

u

..

.

u

u

..

. ←→ ..
.

..

.

c1
...

...

c2
...

...

−u ←→ u–1c1c2
...

...
b

a
←→ a+b 0 ←→

..

.
..
.

..

.

..

. ←→ ...
...

u

u

.

..
..
.

..

.
..
. ←→ −u

...
...

c1 c2
←→

c2−c10
u u

c

←→
u–1c 0

←→

←→
1√
D

←→ ←→ u −u ←→ θ

Figure 2 A sample of the (scalar-exact) rewrites which are sound for ZH diagrams with semantics
as in Eqn. (29) when ν = D−1/4. H-boxes which are labeled inside with an integer parameter such
as c ∈ Z, indicate an amplitude of ωc = e2πic/D; H-boxes labelled with “+” or “-” indicate c = ±1.
Throughout, we havea, b, c, c1, c2, u, v ∈ Z (which may be evaluated modulo D), where in particular
u and v are coprime to D. A more complete list of rewrites, and proofs of their soundness, may be
found in Ref. [15, Appendix A.3.1].
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by the single-qudit operators 9

S =
∫

x∈D

τ x2
|x⟩⟩⟨⟨x| ; F =

∫∫
k,x∈D

τ−2kx |k⟩⟩⟨⟨x| ; Mu =
∫

x∈D

|ux⟩⟩⟨⟨x| , (31)

where in the case of Mu we restrict to u ∈ Z which is relatively prime to D; and either one
of the two-qudit operators

CX =
∫∫

x,y∈D

|x⟩⟩⟨⟨x| ⊗ |x+y⟩⟩⟨⟨y| ; CZ =
∫∫

x,y∈D

τ2xy |x, y⟩⟩⟨⟨x, y| . (32)

Finally, the full range of stabiliser circuits also admit measurements in the standard basis
(and bases which may be related to the standard basis by the above unitaries).

Booth and Carette [6] describe a version of the ZX calculus which is complete for this
subtheory, for the special case of D an odd prime. Following them, we may describe how
the semantics of Eqn. (28) allows a simplification of these rewrites, extending them in most
cases to arbitrary D > 1. To this end, it will be helpful to use a slightly different notational
convention to Booth and Carette [6], we may easily denote these with ZX diagrams using
the semantics of Eqn. (28). For a, b ∈ Z, when parameterising a green or red dot, let [a ; b]
stand for the amplitude function Θ(x) = τ2ax+bx2 , so that[[

[a ; b]
]]

=
∫

x∈D

τ 2ax + bx2
|x⟩⟩ ;

[[
[a ; b]

]]
=
∫

k∈D

τ 2ak + bk2
|ω−k⟩⟩ ; (33)

generalising these to dots with multiple edges (or with none) similarly to Ref. [6]. When
b = 0, we may abbreviate this function simply by [a], so that we may represent the states |a⟩⟩
and |ωa⟩⟩ straightforwardly (albeit with the use of auxiliary red dots to represent an antipode
operator, mapping |ωa⟩⟩ 7→ |ω−a⟩⟩ and |a⟩⟩ 7→ |−a⟩⟩ for a ∈ ZD):[[

[a]

]]
=
∫∫

k,x∈D

τ2ax |ω−k⟩⟩⟨⟨ωk ||x⟩⟩ = |ωa⟩⟩ ; (34a)

[[
[a]

]]
=
∫∫

h,k∈D

τ2ah |ω−k⟩⟩⟨⟨ωk ||ω−h⟩⟩ = |a⟩⟩ . (34b)

We may also easily represent the operators Z, and X as 1→ 1 dots:[[
[1 ]

]]
=
∫

x∈D

τ2x |x⟩⟩⟨⟨x| = Z ;
[[

[1 ]
]]

=
∫

h∈D

τ2h |ωh⟩⟩⟨⟨ωh| = X . (35)

Regarding the unitary stabiliser operators on qudits, we may express them without any
phases, using multi-edges between green and red dots, or using Hadamard boxes:[[ ]]

= CX,

[[
+

]]
= CZ,

[[ [0 ; 1 ] ]]
= S,

[[
...

}
u

]]
= Mu . (36)

(The diagram shown for Mu also generalises to operators Mu =
∫

x
|ux⟩⟩⟨⟨x| for u not a

multiplicative unit modulo D, though in that case the operator will not be invertible.)

9 Despite the different convention we adopt for the labeling of the standard basis, the definitions below
are equivalent to those of Ref. [13]: the relative phases τ 2ax+bx2 remain well-defined on substitution
of values x < 0 with D + x, as τ 2a(D+x)+b(D+x)2 = τ 2aD+2ax+bD2+2bD+bx2 = τ 2ax+bx2 (using the fact that
τ D2 = τ 2D = 1 for both even and odd D).

MFCS 2024



20:14 Simple Qudit ZX and ZH Calculi, via Integrals

The stabiliser subtheory of ZX may produce green or red dots of degree zero with phase
parameter [a ; b] for some a, b ∈ Z. These may occur when evaluating the probability of
measurement outcomes (e.g., in the standard basis) arising from a stabiliser qudit circuit.
As we show in Ref. [15, Appendix A.3.3] (as a simple corollary of a more general fusion rule),
we have


[a1 ; b1]
...

...

[a2 ; b2]

...
...


 =




[a1+a2 ;
b1+b2]

..

.
..
.


 (37)

where each instance of “
... ” denotes some number (zero or more) of incident wires. In the

case where there are no other dots connected to two green dots as above, the right-hand side
would be an isolated dot denoting a scalar, for which we define the notation Γ(a, b, D):

[[
[a ; b]

]]
=
∫

x∈D

τ2ax+bx2
=: Γ(a, b, D) . (38)

Evaluating such a discrete integral is connected with the subject of quadratic Gaussian sums,
which is addressed in some detail in Ref. [15, Appendix C]. As a result of the normalisation
convention for our discrete integrals, it is possible to show (see Ref. [15, Appendix C,
Eqn. (103)]) that

Γ(a, b, D) :=
∫

x∈D

τ2ax+bx2
=
{√

t · eiγ , if t = gcd(b, D) and a is divisible by t;
0, otherwise,

(39)

where γ is a phase parameter described in more detail in Ref. [15, Appendix C, Eqn. (103)].
In particular, if b is a multiplicative unit modulo D, this represents a global phase factor.
(If we also have a = 0, then Γ(a, b, D) is in fact a power of eπi/4.) More generally, Γ(a, b, D)
will either be 0, or have magnitude

√
t, where t = gcd(b, D).

In this way, we obtain a diagrammatic language which is capable of expressing the
rewrites similar to those described by Ref. [6], while involving fewer scalar factors (see
Ref. [15, Appendix A.3.3, Fig. 6] for a more complete list of sound rewrites).

4.2 Multipliers and multicharacters in qudit ZH

It would be cumbersome to reason about stabiliser multiplication operators Mu or iterated
CX or CZ gates using parallel edges between dots. Booth and Carette [6] describe how
these may be denoted using gadgets called “multipliers”, denoted c for c ∈ N, which
represent a limited form of scalable ZX notation [9, 8]. Using discrete integrals and the
semantics described in Eqn. (28), we would simply write[[

c

]]
=
[[

...

}
c

]]
=
∫

x∈D

|cx⟩⟩⟨⟨x| . (40)
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Using these multipliers, Booth and Carette [6, p. 24] then define “Fourier boxes” c :=
c + (using our notation for Hadamard boxes), whose interpretation coincides with the

ones we assign using Eqn. (29) to an H-box with an amplitude parameter ωc. Using this as
a primitive, and composing this with the inverse - of the positive Hadamard box + ,
we may directly describe multipliers instead as a ZH gadget, loosely following Roy [33]:

c - =: c . (41)

On the left, we employ a short-hand for H-boxes with an amplitude parameter ωc. This is
short-hand for a character function χc : Z→ C given by χc(x) = ωcx, which is well-defined
modulo D, and which we may then regard as a character on ZD. The function Z× Z→ C
given by (x, y) 7→ χc(xy) is a bicharacter, which is also well-defined modulo D on each of
its arguments; and more generally we may consider multicharacters, which are functions
ZD×· · ·×ZD → C given by (x1, . . . , xn) 7→ ωcx1···xn . We may call H-boxes with any number
of edges, and with amplitude parameter ωc for some c ∈ ZD, a (ZD-)multicharacter box.

We may use these ideas to define a multicharacter subtheory of ZH, consisting of the
subtheory in which the H-boxes are indexed by paramters c ∈ ZD in this way. Roy [33]
has substantially investigated this fragment of ZH, in odd prime dimension. Our choice
of semantic map allows us [15, Appendix A.3.1, Fig. 4] to reproduce many of the rewrites
considered by Roy, while making minor simplifications and extending them to arbitrary
dimensions D > 1.

We may use multiplier gadgets and multicharacter boxes to usefully describe unitary
transformations, such as exponentiations of the qudit controlled-X and controlled-Z gates:
 -

c


= CXc =

∫∫
x,y∈D

|x, y+cx⟩⟩⟨⟨x, y| ,


 c


= CZc =

∫∫
x,y∈D

ωcxy |x, y⟩⟩⟨⟨x, y| .(42)

These degree-2 multicharacter boxes are effectively a Fourier transform over an isomorphic
presentation of ZD in some cases. This occurs in particular when c = u ∈ Z×

D is a
multiplicative unit modulo D. We can witness this by rewrites which are valid for H-
boxes parameterised by units u ∈ Z×

D, such as ones which relate the white dots and the gray
dots among the ZH generators (similar remarks apply for the green and red ZX generators): u

u

..

.

u

u

..

.

 =

 ...
...

 and

 u

u

..

.

u

u

..

.

 =

 ...
...

 (43)

While there cannot be any perfect symmetry between the white and gray dots in general in
the ZH calculus (as it involves the standard basis as a preferred basis), in this case a symmetry
is recovered which one does not normally expect of presentations of the ZH calculusx.

We may also easily describe multi-qudit analogues of the qudit controlled-X and controlled-
Z gates, using the fact that the H-boxes denote multi-characters. For example:

 c

-


 = CCXc =

∫∫∫
x,y,z∈D

|x, y, z+cxy⟩⟩⟨⟨x, y, z| , (44a)


 c


 = CCZc =

∫∫∫
x,y,z∈D

ωcxyz |x, y, z⟩⟩⟨⟨x, y, z| . (44b)
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...
... ←→ ...

...

...
... ←→ ...

...

Θ...
... ←→ .

..
.
..

Θ

Θ ←→ Θ

[c]

←→
c

←→

+ ←→ +1

- ←→ −1

←→ √
D

Θ ←→
∫

x∈D

Θ(x)

Θ ←→ Θ(0)

Θ [c] ←→ Θ(c)

Figure 3 Sound rewrites between the ZX generators and the ZH generators, subject to the
semantics of Eqns. (28) and (29) in the case ν = D−1/4. The proofs of the soundness of these
rewrites are shown in Ref. [15, Appendix A.3.2].

While it would quickly become cumberson to represent each of the integrals in such an
operation – this being a motivation for diagrammatic calculi in general – this demonstrates
the genericity of the representation for these unitary transformations, and the relative lack
of minor details to attend to in using them. Finally, we note the quasi-spider property that
H-boxes are known for in the qubit case and in (and also shown in a more complicated form
for odd prime D by Roy [33]), which can also be shown for a pair of multicharacter boxes
connected to a common H-box with parameter u ∈ Z×

D:




c1
.
..

..

.

c2
...

...

−u


 =


u–1c1c2

..

.
..
.

 (45)

We do not claim to have a complete multicharacter subtheory for ZH over arbitrary qudits,
but many of the rewrites which one may show in this case [15, Appendix A.3.1, Fig. 4] can
be specialised in a useful way to the multicharacter case.

4.3 Compatibility and universality

In addition to the semantics of Eqns. (28) and (29) yielding ZX and ZH calculi which are each
convenient in their own right, it also assigns the same semantics to certain ZX generators
and certain ZH generators. This is illustrated in Fig. 3. This allows us to relate the two
calculi to each other, to describe a “ZXH calculus” which has the features of both.

It is not necessary to consider such a united calculus to be able to denote arbitrary
operators: see Ref. [15, Appendix A.2] for a sketch of a proof of universality of the ZH diagrams,
in terms of a “normal form”-like diagram which mirrors the construction of Ref. [3]. However,
while using both sets of generators may be redundant in principle, it should be expected
to facilitate analysis, as the rewrite rules of each system effectively represents at least an
important Lemma or Theorem of the other system.

We do not demonstrate any completeness results for these calculi; more rewrites may be
necessary to prove completeness for arbitrary D > 1, for each of these two calculi, even in
the stabiliser and multicharacter fragments described above.
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5 Discussion

As well as providing an approach to define ZX and ZH calculi with simple rewrite systems
on qudits, this approach is a simpler, and apparently independent, way to reproduce10 the
“well-tempered” semantic map [[ · ]]ν described in Ref. [14] for D = 2. In this way, Eqns. (28)
and (29) provide a more intuitive definition of those semantics, and extend them to arbitrary
D > 1. It is possible to show that this is essentially down to the constraints imposed on the
representation of the discrete Fourier transform in Section 3.2. Ref. [15, Appendix B] describes
(a) the way that Eqns. (28) and (29) fail to constrain a generic “Ockhamic” interpretation of
ZH diagrams while fixing a specific “Ockhamic” interpretations of ZX diagrams; and (b) to
what extent this approach to fixing semantics actually differs from the approach of Ref. [14].

As well as discrete integrals, and amplitude functions Θ, A : Z→ C in place of (vectors of)
phases or amplitudes, we consider an index set for H which is not simply {0, 1, . . . , D−1}, but
instead {L, L + 1, . . . , U − 1, U} for some integers such that U −L+1 = D. One conventional
choice is L = 0 and U = D − 1, but most of out results (in particular: all those to do with
the stabiliser / multicharacter fragments of ZX or ZH) hold equally well with any such set
of labels for the standard basis. This less committal choice of index set demonstrates the
flexibility of this system, which may prove useful for future applications (e.g., problems in
physics where it may prove useful to consider negative index values).

We conclude with a highly speculative thought regarding discrete measures. One constraint
which we imposed on the measure µ on D – interpreted as a measure on ZD – was that the
Fourier transform should be interpretable as an involution C(ZD,µ) → C(ZD,µ) on functions on
the measure space (ZD, µ), rather than a bijection C(ZD,µ) → C(ZD,µ′) between functions on
distinct measure spaces (ZD, µ) and (ZD, µ′). This may seem like a technical but necessary
step; for a conventional presentation of ZX diagrams, it is necessary, if all of the wires are to
have the same type. However, many quantum algorithms have a structure in which some
classical operation with a distinguished control register, where that control operates on a
state which is conceived as being in the Fourier basis. This structure is consistent with the
control register having different “datatypes” at different stages of the algorithm. Could it be
more appropriate to make a distinction on logical qudits of each dimension D, between a
“standard” type and a “Fourier” type (possibly among others), than to have just a single
“type” for each D? It would be interesting to consider what insights into the structure of
quantum algorithms might arise by investigating along these lines; it is conceivable that this
could give rise to new insights into structured quantum programming.
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Abstract
In this paper, we investigate confluence and the Church-Rosser property – two well-studied properties
of rewriting and the λ-calculus – from the viewpoint of proof complexity. With respect to confluence,
and focusing on orthogonal term rewrite systems, our main contribution is that the size, measured
in number of symbols, of the smallest rewrite proof is polynomial in the size of the peak. For the
Church-Rosser property we obtain exponential lower bounds for the size of the join in the size of
the equality proof. Finally, we study the complexity of proving confluence in the context of the
λ-calculus. Here, we establish an exponential (worst-case) lower bound of the size of the join in the
size of the peak.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases logic, bounded arithmetic, consistency, rewriting

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.21

Funding Arnold Beckmann: Royal Society International Exchanges Grant, IES\R3\223051
Georg Moser : Royal Society International Exchanges Grant, IES\R3\223051

1 Introduction

Confluence and the Church-Rosser property are two (very) well-known properties of rewriting
that have been studied for several decades. Confluence expresses that if we have terms s, t,
t′, where s can be successively rewritten to t, as well as to t′, then t and t′ have a common
descendent in the rewriting relation, cf. Figure 1 i). In short, if there is a peak: t ∗← s→∗ t′,
we conclude the existence of a rewrite proof : t→∗ · ∗← t′. The Church-Rosser property –
illustrated in Figure 1 ii) – expresses that from the equality between t and t′ (t↔∗ t′), we
conclude the existence of a rewrite proof: t →∗ · ∗← t′. It is a folklore result that both
properties are equivalent. And, as indicative in the name, their intensive study goes back to
work by Church and Rosser [8].

Despite the large body of work on confluence and the Church-Rosser property, it seems
that the, to us, natural question about the inherent proof complexities has only received
scarce attention. A noteworthy exception is work by Ketema and Grue Simonsen [11].
Focusing on orthogonal term rewrite systems and employing the number of reductions as
measure of proof complexity, they obtain in the context of confluence optimal exponential
upper bounds on the size of the rewrite proof in relation to the size of the peak. With
respect to the Church-Rosser property only a non-elementary upper bound can be shown.
Related results have been obtained for the λ-calculus, where again non-elementary bounds
are obtained for both properties, cf. [10].

If, however, proof complexity is measured more in the tradition of computational com-
plexity, that is, as the number of symbols occurring in a proof, then more tractable results
are possible. For example for orthogonal term rewrite systems, we prove that for confluence
the size of the least rewrite proof is always polynomially bounded in the size of the peak.
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i confluence ii Church Rosser

Figure 1 Confluence and Church-Rosser property.

Motivation. These results may open the way for the application of rewriting techniques in
complexity theoretic studies, in particular in the context of Bounded Arithmetic [6]. A major
open problem in Bounded Arithmetic is the separation of its fragments, which has deep
connections to similar questions about the separation of computational complexity classes
like the Polynomial Time Hierarchy, including the P vs. NP problem. Consider equational
theories, restricted to term equations that define functions symbols exclusively by recursion.
As established in [5] by the first author, consistency of such equational theories can be
proved in the fragment of Bounded Arithmetic S1

2 . This is remarkable, as it disproves the
general impression in Bounded Arithmetic, that consistency statements cannot be used for
separation arguments - consistency of equational theories with a richer set of axioms are
usually unprovable in Bounded Arithmetic [7].

In the proof in [5], the given equational proof is reconstructed in S1
2 using a technically

involved process of “approximation” and “calculation”. An alternative, much more elegant,
proof could employ the Church-Rosser property of the induced term rewrite system. To our
best knowledge it is, however, unclear whether this property (or confluence) is formalisable
in S1

2 . The results of this paper are conceivable as a first step towards this direction.

Contributions. In summary, we make the following contributions, where we are only
concerned with orthogonal term rewrite systems.
1) Our main result, Theorem 17, shows that the size – measured in the number of symbols –

of the smallest possible rewrite proofs is in the worst-case polynomially bounded in the
size of the peak, cf. Figure 1. This shows that confluence properties are polynomial time
computable, hence are formalisable in Bounded Arithmetic.
The polynomial (in fact biquadratic) upper bound stems from a quadratic bound on the
number of reductions in the rewrite proof in the size of the peak, and a quadratic bound
on the size of each term in the rewrite proof.

2) For the Church-Rosser property we give an exponential worst-case lower bound to the
size of the join in the size of the equality proof, cf. Theorem 19. This shows that it is
not possible to formalise Church-Rosser properties directly in Bounded Arithmetic. The
(worst-case) bound is precise.

3) We give matching (worst-case) upper and lower bounds based on different complexity
measures. For confluence, we show that the size of the join is linear in the size of the
product of the end terms in the peak, cf. Corollary 15 and Proposition 10. For the Church-
Rosser property, we show that the size of the join is polynomial in the product of the sizes
of the intermediary terms in the equational proof, cf. Theorem 22 and Proposition 21.

4) Finally, we study the complexity of proving confluence in the context of the λ-calculus.
We obtain that the size of the join is at least exponential in the size of the peak. Hence,
confluence is also not formalisable directly in Bounded Arithmetic.



A. Beckmann and G. Moser 21:3

Outline

The next section introduces basic notions and results. In Section 3 we establish the mentioned
lower bound results for rewriting. Section 4 introduces technical notions that underly the
methodology of our main results, to be presented in Section 5. In Section 6 we study lower
and upper bounds on the complexity of Church-Rosser proofs. The lower bound of confluence
proofs is established in Section 7. Section 8 discusses related works. Finally, in Section 9, we
conclude and present future work.

2 Preliminaries

We assume (at least nodding) acquaintance with term rewriting [2, 12], however recall basic
definitions and notations for ease of readability.

General. Let R be a binary relation. We write Rn for the n-fold iteration of R and R∗ for
the reflexive and transitive closure of R. Let V denote a countable infinite set of variables,
and F a countable infinite set of function symbols (also called signature). The set of terms
over F and V is denoted by T (F ,V).

Let t be a term (over F and V). A position p is a finite sequence of positive integers. Via
positions, we uniquely identifying subterms of t, denoted as t|p. We write p∥q to indicate
parallel positions, generalising the notions suitably to sets of positions. We write Var(t) to
denote the set of variables occurring in t, ie. Var t = {x | t|p is a variable for some position p}
and we write rt(t) to denote its root symbol. For example, for {x, y} ⊆ V , Var(x + y) = {x, y}
and rt(x + y) = +. The size |t| of term t is defined as the number of symbol occurrences
in t, for example, |x + y|= 3. A term t is linear if every variable in t occurs only once.

Term Rewriting. A rewrite rule is a pair l→ r of terms, such that (i) the left-hand side l

is not a variable and (ii) Var(l) ⊇ Var(r). A term rewrite system (TRS) over F is a finite set
of rewrite rules R; it will be denoted by the pair (F ,R). If the signature F is clear from
context, we simply denote a TRS by its set of rules R. If l → r is a rewrite rule and σ a
renaming, then the rule lσ → rσ is called a variant of l→ r. A TRS is said to be variant-free,
if it does not contain rewrite rules that are variants. In the following we assume that TRSs
are variant-free.

The rewrite relation based on R is denoted as →R and its transitve and reflexive closure
as →∗

R. If the TRS is clear from context, we will simply write → and →∗ respectively. Let s

be a redex in term t. Here a redex is an occurrence of a term s that is an instance of the
left-hand side l of a rule l→ r ∈ R. We write t s−→R t′ to indicate that redex s is contracted
in the rewrite step. A term t over T (F ,V) is in normal form with respect to a TRS R, if t

does not contain any redex. We call a substitution σ normalised (with respect to R), if all
terms in the range of σ are in normal form. The innermost rewrite relation i−→R of a TRS
R is defined as follows: s i−→R t if there exists a rewrite rule l → r ∈ R, a context C, and
a substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of lσ are normal
forms of R.

An overlap for R is a triple ⟨l→ r, p, l′ → r′⟩, such that (i) l→ r, l′ → r′ are rules in R,
whose variables are disjoint, (ii) p is not a variable position in l′, (iii) l and l′|p are unifiable,
(iv) if p = ε, then l → r, l′ → r′ are not variants. A TRS is left-linear if the left-hand
sides of all rules are linear. A TRS R without overlap is called non-ambiguous; a left-linear,
non-ambiguous TRS is called orthogonal.
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Let s and t be terms. Then an (innermost) derivation D : s →∗
R t with respect to a

TRS R is a finite sequence of (innermost) rewrite steps. Given an equational system E , we
can define, as usual, a TRS R such that

s =E t iff s↔∗
R t .

(See [2, 12] for the straightforward construction.) A finite sequence of equational steps:
t1 ↔R t2 · · · ↔R tn is called an equational proof.

A term s ∈ T (F ,V) is confluent, if for all t, t′ ∈ T (F ,V) with t ∗← s→∗ t′, there exists
a common reduct v, that is, t→∗ v ∗← t′. A TRS (F ,R) is confluent if all terms in T (F ,V)
are confluent. We call the equational proof t ∗← s →∗ t′ a peak, the term v the join and
the derivations t→∗ v ∗← t′ a rewrite proof. A peak is local, if it consists of one step each:
t← s→ t′. Confluence is equivalent to the Church-Rosser property, which states that for
any equational proof t ↔∗ t′ there is a rewrite proof t →∗ v ∗← t′. A rewrite relation →
has the diamond property, if any local peak over → can be joined immediately, that is, if
← · → ⊆ → · ← holds.

Descendants and Residuals. Let (F ,R) be a TRS and let L be a set of labels. The
labelled TRS (FL,RL) is defined by setting (i) FL := F ∪ {f ℓ | f ∈ F and ℓ ∈ L}, (ii) the
projection ⟨t⟩ of a term t ∈ T (FL,V) removes all labels, and (iii)RL := {l→ r | ⟨l⟩ → r ∈ R}.
The next proposition is from Terese [12, Proposition 4.2.3].

▶ Proposition 1. Consider a left-linear TRS (F ,R) and a set of labels L. Let s ∈ T (F ,V)
and let s′ be a labelled term such that ⟨s′⟩ = s. Then each reduction step s→ t can be lifted
to a reduction step s′ → t′ in the labelled TRS (FL,RL) such that ⟨t′⟩ = t.

In the following, we write RL in short for the labelled TRS (FL,RL), if the (labelled)
signature is clear from context.

▶ Definition 2. Let t be a term in a TRS R, let s be a redex and let f be a function symbol
occurring at position p in t, ie. f = rt(t|p). Let tf denote the term that results from t by
labelling this occurrence of f with label ℓ ∈ L. Then the reduction step t s−→ t′ (contracting
redex s) is lifted to a reduction step tf → t′′ in RL.

The occurrences of f in t′ that have label ℓ in t′′ are the descendants of the original symbol
occurence of f in t. Conversely, the original f is called the ancestor of its descendants.

The descendant/ancestor relation is extended to subterm occurrences via their root
symbols. The descendant of a redex is called a residual. For a set of redexes S, we call the
set of residuals of redexes in S simply the set of residuals of S. The descendant/ancestor
relation naturally generalises to sequence of rewrite steps, that is, derivations. Note that the
ancestor relation is unique, that is, for any derivation D : s→∗ t the ancestor of a subterm u

in t is given as a unique occurrence of a subterm u′ in s, if it exists, cf. [12, Chapter 4].

Orthogonality. It is well-known that every orthogonal TRS is confluent, which can for ex-
ample be verified by repeated applications of the Parallel Moves Lemma, cf. [12, Lemma 4.3.3].

▶ Lemma 3 (Parallel Moves Lemma). In an orthogonal TRS, let t→∗ t2 be given. Let t s−→ t1
be a one-step reduction by contraction of redex s. Then a common reduct t3 of t1 and t2 can
be found by contracting in t2 of all residuals of redex s. Observe that all residuals will be
pairwise disjoint.
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In order to prove the Parallel Moves Lemma, one makes use of the parallel rewriting
relation, formalising the notion of contraction of pairwise disjoint redexes.

▶ Definition 4. Let R be a TRS. We define the parallel rewriting relation ⇒R as follows
1. x⇒R x for any variable x,
2. f(s⃗)⇒R f (⃗t) for any function symbol f , if for all i si ⇒R ti, and
3. lσ ⇒R rσ, if l→ r ∈ R and σ a substitution.

We often omit R and simply write s =⇒ t, if the TRS is clear from context.

Note that →R ⊆ ⇒R ⊆ →∗
R, in particular we have that →∗

R = ⇒R
∗. Making use

of parallel rewriting, we can state the Parallel Moves Lemma succinctly as follows. A
strengthening of the lemma has been stated and proven in [11].

▶ Lemma 5. Parallel rewriting has the diamond property for every orthogonal TRS R, that
is, if t⇐R s⇒R t′, then there exists a join t′′ such that t′ ⇒R t′′ ⇐R t.

Let TRS R be fixed and let s =⇒ t denote a paralel rewriting step with respect to R.
Suppose the (occurrences of) disjoint redexes contracted are collected in set S. Then
we succinctly write s

S
=⇒ t. Due to the Parallel Moves Lemma, we obtain the following

proposition, cf. [12, Proposition 4.5.6].

▶ Proposition 6. Let R be an orthogonal TRS, and let t ∈ T (F ,V). Let S, T be sets of
pairwise disjoint redexes in t and let t

S
=⇒ t′. Then the set of residuals of T in t′ is unique,

that is, independent of the order in which redexes in S are contracted.

Proof. This is a direct consequence of the diamond property of =⇒. Actually a stronger results
holds. The single parallel rewriting step employed, is generalisable to a complete development
step, without affecting the validity of the proposition, cf. [12, Proposition 4.5.6]. ◀

Based on Proposition 6 we denote with T/S the (unique) set of residuals of T in t′ that
are obtained by the parallel rewriting step t

S
=⇒ t′. With Lemma 3 we observe that T/S

consists of pairwise disjoint redexes in t′.
Following the definition of the functions cvsR and vsR in [11], we define functions that

compute the worst case of joining derivations based on peaks, resp. equation proofs, of a
given size in the most effective way. Let ∥D∥ denote the number of symbol occurrences in D.

▶ Definition 7. Let R be an orthogonal term rewrite system. With jR(t, t′) we denote the
minimal size of a joining derivation of terms t and t′, if it exist:

jR(t, t′) =
{

min{∥D′∥ : D′ : t→∗
R · ∗←R t′} if t and t′ have a joining derivation

∞ otherwise

The worst case join complexities for confluence Conf and Church-Rosser CR are defined as

Conf(n) = max{jR(t, t′) : ∃D; ∥D∥ = n, D : t←∗
R · →∗

R t′, R orthogonal TRS }
CR(n) = max{jR(t, t′) : ∃D; ∥D∥ = n, D : t↔∗

R t′, R orthogonal TRS } .

In the following we will give some (worst-case) upper and (worst-case) lower bounds to
those functions. Our main result will be a polynomial upper bound to Conf in Corollary 18.
We also provide an exponential lower bound to CR in Corollary 20.

For the remainder of the paper, we restrict to orthogonal TRSs.

MFCS 2024
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3 Lower Bounds for Confluence

For our lower bound considerations we use the following big-O facts, which follow easily from
definitions.

▶ Lemma 8.
1. If e1(n) = O(e(n)) and e2(n) = Ω(e(n)) then e2(n) = Ω(e1(n)).
2. If e1(n) = e(n)O(1) and e2(n) = e(n)Ω(1), then e2(n) = e1(n)Ω(1).

We first give a linear lower bound to the number of steps for joining a peak in the size of
the splitting sequence. We will provide a corresponding upper bound in Corollary 16.

▶ Proposition 9. There is an orthogonal TRS R satisfying the following: Let D1 : a→∗ b

and D2 : a→∗ c be derivations over R, such that b→k d, and c→l d holds for numbers k, l,
and term d. Then k + l = Ω(∥D1∥+ ∥D2∥), that is, k + l is at least linear in the number of
symbols in D1 and D2 together.

Proof. Consider the TRS R1 given by

f(x)→ g(x, x) a(x)→ b(x, x) . (1)

We define meta term symbols via A(T ) := a(T ), B(T ) := b(T, T ), F (T ) := f(T ), G(T ) :=
g(T, T ). For a meta term symbol T let T (n) denote its n-fold iteration.

We define

Sn = F (n)(A(n)(0)) Un = F (n)(B(n)(0))

Vn = G(n)(A(n)(0)) Wn = G(n)(B(n)(0)) ,

and compute

|Sn|= O(n) |Un|= O(2n) |Vn|= O(n2n) .

Consider the following peak in R1, rewriting innermost redexes first.

D1 : Sn
a−→ F (n)(A(n−1)(B(0))) a−→ F (n)(A(n−2)(B(2)(0))) a−→ · · · a−→ Un

D2 : Sn
f−→ F (n−1)(G(A(n)(0))) f−→ F (n−2)(G(2)(A(n)(0))) f−→ · · · f−→ Vn .

To discern ambiguity, we have identified the root symbol of the redex above the rewrite
relation.

The size of each term in the first derivation is O(2n), hence the overall size of D1 is
O(n2n). The size of the k-th term in the second derivation is O(n2k), so adding them up
for k ⩽ n gives a bound of O(n2n) for the overall derivation length of D2 as well. Hence
(∥D1∥+ ∥D2∥) = O(n2n).

The ’fastest’ join of Un and Vn is given by rewriting innermost redexes first:

Un
f−→1 F (n−1)(G(B(n)(0))) f−→1 F (n−2)(G(2)(B(n)(0))) f−→1 · · · f−→1 Wn

Vn
a−→2n

G(n)(A(n−1)(B(0))) a−→2n

G(n)(A(n−2)(B(2)(0))) a−→2n

· · · a−→2n

Wn .

The length of the first derivation is n, and of the second n2n, respectively.
Thus, a lower bound to the number of steps Sjoin of any derivations that join Un and Vn

is n2n: Sjoin = Ω(n2n). Together with (∥D1∥+∥D2∥) = O(n2n) and Lemma 8.(1), we obtain
Sjoin = Ω(∥D1∥+ ∥D2∥). Hence, Sjoin must be at least linear in the size of the derivations
D1 and D2 constituting the peak. ◀
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We also give a linear lower bound to the size of the join of the diamond in the product
of the sizes of meet-able terms in a peak. The corresponding upper bound will be given in
Corollary 15.

▶ Proposition 10. There is an orthogonal TRS R satisfying the following: Let b ∗← a→∗ c

be a peak over R with consequent join d such that b→∗ d and c→∗ d. Then |d|= Ω(|b|·|c|),
that is, the size |d| of d is at least linear in |b|·|c|.

Proof. Fix n. We will basically follow the example from the proof of Proposition 9, with a
slight modification to obtain optimal bounds.

With the notation from the proof of Proposition 9, expand TRS R1, cf. (1), with the rule
h→ A(n)(0). Let the resulting TRS be denoted as R2. We define

S′
n = F (n)(h) Un = F (n)(B(n)(0))

V ′
n = G(n)(h) Wn = G(n)(B(n)(0)) ,

and compute

|Un|= O(2n) |V ′
n|= O(2n) |Wn|= Ω(22n) .

Consider the following peak:

S′
n

h−→ F (n)(A(n)(0)) a−→∗ Un

S′
n

f−→ F (n−1)(G(h)) f−→ F (n−2)(G(2)(h)) f−→∗ V ′
n .

The ’smallest’ join of Un and Vn is given by rewriting only residuals:

Un
f−→∗ Wn

V ′
n

h−→∗ G(n)(A(n)(0)) a−→∗ Wn .

We compute |Un|·|V ′
n|= O(22n). Together with |Wn|= Ω(22n) and (1) we obtain |Wn|=

Ω(|Un|·|V ′
n|). Hence, the size of any join must be at least linear in the product of the sizes

of Un and V ′
n. ◀

4 Injectivity

For the sequel, we fix an orthogonal TRS R. Let t′ ∗← s→∗ t denote a peak over R.
Consider the tiling diagramme in Figure 2 obtained by repeated applications of Lemma 5.

We assume that H0,ν denotes a singleton set of one redex in s0,ν , for ν = 0 . . . , i−1, and that
Vµ,0 denotes a singleton set of one redex in sµ,0, for µ = 0 . . . , j−1. Note that this implies
|H0,ν |= 1 and |Vµ,0|= 1. Further, we obtain

Vµ,ν+1 = Vµ,ν/Hµ,ν Hµ+1,ν = Hµ,ν/Vµ,ν ,

as sets of residuals using Proposition 6. Moreover, using Proposition 6, we have that Hµ,ν

and Vµ,ν are sets of pairwise disjoint redexes in sµ,ν , for all µ = 0 . . . , j−1, ν = 0 . . . , i−1.
Recall that a redex is an occurrence of a term t that is an instance of the left-hand side l of
a rule l→ r ∈ R.

MFCS 2024
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Figure 2 The tiling situation.

Generalised Ancestors

Given a sequence of rewrite steps

t→s′ t′ →s′′ t′′ → . . .→s(n−1) t(n−1) →s(n) t(n)

we generalise the notion of ancestor to trace any subterm in the sequence back to t – we
denote this generalised ancestor, or short g.-ancestor.

Ancestors are also g.-ancestors. Consider a subterm uj in t(j), and its ancestors uj−1 in
t(j−1), etc., until ui in t(i) cannot be extended any further. Let f denote the root symbol of
ui in t(i). As f does not have an ancestor in t(i−1), we must be in the following situation:
There exist a context C[∗], substitution σ, and rule l → r in R, such that t(i−1) = C[lσ],
t(i) ≡ C[rσ], and f occurs in r. We now define the generalised ancestor of f in t(i) as the root
symbol of l in C[lσ] = t(i−1). Continue until t is reached.

▶ Proposition 11. In the tiling diagramme in Figure 2, the generalised ancestors of any
symbol occurrence are unique, that is, independent of the path chosen to compute them.

Proof. Arguing inductively, it suffices to prove the statement for a single square:

sµ,ν
Hµ,ν===⇒ sµ,ν+1

⇓Vµ,ν ⇓Vµ,ν+1

sµ+1,ν
Hµ+1,ν=====⇒ sµ+1,ν+1 .

Recall that using Proposition 6, we have that Hµ,ν and Vµ,ν are sets of disjoint redexes
in sµ,ν , for all µ = 0 . . . , j−1, ν = 0 . . . , i−1. Thus, in proof of the claim, we can assume
without loss of generality that |Hµ,ν | = |Vµ,ν | = 1.

Let u be a subterm of sµ+1,ν+1. First, suppose u has an ancestor in sµ,ν . Then, this
ancestor is unique, as mentioned above.
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Second, suppose u has only generalised ancestors in sµ,ν . Then, we distinguish cases on
the relative positioning of redexes in Hµ,ν and Vµ,ν , respectively. Recall, that by assumption
the redexes in Hµ,ν and Vµ,ν are pairwise disjoint.

Case. Suppose Hµ,ν∥Vµ,ν , that is, the redexes in Hµ,ν ∪Vµ,ν are all pairwise disjoint. Then
the claim is obvious.
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Figure 3 Critical cases where generalised ancestors occur.

Case. Suppose there exists rules l → r, l′ → r′ ∈ R, and substitutions σ, σ′ such that
lσ ∈ Hµ,ν and l′σ′ ∈ Vµ,ν . Further l′σ′ ◁ lσ. (The case lσ = l′σ is trivial, because we must
have (l→ r) = (l′ → r′) due to orthogonality of R.) As u does not have an ancestor in sµ,ν ,
rt(u) either occurs in r or in r′. The situation of this case is depicted in Figure 3.

Wlog. rt(u) occurs in r′ and thus u occurs in any of the occurrences of r′σ′ in sµ+1,ν+1.
By assumption on lσ and l′σ′, u has an ancestor in sµ+1,ν and a generalised ancestor in
sµ,ν+1, which are both unique and consequently their join in sµ,ν is unique, too. ◀

▶ Definition 12. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i. Let f
be a function symbol occurrence in sµ,ν , and let µ′ ⩽ µ, ν′ ⩽ ν. We define gaµ,ν

µ′,ν′(f) as the
g.-ancestor of f in sµ′,ν′ .

We now formulate the main result of this section.

▶ Lemma 13. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i, and µ′ ⩽ µ,
ν′ ⩽ ν. The mapping of function symbol occurrences f in sµ,ν to the pair (gaµ,ν

µ,ν′(f), gaµ,ν
µ′,ν(f))

is an injection.

Proof. This claim can be proven by induction on ν − ν′. The case for ν = ν′ is obvious,
because gaµ,ν

µ,ν is the identity, which is injective.
For the induction step from ν′ + 1 to ν′ we can assume by induction hypothesis that the

claim is true for (µ′, ν′ + 1). We then show the claim for (µ′, ν′), depicted as follows.
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For sake of contradiction assume the claim is wrong for (µ′, ν′). That is, there are f, g
occurring in sµ,ν with f, g different symbol occurrences, such that gaµ,ν

µ′,ν(f) = gaµ,ν
µ′,ν(g) and

gaµ,ν
µ,ν′(f) = gaµ,ν

µ,ν′(g). By i.h. we must have gaµ,ν
µ,ν′+1(f) ̸= gaµ,ν

µ,ν′+1(g). Let r1 = gaµ,ν
µ,ν′+1(f),

r2 = gaµ,ν
µ,ν′+1(g), and r0 = gaµ,ν

µ,ν′(f) = gaµ,ν
µ,ν′(g). This situation is depicted below. 
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We must be in the following situation: There are rule l → r in R, substitution ρ,
terms u1, . . . , uk, context C[∗1, . . . , ∗k], such that Hµ,ν′ = {u1, . . . , uk}, u1 = lρ, sµ,ν′ =
C[u1, . . . , uk], and r1 and r2 occur in rρ in sµ,ν′+1 = C[rρ, . . . ], and either

the roots of r1 and r2 occur already in r in C[rρ, . . . ], hence their joint g.-ancestor r0 is
the root of l in C[lρ, u2, . . . , uk], see Figure 4a;
or we have a variable x occuring in l which occurs multiple times in r, e.g. as Cr[∗1, ∗2]
with r = C[x, x] – hence rρ = Crρ[xρ, xρ] – and r1 occurs in the first xρ, r2 occurs in
the second xρ, and their joint ancestor r0 occurs in xρ in lρ in sµ,ν′ , see Figure 4b.

Let r̂ = gaµ,ν
µ′,ν(f) = gaµ,ν

µ′,ν(g) be the g.-ancestor of f and g in sµ′,ν . Hµ,ν′ are residuals of
Hµ′,ν′ , hence the ancestors r̃0 of r0 in sµ′,ν′ and r̃1, r̃2 of r1, r2 in sµ′,ν′+1 will occur in lρ′

and rρ′ for some ρ′. In particular in A), the roots of r̃1 and r̃2 are in r, and r̃0 is at the root
of l. In case B) we have that rρ′ = Crρ′[xρ′, xρ′] with r̃1 occuring in 1st and r̃2 in 2nd of xρ′.
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In both cases we have that r̃1 and r̃2 are two distinct g.-ancestors of f and g in sµ′,ν′+1,
resp., by following from sµ,ν the derivation first to sµ,ν′+1 and then to sµ′,ν′+1. However, by
following from sµ,ν the derivation to sµ′,ν , f and g have a joint ancestor r̂, hence can only
have one joint ancestor in sµ′,ν′+1 when following the derivation from sµ′,ν to sµ′,ν′+1 to the
left. This contradicts Proposition 11 that g.-ancestors are unique. ◀

▶ Lemma 14. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i.
Assuming |H0,ν |= 1, the mapping of each redex in Hµ,ν to their generalised ancestors in

sµ,ν′ for ν′ < ν is an injection.
Similar for Vµ,ν : Assuming |Vµ,0|= 1, the mapping of each redex in Vµ,ν to their generalised

ancestors in sµ′,ν for µ′ < µ is an injection.

Proof. We only consider the first assertion, the second is dual. Ie., we are in the following
situation. 

Son So 9 f How

Hur
Said i Said

got f a i f

Let s be a term, H a set of redexes in s, and f a function symbol occurrence in s. We
succinctly write f ∈ H to indicate that f is the occurrence of the root symbol of some redex
in H.

By Lemma 13 we have that the mapping

f ∈ Hµ,ν 7→ (gaµ,ν
µ,ν′(f), gaµ,ν

0,ν (f))

is an injection. By assumption we have that |H0,ν |= 1, hence H0,ν = {r̂} for some r̂. This
implies that gaµ,ν

0,ν (f) = r̂ for all f ∈ Hµ,ν . Hence

f ∈ Hµ,ν 7→ gaµ,ν
µ,ν′(f)

must be injective. ◀

5 Upper Bounds on Confluence

In this short section, we state and prove our main result that the size, that is, the number of
symbols, of a rewrite proof is polynomial in the size of the peak, cf. Figure 1. First, we draw
two easy corollaries from Lemma 13 and Lemma 14, respectively.

▶ Corollary 15. Consider the tiling diagramme in Figure 2. The size of the join t′′ is bounded
by the product of the sizes of t and t′:

|t′′| ⩽ |t|·|t′| .

Proof. This is a direct consequence of Lemma 13. ◀
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▶ Corollary 16. Consider the tiling diagramme in Figure 2, assuming |H0,ν |= 1 and |Vµ,0|= 1.
In this situation, the number of (sequential) reduction steps needed to join t and t′ via t′′, is
bounded by the square of the size of the initial sequence. More precisely:

i−1∑
ν=0
|Hj,ν | +

j−1∑
µ=0
|Vµ,i| ⩽ i · |t′|+j · |t| ⩽

( j∑
µ=0
|sµ,0|+

i∑
ν=1
|s0,ν |

)2 .

Proof. For the first inequality, observe that by Lemma 14, we have that |Hj,ν |≤ |sj,0| for
ν < i and |Vµ,i|≤ |s0,i| for µ < j. Thus, |Hj,ν |≤ |t′| and |Vµ,i|≤ |t| by definition. Then, the
second inequality follows by elementary calculations. Finally, observe that if the set of redex
S is disjoint then

S
=⇒ ⊆→S , from which the claim follows. ◀

Now, our main result follows with ease.

▶ Theorem 17. Let R be an orthogonal TRS and assume the existence of a peak D : t′ ∗←
s →∗ t. Then there exists a rewriting proof D′ : t′ →∗ t′′ ∗← t whose size is polynomially
bounded in the size of D. In fact, the size of D′ is biquadratic in the size of D.

Proof. This is a consequence of Corollaries 15 and 16. Let D′ be the joining derivation given
by the tiling diagram in Figure 2, where s0,0 = s, s0,ν is the ν-th term in s→i t, and sµ,0
the µ-th term in s→j t′. Employing the notation of that figure, we obtain

∥D∥ =
j∑

µ=0
|sµ,0|+

i∑
ν=1
|s0,ν | .

Recall that ∥D∥ denotes the number of symbol occurrences in D. Due to Corollary 15, we
have, for each µ, ν (0 ⩽ µ ⩽ j, 0 ⩽ ν ⩽ i), that

|sµ,ν | ⩽ |sµ,0|·|s0,ν | ⩽ ∥D∥2 . (2)

Moreover, due to Corollary 16, the number of joining steps in D′ is bounded by ∥D∥2:

number of
joining steps ⩽

i−1∑
ν=0
|Hj,ν | +

j−1∑
µ=0
|Vµ,i| ≤ ∥D∥2 . (3)

Combining (2) and (3), we conclude that ∥D′∥ ⩽ ∥D∥4. ◀

▶ Corollary 18. Conf is biquadratically bounded, i.e. Conf(n) = O(n4).

A closer inspection of the example in the proof of Proposition 10 establishes a cubic lower
bound, i.e. Conf(n) = Ω(n3).

6 Lower and Upper Bounds for the Church-Rosser Property

In the case of the Church-Rosser property, we first give an exponential lower bound to the size
of the join, which in particular gives an exponential lower bound to the join complexity CR.

▶ Theorem 19. There is an orthogonal TRS R satisfying the following: Let D be a derivation
of a ↔∗ b over R, such that a →∗ c and b →∗ c holds, then |c| is exponential in ∥D∥ in
general, i.e. |c|= 2∥D∥Ω(1) .
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Proof. Consider the TRS R3 given by

fi(x)→ ai(x, x) gi(x)→ ai(x, x) (i = 1, . . . , k) . (4)

We define meta term symbols via Ai(T ) := ai(T, T ), define

Sk
i = g1(. . . gi−1(gi(fi+1(. . . fk(0) . . . ))) . . . ) Uk = A1(. . . Ak(0) . . . )

T k
i = g1(. . . gi−1(Ai(fi+1(. . . fk(0) . . . ))) . . . ) ,

and compute

|Sk
i | = O(k) |T k

i | = O(k) Sk
i

gi−→ T k
i Sk

i
fi+1−−−→ T k

i+1 .

Consider the following derivation:

D := T k
1 ← Sk

1 → T k
2 ← Sk

2 → T k
3 . . . T k

k−1 ← Sk
k−1 → T k

k

The unique Church-Rosser join is given by T k
i →∗ U for all i = 1, . . . , k. From now on we

drop the superscript k.
Let SD = ∥D∥ and SU = |U |. We compute SD = O(n2) and SU = Ω(2n). Thus SD ⩽ ck2

for some c > 0, hence k ⩾
√

1
c SD ⩾ SD

ϵ for small ϵ > 0. Thus SU ⩾ 2k ⩾ 2SD
ϵ . ◀

▶ Corollary 20. CR(n) is exponential in n, i.e. CR(n) = 2nΩ(1) .

Inspecting our upper bounds, Corollaries 15 and 16, establishes that this bound is optimal
up to the degree, i.e. CR(n) = 2nO(1) .

We now show that the size of the join in the case of Church-Rosser is polynomially related
to the product of the sizes of the terms in the starting derivation. We first state the lower
bound.

▶ Proposition 21. There is an orthogonal TRS R satisfying the following: Let a1 ↔ a2 ↔
· · · ↔ ak be a derivation over R such that a1 →∗ b and ak →∗ b for some b. Then |b| is
polynomial in |a1|·|a2|· · · · · |ak| in general, i.e. |b|= (|a1|·|a2|· · · · · |ak|)Ω(1).

Proof. We modify the TRS from the previous proof so that the starting terms are of constant
size: Expand the TRS from the proof of Theorem 19 by

f̄k
i → fi(̄fk

i+1) ḡk
i (x)→ ḡk

i−1(gi(x)) (i = 1, . . . , k) (5)

where f̄k
k+1 represents 0. We define

S̄k
i = ḡk

i (̄fk
i+1) T̄ k

i = ḡk
i−1(Ai(̄fk

i+1)) ,

and compute

|S̄k
i | = O(1) S̄k

i = ḡk
i (̄fk

i+1) ḡk
i−→ ḡk

i−1(gi(̄fk
i+1)) gi−→ ḡk

i−1(Ai(̄fk
i+1)) = T̄ k

i

|T̄ k
i | = O(1) S̄k

i = ḡk
i (̄fk

i+1) f̄k
i+1−−→ ḡk

i (fi+1(̄fk
i+2)) fi+1−−→ ḡk

i (Ai+1(̄fk
i+2)) = T̄ k

i+1 .

From now on we will drop the superscript k. Consider the following derivation:

D̄ := T̄1 ←2 S̄1 →2 T̄2 ←2 S̄2 →2 T̄3 . . . T̄k−1 ←2 S̄k−1 →2 T̄k .

The unique Church-Rosser join is again given by T̄i →∗ r for all i = 1, . . . , k.
Let S̄ = Πt∈D̄|t| and Sr = |r|. We compute S̄ = c2k for some c = O(1) which is an upper

bound on the size of terms occurring in D̄. Hence S̄ = (2k)O(1). We also have Sr = (2k)Ω(1).
Hence Sr = S̄Ω(1) using Lemma 8(2). ◀
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We also have a corresponding upper bound.

▶ Theorem 22. Let R be an orthogonal TRS. Given a derivation a1 ↔ a2 ↔ · · · ↔ ak over
R, there is a join a1 →∗ b ∗← ak for some b, such that |b| is bounded by |a1|·|a2|· · · · · |ak|.

Proof. The upper bound is obtained by induction on k using the related upper bound for
confluence, Corollary 15: Assume a1 ↔ · · · ↔ ak ↔ ak+1. By induction hypothesis there are
some b, a1 →∗ b and ak →∗ b such that |b| is bounded by |a1|·|a2|· · · · · |ak|. If ak+1 → ak

then b is also the join for a1 and ak+1 and we are already done. Otherwise, ak → ak+1.
Using that ak →∗ b, we can join this peak with some c of size ⩽ |b|·|ak+1| using Corollary 15.
Thus |c| ⩽ |b|·|ak+1| ⩽ |a1|·|a2|· · · · · |ak|·|ak+1|. ◀

7 A Lower Bound for the Lambda Calculus

For this section, we assume(at least nodding) acquaintance with the (untyped) λ-calculus [3, 4].
While we refrain from re-stating (hopefully) well-known notions, the result should be easy to
understand.

We show that for confluence in λ-calculus, the size of the join is exponential in the product
of the sizes of the starting terms in general.

▶ Proposition 23. Given a peak D : b ←∗
λ a →∗

λ c, and a joining derivation b →∗
λ d ←∗

λ c.
Then |d| is exponential in ∥D∥ as well as in |b|·|c| in general: |d| = 2∥D∥Ω(1) and |d| =
2(|b|·|c|)Ω(1) .

Proof. Let f, g, h, x, y be variables. Let A := λx.((λy.hyy)(gx)) and B := λx.(h(gx)(gx)).
We have A λy−→λ B, |A|= Θ(1), |B|= Θ(1).

Define terms T k, Uk, V k, W k as follows: Let T 0 = U0 = V 0 = W 0 = f , and inductively

T k+1 = (A T k), Uk+1 = (B Uk), V k+1 = (λy.hyy)(gV k), W k+1 = h(gW k)(gW k) .

Then |T k|= O(k), |Uk|= O(k), |V k|= O(k), and |W k|= Ω(2k). We have

T k λy−→k
λ Uk T k λx−−→k

λ V k Uk λx−−→k
λ W k V k λy−→k

λ W k

by induction on k. Let D be Uk ←∗
λ T k →∗

λ V k. Then ∥D∥ = O(k2), hence k ⩾ (∥D∥)ϵ

for some ϵ > 0, hence |W k| = Ω(2k) = Ω(2(∥D∥)ϵ). As |b|·|d|= O(k2) as well, the same
calculation applies in this case as well. ◀

8 Related Works

Ketema and Grue Simonsen have studied similar properties in [11]. For a given TRS R,
they define functions cvsR and vsR, estimating the least number of reduction steps necessary
in a rewrite proof, assuming an equational proof or a peak, respectively. More precisely,
cvsR(m, n) denotes the least number of reduction steps required to complete a rewrite proof,
given an equational proof involving at most n steps between two terms t, t′ of size at most m.
Likewise, vsR(m, n) denotes the least number of reduction steps in a rewrite proof, given a
peak t ∗← s→∗ t′, where the size of s is at most m and the reduction lengths are at most of
size n. For orthogonal TRSs R they obtain optimal exponential upper bound on vsR and
an upper bound on cvsR that belongs to the 4th-level of the Grzegorczyk hierarchy. I.e. the
upper bound on cvsR is at least non-elementary. Wrt. the λ-calculus, confluence already
requires an non-elementary upper bound. In subsequent work, Fujita proved that for the
λ-calculus cvsR is upper bounded in the 4th-level of the Grzegorczyk hierarchy, cf. [10]. Only
optimality of the bound on vsR for orthogonal rewrite systems has been established.
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We emphasise that these results are orthogonal to our contributions, as we make use
of a different notion of proof complexity: the number of symbols, rather than the number
of reduction steps. While this measure is natural in the context of rewriting (or even the
λ-calculus), it is less so in the context of computational complexity, from our point of view.
In short, for orthogonal TRSs, this change allows us to provide (optimal) polynomial upper
bounds on confluence proofs and (optimal) exponential upper bounds on Church-Rosser
proofs, while we establish an exponential lower bound on confluence proofs for the λ-calculus.
Note that our changed notion of size not only allows tractable upper bounds, but also
differentiates precisely between the expressivity of (first-order) term rewrite systems and
(higher-order) λ-calculus, a difference that got somewhat blurred in related works.

To the best of our knowledge, confluence or Church-Rosser properties in term-rewriting
have not been studied in general in Bounded Arithmetic (though they have been used as
tools in the analysis of related artefacts, as in work by Das [9]). The closest we are aware of
are the results by the first author [5] that formalises a restricted and very involved property
the resembles elements of Church-Rosser, and which are used to prove the consistency of any
equational theory that exclusively is based on recursive defining equations, in a weak theory of
bounded arithmetic. These results were improved by Yamagata [13] by also allowing rules for
substituting terms into equations in the equational reasoning while proving consistency in a
weak theory of bounded arithmetic. However, Yamagata formalised ideas from programming
semantics with no connection to rewriting.

9 Conclusion

In this paper, we have investigated two well-studied properties of rewriting and the λ-calculus,
namely confluence and the Church-Rosser property, through the lens of proof complexity. In
particular, for orthogonal TRSs, we have shown that the shortest rewrite proof obtained in a
confluence argument is polynomially related to the size of the peak.

This is in contrast to earlier results on upper bounds on the size of confluence and
Church-Rosser proofs that used the number of steps as size measure. While this measure
is natural in the context of rewriting (or even the λ-calculus), it is less so in the context of
computational complexity, from our point of view. We emphasise that our changed notion of
size not only allows tractable upper bounds, but also differentiates precisely between the
expressivity of (first-order) term rewrite systems and (higher-order) λ-calculus, a difference,
that got somewhat blurred in related works.

We have established preliminary steps towards our motivation to study consistency proofs
in weak theories of arithmetic through the lens of rewriting technologies. In future work
we want to expand this direction. It seems natural to us to employ techniques from graph
rewriting [12, Chapter 13] (see also [1]) to overcome the exponential lower bound on the size
of the join that we have established for the Church-Rosser property. Due to the succinct
encoding of multiple occurrences in graph rewriting it could be possible to allow an alternative
encoding of the join and of the rewrite proof, altogether. The latter could potentially give
rise to a polynomial encoding. These investigations are left to future work.
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The last in-tree recognition problem asks whether a given spanning tree can be derived by connecting
each vertex with its rightmost left neighbor of some search ordering. In this study, we demonstrate
that the last-in-tree recognition problem for Generic Search is NP-complete. We utilize this finding
to strengthen a complexity result from order theory. Given a partial order π and a set of triples, the
NP-complete intermezzo problem asks for a linear extension of π where each first element of a triple
is not between the other two. We show that this problem remains NP-complete even when the Hasse
diagram of the partial order forms a tree of bounded height. In contrast, we give an XP-algorithm
for the problem when parameterized by the width of the partial order. Furthermore, we show that –
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1 Introduction

In the realm of computational combinatorics, one of the primary challenges is to determine a
feasible configuration based on incomplete information. This paper aims to elucidate the
relationships between two notable instances of this problem category: recognition of search
trees of graph searches and total ordering with constraints. Specifically, our focus will be
on exploring the last-in-tree recognition in the context of generic search and the intermezzo
problem.

Graph Searches. Graph searches like Breadth First Search (BFS) or Depth First Search
(DFS) are among the most basic algorithms in computer science. Their simplicity belies
their significance as they form the backbone of more complex algorithms used to compute
key properties of graphs. For instance, DFS can be employed to test for planarity as
demonstrated by Hopcraft and Tarjan [17] and Lexicographic Breadth First Search (LBFS)
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aids in the recognition and minimum coloring of chordal graphs through a perfect elimination
ordering [22]. Notably, all the above mentioned algorithms operate in linear time, underscoring
their efficiency.

In this context, Generic Search (GS) represents the most general form of a graph search,
with connectivity being its sole constraint: To elaborate, starting from a root vertex r,
every subsequently visited vertex merely needs to be adjacent to a previously visited vertex.
Consequently, GS can yield any total order of the vertices, provided each prefix is connected.
A search methodology that bears a close resemblance to GS is the Maximum Neighborhood
Search (MNS) [8], which can be perceived as a lexicographic variant of GS. Similarly, BFS
and DFS can be implemented by using a queue and a stack, respectively, to store vertices
that have not yet been visited.

Recognizing the significance of basic graph search algorithms such as BFS or DFS, recent
efforts have been directed towards a deeper understanding of these algorithms. The primary
focus of these studies revolves around two structures: end vertices and search trees (for a
summary of known results see [26, Tables 1 and 2]). Given a graph G and a specific search
rule (e.g., BFS or DFS), the End Vertex Problem aims to identify potential final vertices of
the search. For GS, solving the end vertex problem is relatively straightforward. As long
as a vertex v is not an articulation point, i.e., G − v remains connected, v can serve as an
end vertex of GS [5]. However, the end vertex problem is NP-complete for all other common
search rules on general graphs [1, 5, 9, 31]. By restricting to special graph classes, linear-time
algorithms have been developed to solve this problem, e.g., for BFS on split graphs [5], for
DFS on interval graphs [1], and for MNS on chordal graphs [1].

Given a graph G and a spanning tree T , the Tree Recognition Problem seeks to determine
whether T can be derived as a search tree. In essence, it questions the feasibility of
reconstructing a linear order of vertices from the tree. This problem is typically studied in
two variants: first-in-trees and last-in-trees [2]. In first-in-trees, each vertex is connected to its
neighbor that appears first in the search order. Conversely, in last-in-trees (or L-trees), each
vertex v is a child of its neighbor that appears last before v in the search order. Normally,
first-in-trees are used for BFS and last-in-trees for DFS, with existing linear-time algorithms
capable of recognizing the corresponding trees in both cases [15, 16, 18, 20]. Interestingly,
the problem becomes NP-complete when the search-tree paradigms are swapped between
these searches, i.e., using last-in-trees for BFS and first-in-trees for DFS [24]. Furthermore,
Scheffler [26] shows that the first-in-tree recognition problem of GS can be solved in linear time.

Total Ordering. A well-known theorem in order theory states that any partial order can
be extended to a linear order. This holds true even for infinite sets, as demonstrated by
Szpilrajn (Marczewski) through the use of the axiom of choice [28].1 The process simplifies
considerably for finite sets, where topological sorting algorithms can determine such an
extension in linear time [7].

While partial orders are typically defined by a binary relation, total order problems offer
a more general perspective. Here, one is given a set A, a family B of subsets Ai ⊆ A, and
for each Ai ∈ B one or more valid orderings of the elements within Ai. The objective is to
ascertain a total order of the elements in A that adheres to all these constraints.

Among the problems, the Betweenness Problem and the Cyclic Ordering Problem are
particularly noteworthy. These two problems have already been discussed in the seminal
textbook by Garey and Johnson [13]. In the betweenness problem, we are presented with

1 He also references unpublished proofs by Banach, Kuratowski, and Tarski.
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triples (a, b, c), and the only valid configurations are a < b < c or c < b < a. In simpler
terms, b must be positioned between a and c. The cyclic ordering problem involves given
triples (a, b, c) for which there are three feasible orderings: a < b < c, b < c < a, or c < a < b.
As the appearance in Garey and Johnson’s book already suggests, both of these problems
are indeed NP-complete.

In [14], Guttmann and Maucher systematically categorized total ordering problems based
on pairs and triples. They also introduced the term Intermezzo to describe a specific variant:
given pairs (b, c) where b < c, and triples (a, b, c) where either a < b < c or b < c < a,
implying that a is not placed between b and c. Note that a partial order is defined by
both pairs and triples through the relation b < c. This problem has been proven to be
NP-complete.

Interconnections. In this context, the problems of identifying end vertices and search trees
are interconnected with the total ordering problem, given the underlying vertex order. The
end vertex problem asks if a vertex can be the maximal element within this order. On the
other hand, the correct search order offers a certificate for the search tree problem that can
be checked in linear time. However, the constraints, which include all valid search orders
and could potentially be exponential in number, are not explicitly given. Instead, they are
implicitly defined by the underlying search paradigm.

Recently, Scheffler [23] introduced the more general problem of linearizing partial orders
where the resultant total order must serve as a search order of a specified graph G. He
presents polynomial-time algorithms for this problem for several searches and graph classes.
In particular, he shows that the problem can be solved for GS on general graphs using a
simple greedy algorithm. These results generalize the polynomial-time algorithms for the
end vertex problem, given that the partial order can be selected to determine the end vertex.

Our Contribution. After providing the necessary notation, we prove NP-completeness of
the L-tree problem for Generic Search (GS) in Section 3. It is worth noting that two aspects
of this result may appear surprising: Firstly, for GS all other problems considered so far can
be solved in polynomial time with straightforward methods. Secondly, until now, for any
given combination of a search rule (such as BFS, DFS, etc.) and a graph class (like chordal,
interval, split, etc.), both tree recognition problems have not been harder than the end vertex
problem. Thus, GS on general graphs represents the first known instance where the end
vertex problem is simpler than a tree-recognition problem. We use the NP-completeness of the
L-tree problem of GS in Section 4 to show that the Intermezzo Problem is also NP-complete
even if the partial order π is a cs-tree or the height of π is bounded. In contrast, we give an
XP-algorithm for the problem when parameterized by the width of π. Under the assumption
of the Exponential Time Hypothesis, we show that the running time of this algorithm is
asymptotically optimal. Proofs omitted due to space constraints can be found in the full
version [3].

2 Preliminaries

All the graphs that we consider are simple, finite, non-empty and undirected. Given a
graph G, we denote by V (G) the set of vertices and by E(G) the set of edges.

A path P of G is a non-empty subgraph of G with V (P ) = {v1, . . . , vk} and E(P ) =
{v1v2, . . . , vk−1vk}, where v1, . . . , vk are all distinct. We will sometimes denote such a path
by v1 − v2 − . . . − vk−1 − vk. A graph G is called a tree if it is connected and does not contain
a cycle. A spanning tree T is a subgraph of a graph G which is a tree with V (T ) = V (G). A
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22:4 Graph Search Trees and the Intermezzo Problem

tree together with a distinguished root vertex r is said to be rooted. In such a rooted tree a
vertex v is an ancestor of vertex w if v is an element of the unique path from w to the root r.
In particular, if v is adjacent to w, it is called the parent of w. Furthermore, a vertex w is
called the descendant (child) of v if v is the ancestor (parent) of w. We define the height of a
rooted tree as the maximum number of edges of a path from the root r to any other vertex. A
graph is a split graph if its vertex set can be partitioned into a clique and an independent set.

Given a set X, a (binary) relation R on X is a subset of the set X2 = {(x, y) | x, y ∈ X}.
The set X is called the ground set of R. The reflexive and transitive closure of a relation R is
the smallest relation R′ such that R ⊆ R′ and R′ is reflexive and transitive. A partial order
π on a set X is a reflexive, antisymmetric and transitive relation on X. The tuple (X, π) is
then called a partially ordered set. We also denote (x, y) ∈ π by x ≺π y if x ̸= y. A minimal
element of a partial order π on X is an element x ∈ X for which there is no element y ∈ X

with y ≺π x. A chain of a partial order π on a set X is a set of elements {x1, . . . , xk} ⊆ X

such that x1 ≺π x2 ≺π . . . ≺π xk. The height of π is the number of elements of the largest
chain of π. An antichain of π is a set of elements {x1, . . . , xk} ⊆ X such that xi ̸≺π xj for
any i, j ∈ {1, . . . , k} . The width of π is the number of elements of the largest antichain of π.

A linear ordering of a finite set X is a bijection σ : X → {1, 2, . . . , |X|}. We will often
refer to linear orderings simply as orderings. Furthermore, we will denote an ordering by a
tuple (x1, . . . , xn) which means that σ(xi) = i. Given two elements x and y in X, we say
that x is to the left (resp. to the right) of y if σ(x) < σ(y) (resp. σ(x) > σ(y)) and we denote
this by x ≺σ y (resp. x ≻σ y).

A vertex ordering of a graph G is a linear ordering of the vertex set V (G). A vertex
ordering σ = (v1, . . . , vn) is called connected if for any i ∈ {1, . . . , n} the graph G[v1, . . . , vi]
is connected. In this paper, a graph search is an algorithm that, given a graph G as input,
outputs a connected vertex ordering of G. The graph search that is able to compute any
such ordering is called Generic Search (GS).

3 Complexity of the L-tree Recognition Problem

The definition of the term search tree varies between different paradigms. However, typically,
it consists of the vertices of the graph and, given the search ordering (v1, . . . , vn), for each
vertex vi exactly one edge to a vj ∈ N(vi) with j < i. By specifying to which of the previously
visited neighbors a new vertex is adjacent in the tree, we can define different types of graph
search trees. For example, in DFS trees a vertex v is adjacent to the rightmost neighbor to
the left of v. This motivates the following definition.

▶ Definition 3.1. Given a search ordering σ := (v1, . . . , vn) of a graph search on a connected
graph G, we define the last-in tree (or L-tree) to be the tree consisting of the vertex set V (G)
and an edge from each vertex vi to its rightmost neighbor vj in σ with j < i.

As explained above, for a classical DFS the tree T is an L-tree with respect to σ. Given this
definition, we can state the following decision problem.

▶ Problem 1 (L-Tree Recognition Problem of graph search A).
Instance: A connected graph G and a spanning tree T of G.
Question: Is there a graph search ordering of A such that T is its L-tree of G?

Note that we have defined the L-tree recognition problem without a given start vertex for the
search. It is also possible to define this problem with a fixed start vertex and we call this the
rooted L-tree recognition problem. Obviously, a polynomial-time algorithm for the rooted tree
recognition problem yields a polynomial-time algorithm for the general problem by simply
repeating the procedure for all vertices. The other direction, however, is not necessarily true.
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Figure 1 On the left is an example of a hook configuration. On the right is an example of a
U-bend. The yellow edges symbolize edges of the spanning tree, the black edges are non-tree edges of
the graph and the wavy line represents a directed path in the spanning tree.

r

a b

c d

r

. . .

Figure 2 Family of graphs where the rooted spanning trees (yellow edges) are not L-trees of GS.

The L-tree recognition problem of GS raised in [24] and [27] is an open problem and in
the following we will show that it is in fact NP-complete. This result will also answer another
open question, as Scheffler showed in [24] that the L-tree recognition problem of BFS for
split graphs is at least as hard as that of GS.

An important property of L-trees of GS can be derived from the non-tree edges that
connect vertices of different branches of the tree.

▶ Lemma 3.2. Let T be a spanning tree of a graph G rooted in r. Let xy be an edge in
E(G) \ E(T ) and let x′ and y′ be the parents of x and y in T , respectively. If T is an
L-tree of a GS ordering σ starting with r, then it either holds that x′ ≺σ x ≺σ y′ ≺σ y or
y′ ≺σ y ≺σ x′ ≺σ x.

The configuration described in Lemma 3.2 will be called a U-bend configuration (see Figure 1
on the right).

Before we begin with our main results, we should analyze examples of some rooted
spanning trees that cannot be L-trees of GS. One of the smallest examples can be found
to the left in Figure 2. The example on the right is a generalization with arbitrary many
branches of the spanning tree. These examples can be easily described using a concept called
hook configuration. This is a special case of a U-bend where the parent of one vertex is an
ancestor of the others.

▶ Definition 3.3. Let T be a spanning tree of a graph G rooted in r ∈ V (G). We say that a
triple of vertices x, y, and z forms a hook configuration or a hook if z is the parent of x in
T , xy ∈ E(G) \ E(T ) and y is a descendant of z but y is not a descendant of x (see Figure 1
on the left). We call x the point and y the eye of the hook.

These hook configurations have a strong a priori effect on the sequence of any search ordering
corresponding to that tree.

▶ Lemma 3.4. Let x and y be part of a hook configuration of T rooted in r ∈ V (G) with
point x and eye y. Then for any GS ordering σ starting in r with L-tree T it holds that
x ≺σ y.
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22:6 Graph Search Trees and the Intermezzo Problem

For the examples shown in Figure 2, it is possible to see that the hook configurations create
something like a cycle in the ordering using Lemma 3.4: We see that a ≺ d and b ≺ c and
these contradict each other because of the tree edges.

In the special case that the graph together with its spanning tree does not contain any
hooks, it is trivial to decide the L-Tree Recognition Problem.

▶ Theorem 3.5. Let T be a spanning tree of a graph G rooted in r ∈ V (G). If there is
no hook configuration, then any DFS ordering of T starting in r is a GS ordering of G

with L-tree T . Therefore, any such tree together with G is a Yes-instance for the L-Tree
Recognition Problem of Generic Search.

Proof. Let σ be a DFS ordering of T starting in r. This ordering σ fulfills the following
property also called four point condition (see for example [8]): If a ≺σ b ≺σ c and ac ∈ E

and ab /∈ E, then there exists a vertex d with a ≺σ d ≺σ b such that db ∈ E.
Suppose that σ does not induce the L-tree T for G. Let w be the leftmost vertex in σ

such that there exist u and v with u ≺σ v ≺σ w with uw ∈ E(T ) and vw ∈ E(G) \ E(T ).
If uv is an edge in the tree T , then u, v and w form a hook configuration; a contradiction
to the assumption. Therefore, we can assume that uv /∈ E(T ). Now we can apply the four
point condition to vertices u, v and w (note that the DFS was executed on T ). A result of
the four point condition, is the fact that there must exist a u-v-path u = d1 − · · · − dk = v

with u ≺σ d2 ≺σ · · · ≺σ dk−1 ≺σ v (Corollary 2.6 in [8]). In particular, we see that v is a
descendant of u. Together with the fact that uw ∈ T and vw ∈ E(G) \ E(T ), we see that
u, v and w form a hook configuration; a contradiction to the assumptions of the theorem.
This implies that each vertex in the search is connected to its correct parent in T , proving
that T is an L-tree of GS in G. ◀

This theorem could lead to the assumption that deciding whether a given spanning tree is an
L-tree of GS only amounts to an analysis of all the hook configurations. In fact, it is easy to
see that we can find all hook configurations in polynomial time. However, it is not always so
simple. In fact, we show in the following that in general the L-Tree Recognition Problem of
GS is NP-complete. We describe a reduction from 3-SAT, i.e., we are given an instance I of
3-SAT and derive an instance (G(I), T (I)) for the L-Tree Recognition Problem of GS.

Let I be an instance of 3-SAT with variable set {X1, . . . , Xn} and clause set {C1, . . . , Cm}.
For ease of notation, we define the positive literal Xj as Xj(1) and the negative literal ¬Xj

as Xj(0). First we define the spanning tree T (I) and then we add the edges missing to
give the full graph G(I). For each variable Xj of I we add two vertices xj(0) and xj(1)
(representing the two literals of Xj) to V (G(I)). These vertices are all adjacent to a common
root vertex r. Furthermore, r is adjacent to the clause-hub-vertex C. Now we add a vertex
ci for each clause Ci and connect it to C (see Figure 3 for a depiction of this setup.).
Furthermore, for each occurrence of a literal associated with vertex xj(p) in a clause Ci we
add a vertex xi

j . As we may assume that only one of the literals appears in a clause, we do
not have to use an index to mark whether the vertex belongs to a negated variable or not.
This sums up the basic setup concerning the variables and clauses. However, for technical
reasons we need several more vertices (see Figure 4):

For each ci we add the vertices ai
0, ai

1, ai
2, bi

0, bi
1, bi

2 in T (I). These are called the technical
vertices of ci.
These vertices form the paths ci − ai

0 − bi
0, ci − ai

1 − bi
1 and ci − ai

2 − bi
2 in T (I).

For each xi
j we add vertices di

j , ei
j , f i

j . These are called the technical vertices of xi
j .

These vertices form the path xi
j − di

j − ei
j − f i

j in T (I).

This concludes the definition of the tree T (I), to which we will now add the remaining edges
for G(I) (see Figure 3 and Figure 4):
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r

xj(1) xj(0) C

xi
j xℓ

j ci

xk(1) xk(0)

xs
k xr

kcℓ

Figure 3 This figure illustrates the variable gadget. The yellow edges are the tree edges, and the
vertices marked in gray appear again in the clause gadget. The literal Xj appears in clause Ck, the
literal ¬Xj appears in clause Cℓ. Note that for the xi

j vertices we do not need to denote whether
they belong to Xj or its negation, as each clause only contains either Xj or ¬Xj .

xi
j0

xi
j2

xi
j1

di
j0

di
j2

di
j1

ei
j0

ei
j2

ei
j1

fi
j0

fi
j2

fi
j1

C

ci

ai
2

ai
1

ai
0

bi
2

bi
1

bi
0

Figure 4 This figure illustrates the clause gadget. The tree edges are colored yellow and the
gray vertices mark the vertices that can be found in the variable gadget. Note that we have drawn
this figure horizontally to make the embedding cleaner. The directions of the tree edges denote the
direction from the root of the tree.

For each Xj we add edges xj(0)ci and xj(1)ci for i ∈ {1, . . . , m}.
For each xi

j adjacent to xj we add an edge xi
jxk

j if both Xj occurs in clause Ci and ¬Xj

occurs in literal Ck.
For any clause Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} we add the edges:

Cei
jp

for p ∈ {0, 1, 2}.
ciei

jp
for p ∈ {0, 1, 2}.

ai
pf i

jp
for p ∈ {0, 1, 2}.

bi
pei

jp
for p ∈ {0, 1, 2}.

bi
pdi

j(p+1) mod 3
for p ∈ {0, 1, 2}.

The modulo operation applied to the indices to define the edges in the clause gadget illustrates
the circularity inherent in that gadget. Visiting one of the branches below ci effectively
unlocks one of the branches below an xi

j . Conversely, visiting an xi
j before ci blocks a

corresponding branch of ci. This effect is what leads to the property that we will show
in Lemma 3.7.

The first step in our reduction is to check whether we can use a search ordering that
achieves T (I) to construct an assignment of the 3-SAT instance I. For each variable we will
choose the assignment that corresponds to the literal vertex chosen second, i.e., if xj(1) is
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22:8 Graph Search Trees and the Intermezzo Problem

chosen first we assign Xj the value 0 and if xj(0) is chosen first we assign Xj the value 1.
The following lemma shows that the children of the literal vertex that is chosen first are
visited before the clause vertices.

▶ Lemma 3.6. If T (I) is an L-tree of some GS ordering σ of G(I) starting in r, then it
holds for every variable xj that all the children of xj(1) or all the children of xj(0) are to
the left of vertex C in σ. In particular, if xj(p) ≺σ xj(q), then the children of xj(p) are all
to the left of xj(q).

Proof. The sets of vertices {xj(1), ci, r} and {xj(0), ci, r} form hook configurations with
eye ci and point xj(1) or xj(0), respectively. By Lemma 3.4, it holds that xj(1) ≺σ ci and
xj(0) ≺σ ci. Furthermore, with Lemma 3.2 we see that xj(1) ≺σ C and xj(0) ≺σ C, as for
example r, xj(1), ci and C form a U-bend. W.l.o.g., we may assume that xj(1) ≺σ xj(0). Let
u be an arbitrary child of xj(1) and let v be an arbitrary child of xj(0). By construction of
G(I) and T (I), we know that uv ∈ E(G(I)) \ E(T (I)). Then, due to Lemma 3.2 and our
assumption, we see that u ≺σ xj(0) ≺σ ci. Therefore, the children of xj(1) are to the left
of xj(0) and thus also to the left of the clause hub vertex C, proving the statement of the
lemma. ◀

The next lemma motivates how the choice of the variable assignment is used to check whether
a given clause is fulfilled.

▶ Lemma 3.7. If T (I) is an L-tree of G(I) for the search ordering σ, then for each clause
Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} it holds that ci ≺σ xi

jq
for some q ∈ {0, 1, 2}.

Proof. Assume for contradiction that ci is to the right of xi
jq

for all q ∈ {0, 1, 2}. Using the
hook and U-bend rules from Lemmas 3.2 and 3.4, we can show that T (I) is not an L-tree
for σ. For all q ∈ {0, 1, 2}, the set {C, ei

jq
, r} forms a hook with point C and eye ei

jq
and,

thus, C ≺σ ei
jq

. Now the U-bend induced by the edge ei
jq

ci implies that ci ≺σ ei
jq

. For any
q ∈ {0, 1, 2}, the vertex di

jq
is adjacent to some vertex bi

q′ and the corresponding edge induces
a U-bend. Since all three vertices xi

jq
are to the left of all three vertices ai

q′ , these U-bends
imply that at least one vertex di

jq
is to the left of all ai

q′ . Fix that vertex di
jq

. Now the
edge bi

qei
jq

implies that ei
jq

≺σ ai
q. Summarizing, ci ≺σ ei

jq
≺σ ai

q. However, this contradicts
Lemma 3.2 as the edge f i

jq
ai

q induces a U-bend where both parents (ci and ei
jq

) are to the
left of both children (ai

q and f i
jq

). This concludes the proof. ◀

This lemma shows that for each clause there is one literal for which the corresponding child
belonging to that clause has to be chosen after the clause vertex. This will be the literal that
satisfies the clause in a fulfilling assignment. On the other hand, if there is a literal whose
child is chosen after the clause vertex, then the corresponding clause gadget can be correctly
traversed. Combining these results proves the main result of this section.

▶ Theorem 3.8. The rooted L-tree recognition problem of Generic Search is NP-complete
for rooted spanning trees of height 5.

Proof. Let σ be a GS ordering with L-tree T (I). We define an assignment A by setting any
variable to false if and only if the positive literal appears before its negative literal in σ. We
claim that this is a fulfilling assignment. Clearly we only need to show that for each clause
at least one literal was chosen to be true. In particular, by Lemma 3.7 we see that for each
Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} at least one vertex xi

jq
is to the right of ci and, thus, to

the right of the vertex C. Due to Lemma 3.6, the parent of xi
jq

is to the right of the vertex
of variable. This implies that at least one literal contained in Ci is fulfilled in A.
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Figure 5 Example of an ordering of the technical vertices for a clause where two literals (1 and 2)
were chosen to be false. Compare with Figure 4.

Let A be a fulfilling assignment of I. We now show that in this case we can construct
a GS ordering of G(I) which has the L-tree T (I). The broad idea is to choose the literals
that are false for A first followed by their children. Then we choose the literals that are true,
followed by the clause hub vertex C and then the clause vertices. Finally, we need to visit
the technical vertices in the correct order, followed by the descendants of the true literals.
In the following, we define several suborders that need to be combined into the final linear
ordering σ.

As explained above, we begin the search ordering σ by visiting the root r and then all
literals that are set to false by A in arbitrary order. Next we visit all children of these vertices.
In the next phase, we visit all remaining literal vertices in an arbitrary order. At this point,
we can visit the clause hub vertex C (see Lemma 3.6) followed by the clause vertices in
arbitrary order. Let Ci = {Xj0(p0), Xj1(p1), Xj2(p2)} be some clause. If all literals of Ci

were chosen to be true (i.e., all the vertices xi
j0

, xi
j1

, and xi
j2

are to the right of ci), then we
can visit the technical vertices of ci in the order ai

0, ai
1, ai

2, bi
0, bi

1, bi
2 (or any other order that

conforms with GS) followed by the literal vertices and their technical vertices following the
order that is implied by the tree edges. If exactly one of the literals, say w.l.o.g. Xj0(p0), is
chosen to be false by A, then we use the order xi

j0
, ci, ai

0, bi
0, di

j0
, ei

j0
, f i

j0
. Then we visit the

remaining technical vertices of ci followed by xi
j1

, xi
j2

and their technical vertices.
If exactly two of the literals, say w.l.o.g. Xj0(p0) and Xj1(p1), are chosen to be false

by A, then we use the order xi
j0

, xi
j1

, ci, ai
1, bi

1, di
1, ei

1, f i
1, ai

0, bi
0, di

0, ei
0, f i

0. Then we visit the
remaining technical vertices of ci followed by xi

j2
and its technical vertices (see Figure 5 for

an illustration).
Because A is a fulfilling assignment, we know that each clause has at most two literals

that are set to false. Therefore, we can combine all of these orderings to a comprehensive GS
ordering σ and confirm that T (I) is in fact an L-tree of σ. ◀

Using [24, Theorems 21 and 23], we can strengthen Theorem 3.8 to the case of split graphs
and give a similar result for Breadth First Search.

▶ Corollary 3.9. The rooted L-tree recognition problems of Generic Search and Breadth First
Search are NP-complete even if the input is restricted to split graphs and to rooted spanning
trees of height 12.

Note that these results are all for the rooted L-tree recognition problem. Using a small gadget,
we can also extend the hardness of the GS L-tree recognition to the unrooted problem.

▶ Corollary 3.10. The L-tree recognition problem of Generic Search is NP-complete.
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Proof. Let G be some graph and T be a spanning tree of G with root r. We add three
vertices a, b, c to G in the following way to form a new graph G′: Let V (G′) = V (G)∪{a, b, c}.
Furthermore, E(G′) = E(G) ∪ {ab, ac, bc, ar}. Finally, we define a spanning tree T ′ of G′

with V (T ′) = V (G′) and E(T ′) = E(T ) ∪ {ar, ab, ac}.
Due to the conflicting hooks among a, b, c, either b or c must be visited before a, if T ′ is to

be an L-tree of G′. This makes r the de facto root of T ′ − {a, b, c}, showing that the rooted
L-tree recognition problem for G and T is equivalent to the unrooted one for G′ and T ′. ◀

4 The Intermezzo Problem

Given a rooted spanning tree T , the basic property that has to be fulfilled by a vertex
ordering σ for it to have T as an L-tree is the following: If there is a vertex z with parent
y and z has a non-tree edge to vertex x, then x is not allowed to be between y and z in
the vertex ordering. These constraints are similar to those used in the following problem
introduced by Guttmann and Maucher [14].

▶ Problem 2 (General Intermezzo Problem).
Instance: Finite set A, set C of triples of distinct elements of A

Question: Is there an ordering of A such that for all (x, y, z) ∈ C it holds that x ≺σ y ≺σ z

or y ≺σ z ≺σ x?

We call an ordering that fulfills the constraints of C an intermezzo ordering. Note that
Guttmann and Maucher do not give a name for the general problem as they introduce it as
one case of a large family of constrained ordering problems. We derived the name from the
more restricted Intermezzo problem. This problem additionally forces the triples in C to be
pairwise disjoint.

▶ Problem 3 (Intermezzo Problem [14]).
Instance: Finite set A, set B of pairs of A, set C of pairwise disjoint triples of distinct

elements of A.
Question: Is there an ordering of A such that for all (x, y) ∈ B it holds that x ≺σ y and for

all (x, y, z) ∈ C it holds that x ≺σ y ≺σ z or y ≺σ z ≺σ x?

Besides the tuples in B, in both problems the second and the third entry of the triples
in C imply simple order constraints on the elements of A. Therefore, we can define the
relations π(B, C) and π(C), respectively, as the reflexive and transitive closure of the relation
R ⊆ A × A where (y, z) ∈ R if and only if (y, z) ∈ B or there is some tuple (x, y, z) ∈ C.
If (A, C) is a positive instance of the General Intermezzo problem, then π(C) must form
a partial order and every intermezzo ordering of (A, C) forms a linear extension of π(C).
The same properties hold for positive instances (A, B, C) of the Intermezzo problem and
the partial order π(B, C). Thus, we also can interpret the (General) Intermezzo problem
as a special kind of linear extension problems with additional non-betweenness constraints.
This motivates the consideration of restricted problems where the partial order has to fulfill
certain properties.

4.1 The Intermezzo Problem for CS-trees
Following the terminology of Trotter [29], we call a partial order a cs-tree (short for computer
science tree) if its Hasse diagram forms a tree rooted in the unique minimal element. Using
the terminology in [25], we call a leaf of a rooted tree a branch leaf if it is not equal to the
root of the tree. Recall that the height of a cs-tree and the height of the tree that is formed
by its Hasse diagram differ by one.
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▶ Lemma 4.1.
1. The rooted L-tree recognition problem of Generic Search for rooted spanning trees of fixed

height h ≥ 2 is polynomial-time reducible to the General Intermezzo problem for instances
(A, C) where π(C) is a cs-tree of height h + 1.

2. The General Intermezzo problem for instances (A, C) where π(C) is a cs-tree of fixed
height h ≥ 2 is polynomial-time reducible to the rooted L-tree recognition problem of
Generic Search for rooted spanning trees of height 2h − 1.

3. The rooted L-tree recognition problem of Generic Search for rooted spanning trees having
k branch leaves is polynomial-time equivalent to the General Intermezzo problem for
instances (A, C) where π(C) is a cs-tree of width k.

Proof. First, we reduce the L-tree recognition problem of GS to the General Intermezzo
Problem. Let G be a graph and T be a spanning tree of G rooted in r of height h ≥ 2. Let
A = V (G) ∪ {s} where s /∈ V (G). Let C be the set containing the following triples:
(C1) (r, t, s), for some child t of r in T ,
(C2) (s, u, v), for any vertex v ∈ V (G) \ {r} and its parent u in T ,
(C3) (w, u, v), for any vertex v ∈ V (G) \ {r}, its parent u in T and any vertex w with

vw ∈ E(G) \ E(T ).

It is easy to see that π(C) is a cs-tree of height h+1. We claim that there is an intermezzo
ordering of A fulfilling the constraints given by C if and only if T is a rooted GS L-tree of G.

First assume that there is an intermezzo ordering σ fulfilling the constraints of C. We
delete s from σ and call the resulting ordering σ′. The following claim is implied by the
constraints given in (C2).

▷ Claim 1. If u is the parent of v in T , then u ≺σ′ v.

This claim implies directly that σ′ is a GS ordering of G starting in r. Now assume for
contradiction that the L-tree T ′ of σ′ is not equal to T . Then there is a vertex v whose parent
u′ in T ′ is different from its parent u in T . By Claim 1, it holds that u ≺σ′ v. Therefore,
it must hold that u ≺σ′ u′ ≺σ′ v. This implies that u′ is not a child of v in T , due to
Claim 1. Hence, the edge u′v is not part of T but part of G. Then, the set C contains the
triple (u′, u, v) (see (C3)). This is a contradiction because σ′ and, thus, σ does not fulfill the
constraint given by that triple.

Now assume that T is the L-tree of the GS ordering σ starting with r. Then let σ′ be
the ordering constructed by appending s to the end of σ. The ordering fulfills the constraint
(r, t, s) given in (C1). Furthermore, as parents are to the left of their children in σ, the
ordering σ′ also fulfills the constraints given by (C2). Assume for contradiction that some
triple (w, u, v) of (C3) is not fulfilled in σ′, i.e., u ≺σ′ w ≺σ′ v. Then u is not the parent of v

in the L-tree of σ since w is a neighbor of v and w lies between u and v in σ′; a contradiction.
This proves the first statement of the lemma. To prove the same direction for the third

statement, we slightly change the set C. Instead of the triple (r, t, s) given in (C1), we add
the triple (t, s, r). It is easy to see that then the width of π(C) is equal to the number of
branch leaves of T . The rest of the proof works analogously with the only difference that we
append s to the beginning and not to the end of the GS ordering of G.

Now we reduce the General Intermezzo problem where π(C) is a cs-tree to the rooted
L-tree recognition problem of GS. Let (A, C) be an instance where π(C) is a cs-tree of height
h and width k. We define the vertex set to be V (G) := {v1, v2 | v ∈ A}. Let H be the Hasse
diagram of π(C). The set of edges of T is defined as E(T ) := {v1v2 | v ∈ A} ∪ {u2v1 | uv ∈
E(H) ∧ (u, v) ∈ π(C)}. Let (x, y, z) ∈ C and let y = w0, w1, . . . , wℓ = z be the elements of
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the path between y and z in the Hasse diagram of π(C). We add a non-tree edge to G from
x2 to any vertex w1

i and w2
i with i ≥ 1. It is obvious that the constructed tree T has height

2h − 1 and k branch leaves if it is rooted in the minimal element of π(C).
First assume that there is an intermezzo ordering σ for (A, C). Then let σ′ be the ordering

that is constructed by replacing every element v ∈ A in σ by the ordering (v1, v2). Then we
claim that σ′ is a GS ordering of G having L-tree T . Let T ′ be the L-tree of σ′. Obviously,
it holds for σ′ that any vertex is to the right of its parent in T since σ′ is constructed from a
linear extension of π(C). Therefore, σ′ is a GS ordering of G. Furthermore, any vertex v2

has parent v1 both in T and T ′ since these two vertices are consecutive in σ′. Assume for
contradiction that there is a vertex v1 whose parent in T is u2 but the parent of v1 in T ′ is
tp with u2 ̸= tp. By construction it holds that tp = t2 since v1 has no neighbor with index 1.
It holds that u2 ≺σ′ t2 ≺σ′ v1 and t2v1 is an edge in E(G) \ E(T ). This non-tree edge has
been added to E(G) because of some triple (t, a, b) ∈ C where a is an ancestor of v and b is
a descendant of v in the Hasse diagram of π(C) (or b = v). However, by construction of σ′,
it holds that a2 ≺σ′ u2 ≺σ′ t2 ≺σ′ v1 ≺σ′ b2. Hence a ≺σ t ≺σ b; a contradiction to the fact
that σ is an intermezzo ordering of C.

Now assume that there is a GS ordering σ of G having T as its L-tree. We construct the
ordering σ′ of A as follows. Consider the subordering of σ containing only the vertices v2 for
any v ∈ A and replace v2 by v. We claim that σ′ is an intermezzo ordering of (A, C). Let
(x, y, z) be a triple in C. It holds that y ≺σ z since y2 is an ancestor of z2 in T . Assume
for contradiction that y ≺σ′ x ≺σ′ z. Consider the w0, . . . , wℓ as defined above. Note that
these vertices appear by ascending index in σ′. Let wi be the leftmost of these vertices in σ′

that is to the right of x. Then it holds that y ⪯σ′ wi−1 ≺σ′ x ≺σ′ wi ⪯σ′ z. This implies
that w2

i−1 ≺σ x2 ≺σ w2
i . Now we consider two cases. If w1

i ≺σ x2, then it must hold that
w2

i−1 ≺σ w1
i ≺σ x2 ≺σ w2

i as w2
i−1 is the parent of w1

i in T . However, by construction x2 is
adjacent to w2

i and, hence, w1
i cannot be the parent of w2

i in the L-tree of σ. If x2 ≺σ w1
i ,

then it must hold that w2
i−1 ≺σ x2 ≺σ w1

i ≺σ w2
i as w1

i is the parent of w2
i in T . However,

by construction x2 is adjacent to w1
i and, hence, w2

i−1 cannot be the parent of w1
i in the

L-tree of σ. This contradicts the choice of σ. ◀

Combining the first statement of the lemma with Theorem 3.8 yields the following result.

▶ Theorem 4.2. The General Intermezzo problem is NP-complete even if the input is
restricted to instances (A, C) where π(C) is a cs-tree of height 6.

We can extend this result to the Intermezzo problem as follows.

▶ Lemma 4.3. The General Intermezzo Problem for instances (A, C) where π(C) is a cs-tree
of width k is polynomial-time reducible to the Intermezzo Problem for instances (A′, B′, C ′)
where π(B′, C ′) is a cs-tree of width k.

This lemma implies the following complexity result.

▶ Theorem 4.4. The Intermezzo problem is NP-complete even if the input is restricted to
instances (A, B, C) where π(B, C) is a cs-tree.

As was shown by Wolk [30], cs-trees have dimension 2. Combining this with Theorems 4.2
and 4.4, we get the following result.

▶ Corollary 4.5. The (General) Intermezzo problem is NP-complete even if π(B, C) or π(C),
respectively, has dimension at most 2.
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Note that – in difference to Theorem 4.2 – we were not able to bound the height of the partial
order in Theorem 4.4 since in the proof of Lemma 4.3 the height of the constructed partial
order depends on the number of elements in A. We can adapt the proof of that lemma such
that the height of the partial order increases only by a constant factor. However, in this case,
we then loose the property that the partial order is a cs-tree.

▶ Corollary 4.6. The Intermezzo problem is NP-complete even if the input is restricted to
instances (A, B, C) where π(B, C) has height 36.

The complexity of the Intermezzo problem for cs-trees of bounded height remains open.

4.2 The Intermezzo Problem for Partial Orders of Bounded Width
As we have seen in the section above, the (General) Intermezzo problem is NP-complete even
if the height or the dimension of the partial order is bounded. One may ask whether this
also holds for another notable parameter of partial orders, the width. Adapting an idea of
Colbourn and Pulleyblank [6] (explained in more detail in [4]), we can show that – unless
P = NP – this is not the case as we can give an XP-algorithm for the General Intermezzo
problem parameterized by the width of π(C).

▶ Theorem 4.7. The General Intermezzo problem can be solved in time O(k · nk+2) on any
instance (A, C) where n = |A| and k is the width of π(C).

Proof. We only sketch the idea of the algorithm; for a comprehensive description and analysis
of a similar algorithm see [4]. Using Dilworth’s Chain Covering Theorem [11], we can partition
the set A into k disjoint chains of π(C). Now the set of elements of any prefix σpre of a
linear extension of π(C) can be represented by a tuple (a1, . . . , ak) ∈ {0, . . . , |A|}k where
ai represents the number of elements of chain i that are part of σpre. Since all elements of
a chain are strictly ordered, the number of used elements of the chain directly implies the
elements of the chain that are part of the prefix set.

Now the algorithm uses dynamic programming to compute whether a given prefix set
can be reached in such a way that it fulfills all conditions of C. To this end, we have a table
M with 0-1-entries for every tuple representing a prefix. We fill the entries of this table
inductively, starting with those tuples whose entries sum up to 1. Such a tuple gets a 1-entry
in M if and only if the minimal element of the respective chain is a minimal element of the
partial order. For tuples γ = (a1, . . . , ak) with larger entry sums we check for any tuple γ′

that is constructed by decrementing exactly one non-zero entry of γ, say ai, the following:
1. Is the M -entry of tuple γ′ equal to 1?
2. Is the ai-th element x of the i-th chain minimal in π(C) restricted to those elements that

are not part of the prefix set encoded by γ′?
3. Is there no triple (x, y, z) with y is an element of the prefix set encoded by γ′ and z is

not such an element?
If the answer to all three question is yes, then we set the M -entry of γ to 1. It is easy to
check that M has O(nk) entries and for any entry we can answer the three questions above
for all triples γ′ in time O(kn2). This leads to the claimed running time. ◀

Lemma 4.1 implies an XP-algorithm for the rooted L-tree recognition of GS parameterized
by the number of branch leaves of the given spanning tree.

▶ Corollary 4.8. The rooted L-tree recognition problem of Generic Search can be solved in
time O(k · nk+2) on a graph G and a rooted spanning tree T of G where n = |V (G)| and k is
the number of branch leaves of T .
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One may ask whether this rather poor running time bound given in Theorem 4.7 can be
improved significantly and whether there is an FPT algorithm for the (General) Intermezzo
problem parameterized by the width of the partial order. We will show that – under certain
assumptions – this is not the case.

▶ Theorem 4.9. The (General) Intermezzo problem is W[1]-hard if it is parameterized by the
width k of π(C) or π(B, C), respectively, even if that partial order is a cs-tree. Furthermore –
under the assumption of the Exponential Time Hypothesis – there is no algorithm that solves
the problem in time f(k) · no(k) for any computable function f where n = |A|.

We prove this result by an FPT-reduction from the following problem, applying a technique
also used in [4].

▶ Problem 4 (Multicolored Clique Problem (MCP)).
Instance: A graph G with a proper coloring of k colors.
Question: Is there a clique in G that contains exactly one vertex of each color?

The MCP was shown to be W[1]-hard by Pietrzak [21] and independently by Fellows et al. [12].
In fact, in [10, 19] the authors show the following result.

▶ Theorem 4.10 (Cygan et al. [10], Lokshtanov et al. [19]). Under the assumption of the
Exponential Time Hypothesis, there is no f(k)no(k) time algorithm for the Multicolored Clique
Problem for any computable function f where n is the number of vertices of the given graph.

We give an FPT-reduction from the MCP to the General Intermezzo problem parameterized
by the width of π(C). Lemma 4.3 implies such a reduction also for the Intermezzo problem.

Let G be an instance of the MCP with k colors. W.l.o.g. we may assume that every color
class has exactly q elements, i.e., we assume that V (G) = {vi

p | 1 ≤ i ≤ k, 1 ≤ p ≤ q}. In the
following, we construct an equivalent instance (A, C) for the General Intermezzo problem.

First we describe the set A. For every i ∈ {1, . . . , k} and every p ∈ {1, . . . , q}, we define
the set U i

p := {ui
p,j | 0 ≤ j ≤ k}. The set U i is defined as U i :=

⋃
1≤p≤q U i

p. Now set A is
defined as follows.

A := {si | 1 ≤ i ≤ k + 1} ∪ {ci,j | 1 ≤ i ≤ j ≤ k} ∪
⋃

1≤i≤k

U i.

In the remainder of the section, we construct the set C by adding subsets of triples with
specific properties. We start with some simple order constraints. For the sake of convenience,
we only give a set B of tuples encoding these constraints. Note that these tuples can also be
encoded using triples by introducing a new element that is not allowed to be between any of
the elements of those tuples.

B :={(si, ui
p,j) | 1 ≤ i ≤ k, 0 ≤ j ≤ k, 1 ≤ p ≤ q} ∪

{(ui
p,j , ui

r,ℓ) | 1 ≤ i ≤ k, p < r or p = r and j < ℓ} ∪
{(ui

1,0, si+1) | 1 ≤ i ≤ k} ∪
{(ci,j , cℓ,m) | i < ℓ or i = ℓ and j < m} ∪
{(ci,k, ci+1,i+1) | i < k} ∪
{(sk+1, c1,1)}

▶ Lemma 4.11. The reflexive and transitive closure of B forms a cs-tree of width k + 1.
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In the following, we will present the rest of the triples of the set C. First note that the last
two elements of these triples will also be contained as a tuple in the reflexive and transitive
closure of B. Thus, they do not contribute any new tuples to π(C) and, hence, Lemma 4.11
implies that π(C) is a cs-tree of width k + 1.

We will present the new triples not all at once. Instead we present specific subsets of them.
Then we will give properties that are fulfilled by any intermezzo ordering of A that fulfills
the constraints of B and all triples presented up to that point. In any of these properties, the
ordering σ will be the respective intermezzo ordering of A. We divide this ordering into a
selection phase where we choose one vertex of every color to be part of the candidate clique.
In the verification phase, we check whether the chosen vertices indeed form a clique in G.
We start with the triples for the selection phase.

C1
sel :={(si+1, ui

p,j , ui
p+1,0) | 1 ≤ i ≤ k, 1 ≤ p < q, 1 ≤ j ≤ k}

C2
sel :={(ui

q,j , si, si+1) | 1 ≤ i ≤ k, 1 ≤ j ≤ k}
C3

sel :={(ui
p,j , si+1, c1,1) | 1 ≤ i ≤ k, 1 ≤ p ≤ q, 0 ≤ j ≤ k}

▶ Property 1. There exist indices p1, . . . , pk ∈ {1, . . . , q} such that the prefix σ′ of σ ending
in c1,1 fulfills the following conditions:
1. σ′ starts with s1 and does not contain any vertices ci,j with i ̸= 1 or j ̸= 1.
2. for all i ∈ {1, . . . , k} it holds:

a. vertex si and
⋃pi−1

r=1 U i
r are part of σ′,

b. U i
pi

∩ σ′ = {ui
pi,0},

c. none of the vertices of U i
r with r > pi are part of σ′.

We now present the first triples for the verification phase. They ensure that between certain
c-elements only some elements are allowed to be taken. By Property 1 we assume in the
following that p1, . . . , pk are fixed.

C1
ver := {(x, ci,k, ci+1,i+1) | 1 ≤ i < k, x ∈ A \ {ci,k, ci+1,i+1}}

C2
ver := {(ui

p,j , cℓ,m, cℓ,m+1) | i ̸= ℓ and i ̸= m + 1 or i = m + 1 and j ̸= ℓ or
i = ℓ and j ̸= m}

▶ Property 2. There are at most two elements in σ between cℓ,m and cℓ,m+1, namely uℓ
pℓ,m

and um+1
pm+1,ℓ.

In the next step we want to ensure that uℓ
pℓ,m and um+1

pm+1,ℓ have to be taken between cℓ,m

and cℓ,m+1.

C3
ver :={(cℓ,m+1, uℓ

p,m−1, uℓ
p,m) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q} ∪

{(cℓ,m+1, um+1
p,ℓ−1, um+1

p,ℓ ) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q}

▶ Property 3. The elements uℓ
pℓ,m and um+1

pm+1,ℓ have to be between cℓ,m and cℓ,m+1 in σ.

Finally, we have to ensure that uℓ
pℓ,m and um+1

pm+1,ℓ can only be taken if vℓ
pvm+1

pm+1
∈ E(G). This

is ensured by the following triples.

C4
ver :={(um+1

r,ℓ , uℓ
p,m, uℓ

p,m+1) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q, 1 ≤ r ≤ q, vℓ
pvm+1

r /∈ E(G)} ∪

{(uℓ
p,m, um+1

r,ℓ , um+1
r,ℓ+1) | 1 ≤ ℓ ≤ m < k, 1 ≤ p ≤ q, 1 ≤ r ≤ q, vℓ

pvm+1
r /∈ E(G)}

▶ Property 4. The elements uℓ
pℓ,m and um+1

pm+1,ℓ can be between cℓ,m and cℓ,m+1 in σ only if
vℓ

pℓ
vm+1

pm+1
∈ E(G).
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Using Properties 1–4, we can prove that the described instance of the General Intermezzo
problem is a feasible reduction from the MCP.

▶ Lemma 4.12. There is an intermezzo ordering σ for (A, C) if and only if G has a
multicolored clique of size k.

Proof. First assume that there is an intermezzo ordering σ. Let the pi be chosen as in
Property 1. Then, we define the set K ⊆ V (G) as follows: K := {vi

pi
| 1 ≤ i ≤ k}.

Properties 3 and 4 imply that the set K forms a clique in G.
For the other direction, assume that there is a multicolored clique K = {v1

p1
, . . . , vk

pk
}

in G. We start our intermezzo ordering in s1. Now we take all the elements of U1 following
their ordering implied by B up to u1

p1,0 and then we take s2. We repeat this process for all
i ∈ {2, . . . , k}. Now we take the c-elements following the ordering implied by B. Between
cℓ,m and cℓ,m+1, we take uℓ

pℓ,m and um+1
pm+1,ℓ which is possible due to Property 4 since K forms

a clique. Eventually, we take ck,k. Now we first take the remaining elements of U1 in their
order in B, followed by the remaining elements of U2 and so on. It is easy to check that this
ordering is an intermezzo ordering. ◀

Theorem 4.9 follows directly from Lemmas 4.3, 4.11, and 4.12, Theorem 4.10 as well as the
W[1]-hardness of the Multicolored Clique Problem [12, 21]. Furthermore, Theorem 4.9 and
Lemma 4.1 imply the following.

▶ Theorem 4.13. The L-tree recognition problem of Generic Search is W[1]-hard if it is
parameterized by the number k of leaves of the spanning tree. Furthermore, assuming the
Exponential Time Hypothesis, there is no algorithm that solves the problem in time f(k) ·no(k)

for any computable function f where n is the number of vertices of the given graph.

5 Conclusion

We have investigated two problems that extend a partial order to a total order while
maintaining certain additional constraints. In the first problem, a spanning tree of a graph
G is given, which is supposed to be the L-tree of Generic Search on G. Surprisingly, deciding
this problem turned out to be NP-complete, although numerous problems involving Generic
Search, such as the associated end vertex problem, are straightforward to solve in polynomial
time. This complexity result could be used in the investigation of the second problem. Here
we have shown that the General Intermezzo problem cannot be solved in polynomial time
even when the Hasse diagram of the given partial order forms a tree. With respect to the
width, we were able to specify an XP-algorithm and at the same time show W[1]-hardness.

Several questions remain unanswered. For the GS L-tree problem it is not clear whether
the bounds for the tree height in the NP-completeness results are best possible. We conjecture
that the problem is easy for height 2 and maybe even 3. Furthermore, we suspect that the
NP-completeness also holds for the class of bipartite graphs. While the problem is hard for
split graphs, it might be solved efficiently on the subclass of threshold graphs.

Similar questions arise for the (General) Intermezzo problem: We have not shown that
the height-bounds for the partial order are best possible. In particular, the bound of 36
in Corollary 4.6 seems very high. Restricting these partial orders in other ways, e.g. lattices
or interval orders, could also be used to find tractable instances of the problem. Furthermore,
the complexity status of the Intermezzo problem for cs-trees of bounded height remains open.
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Abstract
Weighted automata (WA) are an extension of finite automata that define functions from words
to values in a given semiring. An alternative deterministic model, called Cost Register Automata
(CRA), was introduced by Alur et al. It enriches deterministic finite automata with a finite number
of registers, which store values, updated at each transition using the operations of the semiring. It
is known that CRA with register updates defined by linear maps have the same expressiveness as
WA. Previous works have studied the register minimization problem: given a function computable
by a WA and an integer k, is it possible to realize it using a CRA with at most k registers?

In this paper, we solve this problem for CRA over a field with linear register updates, using
the notion of linear hull, an algebraic invariant of WA introduced recently by Bell and Smertnig.
We then generalise the approach to solve a more challenging problem, that consists in minimizing
simultaneously the number of states and that of registers. In addition, we also lift our results
to the setting of CRA with affine updates. Last, while the linear hull was recently shown to be
computable by Bell and Smertnig, no complexity bounds were given. To fill this gap, we provide
two new algorithms to compute invariants of WA. This allows us to show that the register (resp.
state-register) minimization problem can be solved in 2-ExpTime (resp. in NExpTime).
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1 Introduction

Weighted automata (WA). WA are a quantitative extension of finite state automata and
have been studied since the sixties [17]. These automata define functions from words to a
given semiring: each transition has a weight in the semiring and the weight of an execution
is the product of the weights of the transitions therein; the non-determinism of the model is
handled using the sum of the semiring: the weight associated with a word is the sum of the
weights of the different executions over this word. Functions realized by weighted automata
are called rational series. This fundamental model has been widely studied during the last
decades [14]. While some expressiveness results can be obtained in a general framework (such
as the equivalence with rational expressions), the decidability status of important problems
heavily depends on the considered semiring. Amongst the classical problems of interest,
one can mention equivalence, sequentiality (resp. unambiguity), which aims at determining
whether there exists an equivalent deterministic (resp. unambiguous) WA, and minimization,
which aims at minimizing the number of states.

Weighted automata over a field (e.g. the field of rationals Q) enjoy many nice properties:
the equivalence of weighted automata is decidable and they can be minimized, and both
can be done efficiently (see e.g. [16, Theorem 4.10 and Corollary 4.17 (Chapter III)]). The
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sequentiality and unambiguity are also decidable, as shown recently in [3, 4], with no
complexity bounds however. The most studied semirings which are not fields are the tropical
semirings and the semiring of languages, and in both cases equivalence is undecidable (see [9,
Section 3] and [6, Theorem 8.4]) and no minimization algorithm is known. Regarding
sequentiality, partial decidability results have been obtained for these semirings using the
notion of twinning property [7, 15].

Cost register automata (CRA). CRA have been introduced more recently by Alur et al.
[1]. A cost register automaton is a deterministic finite state automaton endowed with a
finite number of registers storing values from the semiring. The registers are initialized
by some values, then at each transition the values are updated using the operations and
constants of the semiring. Several fragments of CRA can be considered by restricting the
operations allowed. For instance, an easy observation is that WA are exactly CRA with
one state (however, one can observe that adding states does not extend expressiveness) and
linear updates, i.e. updates of the form X :=

∑k
i=1 Xi ∗ ci (intuitively, the new values of the

registers only depend linearly on the previous ones). Thus, the model of linear CRA is an
alternative to WA which allows to trade non-determinism for registers.

The register minimization problem. As CRA are finite state automata extended with
registers storing elements from the semiring, it is natural to aim at minimizing the number
of registers used. For a given class C of CRA, this problem asks, given a WA and a number
k, whether there exists an equivalent CRA in C with at most k registers. From a practical
point of view, reducing the number of registers allows to reduce the memory usage, since a
register can require unbounded memory. From a theoretical point of view, this problem can
be understood as a refinement of the classical problem of minimization of WA. Indeed, a WA
can be translated into a linear CRA with a single state, and as many registers as the number
of states of the WA. This problem has been studied in [2, 11, 10] for three different models
of CRA but in all these works, the additive law of the semiring is not allowed (i.e. updates
of the form X := Y + Z are forbidden). It is worth noticing that [11] encompasses the case
of CRA over a field, with only updates of the form X := Y ∗ c, with c an element of the field.

While the minimal number of registers needed to realise a WA (also known as the register
complexity) is upper bounded by the number of states of a minimal WA, it may be possible
to build an equivalent CRA with fewer registers, but more states. Hence there is a tradeoff
between the number of states and the number of registers. This leads to the following
state-register minimization problem for CRA which asks, for a class C of CRA, given a WA
and integers n, k whether an equivalent CRA in C with n states and k registers can be
constructed. In this framework, the classical minimization of WA corresponds to minimizing
the number of registers while using only one state, for the class of linear CRA.

The linear hull. As mentioned before, the case of fields is well-behaved to obtain decidability
results. In their recent work [3], Bell and Smertnig introduced the notion of linear hull of a
WA. This notion is inspired by the algebraic theory needed to study polynomial automata
but cast into a linear setting. A linear algebraic set (aka linear Zariski closed set) is a finite
union of vector subspaces: we later call them Z-linear sets. Given a Z-linear set S =

⋃p
i=1 Vi,

the dimension of S is the maximum of the dimensions of the Vis. In this work, the size of the
union, p, is called the length of S. Observe that such Z-linear sets were also used in [8] for a
category-theoretic approach to minimization of weighted automata over a field. We say such
a set is an invariant if it contains the initial vector and is stable under the updates of the
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automaton. Then the linear hull of a weighted automaton is the strongest Z-linear invariant.
In [3], Bell & Smertnig show that computing the linear hull of a minimal automaton allows
to decide sequentiality and unambiguity. In addition, in [4], they show that the linear hull
can effectively be computed, without providing complexity bounds however.

Contributions. In this work, we deepen the analysis of the linear hull of a WA in order to
solve the register and state-register minimization problems for linear CRA. In addition, we
also provide new algorithms to compute the linear hull which come with complexity upper
bounds, which can be used to derive complexity results for minimization problems as well as
for sequentiality and unambiguity of WA. More precisely, our contributions are as follows:

Firstly, we show that the register minimization problem for the class of linear CRA over
a field can be solved in 2-ExpTime. To this end, given a rational series f , we show that
the minimal number of registers needed to realize f using a linear CRA is exactly the
dimension of the linear hull of a minimal WA of f . We then show that the linear hull of
a WA can be computed in 2-ExpTime. We show that this complexity drops down to
ExpTime for the particular case of commuting transition matrices (which includes the
case of a single letter alphabet), with a matching lower bound.
As a consequence of the computation of the linear hull of a WA and of results proved in [3],
we obtain a 2-ExpTime upper bound for the problems of sequentiality and unambiguity
of weighted automata over a field, closing a question raised in [4].
Secondly, we prove that the state-register minimization problem for linear CRA can be
solved in NExpTime. More precisely, given a minimal WA A, we show a correspondence
between Z-linear invariants of A and linear CRA equivalent to A. This correspondence
maps the length (resp. dimension) of the invariant to the number of states (resp. registers)
of the equivalent linear CRA. We then provide a (constructive) NExpTime algorithm
that, given a minimal WA and two integers n, k, guesses a well-behaved invariant allowing
to exhibit a satisfying equivalent CRA.
Last, we actually present these results in a more general setting, by considering affine
CRA, which are a slight extension of linear CRA allowing to use affine maps in the
updates of the registers.

Outline of the paper. We present the models of weighted automata and cost register
automata in Section 2. We then formally define the two problems we consider, i.e. register
and state-register minimization problems, and state our main results in Section 3. In Section 4,
we introduce the necessary topological notions to define Z-linear/Z-affine set and invariants
of weighted automata, and detail our characterizations of the register and state-register
complexities of a rational series. Finally in Section 5, we present our algorithms, as well as
their consequences in terms of decidability and complexity for the two problems we consider.
Omitted proofs and more details for Sections 4 and 5 can be found in the appendix of the
full version of this paper [5].

2 Weighted Automata and Cost Register Automata

Basic concepts and notations. An alphabet Σ is a finite set of letters. The set of finite
words over Σ will be denoted by Σ∗, the empty word by ϵ and, for two words u and v, uv

will denote their concatenation. For two sets X and Y , we denote by X × Y their cartesian
product and by πX : X × Y → X and πY : X × Y → Y we denote the canonical projection on
X and Y respectively. The set nonnegative integers will be denoted by N. For two integers
i, j, we will denote by Ji, jK the interval of integers between i and j (both included).

MFCS 2024
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q1 q2

a : 2

a : 2

1

1

Figure 1 The WA of Example 2.

A semigroup (S, ∗) is a set S together with an associative binary operation ∗. If (S, ∗)
has an identity element e, (S, ∗, e) is called a monoid and if, moreover, every element has
an inverse, (S, ∗, e) is called a group. If there is no ambiguity, we will identify algebraic
structures with the set that they are defined on. A semigroup (or a monoid/group) is said
to be commutative if its law is. A sub-semigroup (or submonoid/subgroup) of S is a subset
of S that is a semigroup (or a monoid/group). Given E ⊆ S, the monoid generated by E,
denoted ⟨E⟩, is the smallest sub-monoid of S containing E.

A field (K, +, ·) is a structure where (K, +, 0) and (K \ {0} , ·, 1) are commutative groups
and multiplication distributes over addition. In this work, we will consider K as the field
of rational numbers Q, or any finite field extension of Q, to perform basic operations in
polynomial time. For all n ∈ N, Kn is an n-dimensional vector space over the field K. We
will work with row vectors and apply matrices on the right, and we will identify linear maps
(resp. linear forms) with their corresponding matrices (resp. column vectors). The set of n

by m matrices over K will be denoted by Kn×m, and K1×n (or simply Kn when there is no
ambiguity) will denote the set of n-dimensional vectors. For any matrix M (resp. vector v),
and indices i and j, Mi,j (resp. vi) will denote the value of the entry in the i-th row and the
j-th column of M (resp. the i-th entry of v). Matrix transposition will be denoted by M t.
A vector subspace of Kn is a subset of Kn stable by linear combinations and for all subsets E

of Kn, span (E) will denote the smallest vector subspace of Kn containing E (if E contains a
single vector (x1, . . . , xn), span (E) will be denoted by span (x1, . . . , xn)).

Kn can also be seen as an n-dimensional affine space. Affine maps f : Kn → Km are maps
of the form f(u) = uf (l) + f (a) where f (l) ∈ Kn×m and f (a) ∈ K1×m. An affine subspace A

of Kn is a subset of Kn of the form A = p + V with p ∈ A and V a vector subspace of Kn.
They are stable by affine combinations (linear combinations with coefficients adding up to 1).
For all E ⊆ Kn, aff (E) will denote the smallest affine subspace of Kn containing E.

Weighted Automata. Let Σ be a finite alphabet and (K, +, ·) be a field.

▶ Definition 1 (Weighted Automaton). A Weighted Automaton (WA for short) of dimension
d, on Σ over K, is a triple R = (u, µ, v), where u ∈ K1×d, v ∈ Kd×1 and µ : Σ∗ → Kd×d

is a monoid morphism. We will call u and v the initial and terminal vectors respectively
and µ(a), for a ∈ Σ, will be called a transition matrix. A WA realizes a formal power
series over Σ∗ with coefficients in K (a function from Σ∗ to K) defined, for all w ∈ Σ∗, by
JRK (w) = uµ(w)v. Any series that can be realized by a WA will be called rational.

WA also have a representation in terms of finite-state automata, in which transitions are
equipped with weights. We then say that a WA is sequential (resp. unambiguous) when its
underlying automaton is. Formally, we say that a WA R = (u, µ, v) is sequential when u has
a single non-zero entry and, for each letter a, and each index i, there is at most one index j

such that µ(a)i,j ̸= 0.

▶ Example 2. We consider the WA, on the alphabet {a} and over the field of real numbers,

R = (u, µ, v) with u = (1, 0), v = (1, 0)t, and µ(a) =
(

0 2
2 0

)
. One can verify that the

function realized by this WA maps the word an to 2n if n is even, and to 0 otherwise. It can
be represented graphically by the automaton depicted on Figure 1.
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{
X := 1
Y := 0

X

a :
{

X := Y · 2
Y := X · 2

0

a : X := X · 2

a : X := X · 2

X := 1

X

Figure 2 Two CRA detailed in Example 5. Registers are denoted by letters X, Y .

A WA realizing a rational series f is said to be minimal if its dimension is minimal among
all the WA realizing f . We also have the following characterization of minimal WA (see [16,
Proposition 4.8 (Chapter III)]):

▶ Proposition 3. Let R = (u, µ, v) be a d-dimensional WA and let LR (R) = uµ(Σ∗) =
{uµ(w) | w ∈ Σ∗} be its (left) reachability set and RR (R) = µ(Σ∗)v be its right reachability
set.

R is a minimal WA if and only if span (LR (R)) = K1×d and span (RR (R)) = Kd×1.

Expressions, substitutions and Cost Register Automata. For a field (K, +, ·) and a finite
set of variables X disjoint from K, let Exp(X ) denote the set of expressions generated by
the grammar e ::= k | X | e + e | e · e, where k ∈ K and X ∈ X . A substitution over X is a
map s : X → Exp(X ). It can be extended to a map Exp(X ) → Exp(X ) by substituting each
variable X in the expression given as an input by s(X). By identifying s with its extension,
we can compose substitutions. We call valuations the substitutions of the form v : X → K.
The set of substitutions over X will be denoted by Sub(X ) and the set of valuations Val(X ).

▶ Definition 4 (Cost Register Automaton). A cost register automaton (CRA for short), on
the alphabet Σ over the field K, is a tuple A = (Q, q0, X , v0, o, δ) where Q is a finite set of
states, q0 ∈ Q is the initial state, X is a finite set of registers (variables), v0 ∈ Val(X ) is the
registers’ initial valuation, o : Q → Exp(X ) is the output function, and δ : Q×Σ → Q×Sub(X )
is the transition function. We will denote by δQ := πQ ◦ δ the transition function of the
underlying automaton of the CRA and δX := πSub(X ) ◦ δ its register update function.

A computes a function JAK : Σ∗ → K defined as follows: the configurations of A are
pairs (q, v) ∈ Q × Val(X ). The run of A on a word w = a1 . . . an ∈ Σ∗ is the sequence of
configurations (qi, vi)i∈J0,nK where, q0 is the initial state, v0 is the initial valuation and, for all
i ∈ J1, nK, qi = δQ(qi−1, ai) and vi = vi−1 ◦ δX (qi−1, ai). We then define JAK(w) = vn(o(qn)).

δ can be extended to words by setting, for all q ∈ Q, δ(q, ϵ) = (q, idX ), where idX is
the substitution such that idX (X) = X for all X ∈ X , and, for all a ∈ Σ and w ∈ Σ∗,
δQ(q, aw) = δQ(δQ(q, a), w) and δX (q, aw) = δX (q, a) ◦ δX (δQ(q, a), w). We then have

JAK(w) = v0 ◦ δX (q0, w)(o(δQ(q0, w)))

▶ Example 5 (Example 2 continued). Two CRA are depicted on Figure 2. They are both on
the alphabet {a} and over the field of real numbers, and both realize the same function as
the WA considered in Example 2.

An expression is called linear if it has the form
∑k

i=1 αiXi, for some family of αi ∈ K
and Xi ∈ X , and if it has the form

∑k
i=1 αiXi + β, for some β ∈ K, it is called affine. We

will denote by Expℓ(X ) (resp. Expa(X )) the set of linear (resp. affine) expressions.
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▶ Definition 6 (Linear/Affine CRA). A CRA A = (Q, q0, X , v0, o, δ) is called linear if,
δX (q, a)(X) ∈ Expℓ(X ) and o(q) ∈ Expℓ(X ), for all q ∈ Q, a ∈ Σ and X ∈ X , and if
δX (q, a)(X) ∈ Expa(X ) and o(q) ∈ Expa(X ), the CRA is called affine.

Linear CRA are a particular case of affine CRA and, given an affine CRA it is always
possible to define an equivalent linear CRA using one more register with a constant value of
1 to realize affine register updates in a linear way, thus :

▶ Remark 7. Linear and affine CRA have the same expressiveness.

The added cost of a register will however become relevant when we will consider minimization
problems in the next sections.

Observe that we can assume that X = {X1, . . . , Xk} is ordered, and identify any linear
expression e =

∑k
i=1 αiXi (with the αi not present in the expression assumed to be 0) with

the linear form e : Kk → K defined by the column vector (α1, . . . , αk)t. We can then identify
any linear substitution s : X → Expℓ(X ) with the linear map s : Kk → Kk defined by the
block matrix (s(X1)| · · · |s(Xk)), and we can identify any valuation v : X → K with the vector
v = (v(X1), · · · , v(Xk)) of the vector space Kk.

In the following, we will drop the underline notation and make the identifications implicitly.
Thanks to these observations, the registers of a linear CRA and their updates can be

characterized by the values of the vector associated with v0, and the linear maps associated
with the δX (q, a) and o(q), for all q ∈ Q and a ∈ Σ, and we can check that

JAK(w) = v0 δX (q0, w) o(δQ(q0, w))

We can also identify affine expressions with affine forms and affine substitutions with
affine maps to simplify dealing with affine CRA. We define and use these identifications in
Appendix A.2 of the full version of this paper [5].

▶ Proposition 8 ([1]). There is a bijection between WA and linear CRA with a single state.

Given a WA, one can build an equivalent CRA with as many registers as states of the
WA: for each letter a, the transition matrix µ(a) can be interpreted as a (linear) substitution,
associated with the self-loop of label a. The converse easily follows from the previous
observations when the CRA has a single state.

▶ Example 9 (Example 2 continued). The CRA depicted on the left of Figure 2 is obtained
by the translation of the WA of Figure 1 into CRA with a single state.

▶ Remark 10. Sequential WA are exactly linear CRA with a single register.

Indeed, both sequential WA and linear CRA with only one register are deterministic finite
automata that can also store a single value updated at each transition using only products.
They can then be identified.

3 Problems and Main Results

▶ Definition 11 (Register minimization problem). Given a class C of CRA, we ask:
Input: a rational series f realized by a given WA, and an integer k ∈ N
Question: Does there exist a CRA realizing f in the class C with at most k registers?

We will show this problem is decidable for the classes of linear and affine CRA:

▶ Theorem 12. The register minimization problem is decidable for the classes of linear and
affine CRA in 2-ExpTime. Furthermore, the algorithm exhibits a solution when it exists.
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For a rational series f , the minimal number of registers needed to realize f using CRA in
some class C is called its register complexity with respect to class C. Dually, if one wants to
minimize the number of states, then we know we can always build a linear (hence affine) CRA
with a single state (Proposition 8). A more ambitious goal is to try to reduce simultaneously
the number of states and of registers, in some given class C of CRA. Observe that, in general,
there is no CRA with minimal numbers of both states and registers (see Example 5). Given
a rational series f , we say that a pair (n, k) is optimal if f can be realized by a CRA in class
C with n states and k registers and no CRA of C realizing f with at most n states can have
strictly less than k registers and vice-versa.

Formally, we call the state-register complexity with respect to class C of a rational series
f , the set of optimal pairs of integers (n, k).

This leads to the definition of a second minimization problem:

▶ Definition 13 (State-Register minimization problem). Given a class C of CRA, we ask:
Input: a rational series f realized by a given WA, and two integers n, k ∈ N
Question: Does there exist a CRA realizing f in the class C with at most n states and
at most k registers?

In the sequel, we solve this problem for linear and affine CRA:

▶ Theorem 14. The state-register minimization problem is decidable for the classes of linear
and affine CRA in NExpTime. Furthermore, the algorithm exhibits a solution when it exists.

▶ Remark 15. The complexities we give are valid for fields where it is possible to perform
elementary operations efficiently (e.g. Q). See Remark 40 for a more detailed discussion on
the matter.

4 Characterizing the state-register complexity using invariants of WA

4.1 Zariski topologies and invariants of WA
Let K be a field and n ∈ N. The Zariski topology on Kn is defined as the topology whose
closed sets are the sets of common roots of a finite collection of polynomials of K[X1, . . . , Xn].
A linear version of this topology, called the linear Zariski topology, was introduced by Bell
and Smertnig in [3]. Its closed sets, which we will call Z-linear sets, are finite unions of vector
subspaces of Kn.

A set S ⊆ Kn is called irreducible if, for all closed sets C1 and C2, such that S ⊆ C1 ∪ C2,
we have either S ⊆ C1 or S ⊆ C2. The Zariski topologies defined above are Noetherian
topologies in which every closed set can be written as a finite union of irreducible components.
We then define the dimension of a Z-linear set as the maximum dimension of its irreducible
components and their number will be called its length.

For a set S ⊆ Kn, S
ℓ will denote its closure in the linear Zariski topology. In this

topology, closed irreducible sets are vector subspaces of Kn and linear maps are continuous
and closed maps (mapping closed sets to closed sets). In particular, for all S ⊆ Kn and linear
map f : Kn → Kn,f(S)

ℓ
= f(Sℓ). Moreover, if S ⊆ Kn is irreducible and f : Kn → Kn is

continuous, then f(S) is irreducible. These properties will be used implicitly in the following
(see [3, Lemma 3.5] for more details and references).

We will also define an affine version of this topology that enjoy the same properties in
Subsection 4.4.
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▶ Definition 16. Let Σ be a finite alphabet and let R = (u, µ, v) be a d-dimensional WA on
Σ over K. A subset I ⊆ Kd is called an invariant of R if u ∈ I and, for all w ∈ I and a ∈ Σ,
wµ(a) ∈ I. For two invariants I1 and I2, we say that I1 is stronger than I2 if I1 ⊆ I2. In
particular, the strongest invariant of R is its reachability set LR (R) = uµ(Σ∗).

An invariant that is also a Z-linear set will be called a Z-linear invariant. The strongest
Z-linear invariant of R is the closure of LR (R) in the linear Zariski topology (which is
well-defined since the topology is Noetherian).

▶ Example 17 (Example 2 continued). The reachability set of the WA considered in Example 2
is LR (R) =

{
(22n, 0)

∣∣ n ∈ N
}

∪
{

(0, 22n+1)
∣∣ n ∈ N

}
. Its strongest Z-linear invariant is then

the union of the two coordinate axes of the plane LR (R)
ℓ

= span (1, 0) ∪ span (0, 1).
Indeed, the inclusion ⊆ comes from the fact that u = (1, 0) ∈ span (1, 0) and span (1, 0) ∪

span (0, 1) is stable by multiplication by µ(a) and the inclusion ⊇ comes from the fact that, for
the linear Zariski topology, {(1, 0)} is dense in span (1, 0) and {(0, 2)} is dense in span (0, 1).

▶ Remark 18. In the previous example, the strongest Z-linear invariant is actually the
strongest algebraic invariant (i.e. closed in the Zariski topology). Of course, this is not
always the case.

The Z-linear invariants of two WA realizing the same function do not necessarily coincide
but, since K is a field, it is well-known that for every rational series f , there exists a
(computable) minimal WA realizing f that is unique up to similarity in the following sense
(see [16, Proposition 4.10 (Chapter III)]):

▶ Definition 19. Let R = (u, µ, v) and R′ = (u′, µ′, v′) be two d-dimensional WA over K.
R and R′ are said to be similar if there exists an invertible (change of basis) matrix

P ∈ Kd×d such that u′ = uP , µ′(a) = P −1µ(a)P for all a ∈ Σ and v′ = P −1v.

▶ Remark 20. The Z-linear invariants of two similar WA R and R′ only differ by a change
of basis. i.e. there is a bijection between the Z-linear invariants of R and those of R′ that, in
particular, preserves the length and dimension.

4.2 Strongest invariants and characterization
The notion of strongest Z-linear invariant was introduced by Bell and Smertnig in [3], under
the name “linear hull”. They showed, in [4], that it is computable and can be used to decide
whether a WA is equivalent to a deterministic (or an unambiguous) one.

▶ Theorem 21 ([3, Theorem 1.3]). A rational series f can be realized by a sequential WA iff
the strongest Z-linear invariant of a minimal WA realizing f has dimension at most 1.

The following result generalizes this theorem by linking linear CRA to Z-linear invariants.
It constitutes the key characterization that will allow us to solve the minimization problems.

▶ Theorem 22 (Characterization). Let f be a rational series. Then f can be realized by a
linear CRA with n states and k registers iff there exists a minimal WA realizing f that has a
Z-linear invariant of length at most n and dimension at most k.

As we will see in Subsection 4.4, this theorem can also be extended to affine CRA.
Observe that, thanks to Remark 20, the property of the above characterization is actually

valid for every minimal WA realizing f . Moreover, since the dimension of the strongest
Z-linear invariant is minimal, finding this dimension allows to solve the register minimization
problem for linear CRA. This is formalized in the following result, which generalizes
Theorem 21 thanks to Remark 10.
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▶ Corollary 23. The register complexity of a rational series f w.r.t. the class of linear CRA
is the dimension of the strongest Z-linear invariant of any minimal WA realizing f .

An immediate consequence of this result is that computing the strongest invariant allows
to decide the register minimization problem.

▶ Example 24 (Example 2 continued). As we have seen in Example 17, LR (R)
ℓ

is 1-
dimensional and has two irreducible components, thus JRK can be realized by a CRA with
two states and one register (depicted on the right of Figure 2).

4.3 Invariants of minimal WA and correspondence with CRA
▶ Proposition 25. Let R be a WA realizing a rational series f . If R has a Z-linear invariant
of length n and dimension k, then every minimal WA realizing f has a Z-linear invariant of
length ≤ n and dimension ≤ k.

Thanks to Remark 20, it suffices to show the existence of one minimal WA verifying
the proposition, since they are all similar. It is known (see Proposition 3) that a minimal
WA can be obtained from a WA by alternating between two constructions which reduce the
dimension to make it match the one of the span of the left (resp. right) reachability set. The
result then follows from the next lemma, which states that both constructions decrease the
length and dimension of the invariants. We prove it by considering an adequate change of
basis, and verifying that it preserves invariants.

▶ Lemma 26. Let R be a WA realizing a rational series f , let SR be a Z-linear invariant
of R of length n and dimension k and let r = dim(span (LR (R))). We can construct an
r-dimensional WA R′ realizing f , with a Z-linear invariant SR′ of length ≤ n and dimension
≤ k. The same holds with r = dim(span (RR (R))).

The next proposition allows to go from Z-linear invariants of WA to CRA. This construc-
tion builds on the one of [3, Lemma 3.13], in which they build an equivalent WA from the
strongest Z-linear invariant of a WA. We show that an analogous construction is valid for any
Z-linear invariant, and that we can use states of CRA to represent the different irreducible
components of the invariant, thus reducing the number of registers used to the dimension of
the invariant.

▶ Proposition 27. Let R be a WA. If R has a Z-linear invariant of length n and dimension
k, then there exists a linear CRA A, with n states and k registers, such that JAK = JRK.

The next proposition shows the converse direction, from CRA to invariants of WA. The
construction is the classical one from CRA to WA. The existence of the adequate invariant
follows from the determinism of the CRA which ensures that in any reachable configuration,
only coordinates associated with the reachable state of the CRA can be non-zero.

▶ Proposition 28. Let A be a linear CRA. If A has n states and k registers, then there
exists a WA R, with a Z-linear invariant of length n and dimension k, such that JAK = JRK.

Using the three previous propositions, we can finally prove the main characterization:

Proof of Theorem 22. Given a linear CRA with n states and k registers, we can construct,
thanks to Proposition 28, an equivalent WA with a Z-linear invariant of length n and
dimension k. Then the desired minimal WA exists thanks to Proposition 25.

Reciprocally, applying the construction of Proposition 27 to any minimal WA gives the
desired linear CRA. ◀
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As we will discuss in the next subsection below, the three propositions we used for this
proof can also be adapted to yield the same result for affine CRA.

4.4 Z-affine invariants and affine CRA
All the results of Section 4 can actually be extended to affine CRA using the affine Zariski
topology instead of the linear one. It is a slight generalization of the linear Zariski topology
where closed sets, called Z-affine sets, are finite unions of affine spaces instead of vector
spaces, with lengths and dimensions defined like in the linear case. It is still a Noetherian
topology coarser than the Zariski topology, affine maps are continuous and closed maps in
this topology and, more broadly, it enjoys the same properties as the linear Zariski topology
we considered throughout this section. For a set S ⊆ Kn, we will denote by S

a it closure
in the affine Zariski topology and, similarly to the linear case, for a WA R = (u, µ, v), we
will call any invariant of R that is a Z-affine set a Z-affine invariant of R. Of course, the
strongest Z-affine invariant of R is still the closure of its reachability set i.e. its “affine hull”
LR (R)

a
and Remark 20 is still true for Z-affine invariants.

We obtain the same characterization of Theorem 22 in the affine setting :

▶ Theorem 29 (Characterization). Let f be a rational series. Then f can be realized by an
affine CRA with n states and k registers iff there exists a minimal WA realizing f that has a
Z-affine invariant of length at most n and dimension at most k.

We can show that Propositions 25, 27 and 28 are also true if we replace Z-linear invariants
by Z-affine ones and linear CRA by affine ones. So, the proof of Theorem 29 remains the
same as Theorem 22. All the details can be found in Appendix A.2 of the full version of this
paper [5].

Of course, this theorem has the same consequences of its linear counterpart and we obtain
an affine version of Corollary 23

▶ Corollary 30. The register complexity of a rational series f w.r.t. the class of affine CRA
is the dimension of the strongest Z-affine invariant of any minimal WA realizing f .

Working in the affine Zariski topology instead of the linear one can decrease the dimension
of the strongest invariant by one, as shown in the following example.

▶ Example 31. On the alphabet Σ = {a}, let R = (u, µ, v), where u = (1, 2), µ(a) =
(

1 0
1 2

)
and v = (1, 0)t, be a WA (over R) realizing the rational series f defined by f(an) =

∑n
i=0 2i =

2n+1 − 1.
The reachability set of R is LR (R) =

{ (∑n
i=0 2i, 2n+1) ∣∣ n ∈ N

}
.

For the linear Zariski topology, LR (R) is dense in R2. So the strongest Z-linear invariant
LR (R)

ℓ
= R2 is two-dimensional. However, note that, for all (x, y) ∈ LR (R), y = x + 1. So,

by an argument of density in the affine Zariski topology, the strongest Z-affine invariant
LR (R)

a
is the affine line y = x + 1, which is one-dimensional.

Thus, in the case where the dimensions of the affine and linear hulls doesn’t match, using
affine CRA instead of linear CRA can allow to save one register :

▶ Example 32 (Example 31 continued). The two CRA depicted on Figure 3 both realize the
function of Example 31. On the left we have a linear CRA with two registers and, on the
right, an affine CRA with only one register. The characterization theorems show that both
have the minimal number of registers for their respective classes of CRA.
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{
X := 1
Y := 2

X

a :
{

X := X + Y

Y := Y ∗ 2 X := 2 X − 1

a : X := X ∗ 2

Figure 3 Two CRA detailed in Example 32.

5 Algorithms and complexity for the minimization problems

We present two original algorithms to solve the minimization problems we consider. It is
worth observing the difference between the two characterizations we have obtained: while
the register complexity can be computed from a canonical object (the strongest Z-linear
invariant of the WA), the state-register complexity is based on the existence of a particular
Z-linear invariant. This explains why we derive a non-deterministic procedure for the latter,
and a deterministic for the former.

5.1 Algorithm for the state-register minimization problem
We provide here a NExpTime algorithm for the state-register minimization problem, hence
proving Theorem 14. The algorithm runs in NPTime in n, k, and the size of the automaton.
The fact that n is given in binary explains the exponential discrepancy.

Small representations of Z-affine sets. Let R = (u, µ, v) be a WA of dimension d over an
alphabet Σ. Let L = A1 ∪ · · · ∪ An be a Z-affine set of length n of Kd.

An R-representation R of L is a set of n finite sets of words S1, . . . , Sn such that
aff ({uµ(w)| w ∈ Si}) = Ai for all i ∈ {1, · · · , n}. The size of R is the sum of the lengths of
all words appearing in R. The following key lemma shows that all Z-affine invariants of R
have small R-representations, up to considering stronger invariants.

▶ Lemma 33. Let R be a WA. Let I be a Z-affine invariant of R of length n and dimension
k. There exists an R-representation R of size ≤ n2k2 of a Z-affine invariant J ⊆ I, of
dimension ≤ k and length ≤ n.

This property allows to derive the non-deterministic algorithm. First, minimization of a
WA over a field can be performed in polynomial time (see e.g. [16, Corollary 4.17]). Then,
let R be a minimal WA and let k, n be positive integers. From Lemma 33, we know that
a Z-affine invariant of dimension k and length n can be represented in size O(k2n2) (up to
finding a stronger invariant with smaller dimension and length). The algorithm works thusly:
first step is to guess an R-representation R of a Z-affine set. The second step is to check
that R represents an invariant, which can be done easily using basic linear algebra. From
this one can compute an affine CRA with k registers and n states. Moreover, if we require
that R is Z-linear, we obtain a linear CRA. If R is not an invariant, the computation rejects.
Note that different accepting computations may give rise to different invariants and thus
different CRAs.

5.2 Algorithm for the computation of Z-affine invariants
We describe a deterministic procedure which, given a WA R and an integer c, returns a
Z-affine invariant J which is stronger that any Z-affine invariant I of R of length at most c.
When c is chosen large enough, this procedure returns the strongest Z-affine invariant of R.
A similar procedure works as well for the computation of Z-linear invariants.
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Algorithm 1 Computing a Z-affine invariant.

Require: A WA R = (u, µ, v) of dimension d, an integer c

Ensure: A Z-affine invariant J of R stronger than Ic(R)
1: J := {u}
2: while J is not an invariant of R do
3: Pick some component A of J , and some matrix M of R s.t. A · M ̸⊆ J

4: J := J ∪ A · M

5: if length(J) > cd then
6: J := reduce(J)
7: end if
8: end while
9: return J

Intuitively, this procedure will build a Z-affine set J as follows: it starts with a set
containing only the initial vector of R, and incrementally extends it until it forms an
invariant. During this process, it should ensure that J is included in every Z-affine invariant
I of R of length at most c. This relies on the following easy observation: if such an invariant
I contains at least c + 1 points on the same affine line (i.e. a 1-dimensional affine space,
denoted D), then I must have a component that contains D. Indeed, as I has length at most
c, one of its components contains two such points. As this component is irreducible, it is
an affine subspace, hence contains D. This reasoning can be lifted to higher dimensions as
follows.

Given a WA R, and c ∈ N, we denote by Ic(R) =
⋂

length(I)≤c I the intersection of all
Z-affine invariants of R with at most c components.

▶ Lemma 34. Let R be a WA and let c, k ∈ N. Let A1, . . . , Ack+1 ⊆ Ic(R) be affine spaces
such that: for any P ⊆ J1, ck + 1K with |P | ≥ ck−1 + 1, aff (∪i∈P Ai) has dimension k. Then
aff

(
∪i∈J1,ck+1KAi

)
⊆ Ic(R).

Using this lemma, we derive an effective procedure to simplify a Z-affine set J =
A1 ∪ · · · ∪ Acd+1 by “merging” two components. We denote by reduce(J) the resulting set.

▷ Claim 35. Let R = (u, µ, v) be a WA of dimension d, let c ∈ N. Let A1, . . . , Acd+1 ⊆ Ic(R)
be affine spaces. One can find 1 ≤ i < j ≤ cd + 1 such that aff (Ai ∪ Aj) ⊆ Ic(R), in time
O(cp(d)), for some fixed polynomial p.

▶ Theorem 36. Algorithm 1 is correct and terminates in time O(cp(d)).

Proof. Let us first discuss termination. Because of line 5-7, the length of J is at most cd + 1.
Moreover J is an increasing Z-affine set, thus its value can be modified at most (d+1) ·(cd +1)
times, thus from Claim 35 the algorithm terminates in time O(cp(d)).

We now discuss correctness. We need to show that J is stronger than Ic(R). Initially,
this holds. Moreover, if A ⊆ Ic(R) is an affine set, then for any M ∈ µ(Σ), A · M ⊆ Ic(R),
since Ic(R) is invariant. Thus, line 4 preserves the property that J is stronger than Ic(R).
Using Claim 35, the Reduce subroutine also preserves this property, since it only merges
components whose affine span is contained in Ic(R). ◀
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5.3 Complexity of the register minimization problem
In order to compute the strongest Z-linear and Z-affine invariants of a WA using Algorithms 1,
it is sufficient to be able to bound their lengths. The following result gives such bounds.

▶ Theorem 37. Let R = (u, µ, v) be a d-dimensional WA on a finite alphabet Σ. We have
the following upper bounds :

The lengths of LR (R)
ℓ

and LR (R)
a

are at most doubly-exponential in d.
If ⟨µ(Σ)⟩ is commutative (e.g. Σ is unary), then the length of LR (R)

ℓ
is at most

exponential in d.
We also have the following lower bound (which also hold for WA over a unary alphabet):

For all d > 0, there exist a d-dimensional WA having strongest Z-linear and Z-affine
invariants with lengths exponential in d.

Proof sketch. The first item is shown in [4], where the authors sketch a proof of a double-
exponential upper bound on the length of the strongest Z-linear invariant of a WA, using
tools from algebraic geometry, which holds for Q in particular and for any field K where
there is a double-exponential bound on the maximal order of finite groups of invertible
matrices (see [4, Proposition 48 and Remark 41]). Their proof can be adapted to LR (R)

a
.

The proof of the second item relies on basic linear algebra and on results and ideas from [4]
for invertible matrices (see [4, Lemma 13 and Theorem 10]). Last, the lower bound is shown
using a family of WA (Ri)i∈N whose dimension is polynomial in i and strongest Z-linear
invariant has a length that is exponential in i. It is defined, using permutation matrices of
dimension p, for some prime number p, which generate cyclic groups. The family is obtained
by using block matrices composed of such permutation matrices. All the details are given in
Appendix B.4 of the full version of this paper [5]. ◀

Thanks to this theorem, using Algorithm 1 with a large enough c (at most doubly-
exponential in the dimension of the given WA), and thanks to Theorem 36, we can prove the
following result:

▶ Theorem 38. The strongest Z-linear/affine invariant of a WA is computable in 2-ExpTime.

This allows us to prove Theorem 12. Indeed, given a WA R, we first compute an
equivalent minimal WA, which can be done in polynomial time (see e.g. [16, Corollary 4.17]).
Then, using Algorithm 1, we compute the strongest Z-linear (resp. Z-affine) invariant of R.
Corollary 23 (resp. Corollary 30) ensures that its dimension is the register complexity of f

w.r.t. the class of linear (resp. affine) CRA, and the effectiveness follows from Proposition 27
(resp. its affine version).

Moreover, thanks to Theorem 38 and the results of [3], we also have:

▶ Theorem 39. The sequentiality and unambiguity of a rational series are in 2-ExpTime.

Note that the complexities of the last two theorems drop down to ExpTime when we
have a simply exponential bound on the length of the strongest invariant. This is the case
when one considers unary alphabets or WA with commuting transition matrices in the linear
setting, as stated in Theorem 37. In these cases, the bound is sharp. It is still not clear
however whether it is possible to close the gap between the bounds in the general case.

▶ Remark 40. It is also worth noting that, while the characterizations that we obtained
are valid for any field, the complexities of the algorithms are given in terms of number of
elementary operations over the considered field. Which means that they hold for fields where
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we can perform basic operations in polynomial time (such as Q or its finite extensions).
Moreover, the general upper bounds on the lengths given by Theorem 37 were proven only
for fields verifying a specific property (which is verified by Q). See the proof for more details.

5.4 State/register tradeoff
Reducing the number of registers may increase the number of states and vice-versa. The
following theorem summarizes what we know on this tradeoff.

▶ Theorem 41. Let f be a rational series realized by some d-dimensional WA R. Consider
some pair of integers (n, k) optimal for f w.r.t. the class of linear CRA. The inequalities
1 ≤ n ≤ length(LR (R)

ℓ
) = O(22d) and dim(LR (R)

ℓ
) ≤ k ≤ d hold true.

(They are valid in the affine setting as well)

▶ Remark 42. Building the CRA from the strongest invariant is not always optimal. There
are some cases where it is possible to reduce the number of states of a CRA exponentially,
while keeping the minimal number of registers, by choosing an invariant that is weaker than
the strongest Z-linear/Z-affine invariant but shorter.

6 Conclusion

We have shown how to decide variants of CRA minimization problems, and have given
complexity for the respective algorithms. There are several ways in which these algorithms
could be improved. First, it would be worth reducing the gap between the lower and the upper
bounds on the length of the strongest Z-linear invariant. Second, identifying a canonical
invariant associated with the state-register minimization problem would allow to derive a
deterministic algorithm for this problem. Third, one could hope for better complexity if
one only considers the existence of equivalent CRA. For instance, in [13] the authors give a
PSpace algorithm for the determinization problem (i.e. 1-register minimization problem) in
the case of a polynomially ambiguous automaton, via a quite different approach.

Another line of research consists in trying to use the techniques we developed to solve
the register minimization problem for other classes of CRA, for instance copyless CRA
(which correspond to multi-sequential WA). Another ambitious goal is to consider register
minimization in the context of different semirings, but there all the linear algebra tools
which are crucial to solving these problems completely break down. Similarly, it seems that
register minimization for polynomial automata would be very difficult: it was shown recently
in [12] that the strongest algebraic invariant of a polynomial automaton is not computable.
One possibility may be to bound the “degree” of the invariants, where Z-affine sets would
correspond to algebraic sets of degree one.
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24:2 Breaking a Graph into Connected Components with Small Dominating Sets

1 Introduction

Cluster Vertex Deletion is an important problem in theoretical computer science [3, 22].
Therein, one is given a graph and the task is to delete as few vertices as possible such that
the resulting graph is a cluster graph, that is, a graph in which each connected component
is a clique. However in many real-world applications, it is often too restrictive to require
that each connected component is a clique. For this reason, many generalizations (but
also special cases) of Cluster Vertex Deletion have been studied. Examples include
variants where each connected component in the resulting graph is an s-club (a graph of
diameter at most s) [12, 19] or an s-plex (a graph in which each vertex has degree at
least n − s) [15, 23]. The special case, where each clique in the solution graph has to be of
size one is Vertex Cover, one of the most studied problems in the entire field of theoretical
computer science [1, 16].

Different problems of this clustering type were explored in the recent Dagstuhl seminar
on “Recent Trends in Graph Decomposition” [2]. Starting from the observation that each
connected component of the resulting graph in Cluster Vertex Deletion contains a
dominating set of size 1, the participants introduced a problem that explores a generaliza-
tion in which the resulting connected components (clusters) satisfy other “simple integrity
requirements” (see Ajwani et al. [2]). The notion they came up with was the following.

Input: A graph G and positive integers k and d.
Question: Is there a set S of at most k vertices such that the domination number of

each connected component of G − S is at most d?

Dominated Cluster Deletion

In this work, we consider both Dominated Cluster Deletion as well as the special
case where d is a constant. We refer to the latter problem as d-Dominated Cluster
Deletion. A natural question to ask is whether Dominated Cluster Deletion is fixed
parameter tracatble (FPT) when parameterized by k + d? That is, can the problem be solved
in f(k, d) · nO(1), where f is a function that depends only on k and d. Unfortunately, even
for k = 0, the problem corresponds to the Dominating Set, and hence it is unlikely to be
FPT, as Dominating Set is W[2]-complete parameterized by solution size [10]. This led
the participants of the Dagstuhl seminar to ask for a parameterized tractability result, where
d is allowed to play an XP-role in the exponent of the polynomial. In particular, they ask
the following question, which we answer in the affirmative.

Can Dominated Cluster Deletion be solved in f(k, d) · nO(d) time?

Our Results. We study Dominated Cluster Deletion and d-Dominated Cluster
Deletion and show an almost complete tetrachotomy in terms of para-NP-hardness, con-
tainment in XP, containment in FPT, and admitting a polynomial kernel with respect to
parameterizations that are a combination of k, d, c, and ∆, where c and ∆ are the degeneracy
and the maximum degree of the input graph, respectively. As a main contribution and
using the framework of recursive understanding, we show that the problem can be solved
in f(k, d) · nO(d) time, that is, the problem is FPT when parameterized by k when d is a
constant. For the special case d = 1, we provide an algorithm with running time 2O(k log k)nm.
Furthermore, we show that even for d = 1, the problem does not admit a polynomial kernel
with respect to k + c using OR-cross-compositions. Our results are summarized in Figure 1.
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Figure 1 Overview over our results. Results for Dominated Cluster Deletion are shown
on the left and results for d-Dominated Cluster Deletion are shown on the right. Therein, k

and d are the input values and c and ∆ are the degeneracy and the maximum degree of the input
graph, respectively. An edge between two parameters α and β where β is above α indicates that
the value of β in any instance will always be larger than the value of α in that instance. Any
hardness result for β immediately implies the same hardness result for α and any positive result
for α immediately implies the same positive result for β. The red boxes indicate parameters that
lead to para-NP-hardness (NP-hardness for constant parameter values), an orange box indicates
that the problem is in XP and W[1]-hard, a yellow box indicates that the parameterized problem
is fixed-parameter tractable, but does not admit a polynomial kernel, and a green box indicated
that the problem admits a polynomial kernel. We remark that all negative results apply even if the
input graph is connected with the exception of k + d + ∆, which does not admit a polynomial kernel
in general but does so when the input graph is connected. We do not know whether Dominated
Cluster Deletion parameterized by k + d + c is fixed-parameter tractable or W[1]-hard.

2 Preliminaries and Basic Observations

We consider only undirected simple graphs and use the standard graph-theoretic terminology
(see, e.g., [9]). Throughout the paper, we use n and m to denote the number of vertices and
edges of G, respectively. For a set of vertices X ⊆ V (G), G[X] denotes the subgraph of G

induced by the vertices in X. We define G − X = G[V (G) \ X] and we write G − v instead
of G − {v} for a single vertex. For a vertex v, NG(v) denotes the open neighborhood of v,
that is, the set of vertices adjacent to v, and NG[v] = {v} ∪ NG(v) is the closed neighborhood.
For X ⊆ V (G), we define NG(X) =

( ⋃
v∈X NG(v)

)
\ X and NG[X] =

⋃
v∈X NG[v]. For a

vertex v, dG(v) = |NG(v)| denotes the degree of v. We write P = v0v1 . . . vℓ to denote the
path P with vertices v0, v1, . . . , vℓ and edges {vi−1, vi} for i ∈ {1, . . . , ℓ}. The vertices v0
and vℓ are the end-vertices of P . The length of P is the number of edges of P . For a path P

MFCS 2024



24:4 Breaking a Graph into Connected Components with Small Dominating Sets

with end-vertices u and v, we say that P is a (u, v)-path. A (u, v)-path of minimum length is
a shortest (u, v)-path. We also say that P is a shortest path if P is a shortest (u, v)-path
for the end-vertices u and v of P . A graph G is connected if for every two vertices u and v,
G contains a path whose end-vertices are u and v. A connected component (or simply a
component) is an inclusion maximal induced connected subgraph of G. The diameter of a
connected graph G is the maximum length of a shortest (u, v)-path where the maximum is
taken over all pairs of vertices u and v. A vertex u dominates v ∈ V (G) if v ∈ NG[u]. A set
of vertices D ⊆ V (G) is a dominating set if every vertex v ∈ V (G) is dominated by some
vertex of D, that is, NG[D] = V (G). The minimum size of a dominating set is called the
domination number of G and is denoted by γ(G). For two distinct vertices u and v of a
graph G, a set S ⊆ V (G) is a (u, v)-separator if G − S has no (u, v)-path. A pair (A, B),
where A, B ⊆ V (G) and A ∪ B = V (G), is called a separation of G if there is no edge {u, v}
with u ∈ A \ B and v ∈ B \ A. In other words, A ∩ B is a (u, v)-separator for every u ∈ A \ B

and v ∈ B \ A. We consider only separations with A \ B ̸= ∅ and B \ A ̸= ∅. The order
of (A, B) is |A ∩ B|.

We refer to the books of Downey and Fellows [11] and Cygan et al. [7] for a detailed
introduction to parameterized complexity theory. Formally, a parameterized problem is a
language L ⊆ Σ∗ × N, where Σ∗ is a set of strings over a finite alphabet Σ. This means that
an input of a parameterized problem is a pair (x, k), where x is a string over Σ and k ∈ N is a
parameter. A parameterized problem is fixed-parameter tractable (or FPT) if it can be solved
in f(k) · |x|O(1) time for some computable function f . We also say that a parameterized
problem belongs to the class XP if it can be solved in |x|f(k) time for some computable
function f . The complexity class FPT contains all fixed-parameter tractable parameterized
problems.

A kernelization algorithm (or kernel) for a parameterized problem is a polynomial-time
algorithm that maps each instance (x, k) of a parameterized problem L to an instance (x′, k′)
of the same problem such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L, and (ii) |x′|+k′ ≤ f(k)
for some computable function f . A kernel is polynomial if f is polynomial. While it can be
shown that every decidable parameterized problem is FPT if and only if it admits a kernel,
it is unlikely that every problem in FPT has a polynomial kernel. In particular, the standard
cross-composition technique [4] can be used to show that a parameterized problem has no
polynomial kernel unless NP ⊆ coNP /poly.

In the conclusion of the section, we show a couple of simple observations. We start by
showing that Dominated Cluster Deletion is NP-complete. Notice that the property
that each connected component of a graph has a dominating set of size at most d is not
hereditary and we cannot use the general result of Lewis and Yannakakis [18] about deletion
problems.

▶ Proposition 1. For any constant d ≥ 1, d-Dominated Cluster Deletion is NP-
complete in graphs of maximum degree 4.

Proof. We reduce from Vertex Cover in graphs of maximum degree 3, which is known to
be NP-hard [14]. We remind that a set S of vertices in a graph G is a vertex cover if for each
edge {u, v} in G, u ∈ S or v ∈ S. Then, the task of Vertex Cover is the following. Given
a graph G and a positive integer k, decide whether G has a vertex cover of size at most k.

Let (G, k) be an instance of Vertex Cover where the maximum degree in G is 3. We
construct the graph G′ as follows:

construct a copy of G,
for each vertex v ∈ V (G), construct a path Pv on 3d vertices and identify one end-vertex
of Pv with v.

Note that the maximum degree in G′ is four. We claim that G has a vertex cover of size at
most k if and only if (G′, k) is a yes-instance of d-Dominated Cluster Deletion.
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If G has a vertex cover S of size at most k, then each connected component of G − S

is either Pv or Pv − v for v ∈ V (G). Observe that γ(Pv) = γ(Pv − v) = d. Thus, S is a
solution to the instance (G′, k) of d-Dominated Cluster Deletion, that is, (G′, k) is a
yes-instance.

For the opposite direction, assume that (G′, k) is a yes-instance of Dominated Cluster
Deletion, that is, there is a set S′ ⊆ V (G′) of at most k vertices such that for each
connected component C of G′ − S′, γ(C) ≤ d. We construct the set S ⊆ V (G) from S′

by replacing each vertex u ∈ S′ \ V (G) by the nearest vertex in G. This means that if u

is a vertex of Pv − v for some v ∈ V (G) then u is replaced by v. Clearly, |S| ≤ |S′| ≤ k.
We claim that S is a vertex cover of G. The proof is by contradiction. Assume that there
is an edge {u, v} of G such that u /∈ S and v /∈ S. By the construction of S, we have
that V (Pu) ∩S′ = ∅ and V (Pv) ∩S = ∅. This means that the vertices of Pu and Pv are in the
same component C of G′ − S′. However, any set Du dominating the vertices of Pu − u has
size at least d. Symmetrically, we need at least d vertices to dominate the vertices of Pv − v.
This implies that γ(C) ≥ 2d > d; a contradiction. We obtain that S is a vertex cover of G of
size at most k. This concludes the proof. ◀

We next observe that Dominated Cluster Deletion with k = 0 is equivalent to
Dominating Set on connected input graphs. In Dominating Set, we ask whether
a graph G has a dominating set of size at most d. It is well-known that Dominating
Set is W[2]-complete when parameterized by the solution size and hence, an algorithm
with running time f(d) · nO(1) would contradict the basic assumptions of parameterized
complexity that FPT ̸= W[2] [11]. Furthermore, the existence of an algorithm running
in f(k) · no(d) time would contradict the Exponential Time Hypothesis (ETH) of Impagliazzo,
Paturi, and Zane [17] (we refer to the textbook by Cygan et al. [7] for an introduction to
computational lower bounds based on the ETH). Finally, Dominating Set is NP-hard on
graphs of maximum degree 3 [5].

▶ Observation 2. Dominated Cluster Deletion with k = 0 is NP-hard on subcubic
graphs, W[2]-hard on general graphs, and any f(k)·no(d)-time algorithm for it would contradict
the ETH.

Finally, we show that Dominated Cluster Deletion is fixed-parameter tractable
when parameterized by k + d + ∆.

▶ Proposition 3. Dominated Cluster Deletion can be solved in O((d(∆ + 1) + 1)k ·
3d(∆+1) · (n + m)) time.

Proof. We construct a simple branching algorithm as follows. First, we find any connected
subgraph with d(∆ + 1) + 1 vertices. Note that any connected component in the graph
obtained after removing a solution S can contain at most d(∆ + 1) vertices as it has a
dominating set of size d and the maximum degree is ∆. Hence, each of the d vertices in the
dominating set can dominate at most (∆ + 1) vertices each. Thus, at least one vertex of the
chosen connected subgraph is contained in the solution S and we branch on that vertex and
reduce k by one. After reaching depth k in the search tree, we discard the current branch if
we can still find a connected subgraph with d(∆ + 1) + 1 vertices. Each remaining branch
represents a graph in which each connected component contains at most d(∆ + 1) vertices.
For each such component, we can compute an optimal solution in O(3d(∆+1)(n + m)) time
by trying all possible choices of assigning vertices in the subgraph to the solution S, the
dominating set, or the rest of the graph. We can then check in linear time whether the current
assignment is a valid solution and remember the solution that assigns a minimum number
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24:6 Breaking a Graph into Connected Components with Small Dominating Sets

of vertices to S. Finally, we sum up all the optimal values for k in each of the connected
components to check whether the current branch in the search tree leads to a solution. If any
branch leads to a solution, then we return yes and otherwise we return no. The correctness
follows from the fact that we exhaustively search for all possible solutions and the running
time is in O((d(∆ + 1) + 1)k · 3d(∆+1) · (n + m)). This concludes the proof. ◀

3 An FPT algorithm for d-Dominated Cluster Deletion

In this section, we show d-Dominated Cluster Deletion parameterized by k is fixed-
parameter tractable. This also shows that Dominated Cluster Deletion is contained
in XP.

▶ Theorem 4. For every positive integer d, d-Dominated Cluster Deletion can be
solved in f(k, d) · nO(d) time.

We remark that the exponential dependency on d of the polynomial part of the running
time seems unavoidable by Observation 2. We prove Theorem 4 by applying the recursive
understanding technique introduced by Chitnis et al. [6] and using the meta theorem of
Lokshtanov et al. [20]. The meta theorem considerably simplifies the arguments. However,
the proof becomes nonconstructive and we can only claim a nonuniform FPT algorithm.
Still, a uniform FPT algorithm may be given using the techniques of Chitnis et al. [6] or the
dynamic programming approach of Cygan et al. [8].

The meta theorem of Lokshtanov et al. [20] allows to reduce solving a graph problem on
general graphs to highly connected graphs. Let p, q be positive integers. A graph G is said to
be (p, q)-unbreakable if for every separation (A, B) of G of order at most q, either |A \ B| ≤ p

or |B \ A| ≤ p, that is, G has no separator of size at most q that partitions the graph into
two parts of size at least p + 1 each.

We remind that in monadic second-order logic (MSO) on graphs, we have logical con-
nectives ∨, ∧, ¬, and variables for vertices, edges, and sets of vertices and edges. We can
apply the quantifiers ∀ and ∃ to these variables and use the predicates (i) x ∈ X where x

is a vertex (respectively, edge) variable and X is a vertex (respectively, edge) set variable,
(ii) inc(u, e) where u is a vertex variable and e is an edge variable that denotes that u is
incident to e, (iii) adj(u, v) where u and v are vertex variables denoting the adjacency of u

and v, and (iv) the equality predicate for variables of the same type. The counting monadic
second-order logic (CMSO) extends MSO by allowing testing whether the cardinality of a set
is equal to p modulo q for integers 0 ≤ p < q with q ≥ 2. Given a CMSO sentence φ, the task
of the model-checking problem for φ (denoted by CMSO[φ]) is to decide whether G |= φ for
a graph G. Lokshtanov et al. [20] proved the following result.

▶ Proposition 5 ([20]). Let φ be a CMSO sentence. For all positive integers q, there
exists a positive integer p such that if there exists an algorithm that solves CMSO[φ]
on (p, q)-unbreakable graphs in O(nc) time for some c > 4 then there exists an algorithm that
solves CMSO[φ] on general graphs in O(nc) time.

To apply Proposition 5, we observe that Dominated Cluster Deletion can be
expressed in MSO.

▶ Observation 6. For given d ≥ 1 and k ≥ 0, there is a MSO sentence φ (depending on d

and k) such that G |= φ if and only if (G, k) is a yes-instance of Dominated Cluster
Deletion.
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Proof. For k = 0, (G, k) is a yes-instance of Dominated Cluster Deletion if and
only if every connected component C of G has a dominating set of size at most d, that
is, it holds that ∃v1 ∈ V (C) : . . . ∃vd ∈ V (C) : ∀w ∈ V (C) : (w = v1) ∨ · · · ∨ (w = vd) ∨
adj(w, v1) ∨ · · · ∨ adj(w, vd). Further, we have that C = G[X] for X ⊆ V (G) is a connected
component of G if and only if G[X] is connected and for any proper superset Y of X,
G[Y ] is not connected. It is standard to express the connectivity of G[X] as follows:
∀Z ⊂ X : ∃u ∈ Z : ∃v ∈ X \ Z : adj(u, v). This proves that the property that (G, 0) is a
yes-instance of Dominated Cluster Deletion can be expressed in MSO.

For k ≥ 1, (G, k) is a yes-instance of Dominated Cluster Deletion if and only if (G, 0)
is a yes-instance or ∃v1 ∈ V (G) . . . ∃vk ∈ V (G) such that every connected component C

of G − {v1, . . . , vk} has a dominating set of size at most d. It is straightforward to modify
the formula for k = 0 to get an MSO sentence for the case k ≥ 1. ◀

We next show that d-Dominated Cluster Deletion is fixed-parameter tractable for
unbreakable graphs. More precisely, we prove the following lemma.
▶ Lemma 7. Let p and k be positive integers. Then, d-Dominated Cluster Deletion
can be solved in (p + k)O(k+d) · nO(d) time on (p, k)-unbreakable graphs.
Proof. Let (G, k) be an instance of d-Dominated Cluster Deletion where G is (p, k)-
unbreakable.

Suppose that (G, k) is a yes-instance, that is, there is a set S ⊆ V (G) of at most k

vertices such that for each connected component C of G − S, γ(C) ≤ d. Because G is a (p, k)-
unbreakable graph, G − S has a connected component C with at least n − |S| − p ≥ n − k − p

vertices and the total number of vertices in the other connected components of G − S is
at most p. We call the component C big. Denote by C1, . . . , Cℓ the connected components
of G − S that are distinct from C and let D be a dominating set of C of size at most d.
Observe that V (C) ⊆ NG[D] ⊆ V (C) ∪ S and V (Ci) ⊆ V (G) \ NG[D] for all i ∈ {1, . . . , ℓ}.
Furthermore, if S′ = S \ NG[D] then S = S′ ∪ NG(

⋃ℓ
i=1 V (Gi)). These observations lead to

the following algorithm.
We guess a dominating set D of the (potential) big connected component by trying all

possible choices of at most d vertices of G. Let R = V (G) \ NG[D]. We immediately discard
the choice of D if |R| > p + k because such sets D cannot be dominating sets of the big
component. From now on, we assume that D is fixed and |R| ≤ p + k.

Next, we guess the set of at most k vertices S′ = R ∩ S for a potential solution S to (G, k)
by trying all possible choices of such a set. For each choice of S′, we consider H = G[R \ S′]
and find the connected components C1, . . . , Cℓ of H. For each i ∈ {1, . . . , ℓ}, we verify
whether Ci has a dominating set of size at most d and immediately discard the current
choice of S′ if this does not hold. Further, we construct S = S′ ∪ NG(

⋃ℓ
i=1 V (Ci)) and check

whether |S| ≤ k. If this holds then we conclude that S is a solution, return it, and stop.
Otherwise, we discard the current choice of S′.

If we do not find a solution for all choices of S′ for the given D, we discard the choice
of D. If all sets D are discarded, then we conclude that (G, k) is a no-instance.

Our structural observations about yes-instances immediately imply the correctness of
the algorithm. To evaluate the running time, observe that we have at most nd choices
of D that can be generated in nO(d) time. For each choice of D with |R| ≤ p + k, we
have at most (p + k)k possibilities to choose S′. We can find connected components of H

in O(p + k) time, and we can check in time (p + k)O(d) whether each connected component
can be dominated by at most d vertices. Thus, the total running time is (p + k)O(k+d) · nO(d).
This concludes the proof. ◀

Combining Observation 6 and Lemma 7, we obtain Theorem 4 as a direct corollary of
Proposition 5.
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4 An FPT algorithm for 1-Dominated Cluster Deletion

In this section, we demonstrate a uniform algorithm for Dominated Cluster Deletion for
the special case d = 1, that is, for 1-Dominated Cluster Deletion. The crucial property
that makes the problem significantly easier for d = 1 is that each cluster is of diameter at
most two. We use a simple branching algorithm to reduce the input graph to a connected
graph of diameter at most two. Then we can exploit the following structural property of a
solution.

▶ Lemma 8. Let G be a graph of diameter at most two and let (A, B) be a separation
of G with X = A ∩ B. Suppose that for S ⊆ V (G), each connected component of G − S

is dominated by a single vertex and it holds that (i) (A \ B) \ S ̸= ∅, (ii) (B \ A) \ S ̸= ∅,
and (iii) X ∩ S = ∅. Then for every connected component C of G − S, any vertex v ∈ V (C)
dominating C is in X. Furthermore, the vertices of each connected component of G[X] are
in the same connected component of G − S and the vertices of distinct connected component
of G[X] are in separate components of G − S.

Proof. Let C be a connected component of G − S. Assume for the sake of a contradiction
that there is a vertex v ∈ V (C) that dominates C such that v ∈ A \ B. By (ii), there is a
vertex u ∈ (B \ A) \ S. Since the diameter of G is at most two, there is a (u, v)-path P of
length at most two. Since u and v are separated by X, P = uxv for some x ∈ X. Note that
(iii) implies that x /∈ S. Then, u ∈ V (C). However, u is not dominated by v; a contradiction.
This proves the first claim.

For the second claim, it is straightforward to see that the vertices of each connected
component of G[X] are in the same connected component of G − S because of (iii). Let C1
and C2 be distinct connected components of G[X]. Notice that any vertex of G adjacent to
some vertices in both connected components is either in A \ B or B \ A. According to the
first claim of the lemma, such vertices cannot be dominating vertices for the cluster. This
proves that the vertices of distinct connected components of G[X] are in separate components
of G − S and this concludes the proof. ◀

We are now in a position to prove the main theorem of this section.

▶ Theorem 9. 1-Dominated Cluster Deletion can be solved in O((k + 3)k+5/2 · nm)
time.

Proof. We use the method of bounded search trees to solve the problem. Our recursive
branching algorithm, called Cluster (Algorithm 1), takes as input a graph G and an
integer k, and returns either Yes or No depending on whether (G, k) is a yes- or a no-instance.
For simplicity, we solve the decision problem, but the algorithm can easily be modified to
output a solution if it exists.

We analyze the algorithm to show its correctness. Trivially, if k < 0 then (G, k) is a
no-instance. Hence, we correctly return No and quit in Line 2. Also, if the set of vertices
becomes empty then we should return Yes as is done in Line 3.

If G has a connected component C that can be dominated by one vertex, then this
component is already a required cluster and we can exclude it from the consideration. This
is done in Lines 4–5.

In Lines 7–14, we deal with disconnected graphs. In this case, we solve the problem
for each connected component separately, and for each component Ci, we find the min-
imum ki such that (Ci, ki) is a yes-instance. Notice that because of the previous step,
each connected component is not dominated by a single vertex. Thus, we consider only ki

satisfying 1 ≤ ki ≤ k − 1. Then, we verify whether the solutions for components can be
combined. From now on, we assume that G is connected.



M. Bentert, M. R. Fellows, P. A. Golovach, F. A. Rosamond, and S. Saurabh 24:9

Algorithm 1 Cluster(G, k).

Input: A graph G and an integer k.
Result: Yes or No.

1 begin
2 if k < 0 then return No and quit;
3 if V (G) = ∅ then return No and quit;
4 if G has a connected component C with γ(G) = 1 then
5 call Cluster(G − V (C), k), return the result, and quit
6 end
7 if G is disconnected then
8 find connected components C1, . . . , Cℓ of G;
9 foreach i ∈ {1, . . . , ℓ} do

10 find minimum 1 ≤ ki ≤ k − 1 s.t. Cluster(Ci, ki) returns Yes and
11 set ki := k if Cluster(Ci, k − 1) returns No
12 end
13 return Yes if k1 + · · · + kℓ ≤ k and return No, otherwise, and quit
14 end
15 if there is a shortest path v1v2v3v4 then
16 foreach i ∈ {1, 2, 3, 4} do
17 call Cluster(G − vi, k − 1);
18 return Yes and quit if the algorithm returns Yes
19 end
20 return No and quit
21 end
22 if there is v ∈ V (G) s.t. |V (G) \ NG[v]| ≤ k then
23 return Yes and quit
24 end
25 find a separation (A, B) of G with the separator X = A ∩ B of size at most k

26 and return No and quit if such a separation does not exist;
27 foreach v ∈ X do
28 call Cluster(G − v, k − 1);
29 return Yes and quit if the algorithm returns Yes
30 end
31 call Cluster(G − (A \ B)|, k − |A \ B|) and
32 return Yes and quit if the algorithm returns Yes;
33 call Cluster(G − (B \ A)|, k − |B \ A|) and
34 return Yes and quit if the algorithm returns Yes;
35 if there is v ∈ V (G) \ X s.t. v has neighbors in distinct components of G[X] then
36 call Cluster(G − v, k − 1);
37 return Yes and quit if the algorithm returns Yes
38 end
39 return No
40 end
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In Lines 15–21, we analyze the case when G has a shortest path on four vertices. If v1v2v3v4
is a shortest (v1, v4)-path then the vertices v1, v2, v3, v4 cannot belong to the same cluster
because they cannot be dominated by the same vertex. This implies that at least one vertex
of such a path should be included in any solution. We branch on four possible options and
return Yes if we have a yes-instance for one of the branches. Otherwise, we return No and
stop. From this moment, we assume that G has no shortest paths of length three, that is,
the diameter of G is at most two.

Further, in Lines 22–24, we check whether the instance admits a trivial solution with one
cluster. This holds if there is v ∈ V (G) such that |V (G) \ NG[v]| ≤ k – we simply delete
all the vertices that are not dominated by v. Now, we can assume that for each solution S,
G − S has at least two components.

In Lines 25–26, we find a separation (A, B) of G with the separator X = A ∩ B of size at
most k (we remind that we only consider separations (A, B) where both A \ B and B \ A are
nonempty). If such a separation does not exist, then for each S ⊆ V (G) of size at most k,
G − X is connected. Hence, (G, k) may have only a solution with one cluster. However, this
case was already excluded. Thus, we correctly return No and stop in Line 26. From now on,
we assume that a separation (A, B) of order at most k exists.

In Lines 27–30, we branch on the possibility that X contains a vertex of a solution. We
return Yes and stop if we find such a solution. Next, in Lines 31–34, we check whether there
is a solution that includes either every vertex of A \ B or every vertex of B \ A.

Finally, we conclude that any solution to (G, k) excludes the vertices of X and, furthermore,
each solution contains at least one vertex of A \ B and at least one vertex of B \ A. Then
by Lemma 8, for any solution S to (G, S), it holds that for each connected component C

of G − S, any vertex v ∈ V (C) dominating C is in X and, furthermore, the vertices of
each connected component of G[X] are in the same connected component of G − S and
the vertices of distinct connected component of G[X] are in separate components of G − S.
Recall that we excluded the case when (G, k) has a solution with one cluster. Hence, if (G, k)
is a yes-instance then G[X] should have at least two connected components. Let C1 and C2
be two distinct connected components of G[X]. Because the diameter of G is at most two,
we have that for every u ∈ V (C1) and every v ∈ V (C2), there is a vertex x ∈ V (G) \ X such
that uxv is a path in G. Because u and v are in distinct connected components of G − S,
it holds that x ∈ S. We conclude that if (G, k) is a yes-instance then there is at least one
vertex v ∈ V (G) \ X which has neighbors in two distinct connected components of G[X] and
all such vertices are included in any solution S. We use this in Lines 35-39. We either find v

and obtain that that (G − v, k − 1) is a yes-instance or conclude that (G, k) is a no-instance.
This concludes the correctness proof.

To evaluate the running time, notice that in Lines 15–21, we have four recursive calls. If
we go to Lines 27-38, then we have at most |X| + 3 ≤ k + 3 branches. For each branch, we
reduce the parameter by at least one. Thus, the total number of leaves of the search tree is at
most (k+3)k. We can find connected components in O(n+m) time using standard techniques
and we can check in O(n) time whether a connected graph has a dominating vertex. A shortest
path on four vertices can be found in O(nm) time by performing a breadth-first search
from each vertex. The existence of a vertex v such that |V (G) \ NG[v]| ≤ k can be checked
in O(m) time. To verify whether G has a separation of order k, we can use the algorithm of
Gabow [13] with running time O((n + min(k5/2, kn3/4))m). In fact, for undirected graphs,
m can be replaced by kn, but we use the bound in the weaker form O(k5/2nm). Finally, note
that in Lines 9–11, for each i ∈ {1, . . . , ℓ}, we compute the minimum ki such that (Ci, ki) is
a yes-instance. For this, we can use binary search, which adds an additional log k-factor to
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G1 G2

u v

Figure 2 An illustration of the construction in the proof of Theorem 10.

the running time. However, ki ≤ k − 1 and this means that the steps in Lines 9–11 can be
executed in time O((k + 3)k+5/2 · nm). Summarizing, we obtain that the total running time
is in O((k + 3)k+5/2 · nm). This concludes the proof. ◀

5 (No) Polynomial Kernels

In this section, we show some results related to the existence of polynomial kernels. Our
main result here is that Dominated Cluster Deletion does not admit a polynomial
kernel with respect to k + c even if d = 1. We mention that the construction is identical
to a reduction by Figiel et al. [12] that shows that 2-Club Cluster Vertex Deletion
does not have a polynomial kernel with respect to the solution size k. The two problems are
loosely related as a graph with a universal vertex (a dominating set of size one) is a 2-Club.
However, the other direction is not true, that is, not every 2-club has a dominating set of
size one. The two results therefore do not directly follow from one another.

▶ Theorem 10. 1-Dominated Cluster Deletion does not admit a polynomial kernel
with respect to k + c unless NP ⊆ coNP / poly even if the input graph is connected.

Proof. We show this result by providing a OR-cross-composition (see [4]) for 1-Dominated
Cluster Deletion from itself. Recall that 1-Dominated Cluster Deletion is NP-
complete by Proposition 1. Without loss of generality, we start with T = 2t instances of
1-Dominated Cluster Deletion, where each instance has the same number n of vertices,
the same value of k < n − 1, and where each of the input graphs is connected.

The main ingredient for our proof is a construction to merge two instances I1 = (G1, k)
and I2 = (G2, k) into one instance I∗ = (G∗, k∗). We first prove that I∗ is a yes-instance if
and only if at least one of I1 and I2 is a yes-instance. Afterwards, we will show how to use
this construction to get a cross-composition for all t instances.

The construction is depicted in Figure 2 and works as follows. We take the disjoint union
of the two graphs G1 and G2 and add two vertices u and v. We make u adjacent to all
vertices in G1 and v adjacent to all vertices in G2. Moreover, we add the edge {u, v}. Finally,
we set the parameter k∗ = k + 1.

It remains to show that I∗ is a yes-instance if and only if at least one of I1 and I2 is
a yes-instance. First assume, that one of I1 and I2 is a yes-instance. Since both cases are
completely analogous, we assume without loss of generality that I1 is a yes instance. A
solution for I∗ consists of an optimal solution for I1 and the vertex u. Note that adding u

to the solution disconnects the graphs G1 and G2. Moreover, the connected component
including G2 also contains v and therefore has a domination number of one.

For the other direction, assume that the constructed instance contains a solution S of size
at most k + 1. Note that since we assume k < n − 1, we need to include either u or v in S

as otherwise we would need to include all n > k∗ vertices in either G1 or G2 into S as one
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vertex of each instance together with u and v induces a P4 and no vertex is adjacent to both
a vertex in G1 and a vertex in G2. We assume without loss of generality that u is included
in S. Note that this leaves the graph G1 as one connected component and since we already
know that u ∈ S, it holds that S contains at most k vertices from G1 which results in each
connected component of G1 being dominated by a single vertex. Thus I1 is a yes-instance.

To complete the reduction, we iteratively half the number of instances by partitioning
all instances into arbitrary pairs and merge the two instances in a pair into one instance.
Note that in each iteration, all of our assumption still hold as all instances have d = 1, the
number of vertices in I∗ is 2n + 2 > k∗ + 1, and G∗ is connected. After log(T ) iterations,
we are left with a single instance which is a yes-instance if and only if at least one of the T

original instances is a yes-instance. The time required to compute the cross composition is
in O(

∑
i∈[T ] |Gi| · log(T )) which is polynomial in

∑
i∈[T ] |Gi| as each graph Gi contains at

least one vertex. Moreover, the parameter k in the constructed instance is k + log(T ) and
the degeneracy of the instance is at most n + log(T ) as we can put all the vertices in the T

original instances first into the degeneracy ordering and afterwards add the newly added
vertices in increasing order of their degree. Note that each vertex in an original instance
has at most n + log(T ) neighbors and each of the newly added vertices has at most log(T )
neighbors “above themself”. Thus, all requirements of a cross-composition are met and the
proof is completed. ◀

We mention in passing that it is simple to generalize Theorem 10 to any constant d > 0.
In each step, we simply add the following graph to each of the two newly added vertices u

and v. We show the construction only for v. We start with a path (w1, w2, . . . , w3d−2)
with 3d − 2 vertices and make w1 adjacent to v. Next, we iteratively replace each vertex wi

by a clique of size k + log(T ) + 1 vertices, where each vertex has the same neighborhood as wi

had. Note that we cannot fully remove any of the cliques and hence whenever we remove
neither u nor v, then we are left with a connected graph which requires at least 2d > d

vertices to dominate. Whenever we remove one of the two vertices, say u, then we can
dominate the connected component of v by selecting v and one copy of each vertex in the
clique corresponding to the vertices w3, w6, . . . , w3(d−1). The rest of the proof is completely
analogous to the proof of Theorem 10.

We next show that d-Dominated Cluster Deletion parameterized by k + ∆ admits
a polynomial kernel.

▶ Proposition 11. d-Dominated Cluster Deletion parameterized by k + ∆ admits a
polynomial kernel of size O(k2∆3).

Proof. First, we check for each connected component of the input graph whether it contains
a dominating set of size d in O(nd+2) time. Note that since we assume d to be a constant,
this is a polynomial running time. Moreover, each such connected component can be removed
from the input graph to create a smaller equivalent instance. If afterwards, the number of
connected components in the graph is larger than k, then we return a trivial no-instance as
we need to include at least one vertex from each connected component into the solution S,
meaning that any solution has size at least k +1. Finally, we bound the size of each connected
component as follows. If the number of vertices in one connected component is larger
than k + (k(∆ − 1) + 1)d(∆ + 1) ∈ O(k∆2), then we again return a trivial no-instance as
removing any solution S of size at most k leaves at most k(∆ − 1) + 1 connected components
and hence by the pigeonhole principle, at least one connected component has size larger
than d(∆ + 1). Note that this connected component cannot contain a dominating set of size
at most d and hence the entire instance is a no-instance.
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The number remaining vertices is now at most k ·(k + (k(∆ − 1) + 1)d(∆ + 1)) ∈ O(k2∆2)
and since the maximum degree is ∆, the number of vertices and edges is in O(k2∆3). This
concludes the proof. ◀

Next, we show that the previous result cannot be generalized to Dominated Cluster
Deletion even if we include the parameter d to the kernel and restrict k to be 0.

▶ Observation 12. Dominated Cluster Deletion does not admit a polynomial kernel
with respect to d + ∆ even if k = 0 unless NP ⊆ coNP / poly.

Proof. We show a simple AND-composition from Dominating Set on connected input
graphs. Given t instances of Dominating Set where all instances are connected and all
instances ask for a dominating set of the same size d, we simply take the disjoint union of
all of these graphs and set k = 0. If all t instances are yes-instances, then each connected
component of the constructed graph has a dominating set of size at most d, that is, the
constructed instance is a yes-instance. If the constructed instance is a yes-instance, then also
each connected component of the constructed graph has a dominating set of size at most d

as k = 0. Thus, all t original instances are yes-instances. Note that k = 0, the value of d

is the same as in each input instance, and the maximum degree is at most the number of
vertices in one of the t input instances. Thus, we have provided an AND-cross-composition
and this concludes the proof. ◀

Note that the previous reduction produces a disconnected graph. We show that this is ne-
cessary as Dominated Cluster Deletion admits a polynomial kernel when parameterized
by k + d + ∆ if the input graph is connected.

▶ Observation 13. Dominated Cluster Deletion admits a kernel of size O(kd∆3) when
parameterized by k + d + ∆ if the input graph is connected.

Proof. If the number of vertices in the input graph is at most kd∆2 + k + d(∆ + 1) − kd,
then we return the input graph as a trivial kernel of size O(kd∆3). Otherwise we return
a trivial no-instance as a kernel. We next show that this is justified. Assume towards a
contradiction that the input instance has more vertices but is a yes-instance. Then, it contains
a set S of at most k vertices such that removing S from the graph results in connected
components which can each be dominated by at most d vertices. Note that removing a
set of k vertices of degree at most ∆ from a connected graph can result in a graph with
at most k(∆ − 1) + 1 connected components. Moreover, the dominating set of size d in
each of these can dominate at most d(∆) + 1 vertices. Thus, the entire graph contains at
most k + (k(∆ − 1) + 1)d(∆ + 1) = kd∆2 + k + d(∆ + 1) − kd vertices, a contradiction. ◀

6 Conclusion

In this work, we initiated the study of Dominated Cluster Deletion and showed an
almost complete tetrachotomy regarding its parameterized complexity when parameterized
by combinations of k, d, c, and ∆. We remark that we leave two questions unanswered.
First, is Dominated Cluster Deletion fixed-parameter tractable or W[1]-hard when
parameterized by k + d + c? We conjecture that it is fixed-parameter tractable and the
algorithm may be obtained by combining the recursive understanding technique [6, 20] and
the results of Telle and Villanger [21]. Second, does d-Dominated Cluster Deletion
parameterized by k admit a polynomial kernel when d and c are constants?
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1 Introduction

For an undirected graph G = (V,E) with weight function w : E → R+, the Multiway Cut
problem asks for a minimum-weight cut C ⊆ E separating any pair of terminals in a given
terminal set S = {s1, . . . sk}. As cuts can be identified with partitions of the nodes, this is
equivalent to finding a node coloring of G with k colors such that terminal si is colored with
color i for i ∈ [k], and we seek to minimize the total weight of dichromatic edges.

1.1 Previous work

Dahlhaus et al. [5] showed that Multiway Cut is NP-hard even for k = 3, and provided
a very simple combinatorial (2 − 2/k)-approximation that works as follows. For each si,
determine a minimum-weight cut Ci ⊆ E that separates si from all other sj for j ̸= i – such
a cut is called an isolating cut of si – and then take the union of the k − 1 smallest ones
among the k cuts thus obtained. In an optimal multiway cut, the boundary of the component
containing si is a cut isolating si, hence its weight is at least as large as that of Ci. Summing
up these inequalities for all but the largest isolating cuts, since this counts each edge at most
twice except for the boundary of the largest one, leads to a (2− 2/k)-approximation.

Since the pioneering work of Dahlhaus et al., Multiway Cut has been a central problem
in combinatorial optimization. The best known approximability as well as inapproximability
bounds are based on a geometric relaxation called the CKR relaxation, introduced by
Cǎlinescu, Karloff and Rabani [4]. The current best approximation algorithm is due to
Sharma and Vondrák [18] with an approximation factor of 1.2965, while the best known
lower bound (assuming the Unique Games Conjecture) is slightly above 1.2 [2].

Various generalizations of Multiway Cut have been introduced. In the Multicut
problem, we are given an undirected graph with non-negative edge weights, together with
a demand graph consisting of edges (s1, t1), . . . , (sk, tk), and the goal is to determine a
minimum-weight cut whose removal disconnects each si from its pair ti. Multicut is NP-
hard to approximate within any constant factor assuming the Unique Games Conjecture [3],
and there is a polynomial-time O(log k)-approximation algorithm [7]. The Uniform Metric
Labeling problem takes as input a list of possible colors for each node in an edge-weighted
graph, and asks for a coloring that respects these lists with the minimum total weight of
dichromatic edges; Multiway Cut arises as a special case when the terminals have distinct
lists of length 1 and all other nodes can be colored arbitrarily. Kleinberg and Tardos [12]
gave a 2-approximation to Uniform Metric Labeling with a tight integrality gap using a
geometric relaxation, similar to that of CKR. In the k-Cut problem, we are given only an
edge-weighted graph G and a positive integer k, and the goal is to find a minimum-weight
cut whose deletion breaks the graph into k components. One can think of this problem as a
version of Multiway Cut where the terminals can be chosen freely. The k-Cut problem
admits a 2-approximation [16] that is tight [13]. The Steiner Multicut [11] problem
takes as input an undirected graph G and subsets X1, X2, . . . , Xq of nodes, and asks for a
minimum cut such that each Xi is separated into at least 2 components. A generalization of
Steiner Multicut is the Requirement Cut problem [9], where requirements ri are given
for each set Xi, and the goal is to find the minimum cut that cuts each Xi into at least ri

components. The current best algorithms for Requirement Cut are those given in [9, 17],
of which we will use the O(log k log q) approximation, where k = |

⋃q
i=1 Xi| ≤ n.
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1.2 Our results
We introduce generalizations of Multiway Cut, where we are allowed to choose repres-
entatives from some terminal candidate sets T1, . . . , Tq ⊆ V , and the goal is to find the
minimum-weight cut separating these sets via their representatives. The variants are distin-
guished by (A) whether the representative has to be separated from all candidates of the
other candidate sets or only from their representatives, and (B) whether there is a single
representative for each candidate set or whether the choice of representative is independent
for each pair of candidate sets. In order to make it easier to distinguish these problems, we
use the following naming rules.

When the goal is to separate all candidates, we use All; for example, the All-to-All
problem requires all nodes of Ti to be separated from all nodes of Tj , for each i ̸= j.
When the goal is to choose a single representative for each candidate set, we use Single,
and we denote the chosen representative of Ti by ti. For example, the Single-to-Single
problem requires choosing a representative ti ∈ Ti for every i ∈ [q], and finding a cut that
separates ti from tj for all i ̸= j. On the other hand, Single-to-All requires the chosen
representative ti ∈ Ti to be separated from every node of Tj , for all i ̸= j.
When only some representative of Ti ought to be separated from some part of Tj for each
i, j pair, we use Some, and denote the representative chosen from Ti to be separated
from Tj by tji . For example, the Some-to-Some problem asks for a minimum-weight
subset of edges such that after deleting these edges, for any pair i ≠ j, there are nodes
tji ∈ Ti and tij ∈ Tj that are in different components.
When there is a fixed node that needs to be separated from the candidate sets, we use
Fixed, and denote the fixed node by s. In the Fixed-to-Single problem, we are given
a fixed node s, and we want a minimum-weight subset of edges such that after deleting
these edges, s is separated from at least one element tj ∈ Tj for every j ∈ [q].

These problems are natural generalizations of Multiway Cut that provide various ways
to interpolate between problems with fixed terminals like Multiway Cut and problems
with freely chosen terminals like k-Cut. Although, as we will discuss later, some of our
problems are equivalent or closely related to problems that have already been considered in
the literature, a systematic study of this type of generalization has not yet been done, and
some of our results (Theorem 3, Theorem 9) require new observations and techniques.

In each problem, we want to minimize over all possible choices of representatives, as well
as over all possible subsets of edges. The problem where we need to separate each candidate
set from every other, All-to-All, is equivalent to Multiway Cut by contracting each
candidate set to a single node. The other problems are not directly reducible to Multiway
Cut. We denote by α ≈ 1.2965 the current best approximation factor for Multiway
Cut [18]. The different problems, as well as our results, are summarized in Table 1. The
main results that require new techniques are indicated in bold in the table, and are discussed
in the next subsection.

1.3 Techniques
Approximation when q is part of the input. We give 2-approximations for Single-to-All
and Single-to-Single. For the latter, we first give an exact algorithm on trees, by showing
that the feasible solutions have a gammoid structure. This then leads to a 2-approximation
for general graphs using the Gomory-Hu tree, which is best possible, since Single-to-Single
generalizes the k-Cut problem. Also, we show that the Some-to-Some problem is equivalent
to Steiner Multicut, leading to an O(log q · logn) approximation in this case.
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Table 1 A summary of our results, where α ≈ 1.2965 [18] is the current best approximation
factor for Multiway Cut. The tightness of 2-approximation assumes SSEH, while the other
inapproximability results hold assuming P ̸= NP. The main results are highlighted in bold.

Problem Demands Fixed q Unbounded q

All-to-All Ti − Tj α-approx α-approx

Single-to-All ti − Tj α-approx 2-approx

Single-to-Single ti − tj α-approx Tight 2-approx

Fixed-to-Single s − tj In P No o(log q) approx

Some-to-Single tj
i − tj α-approx No o(log q) approx

Some-to-Some tj
i − ti

j α-approx O(log q · log n) approx [9]

Some-to-All tj
i − Tj α-approx No o(log q) approx

Approximation for fixed q. Some of the problems with fixed q are directly reducible to
solving a polynomial number of Multiway Cut instances. However, this is not the case for
Single-to-All and Some-to-All. Our α-approximation algorithms for these are obtained
by extending the CKR relaxation to a more general problem that we call Lifted Cut (see
Section 3) in such a way that the rounding methods used in [18] still give an α-approximation.
Lifted Cut may have independent interest as a class of metric labeling problems that is
broader than Multiway Cut but can still be approximated to the same ratio. We then
show that for fixed q, problems Single-to-All and Some-to-All are reducible to solving
polynomially many instances of Lifted Cut.

Hardness of approximation. We prove hardness of Fixed-to-Single by reducing from
Hitting Set. We then reduce Some-to-All, Some-to-Single, and Some-to-Some from
Fixed-to-Single to give hardness results for those problems as well.

1.4 Structure of the paper

In Section 2, we present the main tools used in our algorithms and proofs. Section 3 introduces
the Lifted Cut problem and describes how to extend the α-approximation of [18] to Lifted
Cut. The remaining sections present the results for the problems listed in Table 1.

2 Background

Throughout the paper, we denote the set of non-negative reals by R+, and use [k] = {1, . . . , k}.
We use ei to denote ith elementary vector, and ∆k denotes the convex hull of {e1, . . . , ek},
that is, ∆k = {x ∈ Rk : x ≥ 0,

∑k
i=1 xi = 1}.

Given an undirected graph G = (V,E), the edge going between nodes u, v ∈ V is denoted
by (u, v). For a weight function w : E → R+ and C ⊆ E, we use w(C) =

∑
e∈C w(e).

The graph obtained by deleting the edges in C is denoted by G − C. We denote the
set of components of G by K(G). The boundary of a given subset of nodes S ⊆ V is
δ(S) = {(u, v) ∈ E : u ∈ S, v ∈ V \ S}.

We briefly summarize the background results that we build upon in our proofs.
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2.1 The CKR Relaxation and Rounding Methods

For a graph G = (V,E) with edge weights w : E → R+ and terminals S = {s1, . . . , sk}, the
CKR relaxation [4] is the following linear program (CKR-LP) which assigns to each node
u ∈ V a geometric location xu in the k-dimensional simplex.

minimize
∑

(u,v)∈E

wu,v∥xu − xv∥1

subject to xu ∈ ∆k u ∈ V,
xsi = ei i ∈ [k].

(CKR-LP)

The original paper of Cǎlinescu, Karloff and Rabani [4] gives a (3/2− 1/k)-approximation
algorithm that works as follows. First take a threshold ρi ∈ (0, 1) uniformly at random for
each dimension i ∈ [k]. Then take one of the two permutations σ = (1, . . . , k − 1, k) and
(k− 1, k− 2, . . . , 1, k) of the terminals at random (that is, with probability 1/2), assign nodes
within a distance ρσ(i) of xsσ(i) to the component of sσ(i) for i ∈ [k − 1], and assign the
remaining nodes to sk. We call an algorithm that chooses a permutation of the terminals
and then assigns the nodes within some threshold to the terminals in that order a threshold
algorithm. The analyses of the above linear programming formulation revealed several useful
properties of the CKR relaxation. One of these observations is that the edges of the graph
may be assumed to be axis-aligned. An edge u, v is said to be (i, j)-axis-aligned if xu and xv

differ only in coordinates i and j. Roughly speaking, any edge that is not axis-aligned can be
subdivided into several edges that are axis-aligned, forming a piecewise linear path between
xu and xv. This observation significantly simplifies the analysis of threshold algorithms, as
there are at most two thresholds that can cut any axis-aligned edge. Another useful property
is symmetry. For any threshold algorithm, there is one that achieves the same guarantees by
choosing a uniformly random permutation. See [10, Section 2] for a more detailed discussion
of these properties.

Another way of rounding the CKR relaxation is provided by the exponential clocks
algorithm of Buchbinder, Naor and Schwartz [1]. Their approach can be thought of as
choosing a uniformly random point in the simplex, and splitting the simplex by axis parallel
hyperplanes that meet at this given point. The algorithm gives the same guarantees as
the algorithm of Kleinberg and Tardos [12] for Uniform Metric Labeling. This latter
problem takes as input a list of possible colors ℓ(v) for each node v in a given graph, and
asks for a coloring that respects these lists with the minimum total weight of dichromatic
edges. Their relaxation (UML-LP) is similar to the CKR relaxation when there are a total
of q colors, but it does not require there to be nodes at every vertex of the simplex.

minimize
∑

(u,v)∈E

wu,v∥xu − xv∥1

subject to xu ∈ ∆q u ∈ V,
xv

i = 0 i /∈ ℓ(v).
(UML-LP)

It is shown in [1, Section 6] that Algorithm 1 gives the same guarantees as the exponential
clocks algorithm.

The approximation algorithm of Sharma and Vondrák [18] for Multiway Cut randomly
chooses between four different algorithms of the above two types with some careful analysis
to achieve an α-approximation, where α ≈ 1.2965.
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Algorithm 1 The Kleinberg-Tardos Algorithm for Uniform Metric Labeling.

Input: A graph G = (V,E), weights w : E → R+, labels ℓ : V → P([q]), and an LP
solution xu for each u ∈ V .
Output: A solution to Uniform Metric Labeling.

1: while ∃u ∈ V s.t. u is unassigned do
2: Pick a label i ∈ [q] uniformly at random, and a threshold ρ ∼ unif [0, 1].
3: Assign label i to any unassigned u ∈ V with xu

i ≥ ρ.
4: end while

2.2 Other Relevant Tools
Our hardness of approximation results are based on two different complexity assumptions.
The o(log q) inapproximability results hold assuming P ̸= NP, based on the hardness of
approximating Hitting Set proved by Dinur and Steurer [6]. The other complexity
assumption that we use is the Small Set Expansion Hypothesis (SSEH), a core hypothesis
for proving hardness of approximation for problems that do not have straightforward proofs
assuming the Unique Games Conjecture (UGC). It implies the UGC, and we will use it as
evidence against a (2− ε)-approximation, for any ε > 0, for k-Cut [13]. For completeness,
we include the relevant theorems here.

▶ Theorem 1 ([6,14]). For any fixed 0 < α < 1, Hitting Set cannot be approximated in
polynomial time within a factor of (1− α) lnN on inputs of size N , unless P = NP.

▶ Theorem 2 ([13]). Assuming the Small Set Expansion Hypothesis, it is NP-hard to
approximate k-Cut to within (2− ε) factor of the optimum, for any constant ε > 0.

From matroid theory, we use the notion of gammoids. A gammoid M = (D,S, T ) is a
matroid defined by a digraph D = (V,E), a set of source nodes S ⊆ V , and a set of target
nodes T ⊆ V \ S. A set X ⊆ T is independent in M if there exist |X| node-disjoint paths
from elements of S into X. Optimizing over a gammoid, as with any other matroid, can be
done efficiently using the greedy algorithm.

Finally, Gomory-Hu (GH) tree [8] is a standard tool in graph cut algorithms. The GH
tree of a graph G = (V,E) with weight function w : E → R+ is a tree T = (V, F ) together
with weight function wT : F → R+ that encodes the minimum-weight s− t cuts for each pair
s, t of nodes in the following sense: the minimum wT -weight of an edge on the s− t path in
T is equal to the minimum w-weight of a cut in G separating s and t. Furthermore, the two
components of the tree obtained by removing the edge of minimum wT -weight on the path
give the two sides of a minimum w-weight s− t cut in G.

3 Lifted Cuts

The goal of this section is to show that the following restriction of the Uniform Metric
Labeling relaxation to a one-dimensional lifting of the CKR relaxation admits an α-
approximation to its integer optimum. We define the lifted cut problem Lifted Cut,
which takes as input a graph G = (V,E) with edge-weights w : E → R+, fixed terminals
S = {s1, s2, . . . , sq} ⊆ V , and a list of possible colors for each node ℓ : V → P[q + 1], the
power set of [q + 1], satisfying the following two conditions:
(A) ℓ(si) = {i} for i = 1 . . . q,
(B) q + 1 ∈ ℓ(v) for all v ∈ V \ S.
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The goal is then to assign a color to each node from its list such that the total weight of
dichromatic edges is minimized. We call the following linear programming relaxation of the
Lifted Cut problem LIFT-LP:

minimize
∑

(u,v)∈E

wu,v∥xu − xv∥1

subject to xu ∈ ∆q+1, u ∈ V
xu

i = 0 i /∈ ℓ(u).

Condition A ensures that the set S indeed defines terminals that vertices of the simplex are
assigned to, as in Multiway Cut, but Condition B offers a relaxation, allowing a vertex of
the simplex to not be assigned to any terminal. This condition gives an additional dimension
to the simplex (see Figure 1), while still preserving the approximation guarantees given by
the rounding algorithms for CKR.

s1 s2

s3

s1 s2

s3

Figure 1 An example of the original CKR relaxation in relation to our extended LIFT-LP on the
case for ti − Tj . The point colors represent the different candidate sets.

▶ Theorem 3. The rounding scheme of [18], when applied to LIFT-LP using Algorithm 1
in place of the exponential clocks algorithm, and with the modification that only the first q
coordinates are permuted in the threshold algorithms while coordinate q + 1 is always left last,
gives an α-approximation to Lifted Cut.

Proof. First, we have to argue that the threshold algorithms give feasible solutions to Lifted
Cut (for Algorithm 1, this follows since Lifted Cut is a metric labeling problem). In all
algorithms, si is assigned to the ith component, since xsi is the ith vertex of the simplex.
For other nodes v ∈ V \ S, xv

i = 0 guarantees that v is not assigned to the ith component if
i /∈ ℓ(v). Here, we use the fact that the (q + 1)st component is the only one for which there
is no threshold. Although it is possible that xv

q+1 = 0 and v is still assigned to the (q + 1)st
component, this is not a problem, because q + 1 ∈ ℓ(v) by definition.

To prove that we have an α-approximation, we need to show that the relevant bounds
that are used in the analysis of the four algorithms mentioned in Sharma-Vondrák [18] carry
through to this modified LIFT-LP. We give a sketch here, but the details are written out
more carefully in Appendix B. We consider the two types of algorithms (i.e. threshold and
exponential clocks) separately.

It was observed in [1] that the exponential clocks algorithm can be replaced by the 2-
approximation for the Uniform Metric Labeling problem of Kleinberg-Tardos [12]. Since
LIFT-LP corresponds to a Uniform Metric Labeling problem, the bound in [1, Lemma
3] remains valid in our case. Since this is the relevant bound for the exponential clocks
algorithm used in the analysis, we can conclude that Algorithm 1 for LIFT-LP gives the
same guarantees.

MFCS 2024
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The other algorithms we need to consider are the threshold algorithms. These assume
that there is a node at every vertex of the simplex, which is not necessarily true for the
LIFT-LP as no variable needs to be at eq+1. We can however use that there is only one such
vertex, and change the order of the terminals so that this vertex is cut last. We can then use
the analysis in [18] and [1] of the CKR relaxation for k = q + 1, as sketched below.

The threshold algorithms first choose a random permutation of the nodes to achieve some
symmetry, which is necessary for only the first k − 1 terminals. The last terminal, which is
just assigned the remaining nodes, does not have its own threshold. In each of the Single
Threshold, Descending Threshold and Independent Threshold algorithms of [18], thry prove
results for the first two indices, and then argue that these hold for any pair of indices by
symmetry. This is only directly clear for pairs in the first k − 1. However, when we consider
an (i, k)-axis-aligned edge for some i ∈ [k − 1], the probability of cutting this edge can only
be smaller as there is one less threshold to cut it; see [1, Remark 2] for a discussion. This
reasoning holds even when there is no terminal at the kth vertex of the simplex.

Thus, the rounding scheme of [18], with the modifications of using Algorithm 1 rather
than exponential clocks and only permuting the first q coordinates, gives an α-approximation
for Lifted Cut. For completeness, we include the relevant algorithms and lemmas from [18],
with the appropriate modifications, in Appendix B. ◀

4 Single-to-All Problem

In this problem, we are looking for a single representative from each candidate set that
will be separated from every candidate in other candidate sets. This includes the other
representatives, making the problem very similar to Multiway Cut once the representatives
are chosen. A key difference is that the optimal partition may have q + 1 components.

We first look at the case where q is constant.

▶ Theorem 4. There is an α-approximation algorithm for Single-to-All when q is fixed.

Proof. First, guess the representative ti for each i ∈ [q]. As there are only
∏q

i=1 |Ti| ≤ nq

possible choices, this is polynomial in n for fixed q. If a representative ti is in Tj for some
j ̸= i, then there is obviously no solution. Otherwise, for a fixed choice of representatives,
Single-to-All is an instance of Lifted Cut. To see this, observe that the problem is
equivalent to the Uniform Metric Labeling problem obtained by fixing the labels ℓ(v)
for v ∈ V as follows:
1. If v = ti for some i, then set ℓ(v) := {i}.
2. Otherwise, if v ∈ Ti \ {ti} for a unique i, then set ℓ(v) := {i, q + 1}.
3. If v ∈ Ti ∩ Tj \ {ti, tj} for i ̸= j, then set ℓ(v) := {q + 1}.
4. Finally, if v ∈ V \

⋃
i∈[q] Ti, then set ℓ(v) := [q + 1].

This is an instance of Lifted Cut: Condition A is a clear consequence of the first rule, and
since any node that is not a representative has q + 1 as one of its labels, Condition B follows
as well. Therefore, Theorem 3 leads to an α-approximation. ◀

Following the idea of the classical 2-approximation for Multiway Cut discussed in the
introduction, there is a simple 2-approximation when q is arbitrary.

▶ Theorem 5. There is a 2-approximation algorithm for Single-to-All.

Proof. For each candidate set Ti, let ti ∈ Ti be a node for which the minimum-weight cut
separating ti from ∪j ̸=iTj is as small as possible, and let C be the union of these isolating cuts.
To see that the solution is within a factor 2 of the optimum, consider an optimal solution to
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Algorithm 2 Greedy algorithm for Single-to-Single on trees.

Input: A tree G = (V,E), weights w : E → R+, candidates T1, . . . , Tq ⊆ V .
Output: A minimum-weight good cut C ⊆ E.

1: Set C ← ∅.
2: while |C| < q − 1 do
3: e← arg min{w(e) : e /∈ C,C + e is good}
4: C = C + e

5: end while

Single-to-All and let V1, V2, . . . , Vq, Vq+1 denote the components after its deletion, where
Vq+1 may be empty and the components are ordered by the index of the representative they
contain. The boundary of each Vi is an isolating cut of some candidate in Ti, which the
algorithm minimized. Summing up the weights of the boundaries, we count each edge twice,
and the theorem follows. ◀

5 Single-to-Single Problem

In this problem, we are looking for a single representative from each candidate set together
with a minimum multiway cut separating them. Note that when T1 = T2 = . . . = Tq = V ,
Single-to-Single generalizes k-Cut where we seek the minimum-weight cut that partitions
the graph into k parts. It is known that k-Cut is hard to approximate within a factor of
2− ε for any ε > 0, assuming SSEH [13].

▶ Theorem 6. There is an α-approximation for Single-to-Single when q is fixed.

Proof. When q is fixed, one can iterate through all the O(nq) possible choices of repres-
entatives, approximate the corresponding Multiway Cut instance, and choose the best
one. ◀

For general q, it is helpful to first look at the case where G is a tree. We show that in this
special case, the problem reduces to finding the minimum cost basis of a gammoid. We call
a cut C ⊆ E good if G−C has a valid set of representatives, that is, if we can choose |C|+ 1
representatives that form a partial transversal of the candidate sets, and each component
of G − C contains a single representative from this partial transversal. The algorithm is
presented as Algorithm 2.

▶ Theorem 7. Algorithm 2 computes an optimal solution to Single-to-Single on trees.

Proof. We prove the statement by showing that the problem is equivalent to optimizing over
a gammoid. We construct a directed graph as follows. Let r ∈ V be an arbitrary root node,
and orient the edges of the tree towards r. For a non-root node v, we denote the unique arc
leaving v by e(v) and define the cost of v to be w(e(v)). Furthermore, for each set Ti, we
add a node si together with arcs from si to the candidates in Ti.

Let D denote the digraph thus obtained, S := {s1, . . . , sq}, and T := V , and consider the
gammoid M = (D,S, T ). The key observation is the following.

▷ Claim 8. For a set Z ⊆ V \ {r}, C = {e(v) : v ∈ Z} is a good cut if and only if Z ∪ {r} is
independent in M .

Proof. For the forward direction, assume that C = {e(v) : v ∈ Z} forms a good cut. Let
Z = {v1, . . . , vp}. Without loss of generality, we may assume that the candidate sets having
a valid set of representatives in G− C are T1, . . . , Tp, Tp+1, where vi is in the component of
the representative ti of Ti and r is in the same component as the representative tp+1 of Tp+1.
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Algorithm 3 Approximation algorithm for Single-to-Single on graphs.

Input: A graph G = (V,E), weights w : E → R+, candidates T1, . . . , Tq ⊆ V .
Output: A feasible cut C ⊆ E.

1: Compute the Gomory-Hu tree H of G.
2: Run Algorithm 2 on H.
3: Return the union of the cuts corresponding to edges found in Step 2.

For i ∈ [p], the edge (si, ti) and the path ti-vi in the tree form an si-vi path; similarly, the
edge (sp+1, tp+1) and the path tp+1-r in the tree form an sp+1-r path. Furthermore, these
paths are pairwise node-disjoint, since they use different connected components of G− C.

For the other direction, assume that Z∪{r} is independent in M , and let Z = {v1, . . . , vp}.
Without loss of generality, we may assume that there are pairwise node-disjoint paths from
si to vi for i ∈ [p] together with a path from sp+1 to r. Let ti ∈ Ti be the first node on
the path starting from si for i ∈ [p+ 1]. Then {t1, . . . , tp+1} form a valid system of distinct
representatives for the cut C as each of these nodes are in a separate component of G−C. ◁

By Claim 8, a minimum-weight good cut can be determined using the greedy algorithm
for matroids, which is exactly what Algorithm 2 is doing. ◀

Algorithm 2 solves the special case when G is a tree. The classical (2−2/k) approximation
for Multiway Cut [5] uses 2-way cuts coming from the Gomory-Hu tree, and so does the
(2− 2/k) approximation for k-Cut [16]. We follow a similar approach in Algorithm 3. The
algorithm can be interpreted as taking the minimum edges in the GH tree as long as they
allow a valid system of representatives. The algorithm is presented as Algorithm 3.

▶ Theorem 9. Algorithm 3 computes a (2− 2/q) approximation to Single-to-Single on
arbitrary graphs.

Proof. Let OPT be the optimal solution with representatives t∗1, . . . , t∗q , and components
V ∗

1 , . . . , V
∗

q , where V ∗
q has the maximum weight boundary δ(V ∗

q ). Let also H be the GH tree
of G.

We transform OPT into a solution OPTGH on H, losing at most a factor of (2− 2/q).
We do this by repeatedly removing the minimum weight edge in E(H) that separates a pair
among the representatives t∗1, . . . , t∗q that are in the same component of H. More precisely,
we start with H0 = H, and take the minimum-weight edge e1 ∈ E(H0) separating some pair
of representatives t∗i , t∗j in OPT that are in the same component of H0. Define the edge
f1 = (t∗i , t∗j ). Then we construct H1 = H0 − e1, and repeat this process to get a sequence of
edges e1, e2, . . . , eq−1 and a tree of representative pairs F = ({t∗1, . . . , t∗q}, {f1, . . . , fq−1}).

Direct the edges of F away from t∗q , and reorder the edges such that f1 is the edge
going into t∗1, f2 into t∗2, and so on. Let ei be the edge of the GH tree corresponding to f i,
i.e., the minimum weight edge of the path between the two endpoints of f i, and let U(ei)
be the cut corresponding to ei for each i. Then the boundary of each component satisfies
w(δ(V ∗

i )) ≥ w(U(ei)), as δ(V ∗
i ) separates the two representatives in f i as well, and U(ei) is

the minimum-weight cut between these.
Let the solution OPTGH be

⋃
i∈[q−1] U(ei), ALG the cut found by the algorithm, ALGGH

the corresponding edges in the GH tree H, and wH the weight function on H. Then

w(ALG) ≤ wH(ALGGH) ≤ wH(OPTGH) =
q−1∑
i=1

w(U(ei)) ≤
q−1∑
i=1

w(δ(V ∗
i ))

≤ (1− 1/q)
q∑

i=1
w(δ(V ∗

i )) ≤ (2− 2/q)w(OPT ). ◀
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6 Fixed-to-Single, Some-to-Single, Some-to-Some, and Some-to-All
Problems

In this section, we combine the study of four problems, as the techniques are similar.

6.1 Hardness of approximation
All four have similar proofs of hardness of approximation, which we state here but leave the
proofs to appendix A for brevity.

▶ Theorem 10. For general q, Fixed-to-Single, Some-to-Single and Some-to-All
are at least as hard to approximate as Hitting Set.

We omit the Some-to-Some problem from Theorem 10 because it follows as a corollary
to Theorem 11, which states that it is equivalent to the known Steiner Multicut problem.
The conditional o(logn) inapproximability was already proved for Steiner Multicut in [15],
using similar instances as those in our proof of Theorem 10. The Some-to-Some problem
asks to find a cut such that each pair of candidate sets have at least one element in separate
components, where this choice can depend on the pair.

▶ Theorem 11. The Some-to-Some problem is equivalent to Steiner Multicut.

Proof. To reduce from Steiner Multicut, we are given q subsets X0, X1, . . . , Xq−1 of
nodes of a graph G, each of which needs to be cut into at least two components. We construct
a Some-to-Some instance on the same graph with 2q candidate sets T0, T1, . . . , T2q−1, where
Ti = X⌊i/2⌋ for 0 ≤ i ≤ 2q− 1. Then, for each j = 0 . . . q− 1, the condition that T2j must be
separated from T2j+1 ensures that there are two nodes t2j+1

2j , t2j
2j+1 ∈ Xj that are in different

components. In other words, the solution is a minimal cut that, once removed, divides each
set into at least two components. If the conditions of Some-to-Some hold for T2j and T2j+1
for any j, then they hold automatically for any other pair of candidate sets too, because once
a set has elements in two components, at least one of them will be in a different component
than some element of any given candidate set.

For the other direction, we are given q subsets T1, . . . , Tq of nodes of a graph G as a
Some-to-Some instance. We then make a Steiner Multicut instance with

(
q
2
)

vertex sets
indexed by pairs i, j ∈ [q]2 with i ̸= j. The set Xi,j will then be Ti ∪ Tj , which means any
valid Steiner Multicut solution C will split each of these sets into at least two components.
We claim C is a valid Some-to-Some solution as well. Let vi,j , ui,j ∈ Xi,j be in different
components of G \ C. Then one of the following cases must hold:
1. vi,j ∈ Ti and ui,j ∈ Tj . In this case, let tij := ui,j and tji := vi,j .
2. ui,j ∈ Ti and vi,j ∈ Tj . In this case, let tij := vi,j and tji := ui,j .
3. ui,j , vi,j ∈ Ti. Then either

(i) all of Tj is in the same component of G \ C as ui,j , in which case let tji := vi,j , and
set tij to an arbitrary element of Tj , or

(ii) some vertex w ∈ Tj is in a different component of G \C than ui,j , in which case let
tij := w, and tji := ui,j .

4. Similarly, if ui,j , vi,j ∈ Tj , then either
(i) all of Ti is in the same component of G \ C as ui,j , in which case let tij := vi,j , and

set tji to an arbitrary element of Ti, or
(ii) some vertex w ∈ Ti is in a different component of G \ C than ui,j , in which case let

tji := w, and tij := ui,j .
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In all cases above, tij is in a different component than tji on G \ C, so C is a valid Some-
to-Some solution. Any Some-to-Some solution is clearly also a solution for this Steiner
Multicut instance, so the optimal cut is the same for both. ◀

6.2 Fixed q

The techniques when q is fixed differ, suggesting that the problems themselves are quite
different, despite the apparent similarities.

Fixed Terminal

The Fixed-to-Single problem is slightly different from the others, as the goal here is to
choose representatives that need to be separated only from a fixed node s. In this case, the
problem can be solved efficiently.

▶ Proposition 12. For fixed q, Fixed-to-Single can be solved in polynomial time.

Proof. In this case, one can iterate through all possible choices of representatives, of which
we have at most nq, calculate a minimum two-way s− {ti : i ∈ [q]} cut for each, and then
take the best of all solutions. ◀

Some to single/some

The Some-to-Single and Some-to-Some problems both become Multicut instances
with a constant number of terminals in this case, which gives the following theorem:

▶ Theorem 13. For fixed q, there is an α-approximation to Some-to-Single and Some-
to-Some.

Proof. We will use the α-approximation to Multiway Cut on a polynomial number of
instances with fixed terminals. We begin with the Some-to-Single problem. In this
problem, the goal is to choose a single representative tj for each j ∈ [q] together with some
candidate tji ∈ Ti for each pair i ̸= j that are then separated by the cut.

When q is fixed, one can guess the representatives tji and tj to get a set of terminals S
together with some separation demands on them. The number of such terminals can be
bounded as |S| ≤ q2. A slightly more careful analysis shows that the number of different
tji nodes for a candidate set Ti can be bounded by two. Thus, we only have to guess three
representatives from each Ti, implying |S| ≤ 3q. Either way, the number of guesses for S is
polynomial in n. Each guess of S defines a minimum multicut problem since we know which
pairs of representatives have to be separated. We can compute an α-approximation to each
of these Multicut problems by enumerating all possible partitions of S (of which there are
exponentially many in q) that satisfy the multicut demands, collapsing the partitions into
fixed terminals, and calculating an α-approximating multiway cut for each.

For the Some-to-Some problem, again guess the representatives tji for each i, j ∈ [q], i ̸= j

to get a set of terminals S together with some separation demands on them. Since any
candidate set with terminals in different components already has at least one element in
a separate component for any other candidate set, the number of such terminals can be
bounded by |S| ≤ 2q. For each fixed S, we can find an α-approximation the same way as
above. ◀

Combining this approximation for Some-to-Some with Theorem 11 gives the current
best approximation for Steiner Multicut in the regime where the number of candidates
depends on n, and the number of sets is constant.
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Some to all

Finally, we consider the Some-to-All problem, which asks to find representatives tji ∈ Ti

for each pair i, j ∈ [q] and a minimum-weight cut C ⊆ E such that tji is separated from all
of Tj in G− C. The case for constant q uses the tool from Section 3.

▶ Theorem 14. There is an α-approximation for Some-to-All when q is fixed.

Proof. We guess all representatives tji ; there are at most nq2 possible choices, which is
polynomial if q is fixed. Note that we may assume that tji ̸= tℓj if i ̸= j, otherwise there is
obviously no solution. We also guess a valid partition V1, . . . , Vq1 of these representatives
into q1 components, where 2 ≤ q1 ≤ q2 (validity means that tji and tℓj are in different classes
of the partition if i ̸= j). The number of such partitions is exponential in q, but we can still
enumerate them when q is fixed (note that this is not a partition of V , but a partition of
the set of all chosen representatives, which is a vertex set of size at most q2). For such a
partition, the problem becomes an instance of (q1 + 1)-dimensional Lifted Cut with the
following labels.
a) If v ∈ Vk for some k ∈ [q1], then set ℓ(v) := {k}.
b) Otherwise, if v ∈ Tj , then we must ensure that the label cannot be any partition

containing some tji . In other words, set ℓ(v) := {1, 2, . . . , q1 + 1} \ {k : v ∈ Tj and tji ∈
Vk for some i, j}.

c) Finally, if v ∈ V \
⋃

i∈[q] Ti, then set ℓ(v) := [q1 + 1].
Conditions A and B of Lifted Cut are not difficult to verify. The solution to this problem
is a solution to Some-to-All. Indeed, consider the partition given by a solution to Lifted
Cut, which is an extension of the partition V1, . . . , Vq1 by condition a, with an additional
class for label q1 +1. Condition b then ensures, for a given tji , that the component of tji cannot
contain any element of Tj . Thus, Theorem 3 gives an α-approximation for Some-to-All as
well. ◀
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s

Figure 2 A picture of the reduction for Fixed-
to-Single from Hitting Set.

ss

Figure 3 A picture of the reduction from
Fixed-to-Single to Some-to-Single.

Proof. Given an instance s, T1, . . . , Tq of Fixed-to-Single, we create an instance of Some-
to-Single with T ′

i := Ti ∪ {s} for i ∈ [q], and T ′
q+1 := {s}; see Figure 3 for an example.

Given a solution to the Fixed-to-Single instance, we can obtain a solution of the same
weight to the Some-to-Single instance by keeping the representatives ti for i ∈ [q], setting
tq+1 = tiq+1 := s for i ∈ [q], tq+1

i := ti for i ∈ [q], and tji := s for i, j ∈ [q], i ̸= j.
For the other direction, we observe that each tj (j ∈ [q]) must be separated from s in a

solution of the Some-to-Single instance. Thus, we obtain a solution with the same weight
for the Fixed-to-Single if we keep the same representatives tj (j ∈ [q]). ◀

▶ Proposition 17. For general q, Some-to-All is at least as hard to approximate as
Fixed-to-Single.

Proof. Given an instance of Fixed-to-Single with sets T1, . . . , Tq on a graph G = (V,E)
where q ≥ 2, we construct a Some-to-All instance as follows. We add additional nodes V0 =
{s1, s2, . . . , sq}, G′ = (V ∪V0, E), T ′

i = Ti∪{si} for i = 1 . . . q, and T ′
q+1 = {s, s1, s2, . . . , sq};

see Figure 4 for an example.

s

s1 s2s2 s3 s4

Figure 4 A picture of the reduction from Fixed-to-Single. The candidate set T1 is in yellow,
T2 in brown, T3 in green, T4 in blue, and T5 in red.

Given a Fixed-to-Single solution with representatives t∗1, . . . , t∗q , we get a solution to
this instance as follows: tjq+1 = s(j+1) mod q for j ∈ [q + 1]; if i ∈ [q], then tq+1

i = t∗i , and
tji = si for j ∈ [q]. Then the same cut will separate each tji from all of T ′

j , and have the same
weight.

Given an optimal solution to the Some-to-All instance, we can assume without loss of
generality that tji = s(j+1) mod q when i = q + 1, and tji = si when i ̸= q + 1, j ̸= q + 1, as
these are separated from the corresponding T ′

j in G′. Then we can get a Fixed-to-Single
solution by setting tj = tq+1

j for all j ∈ [q] and removing the same edges. This reduction
preserves approximation, as the solutions have the same weight. ◀
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B Details of the Threshold Algorithms

For completeness, we include a detailed description of the α-approximation algorithm for lifted
cut. This is just a collection of the results of Sharma and Vondrák [18], but understanding
this is necessary for the proof of Theorem 3. The content of this section can be found in
more detail in [18], the only modifications we make are to perform the rounding in k + 1
dimensions and make more clear the role of the (k + 1)st vertex.

First we describe the three threshold rounding schemes: Single Threshold, Descending
Thresholds, and Independent Thresholds. These are described in Algorithms 4, 5, and
6, respectively. Each scheme is given a solution to LIFT-LP, and rounds it to an integer
solution by assigning vertices to terminals. The Single Threshold Scheme takes as input
some distribution with probability density ϕ, Descending Thresholds some distribution with
density ψ, and Independent Thresholds with density ξ. Finally, these schemes are combined
with appropriate parameters along with Algorithm 1 according to Algorithm 7, which takes
additionally parameters b, p1, p2, p3, p4 ∈ [0, 1], along with some probability density ϕ.

Algorithm 4 The Single Threshold Rounding Scheme.

1: Choose threshold θ ∈ [0, 1) with probability density ϕ(θ).
2: Choose a random permutation σ of [k].
3: for all i ∈ [k] do
4: For any unassigned u ∈ V with xu

σ(i) ≥ θ, assign u to terminal σ(i).
5: end for
6: Assign all remaining unassigned vertices to terminal k + 1

Algorithm 5 Descending Thresholds Rounding Scheme.

1: For each i ∈ [k], choose threshold θi ∈ [0, 1) with probability density ψ(θ).
2: Choose a random permutation σ of [k] such that θσ(1) ≥ θσ(2) ≥ . . . ≥ θσ(k).
3: for all i ∈ [k] do
4: For any unassigned u ∈ V with xu

σ(i) ≥ θσi
, assign u to terminal σ(i).

5: end for
6: Assign all remaining unassigned vertices to terminal k + 1

Algorithm 6 Independent Threshold Rounding Scheme.

1: For each i ∈ [k], choose independently threshold θi ∈ [0, 1) with probability density ξ(θ).
2: Choose a uniformly random permutation σ of [k].
3: for all i ∈ [k] do
4: For any unassigned u ∈ V with xu

σ(i) ≥ θσ(i), assign u to terminal σ(i).
5: end for
6: Assign all remaining unassigned vertices to terminal k + 1

The following three Lemmas are key to the analysis of Algorithm 7. The cut density
for an edge of type (i, j) located at (u1, u2, . . . , uk+1) ∈ ∆k+1 is the limit of the probability
that the given threshold scheme assigns (u1, u2, . . . , uk+1) and (u1 + ε, u2 − ε, . . . , uk+1) to
different terminals, normalized by ε as ϵ→ 0.
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Algorithm 7 The Sharma-Vondrák Rounding Scheme.

1: With probability p1, choose the Kleinberg-Tardos Rounding Scheme (Algorithm 1).
2: With probability p2, choose the Single Threshold Rounding Scheme (Algorithm 4) with

probability density ϕ.
3: With probability p3, choose the Descending Threshold Rounding Scheme (Algorithm 5),

where the thresholds are chosen uniformly in [0, b].
4: With probability p4, choose the Independent Threshold Rounding Scheme (Algorithm 6),

where the thresholds are chosen uniformly in [0, b].

▶ Lemma 18 (Lemma 5.1 in [18]). Given a point (u1, u2, . . . , uk+1) ∈ ∆k+1 and the parameter
b of Algorithm 7, let a = 1−ui−uj

b . If a > 0, the cut density for an edge of type (i, j), where
i ̸= j are indices in [k + 1] located at (u1, u2, . . . , uk+1) under the Independent Thresholds
Rounding Scheme with parameter b is at most

2(1−e−a)
ab − (ui+uj)(1−(1+a)e−1)

a2b2 , if all the coordinates u1, u2, . . . , uk+1 are in [0, b].
(a+e−a−1)

a2b , if ui ∈ [0, b], uj ∈ (b, 1] and uℓ ∈ [0, b] for all other ℓ ∈ [k] \ {i, j}.
1
b −

(ui+uj)
6b2 , if ui, uj ∈ [0, b] and uℓ ∈ (b, 1] for some other ℓ ∈ [k] \ {i, j}.

1
3b , if ui ∈ [0, b], uj ∈ (b, 1] and uℓ ∈ [0, b] for some other ℓ ∈ [k] \ {i, j}.
0, if ui, uj ∈ (b, 1].

For a = 0, the cut density is given by the limit of the expressions above as a→ 0.

▶ Lemma 19 (Lemma 5.2 in [18]). For an edge of type (i, j) located at (u1, u2, . . . , uk+1),
where i ̸= j are indices in [k + 1], the cut density under the Single Threshold Rounding
Scheme is at most

1
2ϕ(ui) + ϕ(uj), if uℓ ≤ ui ≤ uj for all other ℓ ∈ [k] \ {i, j}.
1
3ϕ(ui) + ϕ(uj), if ui < uℓ ≤ uj for some other ℓ ∈ [k] \ {i, j}.
1
2ϕ(ui) + ϕ(uj), if ui ≤ uj < uℓ for some other ℓ ∈ [k] \ {i, j}.

▶ Lemma 20 (Lemma 5.3 in [18]). For an edge of type (i, j) located at (u1, u2, . . . , uk+1),
where i ̸= j are indices in [k + 1], the cut density under the Descending Thresholds Rounding
Scheme is at most

(1−
∫ uj

ui
ψ(u)du)ψ(ui) + ψ(uj), if uℓ ≤ ui ≤ uj for all other ℓ ∈ [k] \ {i, j}.

(1 −
∫ uj

ui
ψ(u)du)((1 −

∫ uℓ

ui
ψ(u)du))ψ(ui) + ψ(uj), if ui < uℓ ≤ uj for some other ℓ ∈

[k] \ {i, j}.
(1−

∫ uj

ui
ψ(u)du)(1−

∫ uℓ

ui
ψ(u)du)ψ(ui) + (1−

∫ uℓ

uj
ψ(u)du)ψ(uj), if ui ≤ uj < uℓ for some

other ℓ ∈ [k] \ {i, j}.

The proof for each of these Lemmas is exactly as in [18], save for one additional trivial
observation: the cut density of an edge of type (i, k + 1) is at most that of an edge of type
(i, j) for any j ̸= i, j ̸= k + 1. This is because the (k + 1)st terminal is considered last, and
has no threshold of its own, and therefore cannot increase the separation probability. With
these Lemmas in hand, Theorem 5.6 of [18] shows, with a specific choice of parameters, that
Algorithm 7 is a 1.2965-approximation to Lifted Cut as well.
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Abstract
Detecting location-correlated groups in point sets is an important task in a wide variety of applications
areas. In addition to merely detecting such groups, the group’s shape carries meaning as well. In
this paper, we represent a group’s shape using a simple geometric object, a line segment. Specifically,
given a radius r, we say a line segment is representative of a point set P of n points if it is within
distance r of each point p ∈ P . We aim to find the shortest such line segment. This problem is
equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an
algorithm to find the shortest representative segment in O(n log h + h log3 h) time, where h is the
size of the convex hull of P . Additionally, we show how to maintain a stable approximation of the
shortest representative segment when the points in P move.
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1 Introduction

Studying location-correlated groups or clusters in point sets is of interest in a wide range of
research areas. There are many algorithms and approaches to find such groups; examples
include the well-known k-means clustering [23] or DBSCAN [18]. In addition to the mere
existence of such groups, the group’s characteristics can carry important information as
well. In wildlife ecology, for example, the perceived shape of herds of prey animals contains
information about the behavioral state of animals within the herd [30]. Since shape is an
abstract concept that can get arbitrarily complex, it is often useful to have a simplified
representation of group shape that can efficiently be computed. The simplest shape (besides
a point) that may represent a group is a line segment, suggesting that the group is stretched
in a single direction.

When the points move in the plane, as is the case for animals, the representing line
segment may change orientation and length. Also, it may disappear if the shape of the points
is no longer captured well by a line segment. Conversely, it can also appear when the points
form a segment-like shape again.
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26:2 Capturing the Shape of a Point Set with a Line Segment

Let us concentrate on the static version of the problem first. There are a few simple ways
to define a line segment for a set of points. We can use the width of the point set to define a
narrowest strip, put tight semi-circular caps on it, and use the centers of these semi-circles as
the endpoints of the line segment. We can also use the focal points of the smallest enclosing
ellipse, and use them as the endpoints. We can also use a maximum allowed distance from
the points to the line segment, and use the shortest line segment possible. The first and
third option are based on a hippodrome shape (the Minkowski sum of a line segment and a
disk). We note that the second and third option still need a threshold distance to rule out
that points are arbitrarily far from the defining line segment. In particular, the case that a
line segment is not a suitable representation should exist in the model, and also the case
where the line segment can become a single point. There are multiple other options besides
the three given, for example, by using the first eigenvector of the points, or the diameter.

In this paper we study the model given by the third option: given a set P of n points
in general position, we want to find the shortest line segment q1q2 such that all points
are within distance r. This model has several advantages: (i) It is a simple model. (ii) It
naturally includes the case that no line segment represents the points, or a single point already
represents the points. (iii) It guarantees that all points are close to the approximating line
segment. (iv) It has desirable properties when the points move: in the first two options, there
are cases where the points intuitively remain equally stretched in the direction of the line
segment, but points moving orthogonally away from it yields a shorter(!) line segment. This
issue does not occur in the chosen model. Moreover, it was studied before in computational
geometry, and we can build on existing algorithmic methods and properties.

The first algorithm published that solves the optimization version of the static problem (in
fact, the first option) uses O(n4 log n) time, for a set of n points [24]. This was improved by
Agarwal et al. [1] to O(n2α(n) log3 n), where α(n) is the extremely slowly growing functional
inverse of Ackermann’s function. The first subquadratic bound was given by Efrat and
Sharir [17], who presented an O(n1+ε) time algorithm, for any constant ε > 0. They use
the fixed-radius version as a subroutine and then apply parametric search. Their fixed-
radius algorithm already has the bound of O(n1+ε), as it uses vertical decompositions of
a parameter space in combination with epsilon-nets. They remark that their methods can
solve the shortest stabber problem for unit disks within the same time, which is our problem.

In this paper we present an improved static result and new kinetic results. We solve the
static version in O(n log3 n) time by exploiting the geometry of the situation better, which
allows us to avoid the use of parametric search and epsilon-nets. Our new algorithm uses a
rotating calipers approach where we predict and handle events using relatively simple data
structures. We still use a key combinatorial result from [17] in our efficiency analysis. For
the kinetic problem, we are interested in developing a strategy to maintain a “stable” line
segment that does not frequently appear and disappear, and whose endpoints move with
bounded speed. To accomplish this, we must relax (approximate) the radius around the line
segment in which points can be. We show that with constant speeds and a constant factor
approximation in radius, the endpoints of the line segment move at a speed bounded by a
linear function in r, while also avoiding frequent (dis)appearances of the line segment. These
results complement recent results on stability.

Related work. A number of shape descriptors have been proposed over the years. A few
popular ones are the alpha shape of a point set [15] and the characteristic shape [12], both of
which generate representative polygons. Another way to generate the shape of a point set is
to fit a function to the point set [6, 22, 32]. Bounding boxes and strips are much closer related
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Figure 1 The line segment (blue) must hit every circle of radius r, centered at the points in P .

to the line segment we propose. In the orientation of the first eigenvector, bounding boxes
(and strips) have been shown to not capture the dimensions of a point set well [11]. Optimal
bounding boxes and strips, of minimum area and width, respectively, align with a convex hull
edge and can be computed in linear time given the convex hull [19, 31]. Problems of finding
one or more geometric objects that intersect a different set of geometric objects are known
as stabbing problems [16], and several variants have been studied [5, 10, 29]. As mentioned,
stabbing a set of unit circles with the shortest line segment was studied in [17]. The inverse
variant, line segments stabbed by one or more circles, has also been studied [7, 25].

Recently, considerable attention has been given to stability of structures under the
movement of a set of points or motion of other objects. Stability is a natural concern in,
for example, (geo)visualization and automated cartography: In air traffic control planes
may be visualized as labeled points on a map, and the labels are expected to smoothly
follow the locations of the moving points [8]. Similarly, for interactive maps that allow, for
example zooming and panning, labels should not flicker in and out of view [2, 20, 21, 28]. In
computational geometry, only the stability of k-center problems was studied [3, 9, 13, 14],
until Meulemans et al. introduced a framework for stability analysis [26]. Applying the
framework to shape descriptors, they proved that an O(1)-approximation of an optimal
oriented bounding box or strip moves only a constant-factor faster than the input points [27].

2 Computing the Shortest Representative Segment

Given a set P of n points and a distance bound r, we show how to construct the shortest
segment q1q2 with maximum distance r to P . See Figure 1 for an example. Omitted proofs
can be found in the full version.

Our algorithm uses the rotating calipers approach [31]. We start by finding the shortest
representative segment for fixed orientation α, after which we rotate by π while maintaining
the line segment, and return the shortest one we encounter. Note that, even though a
representative segment does not exist for every orientation, we can easily find an initial
orientation α for which it does exist using rotating calipers; these are the orientations at
which the rotating calipers have width ≤ 2r. Although our input point set P can be of any
shape, the following lemma shows that it suffices to consider only its convex hull CH(P ).

▶ Lemma 1. If a line segment q1q2 intersects all circles defined by the points in the convex
hull CH(P ), then q1q2 also intersects all circles defined by the points in P .

We can compute CH(P ) in O(n log h) time, where h is the size of the convex hull [4].
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26:4 Capturing the Shape of a Point Set with a Line Segment

τ1
τ2

Figure 2 Two extremal tangents τ1 and τ2 for horizontal orientation α. The shortest line segment
of orientation α that intersects all circles, ends at the boundary of the gray regions.

2.1 Fixed orientation
We describe how to find the shortest representative segment with fixed orientation α. Using
rotating calipers [31], we can find all orientations in which a representative segment exists,
and pick α such that a solution exists. For ease of exposition and without loss of generality,
we assume α to be horizontal. Let the left and right half-circle of a circle C be the half-circle
between π/2 and 3π/2 and between 3π/2 and 5π/2, respectively. Lemma 1 permits us to
consider only points of P on the convex hull, thus for the remainder of this paper we use CP

to indicate the set of circles of radius r centered at the points of P in CH(P ).
Observe that every horizontal line that lies below the bottom-most top horizontal tangent

τ1 and above the top-most bottom horizontal tangent τ2 of all circles crosses all circles (see
Figure 2). If τ1 lies below τ2, then there exists no horizontal line that crosses all circles.

To place q1q2 in the strip between τ1 and τ2, we can define regions R1, R2 in which
endpoints q1 and q2 must be placed such that q1q2 intersects all circles (see Figure 2).

The region R1 is defined as the set of points below or on τ1 and above or on τ2 and right or
on the right-most envelope of all left half-circles. The region R2 is defined analogously using
the left envelope of right half-circles. We use S1 and S2 to denote the envelope boundary of
R1 and R2 respectively. Note that S1 and S2 are convex and consist of circular arcs from
the left and right half-circles respectively. If R1 and R2 intersect, then we can place a single
point in their intersection at distance at most r from all points in P . Otherwise, note that q1
and q2 must be on the convex sequences S1 and S2, respectively; otherwise, we can move the
endpoint onto the convex sequence, shortening q1q2 and still intersecting all circles.

We will show that we can compute S1 and S2 in O(h) time. First, we show that the
half-circles on a convex sequence appear in order of the convex hull.

▶ Lemma 2. The order of the circular arcs in S1 or S2 matches the order of their corres-
ponding centers in CH(P ).

Now we can compute the convex sequences in linear time, given the tangents τ1 and τ2,
which can easily be found in linear time.

▶ Lemma 3. Given tangents τ1 and τ2, and CH(P ), we can construct S1 and S2 in O(h).

Proof. We assume that a solution exists, which can easily be checked in O(h) time. We
describe only the construction of S1, as S2 can be constructed symmetrically. Without loss
of generality, assume that τ1 denotes the start of S1 in clockwise order. We can find the
first arc on S1 by checking all intersections between τ1 and the relevant half-circles, and
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τ1

τ2

Figure 3 Two convex sequences between τ1 and τ2. There are multiple points on the left convex
sequence that have the same tangent as the right yellow vertex. Still, there is only one line segment
in horizontal orientation for which the tangents of its endpoints are equal (blue).

identifying the most extremal intersection in O(h) time (see Figure 2) We add the part of
the circle that lies between τ1 and τ2 to S1. We then process each point pi along the convex
hull in clockwise order from the point defining our initial arc.

Next, let ⌢
c 1, . . . ,

⌢
c k denote the circular arc pieces for S1 constructed so far. Let pi be

the next point on the convex hull that we process. Let ci denote the left half-circle centered
at pi and let ck be the support left half-circle of ⌢

c k. We find the intersection between ci

and ck. If there is no intersection, then ci must lie entirely to the left of ck and it cannot
contribute to S1. If the intersection point is below τ2 then between τ1 and τ2 we have that
ci lies left of ck and it cannot contribute to S1. If the intersection point lies within ⌢

c k then
we update S1 to switch at the intersection point from ck to ci as then ci must lie right of ck

below the intersection point. If the intersection point lies above ⌢
c k then the entirety of ⌢

c k

lies to the left of ci, therefore ⌢
c k cannot contribute to S1 and we can discard ⌢

c k. We then
continue by comparing ci to ck−1.

Whenever a half-circle is possibly added it is compared to at most O(|S1|) arcs. However,
when the half-circle is compared to i arcs, then i − 1 arcs would be removed from S1. Thus,
by an amortization argument, this happens O(h) times. ◀

Next, we must place q1 and q2 on S1 and S2, respectively, such that q1q2 is shortest. We
show that q1q2 is the shortest line segment of orientation α when the tangents of S1 at q1
and S2 at q2 are equal. Vertices on S1 and S2 have a range of tangents (see Figure 3).

▶ Lemma 4. Let S1 and S2 be two convex sequences of circular arcs, and let q1 and q2
be points on S1 and S2, respectively, such that line segment q1q2 has orientation α. If the
tangent on S1 at q1 is equal to the tangent on S2 at q2, then q1q2 is minimal.

Observe that the length of q1q2 is unimodal between τ1 and τ2. We can hence binary
search in O(log h) time for the optimal placement of q1 and q2. By Lemmata 3 and 4 we can
compute the shortest representative segment of fixed orientation α in O(h) time.

2.2 Rotation
After finding the shortest line segment for a fixed orientation α, as described in the previous
section, we sweep through all orientations α while maintaining τ1, τ2, S1, S2, and the shortest
representative segment q1q2 of orientation α. We allow all of these maintained structures to
change continuously as the orientation changes, and store the shortest representative segment
found. Any time a discontinuous change would happen, we trigger an event to reflect these
changes. We pre-compute and maintain a number of certificates in an event queue, which
indicate at which orientation the next event occurs. This way we can perform the continuous
motion until the first certificate is violated, recompute the maintained structures, repair the
event queue, and continue rotation.
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26:6 Capturing the Shape of a Point Set with a Line Segment

We distinguish five types of events:
1. q1 or q2 moves onto/off a vertex of S1 or S2;
2. τ1 or τ2 is a bi-tangent with the next circle on the convex hull;
3. τ1 and τ2 are the same line;
4. τ1 or τ2 is tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or S2;
5. τ1 or τ2 is not tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or S2.

Since the shortest line segment q1q2 in orientation α is completely determined by τ1, τ2,
S1, and S2, the above list forms a complete description of all possible events. Thus, we
maintain at most two certificates for events of type 1 (one for each convex sequence) and 2
(one for each tangent), and a single type-3 certificate. Additionally, there must be exactly
one type-4 or type-5 certificate for each endpoint of S1 and S2, so four in total. These are
stored in a constant-size event queue Q, ordered by appearance orientation. Insert, remove,
and search operations on Q can hence be performed in O(1) time.

We will describe below how all events over a full rotational sweep can be handled in
O(h log3 h) time in total. Combined with the computation of the convex hull of P this yields
the following theorem. Note that in the worst case P is in convex position, and n = h.

▶ Theorem 5. Given a point set P consisting of n points and a radius r, we can find the
shortest representative segment in O(n log h + h log3 h) time, where |CH(P )| = h.

Event handling. In the following descriptions, we assume that an event happens at orienta-
tion α, and that ε is chosen such that no other events occur between α −ε and α +ε. We also
assume that no two events happen simultaneously, which is a general position assumption.
We describe, for each event type, the time complexity of computing a new certificate of that
type, the time complexity of resolving the event, and the number of occurrences.

(1) q1/q2 moves onto/off of a vertex of S1/S2. We describe, without loss of generality,
how to handle the event involving q1 and S1; the case for q2 and S2 is analogous. See Figure 4
for an example of this event. First, observe that we can compute certificates of this type in
O(1) time, simply by walking over S1 to find the next vertex/arc q1 should move onto.

▶ Observation 6. We can construct a new certificate of type 1 in O(1) time.

Observe that, since vertices of S1 cover a range of tangents, there are intervals of
orientations at which q1 remains at a vertex of S1. As such, we describe two different cases
for this event: q1 moves onto or off a vertex of S1.

If q1 was moving over an arc of S1 at α − ε and encounters a vertex at α, then the
movement path of q1 is updated to remain on the encountered vertex. Additionally, we place
a new type-1 certificate into the event queue that is violated when q1 should move off the
vertex, when the final orientation covered by the vertex is reached.

If q1 is at a vertex at α−ε and orientation α is the final orientation covered by that vertex,
then the movement path of q1 must be updated to follow the next arc on S1. Additionally,
we place a new type-1 certificate into the event queue that is violated when q1 encounters
the next vertex, at the orientation at which this arc of S1 ends.

▶ Lemma 7. Throughout the full π rotation, type-1 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(1) time.
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α− ε α α+ ε

Figure 4 When q1/q2 is at a vertex of S1/S2, it stops moving.

α− ε α α+ ε

Figure 5 When the defining circle of τ1/τ2 changes, τ1/τ2 is parallel to a convex hull edge.

(2) τ1 or τ2 is bi-tangent with the next circle on the convex hull. We describe, without
loss of generality, how to handle the event involving τ1; handling τ2 is analogous. See Figure 5
for an illustration. First, observe that we can compute certificates of this type in O(1) time,
since these certificates depend only on the orientation of the next convex hull edge.

▶ Observation 8. We can construct a new certificate of type 2 in O(1) time.

When τ1 is a bi-tangent of two circles defined by their centers u, v ∈ P then, by definition
of τ1, u and v must both be the extremal points in the direction θ perpendicular to α.
Therefore, (u, v) must be an edge on the convex hull. Suppose that, without loss of generality,
u was the previous extremal vertex in direction θ −ε, then v is extremal in direction θ +ε. As
such, τ1 belongs to u at α − ε, and to v at α + ε. When this happens, we insert a new type-2
certificate into the event queue that is violated at the orientation of the next convex hull
edge. Additionally, we must recompute the certificates of type 3, 4 and 5 that are currently
in the event queue, since these are dependent on τ1.

▶ Lemma 9. Throughout the full π rotation, type-2 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(log2 h) time.

(3) τ1 and τ2 are the same line. When this event takes place, τ1 and τ2 are the inner
bi-tangents of their two respective defining circles. See Figure 6 for an example. First,
observe that we can compute certificates of this type in O(1) time by simply finding the
inner bi-tangent of the circles corresponding to τ1 and τ2.

▶ Observation 10. We can construct a new certificate of type 3 in O(1) time.

We distinguish two different cases for this event: either there is a solution at α − ε and
no solution at α + ε, or vice versa.

If there was a solution at α − ε and there is none at α + ε, we simply stop maintaining
q1q2, S1 and S2 until there exists a solution again. As such, we remove all type-1, type-5
and type-4 certificates from the event queue and place a new type-3 certificate into the event
queue that is violated at the next orientation where τ1 and τ2 are the same line.
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26:8 Capturing the Shape of a Point Set with a Line Segment

α− ε α α+ ε

Figure 6 When τ1 and τ2 are the same line, they are an inner bi-tangent of their two defining circles.

If there was no solution at α − ε and there is a solution at α + ε, we must recompute S1,
S2, and q1q2 at orientation α. At orientation α, S1 and S2 are single vertices where τ1 and τ2
intersect the extremal half-circles of the arrangement. Then, q1q2 is the line segment between
these single vertices of S1 and S2. We place new type-1, type-4 and type-5 certificates into
the event queue reflecting the newly found S1, S2, q1 and q2. Additionally, we insert a new
type-3 certificate that is violated at the next orientation where τ1 and τ2 are the same line.

▶ Lemma 11. Throughout the full π rotation, type-3 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(log2 h) time.

(4) τ1 or τ2 is tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or S2.
We describe, without loss of generality, how to handle the event involving τ1 and S1; the
case for τ2 and S2 is analogous. See Figure 7 for an example of this event. First, observe
that we can compute certificates of this type in O(1) time: Let Ci be the circle to which
τ1 is tangent. Then, to construct a certificate, we find the orientation at which τ1 hits the
intersection point of Ci and S1. Note that this intersection is part of S1 or will appear at τ1.

▶ Observation 12. We can construct a new certificate of type 4 in O(1) time.

Let vertex v be the vertex of the convex chain S1 that is intersected by τ1 at orientation α.
Then either vertex v is a vertex of S1 at orientation α − ε but not at α + ε, or vice versa.

In the prior case, at orientation α the arc to which τ1 is a tangent is completely removed
from S1. Vertex v becomes the endpoint of S1 and starts moving along the next arc of S1. If
the affected arc or vertex appeared in a type-1 certificate in the event queue, it is updated to
reflect the removal of the arc and the new movement of the vertex. Additionally, we place a
new type-5 certificate into the event queue.

In the latter case, at orientation α an arc of the incident circle to τ1 needs to be added to
S1. If the arc that was previously the outer arc of S1 appeared in a type-1 certificate in the
event queue, it may need to be updated to reflect the addition of the new arc. Additionally,
we place a new type-4 certificate into the event queue.

▶ Lemma 13. Throughout the full π rotation, type-4 events happen at most O(h) times, and
we can resolve each occurrence of such an event in O(log2 h) time.

(5) τ1 or τ2 is not tangent to S1 or S2 and rotates over a (prospective) vertex of S1 or
S2. We describe, without loss of generality, how to handle the event involving τ1 and S1;
the case for τ2 and S2 is analogous. See Figure 8 for an example of this event. The time
complexity of constructing a certificate of this type is stated in the following lemma.

▶ Lemma 14. We can construct a new certificate of type 5 in O(log2 h) time.
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α− ε α α+ ε

Figure 7 When τ1/τ2 hits an intersection of its defining circle that is also on S1/S2, an arc is
removed from S1/S2.

α− ε α α+ ε

Figure 8 When τ1/τ2 hits an intersection of two circles, an arc needs to be added to S1/S2.

Additionally, we get the following bounds on handling type-5 events.

▶ Lemma 15. Throughout the full π rotation, τ1 or τ2 hits a vertex of S1 or S2 at most
O(h log h) times, and we handle each occurrence of this event in O(log2 h) time.

We prove Lemmata 14 and 15 using an additional data structure in the following section.

2.3 Finding and maintaining the convex sequence
In this section, we describe an additional data structure necessary to maintain the convex
sequences S1 and S2 efficiently. We can use this data structure to construct and handle
violations of type-5 certificates efficiently, as well as to find new starting positions of S1 and
S2 after a type-3 event.

Let p1, . . . , ph be the vertices of the convex hull in clockwise order. At a given orientation α,
let pi be the point corresponding to the circle Ci to which τ1 is tangent. We use vτ to denote
the intersection point between τ1 and S1, if it exists, which is simultaneously an endpoint of
S1. Let pj be the point corresponding to the circle Cj on which vτ is located. This implies
that the arc on S1 intersected by τ1 belongs to circle Cj . Then, during our rotational sweep,
vτ is moving over Cj . A type-5 event takes place when vτ hits the intersection of Cj with
another circle Ck corresponding to point pk.

If, before a type-5 event, the arc of Cj on S1 was shrinking due to the movement of vτ ,
then Cj is fully removed from S1 at the event, and vτ continues moving over S1. Constructing
the certificate in this case is very easy, since all we need to do is walk over S1 from vτ to
find the next vertex. As such, for the remainder of this section, we consider only the more
complicated type-5 event, where the arc of Cj on S1 is growing due to the movement of vτ .

In that case, when the type-5 event happens, an arc of Ck is added to S1, and vτ starts
moving over Ck instead of Cj . As such, to construct a type-5 certificate, we must find the
intersection between Cj and another circle Ck belonging to a point pk ∈ P , such that the
intersection between Cj and Ck is the first intersection hit by vτ . To do this, we will first
state some characteristics of Ck and pk.
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pi

pk′

vτ

pj

pk

Figure 9 Point pk is placed on the red arc, which is a subset of the (blue dashed) convex
semi-circle centered at vτ , and disjoint from the (blue solid) concave semi-circle centered at vτ .

First, observe that finding the first intersecting circle Ck of Cj is not necessarily enough.
We are only interested in the semi-circles of all circles in CP that have the same “opening
direction” as the convex chain S1 for a given orientation α. As such, let the convex semi-circle
of a given circle C be the semi-circle of C that is convex with respect to S1. Conversely, let
the concave semi-circle of C be the opposite semi-circle of C. Then, circle Ck appears on S1
after a hit by vτ at orientation α if vτ is on the convex semi-circle of Ck at orientation α. If
this is not the case, Ck should be skipped. We show that, for this reason, we never have to
consider points pl such that l < i or j < l when constructing a type-5 certificate.

▶ Lemma 16. Let Ci be the circle defining τ1, and let Cj be the circle on which vτ is located,
for i ̸= j. Let Ck be the first circle hit by vτ during rotation at orientation α. If k < i or
j < k, then at orientation α, vτ lies on the concave semi-circle of Ck with orientation α.

Proof. Without loss of generality assume pi is positioned left of pj , then assuming that k < i

or j < k, pk must lie below the line through pi and pj (since i < j and the points are ordered
in clockwise order). See Figure 9 for the following construction.

Consider point pk′ placed on the line through pi and pj , such that vτ could be the bottom
intersection of Cj and a radius-r circle centered at pk′ . Let pk be a point placed on the circle
of radius r centered at vτ . If pk is placed on the other side of the line through vτ and pj ,
compared to pk′ , then vτ would enter Ck at orientation α, which does not induce an event.
As such, pk must be on the same side of the line through vτ and pj as pk′ . Additionally,
since k < i or j < k, pk must be below the line through pi and pj .

It is easy to see that all points on the convex semi-circle of vτ will have vτ on their
concave semi-circle. Since the arc on which pk is placed is a strict subset of the concave
semi-circle of vτ , any placement of pk must have vτ on its concave semi-circle. ◀

Lemma 16 implies that, while constructing a type-5 certificate, we need to consider only
candidate points pk such that i < k < j. Note that, if i = j, we get a type-4 event. Then, all
that is left is to find the first circle Ck with i < k < j that is intersected by vτ as it moves
over Cj . To this end, we describe a data structure that allows us to perform a circular ray
shooting query along Cj from the orientation at which the certificate must be constructed.

Data structure. Our data structure is essentially a balanced binary tree T on the vertices
of the convex hull in clockwise order, where each node stores an associated structure (see
Figure 10). For any i, let Di be the disk bounded by circle Ci. Suppose a node in T is
the root of a subtree with pi, . . . , pj in the leaves. Then its associated structure stores the
boundary of

⋂
i≤l≤j Dl as a sorted sequence of circular arcs. Given a range (i, j) we can
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pi pj

ℓ

ℓ

ℓ

ℓ

ℓ

Figure 10 A schematic representation of the data structure T and a query with ray ℓ.

query this data structure with a (circular) ray in O(log2 h) time to find the first intersection
of the ray with the boundary of

⋂
i≤l≤j Dl. A more detailed description of the data structure

can be found in the full version of this paper, along with the query algorithms needed to
handle certain events and find new certificates.

Event handling. Whenever a certificate of type 5 is violated at orientation α, it means
some circle Ck is hit by vτ at orientation α. It is still possible, however, that this hit happens
on the concave semi-circle of Ck. In that case, Ck should not be added to S1, and vτ should
simply continue moving over its original trajectory. We call these events, where a type-5
certificate is violated but S1 is not updated, internal events. To handle an internal event, we
merely need to construct another new type-5 certificate and continue our rotational sweep.
In this case, however, we do not have to search the entire range pi, . . . , pj when constructing
a new certificate, as shown in the following lemma.

▶ Lemma 17. Let pi be the point corresponding to τ1, and let vτ be at the intersection of
circles Cj and Ck, where Cj is the circle that defines the current trajectory of vτ and where
vτ is on the concave semi-circle of Ck. Then if the next circle hit by vτ is Cl for i < l < k,
this circle is hit on its concave semi-circle.

Proof. Let Cl be the next circle hit by vτ for i < l < k, and see Figure 11 for the following
construction. Since vτ is on the concave semi-circle of pk, pk must be on the convex semi-circle
of vτ . Furthermore, as Ck was hit by vτ , pk must lie on the same side of the line through pj

and vτ as pi. Let the endpoint of the concave semi-circle of vτ that lies clockwise from pk

be denoted vc, and observe that d(pk, pj) > d(vc, pj), where d(a, b) denotes the Euclidean
distance between a and b. Additionally, since we consider only points on the convex hull,
point pl must lie above line pipk but below line pkpj , resulting in a cone with its apex at pk.

Every point in this cone is further away from pj than pk: Since vτ is part of S1, placing
q1 at vτ must yield a valid solution for q1q2. This means that all points must be in the
Minkowski sum of a radius r disc and the ray with orientation α originating from vτ , and
hence pk lies below the line vcpi (see Figure 12). Finally, pj lies on the concave semi-circle
around vτ , and pk lies on the convex semi-circle around vτ , which shows that the cone lies
on the far side of pk with respect to pj . This implies that d(pl, pj) > d(pk, pj).
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pi

pj
pk

vτ

vc

Figure 11 pl must be located in the gray cone.

pi

pj

pk
vτ

Figure 12 All points in CH(P ) must be in the blue shaded area. When an internal event happens,
the red semi-circle is a witness that (pk, pj) is conjugate.

During our monotone rotational sweep, vc must continuously move closer to pj as we
continue our sweep. Therefore, when vτ intersects Cl, we must have d(pl, pj) > d(vc, pj):
This directly implies that vc must lie clockwise from pl on the radius r circle centered at vτ .
Thus, vτ lies on the concave semi-circle of Cl. ◀

Lemma 17 implies that, after an internal event with circle Cl, it is sufficient to consider
only points pk with l < k < j when constructing a new type-5 certificate.

When a type-5 certificate is violated and vτ is on the convex semi-circle of Ck, however,
we do need to update S1 to reflect vτ moving over the intersection between Ck and Cj .
Additionally, we must construct new certificates: We possibly need to compute a new type-1
certificate, as well as either a type-4 certificate or a new type-5 certificate using Ck as the
new trajectory of vτ and searching for the next hit with Cl for i < l < k. We are now ready
to prove Lemmata 14 and 15.

▶ Lemma 14. We can construct a new certificate of type 5 in O(log2 h) time.

Proof. Let pi be the point corresponding to τ1, Cj be the circle over which vτ is currently
moving, and α be the current orientation. To construct a type-5 certificate, we find the first
circle Ck with i ≤ l < k < j that is intersected by vτ . Here, if this certificate is constructed
during an internal event, l is the index of the circle Cl intersected by vτ during that event.
Otherwise, l = i. Since vτ moves over Cj , we can use the data structure described in the full
version of this paper to perform a circular ray shooting query on the sequence Cl, . . . , Cj−1
with starting point vτ to find Ck in O(log2 h). This gives us the point pk to include in the
certificate, and we can find the orientation at which pk is hit by drawing the tangent of Ci

through the intersection point between Cj and Ck. ◀

▶ Lemma 15. Throughout the full π rotation, τ1 or τ2 hits a vertex of S1 or S2 at most
O(h log h) times, and we handle each occurrence of this event in O(log2 h) time.
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Proof. To show that this event happens O(h log h) times during a π rotation, we need the
following definition. Let an ordered pair (pg, ph) of vertices of CH(P ) be conjugate if we can
place a semi-circle of radius r so that it hits pg and ph, ph lies clockwise from pg on this
semi-circle, and the semi-circle does not intersect the interior of CH(P ). Efrat and Sharir
prove that any convex polygon with n vertices has at most O(n log n) conjugate pairs if the
vertices are placed in general position [17]. We charge each occurrence of a type-5 event to a
conjugate pair, and prove that each pair is charged only a constant number of times. This
immediately yields the bound of O(h log h) on the number of type-5 events.

Consider an internal type-5 event. We charge these events to the pair (pk, pj). To this
end, we show that this pair of points must be conjugate. Consider orientation α at which this
event takes place. At that point, we can draw a circle of radius r, centered at vτ , through pk

and pj . Since, by definition of an internal event, vτ is on the concave semi-circle of pk, pk

must be on the convex semi-circle centered around vτ .
Now again observe that, since vτ is part of S1, placing q1 at vτ must yield a valid solution

for q1q2. This means that all points must be in the Minkowski sum of a radius r disc and
the ray with orientation α originating from vτ . See Figure 12. Therefore, the concave
semi-circle of radius r centered at vτ does not intersect CH(P ). If we rotate this semi-circle
counter-clockwise until one of its endpoints coincides with pk, we obtain a semi-circle through
pk and pj that does not intersect CH(P ). This means it is a witness that (pk, pj) is conjugate.

Next, consider a type-5 event that is not internal. The same argument as above holds,
except pk is already on the concave semi-circle of radius r centered at vτ . Since this semi-circle
does not intersect CH(P ), that semi-circle is a direct witness that (pk, pj) is conjugate.

Every conjugate pair only induces at most one type-5 event. In order for conjugate pair
(pk, pj) to induce a second type-5 event, vτ must again hit the intersection between pk and
pj while it is moving in the same angular movement direction. This can only happen if we
perform a full 2π rotational sweep, or if vτ first moves over this intersection in the opposite
direction. The prior is not possible in a π rotational sweep. The latter is only possible if
pk is first involved in a type-4 event. But then, k = i, and by construction pk can never be
involved in another type-5 certificate.

Handling a type-5 event consists of updating S1 and the movement trajectory of vτ , which
can be done in O(1) time. Additionally, we construct new type-1 certificate and either a
type-4 or type-5 certificate, which can be done in O(1) and O(log2 h) time by Observations 6
and 12 and Lemma 14. ◀

After analyzing all events that occur during the rotational sweep, we can prove Theorem 5.

▶ Theorem 5. Given a point set P consisting of n points and a radius r, we can find the
shortest representative segment in O(n log h + h log3 h) time, where |CH(P )| = h.

Proof. We initialize the algorithm by computing the convex hull CH(P ). By Lemma 1, it is
sufficient to consider only points in CH(P ) to find a representative segment of P . We use
rotating calipers to check that the shortest representative segment is not a point, and find
an orientation α in which a solution exists. For this fixed α we find τ1 and τ2, compute S1
and S2, as well as the shortest line segment q1q2 in orientation α. Computing the convex
hull can be done in O(n log h) [4]. By Lemma 3, S1 and S2 can be initialized in O(h), and
we can initialize q1q2 in O(log h) time. As such, initialization of the algorithm can be done
in O(n log h) time in total.

Next, we rotate orientation α over π in total, maintaining τ1, τ2, S1, and S2, as well as
q1q2. Note that a rotation of π is sufficient, since we consider orientations, which identify
opposite directions of a 2π rotation. Throughout the rotation we maintain the shortest
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(a) (c)(b)

Figure 13 Examples of representative segments (blue) for moving points. These show that a
representative segment may appear and disappear frequently (a) due to the motion of two points
(top left) or one point (top right) or (b) due to minor oscillations in a movement path. (c) Small
movements can trigger a discrete change of the representative segment.

representative segment, and return the shortest such line segment found over all orientations.
Over the full rotation, we encounter five different types of events. By Lemmata 7–15, these
events can be handled in O(h log3 h) time in total.

As we mentioned in Section 2.1, the shortest representative segment is defined by only
τ1, τ2, S1, and S2. Each tangent is defined by a circle. Hence, τ1 and τ2 can only change
when they are defined by a new circle. Thus, by Lemma 9, we correctly maintain τ1 and τ2
throughout the full π rotation. Furthermore, S1 and S2 can only exist when τ1 and τ2 appear
in the correct order. By Lemma 11 we correctly maintain when S1 and S2 exist. Finally, S1
and S2 can only make a discrete change as the tangents τ1 and τ2 hit intersections between
circles in CP . If the tangents do not touch a vertex, then S1 and S2 must change continuously
along the arcs that τ1 and τ2 cross. By Lemmata 13 and 15, we correctly maintain S1 and S2
when they exist. In conclusion, we correctly maintain τ1, τ2, S1, and S2 throughout the full π

rotation. Since we maintain the shortest line segment between S1, and S2 in any orientation
using Lemma 7, we also maintain the shortest representative segment for any orientation. ◀

3 Stable Representative Segments for Moving Points

In this section, we consider maintaining representative segment q1q2 while the points in P

move. We first show what can happen if we would maintain the optimal solution explicitly
under continuous motion of the points.

There are examples where a representative segment exists for a value of r for an arbitrarily
short duration. This can happen because one point moves towards a hippodrome shape
and another point moves out of it, giving a brief moment with a valid hippodrome. The
same effect can be caused by a single linearly moving point that grazes the hippodrome at a
join point. These examples are illustrated in Figure 13(a). It can also happen that a minor
oscillating movement of a point causes a quick sequence of changes between a valid and no
valid segment, see Figure 13(b).

Now, consider the point set P in which the points form a regular k-gon (see Figure 13(c)).
When r is equal to half the width of the k-gon, then we can force a discrete change in the
placement of q1 and q2, with very slow movement of points in P . In this case there is always
a valid representative segment, but its endpoints make a jump.

We see that continuously maintaining the optimal solution has two artifacts that are
undesirable to a human observer: (1) the segment can appear and disappear frequently within
an arbitrarily short time frame, and (2) a segment may jump to a new location, leading to
infinitely high speeds of the endpoints even if the points themselves move slowly.
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D(t)

q′1(t) q′2(t) E(t)
d1(t) d2(t)

Figure 14 The prospective segment q′
1q′

2 in relation to D, E, and diametrical line d1d2 at time t.

Our goal is therefore to ensure that the segment movement is stable over time: We
want q1 and q2 to move continuously and with bounded speed, preventing discrete or (near)
instantaneous changes. We accomplish this as follows. First, we will sample the positions of
the moving points only at integer moments, and then decide immediately to show or not
show a solution in the next time unit. This implies that existence and non-existence of a
solution lasts at least one time unit, and we avoid the solution (dis)appearing frequently.
Second, we make the assumption that the maximum speed of the points is unit. We have to
make some bounded speed assumption otherwise we cannot hope to get a bounded speed of
the endpoints either. Third, we allow more flexibility in when we have a solution. We do
this using a less strict regime on r, and by assuming that r ≥ 1. Whenever the real solution
exists (with the actual r), then we guarantee that we also have a solution. Whenever there is
no solution even for a radius of 2

√
2 · r + 4, then we never give a solution. When the radius

is in between these bounds, we may have a solution or not. Our algorithm can then ensure
that the speeds of the endpoints are bounded, and the length of our chosen segment always
approximates the true optimum (when it exists), at any moment in time, also between the
integer sampling moments.

So we assume that a point p ∈ P is described by a trajectory that is sampled at integer
timestamps. That is, each point in P is described by p(i) → R2 where i ∈ Z is the timestamp.
We also assign each endpoint of the representative segment a position as a function of
t ∈ R, which means that the representative segment at time t is now defined by q1(t)q2(t).
Furthermore, we use D(t) and W (t) as the diameter and width of the point set, which are
respectively the maximum pairwise distance of points in P and the width of the thinnest
strip containing P . Let d1(t), d2(t) ∈ P be a pair of points defining the diameter. Lastly, we
also use the extent E(t) of P in the direction orthogonal to the line segment d1(t)d2(t). For
all of the above definitions, we omit the dependence on t when it is clear from the context.

In the following, we describe how to specify q1(t) and q2(t) such that they move with
bounded speed, and such that the length of the segment q1(t)q2(t) as well as the proximity
of the segment to P can be bounded at any time t. In particular, we define such a segment
q1(t)q2(t) as an approximating segment, and prove that the length of an optimal representative
segment is approximated by an additive term l, and at the same time the maximum distance
from any point in P to the segment q1(t)q2(t) is at most h · r, for some constant h.

Algorithm. Our algorithm A(t) is state-aware. This means that the output of A(t) is
dependent only on the input at or before time t, but it has no knowledge of the input after
time t. At every integer timestamp i ∈ Z, we compute a canonical solution q′

1(i)q′
2(i). The

endpoints q′
1(i) and q′

2(i) of this canonical solution are placed on the lines orthogonal to the
diametric line through d1(i) and d2(i), respectively, such that q′

1(i)q′
2(i) lies in the middle of

the narrowest strip containing P in the diametric orientation, see Figure 14.
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Our algorithm is now a special kind of state-aware algorithm called a chasing algorithm [27]:
At at every integer time step i ∈ Z, the algorithm computes the canonical solution q′

1(i)q′
2(i)

and then linearly interpolates from q′
1(i − 1)q′

2(i − 1) to q′
1(i)q′

2(i), arriving there at time i + 1.
At that point, q′

1(i + 1)q′
2(i + 1) can be computed, and we continue in a similar manner.

However, if the maximum distance from P to the canonical solution becomes too large, we
no longer want the algorithm to output any solution. In this case, no (optimal) representative
solution exists, and we do not produce an approximating segment either.

Formally, for any timestamp t ∈ (i, i + 1), we linearly interpolate q1 and q2 between
their previous canonical placements as follows. We define α = (t − i) and set qj(t) =
α·q′

j(i−1)+(1−α)·q′
j(i), for j ∈ {1, 2}. Then, the output of our algorithm is A(t) = q1(t)q2(t)

if E(⌊t⌋) ≤ 2r
√

2 + 2 and ∅ otherwise.
The above algorithm yields the bounds stated in the following theorem. Detailed proofs

for these bounds can be found in the full version of this paper.

▶ Theorem 18. Given a set P of points moving with at most unit speed, algorithm A yields
a stable approximating segment with l = 2r + 4 and h = 2

√
2 + 4, for which speed of the

endpoints is bounded by (2r + 1)
√

2 + 2.

4 Conclusion

In this paper, we presented an O(n log h+h log3 h) time algorithm to find the shortest repres-
entative segment of a point set, improving the previous O(n1+ε) time solution. Additionally,
we showed how to maintain an approximation of the shortest representative segment in a
stable manner, such that its endpoints move with a speed bounded by a linear function in r.

There may be possibilities for improving the running time of our static solution to
O(n log h + h log2 h), or even O(n log h). The O(h log3 h) term comes from having to handle
O(h log h) type-5 events in O(log2 h) time each. However, it may be possible to show that
there are at most O(h) type-5 events, since the conjugate pairs used to bound the number of
internal events each have a unique starting point. Additionally, it may be possible to improve
the query time of the data structure described in the full version of this paper to O(log h)
time using ideas like fractional cascading, but there is no straightforward way to make this
work for the circular query.
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1 Introduction

Proof complexity studies the problem to understand the minimal size of proofs of specific
formulas in various formal proof systems. The field bears deep connections to computational
complexity [28,40], logic – mainly through the correspondence to bounded arithmetic [8,27,40]
– and has practical significance due to intricate relations to SAT solving [23]. In fact, proof
complexity is the main theoretical framework to assess the strength and limitations of solvers.

While traditionally proof complexity concentrated on propositional logic, there has been
intense work in the past two decades on proof complexity for further logics, most notably
for Quantified Boolean Formulas (QBF) [9], but also for other non-classical logics such as
modal and intuitionistic logics [19, 36, 46]. For QBF, one of the main drivers for the field has
been significant advances in QBF solving [18,44]. As in the propositional case, QBF proof
complexity provides the theoretical tools to model, assess and guide QBF solving [12, 21, 38].

In propositional proof complexity, various proof systems have been studied intensively,
including resolution, Frege systems, algebraic and geometric systems [40]. While resolution
has arguably received most attention – and underpins modern SAT solving in the form of
CDCL [2,5,42] – algebraic proof complexity has enjoyed a boost of interest in the past decade
with many strong results shown for Nullstellensatz, polynomial calculus (PC), sum of squares
(SOS), and very strong systems such as the ideal proof system (cf. e.g. [26,29,31,32,34,35,43]).
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Algebraic proof systems typically work with polynomials and the central system of polynomial
calculus [25] is a refutational proof system demonstrating that a given set of polynomial
equations does not admit a common solution.

Similarly, in QBF proof complexity there are many results on various QBF resolution
systems [4,9,11,14]. Yet, in stark contrast to the propositional case, information on algebraic
proof systems for QBF is rather scarce. A version of polynomial calculus for QBF – called
Q-PC here – is straightforward to define [13] as there is a general framework how to lift a
line-based propositional proof system P – fulfilling some modest closure properties – to a
quantified system Q-P by adding just one rule of universal reduction that allows to substitute
a universal variable u from a formula F (under the condition that u is quantified rightmost in
F ) [13]. This system Q-PC naturally works with polynomials as lines and provides a succinct
way to prove the falsity of QBFs. Hence we view this algebraic system as a refutational
system for QBFs. The existential and universal variables are therefore propositional and take
0/1 values in accordance with the QBF semantics, while intermediate values computed by
the polynomials can be arbitrary field elements, making proofs more succinct.

So far, the only information on proof size in Q-PC stems from the general semantic
technique of cost through the size-cost-capacity theorem from [10] which allows to obtain
lower bounds for QBF proof systems of bounded capacity (which applies to Q-PC as well
as to most QBF resolution systems). With the cost technique, QBFs become hard to prove
whenever the universal player needs large winning strategies (measured as the number of
different answers of the universal player in the game interpretation of QBFs) and these lower
bounds simultaneously hold in all QBF systems to which this technique is applicable. Hence
this method does not allow to separate QBF resolution from Q-PC, for example.

One key motivation to study algebraic proof systems in the propositional case is their
recently emerging connection to algebraic circuit complexity [31, 35, 43]. In general, a
correspondence between progress for lower bounds for circuit and proof size has often
been postulated (e.g. [6]), but formal connections for propositional proofs could not yet be
established outside the algebraic domain. In fact, it could be argued that this correspondence
perfectly works in the QBF setting: for QBF resolution – tightly corresponding to a version
of decision lists [11] – and for QBF Frege systems where proof size is characterised by circuit
size in Boolean circuits [13]. This is quite fruitful as it allows a direct transfer of known
circuit lower bounds to proof complexity, e.g. from AC0[p] to the corresponding system of
Q-AC0[p]-Frege [13, 47]. A similar transfer in the propositional case remains wide open.

Curiously, an analogous relation between algebraic circuits and algebraic QBF systems is
missing, whereas exactly in this algebraic case, some connections are known propositionally
[31,35,43], as mentioned above.

Our aim in this paper is to initiate a comprehensive analysis of the algebraic system
Q-PC. In the course of this investigation we achieve a circuit characterisation for Q-PC.
This leads to new lower bound techniques for proof size in Q-PC, which we apply to show a
number of new proof size lower bounds for this system.

Our contributions
A. Circuit characterisation for Q-PC. Our first result is a tight circuit characterisation
of Q-PC proof size by circuit size in an appropriate circuit model. The circuit model in
question is a generalisation of decision lists [45], which are lists of simple statements of the
form: If (condition on existential variables) Then (assignment to universal variables).
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The decision lists – termed PDLs here for polynomial decision lists – have polynomial
equations in existential variables as conditions and compute a complete assignment to the
universal variables. Semantically, a PDL for a quantified set of polynomial equations Φ
computes a countermodel for Φ in the two-player game semantics of QBFs.

We show that the minimal proof size for Φ (of bounded quantifier complexity) in Q-PC
is polynomially equivalent to the minimal size of a PDL for Φ. In fact, we show a more
general result that applies to a whole class of QBF proof systems with bounded capacity [10]
(and fulfilling some closure properties). The result is parameterised by the lines of the proof
system, which in turn correspond to the conditions in the decision lists. This generalises a
result for Q-Resolution [11] and lifts it to Q-PC.

B. Size-degree relation for Q-PC. Having the PDL characterisation in place, we can
obtain a size-degree result, relating minimal proof size in Q-PC to the minimal degree of
polynomials in the refutation. This is similar in spirit to the size-degree method known for
propositional PC [37], albeit the actual relation is different and includes the quantifier depth
of the QBF. Technically, the result is shown via the degree-preserving transfer from Q-PC to
PDLs and back explained above, together with an additional size-degree relation that we
show for PDLs. The technique is similar to a prior size-width result for Q-Resolution [11].

C. New lower bounds for Q-PC. Having both the PDL characterisation and size-degree
relation at hand opens the door to new lower bounds for degree and size in Q-PC.

Specifically, we show that the parity and more generally the modulo k functions modk
n

on n variables as well as the majority function majn all require high-degree PDLs over all
subfields of C. Using a general construction from [13,14] we can turn any Boolean function f

into a QBF Q-f that has f as its only countermodel. Together with our results above this
implies that the Q-modk

n and Q-majn QBFs require both linear degree and exponential
monomial size in Q-PC.

In addition to using the size-degree method to prove lower bounds for PDLs and hence
for Q-PC proofs, we show that for finite fields of characteristic p, PDLs can be efficiently
transformed into AC0[p] circuits. This allows to directly transfer circuit lower bounds of
[47] into Q-PC proof lower bounds. As a result, either if F and G are both finite fields of
different characteristics, or if F is finite and G is a subfield of C, then the systems Q-PC
over F and G are incomparable.

In fact, all our lower bounds are very strong as they apply to a succinct model of
QBF proof systems were propositional sub-derivations – for PC comprised of additions and
multiplications of polynomials – can be abbreviated as semantic entailment steps that are
checked with an NP oracle [17]. This implies that all our lower bounds and incomparability
results also hold in the traditional proof model with “unfolded” computations, but remain
even valid in the mentioned stronger NP oracle model.

Due to space constraints, some proofs are omitted.

2 Preliminaries

We assume familiarity with basic notions from computational complexity, cf. [1], as well as
from logic, cf. [39], and algebra, cf. [41], but define all specific concepts needed in this paper.

We consider propositional formulas φ built from constants 0, 1, connectors ¬, ∧, ∨, →, ↔,
and propositional variables. A literal is a variable v or its negation v. A clause is a disjunction
of literals, and a formula is in Conjunctive Normal Form (CNF) if it is a conjunction of
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clauses. When V is a set of variables, a (partial) assignment to V is a (partial) function
α : V → {0, 1}. We write ⟨V ⟩ for the set of all complete assignments to V , and vars(φ) or
vars(α) for the set of all variables occurring in φ or α. For V ′ ⊆ V , we denote by α|V ′ the
restriction of α to the variables in V ′. We denote by φ[α] the formula φ where each variable
v ∈ vars(α) has been substituted by α(v), and by ϕ[v1/θ1, . . . , vk/θk] the formula φ where
variables vi have been substituted by formulas θi.

Circuit classes. We recall the definitions of standard circuit classes used in this paper. The
class AC0 contains all languages computable by polynomial-size circuits with gates ¬, ∨, ∧
with bounded depth and unbounded fan-in. The class AC0[p] additionally uses MODp gates
determining whether the sum of the inputs is 0 modulo p. P/poly uses circuits of polynomial
size but arbitrary depth. For an in-depth account on circuit complexity we refer to [48].

Proof systems. We refer to [28] for a formal definition of proof systems and only illuminate
certain restrictions. We only consider line-based proof systems where proofs consist of a
sequence of lines (in our case polynomials) that are derived with certain rules. A propositional
base system is a line-based proof system with certain very natural restrictions, formally defined
in [10]. All propositional proof systems discussed in this paper are base systems.

Polynomial Calculus. Polynomial Calculus (PC) [25] is an algebraic proof system showing
that a set of polynomials does not have common roots. For variables V = {v1, . . . , vn} over
a field F , its lines are polynomial equations 0 =

∑m
i=1 ci

∏
v∈Vi

v with m ∈ N, ci ∈ F, Vi ⊆ V .
A PC refutation starts with a set of polynomials, derives linear combinations of previous
polynomials, and ends with the contradiction 0 = 1. The size of a polynomial is its number
of monomials, and the size of a PC refutation is the sum of the sizes of its polynomials.

Here, we view PC as a propositional proof system, and allow only the values 0 and 1 for
each variable. This is ensured by including the Boolean axioms v2 − v = 0 for each v ∈ V .
In order to represent literals and clauses compactly, we introduce complementary variables v

that are required to have the value 1 − v, and introduce axioms v + v − 1 = 0.
Perhaps counterintuitively, a variable that is 0 in a polynomial corresponds to a proposi-

tional variable that is true, and 1 corresponds to false. We recall that a polynomial equation
is true if its polynomial equals 0. This way, a monomial corresponds to a clause containing
the same literals, and a CNF can be efficiently encoded as a set of monomial equations.

When p is a polynomial, v a variable, and c ∈ {0, 1}, we denote by p[v/c] the polynomial
p where v has been replaced by c and v by 1 − c.

Quantified Boolean Formulas. A (closed prenex) Quantified Boolean Formula (QBF) is a
formula Q ϕ where ϕ is a propositional formula and Q is the quantifier prefix that quantifies
all variables v in ϕ either existentially as ∃v or universally as ∀v. We typically use xi for
existentially quantified variables and ui for universally quantified variables. When a system
includes complementary variables v as in PC, those do not occur in the quantifier prefix.
Their values are determined by the corresponding variables v instead.

Whether a QBF is true or not can be defined recursively. The formula ∀u Q φ is true
if both Q φ[u = 0] and Q φ[u = 1] are true. The formula ∃x Q φ is true if at least one of
Q φ[x = 0] and Q φ[x = 1] is true. When a QBF proof system is derived from an algebraic
system such as PC, it nonetheless has these Boolean semantics.

In a fully quantified prenex QBF, the quantifier prefix determines a total order of the
variables. Given a variable v, we will sometimes refer to the variables preceding v in the
prefix as variables left of v; analogously we speak of the variables right of v.
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A QBF Q1x1 · · · Qkxk ϕ can be seen as a game between two players: universal (∀) and
existential (∃). In the i-th step of the game, the player Qi assigns a value to the variable xi.
The existential player wins if ϕ evaluates to 1 under the assignment constructed in the game.
The universal player wins if ϕ evaluates to 0. Given a universal variable u with index i, a
strategy for u is a function from all variables of index < i to {0, 1}. A QBF is false if and
only if there exists a winning strategy for the universal player, that is if the universal player
has a strategy for all universal variables that wins any possible game [1,33].

3 A general characterisation of Q-P proof size by decision lists

We start by characterising proof size in Q-PC by a suitable circuit model. In fact, we will
show a more general result that applies to a class of QBF proof systems which are lifted from
a propositional base system P to the QBF system Q-P . This lifting is done by adding the
∀red rule to the rules of P . The ∀red rule allows to derive l[µ] from a line l and a propositional
assignment µ to universal variables, as long as vars(µ) occur after all existential variables in
l in the quantifier prefix [13].

However, lower bounds for the resulting P + ∀red system are trivial to obtain from lower
bounds for P by existentially quantifying all variables. We are not too interested in such
bounds, but in “genuine” QBF lower bounds that arise from quantifier alternation (cf. [17,24]
for a longer discussion and details). In other words, we want to filter out any propositional
hardness in a QBF by ignoring purely propositional sub-derivations. For this, we introduce
the Sem rule for semantic steps. It can derive a line l from a line r if r |= l. In general this
inference step cannot be checked efficiently, but needs an NP oracle call [17]. Using Sem
steps also removes the need for any other propositional inference rules as these can be carried
out by Sem. We call the resulting system Q-P .

▶ Definition 1 (Q-P ). Let P be a propositional base system. The system Q-P is a refutational
proof system for QBF that has the same lines as P , and rules ∀red and Sem.

The system we are most interested in is Q-PC where the lines are polynomials. We
briefly review the semantics of this system. As specified in Definition 1, its only rules are
∀red and Sem. Its lines are polynomial equations with coefficients from a field F . The ∀red
rule can be applied to a polynomial p to obtain p[u/0] (which is p with variable u set to 0
and u set to 1) or p[u/1] (which is p with variable u set to 1 and u set to 0) as long as u is
quantified universally right of all existential variables in p. This also means that u cannot
be a complementary variable v. The Sem rule allows to derive polynomial equations that
semantically follow from previous equations, the Boolean axioms, and the v + v = 1 axioms.
Semantically, the variables can only take the values 0 or 1, and v must always take the value
1 − v. The propositional rules of PC can be added, but are not strictly needed and do not
shorten proofs in the presence of Sem.

We now define the circuit model that we will use for the characterisation of Q-P proof
size. The model is a variant of decision lists [10,45].

▶ Definition 2 (P -UDL). Let P be a base system and X, U sets of variables. A P -UDL of
length k is a sequence L = (p1, µ1), (p2, µ2), . . . , (pk, µk) where (pi) is a line of P , vars(pi) ⊆
X, µi ∈ ⟨U⟩ for each i ∈ [k] and pk = ⊤. It computes a function fL : ⟨X⟩ → ⟨U⟩ with
fL(α) = µj for the smallest j such that α |= pj.

Intuitively, a P -UDL checks conditions pj , which are negations of lines of P using only
existential variables and outputs a full assignment µj to the universal variables.
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Again the main instantiation of this definition for us is to choose P as PC. To ease
notation we abbreviate PC-UDL by PDL for polynomial decision lists. The lines of PDLs
are then polynomials. As lines in PC are polynomials p with the implicit meaning of p = 0,
conditions in a PDL check that the polynomial is not zero. Hence a line p in a PDL becomes
active, if the p does not evaluate to 0 under the assignment.

We use P -UDLs to compute countermodels for QBFs. More formally, we say that a
P -UDL L is correct for a QBF Q.φ if it has all of the following properties:

All variables in X are existential variables of Q.
All universal variables of Q are in U .
Let α, β ∈ ⟨X⟩, u ∈ U . If fL(α) and fL(β) disagree on u, then α and β disagree on a
variable x ∈ X that occurs before u in Q.
For every α ∈ ⟨X⟩, α ∧ fL(α) falsifies φ.

For P -UDL L = (p1, µ1), . . . , (pkµk), we define the size of L, |L| =
∑k

i=1 sizeP (pi), where
sizeP corresponds to the respective size measure in the base system P . Additionally, the
length of L is defined as len(L) = k.

Our goal is to use P -UDLs to characterise the hardness of Q-P proofs on QBFs of constant
alternation depth, i.e. to show that there exists a short P -UDL for a QBF Φ if and only if
there exists a short Q-P proof of Φ.

From the definition of P -UDL, it is apparent that the size of P -UDL for a QBF Φ is
always at least as big as the size of the smallest countermodel of Φ, since each line always
assigns all universal variables. As such, P -UDL cannot possibly characterise proof size in Q-P
for all base systems P . In fact, we need three restrictions on Q-P for the characterisation to
work. Firstly, the negations of the lines of P must allow to succinctly represent assignments
to variables. Secondly, the base system P must be closed under disjunction, i.e. for two
arbitrary lines l and p of P , the disjunction l ∨ p is also a valid line in P with size O(|l| · |p|).

Thirdly, we require Q-P to have limited capacity. Capacity is a measure introduced in
[10], which counts how many different answers the universal player needs at most to respond
to one line in a Q-P proof π. In particular, we require that the capacity of Q-P is at most
polynomial in the size of π for all proofs π. For the formal definition of capacity, we refer to
[10]. We remark that Q-PC and Q-Res (as well as the QBF cutting planes system Q-CP) all
have bounded capacity [10].

We are now ready to characterise proof size in Q-P by the size of P-UDLs.

▶ Theorem 3. Let P be a line-based, propositional proof system, where the lines are closed
under disjunction, such that Q-P has at most polynomial capacity. Then for QBFs Φ with
bounded quantifier alternation depth, we can efficiently transform a P -UDL for Φ into a
Q-P refutation for Φ and vice versa. In particular, the minimal size of a P -UDL for Φ is
polynomially equivalent to the size of the minimal Q-P refutation for Φ.

Proof sketch. The proof outline follows [11]. From Q-P to P -UDL. Let a QBF Φ of
alternation depth d and a Q-P refutation π of Φ be given. Using bounded capacity, we can
show that w.l.o.g. π always uses universal reductions on entire blocks of universal variables.
Employing the paradigm of strategy extraction [3, 11, 30], we can extract a set of P -decision
lists computing a countermodel of Φ from π. Each of these decision lists computes the
universal strategy for one of the universal blocks and has size at most |π|. We combine these
decision lists to a single decision list, whose size is at most the product of the sizes of the
original lists, using the direct product construction from [11]. The resulting decision list
computes the correct function and is a P -UDL. Since there are d decision lists of size |π|,
the computed P -UDL has size O(|π|d).
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From P -UDL to Q-P . Let a QBF Φ of alternation depth d and a P -UDL L computing a
countermodel of Φ be given. We define the entailment sequence E of L recursively in d.

if d = 1, E(L) := ε1 ∨ µ1, . . . , εs ∨ µs

if d ≥ 2, for each i ∈ [s] define Li as the list obtained from L by replacing the first i − 1
existential terms by their X1 components and setting all U1 components to µi|U1 . E(L)
is the sequence π1, . . . , πs, where πi := (εi|X1 ∨ µi|U1) ⊗ E(Li[α]) and α is some arbitrary
but fixed assignment on X1 ∪ U1 satisfying εi|X1 ∧ µi|U1 .

Here, the ⊗-operator between a line of P and the entailment sequence defines an ele-
mentwise disjunction between the line and each element in the entailment sequence, i.e.
ℓ ⊗ (c1, c2, . . . , cr) = (ℓ ∨ c1, ℓ ∨ c2, . . . , ℓ ∨ cr). For a line ℓ, we call red(ℓ) the line obtained by
using universal reduction on ℓ by some specific universal assignment. Since negations of lines
of P can succinctly represent assignments, µi can be represented in P . If E(L) = (c1, . . . , cr),
then (c1, red(c1), c2, red(c2), . . . , cr, red(cr)) is a Q-P refutation of Φ. ◀

This reproves a characterisation of QBF resolution by decision lists from [11]. The main
application for us is polynomial calculus (PC) for which this result is new. PC has a capacity
of

√
n, where n is the size of the proof [10]. Additionally, PC is closed under disjunctions as

the disjunction of two lines can be expressed as the product of the respective polynomials.
The size of the disjunction is the product of the sizes of the original lines.

▶ Corollary 4. For QBFs of bounded quantifier depth, the minimal size of Q-PC proofs and
the minimal PDL sizes are polynomially equivalent.

4 Size-degree bounds for polynomial calculus in QBF

Using the connection between Q-PC and PDLs from Corollary 4, we now aim to show lower
bounds for Q-PC by proving lower bounds for PDLs. The latter task will be simplified by a
relation between PDL size and PDL degree, which is measured as the maximal degree of
the polynomial conditions in the PDL. As these polynomials are just defined in existential
variables, it makes sense to define the existential degree for PDLs and Q-PC refutations.
This is in line with an analogous definition of existential width for Q-Resolution [11,15].

▶ Definition 5 (Existential degree of a Q-PC refutation). Let f = ∃X1∀U1 · · · ∃Xd+1.φ,
π = (π1, . . . , πs) be a Q-PC refutation of f and X =

⋃d
i=1 Xi. The existential degree deg∃

of f is defined as deg∃(π) = maxi∈[s] deg(πi|X).

Analogously, the degree of a PDL L is defined as the maximal degree of all queries in L. We
can show a size-degree relation for PDLs.

▶ Theorem 6. Let f be a multi-output Boolean function with n input variables. If f is
computed by a PDL of size s, it is also computed by a PDL of degree O(

√
n log s).

In essence, the proof of this theorem is the same as the original size-degree result for
propositional polynomial calculus by Impagliazzo, Pudlák and Sgall [37] (cf. also [7, 22] for
similar arguments). Equivalently, a function f that can only be computed by PDLs of degree
at least k needs PDLs of size exp(Ω( k2

n )).
We can use this size-degree relation for PDLs to obtain a size-degree relation on Q-PC.

▶ Theorem 7. Let f be a QBF with n variables of alternation depth d such that every Q-PC
proof has existential degree at least k. Then every Q-PC proof has size at least exp(Ω( k2

d3n )).
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Proof. Let f = ∃X1∀U1 · · · ∃Xd+1.φ, X =
⋃d

i=1 Xi the set of existential variables except
the last block and |X| = v. Additionally, let π be a shortest Q-PC refutation of f . Using
Corollary 4, π can be transformed into a PDL L of size at most |π|d. With Theorem 6, L

can then be transformed into a PDL M with degree at most O(
√

dv log|π|). Transforming
M back into a Q-PC proof with Corollary 4 results in a proof π′ with degree at most
k = O(d

√
dv log|π|). Solving this equation for |π| yields the result. ◀

The proof is similar to Theorem 6.2 in [11]. In contrast to the size-degree relation from [37],
Theorem 7 includes the quantifier depth of the QBF, but not the initial degree of the QBF.

In the rest of this section, we will explore specific lower bounds for the degree of PDLs.
We will first show degree lower bounds for PDLs computing specific functions and then turn
this into Q-PC size lower bounds for related QBFs.

4.1 Parity and mod functions require PDLs of high degree
Let parn(x1, . . . , xn) =

⊕n
i=1 xn be the parity function. Lower bounds for this function only

hold for PDLs over certain fields; in fact, parn is just the sum of input variables in fields of
characteristic 2, and is therefore trivial for PDLs over those fields. However, it seems to be
hard in fields of characteristic 0. We prove a lower bound for C and its subfields.

▶ Proposition 8. A PDL with polynomials over a subfield of C computing parn has degree
at least n

2 .

Proof. We consider the first line of the PDL and assume without loss of generality that it
has output 1.1

Let p be the first line’s polynomial and d its degree. Let X = {x1, . . . , xn}. We can
assume that there is a w ∈ ⟨X⟩ with p(w) ̸= 0 or we could omit the first line. However,
to avoid giving any wrong answers, for every a ∈ ⟨X⟩ with parn(a) = 0, it must hold that
p(a) = 0.

We compute the complex conjugate p∗ by conjugating every coefficient. Because we only
evaluate the polynomials on real numbers (specifically 0 and 1), we know that p∗(a) = (p(a))∗

for every a ∈ ⟨X⟩. We define q := p · p∗ and note that deg(q) ≤ 2d and for all a ∈ ⟨X⟩,
q(a) = p(a) · p(a)∗ ∈ R≥0.

For a polynomial r, define the function

s(r) :=
∑

a∈⟨X⟩
par(a)=1

r(a) −
∑

a∈⟨X⟩
par(a)=0

r(a)

which is linear with respect to r. If r is a monomial that does not contain the variable x,

s(r) =
∑

a∈⟨X\{x}⟩
b∈⟨{x}⟩

par(a,b)=1

r(a, b) −
∑

a∈⟨X\{x}⟩
b∈⟨{x}⟩

par(a,b)=0

r(a, b) =
∑

a∈⟨X\{x}⟩
b∈⟨{x}⟩

par(a,b)=1

r(a) −
∑

a∈⟨X\{x}⟩
b∈⟨{x}⟩

par(a,b)=0

r(a)

=

 ∑
a∈⟨X\{x}⟩

par(a)=1

r(a) +
∑

a∈⟨X\{x}⟩
par(a)=0

r(a)

 −

 ∑
a∈⟨X\{x}⟩

par(a)=0

r(a) +
∑

a∈⟨X\{x}⟩
par(a)=1

r(a)


= 0.

1 If it has output 0, we can invert all outputs in the PDL and replace every occurence of x1 with 1−x1. This
does not change its degree, and the resulting PDL computes ¬parn(x1, x2, . . . , xn) = parn(x1, . . . , xn).
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Because s is linear, s(r) = 0 also holds for any polynomial r of degree < n.
To obtain a value of s(q), we use that∑

a∈⟨X⟩
par(a)=1

q(a) > 0 and
∑

a∈⟨X⟩
par(a)=0

q(a) = 0

(in the left equation, none of the summands are negative; one of them is q(w) = |p(w)|2 > 0).
Consequently, s(q) > 0 and deg(q) ≥ n, so using deg(q) ≤ 2d we conclude that d ≥ n

2 . ◀

To turn this lower bound into a Q-PC bound we need QBFs based on the parity function.
For this we describe a general transformation originating from [13,14] to construct QBFs that
are false, but force the universal player to use a unique strategy by computing a particular
function f . We define the QBF Q-f :

▶ Definition 9 (Q-f). Let f : ⟨X⟩ → ⟨U⟩ be a function that is computed by a P/poly
circuit C. Then Q-f := ∃X∀U∃T φ where φ is the Tseitin transformation of the circuit
U ̸= C(X), and T is the corresponding set of auxiliary Tseitin variables.

In our case above, f is parn and C is a simple P/poly circuit for parn. The existential player
wins if and only if the circuit U ̸= C(X) yields true, after the assignments to X and U were
chosen by the respective players. The universal player therefore has the unique winning
strategy of playing U = f(X).

From Proposition 8 together with the size-degree relation for PDLs (Theorem 6) and the
efficient transformation into Q-PC (Theorem 3) we obtain:

▶ Corollary 10. Q-PC refutations over a subfield of C of Q-parn require size exp(Ω(n)).

We can generalise this to the modulo k functions. Let modk
n(x1, . . . , xn) = 1 if and only if∑n

i=1 xi ≡ 0 mod k (otherwise it is 0). With a similar, but somewhat more technical proof
than for Proposition 8 we can show:

▶ Proposition 11. A PDL with polynomials over a subfield of C computing modk
n has degree

at least 1
2

⌊
n

(k−1)

⌋
.

Consequently, the Q-modk
n QBFs are hard for Q-PC over C.

▶ Corollary 12. Q-PC refutations over a subfield of C of Q-modk
n have size exp(Ω( n

k )).

4.2 Majority PDLs have high degree
Next we want to show degree lower bounds for PDLs that compute the majority functions
majn(x1, . . . , xn), which evaluate to one, if and only if

∑n
i=1 xi ≥ n

2 . In contrast to the parn

and modk
n functions, this lower bound does not depend on the underlying field. We start by

proving a useful lemma about PDLs:

▶ Lemma 13. Let X = {x1, . . . , xn}, α ∈ ⟨X⟩ a complete assignment and p a polynomial
with variables in X that is not the constant 0. There is an assignment β ∈ ⟨X⟩ such that α

and β only differ in at most deg(p) variables, and p(β) ̸= 0.

Proof. We start by taking p and constructing an equivalent polynomial q that contains
no variables according to their polarity in α: when α(x) = 0, we replace x by 1 − x, and
when α(x) = 1, we replace x by 1 − x. Let m be one of the lowest-degree monomials in
q, and β the assignment that satisfies every literal in m, and assigns every other variable
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according to α. Note that α and β only differ in at most deg(m) ≤ deg(q) = deg(p) variables.
Because m has minimal degree, every other monomial in q contains a variable v /∈ vars(m),
so β(v) = α(v). Because v only occurs in the polarity opposite of α(v), β does not satisfy
that other monomial. Therefore, 0 ̸= m(β) = q(β) = p(β). ◀

With this, we can show the lower bound fairly easily:

▶ Proposition 14. A PDL computing majn(x1, . . . , xn) has degree at least n
2 .

Proof. Let L be such a PDL, d its degree, and p its first polynomial. We also define
X := {x1, . . . , xn}. If the first line of L has output 1, let α be the assignment that assigns
all xi = 0, and apply Lemma 13. Because p(β) ̸= 0 and L is correct, we obtain majn(β) = 1.
So β has to assign 1 to at least n

2 variables and thus differs from α in at least n
2 variables.

Therefore, n
2 ≤ deg(p) ≤ d. If the first line has output 0 instead, let α be the assignment

that assigns all xi = 1. Lemma 13 yields an assignment β with p(β) ̸= 0, so majn(β) = 0
and β has to assign 0 to at least n

2 variables. Therefore, n
2 ≤ deg(p) ≤ d. ◀

▶ Corollary 15. Q-PC refutations of Q-majn have size exp(Ω(n)).

4.3 Limits of the size-degree method
While the size-degree technique is useful for showing several lower bounds as demonstrated
above, it does not capture all nuances of PDL size. We will illustrate this by constructing
two functions, each having n2 variables and requiring PDLs of degree n. For these values,
Theorem 6 does not yield any useful lower bound. Indeed, one of the functions requires
PDLs of size exp(Ω(n)), while for the other one, size O(n) is sufficient.

▶ Theorem 16. Given a function f , the minimal size of its PDLs is not solely determined
by its number of variables and minimal PDL degree. In particular, there are families of
functions fn and gn, each with n2 input variables and minimal PDL degree n, such that fn

has PDLs of size O(n) and gn requires PDLs of size exp(Ω(n)).

In order to prove this, we introduce examples for those functions g and f . We define the
square-majority function as sqmn(x1, . . . , xn2) = 1 if and only if

∑n2

i=1 xi ≥ n, otherwise 0.

▶ Lemma 17. The sqmn function can be computed by PDLs of degree n, but not by PDLs
of smaller degree. It requires PDLs of size exp(Ω(n)).

The lower bound on the size of PDLs for sqm already cannot be shown by Theorem 6.
This raises the question of whether our size-degree relation is simply too weak, and whether
we could obtain a stronger one that can capture the complexity of the sqm function. It
turns out that this is not the case: there are functions with the same degree and number of
variables, but smaller decision lists. The complexity of the sqm function cannot be derived
from its degree and number of variables alone.

To obtain such a function, let X = {xj
i | i, j ∈ {1, . . . , n}} and fn(X) :=

∨n
i=1

∧n
j=1 xj

i .

▶ Lemma 18. The function fn defined above can be computed by PDLs of degree n and size
O(n), but not by PDLs of smaller degree.

Proof of Theorem 16. Let fn be the function defined above, and gn = sqmn. The statement
follows directly from Lemmas 17 and 18. ◀
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5 Converting PDLs into Boolean circuits

We now establish a different lower bound method for Q-PC that directly imports circuit
lower bounds. For this we show a connection between PDLs over finite fields and AC0[p]
circuits. First we convert PDLs over a finite field to PDLs over a prime-order finite field.

▶ Lemma 19. Let p be a prime, k, l, m ∈ N≥1 and L a PDL of length l and size m over the
finite field Fpk . Then L can be converted into a PDL of length k · l and size k · m over the
finite field Fp that computes the same function.

This lemma is based on the fact that Fpk has the structure of a k-dimensional Fp vector
space with respect to addition. An equation in Fpk that does not use multiplication can
therefore be split up into k equations in Fp. The only multiplication that occurs in the
polynomials of a PDL is between coefficients and the corresponding unit monomials, and
those unit monomials can only be 1 or 0. We can use this to convert each line of a PDL over
Fpk into k lines over Fp.

We will now efficiently convert PDLs over Fp for primes p into AC0[p] circuits.

▶ Proposition 20. Let f : {0, 1}n → {0, 1}s be a function that is computed by a PDL of size
m over a finite field Fp. Then f can be computed by an AC0[p] circuit of depth 6 with only
O(pm + s) AND or OR gates.

Proof. We construct the circuit iteratively starting at the inputs and ending at the output.
At each layer, we describe the semantics of the newly-added circuit gates.

Start with v input gates for the variables.
Add v NOT gates, each negating one of the variables. All literals are now represented in
the circuit.
Consider each monomial c ·

∏
i ti where c ∈ Fp and the ti are literals. Add c identical AND

gates with all the ti as inputs. The sum of the outputs of these gates will be equivalent
to the value of the monomial. Because each c < p, the total number of these gates is
smaller than pm.
For each line, add a MODp gate over all the AND gates of its monomials. The sum of its
inputs will be equivalent to the sum of the values of its monomials, so its output indicates
whether the polynomial equation holds in Fp.
For each line, add a NOT gate negating the MODp gate.
For each line, add an AND gate that checks if all polynomial equations of previous lines
hold, but the equation of the current line does not. Its output indicates whether this
line’s output value is active.
Finally, for each output variable z add an OR gate connecting the AND gates of those
lines whose output sets z = 1. Its output indicates whether the PDL sets z = 1, it is the
output of the circuit for variable z.

This circuit has depth 6 and at most O(pm + s) AND or OR gates. ◀

Using Lemma 19 we can extend this result to fields Fpk :

▶ Corollary 21. Let f : {0, 1}n → {0, 1}s be a function that is computed by a PDL of size m

over a finite field Fpk . Then f can be computed by an AC0[p] circuit of depth 6 with only
O(pmk + s) AND or OR gates.

This corollary allows us to lift lower bounds for AC0[p] circuits to PDLs over finite fields.
We cite such a circuit lower bound by Smolensky [47]. Let p be a prime and r not a power
of p. An AC0[p] circuit of depth k that computes modr

n requires exp(Ω(n 1
2k )) AND or OR

gates. Using Corollary 21 we can apply this result to PDLs:
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▶ Corollary 22. Let p, r be distinct primes. A PDL over the finite field Fpk that computes
modr

n needs size exp(Ω( 12
√

n − log(pk))).

We also want to apply these results to another class of functions that we call balance.
balance2n(x1, x2, . . . , x2n) = 1 if and only if

∑
xi = n, else it is zero.

We now show that PDLs for the balance function can be transformed into AC0[p] circuits
for the function modq

n with arbitrary q.

▶ Proposition 23. If there is a PDL of size m over Fp that computes balance2n, then modq
n

can be computed by an AC0[p] circuit of depth 8 that uses only O(pnm) AND or OR gates.

Proof. Let R = {q · i | i ∈ Z, 0 ≤ q · i ≤ n} = qZ ∩ [0; n], and note that |R| =
⌈

n+1
q

⌉
. When

exactly k of the variables x1, . . . , xn are true, then modq
n(x1 . . . , xn) = 1 if and only if k ∈ R.

Using Proposition 20 we can obtain a circuit that computes balance2n with pm + l AND
gates and one OR gate. We instantiate this circuit once for each k ∈ R, replacing the 2n

inputs with n actual inputs x1, . . . , xn, as well as k constants 0 and n − k constants 1. The
output of such an instance is 1 if and only if k of the actual inputs are 1. We use a single
OR gate over all these outputs to obtain modq

n(x1 . . . , xn). The total number of AND or OR
gates is |R|(pm + l) + 1 =

⌈
n+1

q

⌉
(pm + l) + 1 ≤ (n + 1)(p + 1)m + 1. ◀

▶ Corollary 24. The balance formulas require exponential-sized PDLs over finite fields.

We can now show that many of the systems Q-PC over different fields are incomparable.

▶ Theorem 25. Let F be a finite field, and G either a finite field with different characteristic,
or a subfield of C. Then the Q-PC systems over F and G are incomparable.

Proof. Because PC systems and PDLs are polynomially equivalent, we can use exponential
separations between the respective PDLs to obtain the result. Let p and q be the characterist-
ics of F and G, respectively. The function modp

n is trivial for PDLs over F and requires only
linear size. However, it requires exponential-sized PDLs over G, either due to Corollary 12
(if G is a finite field) or due to Corollary 22 (if G is a subfield of C).

If G is a finite field, the function modq
n requires exponential-size PDLs over F and only

linear-size PDLs over G. If G is a subfield of C, the balancen functions can be computed in
linear size by PDLs over G, but require exponential-size PDLs over F by Corollary 24. ◀

6 Conclusion

While we concentrated on Q-PC in this paper, it is interesting to explore the wider con-
sequences of our P -UDL characterisation in Theorem 3 for further proof systems Q-P .
Besides PC and Res, the most studied base systems are arguably Cutting Planes (CP) and
the various C-Frege systems, where C is some circuit class, e.g. AC0, NC1 or P/poly.

While Q-CP has polynomial capacity (the capacity is 1) [10], the lines are not closed
under disjunction. Hence we cannot use Theorem 3 to obtain a CP-UDL characterisation.
We leave open, whether the result itself does not hold or if it only requires a different proof.

For Q-C-Frege, we cannot use Theorem 3 either. Here the lines are closed under disjunction,
but the capacity is exponential. However, it is known that the circuit class C itself, which
is a strictly stronger model than C-UDL, tightly characterises Q-C-Frege [20]. As such, the
equivalence between C-UDLs and Q-C-Frege fails.

Interestingly, if we consider treelike Q-C-Frege systems, the C-UDL characterisation does
hold, even though the capacity is still superpolynomial. Intuitively, this could be explained by
the fact that limited capacity is only required for blockwise reductions, and such reductions
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can (possibly) be obtained by combining reductions along a path in the proof-tree. We prove
the result even without using Theorem 3, as a direct proof is straightforward to obtain using
a previous characterisation of treelike Q-C-Frege from [16]. We just state the result.

▶ Theorem 26. For a circuit class C and a QBF family, the minimal sizes of Q-C-Fregetree
proofs and the minimal C-UDL sizes are polynomially bounded by each other.

Interestingly, this result even holds for QBFs with unbounded quantifier alternation. We
leave open whether similar characterisations can be obtained for daglike systems Q-P on
formulas with unbounded alternation depth.
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Abstract
A recent result by Bodirsky and Guzmán-Pro gives a complexity dichotomy for the following class
of computational problems, parametrized by a finite family F of finite tournaments: given an
undirected graph, does there exist an orientation of the graph that avoids every tournament in F?
One can see the edges of the input graphs as constraints imposing to find an orientation. In this
paper, we consider a more general version of this problem where the constraints in the input are not
necessarily about pairs of variables and impose local constraints on the global oriented graph to
be found. Our main result is a complexity dichotomy for such problems, as well as a classification
of such problems where the yes-instances have bounded treewidth duality. As a consequence, we
obtain a streamlined proof of the result by Bodirsky and Guzmán-Pro using the theory of smooth
approximations due to Mottet and Pinsker.
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1 Introduction

1.1 Completion Problems

For every fixed finite family F of tournaments, the F-free orientation problem consists in
deciding whether an undirected graph G admits an orientation G∗ such that no tournament
from F is contained in G∗. The complexity of such problems was systematically studied
recently in [5], where it is shown that every such problem is solvable in polynomial time or
NP-complete.

We extend this result by considering the following variation of the problem. Fix an r ≥ 2
and let R be a set of tournaments on r vertices, labelled with the numbers 1, . . . , r. An input
in our problem is a set V of vertices where some r-tuples are marked. The yes-instances
to this problem are those where there exists an F-free digraph on V such that whenever
(x1, . . . , xr) is marked, then the labelled subdigraph induced on {x1, . . . , xr} is isomorphic
to an element of R.

This is an extension of the F-free orientation problem, as can be seen by taking r = 2
and R consisting of the two possible tournaments on 2 (labelled) vertices. We call this the
(F , R)-orientation problem, see Figure 1 for an example. One can view F as imposing global
constraints (find a directed graph on V that globally avoids every tournament in F), and R

as imposing local constraints (find a directed graph on V that satisfies the local restrictions
on the marked tuples). Our more general result is a P versus NP-complete complexity
dichotomy for such problems.
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Figure 1 Example of an instance of (F , R)-orientation where F consists of the transitive tourna-
ment on 4 vertices, and R contains the oriented graphs on 3 vertices inducing a transitive tournament.
The markings are given by hyperedges. Note that due to the symmetry of R we do not need to
specify the order of the vertices in the hyperedges. To solve such an instance, one needs to determine
whether there exists an oriented graph on the given vertices, not inducing a transitive tournament
on any four vertices, while all marked triples of vertices induce a transitive tournament.

▶ Theorem 1. Let F be a finite set of finite tournaments and let R be a set of labelled
r-vertex tournaments. Then the (F , R)-orientation problem is solvable in polynomial time or
NP-complete.

1.2 Constraint Satisfaction Problems

Given a finite family F of tournaments, Fraïssé’s theorem asserts that there exists a count-
ably infinite digraph DF whose finite subgraphs are exactly the oriented graphs avoiding
every tournament in F . Moreover, DF satisfies a certain model-theoretic condition called
homogeneity, which defines DF uniquely up to isomorphism (see Section 2 for the detailed
definitions). The following observation by Bodirsky and Guzmán-Pro in [5] is crucial for
their complexity result. Consider the symmetric closure of DF , i.e., the undirected graph
HF obtained by forgetting about the directions of arcs in DF . Then it can be observed that
given an undirected graph G, one has a homomorphism G→ HF if, and only if, G admits
an F-free orientation. Thus, the F-free orientation problem coincides with the constraint
satisfaction problem for the graph HF , denoted by CSP(HF ). The complexity of this CSP
can then be investigated using standard methods.

In order to obtain a generalization of [5] for the (F , R)-orientation problem, we start with
a similar observation. In DF , consider the subset R′ ⊆ V r containing all tuples (v1, . . . , vr)
inducing in DF a tournament from R. The structure A = (V ; R′) is a so-called first-order
reduct of DF . Note that if R consists of the two labelled tournaments on 2 vertices, then A
thus defined coincides with HF . An input to the (F , R)-orientation problem can then be seen
as a structure in the same signature as A. One obtains that an input to the (F , R)-orientation
problem admits a solution if, and only if, it admits a homomorphism to the structure A. The
structure A obtained in this way moreover satisfies two important properties:
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Provided R contains more than one tournament, the symmetric closure U of the edge
relation of DF is invariant under the higher-order symmetries of A, called polymorphisms.
In particular, the group of automorphisms of A is a subgroup of Aut(HF ).
A has a particular type of binary injective polymorphism that we call an injective
projection.

Theorem 1 then follows from the following technical result. The notion that “A pp-
constructs every finite structure” appearing in the statement is defined in Section 2; for now,
the reader can view this as a natural condition allowing to reduce the boolean satisfiability
problem to the constraint satisfaction problem of A, which is then NP-hard.

▶ Theorem 2. Let F be a finite set of tournaments, and let A be a first-order reduct of
DF that admits injective projections and such that U is invariant under Pol(A). One of the
following holds:

A pp-constructs every finite structure and CSP(A) is NP-complete, or
CSP(A) is solvable in polynomial time.
The proof follows the smooth approximations approach introduced in [25] and uses the

refinements thereof from [22, 26]. This provides a streamlined proof and an extension of the
dichotomy result from [5].

Another consequence of our proof is the following. Say that the class of F -free orientable
graphs has bounded treewidth duality if there exists a set G of undirected graphs of bounded
treewidth such that for every finite graph G, there exists an F-free orientation of G if, and
only if, no graph from G admits a homomorphism to G. This notion can be extended to
structures with an (F , R)-orientation by generalizing the notion of treewidth for relational
structures in general, we refer the interested reader to [15] for precise definitions. Any class of
structures corresponding to a CSP and having bounded treewidth duality can be recognized
in polynomial time by a Datalog program, giving a particularly simple algorithm recognizing
the class.

As a by-product of our proof, we obtain a characterization of the sets F , R for which the
class of structures with an (F , R)-orientation has bounded treewidth duality. As above, this
characterization is phrased in terms of the algebraic properties of a first-order reduct of DF .
Using the recent results from [22], this also allows us to obtain a bounded on the treewidth
in a possible duality depending on the size of the tournaments in F and R.

▶ Theorem 3. Let F be a finite set of tournaments, and let A be a first-order reduct of DF
that admits injective projections and such that U is invariant under Pol(A). Let r be the
maximal arity of a relation of A and ℓ be the maximal size of a tournament in F . Then, the
following are equivalent:
1. Pol(A) contains an Aut(DF )-canonical pseudo-majority polymorphism modulo Aut(DF ),
2. The class of finite structures admitting a homomorphism to A has a duality of treewidth

at most max(6, r, ℓ).
In particular, when the class of F -free orientable graphs has a bounded treewidth duality,

then Theorem 3 implies that the duality G can be chosen to consist of graphs of treewidth at
most max(6, ℓ).

1.3 Related Work
The approach we follow here shows an equivalence between (F , R)-completion problems and a
subclass of constraint satisfaction problems (CSPs). A P/NP-complete complexity dichotomy
is known for CSPs with a finite template [14, 29], while for CSPs with infinite templates in

MFCS 2024



28:4 Generalized Completion Problems with Forbidden Tournaments

general it is known that the complexity varies greatly [4, 17, 18]. For a subclass of infinite
structures, so-called first-order reducts of finitely bounded homogeneous structures, Bodirsky
and Pinsker have conjectured that a dichotomy similar to that of finite-domain CSPs exists.
The templates DF studied here are in the scope of that conjecture. The conjecture has
been proved for a variety of finitely bounded homogeneous structures (e.g., all homogeneous
undirected graphs [8], certain homogeneous hypergraphs [26], the universal homogeneous
tournament [25], (Q; <) [7], and the universal homogeneous poset [20]). There exist natural
subclasses of the Bodirsky-Pinsker class for which the conjecture is still open; this is the
case for example for first-order reducts of finitely bounded homogeneous directed graphs,
or for first-order reducts of homomorphically bounded homogeneous structures. It can be
shown that if D is a homogeneous homomorphically bounded homogeneous directed graph,
then D = DF for some finite family F of finite tournaments. Thus, our result can be seen as
making progress on the Bodirsky-Pinsker conjecture for both mentioned subclasses.

1.4 Organization of the paper

We recall some elementary notions from graph theory and the universal-algebraic approach
to the complexity of infinite-domain CSPs in Section 2. In Section 3, we prove some
elementary properties of the templates A arising from (F , R)-completion problems. Due
to space restrictions, we only describe a high-level proof strategy for Theorems 2 and 3
in Section 4, focusing on making the presentation accessible to a non-expert.

2 Definitions and Notations

2.1 Elementary model-theoretic notions

For the purposes of this paper, a structure is a tuple A = (A; RA
1 , . . . , RA

k ) consisting of a
set A (the domain) together with finitely many relations RA

i ⊆ Ari on A. The signature of
A is the list (r1, . . . , rk) containing the arities of the relations of A. We assume the reader
is familiar with the standard notions of homomorphisms, embeddings, and isomorphisms
between structures. As is standard in model theory, all substructures and subgraphs in this
paper are induced substructures and subgraphs.

An oriented graph is a directed graph G = (V, E) where at most one of (u, v) ∈ E or
(v, u) ∈ E holds for all u, v ∈ V , and where (u, u) ̸∈ E for all u ∈ V . A tournament is an
oriented graph such that the symmetric closure of its edge relation induces a complete graph.
For a (finite) set F of finite tournaments we say that an oriented graph is F -free if it contains
no F ∈ F as an induced subgraph.

Let F be a finite set of finite tournaments. Let CF be the class of all F-free oriented
graphs. It can be seen that this class has the so-called amalgamation property: given two
F -free oriented graphs, their union is also F -free due to F consisting of tournaments only. By
the classical result of Fraïssé [16], there exists an oriented graph DF = (V, E) on a countable
set whose finite subgraphs are exactly the graphs isomorphic to a graph in CF . Moreover,
this graph is homogeneous, in the sense that for every finite subset S ⊆ V and every partial
isomorphism f : S → V , there exists an automorphism α of DF such that f |S = α|S . These
two properties describe DF uniquely up to isomorphism. We write HF = (V, U) for the
undirected graph whose edge set is the symmetric closure of E. We note that HF is in
general not homogeneous, and in fact we will focus in this paper on the case where HF is
not homogeneous for reasons that are made clear below.
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A first-order reduct of A is a structure B with the same domain as A and whose relations
all have a first-order definition in A. For example, HF is a first-order reduct of DF , because
the symmetric closure U of E is definable by (v, w) ∈ E ∨ (w, v) ∈ E, which is a first-order
definition of U in DF . An expansion of A is a structure B obtained from A by adding new
relations.

An example of a natural expansion of DF is obtained as follows. Consider the class C<
F

of all structures (V ′, E′,≺) where (V ′, E′) ∈ CF and where ≺ is an arbitrary linear order on
V ′. This class also has the amalgamation property as described above, and its Fraïssé limit
can be taken to be (V, E, <), an expansion of DF by a linear order.

Let G be a group of permutations on a set A. Let ≡k be the equivalence relation on
Ak containing the pairs (a, b) of tuples such that there exists α ∈ G such that α(ai) = bi

for all i ∈ {1, . . . , k}. We call the equivalence classes of ≡k the orbits of G . The orbit of a
pair (a, b) ∈ V 2 under Aut(DF ) is given, by the homogeneity of DF , by the isomorphism
type of the labelled graph induced by {a, b}. There are therefore 4 orbits, corresponding to
whether a = b, whether a ̸= b are connected by an edge, and if they are whether (a, b) ∈ E

or (b, a) ∈ E. We denote the orbit containing the pairs (a, b) such that a ̸= b and (a, b) ̸∈ U

by N, the orbit of all (a, b) ∈ E by →, and the orbit of all (a, b) such that (b, a) ∈ E by ←.
Let A,B be structures with B = An. We say B is a pp-power of A if every relation in B

is definable by a primitive positive formula over A, that is a formula only using ∃ and ∧. For
arbitrary structures A,B we say A pp-constructs B if there is a pp-power C of A such that B
and C are homomorphically equivalent.

2.2 Clones, naked and affine sets
A relation R ⊆ Am is said to be invariant under a function f : An → A if for every
a1, . . . , an ∈ R, then f(a1, . . . , an), the tuple obtained by applying f componentwise to the
tuples a1, . . . , an, is also in R. A function f : An → A is a polymorphism of a structure
A if all the relations of A are invariant under f . In particular, every automorphism and
endomorphism of A is a polymorphism of A. The set Pol(A) of all polymorphisms of A forms
a clone: it contains all the projections pk

i : (a1, . . . , ak) 7→ ai for 1 ≤ i ≤ k and it is closed
under composition. We write P for the clone consisting of only the projections on the set
{0, 1}. This clone is relevant in the theory of constraint satisfaction because it is exactly the
clone of polymorphisms of a structure S with domain {0, 1} and having all ternary relations
on {0, 1} as its relations, whose CSP corresponds to the problem CNF-3SAT.

If S ⊆ Ak is invariant under a clone C , and θ is an equivalence relation on S that is
also invariant under C , then the operations in C naturally induce a clone of functions on
the set S/θ, where f ∈ C of arity n induces the function ([s1], . . . , [sn]) 7→ [f(s1, . . . , sn)].
We use the notation C ↷ S/θ to denote this clone and if θ has at least two equivalence
classes we call (S, θ) a subfactor of C . A subfactor is minimal if for all a, b ∈ S that are not
θ-equivalent, the smallest C -invariant set containing a, b is equal to S.

A subfactor (S, θ) of C is called a naked set if C ↷ S/θ only consists of projections.
Similarly, if S/θ is finite and can be endowed with a structure of a module over a ring R,
in a way that C ↷ S/θ consists of affine functions, of the form (x1, . . . , xn) 7→

∑
λi · xi for

λ1, . . . , λn ∈ R such that
∑

λi = 1, then we call (S, θ) an affine set for C . Note that every
naked set is a particular example of an affine set: if (S, θ) is a naked set of C , then the maps
induced by C on S/θ have exactly one non-zero λi, which is equal to 1.

For a clone C on a 2-element set (in this paper, the 2-element set is {←,→}), the notions
of having a naked set or an affine set can be rephrased using Post’s classification of such
clones [28]:
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C has a naked set if, and only if, every operation in C is essentially unary, of the form
(x1, . . . , xn) 7→ e(xi) for some permutation e of {←,→} and i ∈ {1, . . . , n}. If C does not
have a naked set, then it contains an operation f satisfying the equation

f(x, y, z) = f(y, z, x)

for all x, y, z ∈ {←,→}. Such an f is called a ternary cyclic operation.
C has an affine set if, and only if, every operation in C is of the form

(x1, . . . , xn) 7→
∑

λi · xi + µ

where λ1, . . . , λn, µ ∈ {0, 1} are such that
∑

λi = 1, addition and multiplication are
understood modulo 2, and after choosing an arbitrary bijection between {←,→} and
{0, 1}. If C does not have an affine set, then it contains an operation m satisfying the
identities

m(x, x, y) = m(x, y, x) = m(y, x, x) = x

for all x, y ∈ {←,→} or a binary operation s that is associative, commutative, and
satisfies s(x, x) = x for all x ∈ {←,→}. Such an m is called a majority operation, while
s is called a semilattice.

For an ω-categorical structure A it is known that the complexity of CSP(A) is captured
by the polymorphisms of A. For our purposes, we need the following two special cases:

▶ Theorem 4 ([21]). Let A be an ω-categorical structure. The following hold:
If Pol(A) has a naked set, then A pp-constructs every finite structure and CSP(A) is
NP-hard.
If Pol(A) has an affine set, then the class of structures admitting a homomorphism to A
does not have bounded treewidth duality.

2.3 Canonical Functions
Let S ⊆ Ak be invariant under a function f : An → A. We say that f : An → A is
canonical on S with respect to a permutation group G if whenever a1 ≡k b1, . . . , an ≡k bn

for a1, b1, . . . , an, bn ∈ S, then f(a1, . . . , an) ≡k f(b1, . . . , bn). In other words, f is canonical
on S if the restriction of ≡k to S is invariant under f ; in particular, the set of functions f

that are canonical on S with respect to G forms a clone C , and this clone has an action
C ↷ S/≡k. If f(a1, . . . , an) ≡k f(αa1, . . . , αan) holds for all α ∈ Aut(A) and all a1, . . . , an,
we call f diagonally canonical. In order to simplify notation and to make the dependence on
the group clearer, we write S/G for the set of orbits of S induced by G .

Let k ≥ 1. We write Ik ⊆ V k for the set of tuples with pairwise distinct entries, and
K ⊆ Ik for the set of tuples whose components induce a clique in HF . We will be considering
the following clones:

C K
(DF ,<) is the clone of polymorphisms of A that are canonical on K with respect to

Aut(DF , <).
C K

DF
the clone of polymorphisms of A that are canonical on K with respect to Aut(DF ),

C I
A the clone of polymorphisms of A that are, for all k ≥ 1, canonical on Ik with respect

to Aut(A).
Note that since canonicity is considered with respect to different groups, the clones above
are not necessarily comparable with respect to inclusion.
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2.4 Smooth approximations
Central to our proof of Theorem 2 is the theory of smooth approximations, further developed
in [23]. It relies on comparing two clones C ⊆ D and whether a naked set (resp. affine set)
for C can be lifted to a naked set (resp. affine set) for D . The lifting is formalized by smooth
approximations.

▶ Definition 5 (Smooth Approximations). Let A be a set, k ≥ 1, and ∼ be an equivalence
relation on S ⊆ Ak. An equivalence relation η on some set S′ with S ⊆ S′ ⊆ Ak approximates
∼ if the restriction of η to S is a possible (non-proper) refinement of ∼; in that case, η is an
approximation of ∼.

Suppose that the ∼-equivalence classes as well as η are invariant under a group G of
permutations on A. We say that the approximation is

presmooth with respect to a group G if each equivalence class C of ∼ intersects some
equivalence class C ′ of η such that C∩C ′ contains two disjoint tuples in the same G -orbit;
very smooth with respect to a group G if ≡k is a (possibly non-proper) refinement of η;
in other words, if any two k-tuples in the same orbit must be η-equivalent.

The equivalence relations∼ for which we want to find approximations come from subfactors
of C . If D contains C , it might not act at all on S/∼ (if S or ∼ is not invariant under D),
and even in the case that it does, its action might contain operations that are not from
C ↷ S/∼. However, the theory of smooth approximations gives us that we can (under
certain conditions) find a D-invariant set S′ ⊇ S and an equivalence relation η on S′ that
approximates ∼, and such that D ↷ S′/η is not “richer” than C ↷ S/∼.

One of the central results from [25] is the so-called loop lemma of smooth approximations.
We do not give the general formulation of the loop lemma here and rather phrase it directly
the way we apply it in our proof.

▶ Theorem 6 (Consequence of Theorem 11 and Lemma 14 in [25]). Let k ≥ 1, and suppose
that C I

A ↷ Ik/Aut(A) has a naked (resp. affine) set. Then there exists a naked (resp. affine)
set (S,∼) of C I

A with S ⊆ Ik and Aut(A)-invariant ∼-classes such that one of the following
holds:
1. ∼ is approximated by a Pol(A)-invariant equivalence relation that is presmooth with

respect to Aut(DF );
2. there exists f ∈ Pol(A) such that f(a, b) ∼ f(b, a) holds for all disjoint injective tuples

a, b ∈ V k such that f(a, b), f(b, a) ∈ S.

▶ Lemma 7. Let f : V n → V be an arbitrary operation defined on V . There exists g : V n → V

that is canonical with respect to Aut(DF , <) and that is locally interpolated by f , i.e.,
for every finite S ⊆ V there exist α1, . . . , αn, β ∈ Aut(DF , <) such that g(a1, . . . , an) =
βf(α1a1, . . . , αnan) holds for all a1, . . . , an ∈ S.

Proof. By the theorem of Nešetřil and Rödl [27], the class of all F-free oriented graphs
endowed with a linear order is a so-called Ramsey class. The conclusion is then obtained by
applying [13, Lemma 14], see also [12, Theorem 5] for an alternative presentation. ◀

In particular, if A is a first-order reduct of DF , then for every f ∈ Pol(A) there exists
g ∈ C K

(DF ,<) that is locally interpolated by f . Similarly, for every f : V n → V , there exists
g : V n → V that is diagonally canonical with respect to Aut(DF , <) and that is diagonally
interpolated by f , that is, for every finite S ⊆ V there exist α, β ∈ Aut(DF , <) such that
g(a1, . . . , an) = βf(αa1, . . . , αan) holds for all a1, . . . , an ∈ S.
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3 Injective Projections and Preliminary Results

We define here the notion of injective projections appearing in Theorem 2.

▶ Definition 8 (Injective projections). An injective projection is a function qn
i : V n → V such

that for all a1, . . . , an ∈ V 2, at least one of which is not a constant pair, the following hold:
qn

i (a1, . . . , an) ∈ N if aj ̸∈ U for some j ∈ {1, . . . , n},
qn

i (a1, . . . , an) and ai are in the same orbit under Aut(DF ) otherwise.
If A is a reduct of DF and qn

i ∈ C I
A for all 1 ≤ i ≤ n then we say A has injective projections.

Note that injective projections are canonical with respect to DF . Indeed, suppose that
a1, b1, . . . , an, bn are tuples of the same length m such that aj and bj induce the same graph
in DF , for all j ∈ {1, . . . , n}. Then by definition, qn

i (a1, . . . , an) and qn
i (b1, . . . , bn) induce

the same directed graph in DF , and thus they are in the same orbit under Aut(DF ) by
homogeneity of DF .

▶ Proposition 9. Let F be a finite set of finite tournaments, and let A be a first-order reduct
of DF whose relations only contain tuples inducing tournaments in DF . Then qn

i ∈ Pol(A)
for all 1 ≤ i ≤ n. If one of the relations of A contains tuples inducing different tournaments,
then U is invariant under Pol(A).

Proof. Let R be a relation of A that contains two tuples inducing different tournaments
in DF . In particular the arity n of R must be at least 2. Since R contains tuples a, b

inducing different tournaments, there exist distinct i, j ∈ {1, . . . , n} such that (ai, aj) and
(bi, bj) induce different tournaments, i.e., they form edges in opposite directions. Thus, the
projection of R onto the coordinates i, j is equal to U , and it follows that U is invariant
under Pol(A).

Let 1 ≤ i ≤ n. We define a directed graph D = (V n, E′) by (x, y) ∈ E′ if, and only if,
(xj , yj) ∈ U for all j ∈ {1, . . . , n} and (xi, yi) ∈ E.

We prove that D is F-free. Assume for contradiction otherwise. Then there is a finite
V ′ ⊆ V n inducing a tournament from F in D. By definition, the projection

{v ∈ V | ∃x1, . . . , xi−1, xi+1, . . . , xn ∈ V : (x1, . . . , xi−1, v, xi+1, . . . , xn) ∈ V ′}

of V ′ onto its ith coordinate induces the same tournament in DF . But this contradicts the
fact that DF is F-free. Thus, since DF is universal for the class of F-free digraphs, there
exists an embedding qn

i : D ↪→ DF .
We can then view qn

i as an n-ary function on V . We prove that it is a polymorphism of A.
Let R be a relation of A, and let r1, . . . , rn ∈ R. By assumption on R, all r1, . . . , rn induce
tournaments in DF . Thus, qn

i (r1, . . . , rn) induce the same tournament as ri, and therefore
qn

i (r1, . . . , rn) ∈ R. ◀

As a consequence of Proposition 9, we obtain that all templates A arising from a
(F , R)-completion problem in the way outlined in the introduction satisfy the assumptions
of Theorem 2.

We now prove that the injective projections are canonical with respect to Aut(A), for any
first-order reduct A of DF such that Aut(A) ⊆ Aut(HF ). The proof of this fact is the only
place where the classification of first-order reducts of DF due to Agarwal and Kompatscher [1]
is needed.

▶ Lemma 10. Let A be a first-order reduct of DF with Aut(A) ⊆ Aut(HF ). The injective
projections are canonical with respect to Aut(A) and are therefore elements of C I

A .
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Proof. Let 1 ≤ k ≤ n and let a1, b1, . . . , an, bn be such that ai and bi are injective tuples
that are in the same orbit under Aut(A), for all i ∈ {1, . . . , n}. We need to show that
qn

k (a1, . . . , an) and qn
k (b1, . . . , bn) are in the same orbit under Aut(A).

The Aut(DF )-orbit of qn
k (a1, . . . , an) is the orbit of n-tuples c such that for all i ̸= j,

either (ci, cj) ∈ N whenever for some ℓ, (aℓ
i , aℓ

j) ∈ N, and otherwise (ci, cj) is in the same
Aut(DF )-orbit as (ak

i , ak
j ). Since aℓ and bℓ are in the same orbit under Aut(A) for all

ℓ ∈ {1, . . . , n}, for all i ̸= j we have (aℓ
i , aℓ

j) ∈ N if, and only if, (bℓ
i , bℓ

j) ∈ N. Therefore, the
indices i, j where the restrictions of the tuples qn

k (a1, . . . , an) and qn
k (b1, . . . , bn) are in N

coincide.
By the classification of all first-order reducts A of DF such that Aut(DF ) ≤ Aut(A) ≤

Aut(HF ) due to Agarwal and Kompatscher [1], the tuple bk can be obtained from ak by a
sequence of switching steps and reversing steps defined as follows. Given a directed graph, a
switching step consists in choosing a vertex of the graph and reversing the direction of every
edge incident to that vertex; a reversing step consists in reversing the direction of all edges.
Note that if the directed graph induced by b can be obtained by finitely many such operations
starting from the directed graph induced by a, then the same is true if one removes in a

and b edges at the same position. It follows that qn
k (a1, . . . , ak) and qn

k (b1, . . . , bk) are in the
same orbit under Aut(A). ◀

4 Description of the proof strategy

We describe here the strategy for the proof of Theorem 2 on a relatively high level.

4.1 Preprocessing of the Reducts of DF

A structure A is a model-complete core if for every finite S ⊆ A and every endomorphism
f : A→ A, there exists an automorphism α ∈ Aut(A) such that f |S = α|S . It is often very
convenient for studying the complexity of CSP(A) and the polymorphisms of A to work with
a structure that is a model-complete core; as an example of an important application for us,
if A is a model-complete core, then for all n ≥ 1 and a ∈ An, the orbit of a under Aut(A) is
invariant under all the polymorphisms of A.

While not every structure is a core, it is known that every ω-categorical structure, and in
particular every first-order reduct A of DF , is homomorphically equivalent to a structure
B that is a model-complete core, i.e., such that there exist homomorphisms A → B and
B → A [3, 2]. Moreover, this structure is unique up to isomorphism and is called the
model-complete core of A.

If A is a first-order reduct of DF , it is a priori not guaranteed that the model-complete
core of A is a first-order reduct of DF . The following statement that we prove first establishes
this property and relies on a recent result by Mottet and Pinsker [24].

▶ Lemma 11. Let A be a first-order reduct of DF , and let A′ be the model-complete core of
A. Then A′ is either isomorphic to A, or a 1-element structure, or a first-order reduct of a
homogeneous undirected graph or the universal homogeneous tournament.

In the following statement, a function g : A→ A with respect to a group G of permutations
on A is range-rigid if for every α ∈ G and every finite S ⊆ A, there exists β ∈ G such that
g|S = β ◦ g ◦α ◦ g|S . In words, this means that g essentially behaves like a retraction (modulo
elements of G ) on every orbit of G that intersects the range of g.
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While the first outcome in Theorem 6 only yields a presmooth approximation, it is a very
smooth approximation that is needed in Proposition 21. As in [25], the step from presmooth
to very smooth is achieved by leveraging a certain primitivity property of the automorphism
group of the base structure under consideration, in this case DF .

For n ≥ 1, we call a permutation group G acting on a set A n-primitive if for every orbit
O ⊆ An of G , every G -invariant equivalence relation on O containing a pair (a, b) where a, b

are disjoint is full. We say an ω-categorical structure A has no algebraicity if none of its
elements are first-order definable using other elements as parameters.

▶ Lemma 12. For all n ≥ 1, Aut(DF ) is n-primitive and has no algebraicity.

Proof. Let n ≥ 1 and O an orbit of n-tuples under Aut(DF ) and a ∼ b for some equivalence
relation ∼ on O with a, b disjoint, and c, d arbitrary tuples in O. We define a digraph X on
5n vertices, partitioned into five n-tuples x, y, z, u, v ∈ V n such that the entries of x, u and
v, z induce the same graph as the entries of a, b in DF . Similar let u, y and y, v induce b, a.
Finally let x, z induce c, d. Then X is F-free as all induced tournaments in X contain only
vertices belonging to at most two tuples which are neighbors in the cycle x, u, y, v, z, x. By
definition these two tuples induce a graph isomorphic to the graph induced by a, b or c, d in
DF respectively, so X is F -free. Then there is an embedding f : X→ DF with f(x) = c and
f(z) = d by homogeneity. Also by transitivity of ∼ we have c = f(x) ∼ f(z) = d.

The class C of F -free oriented graphs has the free amalgamation property, i.e., given any
two such oriented graphs D = (W, F ), D′ = (W ′, F ′) inducing the same directed graph on
W ∩W ′, then the union (W ∪W ′, F ∪ F ′) is an F-free oriented graph. This implies (see,
e.g., [19]) that the Fraïssé limit of C, which is exactly DF , has no algebraicity. ◀

▶ Lemma 13. Let A be a first-order reduct of DF that is a model-complete core and such
that Aut(A) ⊆ Aut(HF ). Then ̸= and N are invariant under Pol(A).

Proof. Since Aut(A) ⊆ Aut(HF ), N is a single orbit under Aut(A) and is therefore invariant
under Pol(A) since A is a model-complete core. Now, let O be another orbit of injective pairs.
Then every pair (a, b) with a ̸= b satisfied the formula φ(x, y) := ∃z((x, z) ∈ O ∧ (y, z) ∈ N).
This is a primitive positive formula, and since both O and N are invariant under Pol(A),
then so is the relation defined by φ. ◀

Let us call a first-order reduct A of DF a proper reduct if the following conditions are
satisfied:

A is a model-complete core, i.e., if every homomorphism A → A locally resembles an
automorphism an automorphism of A (the precise definition is given in Section 4.1),
Aut(A) ⊆ Aut(HF ),
if Aut(A) = Aut(HF ), then HF is not homogeneous.

Our next step is to show that A can without loss of generality be assumed to be proper.
Indeed, if A is not a model-complete core, then by Lemma 11 the model-complete core
of A is a 1-element structure, or is a first-order reduct of a homogeneous graph, or is a
first-order reduct of the universal homogeneous tournament; Theorem 2 is known to hold for
all such structures [8, 25]. Since replacing A by its model-complete core does not change
the outcome of Theorem 2, we are immediately done if A is not a model-complete core. If
Aut(A) ̸⊆ Aut(HF ), then by Theorem 2.2(i) of [1] we have Aut(HF ) ⊊ Aut(A), in which
case either HF is a homogeneous undirected graph, or HF is not homogeneous and then
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Does C K
DF

↷ {←,→}
have a naked set?

C I
A ↷ Ik/Aut(A)

has a naked set for
some k ≥ 2

Pol(A) contains a certain
symmetric operation

CSP(A) is in P

C K
DF

↷ {←,→} contains
a majority operation

There exists a presmooth
approximation of a naked
set for C I

A ↷ Ik/Aut(A)
A pp-constructs every finite structure

Proposition 21

Yes (Lemma 16)

No [9]

Theorem 6 [25] Proposition 22

Figure 2 A simplified overview of the proof strategy of Theorem 2 after the preprocessing step.

Aut(A) is the full symmetric group by Theorem 2.2(iii) of [1]. Both of these cases can be
handled by [25].1 Finally, if Aut(A) = Aut(HF ) and HF is homogeneous, then we are again
done by [25].

4.2 An Algebraic Dichotomy for Proper Reducts
After this “preprocessing” step, the main technical result is the following.

▶ Theorem 14. Let F be a finite set of finite tournaments. Let A be a proper reduct of DF
that admits injective projections and such that U is invariant under Pol(A). Then exactly
one of the following holds:
1. Pol(A) has a naked set,
2. Pol(A) contains a ternary operation f that is canonical with respect to Aut(DF ) and

u, v ∈ Aut(DF ) such that u ◦ f(x, y, z) = v ◦ f(y, z, x) holds for all x, y, z ∈ V .
Note that Theorem 14 is indeed a refined version of Theorem 2: the first item of Theorem 14

implies the first item of Theorem 2 by [11], and the second item of Theorem 14 implies the
second item of Theorem 2 by [9].

The proof strategy is represented in Figure 2 and is based on distinguish upon whether
C K

DF
↷ {←,→}, which is a clone of functions on the two-element set {←,→}, has a naked

set. If C K
DF

↷ {←,→} does not have a naked set, then we show that Pol(A) contains an
operation f as in the second item of Theorem 14.

▶ Proposition 15. Let A be a proper reduct of DF that admits injective projections. The
following hold:
1. If C K

DF
↷ {←,→} does not have a naked set, then there exists f ∈ Pol(A) and u, v ∈

Aut(DF ), canonical with respect to Aut(DF ), and such that the identity

u ◦ f(x, y, z) = v ◦ f(y, z, x)

holds for all x, y, z ∈ V ;

1 The first proof in the first case was given in [8], while the first proof in the case of the full symmetric
group is due to [6].
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2. If C K
DF

↷ {←,→} does not have an affine set, then there exists f ∈ Pol(A) such that
for all n ≥ 1 and a, b ∈ V n, the tuples a, f(a, a, b), f(a, b, a), f(b, a, a) are all in the same
orbit under Aut(DF ).

Proof. If C K
DF

↷ {←,→} does not have a naked set, then it contains a tern-
ary function f ′ that acts as a cyclic operation on {←,→}. Then f(x, y, z) :=
f ′(q3

1(x, y, z), q3
1(y, z, x), q3

1(z, x, y)) is a canonical polymorphism of A which is pseudo-cyclic
modulo Aut(DF ). If C K

DF
↷ {←,→} does not have an affine set, then it contains a

ternary function m that induces a majority operation on {←,→} (note that any bin-
ary operation f ∈ C K

DF
induces on {←,→} a function such that f(→,←) ̸= f(←,→),

so that C K
DF

↷ {←,→} cannot contain a semilattice operation). Then f(x, y, z) :=
m(q3

1(x, y, z), q3
1(y, z, x), q3

1(z, x, y)) is a canonical polymorphism of A that satisfies the state-
ment. ◀

Then CSP(A) can be solved in polynomial time by reducing it to a tractable finite-domain
CSP [10]. Otherwise, C K

DF
↷ {←,→} has a naked set and one can prove in this case that

C I
A ↷ Ik/Aut(A) also has a naked set for some k ≥ 1.

▶ Lemma 16. Let A be a proper reduct of DF that admits injective projections and such
that U is invariant under Pol(A). Assume C K

DF
↷ {←,→} has a naked (resp. affine) set.

Then C I
A ↷ Ik/Aut(A) has a naked (resp. affine) set for some k ≥ 2.

In other words, there exist S ⊆ Ik invariant under C I
A and a C I

A -invariant equivalence
relation ∼ on S with Aut(A)-invariant equivalence classes such that C I

A ↷ S/∼ only contains
projections. The loop lemma of smooth approximations applies (Theorem 6), giving us two
possible outcomes.

4.2.1 First Case: Presmooth Approximation
In the first case, there exists a presmooth approximation for a naked set of C I

A ↷ I/Aut(A).
We first show how to “upgrade” this approximation into a very smooth approximation,
applying general principles from the theory of smooth approximations.

▶ Proposition 17. Let A be a first-order reduct of DF that is a model-complete core and
such that Aut(A) ⊆ Aut(HF ). If (S,∼) is a minimal subfactor of C I

A such that ∼ has
Aut(A)-invariant classes, and η is a presmooth approximation of ∼ with respect to Aut(A),
then η is very smooth with respect to Aut(DF ).

Proof. We show that η is presmooth with respect to Aut(DF ). Let C be an equivalence class
of ∼. By assumption, there exists an equivalence class C ′ of η and a, b ∈ C ∩ C ′ that are
disjoint. By Lemma 12, Aut(DF ) has no algebraicity. Thus, there exists an automorphism
α ∈ Aut(DF , a) such that α(b) and b are disjoint. Note that b and α(b) are ∼-equivalent,
since the equivalence classes of ∼ are Aut(A)-invariant. Moreover, b and α(b) are η-equivalent,
since (a, b) ∈ η and η is Aut(A)-invariant. Thus, we have disjoint elements b, α(b) in C ′ ∩ C

and in the same orbit under Aut(DF ), i.e., η is presmooth with respect to Aut(DF ).
By Lemma 13, ̸= is invariant under Pol(A), and by Lemma 12, Aut(DF ) is n-primitive

for all n. By [25, Lemma 8], we obtain that η is very smooth with respect to Aut(DF ). ◀

We show that this can be used to obtain a naked set for Pol(A), which implies by Theorem 4
that A pp-constructs every finite structure. We are in the situation where the original theorem
from [25, Theorem 13] used to extend a naked set (or affine set) does not apply. Indeed,
this result would require that C I

A be locally interpolated by Pol(A), which we do not have.
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However, we do have that C K
DF

is locally interpolated by Pol(A). Indeed, we already know
that any f ∈ Pol(A) locally interpolates an operation g that is canonical with respect to
Aut(DF , <). If g is not an element of C K

DF
, we show that C K

DF
↷ {←,→} must contain a

majority operation, a contradiction to our assumption that C K
DF

↷ {←,→} has a naked set.
The proof of the following lemma is similar to the proof of Lemma 34 in [25].

▶ Lemma 18. Let A be a proper reduct of DF such that U is invariant under Pol(A). Suppose
that:

Pol(A) contains a binary injection acting like a projection on {←,→},
there is a function in C K

(DF ,<) that is not in C K
DF

.
Then C K

DF
↷ {←,→} contains a majority operation and in particular does not have an affine

set.

We can then proceed as in [26] and use Lemma 18 and the injective projections to
circumvent the original limitation from [25, Theorem 13]. In the following, the “lifting”
operation, which gives us that Pol(A) has a naked set, is performed by exhibiting a uniformly
continuous clone homomorphism from Pol(A) to C I

A ↷ S/∼, i.e., an arity-preserving map
ξ such that ξ(f ◦ (g1, . . . , gk)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gk)) for all f, g1, . . . , gk ∈ Pol(A) of
appropriate arities, and where the value of ξ(f) for an n-ary f ∈ Pol(A) is only determined
by the restriction f |S of f onto a finite subset S of A that does not depend on f . The
existence of such a map shows that Pol(A) is not “richer” than C I

A ↷ S/∼; in particular, if
C I
A ↷ S/∼ has a naked (resp. affine) set, then so does Pol(A). We refer the reader to [11]

and in particular to Theorem 1 therein for more details.

▶ Corollary 19. Let A be a proper reduct of DF that admits injective projections and such that
U is invariant under Pol(A). If C K

DF
↷ {←,→} has an affine set, we have C K

(DF ,<) ⊆ C K
DF

.
In particular, every f ∈ Pol(A) locally interpolates a function in C K

DF
.

Proof. Lemma 18 applies since A admits injective projections and U is invariant under
Pol(A). For the second part, we know by Lemma 7 that every f ∈ Pol(A) locally interpolates
an operation that is canonical with respect to (DF , <). Such operations are in particular in
C K

(DF ,<). Since C K
(DF ,<) ⊆ C K

DF
, we are done. ◀

▶ Lemma 20. Let A be a proper reduct of DF such that U is invariant under C I
A . Let

(S,∼) be an affine set of C I
A such that S ⊆ Ik and where the ∼-equivalence classes are

Aut(A)-invariant. Then for all a, b ∈ S, a and b induce the same undirected graph in HF .

Proof. Suppose first that there exist a, b ∈ S with a ̸∼ b and such that a, b induce the same
undirected graph in HF . Since both N and U are invariant under C I

A , the set generated by
{a, b} under C I

A only consists of tuples all inducing the same undirected graph as a and b in
HF . By minimality of (S,∼), such a set must be equal to S itself, so we are done.

Otherwise, whenever a ̸∼ b, then a, b induce different undirected graphs. In other
words, any tuples in S inducing the same undirected graph are in the same ∼-equivalence
class. By assumption, (S,∼) is an affine set for C I

A , and therefore there exists a ring R

and a finite R-module M on S/∼ such that all operations in C I
A ↷ S/∼ are of the form

(x1, . . . , xn) 7→
∑

λi · xi, where λ1, . . . , λn ∈ R are such that
∑

λi = 1. Let a ∈ S be a tuple
whose ∼-equivalence class is an arbitrary non-zero element of the module M , and let b ∈ S

be a tuple whose ∼-equivalence class is the zero element of M . Since M is finite, a (more
precisely, its ∼-equivalence class [a]), has a finite order n ≥ 2, that is, n[a] = [b]. Note that
the tuples qn

1 (a, b, . . . , b), qn
1 (b, a, b, . . . , b), . . . , qn

1 (b, . . . , b, a) all induce the same undirected
graph, and they are all in S since qn

1 ∈ C I
A by Lemma 10. By our assumption, all these tuples
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are in the same ∼-equivalence class. Since C I
A ↷ S/∼ is affine, the action of qn

1 on S/∼ is an
affine function of the form (x1, . . . , xn) 7→

∑
λi · xi, where λ1, . . . , λn are elements of R and

such that
∑

λi = 1. If a is in the ith position, then qn
1 (b, . . . , b, a, b, . . . , b) is ∼-equivalent to

λi · [a]. Thus, we get that λi · [a] = λj · [a] for all i, j ∈ {1, . . . , n}. We call this element λ · [a].
Thus, the equivalence class of qn

1 (a, . . . , a) is
∑n

i=1 λ · [a] = n(λ · [a]) = λ · (n · [a]) = λ · [b] = [b].
However, qn

1 being affine, we also know that qn
1 (a, . . . , a) is ∼-equivalent to a, contradicting

our assumption that a ̸∼ b. ◀

▶ Proposition 21. Let A be a proper reduct of DF that admits injective projections and such
that U is invariant under Pol(A). Assume that C K

DF
↷ {←,→} has an affine set. Suppose

that there exists an affine set (S,∼) of C I
A with S ⊆ Ik and ∼ having Aut(A)-invariant

classes. Suppose further that ∼ admits a Pol(A)-invariant very smooth approximation with
respect to Aut(DF ). Then Pol(A) admits a uniformly continuous clone homomorphism to
C I
A ↷ S/∼.

Proof. Without loss of generality, we can assume that S is minimal with the property of
intersecting two equivalence classes of ∼. Let η be a presmooth approximation of ∼ with
respect to Aut(DF ). By [25, Lemma 8] and Lemmas 12 and 13, every Pol(A)-invariant
presmooth approximation of this naked set must be very smooth with respect to Aut(DF ).

Let f ∈ Pol(A) an n-ary function. Let f ′ ∈ C K
DF

be locally interpolated by f ; such an
operation exists by Corollary 19. Let qn

i be the i-th injective projection. By Lemma 10,
qn

i ∈ C I
A . We define f ′′(x1, . . . , xn) = f ′(qn

1 (x1, . . . , xn), . . . , qn
n(x1, . . . , xn)) and show that

f ′′ ∈ C I
A . For this let a1, a′

1, . . . , an, a′
n be injective tuples of an arbitrary length such that

ai, a′
i are in the same Aut(A)-orbit for all 1 ≤ i ≤ n. Since Aut(A) ⊆ Aut(HF ), every pair

ai, a′
i induce the same undirected graph in HF . As qn

i ∈ C I
A we know that bi := qn

i (a1, . . . , an)
and b′

i := qn
i (a′

1, . . . , a′
n) are in the same Aut(A)-orbit, too, and for the same reason as above,

each pair bi, b′
i induce the same undirected graph in HF . Moreover, the pairs of coordinates

where the projection of bi is in N are exactly the pair of coordinates where the projection of b′
i

is in N. Now let c := f ′′(a1, . . . , an) = f ′(b1, . . . , bn) and c′ := f ′′(a′
1, . . . , a′

n) = f ′(b′
1, . . . , b′

n).
Since f ′ ∈ C K

DF
, since Pol(A) preserves N, and since the operation induced by f ′ on {←,→}

is an affine map, we know that c and c′ are in the same orbit under Aut(A). Thus, f ′′ ∈ C I
A

and therefore it acts on Ik/Aut(A).
We define ξ(f) as the action of f ′′ on S/∼. As in [25, Theorem 13], for all a1, . . . , an ∈ S,

and any f ′ that is locally interpolated by f , we have f(a1, . . . , an)(η ◦ ∼)f ′(a1, . . . , an). It
follows that

f(qn
1 (a1, . . . , an), . . . , qn

n(a1, . . . , an))(η ◦ ∼)f ′′(a1, . . . , an)

holds for all a1, . . . , an ∈ S. In particular, the definition of ξ(f) does not depend on the choice
of f ′ in the construction. Moreover, if a1, . . . , an induce the same undirected graph in HF ,
then qn

i (a1, . . . , an) and ai are in the same orbit under Aut(DF ), for all i ∈ {1, . . . , n}. It
follows that f ′′(a1, . . . , an) and f ′(a1, . . . , an) are in the same orbit with respect to Aut(DF ),
as f ′ is canonical with respect to Aut(DF ). Since Aut(DF ) ⊆ Aut(A), they are in the same
orbit with respect to Aut(A), and therefore there are ∼-equivalent. Finally, this implies that
f(a1, . . . , an)(η ◦ ∼)f ′′(a1, . . . , an) holds, whenever all a1, . . . , an induce the same undirected
graph in HF , which is the case for all a1, . . . , an ∈ S by Lemma 20.

Now we show that ξ is a uniformly continuous clone homomorphism. It clearly preserves
arities so we need to show it also preserves compositions. Let f ∈ Pol(A) be n-ary, g1, . . . , gn ∈
Pol(A) be m-ary. Let u1, . . . , um ∈ S. Since gi(u1, . . . , um)(η ◦ ∼)g′′

i (u1, . . . , um) for all i,
there exists vi ∈ S such that gi(u1, . . . , um) η vi. Then
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f(g1(u1, . . . , um), . . . , gn(u1, . . . , um)) η f(v1, . . . , vn)
(η ◦ ∼)f ′′(v1, . . . , vn)
(η ◦ ∼)f ′′(g1(u1, . . . , um), . . . , gn(u1, . . . , um)).

from which we conclude that

ξ(f(g1, . . . , gn))(u1, . . . , um) = ξ(f)(ξ(g1)(u1, . . . , um), . . . , ξ(gn)(u1, . . . , um)).

To prove that ξ is uniformly continuous fix n ∈ N and let a ̸∼ b be any two k-ary tuples in
S and define F =

⋃
0≤i≤k{ai, bi}n. Observe that if f, g agree on all x ∈ {ai, bi}n for each

i ≤ k, then they also agree on all y ∈ {a, b}n as f(y)i and g(y)i are fully determined by the
values of f, g on a certain subset of {ai, bi}n. Therefore they induce the same action on S/∼
as in that case f(x) ∼ g(x) for all x ∈ {a, b}n. Then it is clear that if f, g agree on F we
also have ξ(f) = ξ(g). This completes the proof. ◀

4.2.2 Second Case: Weakly Commutative Polymorphism

In the second case of Theorem 6, Pol(A) contains a well-behaved binary operation, which
implies that C K

DF
↷ {←,→} contains a majority operation; this contradicts our assumption

that C K
DF

↷ {←,→} has a naked set. The proof of Proposition 22 below is similar to that
of Lemma 39 in [25] and is omitted due to space restrictions.

▶ Proposition 22. Let A be a proper reduct of DF with injective projections and such that U

is invariant under Pol(A). Let (S,∼) be a minimal affine set of C I
A with S ⊆ Ik and where ∼

has Aut(A)-invariant equivalence classes. Suppose that there exists a binary f ∈ Pol(A) such
that f(a, b) ∼ f(b, a) holds for all disjoint injective tuples a, b ∈ V k with f(a, b), f(b, a) ∈ S.
Then C K

DF
↷ {←,→} contains a majority operation.

4.2.3 Classifying Problems with Bounded Treewidth Dualities

Finally, we briefly describe the proof strategy for Theorem 3. It is very similar to the one
outlined above and shares all the intermediate steps. Only the starting distinction changes,
where we distinguish between whether C K

DF
↷ {←,→} has an affine set or not.

If C K
DF

↷ {←,→} does not have an affine set, then the second item in Proposition 15
states that Pol(A) contains a so-called canonical pseudo-majority operation, and A has
bounded relational width by [9]. Moreover, since DF is homogeneous in a binary language,
[22, Theorem 2] entails that A has relational width at most (4, max(6, ℓ)), where ℓ is the
maximal size of a tournament in F . It follows from general principles [15] that there exists
a duality for the class of structures admitting a homomorphism to A that has treewidth
bounded by max(6, ℓ, r), where r is the maximal arity of a relation of A.

If C I
A ↷ Ik/Aut(A) has an affine set for some k ≥ 1 (by Lemma 16), either we get an

affine set for Pol(A) (by Proposition 21) or C K
DF

↷ {←,→} contains a majority operation
(by Proposition 22), again a contradiction since a majority operation cannot be represented
as an affine map over any module.
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1 Introduction

A partition of a set V into p ∈ N parts is a set π = {V1, . . . , Vp} of subsets of V such that for
every i, j ∈ [p] : Vi ∩ Vj = ∅ and

⋃p
i=1 Vi = V . In the Equitable Connected Partition

problem, we are given an undirected graph G = (V, E) together with an integer p, and our
goal is to partition the vertex set V into p parts such that the sizes of each two parts differ
by at most 1 and each class induces a connected sub-graph. Formally, our problem is defined
as follows.

Input: A simple undirected and connected n-vertex graph G = (V, E) and a positive
integer p ∈ N.

Question: Is there a partition π = {V1, . . . , Vp} of V such that every part G[Vi] is connected,
and ||Vi| − |Vj || ≤ 1 for every pair i, j ∈ [p]?

Equitable Connected Partition (ECP)

The Equitable Connected Partition problem naturally arises in many fields such
as redistricting theory [2, 50, 55], which is a subfield of computational social choice theory,
VLSI circuit design [7], parallel computing [5], or image processing [52], to name a few.

One of the most prominent problems in the graph partitioning direction is the Bisection
problem, where our goal is to split the vertex set into two parts A and B, each part of
size at most ⌈ n

2 ⌉, such that the number of edges between A and B is at most some given
k ∈ N. Bisection is NP-hard [36] even if we restrict the input to unit disc graphs [24] and
is heavily studied from the parameterised complexity perspective; see, e.g., [6, 13, 19, 30, 54].
The natural generalisation of the Bisection problem is called Balanced Partitioning
where we partition the vertices into p ∈ N parts, each of size at most ⌈ n

p ⌉. Balanced
Partitioning is NP-hard already on trees [27] and a disjoint union of cliques [4]. The
parameterised study of this problem is due to Ganian and Obdržálek [35] and van Bevern et
al. [6]. In all the aforementioned problems, we are given only the upper-bound on the size of
each part; hence, the parts are not necessarily equitable. Moreover, there is no connectivity
requirement for the parts. For a survey of graph partitioning problems, we refer the reader
to the monograph of Buluç et al. [14].

On the equitability side, the most notable direction of research is the Equitable k-
Colouring problem (EC for short). Here, we are given an undirected graph G and the
goal is to decide whether there is a proper colouring of the vertices of G using k colours such
that the sizes of each two colour classes differ by at most one. Note that the graph induced
by each colour class is necessarily an independent set, and hence is disconnected. As the
k-Colouring problem can be easily reduced to the Equitable k-Colouring, it follows
that EC is NP-hard. Polynomial-time algorithms are known for many simple graph classes,
such as graphs of bounded tree-width [9, 16], split graphs [15], and many others [31]. The
parameterised study was, to the best of our knowledge, initiated by Fellows et al. [28] and
continued in multiple subsequent works [26, 29, 40]. For a detailed survey of the results on
EC, we refer the reader to the monograph by Lih [51].

The Equitable Connected Partition problem then naturally brings the concepts
of equitability and connectivity of the vertex set together. It is known that ECP is NP-
complete [2]. Moreover, the problem remains NP-complete even if G is a planar graph or for
every fixed p at least 2 [23, 36]. Enciso et al. [26] were the first who studied ECP from the
viewpoint of parameterised complexity. They showed that ECP is fixed-parameter tractable
with respect to the vertex cover number and the maximum leaf number of G. On the negative
side, they showed that it is W[1]-hard to decide the problem for the combined parameter the
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vertex cover # max leaf #dist. to clique

3-path vertex
cover #
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integrity #
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edge set #

⋆⋆

tree-depth dist. to
disj. paths

dist. to cluster ⋆ ⋆

path-width feedback-
vertex set #

shrub-depthmodular-width ⋆ ⋆

tree-width ⋆

clique-width

Figure 1 An overview of our results. The parameters for which the problem is in FPT are
coloured green, the parameters for which ECP is W[1]-hard and in XP have an orange background,
and para-NP-hard combinations are highlighted in red. Arrows indicate generalisations; e.g., modular
width generalises both neighbourhood diversity and twin-cover number. The solid thick border
represents completely new results, and the dashed border represents an improvement of previously
known algorithms. All our W[1]-hardness results hold even when the problem is additionally
parameterized by the number of parts p. Additionally, we show that the results marked with ⋆

becomes fixed-parameter tractable if the size of a larger part ⌈n/p⌉ is an additional parameter.

path-width, the feedback-vertex set, and the number of parts p. Moreover, they gave an XP
algorithm for ECP parameterised by tree-width. Later, Gima et al. [38] showed that the
problem is fixed-parameter tractable when parameterised by the vertex-integrity of G. Very
recently, Gima and Otachi [39] proved that ECP is W[1]-hard when parameterised by the
tree-depth of G.

A more general variant of Equitable Connected Partition with parametric lower-
and upper-bounds on the sizes of parts was studied by Ito et al. [43], and Blažej et al. [8]
very recently introduced the requirement on the maximum diameter of each part.

It is worth pointing out that Equitable Connected Partition is also significant from
a theoretical point of view. Specifically, this problem is a very common starting point for
many W[1]-hardness reductions; see, e.,g., [6, 8, 20, 53]. Surprisingly, the graph in multiple of
the before-mentioned reductions remains the same as in original instance, and therefore our
study directly strengthens the results obtained in these works. Since the complexity picture
with respect to structural parameters is rather incomplete, many natural questions arise. For
example, what is the parameterised complexity of ECP when parameterised by the 4-path
vertex cover number? Or, is ECP in FPT when parameterised by the feedback-edge set?
Last but not least, is the problem easier to decide on graphs that are dense, such as cliques?

1.1 Our Contribution
In our work, we continue the line of study of the Equitable Connected Partition
problem initiated by Enciso et al. [26] almost 15 years ago. For an overview of our results,
we refer the reader to Figure 1; however, we believe that our contribution is much broader.
We try to summarise it in the following four points.
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First, directly following pioneering work on structural parameterisation of ECP, we
provide a complete dichotomy between tractable and intractable cases for structural paramet-
ers that are bounded for sparse graphs. Namely, we provide W[1]-hardness proofs for ECP
with respect to the 4-path vertex cover number and the feedback-edge set number, which
encloses a gap between structural parameters that were known to be tractable – the vertex-
cover number and the max-leaf number – and those that were known to be W[1]-hard– the
path-width and the feedback-vertex set. It should also be mentioned that our constructions
not only give much stronger intractability results but, at the same time, are much simpler
compared to the original construction of Enciso et al. [26].

Second, we also turn our attention to dense graphs, which have, so far, been completely
overlooked in the relevant literature. On our way to fixed-parameter tractable algorithms
for various structural parameters, we prove polynomial-time solvability of some specific
graph classes. Again, we provide a clear boundary between tractable and intractable cases.
However, it turns out that for dense graphs, the problem is much easier.

Third, we clearly show where the limits of the parameterized complexity framework in
the study of structural parameterisation of Equitable Connected Partition are. In
particular, we show that the problem is NP-hard already on graphs of shrub-depth equal
to 3, clique-width equal to 3, and twin-width equal to 2. Moreover, in some cases, our
complexity results are tight. For example, we give a polynomial-time algorithm for graphs of
clique-width 2.

Last but not least, in order to provide all the algorithms, we use multiple different
techniques. Naturally, some algorithms are based on standard techniques such as dynamic-
programming over decomposition or kernelisation; however, many of them still require deep
insights into the structure of the solution and the instances. However, some of them use
very careful branching together with formulation of the problem using N -fold integer linear
programming, which is, informally speaking, an integer linear program with specific shape of
the constraints. We are convinced that the technique of N -fold integer linear programming in
the design and analysis of fixed-parameter tractable algorithms deserves more attention from
the parameterised complexity community, as it in many scenarios significantly outperforms the
classical FPT algorithms based on the famous Lenstra’s algorithm; see, e.g., [3, 12, 45, 46, 47].

2 Preliminaries

We assume the reader to be familiar with the basic graph-theoretical notation as given by
Diestel [21] and with the basics of parameterised complexity [18].

Structural Parameters. In this sub-section, we provide definitions of less widespread
structural parameters we study in this work. Definitions of all the remaining parameters are
provided in the full version.

▶ Definition 1 (d-path vertex cover). Let G = (V, E) be an undirected graph and d ∈ N be an
integer. A d-path vertex cover is a set C ⊆ V such that the graph G \ C contains no path
with d vertices as a sub-graph. The d-path vertex cover number d-pvcn(G) is the size of a
minimum d-path vertex cover in G.

Note that the 2-path vertex cover number is, in fact, the standard vertex cover number
of a graph.
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▶ Definition 2 (Vertex integrity). Let G = (V, E) be an undirected graph. Vertex integrity,
denoted vi(G), is the minimum k ∈ N such that there is a set X ⊆ V of size at most k and
every connected component C of G \ X contains at most k vertices.

▶ Definition 3 (Distance to G). Let G be a graph, and G be a graph family. A set M ⊆ V (G)
is a modulator to G, if G \ M ∈ G. The distance to G, denoted distG(G), is the size of a
minimum modulator to G.

In our paper, we will focus on the distance to clique, denoted by dc(G), the distance to
disjoint union of cliques, which is usually referred to as the distance to cluster graph or the
cluster vertex deletion [22] and denoted dcg(G), and the distance to disjoint paths, denoted
by ddp(G).

▶ Definition 4 (Neighbourhood-diversity [48]). Let G = (V, E) be a graph. We say that
two vertices u, v ∈ V have the same type iff N(u) \ {v} = N(v) \ {u}. The neighbourhood
diversity of G is at most d, if there exists a partition of V into at most d sets such that all
vertices in each set have the same type.

Let T1, . . . , Td be a partition of V such that for each u, v ∈ Ti, i ∈ [d], it holds that u and
v are of the same type according to Definition 4. Observe that each type is either independent
set or a clique. We define type graph to be an undirected graph with vertices being the types
T1, . . . , Td and two vertices corresponding to some types Ti and Tj are connected by an edge
iff there exists an edge {u, v} ∈ E(G) such that u ∈ Ti and v ∈ Tj .

▶ Definition 5 (Modular-width [32]). Consider graphs that can be obtained from an algebraic
expression that uses only the following operations:
1. create an isolated vertex,
2. the disjoint union of two disjoint graphs G1 and G2 which is a graph (V (G1) ∪ V (G2),

E(G1) ∪ E(G2)),
3. the complete join of two disjoint graphs G1 and G2 which produces a graph (V (G1) ∪

V (G2), E(G1) ∪ E(G2) ∪ {{u, v} | u ∈ V (G1) and v ∈ V (G2)}).
4. the substitution with respect to some pattern graph P – for a graph P with vertices

p1, . . . , pℓ and disjoint graphs G1, . . . , Gℓ, the substitution of the vertices of P by the
graphs G1, . . . , Gℓ is the graph with vertex set

⋃ℓ
i=1 V (Gi) and edge set

⋃ℓ
i=1 E(Gi) ∪

{{u, v} | u ∈ V (Gi), v ∈ V (Gj), and {pi, pj} ∈ E(P )}.
The width of such an algebraic expression is the maximum number of operands used by any
occurrence of the substitution operation. The modular-width of a graph G, denoted mw(G),
is the least integer m such that G can be obtained from such algebraic expression of width m.

N-fold Integer Programming. In recent years, integer linear programming (ILP) has become
a very useful tool in the design and analysis of fixed-parameter tractable algorithms [37].
One of the best known results in this line of research is probably Lenstra’s algorithm, roughly
showing that ILP with bounded number of variables is solvable in FPT time [49].

In this work, we use the so-called N-fold integer programming formulation. Here, the
problem is to minimise a linear objective over a set of linear constraints with a very restricted
structure. In particular, the constraints are as follows. We use x(i) to denote a set of ti

variables (a so-called brick).

D1x(1) + D2x(2) + · · · + DN x(N) = b0 (1)

Aix
(i) = bi ∀i ∈ [N ] (2)

0 ≤ x(i) ≤ ui ∀i ∈ [N ] (3)
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Where we have Di ∈ Zr×ti and Ai ∈ Zsi×ti ; let us denote s = maxi∈[N ] si, t = maxi∈[N ] ti,
and let the dimension be d, i.e., d =

∑
i∈[N ] ti ≤ Nt. Constraints (1) are the so-called linking

constraints and the rest are the local constraints. In the analysis of our algorithms, we use
the following result of Eisenbrand et al. [25].

▶ Proposition 6 ([25, Corollary 91]). N -fold IP can be solved in ar2s+rs2 · d · log(d) · L time,
where

L is the maximum feasible value of the objective and
a = r · s · maxi∈[N ] (max(∥Di∥∞, ∥Ai∥∞)).

3 Algorithmic Results

In this section, we provide our algorithmic results. The first algorithm is for ECP para-
meterised by the vertex-integrity and combines careful branching with N -fold integer pro-
gramming. Specifically, Gima et al. [38] showed that ECP is in FPT with respect to this
parameter by giving an algorithm running in kkkO(k)

· nO(1) time, where k = vi(G). We
show that using an N -fold IP formulation, we can give a simpler algorithm with a doubly
exponential improvement in the running time.

▶ Theorem 7. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the vertex-integrity vi and can be solved in kO(k4) · n log n time, where
k = vi(G).

Proof. First, if it holds that p > k, we use the algorithm of Gima et al. [38] which, in this
special case, runs in time kO(k2) · n. Therefore, the bottleneck of their approach is clearly
the case when p ≤ k. In what follows, we introduce our own procedure for this case, which is
based on the N-fold integer programming. Note that the algorithm of Gima et al. [38] for
the case p ≤ k is based on the algorithm of Lenstra [49].

First, we guess (by guessing we mean exhaustively trying all possibilities) a partition of the
modulator vertices X in the solution. Let this solution partition be X1, . . . , Xp. Furthermore,
we guess which (missing) connections between the vertices in the modulator will be realised
through the components of G − X. Let E(X) be the set of these guessed connections.

Now, we check the validity of our guess using the (configuration) N -fold ILP. Each
component of G − X (call them pieces) has at most k vertices; therefore, it can be split
in at most k chunks (not necessarily connected) that will be attached to some modulator
vertices already assigned to the parts of the solution. Let P(G, X) be the set of all pieces
of G − X. Now, we want to verify if there exists a selection of chunks for every piece so
that when we collect these together the solution is indeed connected and contains the right
number of vertices. Thus, there are altogether at most kk configurations of chunks in a piece.
Let C(Z) be the set of all configurations of a piece Z. Let sZ

C,i be the number of vertices in
the chunk attached to the i-th part from a piece Z in the configuration C.Let Z be a piece
and C ∈ C(Z), we set eZ

C(u, v) = 1 if the chunk assigned by C to the part containing both
u, v ∈ X connects u and v.

Now, we have to ensure (local constraint) that each piece is in exactly one configuration∑
C∈C(Z)

xZ
C = 1 ∀Z ∈ P(G, X) . (4)

Observe that these constraints have no variables in common for two distinct elements
of P(G, X). The rest of the necessary computation uses global constraints. We ensure that
the total contribution of chunks assigned to the parts is the correct number (xi is a binary
slack such that

∑
i xi = n mod p):
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xi +
∑

Z∈P(G,X)

∑
C∈C(Z)

sZ
C,i · xZ

C = ⌈n/p⌉ − |Xi| ∀i ∈ [p] (5)

Next, we have to verify the connectivity of parts in X∑
Z∈P(G,X)

∑
C∈C(Z)

eZ
C(u, v) · xZ

C ≥ 1 ∀{u, v} ∈ E(X) (6)

It is not hard to verify, that the parameters of N -fold IP are as follows:
the number s of local constraints in a brick is exactly 1 as there is a single local
constraint (4) for each piece,
the number r of global constraints is in O

(
k2)

: there are p ≤ k constraints (5) and
(

k
2
)

constraints (6),
the number t of variables in a brick is |C(Z)| which is kO(k), and
a ∈ O

(
k3)

, since all coefficients in the constraints are bounded by k in absolute value.
Thus, using Proposition 6, the Equitable Connected Partition problem can be solved
in kO(k4) · n log n time. ◀

Using techniques from the proof of Theorem 7, we may give a specialised algorithm for
Equitable Connected Partition parameterised by the 3-path vertex cover. The core
idea is essentially the same, but the components that remain after removing the modulator
are much simpler: they are either isolated vertices or isolated edges. This fact allows us to
additionally speed the algorithm up.

▶ Theorem 8. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the 3-path vertex cover number and can be solved in kO(k2) · n log n time,
where k = 3-pvcn(G).

The next result is an XP algorithm with respect to the tree-width of G. It should be
noted that a similar result was reported already by Enciso et al. [26]; however, their proof
was never published1 and the only clue for the algorithm the authors give in [26] is that
this algorithm “can be proved using standard techniques for problems on graphs of bounded
treewidth”. Therefore, to fill this gap in the literature, we give our own algorithm.

▶ Theorem 9. The Equitable Connected Partition problem is in XP when parameter-
ized by the tree-width tw of G.

Proof sketch. The algorithm is, as is usual, a leaf-to-root dynamic programming algorithm
along a nice tree decomposition. The crucial observation we need for the algorithm is that
at every moment of the computation, there are at most O (tw) opened parts. This holds
because each bag forms a separator in G and therefore no edge can “circumvent” currently
processed bag.

The algorithm then proceeds as follows. In each node x of the tree-decomposition, we
remember all possible partitions of vertices into open parts and the sizes of each open cluster
including already forgotten vertices. We require that each open part is connected. Once a
new vertex v is introduced, we have three possibilities: create a new part consisting of only

1 In particular, in their conference version, Enciso et al. [26] promised to include the proof in an extended
version, which, however, has never been published. There is also a version containing the appendix of
the conference paper available from https://www.researchgate.net/publication/220992885_What_
Makes_Equitable_Connected_Partition_Easy; however, even in this version, the proof is not provided.
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v, put v into an existing opened part, or merge (via v) multiple already existing parts into a
new one. When a vertex v is forgotten we need to check whether v is the last vertex of its
part and, if yes, whether the part v is member of is of size ⌊n/p⌋ or ⌈n/p⌉. In join nodes, we
just merge two records from child nodes with the same partition of bag vertices, or we merge
different partitions whose connectivity is secured by the past vertices.

Once the dynamic table is correctly filled, we ask whether the dynamic table for the
root of the tree-decomposition stores true in its single cell. The size of each dynamic
programming table is twO(tw) ·nO(tw) = nO(tw), and each table can be computed in the same
time. Therefore, the algorithm runs in O (n · tw) · nO(tw) time, which is in XP. ◀

Observe that if the size of every part is bounded by a parameter ς, the size of each
dynamic programming table is twO(tw) ·ςO(tw) and we need the same time to compute each
cell. Therefore, the algorithm also shows the following tractability result.

▶ Corollary 10. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the tree-width tw and the size of a large part ς = ⌈n/p⌉ combined.

In other words, the Equitable Connected Partition problem becomes tractable if
the tree-width is bounded and the number of parts is large.

So far, we investigated the complexity of the problem mostly with respect to structural
parameters that are bounded for sparse graphs. Now, we turn our attention to parameters
that our bounded for dense graphs. Note that such parameters are indeed interesting for the
problem, as the problem becomes polynomial-time solvable on cliques. We were not able to
find this result in the literature, and, therefore, we present it in its entirety.

▶ Observation 11. The Equitable Connected Partition problem can be solved in linear
time if the graph G is a clique.

Proof. First, we determine the number of parts of size ⌈n/p⌉ as ℓ = (n mod p), and the
number of smaller parts of size ⌊n/p⌋ as s = p − ℓ. Now, we arbitrarily assign vertices to p

parts such that the first ℓ parts contain ⌈n/p⌉ vertices and the remaining s parts contain
exactly ⌊n/p⌋ vertices. This, in fact, creates an equitable partition. Moreover, every partition
is connected, since each pair of vertices is connected by an edge in G. ◀

Following the usual approach of distance from triviality [1, 41], we study the problem
of our interest with respect to the distance to clique. We obtain the following tractability
result.

▶ Theorem 12. The Equitable Connected Partition problem is fixed-parameter tractable
when parameterised by the distance to clique k.

Next, we prove polynomial-time solvability for a more general class of graphs than cliques.
Namely, we provide a tractable algorithm for co-graphs.

▶ Theorem 13. The Equitable Connected Partition problem can be solved in polynomial
time if the graph G is a co-graph.

Next structural parameter we study is the neighbourhood diversity, which is generalisation
of the famous vertex cover number that, in contrast, allows for large cliques to be present
in G. Later on, we will also provide a fixed-parameter tractable algorithm for a more general
parameter called modular-width; however, the algorithm for neighbourhood diversity will
serve as a building block for the later algorithm, and therefore we find it useful to present
the algorithm in its entirety.



V. Blažej, D. Knop, J. Pokorný, and Š. Schierreich 29:9

▶ Theorem 14. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the neighbourhood diversity nd(G).

Proof. We first observe that each connected sub-graph of G “induces” a connected graph of
the type-graph of G. More precisely, each connected sub-graph of G is composed of vertices
that belong to types of G that induce a connected sub-graph of the type-graph. Therefore,
the solution is composed of various realisations of connected sub-graphs of the type-graph
of G. Note that there are at most 2nd(G) connected sub-graphs of the type-graph of G. We
will resolve this task using an ILP using integral variables xt

H for a type t and a connected
sub-graph H of the type-graph of G. Furthermore, we have additional variables xH . That is,
the total number of variables is (upper-bounded by) nd(G) · 2nd(G) + 2nd(G). The meaning of
a variable xt

H is “how many vertices of type t we use in a realisation of H”. The meaning of
a variable xH is “how many realisations of H there are in the solution we find”. We write
t ∈ H for a type that belongs to H (a connected sub-graph of the type-graph). Let σ denote
the lower-bound on the size of parts of a solution, that is, σ = ⌊n/k⌋. In order for this to
hold we add the following set of constraints (here, ξG = 0 if n = k · σ and ξG = 1, otherwise):

σxH ≤
∑
t∈H

xt
H ≤ (σ + ξG)xH ∀H (7)

xH ≤ xt
H ∀H ∀t ∈ H (8)∑

H

xt
H = nt ∀t ∈ T (G) (9)

0 ≤ xt
H ≤ nt, xt

H ∈ Z ∀H ∀t ∈ H (10)
0 ≤ xH , xt

H ∈ Z ∀H (11)

That is, (9) ensures that we place each vertex to some sub-graph H. The set of conditions
(7) ensures that the total number of vertices assigned to the pattern H is divisible into parts
of sizes σ or σ + 1. The set of conditions (8) ensures that each type that participates in a
realisation of H contains at least xH vertices, that is, we can assume that each realisation
contains at least one vertex of each of its types. It is not difficult to verify that any solution
to the Equitable Connected Partition problem fulfils (7)–(11).

In the opposite direction, suppose that we have an integral solution x satisfying (7)–(11).
Let H be the collection of graphs H with multiplicities corresponding to x, that is, a graph H

belongs to H exactly xH -times. First, we observe that |H| = k. To see this note that

|G| =
∑
t∈H

nt =
∑
t∈H

∑
H∈H

xt
H =

∑
H∈H

∑
t∈H

xt
H ≥

∑
H∈H

σ · 1 ≥ σ
∑
H

xH = σ|H| .

Similarly, we have |G| ≤ (σ + ξG)|H| and the claim follows. Now, we find a realisation for
every H ∈ H. We know that there are xt

H ≥ σxH vertices allocated to H. We assign them
to the copies of H in H as follows. First, from each type t ∈ H we assign one vertex to each
copy of H (note that this is possible due to (8)). We assign the rest of the vertices greedily,
so that there are σ vertices assigned to each copy of H; then, we assign the leftover vertices
(note that there are at most xH of them in total) to the different copies of H. In this way,
we have assigned all vertices and gave a realisation of H.

As was stated before, the integer linear program has only parameter-many variables.
Hence, we can use the algorithm of Lenstra [49] to solve it in FPT time. ◀

With the algorithm from the proof of Theorem 14 in hand, we are ready to derive the
result also for the modular-width.
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▶ Theorem 15. The Equitable Connected Partition problem is fixed-parameter tractable
parameterised by the modular-width mw(G).

Proof sketch. Clearly, the leaf-nodes of the modular decomposition of G have bounded
neighbourhood diversity. For the graph of a leaf-node, we employ the following ILP:

σxH ≤
∑
t∈H

xt
H ≤ (σ + ξG)xH ∀H (12)

xH ≤ xt
H ∀H ∀t ∈ H (13)∑

H

xt
H ≤ nt ∀t ∈ T (G) (14)

0 ≤ xt
H ≤ nt, xt

H ∈ Z ∀H ∀t ∈ H (15)
0 ≤ xH , xt

H ∈ Z ∀H (16)

Note the difference between (14) and (9); that is, this time we do not insist on assigning all
vertices and can have some leftover vertices. We add an objective function

max
∑
H

∑
t∈H

xt
H ,

that is, we want to cover as many vertices as possible already in the corresponding leaf-node.
Next, we observe that based on the solution of the above ILP, we can replace the leaf-node
with a graph of neighbourhood diversity 2. In order to do so, we claim that if we replace
the graph represented by the leaf-node by a disjoint union of a clique of size

∑
H

∑
t∈H xt

H

and an independent set of size
∑

H(nt −
∑

t∈H xt
H), then we do not change the answer to

the Equitable Connected Partition problem. That is, the answer to the original graph
was yes if and only if the answer is yes after we alter the leaf-node. The algorithm for
modular-width then follows by a repeated application of the above ILP. ◀

As the last result of this section, we give an XP algorithm for another structural parameter
called distance to cluster graph. The algorithm, in its core, is based on the same ideas as
our FPT algorithm for distance to clique. Nevertheless, the number of types of vertices is no
longer bounded only by a function of a parameter, and to partition the vertices that are not
in the neighbourhood of the modulator vertices, we need to employ dynamic programming.

▶ Theorem 16. The Equitable Connected Partition problem is XP parameterised by
the distance to cluster graph dcg(G).

4 Hardness Results

In this section, we complement our algorithmic upper-bounds from the previous section with
matching hardness lower-bounds. The results from this section clearly show that no XP
algorithm introduced in this paper can be improved to a fixed-parameter tractable one, or
pushed to a more general parameter.

First, we observe that ECP is W[1]-hard with respect to the feedback-edge set number
fes of G. This negatively resolves the question from the introduction of our paper. In fact,
the actual statement shows an even stronger intractability result.

▶ Theorem 17. The Equitable Connected Partition problem is W[1]-hard with respect
to the path-width pw(G), the feedback-edge set number fes(G), and the number of parts p

combined.
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Figure 2 An illustration of the construction used to prove Theorem 19.

Note that the result from Theorem 17 can be, following the same arguments as used
by [26], strengthened to show the same result for planar graphs.

▶ Corollary 18. The Equitable Connected Partition problem is W[1]-hard when
parameterised by the path-width, the feedback-edge set, and the number of parts combined,
even if G is a planar graph.

Next, we show that the d-pvcn parameter from Theorem 8 cannot be relaxed any more
while the problem is kept tractable. Our reduction2 is even more general and comes from
the Unary Bin Packing problem, which is defined as follows.

Input: A number of bins k, a capacity of a single bin b, and a multi-set of integers
A = {a1, . . . , an} such that

∑
a∈A

a = bk.
Question: Is there a surjective mapping α : A → [k] such that for every i ∈ [k] we have∑

a∈α−1(i) a = b?

Unary Bin Packing

The Unary Bin Packing problem is well-known to be W[1]-hard when parameterised by
the number of bins k and not solvable in f(k) · no(k/ log k) time for any computable function f ,
even if all numbers are given in unary [44].

▶ Theorem 19. For every graph family G such that it contains at least one connected
graph G with s vertices for every s ∈ N, the Equitable Connected Partition problem
is W[1]-hard parameterised by the distance to G referred to as distG(G) and the number of
parts p combined and, unless ETH fails, there is no algorithm running in f(ℓ) · no(ℓ/ log ℓ)

time for any computable function f , where ℓ = p + distG(G).

Proof sketch. Let I = (A, k, b) be an instance of the Unary Bin Packing problem. We
construct an equivalent instance J = (G, p) of the Equitable Connected Partition
problem as follows (see Figure 2 for an overview of the construction). For the sake of
exposition, we assume that G is a family containing all disjoint unions of stars; later we show
how to tweak the construction to work with any G satisfying the conditions from the theorem
statement.

For every number ai ∈ A, we create a single item-gadget Si which is a star with ai vertices.
Every Si will be connected with the rest of the graph G only via the star centre ci; we call
this special vertex a hub. Next, we create k bin-gadgets B1, . . . , Bk. Each of these gadgets

2 We would like to mention here that the construction used in the proof of Theorem 19 starts with
the same problem and share similarities with the independent hardness construction of Gima and
Otachi [39]; however, our construction is arguably easier and prove much more general hardness results.
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consists of a single vertex. Slightly abusing the notation, we call this vertex also Bi, i ∈ [k].
As the last step of the construction, we add an edge connecting every bin-gadget with every
item-gadget and set p = k. ◀

It is not hard to see that every graph G which is a disjoint union of stars has constant
4-path vertex cover number – 0, to be precise. Therefore, by Theorem 19 we obtain the
desired hardness result.

▶ Corollary 20. The Equitable Connected Partition problem is W[1]-hard parameterised
by the 4-path vertex cover number 4-pvcn and the number of parts p combined.

Now, a previous blind spot of our understanding of the Equitable Connected Par-
tition problem’s complexity with respect to the structural parameters that are bounded
mostly for sparse graphs is the distance to disjoint paths. We again obtain hardness as a
direct corollary of Theorem 19.

▶ Corollary 21. The Equitable Connected Partition problem is W[1]-hard parameterised
by the distance to disjoint paths ddp(G) and the number of parts p combined.

Enciso et al. [26] stated (and we formalized in Theorem 9) that there is an XP algorithm
for the Equitable Connected Partition problem parameterised by the tree-width of G.
A natural question is then whether this algorithm can be improved to solve the problem in
the same running-time also with respect to the more general parameter called clique-width.
We give a strong evidence that such an algorithm is unlikely in the following theorem.

▶ Theorem 22. The Equitable Connected Partition problem is NP-hard even if the
graph G has clique-width 3, and is solvable in polynomial-time on graphs of clique-width at
most 2.

Proof. To show the hardness, we reuse the reduction used to prove Theorem 19. Recall that
the construction can be done in polynomial time, thus, the reduction is also a polynomial
reduction. What we need to show is that the clique-width of the constructed graph G is
constant. We show this by providing an algebraic expression that uses 3 labels. First, we
create a graph G1 containing all bin-gadgets. This can be done by introducing a single vertex
and by repeating disjoint union operation. We additionally assume that all vertices in G1
have label 3. Next, we create a graph G2 containing all item-gadgets. Every item-gadget
is a star which can be constructed using two labels 1 and 2. Without loss of generality, we
assume that all item-gadgets’ centres have label 1 and all leaves have label 2. To complete
the construction, we create disjoint union of G1 and G2 and, then, we perform a full join of
vertices labelled 1 and 3. It is easy to see that the expression indeed leads to a desired graph.
Polynomial-time solvability follows from Theorem 13 and the fact that co-graphs are exactly
the graphs with clique-width at most 2 [17]. ◀

Using similar arguments, we can show para-NP-hardness also for a more restrictive
parameter called shrub-depth [32, 34, 33].

▶ Theorem 23. The Equitable Connected Partition problem is NP-hard even if the
graph G has shrub-depth 3.

As the last piece of the complexity picture of the Equitable Connected Partition
problem, we show that ECP is W[1]-hard with respect to the distance to disjoint cliques.
Recall that we give an XP algorithm for this parameter in Theorem 16.

▶ Corollary 24. The Equitable Connected Partition problem is W[1]-hard with respect
to the distance to cluster graph dcg(G) and the number of parts p combined.
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5 Conclusions

We revisit the complexity picture of the Equitable Connected Partition problem with
respect to various structural restrictions of the graph. We complement the existing results
with algorithmic upper-bounds and corresponding complexity lower-bounds that clearly show
that no existing parameterised algorithm can be significantly improved.

Despite that the provided complexity study gives us a clear dichotomy between tractable
and intractable cases, there still remain a few blind spots. One of the most interesting is the
complexity classification of the Equitable Connected Partition problem with respect to
the band-width parameter, which lies between the maximum leaf number and the path-width;
however, is incomparable with the feedback-edge set number.

An interesting line of research can target the tightness of our results. For example, we show
a clear dichotomy between the tractable and intractable cases of ECP when parameterised by
the clique-width. Using similar arguments, we can show the following result for the recently
introduced parameter twin-width [11].

▶ Theorem 25. The Equitable Connected Partition problem is NP-hard even if the
graph G has twin-width 2, and is solvable in polynomial-time on graphs of twin-width 0.

We conjecture that the problem is polynomial-time solvable also on graphs of twin-
width 1, which, unlike the twin-width 2 graphs, are additionally known to be recognisable
efficiently [10]. Similarly, we can ask whether the provided FPT algorithms are optimal
under some standard theoretical assumptions, such as the well-known Exponential-Time
Hypothesis [42].

Last but not least, the parameterised complexity framework not only gives us formal
tools for finer-grained complexity analysis of algorithms for NP-hard problems, but, at the
same time, equips us also with the necessary formalism for analysis of effective preprocessing,
which is widely known as kernelisation. A natural follow-up question is then whether the
Equitable Connected Partition problem admits a polynomial kernel with respect to
any of the studied structural parameters. We conjecture that there is a polynomial kernel
with respect to the distance to clique and 3-path vertex cover number.
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Abstract
Fo-bicategories are a categorification of Peirce’s calculus of relations. Notably, their laws provide a
proof system for first-order logic that is both purely equational and complete. This paper illustrates
a correspondence between fo-bicategories and Lawvere’s hyperdoctrines. To streamline our proof,
we introduce peircean bicategories, which offer a more succinct characterization of fo-bicategories.
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1 Introduction

The first appearances of the characteristic features of first-order logic can be traced back
to the works of Peirce [54] and Frege [21]. Frege was mainly motivated by the pursuit of a
rigorous foundation for mathematics: his work was inspired by real analysis, bringing the
concept of functions and variables into the logical realm [18]. On the other hand Peirce,
inspired by the work of De Morgan [16] on relational reasoning, introduced a calculus in
which operations allow the combination of relations and adhere to a set of algebraic laws.
Like Boole’s algebra of classes [9], Peirce’s calculus of relations does not feature variables nor
quantifiers and its sole deduction rule is substituting equals by equals.

Despite several negative results [51, 28, 63, 22, 2, 60] regarding axiomatizations for the
calculus, its lack of binder-related complexities, coupled with purely equational proofs, has
rendered the calculus of relations highly influential in computer science, e.g., in the context of
database theory [13], programming languages [61, 27, 38, 1, 37] and proof assistants [58, 59, 36].
In logic, the calculus played a secondary role for many years, likely because it is strictly
less expressive than first-order logic [43]. This was until Tarski in [67] recognized its
algebraic flavour and initiated a program of algebraizing first-order logic, including works
such as [17, 26, 62]. Quoting Quine [62]:

“Logic in his adolescent phase was algebraic. There was Boole’s algebra of classes and
Peirce’s algebra of relations. But in 1879 logic come of age, with Frege’s quantification
theory. Here the bound variables, so characteristic of analysis rather than of algebra,

became central to logic.”
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30:2 An Equational Presentation of Boolean Hyperdoctrines

Such a perspective, which regarded algebraic aspects and those concerning quantifiers as
separate entities, changed with the work of Lawvere.

Thanks to the recent development of a new branch of mathematics, namely category
theory, Lawvere introduced in [40, 41, 42] hyperdoctrines which enabled the study of logic from
a pure algebraic perspective. The crucial insights of Lawvere was to show that quantifiers, as
well as many logical constructs, can be algebraically captured through the crucial notion of
adjointness. Hyperdoctrines, along with many categorical structures related to logics, such
as regular, Heyting, and boolean categories [32, 33], align with Frege’s functional perspective:
arrows represent functions (terms), and relations are derived through specific constructions.

In the last decade, the paradigm shift towards treating data as a physical resource has
motivated many computer scientists to move from traditional term-based (cartesian) syntax
toward a string diagrammatic (monoidal) syntax [34, 65] (see e.g., [66, 4, 6, 8, 14, 19, 20, 24,
52, 56]). This shift in syntax enables an extension of Peirce’s calculus of relations that is as
expressive as first-order logic, accompanied by an axiomatization that is purely equational
and complete. The axioms are those of first-order bicategories [3]: see Figures 1, 3 and 4. In
essence, a first-order bicategory, or fo-bicategory, encompasses a cartesian and a cocartesian
bicategory [11], interacting as a linear bicategory [12], while additionally satisfying linear
versions of Frobenius equations and adjointness conditions.

In this paper, we reconcile Lawvere’s understanding of logic with Peirce’s calculus of
relations by illustrating a formal correspondence between boolean hyperdoctrines and first-
order bicategories.

To reach such a correspondence, we found convenient to introduce peircean bicategories:
these are cartesian bicategories with each homset carrying a boolean algebra where the
negation behaves appropriately with maps – special arrows that intuitively generalize functions.
Our first result (Theorem 27) states that peircean and fo-bicategories are equivalent.

While the definition of peircean bicategories is not purely equational, as in the case of fo-
bicategories, it is notably more concise. Moreover, it allows us to reuse from [7] an adjunction
between cartesian bicategories and elementary and existential doctrines [46, 45, 47], which are
a generalisation of hyperdoctrines, corresponding to the (∃,=,⊤,∧)-fragment of first-order
logic. Our main result (Theorem 32) reveals an adjunction between the category of first-order
bicategories and the category of boolean hyperdoctrines.

It is essential to note that our theorem establishes an adjunction rather than an equivalence.
The discrepancy can be intuitively explained by noting that, akin to first-order logic, terms
and formulas are distinct entities in hyperdoctrines. Thus for two terms t1 and t2, the
hyperdoctrine where the formula t1 = t2 is true differs from the hyperdoctrine where t1 and
t2 are equated as terms, a distinction not present in fo-bicategories. These issues, related to
the extensionality of equality, are thoroughly analyzed in the literature (see e.g. [45, 31]).

Leveraging another result from [7], we demonstrate (Theorem 37) that the adjunction
in Theorem 32 becomes an equivalence when restricted to well-behaved hyperdoctrines (i.e.,
those whose equality is extensional and satisfying the rule of unique choice [44]).

Synopsis. In § 2, we provide a review of (co)cartesian, linear and fo-bicategories. § 3
covers a recap of elementary and existential doctrines and boolean hyperdoctrines. The key
adjunction from [7] is recalled in §4. Our original contributions commence in § 5, where we
introduce peircean bicategories and establish their equivalence with fo-bicategories. This
result is used in § 6 to show the adjunction and in § 7 to establish the equivalence. Missing
proofs can be found in [5].
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Terminology and Notation. All bicategories considered in this paper are just poset-enriched
symmetric monoidal categories. For a bicategory C, we will write Cop for the bicategory
having the same objects as C but homsets Cop[X,Y ] def= C[Y,X]. Similarly, we will write
Cco to denote the bicategory having the same objects and arrows of C but equipped with
the reversed ordering ≥. The cartesian bicategories in this paper are called in [11] cartesian
bicategories of relations. We refer the reader to [3, Rem. 2] for a comparison with the
presentation of linear bicategories in [12]. In a category with finite products, we write ⟨f, g⟩
for the pairing of f and g and ∆X for ⟨id◦

X , id
◦
X⟩.

2 From (Co)Cartesian to First-Order Bicategories

In this section we recall the notion of first-order bicategory from [3]. To provide a preliminary
intuition, it is convenient to consider Rel, the first-order bicategory of sets and relations.

It is well known that sets and relations form a symmetric monoidal category, hereafter
denoted as Rel◦, with composition, identities, monoidal product and symmetries defined as

a ,◦ b
def= {(x, z) | ∃y ∈Y . (x, y) ∈ a ∧ (y, z) ∈ b} ⊆ X × Z id◦

X
def= {(x, y) |x = y}⊆X × X

a ⊗ c
def= {( (x, z), (y, v) ) | (x, y) ∈ a ∧ (z, v) ∈ c} ⊆ (X × Z) × (Y × V )

σ◦
X,Y

def= {( (x, y), (y′, x′) ) | x = x′ ∧ y = y′} ⊆ (X × Y ) × (Y × X)
(1)

for all sets X,Y, Z, V and relations a ⊆ X × Y , b ⊆ Y × Z and c ⊆ Z × V . As originally
observed by Peirce in [55], beyond ,◦ there exists another form of relational composition
that enjoys noteworthy algebraic properties. This different composition gives rise to another
symmetric monoidal category of sets and relations, hereafter denoted by Rel• and defined
as follows.

a ,• b
def= {(x, z) | ∀y ∈Y . (x, y) ∈ a ∨ (y, z) ∈ b} ⊆ X × Z id•

X
def= {(x, y) |x ̸= y}⊆X × X

a �× c
def= {( (x, z), (y, v) ) | (x, y) ∈ a ∨ (z, v) ∈ c} ⊆ (X × Z) × (Y × V )

σ•
X,Y

def= {( (x, y), (y′, x′) ) | x ̸= x′ ∨ y ̸= y′} ⊆ (X × Y ) × (Y × X)
(2)

Note that ⊗ and �× are both defined on objects as the cartesian product of sets and have as
unit the singleton set I def= {⋆}. Both Rel◦ and Rel• are poset-enriched symmetric monoidal
categories when taking as ordering the inclusion ⊆ and the complement ¬ : (Rel◦)co → Rel•

is an isomorphism. As we will explain in § 2.1, the relations defined for all sets X as

◀◦
X

def= {(x, (y, z)) | x = y ∧ x = z} ⊆ X × (X × X) ◀•
X

def= {(x, (y, z)) | x ̸= y ∨ x ̸= z} ⊆ X × (X × X)
▶◦

X
def= {((y, z), x) | x = y ∧ x = z} ⊆ (X × X) × X ▶•

X
def= {((y, z), x) | x ̸= y ∨ x ̸= z} ⊆ (X × X) × X

!◦X
def= {(x, ⋆) | x ∈ X} ⊆ X × I !•X

def= ∅ ⊆ X × I

¡◦
X

def= {(⋆, x) | x ∈ X} ⊆ I × X ¡•
X

def= ∅ ⊆ I × X

(3)
make Rel◦ a cartesian bicategory, while Rel• a cocartesian one.

Intuitively, a first-order bicategory C consists of a cartesian bicategory C◦, called the
“white structure”, and a cocartesian bicategory C•, called the “black structure”, that interact
by obeying the same laws of Rel◦ and Rel•. The name “first-order” is due to the fact that
such laws provide a complete system of axioms for first-order logic.

The axioms can be conveniently given by means of a graphical representation inspired by
string diagrams [34, 65]: composition is depicted as horizontal composition while the monoidal
product by vertically “stacking” diagrams. However, since there are two compositions ,◦ and
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Figure 1 Axioms of cartesian bicategories.

,• and two monoidal products ⊗ and �×, to distinguish them we use different colors. All white
constants have white background, mutatis mutandis for the black ones: for instance ◀◦

X and

▶•
X are drawn X

X
X and X

X
X , while for some arrows a, b, c, d of the appropriate

type, (a ⊗ c) ,• (b �× d) is drawn as on the right of (ν◦
l ) in Figure 3.

2.1 (Co)Cartesian Bicategories
We commence with the notion of cartesian bicategories by Carboni and Walters [11].

▶ Definition 1. A cartesian bicategory (C,⊗, I,◀◦, !◦,▶◦, ¡◦), shorthand (C,◀◦,▶◦), is a
poset-enriched symmetric monoidal category (C,⊗, I) and, for every object X in C, arrows
◀◦

X : X → X ⊗ X, !◦X : X → I, ▶◦
X : X ⊗ X → X, ¡◦

X : I → X such that
1. (◀◦

X , !
◦
X) is a comonoid and (▶◦

X , ¡
◦
X) a monoid, i.e., the equalities (◀◦-as), (◀◦-un),

(◀◦-co) and (▶◦-as), (▶◦-un), (▶◦-co) in Figure 1 hold;
2. every arrow c : X → Y is a lax comonoid homomorphism, i.e., (◀◦-nat) and (!◦-nat)

hold;
3. comonoids are left adjoints to the monoids, i.e., (η ◀◦), (ϵ ◀◦), (η!◦) and (ϵ!◦) hold;
4. monoids and comonoids form special Frobenius bimonoids, i.e., (F◦) and (S◦) hold;
5. monoids and comonoids satisfy the expected coherence conditions (see e.g. [7]).
C is a cocartesian bicategory if Cco is a cartesian bicategory. A morphism of (co)cartesian
bicategories is a poset-enriched strong symmetric monoidal functor preserving monoids and
comonoids. We denote by CB the category of cartesian bicategories and their morphisms.

As already mentioned, Rel◦ with ◀◦
X , !◦X , ▶◦

X and ¡◦
X defined in (3) form a cartesian

bicategory: the reader can easily check, using the definitions in (1) and (3), that all the laws
in Figure 1 are satisfied. Similarly, one can observe that the opposite inequality of (◀◦-nat)
holds iff the relation c ⊆ X × Y is single-valued (i.e., deterministic), while the opposite of
(!◦-nat) iff c is total. In other words, c is a function iff both (◀◦-nat) and (!◦-nat) hold as
equalities.

▶ Definition 2. Let c : X → Y be an arrow of a cartesian bicategory C. It is a map if

c
Y
Y

X ≥
c

c

Y
Y

X and cX ≥ X . (4)

Maps form a monoidal subcategory of C, denoted by Map(C), that has finite products [11].
In a cartesian bicategory C, each homset C[X,Y ] carries the structure of inf-semilattice,

defined for all c, d : X → Y as in (5) below. Furthermore, the equation (6) defines an
identity-on-objects isomorphism of cartesian bicategories (·)† : C → Cop.
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Figure 2 Axioms of cocartesian bicategories.

c ∧ d
def=

c

d
X Y ⊤ def= X Y (5) c† def= c

Y

X
(6)

The reader can check, using (1) and (3) that in Rel◦, c† : Y → X is the opposite of the
relation c, namely {(y, x) | (x, y) ∈ c}. It is well known that a relation c is a function iff it is
left adjoint to c†. More generally in a cartesian bicategory c is a map iff it is left adjoint to
c†. Summarising:

▶ Proposition 3. Let C be a cartesian bicategory and c : X → Y an arrow of C. The
following hold:
1. every homset carries the inf-semilattice structure, defined as in (5);
2. there is an isomorphism of cartesian bicategories (·)† : C → Cop, defined as in (6);
3. c is a map iff c is left adjoint to c†;
4. Map(C) is a category with finite products; moreover, a morphism of cartesian bicategories

F : C → D restricts to a functor F̃ : Map(C) → Map(D) preserving finite products.
Hereafter, we draw cY X for ( cX Y )

†
and cX Y for a map c : X → Y .

We mentioned that Rel• with ◀•
X , !•X , ▶•

X and ¡•
X defined in (3) forms a cocartesian

bicategory. To prove this, it is enough to observe that the complement ¬ is a poset-enriched
symmetric monoidal isomorphism ¬ : (Rel◦)co → Rel• preserving (co)monoids.

2.2 Linear Bicategories
We have seen that Rel◦ forms a cartesian bicategory, and Rel• a cocartesian bicategory. The
next step consists of merging them into one entity and studying their algebraic interactions.
However, the coexistence of two different compositions ,◦ and ,• on the same class of objects
and arrows brings us out of the realm of ordinary categories. The appropriate setting is
provided by linear bicategories [12] by Cockett, Koslowski and Seely.

▶ Definition 4. A linear bicategory (C, ,◦, id◦, ,•, id•) consists of two poset-enriched categories
(C, ,◦, id◦) and (C, ,•, id•) with the same class of objects, arrows and orderings (but possibly
different identities and compositions) such that ,◦ linearly distributes over ,•, i.e., (δl) and (δr)
in Figure 3 hold.

A symmetric monoidal linear bicategory (C, ,◦, id◦, ,•, id•,⊗, σ◦,�×, σ•, I), shortly
(C,⊗,�×, I), consists of a linear bicategory (C, ,◦, id•, ,•, id•) and two poset-enriched sym-
metric monoidal categories (C,⊗, I) and (C,�×, I) s.t. ⊗ and �× agree on objects, i.e.,
X ⊗ Y = X �× Y , share the same unit I and

MFCS 2024
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Figure 3 Axioms of closed symmetric monoidal linear bicategories.

2. there are linear strengths for (⊗,�×), i.e., the inequalities (ν◦
l ), (ν◦

r ), (ν•
l ) and (ν•

r ) hold;
3. �× preserves id◦ colaxly and ⊗ preserves id• laxly, i.e., (⊗•) and (�×◦) hold.
A morphism of symmetric monoidal linear bicategories F : (C1,⊗,�×, I) → (C2,⊗,�×, I)
consists of two poset-enriched symmetric monoidal functors F ◦ : (C1,⊗, I) → (C2,⊗, I)
and F • : (C1, �×, I) → (C2,�×, I) that agree on objects and arrows: F ◦(X) = F •(X) and
F ◦(c) = F •(c).

We omit the adjective symmetric monoidal, since all linear bicategories in this paper are
such. In linear bicategories one can define linear adjoints: for a : X → Y and b : Y → X, a
is left linear adjoint to b, or b is right linear adjoint to a, written b ⊩ a, if id◦

X ≤ a ,• b and
b ,◦ a ≤ id•

Y .

▶ Definition 5. A linear bicategory (C,⊗,�×, I) is said to be closed if every a : X → Y has
both a left and a right linear adjoint and, in particular, the white symmetry σ◦ is both left
and right linear adjoint to the black symmetry σ• (σ• ⊩ σ◦ ⊩ σ•), i.e. (τσ◦), (γσ◦), (τσ•)
and (γσ•) in Figure 3 hold.

Our main example is the closed linear bicategory Rel of sets and relations. The white
structure is the symmetric monoidal category Rel◦ and the black structure is Rel•. Observe
that the two have the same objects, arrows and ordering. The white and black monoidal
products ⊗ and �× agree on objects (they are the cartesian product of sets) and have common
unit object (the singleton set I). By (1) and (2), one can easily check all the inequalities in
Figure 3. Both left and right linear adjoints of a relation c ⊆ X × Y are given by ¬c†.

2.3 First-Order Bicategories
After (co)cartesian and linear bicategories, we can recall first-order bicategories from [3].

▶ Definition 6. A first-order bicategory C consists of a closed linear bicategory (C,⊗,�×, I),
a cartesian bicategory (C,◀◦,▶◦) and a cocartesian bicategory (C,◀•,▶•), such that
1. the white comonoid (◀◦, !◦) is left and right linear adjoint to black monoid (▶•, ¡•) and

(▶◦, ¡◦) is left and right linear adjoint to (◀•, !•) i.e., the 16 inequalities in the top of
Figure 4 hold;

2. white and black (co)monoids satisfy the linear Frobenius laws, i.e. (F•◦), (F◦•), (F ◦• ),
(F •◦ ) hold.
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Figure 4 Additional axioms for fo-bicategories.

A morphism of fo-bicategories is a morphism of linear bicategories and of (co)cartesian
bicategories. We denote by FOB the category of fo-bicategories and their morphisms.

We have seen that Rel is a closed linear bicategory, Rel◦ a cartesian bicategory and Rel• a
cocartesian bicategory. Given (3), it is easy to check the inequalities in Figure 4.

If C is a fo-bicategory, then Cco is a fo-bicategory when swapping white and black
structures. Similarly, Cop is a fo-bicategory when swapping monoids and comonoids.

In a fo-bicategory C, left and right linear adjoints of an arrow c coincide and are denoted
by c⊥. The assignment c 7→ c⊥ gives rise to an identity-on-objects isomorphism of fo-
bicategories (·)⊥ : C → (Cco)op. Similarly, (·)† : C → Cop in (6) is also an isomorphism of
fo-bicategories.

Since the following diagram commutes, one can define the complement as the diagonal of
the square, namely ¬(·) def= ((·)⊥)†.

C (·)† //

(·)⊥
��

Cop

(·)⊥
��

(Cco)op (·)† // Cco

Clearly ¬ : C → Cco is an isomorphism of fo-bicategories. Moreover, it induces a boolean
algebra on each homset of C.

▶ Proposition 7. Let C be a fo-bicategory. Then, every homset of C is a boolean algebra.

▶ Proposition 8. Let F : C → D be a morphism of fo-bicategories. For all arrows c,
¬F (c) = F (¬c).

The next property of maps (Definition 2) plays a key role in our work.

▶ Proposition 9. For all maps f : X → Y and arrows c : Y → Z, it holds that f ,◦ ¬c =
¬(f ,◦ c).

2.4 Freely Generated First-Order Bicategories
We conclude this section by giving to the reader a taste of how fo-bicategories relate to
first-order theories. First, we recall from [3] the freely generated fo-bicategory FOBΣ.

Given a monoidal signature Σ, namely a set of symbols R : n → m with arity n and coarity
m, FOBΣ is the fo-bicategory whose objects are natural numbers and arrows c : n → m are
string diagrams generated by the following rules:

MFCS 2024
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: 0 → 0 : 1 → 1 : 2 → 2

R : n → m ∈ Σ

R : n → m

c : n → m, d : m → o

c dn o : n → o

: 1 → 2 : 1 → 0 : 2 → 1 : 0 → 1

c : n → m, d : o → p

c

d

n m

o p
: n+ o → m+ p

: 0 → 0 : 1 → 1 : 2 → 2

R : n → m ∈ Σ

R : m → n

c : n → m, d : m → o

c dn o : n → o

: 1 → 2 : 1 → 0 : 2 → 1 : 0 → 1

c : n → m, d : o → p

c

d

n m

o p
: n+ o → m+ p

More precisely, arrows are equivalence classes of string diagrams w.r.t ≲ ∩ ≳, where ≲ is
the precongruence (w.r.t. ,◦,⊗, ,• and �×) generated by the axioms in Figures 1,2,3,4 (with
X,Y, Z,W replaced by natural numbers, and a, b, c, d by diagrams of the appropriate type)
and the axioms forcing R and R to be linear adjoints:

n n ≤ R Rn n R Rm m ≤ m m m m ≤ RR mm RR nn ≤ n n

To give semantics to these diagrams we need interpretations, i.e. pairs I = (X, ρ), where X
is a set and ρ is a function assigning to each R : n → m ∈ Σ a relation ρ(R) : Xn → Xm. Since
FOBΣ is the free fo-bicategory, for any interpretation I there exists a unique morphism of fo-
bicategories I♯ : FOBΣ → Rel such that I♯(1) = X and I♯( Rn m ) = ρ(R) ⊆ Xn ×Xm.
Intuitively, I♯ is defined inductively by (1), (2) and (3) with the free cases provided by I.

A diagrammatic first-order theory is a pair T = (Σ, I) where Σ is a monoidal signature and I
is a set of axioms: pairs (c, d) for c, d : n → m in FOBΣ, standing for c ≤ d. An interpretation
I is a model of T if and only if, for all (c, d) ∈ I, I♯(c) ⊆ I♯(d). As illustrated in [3], one can
generate the fo-bicategory FOBT and, in the spirit of Lawvere’s functorial semantics [39],
models of T are in one-to-one correspondence with morphisms F : FOBT → Rel.

▶ Example 10. Consider the theory T = (Σ, I), where Σ = {R : 1 → 1} and I be as follows:

{ ( , R ), ( R R , R ), ( R

R
, ), ( ,

R

R
) }.

An interpretation is a set X and a relation R ⊆ X × X. It is a model iff R is an order,
i.e., reflexive (id◦

X ⊆ R), transitive (R ,◦ R ⊆ R), antisymmetric (R ∩ R† ⊆ id◦) and total
(⊤ ⊆ R ∪R†).

▶ Remark 11. A direct encoding of traditional first-order theories into diagrammatic ones is
illustrated in [3]. Shortly, a predicate symbol P of arity n becomes a symbol P : n → 0 ∈ Σ,
drawn as Pn , and a n-ary function symbol f becomes f : n → 1 ∈ Σ, drawn as fn .
For instance, the formula ∃x.P (x) ∧Q(x, f(y)) is rendered as follows

Qf

P
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where plays the role of ∃ and that of ∧. Note that both predicate and function
symbols of traditional first-order theories are regarded as symbols of the monoidal signature
Σ. Function symbols are constrained to represent functions by adding to I the axioms of
maps, i.e., the inequalities in (4).

3 From Elementary-Existential Doctrines to Boolean Hyperdoctrines

The notion of hyperdoctrine was introduced by Lawvere in a series of seminal papers
[40, 42]. Over the years, various generalizations and specializations of this concept have been
formulated and applied across multiple domains in the fields of logic and computer science.
In this work, we employ a generalization of the notion of hyperdoctrine introduced by Maietti
and Rosolini in [46, 45, 47], namely that of an elementary and existential doctrine.

▶ Definition 12. An elementary and existential doctrine is a functor P : Cop −→ InfSl from
the opposite of a category C with finite products to the category of inf-semilattices such that:

for every Y in C there exists an element δY in P (Y × Y ), called equality predicate,
such that for a morphism id◦

X × ∆Y : X × Y → X × Y × Y in C and every element α in
P (X × Y ), the assignment

∃id◦
X

×∆Y
(α) def= P⟨π1,π2⟩(α) ∧ P⟨π2,π3⟩(δY )

determines a left adjoint to the functor Pid◦
X

×∆Y
: P (X × Y × Y ) → P (X × Y );

for any projection πX : X × Y → X, the functor PπX
: P (X) → P (X × Y ) has a left

adjoint ∃πX
, and these satisfy the Beck-Chevalley condition and Frobenius reciprocity,

see [46, Sec. 2].

▶ Remark 13. In an elementary and existential doctrine, for every f : X → Y of C the
functor Pf has a left adjoint ∃f that can be computed as ∃πY

(Pf×id◦
X Y

(δY ) ∧ PπX
(α)) for α

in P (X), where πX and πY are the projections from X × Y . These left ajoints satisfy the
Frobenius reciprocity but not necessarily the Beck-Chevalley condition. See [48, Rem. 6.4].

▶ Definition 14. Let P : Cop −→ InfSl and R : Dop −→ InfSl be two elementary and existential
doctrines. A morphism of elementary and existential doctrines is given by a pair (F, b) where

F : C → D is a finite product preserving functor;
b : P → F op ,◦ R is a natural transformation;

satisfying the following conditions:

Cop

InfSl

Dop R

P

F op
b

1. for every object X of C, bX×X(δX) = δF X×F X ;
2. for every πX : X × Y → X of C and for every α in P (X × Y ), ∃F (πX )bX×Y (α) =

bX(∃πX
(α)).

We write EED for the category of elementary and existential doctrines and morphisms.

▶ Example 15. The powerset functor P : Setop −→ InfSl is the archetypal example of
an elementary and existential doctrine. More generally, for any regular category C, the
subobjects functor SubC : Cop −→ InfSl is an elementary and existential doctrine, see [45, 46].
This assignment extends to an inclusion of the category REG of regular categories into EED.

▶ Example 16. For a cartesian bicategory C, the functor C[−, I] : Map(C)op −→ InfSl is an
elementary and existential doctrine, where the actions of left adjoints is given ∃g(f) := f ,◦g† [7,
Thm. 20]. As we will see in §4, this assignment extends to an inclusion of CB into EED.

MFCS 2024
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Similarly to cartesian bicategories, elementary and existential doctrines have enough
structure to deal with the notion of functional (or single-valued) and entire (total) predicates.

▶ Definition 17 (From [44]). Let P : Cop −→ InfSl be an elementary and existential doctrine.
An element α ∈ P (X ×Y ) is said to be functional from X to Y if P⟨π1,π2⟩(α) ∧P⟨π1,π3⟩(α) ≤
P⟨π2,π3⟩(δY ) in P (X × Y × Y ). Also, α is said to be entire from X to Y if ⊤X ≤ ∃πX

(α) in
P (X).

▶ Remark 18. By definition, a morphism of elementary and existential doctrines preserves
both ∃πX

and δY . Therefore it preserves functional and entire elements.

▶ Example 19. In P : Setop −→ InfSl from Example 15, an α ∈ P(X × Y ) is functional iff it
defines a partial function from X to Y , while it is entire iff it is a total relation from X to Y .

▶ Example 20. In the doctrine C[−, I] : Map(C)op −→ InfSl from Example 16, functional
and entire elements are precisely maps of C. A detailed proof is in [5, Appendix E].

We can now recall the definition of boolean hyperdoctrine.

▶ Definition 21 (boolean hyperdoctrine). Let C be a category with finite products. A functor
P : Cop −→ Bool is a boolean hyperdoctrine if it is an elementary and existential doctrine.

A morphism (F, b) : P → R of boolean hyperdoctrines is a morphism of elementary and
existential doctrines such that bX is a morphism of boolean algebras for all objects X of C.
We denote by BHD the category of boolean hyperdoctrines and their morphisms.

It is well-known that in first-order logic the universal quantifier can be derived by the
existential quantifier and the negation. The same happens in boolean hyperdoctrines: for all
arrows f : X → Y , the functor ∀f (−) def= ¬∃f ¬(−) is a right adjoint to Pf (see [5, Appendix
B.1]).

▶ Example 22. The powerset functor P : Setop −→ Bool provides an example of a boolean
hyperdoctrine. This can be generalized to an arbitrary boolean category B, namely a coherent
category such that every subobject has a complement, see [33, Sec. A1.4, p. 38]. The
subobjects functor on B is a boolean hyperdoctrine SubB : Bop −→ Bool.

▶ Example 23. Given a standard first-order theory Th in a first-order language L (for
simplicity single sorted), one can consider the functor LTh : Vop −→ Bool. The base category
V is the syntactic category of L, i.e. the category where objects are natural numbers
and morphisms are lists of terms, while the predicates of LTh(n) are given by equivalence
classes (with respect to provable reciprocal consequence ⊣⊢) of well-formed formulae with
free variables in {x1, . . . , xn}, and the partial order is given by the provable consequences,
according to the fixed theory Th. In this case, the left adjoint to the weakening functor LTh

π

is computed by existentially quantifying the variables that are not involved in the substitution
induced by the projection π. Dually, the right adjoint is computed by quantifying universally.
The equality predicate is give by the formula x1 = x2.

▶ Example 24. Let A be a boolean algebra. The representable functor A(−) : Setop −→ Bool
assigning to a set X the poset AX of functions from X to A with the point-wise order is a
boolean hyperdoctrine.

We conclude this section with a result that, intuitively, is the analogous of Proposition 9.

▶ Lemma 25. Let P : Cop −→ Bool be a boolean hyperdoctrine and ϕ ∈ P (X × Y ) a
functional and entire element from X toY . For all ψ ∈ P (Y × Z), it holds that

∃πX×Z
(PπX×Y

(ϕ) ∧ PπY ×Z
(¬ψ)) = ¬( ∃πX×Z

(PπX×Y
(ϕ) ∧ PπY ×Z

(ψ)) ).
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4 An Adjunction and an Equivalence

In [7], cartesian bicategories and elementary existential doctrines are compared. The main
results of [7, Thm. 28] states that there exists the following adjunction.

CB EED
HmI

Rel

⊣ (7)

The embedding HmI : CB → EED maps a cartesian bicategory C into the hom-functor
C[−, I] : Map(C)op −→ InfSl that, as explained in Example 16, is an elementary existential
doctrine. The functor Rel : EED → CB is a generalisation to elementary and existential
doctrines of the construction of bicategory relations associated with a regular category (see
[11, Ex. 1.4]). For P : Cop −→ InfSl, the cartesian bicategory Rel(P ) is defined as follows:

objects are those of C; for objects X,Y , the homsets Rel(P )[X,Y ] are the posets P (X×Y );
the identity for an object X is the equality predicate δX in P (X ×X);
composition of ϕ : X → Y and ψ : Y → Z is given by ∃πX×Z

(PπX×Y
(ϕ) ∧ PπY ×Z

(ψ)).

The reader is referred to [7] or to [5, Appendix C] for further details on the adjunction in (7).

Another result in [7, Thm. 35] shows that the adjunction in (7) restricts to an equivalence

CB ≡ EED (8)

where EED is a full subcategory of EED whose objects are particularly well-behaved doctrines.
For the sake of readability, we will make clear in §7 what these doctrines are.

5 Peircean Bicategories

We now introduce peircean bicategories, an alternative presentation of fo-bicategories. The
name peircean is due to the fact that, like in Peirce’s algebra of relations [55], and differently
from fo-bicategories, the structure of boolean algebra is taken as a primitive.

▶ Definition 26. A peircean bicategory consists of a cartesian bicategory (C,◀◦,▶◦) such
that
1. every homset C[X,Y ] carries a Boolean algebra (C[X,Y ],∨,⊥,∧,⊤,¬);
2. for all maps f : X → Y and arrows c : Y → Z,

f ,◦ ¬c = ¬(f ,◦ c). (¬M)

A morphism of peircean bicategories is a morphism of cartesian bicategories F : C → D
such that F (¬c) = ¬F (c). We write PB for the category of peircean bicategories and their
morphisms.

By Propositions 7 and 9 every fo-bicategory is a peircean bicategory. By Proposition 8 every
morphism of fo-bicategories is a morphism of peircean bicategories.

Vice versa, every peircean bicategory (C,◀◦,▶◦) gives rise to a fo-bicategory. The black
structure (C,◀•,▶•) is defined as expected from the white one and ¬. Namely:

c ,• d
def= ¬(¬c ,◦ ¬d) id•

X
def= ¬id◦

X c �× d
def= ¬(¬c ⊗ ¬d) σ•

X,Y
def= ¬σ◦

X,Y

◀•
X

def= ¬◀◦
X !•X

def= ¬!◦X ▶•
X

def= ¬▶◦
X

¡•
X

def= ¬¡◦
X

(9)

With this definition, it is immediate to see that ¬ : (Cco,◀◦,▶◦) → (C,◀•,▶•) is an
isomorphism and thus to conclude that (C,◀•,▶•) is a cocartesian bicategory. Proving that
(C,◀◦,▶◦) and (C,◀•,▶•) give rise to a fo-bicategory is the main technical effort of this
paper.
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▶ Theorem 27. There is an isomorphism of categories FOB ∼= PB.

Proof (sketch). As mentioned above, most of the proof is devoted to showing that every
peircean bicategory is a fo-bicategory.

This is achieved by proving first that the relational operations on the homsets, like (·)†

defined in (6), are preserved by negation, e.g. ¬(c†) = (¬c)†. This is also where the property
on maps (¬M) mostly comes into play.

Then, to prove that the axioms of fo-bicategories are satisfied, one crucially exploits the
laws of boolean algebras.

Finally, to show that every morphism F of peircean bicategories is a morphism of fo-
bicategories, it suffices to observe that F preserves the strucure in (9), as it preserves negation
by definition.

The full diagrammatic proof can be found in [5, Appendix D]. ◀

Note that, differently from Definition 6, Definition 26 is not purely axiomatic, since (¬M)
requires f to be a map. However, the notion of a peircean bicategory is notably more succinct
than that of a fo-bicategory, making it more convenient for our purposes.

6 An Equational Presentation of Boolean Hyperdoctrines

The main purpose of this section is to establish a formal link between fo-bicategories and
boolean hyperdoctrines. In particular, we are going to show that the adjunction presented in
(7) restricts to an adjunction between FOB and BHD. Theorem 27 allows us to conveniently
work with peircean bicategories. We commence with the following result.

▶ Proposition 28. Let C be a peircean bicategory. Then HmI(C) is a boolean hyperdoctrine.

Proof. By (7), C[−, I] : Map(C)op −→ InfSl is an elementary and existential doctrine and, by
definition of peircean bicategories, C[X, I] is a boolean algebra for all objects X. To conclude
that C[−, I] : Map(C)op −→ Bool, one has only to show that, for all maps f : X → Y ,
C[f, I] : C[Y, I] → C[X, I] is a morphism of boolean algebras. Since, by (7), C[f, I] is a
morphism of inf-semilattices, it is enough to show that it preserves negation: for all c ∈ C[Y, I]

C[f, I](¬c) = f ,◦ ¬c (Definition of C[−, I])
= ¬(f ,◦ c) (¬M)
= ¬C[f, I](c) (Definition of C[−, I])

◀

The above proposition allows us to characterize peircean bicategories as follows:

▶ Corollary 29. Let C be a cartesian bicategory. Then it is a peircean bicategory if and only
if HmI(C) is a boolean hyperdoctrine.

To prove that, for any boolean hyperdoctrine P , Rel(P ) is a peircean bicategory, we need
to establish a formal correspondence between Definition 2 and Definition 17.

▶ Proposition 30. Let P : Cop −→ InfSl be an elementary and existential doctrine. Then
the maps of Rel(P ) are precisely the functional and entire elements of P .

▶ Proposition 31. Let P be a boolean hyperdoctrine. Then Rel(P ) is a peircean bicategory.
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Proof. By (7), Rel(P ) is a cartesian bicategory. Since P (X) is a boolean algebra for all
objects X, then each hom-set Rel(P )[X,Y ] – by definition P (X × Y ) – is a boolean algebra.
To conclude that Rel(P ) is a peircean bicategory, it is enough to show that (¬M) holds,
that is

ϕ ,◦ ¬ψ = ¬(ϕ ,◦ ψ)

for all maps ϕ ∈ Rel(P )[X,Y ] and arrows ψ ∈ Rel(P )[Y,Z]. By Proposition 30, ϕ is a
functional and entire element of P . Thus, one can rely on Lemma 25 to conclude that

ϕ ,◦ ¬ψ = ∃πX×Z
(PπX×Y

(ϕ) ∧ PπY ×Z
(¬ψ)) (Defintion of Rel(P ))

= ¬( ∃πX×Z
(PπX×Y

(ϕ) ∧ PπY ×Z
(ψ)) ) (Lemma 25)

= ¬(ϕ ,◦ ψ) (Defintion of Rel(P ))

◀

By Propositions 28 and 31 proving the following result amounts to a few routine checks.

▶ Theorem 32. The adjunction in (7), restricts to the adjunction below on the left.

PB BHD
HmI

Rel

⊣

Thus, by Theorem 27, there is an adjunction FOB BHD⊣ .

Proof. First, we want to prove that the inclusion HmI : CB ↪→ EED in (7) restricts to an
inclusion of categories PB ↪→ BHD. By Proposition 28, one only needs to check for morphisms
in PB. Given a morphism of peircean bicategories F : C → D, HmI(F ) is the morphism of
elementary and existential doctrines (F̃ , bF ) defined in Section 4. In order to conclude that
it is a morphism of boolean doctrines, it is enough to show that bF

X is a morphism of boolean
algebras for all objects X. Since (F̃ , bF ) is a morphism of doctrines, bF

X is a morphism of
inf-semilattices. Thus it is enough to show that bF

X preserve negation. But this is trivial
since, for all c ∈ C[X, I],

bF
X(¬c) = F (¬c) (Def. bF )

= ¬F (c) (morphism of Peircean, Definition 26)
= ¬bF

X(c) (Def. bF )

Now, to prove that Rel restrict to a functor Rel : BHD → PB, by Proposition 31, one
only needs to check that for all morphisms of boolean hyperdoctrines (F, b) : P → Q,
Rel(F, b) : Rel(P ) → Rel(Q) is a morphism of peicean bicategories. Since by (7), Rel(F, b) is
a morphism of cartesian bicategories, one only needs to check that it preserves the negation.
But this is obvious since for all arrows ϕ ∈ Rel(P )[X,Y ], Rel(F, b)(ϕ) is – by definition –
bX×Y (ϕ) and bX×Y is a morphism of boolean algebras.

To conclude, one only needs to check the unit and the counit of the adjunction in (7).
The counit is an isomorphism of cartesian bicategories (see Equation (9) in [7]), and then it
provides an isomorphism of peircean bicategories C ∼= Rel(C[−, I]) whenever C is a peircean
bicategory. The unit of the adjunction ηP : P → Rel(P )[−, I] is the morphism of elementary
and existential doctrines (ΓP , ρ) illustrated in [7, Section 7] or [5, Appendix C]. To conclude
that ηP is a morphism of boolean hyperdoctrine whenever P is a boolean hyperdoctrine,
one has only to prove that ρ is a morphism of boolean algebras, but this is trivial since ρ is
always an isomorphism of inf-semilattices. ◀
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7 Boolean Hyperdoctrines Representing First-Order Bicategories

As anticipated in §4, the adjunction in (7) becomes an equivalence for certain well-behaved
doctrines. Definitions 33 and 34 state the conditions that such doctrines must satisfy.

▶ Definition 33. An elementary and existential doctrine P : Cop −→ InfSl has comprehensive
diagonals if for the equality predicate δX ∈ P (X) it holds that P∆X

(δX) = ⊤X and every
arrow f : Y → X ×X such that Pf (δX) = ⊤Y factors (uniquely) through ∆X .

Intuitively, a doctrine has comprehensive diagonals if its equality is extensional, namely if a
formula t1 = t2 is true, then the terms t1 and t2 are syntactically equal. In the language of
cartesian bicategories, for two maps t1, t2, this can be stated by means of diagrams as

if t1 t2X X = X X then t1X Y = t2X Y . (10)

While it is sometimes meaningful to consider syntactic doctrines (e.g. Example 23) in which
the equality is not extensional, in several semantical doctrines this condition is satisfied.

▶ Definition 34. Let P : Cop −→ InfSl be an elementary existential doctrine. We say that
P satisfies the Rule of Unique Choice (RUC) if for every entire functional element ϕ in
P (X × Y ) there exists an arrow f : X → Y such that ⊤X ≤ P⟨id◦

X
,f⟩(ϕ).

The reader can think that a doctrine has (RUC) if for every element (intuitively formula)
that is entire and functional, there exists an arrow in C (intuitively a term) that represents
it.

▶ Example 35. The doctrine P : Setop −→ InfSl has comprehensive diagonals, and it satisfies
the (RUC) (since every functional and total relation can be represented by a function). More
generally, every subobject doctrine SubC : Cop −→ InfSl on a regular category, as presented
in Example 15 satisfies the (RUC) and it has comprehensive diagonals, as observed in [44].

▶ Example 36. The doctrine C[−, I] : Map(C)op −→ InfSl presented in Example 16 satisfies
the (RUC) and it has comprehensive diagonals, as proved in [7]. The reader can find a
diagrammatic proof of (10) in [5, Appendix A].

Hereafter – and in the equivalence in (8) – EED is the full subcategory of EED whose
objects are doctrines satisfying (RUC) and with comprehensive diagonals. Similarly BHD is
the full subcategory of BHD whose objects are boolean hyperdoctrines satisfying (RUC) and
with comprehensive diagonals.

By means of Theorem 32, it is easy to prove that the equivalence in (8) restricts as follows.

▶ Theorem 37. PB ≡ BHD and thus, by Theorem 27, FOB ≡ BHD.

Proof. By Equation (8) we have that the HmI and Rel functors provide an equivalence
between the categories CB and EED. Now, since every peircean category is in particular
a cartesian bicategory, we have that every boolean hyperdoctrine arising from a peircean
bicategory satisfies (RUC) and it has comprehensive diagonals. Then, we have that the
functor HmI : PB ↪→ BHD factors through the canonical inclusion BHD ↪→ BHD:

PB BHD

BHD

HmI

HmI
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By Theorem 32, we have that HmI : PB ↪→ BHD is fully and faithful (since the counit of the
adjunction is an iso), so it remains to prove that it is essentially surjective (with respect to the
objects of BHD). By the equivalence presented in Equation (8), we know that every boolean
hyperdoctrine (that is in particular an elementary and existential doctrine) satisfying (RUC)
and having comprehensive diagonals, is isomorphic to an elementary and existential doctrine
C[−, I] : Map(C)op −→ InfSl for some cartesian bicategory C. Thus, we can conclude that
C[−, I] : Map(C)op −→ InfSl is a boolean hyperdoctrine and, by Corollary 29, that C is a
peircean bicategory. This concludes the proof that PB ≡ BHD. ◀

8 Related Work

There exists many structures that are closely related to fo-bicategories, as discussed in [3].
The introduction of peircean bicategory in § 5 provide clearer correspondences with such
structures. Here we discuss some of them.

Boolean hyperdoctrines are used in [10] as a categorical treatment of another work of
Peirce: existential graphs [64]. While the latter share some similarities with the graphical
language of fo-bicategories there is one notable difference: negation is a primitive operator
rather than a derived one, as it happens for instance also in [25] and Definition 26. In [3]
and in §5, it is emphasised how this choice makes the resulting calculus less algebraic in
flavour, having to deal with convoluted rules such as the one for (de)iteration or properties
which are not purely equational, such as (¬M).

Inspired by [10], another graphical language [50] akin to Peirce’s graphs is based on a
decomposition of a hyperdoctrine into a bifibration. In this work, the categorical treatment
revolves around the notion of monoidal chiralities [49], which are much more closer in spirit
to fo-bicategories. We believe that our results might set an initial step towards a connection
between fo-bicategories and chiralities.

A recent work [15] proposes a relational understanding of doctrines. However, these
corresponds to the regular fragment of first-order logic, and thus it might by intriguing to
understand the role of the additional black structure of first-order bicategories in this setting.
Another route, suggested by the equivalence in Theorem 37, might be to understand the role
of (¬M) in relational doctrines with boolean fibres.

Finally, it is also worth remarking that peircean bicategories, as well as fo-bicategories,
are poset-enriched categories. Such categorical treatements of first-order logic are also found
in works such as [30, 23], along with the references therein. Their primary focus, though, is
on the categorical approach to classical proof theory instead of semantics.

9 Conclusions and Future Work

Theorems 32 and 37 provide a solid bridge between functional and relational approaches
to classical logic. The former rely on categorical structures that are usually defined by
means of exactness properties; the latter on fo-bicategories which enjoy a purely equational
presentation, much in the spirit of Boole’s algebra and Peirce’s calulus.

To achieve our result, we found it extremely convenient to introduce the notion of peircean
bicategories that, by Theorem 27, provide a far handier characterisation of fo-bicategories.

Theorem 27 might also be useful to establish a correspondence with allegories [22]: since
cartesian bicategories are equivalent to unitary pretabular allegories [35], we expect that
such allegories where, additionally, homsets carry boolean algebras satisfying (¬M) are
equivalent to fo-bicategories. Despite searching the literature, we did not find analogous
structures. Interestingly, the property (¬M) can be proven in any Peirce allegories, as shown
in Proposition 4.6.1 in [53].
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Finally, as future work we aim to investigate how our characterizations can be extended
to higher-order classical logic, which is categorically represented through the notion of
tripos [29, 57]. Indeed, we believe that the constructions and results presented in this work,
together with the notion of tripos, can serve as a guide for defining a variant of fo-bicategories
– hopefully, purely equational – capable of representing higher-order classical logic.
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Abstract
The notion of Lyndon word and Lyndon factorization has shown to have unexpected applications in
theory as well as in developing novel algorithms on words. A counterpart to these notions are those
of inverse Lyndon word and inverse Lyndon factorization. Differently from the Lyndon words, the
inverse Lyndon words may be bordered. The relationship between the two factorizations is related
to the inverse lexicographic ordering, and has only been recently explored. More precisely, a main
open question is how to get an inverse Lyndon factorization from a classical Lyndon factorization
under the inverse lexicographic ordering, named CFLin. In this paper we reveal a strong connection
between these two factorizations where the border plays a relevant role. More precisely, we show
two main results. We say that a factorization has the border property if a nonempty border of
a factor cannot be a prefix of the next factor. First we show that there exists a unique inverse
Lyndon factorization having the border property. Then we show that this unique factorization
with the border property is the so-called canonical inverse Lyndon factorization, named ICFL. By
showing that ICFL is obtained by compacting factors of the Lyndon factorization over the inverse
lexicographic ordering, we provide a linear time algorithm for computing ICFL from CFLin.
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31:2 Unveiling the Connection Between CFL and ICFL via a Border Property

1 Introduction

The theoretical investigation of combinatorial properties of well-known word factorizations is
a research topic that recently have witnessed special interest especially for improving the
efficiency of algorithms [5]. Among these, the Lyndon Factorization introduced by Chen, Fox,
Lyndon in [12], named CFL, undoubtedly stands. Any word w admits a unique factorization
CFL(w), that is a lexicographically non-increasing sequence of factors which are Lyndon
words. A Lyndon word w is strictly lexicographically smaller than each of its proper cyclic
shifts, or, equivalently, than each of its nonempty proper suffixes [24]. Interesting applications
of the use of the Lyndon factorization and Lyndon words are the development of the bijective
Burrows-Wheeler Transforms [2, 6, 21] and a novel algorithm for sorting suffixes [5]. In
particular, the notion of a Lyndon word has been re-discovered various times as a theoretical
tool to locate short motifs [15] and relevant k-mers in bioinformatics applications [26]. In
this line of research, Lyndon-based word factorizations have been explored to define a novel
feature representation for biological sequences based on theoretical combinatorial properties
proved to capture sequence similarities [7].

The notion of a Lyndon word has a counterpart that is the notion of an inverse Lyndon
word, i.e., a word lexicographically greater than its suffixes. Inverting the relation between a
word and its suffixes, as between Lyndon words and inverse Lyndon words, leads to different
properties. Indeed, although a word could admit more than one inverse Lyndon factorization,
that is a factorization into a nonincreasing product of inverse Lyndon words, in [8] the
Canonical Inverse Lyndon Factorization, named ICFL, was introduced. ICFL maintains the
main properties of CFL: it is unique and can be computed in linear time. In addition, it
maintains a similar Compatibility Property, used for obtaining the sorting of the suffixes of
w (“global suffixes”) by using the sorting of the suffixes of each factor of CFL(w) (“local
suffixes”) [25]. Most notably, ICFL(w) has another interesting property [8, 9, 10]: we can
provide an upper bound on the length of the longest common prefix of two substrings of a
word w starting from different positions.

A relationship between ICFL(w) and CFL(w) has been proved by using the notion of
grouping [8]. First, let CFLin(w) be the Lyndon factorization of w with respect to the inverse
lexicographic order, it is proved that ICFL(w) is obtained by concatenating the factors of
a non-increasing maximal chain with respect to the prefix order, denoted by PMCw, in
CFLin(w) (see Section 6). Despite this result, the connection between CFLin(w) and the
inverse Lyndon factorization still remained obscure, mainly by the fact that a word may
have multiple inverse Lyndon factorizations.

In this paper, we explore this connection between CFLin and the inverse Lyndon fac-
torizations. Our first main contribution consists in showing that there is a unique inverse
Lyndon factorization of a word that has border property. The border property states that
any nonempty border of a factor cannot be a prefix of the next factor. We further highlight
the aforementioned connection by proving that the inverse Lyndon factorization with the
border property is a compact factorization (Definition 6.7), i.e., each inverse Lyndon factor is
the concatenation of compact factors. In turn, a compact factor is the concatenation of the
longest sequence of identical words in a PMC. We then show the second contribution of
this paper: this unique factorization is ICFL itself and then provide a simpler linear time
algorithm for computing ICFL. Our algorithm is based on a new property that characterizes
ICFL(w): the last factor in ICFL(w) is the longest suffix of w that is an inverse Lyndon
word. Recall that the Lyndon factorization of w has a similar property: the last factor is the
longest suffix of w that is a Lyndon word.
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2 Words

Throughout this paper we follow [4, 13, 22, 23, 27] for the notations. We denote by Σ∗ the
free monoid generated by a finite alphabet Σ and we set Σ+ = Σ∗ \ {1}, where 1 is the empty
word. For a word w ∈ Σ∗, we denote by |w| its length. A word x ∈ Σ∗ is a factor of w ∈ Σ∗

if there are u1, u2 ∈ Σ∗ such that w = u1xu2. If u1 = 1 (resp. u2 = 1), then x is a prefix
(resp. suffix) of w. A factor (resp. prefix, suffix) x of w is proper if x ̸= w. Two words x, y

are incomparable for the prefix order, denoted as x ⋊⋉ y, if neither x is a prefix of y nor y is a
prefix of x. Otherwise, x, y are comparable for the prefix order. We write x ≤p y if x is a
prefix of y and x ≥p y if y is a prefix of x. The notion of a pair of words comparable (or
incomparable) for the suffix order is defined symmetrically.

We recall that, given a nonempty word w, a border of w is a word which is both a proper
prefix and a suffix of w [14]. The longest proper prefix of w which is a suffix of w is also
called the border of w [14, 23]. A word w ∈ Σ+ is bordered if it has a nonempty border.
Otherwise, w is unbordered. A nonempty word w is primitive if w = xk implies k = 1. An
unbordered word is primitive. A sesquipower of a word x is a word w = xnp where p is a
proper prefix of x and n ≥ 1. Two words x, y are called conjugate if there exist words u, v

such that x = uv, y = vu. The conjugacy relation is an equivalence relation. A conjugacy
class is a class of this equivalence relation.

▶ Definition 2.1. Let (Σ, <) be a totally ordered alphabet. The lexicographic (or alphabetic
order) ≺ on (Σ∗, <) is defined by setting x ≺ y if

x is a proper prefix of y, or
x = ras, y = rbt, a < b, for a, b ∈ Σ and r, s, t ∈ Σ∗.

In the next part of the paper we will implicitly refer to totally ordered alphabets. For
two nonempty words x, y, we write x≪ y if x ≺ y and x is not a proper prefix of y [3]. We
also write y ≻ x if x ≺ y. Basic properties of the lexicographic order are recalled below.

▶ Lemma 2.2. For x, y ∈ Σ+, the following properties hold.
(1) x ≺ y if and only if zx ≺ zy, for every word z.
(2) If x≪ y, then xu≪ yv for all words u, v.
(3) If x ≺ y ≺ xz for a word z, then y = xy′ for some word y′ such that y′ ≺ z.
(4) If x≪ y and y ≪ z, then x≪ z.

Let t, j, rj be positive integers, with 1 ≤ j ≤ t. Let S1, . . . ,St be sequences, with Sj =
(sj,1, . . . , sj,rj ). We let (S1, . . . ,St) stand for the sequence (s1,1, . . . , s1,r1 , . . . , st,1, . . . , st,rt).

3 Lyndon words

▶ Definition 3.1. A Lyndon word w ∈ Σ+ is a word which is primitive and the smallest one
in its conjugacy class for the lexicographic order.

▶ Example 3.2. Let Σ = {a, b} with a < b. The words a, b, aaab, abbb, aabab and aababaabb

are Lyndon words. On the contrary, abab, aba and abaab are not Lyndon words.

▶ Proposition 3.3. Each Lyndon word w is unbordered.

A class of conjugacy is also called a necklace and often identified with the minimal word
for the lexicographic order in it. We will adopt this terminology. Then a word is a necklace
if and only if it is a power of a Lyndon word. A prenecklace is a prefix of a necklace. Then
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clearly any nonempty prenecklace w has the form w = (uv)ku, where uv is a Lyndon word,
u ∈ Σ∗, v ∈ Σ+, k ≥ 1, that is, w is a sesquipower of a Lyndon word uv. The following result
has been proved in [16]. It shows that the nonempty prefixes of Lyndon words are exactly
the nonempty prefixes of the powers of Lyndon words with the exclusion of ck, where c is
the maximal letter and k ≥ 2.

▶ Proposition 3.4. A word is a nonempty prefix of a Lyndon word if and only if it is a
sesquipower of a Lyndon word distinct of ck, where c is the maximal letter and k ≥ 2.

In the following L = L(Σ∗,<) will be the set of Lyndon words, totally ordered by the
relation ≺ on (Σ∗, <).

▶ Theorem 3.5. Any word w ∈ Σ+ can be written in a unique way as a nonincreasing
product w = ℓ1ℓ2 · · · ℓh of Lyndon words, i.e., in the form

w = ℓ1ℓ2 · · · ℓh, with ℓj ∈ L and ℓ1 ⪰ ℓ2 ⪰ . . . ⪰ ℓh (3.1)

The sequence CFL(w) = (ℓ1, . . . , ℓh) in Eq. (3.1) is called the Lyndon decomposition (or
Lyndon factorization) of w. It is denoted by CFL(w) because Theorem 3.5 is usually credited
to Chen, Fox and Lyndon [12]. The following result, proved in [16], is necessary for our aims.

▶ Corollary 3.6. Let w ∈ Σ+, let ℓ1 be its longest prefix which is a Lyndon word and let w′

be such that w = ℓ1w′. If w′ ̸= 1, then CFL(w) = (ℓ1, CFL(w′)).

Sometimes we need to emphasize consecutive equal factors in CFL. We write CFL(w) =
(ℓn1

1 , . . . , ℓnr
r ) to denote a tuple of n1 + . . . + nr Lyndon words, where r > 0, n1, . . . , nr ≥ 1.

Precisely ℓ1 ≻ . . . ≻ ℓr are Lyndon words, also named Lyndon factors of w. There is a linear
time algorithm to compute the pair (ℓ1, n1) and thus, by iteration, the Lyndon factorization
of w [17, 23]. Linear time algorithms may also be found in [16] and in the more recent
paper [19].

4 Inverse Lyndon words

For the material in this section see [8, 9, 10]. Inverse Lyndon words are related to the inverse
alphabetic order. Their definition is recalled below.

▶ Definition 4.1. Let (Σ, <) be a totally ordered alphabet. The inverse <in of < is defined by

∀a, b ∈ Σ b <in a⇔ a < b

The inverse lexicographic or inverse alphabetic order on (Σ∗, <), denoted ≺in, is the lexico-
graphic order on (Σ∗, <in).

▶ Example 4.2. Let Σ = {a, b, c, d} with a < b < c < d. Then dab ≺ dabd and dabda ≺ dac.
We have d <in c <in b <in a. Therefore dab ≺in dabd and dac ≺in dabda.

Of course for all x, y ∈ Σ∗ such that x ⋊⋉ y,

y ≺in x⇔ x ≺ y.

Moreover, in this case x≪ y. This justifies the adopted terminology.
From now on, Lin = L(Σ∗,<in) denotes the set of the Lyndon words on Σ∗ with respect to

the inverse lexicographic order. Following [18], a word w ∈ Lin will be named an anti-Lyndon
word. Correspondingly, an anti-prenecklace will be a prefix of an anti-necklace, which in turn
will be a necklace with respect to the inverse lexicographic order.

In the following, we denote by CFLin(w) the Lyndon factorization of w with respect to
the inverse order <in.
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▶ Definition 4.3. A word w ∈ Σ+ is an inverse Lyndon word if s ≺ w, for each nonempty
proper suffix s of w.

▶ Example 4.4. The words a, b, aaaaa, bbba, baaab, bbaba and bbababbaa are inverse Lyndon
words on {a, b}, with a < b. On the contrary, aaba is not an inverse Lyndon word since
aaba ≺ ba. Analogously, aabba ≺ ba and thus aabba is not an inverse Lyndon word.

The following result, proved in [8, 10], and also in [11], summarizes some properties of
the inverse Lyndon words.

▶ Proposition 4.5. Let w ∈ Σ+. Then we have
1. The word w is an anti-Lyndon word if and only if it is an unbordered inverse Lyndon

word.
2. The word w is an inverse Lyndon word if and only if w is a nonempty anti-prenecklace.
3. If w is an inverse Lyndon word, then any nonempty prefix of w is an inverse Lyndon

word.

▶ Definition 4.6. An inverse Lyndon factorization of a word w ∈ Σ+ is a sequence
(m1, . . . , mk) of inverse Lyndon words such that m1 · · ·mk = w and mi ≪ mi+1, 1 ≤ i ≤ k−1.

As the following example in [8] shows, a word may have different inverse Lyndon factor-
izations.

▶ Example 4.7. Let Σ = {a, b, c, d} with a < b < c < d, z = dabdadacddbdc. It is easy to
see that (dab, dadacd, db, dc), (dabda, dac, ddbdc), (dab, dadac, ddbdc) are all inverse Lyndon
factorizations of z.

5 The border property

In this section we prove the main result of this paper, namely, for any nonempty word w,
there exists a unique inverse Lyndon factorization of w which has a special property, named
the border property.

▶ Definition 5.1 (Border property). Let w ∈ Σ+. A factorization (m1, . . . , mk) of w has the
border property if each nonempty border z of mi is not a prefix of mi+1, 1 ≤ i ≤ k − 1.

We first prove a fundamental property of the inverse Lyndon factorizations of w which
have the border property.

▶ Lemma 5.2. Let w ∈ Σ+, let (m1, . . . , mk) be an inverse Lyndon factorization of w having
the border property. If α is a nonempty border of mj, 1 ≤ j ≤ k − 1, then there exists a
nonempty prefix β of mj+1 such that |β| ≤ |α| and α≪ β.

Proof. Let w ∈ Σ+, let (m1, . . . , mk) be an inverse Lyndon factorization of w having the
border property, let α be a nonempty border of mj , 1 ≤ j ≤ k− 1. We distinguish two cases:
either |mj+1| < |α| or |mj+1| ≥ |α|.

Assume |mj+1| < |α|. By hypothesis (m1, . . . , mk) is an inverse Lyndon factorization,
hence mj ≪ mj+1, that is, there are r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and mj = ras,
mj+1 = rbt. Obviously |ra| ≤ |mj+1| < |α|, thus there is s′ ∈ Σ∗ such that α = ras′.
Consequently, α = ras′ ≪ rbt = mj+1 and our claim holds with β = mj+1.

Assume |mj+1| ≥ |α|. Let β be the nonempty prefix of mj+1 such that |β| = |α|. Clearly
β ̸= α because (m1, . . . , mk) has the border property. Since α and β are two different
nonempty words of the same length, either β ≪ α or α ≪ β. The first case leads to a
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contradiction because if β ≪ α, then mj+1 ≪ mj by Lemma 2.2 and this contradicts the
fact that (m1, . . . , mk) is an inverse Lyndon factorization. Thus, α ≪ β and the proof is
complete. ◀

▶ Proposition 5.3. For each w ∈ Σ+, there exists a unique inverse Lyndon factorization of
w having the border property.

Proof. The proof is by induction on |w|. If |w| = 1, then the statement clearly holds. Thus
assume |w| > 1. Let F1(w) = (f1, . . . , fk) and F2(w) = (f ′

1, . . . , f ′
v) be two inverse Lyndon

factorizations of w having the border property. Thus

f1 · · · fk = f ′
1 · · · f ′

v = w (5.1)

If |fk| = |f ′
v| and v = 1 or k = 1, clearly fk = f ′

v and F1(w) = F2(w). Analogously, if |fk| =
|f ′

v|, v > 1 and k > 1, then fk = f ′
v and F ′

1(w′) = (f1, . . . , fk−1), F ′
2(w′) = (f ′

1, . . . , f ′
v−1)

would be two inverse Lyndon factorizations of w′ having the border property, where w′ is
such that w = w′fk. Of course, |w′| < |w|. By induction hypothesis, F ′

1(w′) = F ′
2(w′), hence

F1(w) = F2(w).
By contradiction, let |fk| ≠ |f ′

v|. Assume |fk| < |f ′
v| (similar arguments apply if |fk| >

|f ′
v|). The word fk is a proper suffix of f ′

v. Clearly k > 1. Let g be the smallest integer such
that fg+1 · · · fk is a proper suffix of f ′

v, 1 ≤ g ≤ k − 1, that is,

f ′
v = αfg+1 · · · fk (5.2)

where α ∈ Σ+ is a suffix of fg.
Notice that

α ̸≪ fg+1. (5.3)

Indeed, if α ≪ fg+1, then, by Eq. (5.2), we would have f ′
v = αfg+1 · · · fk ≪ fg+1 · · · fk,

which is impossible because f ′
v is an inverse Lyndon word.

The word α is a nonempty proper suffix of fg since otherwise we would have α = fg ≪ fg+1,
contrary to Eq. (5.3). Since fg is an inverse Lyndon word and α is a nonempty proper suffix
of fg, either α ≤p fg or α≪ fg.

If α ≤p fg, then α is a nonempty border of fg, then, by Lemma 5.2, there exists a
nonempty prefix β of fg+1 such that |β| ≤ |α| and α≪ β. Thus, α≪ fg+1 which contradicts
Eq. (5.3). Assume α ≪ fg. Since fg ≪ fg+1, by Lemma 2.2 we have α ≪ fg+1 which
contradicts once again Eq. (5.3). This finishes the proof. ◀

▶ Example 5.4. Let Σ = {a, b, c, d} with a < b < c < d, let z = dabdadacddbdc. Notice that
only the last one of the inverse Lyndon factorizations of z from Example 4.7 fulfils the border
property, and the others do not.

6 Groupings and compact factorizations

In this section we prove a structural property of an inverse Lyndon factorization having the
border property, namely it is a compact factorization. This result is crucial to characterize
the relationship between CFLin(w) and the factorization into inverse Lyndon words of w.
First we report the notion of grouping given in [8]. We refer to [8, 10] for a detailed and
complete discussion on this topic.

Let CFLin(w) = (ℓ1, . . . , ℓh), where ℓ1 ⪰in ℓ2 ⪰in . . . ⪰in ℓh. Consider the partial order
≥p, where x ≥p y if y is a prefix of x. Recall that a chain is a set of a pairwise comparable
elements. We say that a chain is maximal if it is not strictly contained in any other chain. A
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non-increasing (maximal) chain in CFLin(w) is the sequence corresponding to a (maximal)
chain in the multiset {ℓ1, . . . , ℓh} with respect to ≥p. We denote by PMCw, or simply
PMC when it is understood, a non-increasing maximal chain in CFLin(w). Looking at the
definition of the (inverse) lexicographic order, it is easy to see that a PMC is a sequence of
consecutive factors in CFLin(w). Moreover CFLin(w) is the concatenation of its PMC. The
formal definitions are given below.

▶ Definition 6.1. Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let 1 ≤ r < s ≤ h. We
say that ℓr, ℓr+1, . . . , ℓs is a non-increasing maximal chain for the prefix order in CFLin(w),
abbreviated PMC, if ℓr ≥p ℓr+1 ≥p . . . ≥p ℓs. Moreover, if r > 1, then ℓr−1 ̸≥p ℓr, if s < h,
then ℓs ̸≥p ℓs+1. Two PMC C1 = ℓr, ℓr+1, . . . , ℓs, C2 = ℓr′ , ℓr′+1, . . . , ℓs′ are consecutive if
r′ = s + 1 (or r = s′ + 1).

▶ Definition 6.2. Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh). We say that (C1, C2, . . . , Cs) is
the decomposition of CFLin(w) into its non-increasing maximal chains for the prefix order
if the following holds
(1) Each Cj is a non-increasing maximal chain in CFLin(w).
(2) Cj and Cj+1 are consecutive, 1 ≤ j ≤ s− 1.
(3) CFLin(w) is the concatenation of the sequences C1, C2, . . . , Cs.

▶ Definition 6.3. Let w ∈ Σ+. We say that (m1, . . . , mk) is a grouping of CFLin(w) if the
following holds
(1) (m1, . . . , mk) is an inverse Lyndon factorization of w

(2) Each factor mj, is the product of consecutive factors in a PMC in CFLin(w).

▶ Example 6.4. Let Σ = {a, b, c, d}, a < b < c < d, and w = dabadabdabdadac. We
have CFLin(w) = (daba, dab, dab, dadac). The decomposition of CFLin(w) into its PMC is
((daba, dab, dab), (dadac)). Moreover, (daba, dabdab, dadac) is a grouping of CFLin(w) but
for the inverse Lyndon factorization (dabadab, dabda, dac) this is no longer true.

Next, let y = dabadabdabdabdadac. We have CFLin(y) = (daba, dab, dab, dab, dadac).
The decomposition of CFLin(w) into its PMC is ((daba, dab, dab, dab), (dadac)). Moreover,
(daba, (dab)3, dadac) and (dabadab, (dab)2, dadac) are two groupings of CFLin(y).

For our aims, we need to consider the words that are concatenations of equal factors in
CFLin. This approach leads to a refinement of the partition of CFLin into non-increasing
maximal chains for the prefix order, as defined below.

▶ Definition 6.5 (Compact sequences). Let C = (ℓ1, . . . , ℓh) be a non-increasing maximal
chain for the prefix order in CFLin(w). The decomposition of C into maximal compact
sequences is the sequence (G1, . . . ,Gn) such that
(1) C = (G1, . . . ,Gn)
(2) For every i, 1 ≤ i ≤ n, Gi consists of the longest sequence of consecutive identical

elements in C
Let (C1, C2, . . . , Cs) be the decomposition of CFLin(w) into its non-increasing maximal chains
for the prefix order. The decomposition of CFLin(w) into its maximal compact sequences is
obtained by replacing each Cj in (C1, C2, . . . , Cs) with its decomposition into maximal compact
sequences.

▶ Definition 6.6 (Compact factor). Let (G1, . . . ,Gn) be the decomposition of CFLin(w) into
its maximal compact sequences. For every i, 1 ≤ i ≤ n, the concatenation gi of the elements
in Gi is a compact factor in CFLin(w).
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▶ Definition 6.7 (Compact factorization). Let w ∈ Σ+. We say that (m1, . . . , mk) is a
compact factorization of w if (m1, . . . , mk) is an inverse Lyndon factorization of w and each
mj, 1 ≤ j ≤ k, is a concatenation of compact factors in CFLin(w).

▶ Example 6.8. Consider again y = dabadabdabdabdadac over Σ = {a, b, c, d}, a < b < c < d,
as in Example 6.4. The decomposition of CFLin(y) = (daba, dab, dab, dab, dadac) into its
maximal compact sequences is ((daba), (dab, dab, dab), (dadac)). The compact factors in
CFLin(w) are daba, (dab)3, dadac. Moreover, (daba, (dab)3, dadac) is a compact factoriza-
tion whereas (dabadab, (dab)2, dadac) is a grouping of CFLin(y) which is not a compact
factorization.

▶ Proposition 6.9. Let w ∈ Σ+. If (m1, . . . , mk) is an inverse Lyndon factorization of w

having the border property, then (m1, . . . , mk) is a compact factorization of w.

Proof. Let w ∈ Σ+, let (m1, . . . , mk) be an inverse Lyndon factorization of w having the
border property. Let CFLin(w) = (ℓ1, . . . , ℓh), where ℓ1 ⪰in ℓ2 ⪰in . . . ⪰in ℓh and ℓ1, . . . , ℓh

are anti-Lyndon words. First we prove that (m1, . . . , mk) is a grouping of CFLin(w) by
induction on |w|. If |w| = 1 the statement clearly holds, thus assume |w| > 1.

The words m1 and ℓ1 are comparable for the prefix order, hence either m1 is a proper
prefix of ℓ1 or ℓ1 is a prefix of m1. Suppose that m1 is a proper prefix of ℓ1. Thus, there are
j, 1 < j ≤ k, and x, y ∈ Σ∗, x ̸= 1, such that mj = xy and ℓ1 = m1 · · ·mj−1x. Necessarily it
turns out j = 2 because otherwise m1 ≪ mj−1, hence, by Lemma 2.2, ℓ1 ≪ mj−1x and this
contradicts the fact that ℓ1 is an anti-Lyndon word. In conclusion ℓ1 = m1x and m2 = xy.
We know that m1 ≪ m2, that is, there are r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and
m1 = ras, m2 = rbt = xy. If |x| ≤ |r|, then x is a nonempty border of ℓ1 and if |x| > |r|,
then there is a word t′ such that x = rbt′ which implies ℓ1 ≪ x. Both cases again contradict
the fact that ℓ1 is an anti-Lyndon word.

Therefore, ℓ1 is a prefix of m1. If m1 = ℓ1 · · · ℓh = w, then k = 1 and the statement
is proved. Otherwise, let i be the largest integer such that m1 = ℓ1 · · · ℓi−1x, x, y ∈ Σ∗,
ℓi = xy, 1 < i ≤ h, y ̸= 1. Let (C1, C2, . . . , Cs) be the decomposition of CFLin(w) into its
non-increasing maximal chains for the prefix order. We claim that ℓ1 · · · ℓi−1 is a prefix of
the concatenation of the elements of C1, thus (ℓ1, . . . , ℓi−1) is a chain for the prefix order.
If i = 1 we are done. Let i > 1. By contradiction, assume that there is j, 1 < j < i, such
that ℓj ̸∈ C1. Therefore, ℓ1 ≪ ℓj which implies m1 ≪ ℓj · · · ℓi−1x and this contradicts the
fact that m1 is an inverse Lyndon word.

We now prove that x = 1. Assume x ̸= 1. As a preliminary step, we prove that there is
no nonempty prefix β of m2 such that |β| ≤ |x| and x≪ β. In fact, if such a prefix existed,
there would be r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and x = ras, β = rbt. Notice that y

is a nonempty prefix of m2 · · ·mk, thus y and β = rbt are comparable for the prefix order.
If |ℓi| = |xy| ≤ |xr|, then 0 < |y| ≤ |r| and y would be a nonempty prefix of r. Thus y

would be a nonempty border of ℓi. If |ℓi| = |xy| > |xr|, then there would be a word t′ such
that ℓi = rasrbt′ which would imply ℓi ≪ rbt′. Both cases contradict the fact that ℓi is an
anti-Lyndon word.

Now either ℓi is a prefix of ℓ1 or ℓ1 ≪ ℓi. If ℓi were a prefix of ℓ1, then x would be a
nonempty border of m1. By Lemma 5.2 there would exist a nonempty prefix β of m2 such
that |β| ≤ |x| and x≪ β which contradicts our preliminary step.

If it were true that ℓ1 ≪ ℓi then there would be r, s, t ∈ Σ∗, a, b ∈ Σ, such that a < b and
ℓ1 = ras, ℓi = rbt = xy. If |x| > |r|, then there would be a word t′ such that x = rbt′ which
would imply m1 ≪ x and this contradicts the fact that m1 is an inverse Lyndon word. If
|x| ≤ |r|, then x would be a prefix of r and x would be a nonempty border of m1. By Lemma
5.2 again, there would exist a nonempty prefix β of m2 such that |β| ≤ |x| and x≪ β which
contradicts again our preliminary step.
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Let w′ ∈ Σ∗ be such that w = m1w′. We know that w′ ̸= 1 and clearly |w′| < |w|. Of
course (m2, . . . , mk) is an inverse Lyndon factorization of w having the border property.
Moreover, by Corollary 3.6, CFLin(w′) = (ℓi, . . . , ℓh) and (C′

1, C2, . . . , Cs) is the decomposition
of CFLin(w′) into its non-increasing maximal chains for the prefix order, where C′

1 is defined
by C1 = (ℓ1, . . . , ℓi−1, C′

1). By induction hypothesis, (m2, . . . , mk) is a grouping of CFLin(w′)
and consequently (m1, . . . , mk) is a grouping of CFLin(w).

Finally, to obtain a contradiction, suppose that (m1, . . . , mk) is a grouping of CFLin(w)
having the border property such that (m1, . . . , mk) is not a compact factorization of w. To
adapt the notation to the proof, set CFLin(w) = (ℓn1

1 , . . . , ℓnr
r ), where r > 0, n1, . . . , nr ≥ 1

and ℓ1, . . . , ℓr are anti-Lyndon words. By Definitions 6.3 and 6.7, there exist integers
j, h, ph, qh, 1 ≤ j ≤ k − 1, 1 ≤ h ≤ r, ph ≥ 1, qh ≥ 1, ph + qh ≤ nh, such that mj ends with
ℓph

h and mj+1 starts with ℓqh

h . Thus, by Definition 6.3, ℓh is a prefix of mj . Moreover, ℓh

is a proper prefix of mj . Indeed otherwise ℓh = mj ≤p mj+1 which is impossible because
mj ≪ mj+1 ((m1, . . . , mk) is an inverse Lyndon factorization). Thus ℓh is a nonempty border
of mj . The word ℓh is also a prefix of mj+1 and this contradicts the fact that (m1, . . . , mk)
has the border property. ◀

7 The canonical inverse Lyndon factorization: The algorithm

In this section we state another relevant result of the paper related to the main one stated in
Section 5. We have shown that a nonempty word w can have more than one inverse Lyndon
factorization but w has a unique inverse Lyndon factorization with the border property
(Example 4.7, Proposition 5.3). Below we highlight that this unique factorization is the
canonical one defined in [8, 10].

This special inverse Lyndon factorization is denoted by ICFL because it is the counterpart
of the Lyndon factorization CFL of w, when we use (I)inverse words as factors. Indeed,
in [8] it has been proved that ICFL(w) can be computed in linear time and it is uniquely
determined for a word w.

In Proposition 7.7 we show another interesting property of ICFL: the last factor of the
factorization is the longest suffix that is an inverse Lyndon word. Based on this result we
provide a new simpler linear algorithm for computing ICFL.

We begin by recalling previously proved results on ICFL, namely Proposition 7.7 in [8]
and Proposition 9.5 in [10]. They are merged into Proposition 7.1.

▶ Proposition 7.1. For any w ∈ Σ+, ICFL(w) is a grouping of CFLin(w). Moreover,
ICFL(w) has the border property.

Corollary 7.2 is a direct consequence of Propositions 5.3, 6.9 and 7.1.

▶ Corollary 7.2. For each w ∈ Σ+, ICFL(w) is a compact factorization and it is is the
unique inverse Lyndon factorization of w having the border property.

Since ICFL(w) is the unique inverse Lyndon factorization with the border property, from
now on these two notions will be synonymous. Proposition 7.3 has been proved in [11].

▶ Proposition 7.3. Let w ∈ Σ+, let CFLin(w) = (ℓ1, . . . , ℓh) and let (C1, C2, . . . , Cs) be
the decomposition of CFLin(w) into its non-increasing maximal chains for the prefix order.
Let w1, . . . , ws be words such that CFLin(wj) = Cj, 1 ≤ j ≤ s. Then ICFL(w) is the
concatenation of the sequences ICFL(w1), . . . , ICFL(ws), that is,

ICFL(w) = (ICFL(w1), . . . , ICFL(ws)) (7.1)
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We can now state some results useful to prove the correctness of our algorithm. First we
observe that, thanks to Corollary 7.2 and Proposition 7.3, to compute ICFL we can limit
ourselves to the case in which CFLin is a chain with respect to the prefix order.

▶ Lemma 7.4. Let ℓ1, . . . , ℓh be anti-Lyndon words over Σ that form a non-increasing chain
for the prefix order, that is, ℓ1 ≥p ℓ2 ≥p . . . ≥p ℓh. If ℓ1 ̸= ℓ2, then ℓ1 ̸<p ℓ2 · · · ℓh.

Proof. By contradiction, assume that ℓ1 is a prefix of ℓ2 · · · ℓh. Then, ℓ1 = ℓ2 · · · ℓtz where
either z = 1 and 2 < t ≤ h or z is a nonempty prefix of ℓt+1, 2 ≤ t < h. Thus either ℓt or z

is a nonempty border of ℓ1, a contradiction in both cases. ◀

▶ Remark 7.5. [10] Let x, y be two different borders of w ∈ Σ+. If x is shorter than y, then
x is a border of y.

▶ Proposition 7.6. Let w ∈ Σ+ and assume that CFLin(w) form a non-increasing chain for
the prefix order. If (m1, . . . , mk) is a factorization of w such that each mj, 1 ≤ j ≤ k, is a
concatenation of compact factors in CFLin(w), then (m1, . . . , mk) has the border property.

Proof. Let w ∈ Σ+ and assume that CFLin(w) form a non-increasing chain for the prefix
order. Let (m1, . . . , mk) be a factorization of w such that each mj , 1 ≤ j ≤ k, is a
concatenation of compact factors in CFLin(w). The proof is by induction on k. If k = 1,
then the conclusion follows immediately. Assume k > 1.

Let w′ ∈ Σ+ be such that w = m1w′. It is clear that (m2, . . . , mk) is a factorization of
w′ such that each mj , 2 ≤ j ≤ k, is a concatenation of compact factors in CFLin(w′). Thus,
by the induction hypothesis, (m2, . . . , mk) has the border property. It remains to prove that
each nonempty border of m1 is not a prefix of m2. The proof is straightforward if m1 is
unbordered, thus assume that m1 is bordered.

Let CFLin(w) = (ℓn1
1 , . . . , ℓnr

r ), where ℓn1
1 , . . . , ℓnr

r are the compact factors in CFLin(w),
that is, ℓ1, . . . , ℓr are anti-Lyndon words such that ℓ1 ≥p . . . ≥p ℓr. Since m1 is a concatena-
tion of compact factors in CFLin(w), there is h, 1 ≤ h < r such that

m1 = ℓn1
1 · · · ℓ

nh

h .

Notice that ℓh is a nonempty border of m1. Furthermore, since ℓh is unbordered, ℓh is the
shortest nonempty border of m1.

If there were a word z which is a nonempty border of m1 and also a prefix of m2, by
Remark 7.5, ℓh would be a prefix of m2. Therefore, ℓh would be a prefix of the word
ℓ

nh+1
h+1 · · · ℓnr

r which contradicts Lemma 7.4. ◀

▶ Proposition 7.7. Let w ∈ Σ+ and let ICFL(w) = (m1, . . . , mk) be the unique inverse
Lyndon factorization of w having the border property. Then mk is the longest suffix of w

which is an inverse Lyndon word.

Proof. Let w ∈ Σ+ and let (m1, . . . , mk) be the unique inverse Lyndon factorization of w

having the border property. If k = 1 we are done. Thus suppose k > 1. By contradiction,
suppose that mk is not the longest suffix of w that is an inverse Lyndon word. Let s

be such longest suffix. Thus, there exist a nonempty suffix x of mj , 1 ≤ j < k such
that s = xmj+1 · · ·mk. Furthermore x must be a proper suffix of mj or we would have
s = mj · · ·mk ≪ mj+1 · · ·mk contradicting the hypothesis that s is inverse Lyndon.

We claim that x≪ mj+1. Indeed, since mj is an inverse Lyndon word, it holds x ⪯ mj .
Thus, if x≪ mj or x = mj , it immediately follows that x≪ mj+1. Otherwise, x ≤p mj and
x is a nonempty border of mj . By Lemma 5.2 applied to (m1, . . . , mk), with x = α, there
must exist a prefix β of mj+1 such that x≪ β, hence x≪ mj+1.
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Since x≪ mj+1, we have s = xmj+1 · · ·mk ≪ mj+1 · · ·mk, contradicting the hypothesis
that s is an inverse Lyndon word. ◀

▶ Remark 7.8. Let w ∈ Σ+ and let ICFL(w) = (m1, . . . , mk) with k > 1. Let w′ be such
that w = w′mk. Then, by Propositions 5.3 and 7.7, we obtain ICFL(w) = (ICFL(w′), mk).

Proposition 7.9 allows us to determine the longest suffix m′ of a word w such that m′ is
an inverse Lyndon word.

▶ Proposition 7.9. Let w ∈ Σ+ be an inverse Lyndon word, and let ℓ ∈ Σ+ be an anti-Lyndon
word. Then:
1. If ℓ≪ w, then for every k ≥ 1, ℓkw is not an inverse Lyndon word.
2. If ℓw is not an inverse Lyndon word, then ℓ≪ w. Furthermore, for every k ≥ 1, w is the

longest suffix of ℓkw that is an inverse Lyndon word.

Proof. By Lemma 2.2, the proof of 1. is immediate. Suppose ℓw is not inverse Lyndon. Then,
there exists a proper suffix s of ℓw such that ℓw ⪯ s, hence ℓw ≪ s. Since ℓ is anti-Lyndon,
for every proper suffix x of ℓ it follows x≪ ℓ and consequently xw ≪ ℓw. Thus, s must be
a suffix of w. Since w is an inverse Lyndon word, one of the following three cases holds:
(1) w = s; (2) s <p w; (3) s≪ w. By ℓw ≪ s, in each of the three cases it is evident that
ℓw ≪ w. Thus there are r, t, t′ ∈ Σ∗ and a, b ∈ Σ with a < b such that ℓw = rat, w = rbt′.
If |ℓ| ≥ |ra|, then clearly ℓ≪ w. Otherwise, |ℓ| ≤ |r| and there is r′ ∈ Σ∗ such that r = ℓr′.
Consequently, by ℓw = rat = ℓr′at, we obtain w = r′at. Hence w = rbt′ = ℓr′bt′ = r′at

which contradicts the fact that w is an inverse Lyndon word.
For every k ≥ 1, w is a suffix of ℓkw that is an inverse Lyndon word. Let x be a proper

nonempty suffix of ℓ. Of course x ≪ ℓ. The word xw is not an inverse Lyndon word,
otherwise we would have ℓ≪ w ⪯ xw ≪ ℓw, a contradiction. Moreover, by Lemma 2.2, for
any j, 1 ≤ j < k, we have xℓjw ≪ ℓjw and xℓjw is not an inverse Lyndon word. Finally, by
1., ℓkw is not an inverse Lyndon word. ◀

Algorithm 1 Compute ICFL(w), the unique compact factorization of w having the border
property.

1: function Factorize(w)
2: (ℓe1

1 , . . . , ℓen
n )← CompactFactors(w) ▷ Compute compact factors of w

3: F ← ∅
4: m′ ← ℓen

n

5: for t = n− 1 downto 1 do ▷ Work one compact factor at a time
6: if ℓt ≪ m′ then ▷ Proposition 7.9
7: F ← (m′,F)
8: m′ ← ℓet

t

9: else
10: m′ ← ℓet

t ·m′

11: F ← (m′,F)
12: return F

We now describe Algorithm 1. Function Factorize(w) will compute the unique compact
factorization of w having the border property. First, at line 2, the decomposition of w into
its compact factors is computed. Then, the factorization of w is carried out from right to
left. Specifically, in accordance with Proposition 7.7, the for-loop at lines 5–10 will search for
the longest suffix m′ of w that is an inverse Lyndon word. The update of m′ is managed
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by iteratively applying Proposition 7.9 at line 6. Once such longest suffix is found (that is,
when the condition at line 6 is true) it is added to the growing factorization F and a new
search for the longest suffix for the remaining portion of the string is initiated. Otherwise,
line 10, the suffix is extended. In the end, the complete factorization is returned.

▶ Example 7.10. Let Σ = {a, b, c, d}, a < b < c < d, and let us run Factorize(w) on
w = dabadabdabdadac. First, at line 2, we get the sequence (ℓ1, ℓ2

2, ℓ3) = (daba, (dab)2, dadac).
Then, at lines 3–4 we set F = ∅ and m′ = ℓ3 = dadac. We begin the for-loop at lines 5–
10 in which i is set to 2 and 1, in turn. With i = 2 the test of line 6 succeeds, since
ℓ2 = dab ≪ dadac = m′, and so we set F = (dadac) and m′ = ℓ2

2 = (dab)2. At the second
iteration, with i = 1, the test of line 6 again succeeds, since ℓ1 = daba≪ (dab)2 = m′, thus
we set F = ((dab)2, dadac) and m′ = ℓ1 = daba. We now fall out of the loop to line 11 where
we set F = (daba, (dab)2, dadac) = ICFL(w).

7.1 Correctness and complexity

We now prove that Algorithm 1 is correct, that is that it will compute the unique inverse
Lyndon factorization of w having the border property, namely ICFL(w). Formally:

▶ Lemma 7.11. Let w ∈ Σ+, and let F be the result of Factorize(w). Then, F = ICFL(w).

Proof. Let (ℓe1
1 , . . . , ℓen

n ) be the decomposition of w into its compact factors, and let Lt =
ℓet

t · · · ℓen
n . We will denote by m′

t (resp. Ft) the value of m′ (resp. F) at the end of iteration
t. We will prove the following loop invariant: at the end of iteration t, sequence (m′

t,Ft) is a
compact factorization of Lt having the border property. The claimed result will follow by
Corollary 7.2.
Initialization. Prior to entering the loop, (m′

n,Fn) = (ℓen
n ) , where the last equality follows

from Proposition 7.7.
Maintenance. Let t ≤ n− 1. By the induction hypothesis, ICFL(Lt+1) = (m′

t+1,Ft+1).
Suppose ℓt ≪ m′

t+1. Then, by 1. of Proposition 7.9, ℓt ·m′
t+1 is not inverse Lyndon

and m′
t+1 is the longest suffix of ℓet

t ·m′
t+1 that is an inverse Lyndon word. Thus, by

Proposition 7.7 m′
t+1 is the last factor of any compact factorization of ℓet

t ·m′
t+1. Hence,

(m′
t,Ft) = (ℓet

t , m′
t+1,Ft+1) is a compact factorization of Lt having the border property.

Now, consider the case where ℓt ̸≪ m′
t+1. Then, by the contrapositive of 2. of Proposi-

tion 7.9, ℓt ·m′
t+1 is inverse Lyndon and thus, again by 2. of Proposition 7.9, ℓet

t ·m′
t+1

is inverse Lyndon. Therefore, (m′
t,Ft) = (ℓet

t ·m′
t+1,Ft+1) is a compact factorization

having the border property.
Termination. After iteration t = 1, sequence (m′

1,F1) = ICFL(L1) = ICFL(w).
Finally, line 11 sets F = (m′

1,F1) = ICFL(w). ◀

Function Factorize(w) has time complexity that is linear in the length of w. Indeed, the
sequence of compact factors obtained at line 2 can be computed in linear time in the length
of w by a simple modification of Duval’s algorithm (see [23]). After that, each iteration t

of loop 5–10 can be implemented to run in time O(|ℓt|). Indeed, condition ℓt ≪ m′ can be
checked by naively comparing ℓt against m′. Furthermore, the update of m′ and F can be
done in constant time: in fact, ℓt, ℓet

t , m′ and F can all be implemented as pairs of indexes
(in case of the former three) or as a list of indexes (in case of the latter) of w.
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8 Conclusions

We discover the special connection between the Lyndon factorization under the inverse
lexicographic ordering, named CFLin and the canonical inverse Lyndon factorization, named
ICFL: there exists a unique inverse Lyndon factorization having the border property and
this unique factorization is ICFL. Moreover each inverse factor of ICFL is obtained by
concatenating compact factors of CFLin. These properties give a constrained structure to
ICFL that deserve to be further explored to characterize properties of words. In particular,
we believe the characterization of ICFL as a compact factorization, proved in the paper,
could highlight novel properties related the compression of a word, as investigated in [20].
In particular, the number of compact factors seems to be a measure of repetitiveness of the
word to be also used in speeding up suffix sorting of a word.

Finally, we believe that the characterization of ICFL in terms of CFLin may be used to
extend to ICFL the conservation property proved in [10] for CFL. This property shows that
the Lyndon factorization of a word w preserves common factors with the factorization of a
superstring of w. This extends the conservation of Lyndon factors explored for the product
u · v of two words u and v [1, 20].
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Abstract
We introduce a dense counterpart of graph degeneracy, which extends the recently-proposed invariant
symmetric difference. We say that a graph has sd-degeneracy (for symmetric-difference degeneracy)
at most d if it admits an elimination order of its vertices where a vertex u can be removed whenever
it has a d-twin, i.e., another vertex v such that at most d vertices outside {u, v} are neighbors of
exactly one of u, v. The family of graph classes of bounded sd-degeneracy is a superset of that of
graph classes of bounded degeneracy or of bounded flip-width, and more generally, of bounded
symmetric difference. Unlike most graph parameters, sd-degeneracy is not hereditary: it may be
strictly smaller on a graph than on some of its induced subgraphs. In particular, every n-vertex
graph is an induced subgraph of some O(n2)-vertex graph of sd-degeneracy 1. In spite of this and
the breadth of classes of bounded sd-degeneracy, we devise Õ(

√
n)-bit adjacency labeling schemes

for them, which are optimal up to the hidden polylogarithmic factor. This is attained on some even
more general classes, consisting of graphs G whose vertices bijectively map to the leaves of a tree T ,
where transversal edges and anti-edges added to T define the edge set of G. We call such graph
representations signed tree models as they extend the so-called tree models (or twin-decompositions)
developed in the context of twin-width, by adding transversal anti-edges.

While computing the degeneracy of a graph takes linear time, we show that determining its
symmetric difference is para-co-NP-complete. This may seem surprising as symmetric difference can
serve as a short-sighted first approximation of twin-width, whose computation is para-NP-complete.
Indeed, we show that deciding if the symmetric difference of an input graph is at most 8 is co-NP-
complete. We also show that deciding if the sd-degeneracy is at most 6 is NP-complete, contrasting
with the symmetric difference.
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1 Introduction

There are two theories of sparse graphs: the so-called Sparsity Theory pioneered by Nešetřil
and Ossona de Mendez [18], and the theory behind the equivalent notions of bounded
degeneracy, maximum average degree, subgraph density, and arboricity. One of the many
merits of the former theory is to capture efficient first-order model checking within subgraph-
closed classes, with the so-called nowhere dense classes [12]. Monadic stability constitutes
a dense analogue of nowhere denseness with similar algorithmic properties [10]. The second
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theory has, as we will see, simple but useful connections with the chromatic number and
adjacency labeling schemes. One of our two main motivations is to introduce and explore
dense analogues of it.

The degeneracy of a graph G is the minimum integer d such that every induced subgraph
of G has a vertex of degree at most d. As removing vertices may only decrease the degree of
the remaining ones, checking that the degeneracy is at most d can be done greedily. This
prompts the following equivalent definition, equal to the coloring number1 minus one [11, 9].
A graph has degeneracy at most d if there is a total order, called degeneracy ordering, on
its vertices such that every vertex v has at most d neighbors following v in the order. The
degeneracy is then the least integer d such that an ordering witnessing degeneracy at most d

exists. Given such an ordering, a graph can be properly (d + 1)-colored by a greedy strategy:
use the smallest available color looping through vertices in the given order. Another advantage
of the definition via degeneracy ordering is that it yields a polynomial-time algorithm to
compute the degeneracy. While the graph is nonempty, find a vertex of minimum degree,
append it to the order, and remove it from the graph. Degeneracy is frequently used to bound
the chromatic number from above. For instance, until recently [19] the Kostochka–Thomason
degeneracy bound of graphs without Kt minor [15, 20] was the best way we knew of coloring
these graphs.

Another application of bounding the degeneracy is to obtain implicit representations.
Indeed graphs of bounded degeneracy admit f(n)-bit adjacency labeling schemes with
f(n) = O(log n).2 In other words, given a class of graphs of degeneracy at most d, there
exists an algorithm, called decoder, such that the vertices of any n-vertex graph G from the
class can be assigned labels (which are binary strings) of length f(n) in such a way that
the decoder can infer the adjacency of any two vertices u, v in G from their mere labels.
An O(log n)-bit labeling scheme is easy to design for any class C of bounded degeneracy. From
an ordering of G ∈ C witnessing degeneracy d, the label of each vertex stores its own index in
the ordering and the indices of its at most d neighbors that follow it in the order. Then the
decoder just checks whether the index of one of u, v is among the indices of the neighbors
of the other vertex. Note that each label has size at most (d + 1)⌈log n⌉. For example, this
was recently used to show that every subgraph-closed class with single-exponential speed of
growth admits such a labeling scheme [3].

Adjacency labeling schemes of size O(log n) are at the heart of the recently-refuted
Implicit Graph Conjecture (IGC) [14, 17]. The IGC speculated that the information-theoretic
necessary condition for a hereditary graph class to have an O(log n)-bit labeling scheme is
also sufficient. This necessary condition comes from the observation that a string of length
O(n log n) obtained by concatenating all vertex labels is an encoding of the graph. Therefore
a class of graphs that admits an adjacency labeling scheme of size O(log n) contains at most
2O(n log n) (un)labeled n-vertex graphs. Graph classes with such a bound on the number of
(un)labeled n-vertex graphs are called factorial. In this terminology, the IGC can be stated
as follows: any hereditary factorial graph class admits an O(log n)-bit adjacency labeling
scheme.

The IGC has been refuted by a wide margin; in a breakthrough work, Hatami and
Hatami [13] showed that there are factorial hereditary graph classes for which any adjacency
labeling scheme requires labels of length Ω(

√
n). However, the refutation is based on

a counting argument and does not pinpoint an explicit counterexample. There are a number

1 not to be confused with the chromatic number
2 Throughout the paper, log denotes the logarithm function in base 2.



É. Bonnet, J. Duron, J. Sylvester, and V. Zamaraev 32:3

of explicit factorial graph classes that could refute the IGC, but the conjecture is still open for
these classes. Let us call EIGC (for Explicit Implicit Graph Conjecture) this very challenge.
For instance, whether the IGC holds within intersection graphs of segments, unit disks, or
disks in the plane, and more generally semi-algebraic graph classes, is unsettled. Despite
the workable definitions of these classes, the geometric representations alone cannot lead to
O(log n)-bit labeling schemes [16]. If such labeling schemes exist, they are likely to utilize
some non-trivial structural properties of these graphs.

The graph parameter symmetric difference was introduced to design a candidate to
explicitly refute the IGC [2]. A graph G has symmetric difference at most d if in every
induced subgraph of G there is a pair of vertices u, v such that there are at most d vertices
different from u and v that are adjacent to exactly one of u, v. In other words, u and v

are d-twins, i.e., they become twins after removing at most d vertices from the graph. One
can construe symmetric difference as a dense analogue of the first definition of degeneracy
given above. Symmetric difference is a hereditary graph parameter: it can only decrease
when taking induced subgraphs. Like classes of bounded degeneracy, classes of bounded
symmetric difference are factorial [2]. Symmetric difference generalizes degeneracy in the
sense that any class of graphs of bounded degeneracy has bounded symmetric difference.
Indeed, if a graph has degeneracy at most d, then it has symmetric difference as most 2d: for
any graph with an ordering witnessing degeneracy d, the first two vertices in the order are
2d-twins. Notice that, on the other hand, complete graphs have unbounded degeneracy, but
their symmetric difference is 0. Classes of bounded symmetric difference contains classes of
bounded twin-width, and this containment is strict as twin-width is unbounded on degenerate
graphs [5]. The existence of an O(log n)-bit adjacency labeling scheme for graphs of bounded
symmetric difference remains open.

Our contribution. We introduce another dense analogue of degeneracy based on the second
given definition. The sd-degeneracy (for symmetric-difference degeneracy) of a graph G is the
least integer d for which there is an ordering of the vertices of G such that every vertex v but
the last one admits a d-twin in the subgraph of G induced by v and all the vertices following
it in the order. It follows from the definitions that graphs with sd-degeneracy at most d

form a superset of graphs with symmetric difference at most d. Contrary to what happens
in the sparse setting with degeneracy, this superset is strict. In fact, there are classes with
sd-degeneracy 1 and unbounded symmetric difference.

▶ Proposition 1 (⋆). For any n-vertex graph G, there exists a graph of sd-degeneracy 1 with
less than n2 vertices containing G as an induced subgraph.

By an aforementioned counting argument, the class of all graphs requires labeling schemes
of size Θ(n). Therefore, by Proposition 1, the (non-hereditary) class of graphs with sd-
degeneracy at most 1 requires adjacency labels of size Ω(

√
n). Surprisingly, we match this

lower bound with a labeling scheme, tight up to a polylogarithmic factor, for any class of
bounded sd-degeneracy.

▶ Theorem 2. The class of all graphs with sd-degeneracy at most d admits an O(
√

dn log3 n)-
bit adjacency labeling scheme.

The tool behind the proof of Theorem 2 is the second motivation of the paper. We wish to
unify and extend twin-decompositions of low width (also called tree models) [4, 8] developed
in the context of twin-width, and spanning paths (or Welzl orders) of low crossing number
(or low alternation number) [22], which are useful orders in answering geometric range
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queries; also see [10] which utilizes these orders as part of efficient first-order model checking
algorithms. We thus introduce signed tree models. A signed tree model of a graph G is a tree
whose leaves are in one-to-one correspondence with the vertices of G, together with extra
transversal edges and anti-edges, which fully determine (see the exact rules in Section 3) the
edges of G. The novelty compared to the existing tree models is the presence of transversal
anti-edges. We show that graphs with signed tree models of degeneracy at most d admit
a labeling scheme as in Theorem 2. The latter theorem is then obtained by building such
a signed tree model for any graph of sd-degeneracy d.

When given the vertex ordering witnessing sd-degeneracy d, the labeling scheme can be
effectively computed. However, we show that computing the sd-degeneracy of a graph (hence,
in particular a witnessing order) is NP-complete, even when the sd-degeneracy is guaranteed
to be below a fixed constant. In the language of parameterized complexity, sd-degeneracy is
para-NP-complete.

▶ Theorem 3. Deciding if a graph has sd-degeneracy at most 1 is NP-complete.

We show that, surprisingly, the other dense analogue of degeneracy, symmetric difference,
is co-NP-complete. Again, the associate parameterized problem is para-co-NP-complete.

▶ Theorem 4. Deciding if a graph has symmetric difference at most 8 is co-NP-complete.

This is curious because sd-degeneracy and symmetric difference similarly extend to the
dense world two equivalent definitions of degeneracy. Nevertheless, one can explain the
apparent tension between Theorems 3 and 4: a vertex ordering witnesses an upper bound in
the sd-degeneracy, whereas an induced subgraph witnesses a lower bound in the symmetric
difference. We leave as an open question whether classes of bounded symmetric difference
have labeling schemes of (poly)logarithmic size. This is excluded for bounded sd-degeneracy,
for which we now know essentially optimal labeling schemes. While not an absolute barrier,
the likely absence of polynomial certificates tightly upper bounding the symmetric difference
complicates matters in settling this open question.

Organization. Section 2 gives definitions and notation. In Section 3 we introduce signed
tree models, and prove that graphs of bounded sd-degeneracy admit signed tree models of
bounded width. In Section 4 we show how to balance these signed tree models, and complete
the proof of Theorem 2. In Section 5 we prove Theorem 4, and we prove Theorem 3 in the
long version [23]. The proofs marked with a ⋆ have been moved to the appendix.

2 Preliminaries

We denote by [i, j] the set of integers that are at least i and at most j, and [i] is a
shorthand for [1, i]. We follow standard asymptotic notation throughout, and additionally
by f(n) = Õ(g(n)) we mean that there exists constants c, n0 > 0 such that for any n ⩾ n0
we have f(n) ⩽ g(n) logc n.

We denote by V (G) and E(G) the vertex set and edge set of a graph G, respectively.
Given a vertex u of a graph G, we denote by NG(u) the set of neighbors of u in G (open
neighborhood) and by NG[u] the set NG(u) ∪ {u} (closed neighborhood). When H, G are two
graphs, we may denote by H ⊆i G (resp. H ⊆ G) the fact that H is an induced subgraph
(resp. subgraph) of G, i.e., can be obtained by removing vertices of G (resp. by removing
vertices and edges of G). We denote by G[S] the subgraph of G induced by S, formed by
removing every vertex of V (G) \ S. We use G − S as a shorthand for G[V (G) \ S], and G − v,
for G − {v}.
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Given two sets A and B, we denote by A△B their symmetric difference, that is, (A \
B) ∪ (B \ A). Given a graph G, and two distinct vertices u, v ∈ V (G), we set

sdG(u, v) := |(NG(u) \ {v})△(NG(v) \ {u})|.

The symmetric difference of G, sd(G), is defined as maxH⊆iG minu ̸=v∈V (H) sdH(u, v). Sym-
metric difference was implicitly introduced in [2] and later explicitly defined in [1]. For
example, if G is a planar graph, one can find in any induced subgraph H of G two ver-
tices of degree less than 6. Hence planar graphs have symmetric difference bounded by
12. We call sd-degeneracy of G, denoted by sdd(G), the smallest non-negative integer d

such that |V (G)| = 1 or there is a pair u ̸= v ∈ V (G) satisfying sdG(u, v) ⩽ d and G − v

has sd-degeneracy at most d. We say that an ordering v1, v2, . . . , vn of the vertices of G

witnesses that the sd-degeneracy of G is at most d if for every i ∈ [n − 1], there is a j > i

such that sdG−{vk : k∈[i−1]}(vi, vj) ⩽ d. It thus holds that for any graph G, sdd(G) ⩽ sd(G),
since for every i ∈ [n], G − {vk : k ∈ [i − 1]} is an induced subgraph of G. But, as shown
by Proposition 1, there are some graphs with sd-degeneracy 1 and unbounded symmetric
difference.

Two vertices u, v are said to be d-twins in a graph G if they are distinct and |(NG(u) \
NG[v]) ∪ (NG(u) \ NG[v])| ⩽ d. The a × b rook graph has vertex set {(i, j) : i ∈ [a], j ∈ [b]}
and edge set {(i, j)(k, ℓ) : (i, j) ̸= (k, ℓ), i = k or j = ℓ}. Equivalently it is the line graph of
the bipartite complete graph Ka,b. For every a, b ⩾ 3, the symmetric difference of the a × b

rook graph is 2(min(a, b) − 1).
We will extensively use tree orders, i.e., partial orders defined by ancestor–descendant

relationships in a rooted tree. We denote by ≺T the corresponding relation in rooted tree T .
That is, u ≺T u′ means that u is a strict ancestor of u′ in T , and u ⪯T u′ means that u is
an ancestor of u′, i.e., u = u′ or u ≺T u′. We extend this partial order to elements of

(
V (T )

2
)
.

An unordered pair uv is an ancestor of u′v′ in T , denoted by uv ⪯T u′v′, whenever either
u ⪯T u′ and v ⪯T v′, or v ⪯T u′ and u ⪯T v′ holds. We write uv ≺T u′v′ when uv ⪯T u′v′

and {u, v} ≠ {u′, v′}. A rooted binary tree is full if all its internal nodes, i.e., non-leaf nodes,
have exactly two children. A rooted binary tree is complete if all its levels are completely
filled, except possibly the last one, wherein leaves are left-aligned. The depth of a rooted
tree is the maximum number of nodes in a root-to-leaf path. We denote by L(T ) the set of
leafs of T .

3 Signed tree models

An unordered pair of vertices in T that is not in an ancestor–descendant relationship is
called a transversal pair of T . Two transversal pairs uv, u′v′ of T cross if u, v have the same
common ancestor as u′, v′ do, and neither uv is an ancestor of u′v′, nor u′v′ is an ancestor of
uv. A signed tree model T is a triple (T, A(T ), B(T )), where T is a full binary tree, A(T ) (for
Android green, or Anti) is a set of transversal pairs of T , called transversal anti-edges, and
B(T ) (for Blue, or Biclique) is a set of transversal pairs of T , called transversal edges, such
that A(T ) ∩ B(T ) ̸= ∅ and no uv, u′v′ ∈ A(T ) ∪ B(T ) cross. We may refer to the transversal
anti-edges as green edges, and to the transversal edges as blue edges.

The width of the signed tree model (T, A(T ), B(T )) is the degeneracy of the graph
(V (T ), A(T ) ∪ B(T )). Note that if (V (T ), A(T ) ∪ B(T )) is d-degenerate, then (V (T ), A(T ) ∪
B(T ) ∪ E(T )) is (d + 3)-degenerate. The signed tree model is d-sparse if |A(T ) ∪ B(T )| ⩽
d|V (T )|. We observe that a signed tree model of width d is d-sparse, but an O(1)-sparse
signed tree model can have width Ω(

√
|V (T )|) (think of the disjoint union of a clique on

√
n

vertices with a set n −
√

n independent vertices).
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1 2

3

4 5 6 7 8 9

10

11 12 13 14

Figure 1 A signed tree model of a 14-vertex graph.

The signed tree model T := (T, A(T ), B(T )) defines a graph G := GT with vertex set
L(T ). Two leaves u, v ∈ L(T ) are adjacent in G if there is u′v′ ∈ B(T ) such that u′ ⪯T u

and v′ ⪯T v, and there is no u′′v′′ ∈ A(T ) with u′v′ ≺T u′′v′′ ⪯T uv. For example, in
the representation of Figure 1, vertices 4 and 8 are adjacent in G because of the blue edge
between their parents (below the green edge between their grandparents), but vertices 7
and 8 are non-adjacent because of the green edge between their grandparents (below the
blue edge between their great-grand-parents). We may say that a graph G admits (or has)
a signed tree model of width d if there is a signed tree model of this width that defines G.
Every graph G admits a signed tree model as one can simply set A(T ) := ∅, B(T ) := E(G)
on an arbitrary full binary tree T with L(T ) = V (G). However this representation may have
large width, while a more subtle one (linking nodes higher up in the tree) may have a lower
width.

A signed tree model is said to be clean if every pair of siblings are linked by a green
or blue edge. It is easy to turn a signed tree model into a clean one representing the same
graph: simply add green edges between every pair of siblings that were previously not linked
(by a blue or green edge). This operation may only increase the width of the signed tree
model by 1. The advantage of working with a clean signed tree model is that for every pair of
leaves u, v with least common ancestor w, there is at least one transversal edge or anti-edge
connecting the paths (in T ) between w and u and between w and v. Clean tree models will
be useful in Section 4 when we balance the trees associated with the tree models.

Given a clean signed tree model (T, A(T ), B(T )) and u, v ∈ L(T ), we denote by eT (u, v)
the unique green or blue edge u′v′ such that u′v′ ⪯T uv and no green or blue edge u′′v′′

satisfies u′v′ ≺T u′′v′′ ⪯T uv. The edge eT (u, v) exists because the signed tree model is
clean, and is unique because no green or blue edges may cross (or be equal). Then, u, v are
adjacent in G if and only if eT (u, v) ∈ B(T ), i.e., eT (u, v) is a blue edge. We first show that
graphs of bounded sd-degeneracy (and in particular, of bounded symmetric difference) admit
clean signed tree models of bounded width.

▶ Lemma 5. Any graph of sd-degeneracy d admits a clean signed tree model of width d + 1.

Proof. Let v1, . . . , vn be a vertex ordering that witnesses sd-degeneracy d for an n-vertex
graph G. For i ∈ [n], let Gi := G − {vj : 1 ⩽ j ⩽ i − 1}. In particular, G1 = G. Let ui

be a d-twin of vi in Gi. Initially we consider a forest of n distinct 1-vertex rooted trees,
each root labeled by a distinct vertex of G. We will build T (and in parallel, the transversal
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anti-edges and edges) by iteratively giving a common parent to two roots of this forest of n

singletons. Note that different nodes of T may have the same label, as the labels will range
in V (G) whereas T has 2n − 1 nodes.

For i ranging from 1 to n − 1:
add a blue (resp. green) edge between vi and ui if uivi ∈ E(G) (resp. uivi /∈ E(G)),
add a blue edge between vi and the roots labeled by w for w ∈ NGi(vi) \ NGi [ui],
add a green edge between vi and the roots labeled by w for w ∈ NGi

(ui) \ NGi
[vi], and

create a common parent, labeled by ui, for the roots labeled ui (left child) and vi (right
child).

This defines a full binary tree T such that L(T ) = V (G). In (V (T ), A(T ) ∪ B(T )), the leaves
labeled by v1 and u1 have degree at most d + 1 and 1, respectively. Hence an immediate
induction on (T, A(T ), B(T )) (after removing these two leaves, and following the order
v2, . . . , vn) shows that (V (T ), A(T ) ∪ B(T )) is (d + 1)-degenerate. As we only add transversal
anti-edges and edges between pairs of roots, no pair in A(T ) ∪ B(T ) can cross. Indeed if x, y

are two nodes of T that are both roots in some Gi, then it cannot happen that x′, y′ are also
both roots of some Gi′ with x ≺T x′ and y′ ≺T y. The first item further ensures that the
signed tree model (T, A(T ), B(T )) of width d + 1 is clean.

Let us finally check that for every u, v ∈ L(T ), eT (u, v) is a blue edge if and only if
uv ∈ E(G). This is a consequence of the following property.

▷ Claim 6. Let x, y be two nodes of T labeled by u, v respectively. Let x′ be a child of
x, labeled by u′, such that x′y is neither a blue nor a green edge. Further assume that
y was a root when the parent of x′ (i.e., x) was created. Then, uv ∈ E(G) if and only if
u′v ∈ E(G).

Proof. If x′ is the left child of x, the conclusion holds since u = u′. We can thus assume that
x′ is the right child of x, and not the sibling of y since it would contradict that x′y is neither
a blue nor a green edge. Node x′ was not linked to y by a blue or a green edge, so v cannot
be a neighbor of exactly one of u, u′. ◁

Consider the moment eT (u, v) was added to the signed tree model, say between the then-roots
x and y, labeled by u′ and v′, respectively. By the way blue and green edges are introduced,
xy is a blue edge if u′v′ ∈ E(G), and xy is green if u′v′ /∈ E(G). Thus we conclude by
iteratively applying Claim 6. ◀

4 Balancing Signed Tree Models

For any signed tree model of width d of an n-vertex graph, we get an adjacency labeling
scheme with labels of size O(dh log n), where h is the depth of T . Indeed, one can label a leaf
v of T (i.e., vertex of G) by the identifiers (each of log(2n) bits) of all the nodes of the path
from v to the root of T , followed by the identifiers of the outneighbors of these at most h

nodes in a fixed orientation of (V (T ), A(T ) ∪ B(T )) with maximum outdegree at most d + 1,
allocating an extra bit for the color of each corresponding edge. One can then decode the
adjacency of any pair u, v ∈ V (G) by looking at the color of eT (u, v). The latter is easy to
single out, based on the labels of u and v.

▶ Proposition 7. Let G be an n-vertex graph with a signed tree model of width d and depth h.
Then, G admits an O(dh log n)-bit adjacency labeling scheme.

Unfortunately, the depth of the tree T of a signed tree model of low width obtained for
an n-vertex graph of low sd-degeneracy could be as large as n. This makes a direct use
of Proposition 7 inadequate. Instead, we first decrease the depth of the signed tree model,
while controlling its sparsity. We rely on the following simple lemma.
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▶ Lemma 8. Let T be a full, complete tree, whose leaves read 1, . . . , n ⩾ 2 from left to right.
Any interval [i, j] with i, j ∈ [n] is the disjoint union of the leaves of at most 2 log n rooted
subtrees of T .

Proof. Let X ⊆ V (T ) be such that the leaves of the subtrees rooted at a node of X partition
[i, j], and X is of minimum cardinality among node subsets with this property. Let k be
the first level of T intersected by X (with the root being at level 1). At most two nodes
x, y of X are at level k (and exactly one node when k = 2), with x = y or x to the left of y.
Observe that if x ≠ y, then x, y have to be consecutive along the left-to-right ordering of
level k, but cannot be siblings (otherwise they can be substituted by their parent). At level
k + 1, at most two nodes can be part of X: the node just to the left of the leftmost child
of x, and the node just to the right of the rightmost child of y. This property propagates to
the last level. Thus |X| ⩽ max(2(⌈log n⌉ − 1), ⌈log n⌉) ⩽ 2 log n. Note indeed that there are
⌈log n⌉ + 1 levels. ◀

From the previous proof it can also be seen that there is a unique minimum-cardinality
set X representing [i, j]. In what follows, let us denote it by Xi,j . We also denote by IT (x)
the set of leaves of the subtree of T rooted at x ∈ V (T ).

▶ Observation 9. For every rooted tree T , and every x, y ∈ V (T ), if IT (x) and IT (y)
intersect, then one is included in the other.

We are now ready to prove the main lemma of this section.

▶ Lemma 10. Let (T, A(T ), B(T )) be a clean d-sparse signed tree model of an n-vertex graph
G. Then, G admits a 4d log2 n-sparse signed tree model (T ′, A(T ′), B(T ′)) of depth ⌈log n⌉+1.

Proof. Consider the left-to-right order on L(T ). To ease the notation, say that the leaves are
labeled 1, 2, . . . , n in this order. We choose for T ′ the full, complete binary tree whose leaves
are also labeled by 1, 2, . . . , n when read from left to right. For every transversal anti-edge
(resp. edge) xy ∈ A(T ) (resp. xy ∈ B(T )), note that IT (x) and IT (y) are discrete intervals.
Let [i, j] := IT (x) and [i′, j′] := IT (y). We add to A(T ′) (resp. B(T ′)) all the unordered pairs
x′y′ with x′ ∈ Xi,j and y′ ∈ Xi′,j′ . It may happen that some x′y′ is added both to A(T ′)
and B(T ′). In which case, x′y′ originates from both x0y0 ∈ A(T ) and x1y1 ∈ B(T ) such that
x0y0 ≺T x1y1 or x1y1 ≺T x0y0. In the former case, we remove x′y′ from B(T ′) (and only
keep it in A(T ′)), and in the latter, we remove x′y′ from A(T ′) (and only keep it in B(T ′)).
This finishes the construction of T ′ := (T ′, A(T ′), B(T ′)).

Let us first argue that no pairs of green or blue edges cross in T ′. Assume for the
sake of contradiction that a′b′, c′d′ ∈ A(T ′) ∪ B(T ′) satisfy a′ ≺T ′ c′ and d′ ≺T ′ b′. Let
ab, cd ∈ A(T )∪B(T ) be the green or blue edges that created a′b′, c′d′, respectively. As IT (a) ⊇
IT ′(a′), IT (c) ⊇ IT ′(c′), and a′ ≺T ′ c′, IT (a) and IT (c) intersect. Thus by Observation 9,
IT (a) ⊆ IT (c) or IT (c) ⊆ IT (a). By minimality of the sets Xi,j , IT (c) cannot include IT ′(a′).
Thus IT (c) ⊂ IT (a), so a ≺T c. Analogously d ≺T b, which implies that ab and cd cross in
T . Therefore T ′ is a signed tree model.

By design, the depth of T ′ is ⌈log n⌉ + 1. As T := (T, A(T ), B(T )) is d-sparse, it has
at most (2n − 1)d transversal (anti-)edges. Each blue or green edge of T gives rise to at most
(2 log n)2 blue or green edges of T ′, by Lemma 8. Hence T ′ is 4d log2 n-sparse.

Let us finally check that T ′ still represents G. Fix u, v ∈ V (G) and xy := eT (u, v). Let
x′y′ be the green or blue edge of T ′ originating from xy such that u ∈ IT ′(x′), v ∈ IT ′(y′). We
claim that x′y′ cannot have been removed (see the technicality at the end of the construction
of T ′), nor can x′′y′′ ∈ A(T ′) ∪ B(T ′) hold with x′y′ ≺T x′′y′′. Indeed, by the arguments of
the second paragraph, the green or blue edge e of T giving rise to x′′y′′ would be such that
xy ≺T e ⪯T uv, contradicting the definition of eT (u, v). ◀
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We finally need this folklore observation.

▶ Observation 11. Every m-edge graph has degeneracy at most ⌈
√

2m⌉ − 1.

Proof. It is enough to show that any m-edge graph G has a vertex of degree at most ⌈
√

2m⌉−1.
If all the vertices of G have degree at least ⌈

√
2m⌉, then m ⩾ 1

2 n⌈
√

2m⌉. But also n ⩾
⌈
√

2m⌉ + 1 for a vertex to possibly have ⌈
√

2m⌉ neighbors. Thus m ⩾ 1
2
√

2m(
√

2m + 1) > m,
a contradiction. ◀

Combining Lemmas 5 and 10, Observation 11, , and Proposition 7 yields Theorem 2.

Proof of Theorem 2. Let G be an n-vertex graph of sd-degeneracy d. By Lemma 5, G

admits a clean signed tree model of width at most d + 1, hence (d + 1)-sparse. Thus
by Lemma 10, G has a 4(d + 1) log2 n-sparse signed tree model T of depth ⌈log n⌉ + 1.
By Observation 11, T has width at most√

16(d + 1)n log2 n = 4
√

(d + 1)n log n.

Therefore, by Proposition 7, G has a O(
√

dn log3 n)-bit labeling scheme. ◀

5 Symmetric Difference is para-co-NP-complete

For any fixed even integer d ⩾ 8, we show that the following problem is NP-complete: Does
the input graph G have an induced subgraph with at least two vertices and no pair of d-twins?
We call such an induced subgraph a (d + 1)-diverse graph. The membership of this problem
to NP is straightforward, as a (d + 1)-diverse induced subgraph H of G is a polynomial-sized
witness. One can indeed check in polynomial-time that H has at least two vertices, and that
for every pair u, v of vertices of H, at least d + 1 other vertices of H are neighbors of exactly
one of u, v.

The d-twin graph Td(G) of a graph G is a graph with vertex set V (G) and edges between
every pair of d-twins.

▶ Observation 12. The vertices of a (d+1)-diverse induced subgraph of G form an independent
set of Td(G).

Given any 3-SAT formula φ with at most three occurrences of each variable, clauses of
size two or three, and at least three clauses, we build a graph G := G(φ) such that G has
a (d + 1)-diverse induced subgraph if and only if φ is satisfiable. Such a restriction of 3-SAT
is known to be NP-complete [21].

5.1 Bubble gadget
A bubble gadget B (or bubble for short) is a w × w rook graph, with w := d

2 + 2, deprived of
the two rightmost vertices of its top row. We say that B is properly attached to the rest of
the graph if each vertex of the top row (of width d

2 ) and of the rightmost column (of height
d
2 + 1) has one or two neighbors outside the gadget, whereas the other vertices of B have no
neighbors outside V (B). Let S be the set of neighbors of the bubble outside of B.

We say that B is neatly attached to S if it is properly attached to S, and further, vertices
of the top row and rightmost column have exactly one outside neighbor, and at most one
vertex of S has neighbors in both the top row and rightmost column. The neat attachments
that we will use, in this section and the next, satisfy 2 ⩽ |S| ⩽ 5. Hence they can be
described by a tuple of size between 2 and 5, listing the number of neighbors of vertices
in S among V (B), starting with the top row and ending with the rightmost column. For
instance, Figure 2 depicts a neat (2, 2, 2, 7)-attachment. A bubble properly attached to S is
in a delicate state. It may entirely survive in a (d + 1)-diverse induced subgraph of G.
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S

w := d
2 + 2

w

Figure 2 A neatly (2, 2, 2, 7)-attached bubble gadget, with d = 12.

▶ Observation 13. Let B be a bubble gadget properly attached to S in G. No pair of vertices
of B are d-twins in G[V (B) ∪ S].

Proof. In B the only pairs with symmetric difference at most d, in fact exactly d, consist of
a vertex in the top row and another vertex in its column, or two vertices of the same row in
the two rightmost columns. In both cases, these pairs have symmetric difference at least d + 1
in G[V (B) ∪ S] since vertices of the top row or rightmost column have at least one neighbor
in S, while all other vertices of B have no neighbor in S. ◀

However, deletions that cause one vertex of the top row or two vertices of the rightmost
column to no longer have outside neighbors cause the bubble to completely collapse.

▶ Lemma 14 (⋆). Let B be a bubble gadget properly attached to S in G. Let H be any
(d + 1)-diverse induced subgraph of G, such that at least one vertex of the top row or at least
two vertices of the rightmost column has no neighbor in V (H) \ V (B). Then, H contains
at most one vertex of B.

In the current section, for the hardness of symmetric difference, all the bubble gadgets
will be neatly attached. Furthermore, every vertex a bubble is attached to will have at least
one neighbor on the top row, or at least two neighbors in the rightmost column. Thus the
deletion of any vertex a bubble B is attached to will result, by Lemma 14, in deleting all the
vertices of B but at most one.

5.2 Variable and clause gadgets
The variable gadget of variable x used in φ is simply two vertices x, ¬x adjacent to a set
Nx of t := d

2 + 1 shared neighbors. Since each literal appears positively and negatively in
φ (otherwise the valuation of the literal is clear), vertices x and ¬x have one or two other
neighbors in G corresponding to the clause they belong to, as we will soon see. The vertices
of Nx will have other neighbors split into at most four bubble gadgets. This too will be
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x ¬x

Nx

Figure 3 The variable gadget of x with d = 12.

described shortly. The clause gadget of clause c consists of a pair of adjacent vertices vc, dc.
We make vc (but not dc) adjacent to the two or three vertices corresponding to the literals
of c.

5.3 Construction of G(φ)
Unsurprisingly, we add one variable gadget per variable, and one clause gadget per clause
of φ. Let x1, . . . , xn be a numbering of the variables, and c1, . . . , cm, of the clauses. We
neatly attach a bubble gadget to Sj made of the five vertices zj , vcj , dcj , vcj+1 , dcj+1 for every
j ∈ [m − 1], with (in this order) a (1, ⌊d/4⌋, ⌊d/4⌋, ⌈d/4⌉, ⌈d/4⌉)-attachment, where zj is
a vertex of some Nx. The choice of zj is irrelevant, but we take all the vertices zj pairwise
distinct. This is possible since there are at most 3n/2 clauses, and more than dn/2 vertices
contained in the union of the sets Nx. For every j ∈ [m−1], we make {vcj

, dcj
} fully adjacent

to {vcj+1 , dcj+1}. The construction of G is almost complete; see Figure 4 for an illustration.

vc1 dc6

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 x5 ¬x5

Figure 4 The essential part of G built so far, for a 3-CNF formula φ whose first two clauses
are x1 ∨ ¬x3 ∨ x4 and ¬x2 ∨ x3 ∨ ¬x4. The blue ellipses represent the bubbles attached to the four
enclosed vertices (recall that the bubble is attached to a fifth vertex among the sets Nx).

At this point, all the vertices vcj
, dcj

such that j ∈ [2, m−1] have exactly ⌊d/4⌋+⌈d/4⌉ =
d/2 neighbors in (two) bubble gadgets. Let y1, . . . , ynt be the ordering of the vertices in⋃

x Nx from left to right in how they appear in Figure 4. We neatly attach a bubble gadget
to (vc1 , dc1 , y1) by a (⌈d/4⌉, ⌈d/4⌉, d + 1 − 2⌈d/4⌉)-attachment. Similarly, we neatly attach
a bubble gadget to (vcm

, dcm
, ynt) by a (⌈d/4⌉, ⌈d/4⌉, d + 1 − 2⌈d/4⌉)-attachment. Finally

for every i ∈ [nt − 2], we neatly attach a bubble gadget to S′
i made of the three vertices

yi, yi+1, yi+2 with a (1, d/2, d/2)-attachment. This finishes the construction.
We make some observations. As all the bubble gadgets are neatly attached, no two

vertices outside a bubble gadget B can share a neighbor in B.

▶ Observation 15. For every j ∈ [m], vcj
, dcj

each have exactly d/2 neighbors in bubble
gadgets (all of which are non-adjacent to any other vertex outside their respective bubble).

Vertices in
⋃

x Nx have more neighbors in bubbles.

▶ Observation 16. Every v ∈
⋃

x Nx has at least d/2 + 1 neighbors in bubble gadgets (all of
which are non-adjacent to any other vertex outside their respective bubble).
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5.4 Correctness
We can now show the following strengthening of Theorem 4.

▶ Theorem 17. For every fixed even integer d ⩾ 8, deciding if an input graph has symmetric
difference at most d is co-NP-complete.

As the graph G := G(φ) presented in Section 5.3 can be constructed in polynomial time,
we shall simply check the equivalence between the satisfiability of φ and the existence of a
(d + 1)-diverse induced subgraph of G(φ). We recall that, by definition, G has not symmetric
difference at most d if and only if it has a (d + 1)-diverse induced subgraph.

▶ Lemma 18. If φ is satisfiable, then G admits a (d + 1)-diverse induced subgraph.

Proof. Let A be a satisfying assignment of φ. For each variable x of φ, we delete vertex ¬x

if A sets x to true, and we delete vertex x otherwise (if A sets x to false). Let us call H the
obtained induced subgraph of G (with at least two vertices). We claim that H has no pair of
d-twins, and successively rule out such pairs

(i) within the same bubble,
(ii) between a vertex in a bubble B and a vertex outside B (but possibly in another bubble),
(iii) between two vertices both outside every bubble gadget.

(i) As H contains all the vertices of G on which bubble gadgets are attached, by Observation 13,
no two distinct vertices in the same bubble are d-twins.

(ii) Let us fix a bubble gadget B attached to S, and two vertices u ∈ V (B) and v ∈
V (H) \ V (B). First observe that u has at least d/2 + 1 neighbors in V (B) (hence in H) that
are not neighbors of v. All the vertices v ∈ V (H) \ (V (B) ∪ S) have at least d/2 neighbors in
H that are not neighbors of u. For these vertices v, sdH(u, v) > d. We thus focus on the case
when v ∈ S. We can assume that v is some vcj

or dcj
, as any other vertices have at least d/2

neighbors outside B. We can further assume that u is in the top row or rightmost column
of B, otherwise it has d neighbors that are not neighbors of u (and u has at least one private
neighbor). Now we observe that

sdH(u, v) ⩾ |NH(u)\NH [v]|+|NH(v)\NH [u]| ⩾ d/2+1+d/2−1−⌈d/4⌉+⌊d/4⌋+2 ⩾ d+1,

where d/2 + 1 lower bounds the number of neighbors of u whose neighborhood is included in
V (B), d/2 − 1 −⌈d/4⌉ lower bounds the number of neighbors of u in the top row or rightmost
column of B that are not adjacent to v, ⌊d/4⌋ lower bounds the number of neighbors of v

in another bubble than B, and 2 accounts for the at least two neighbors vcj−1 , dcj−1 or
vcj+1 , dcj+1 of v, whichever exist. (Here we need that there are at least two clauses.)

(iii) Let u, v be two distinct vertices outside every bubble gadget. Vertex u (resp. v) has
at least d/2 neighbors that are not neighbors of v (resp. u). This holds by Observations 15
and 16, and the fact that every vertex xi or ¬xi is adjacent to Nxi

, while no other vertex
outside the bubble gadgets is adjacent to any vertex in Nxi . Furthermore, as |Nxi | = d/2 + 1
and vertices in

⋃
x Nx have at least d/2 + 1 neighbors in bubble gadgets, the only pairs that

could be d-twins in H are made of two vertices in clause gadgets. As there are at least
three clauses in φ, two vertices u, v from distinct clause gadgets have at least two additional
private neighbors. Thus we can assume that u = vcj

and v = dcj
for some j ∈ [m]. As A is

a satisfying assignment, at least one vertex x or ¬x adjacent to vcj has survived in H. Hence
sdH(u, v) ⩾ d/2 + d/2 + 1 = d + 1. ◀

▶ Lemma 19 (⋆). If φ is not satisfiable, then G has no (d + 1)-diverse induced subgraph.
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6 Discussion and open problems

Degeneracy can be defined either by degeneracy ordering for vertices, or by the existence
of vertices of small degree in all the induced subgraphs. And despite sd-degeneracy and
symmetric difference arising as dense counterparts to these two equivalent definitions, they
are not equivalent: classes of bounded symmetric difference are strictly contained in classes of
bounded sd-degeneracy. Using signed tree models, we achieve an adjacency labeling scheme
for classes of bounded sd-degeneracy that is tight up to logarithmic factors. The necessity of
these additional logarithmic factors remains questionable. Moreover, an optimal adjacency
labeling scheme for classes of bounded symmetric difference is yet to be found.

▶ Question 1. Is there an O(
√

n)-adjacency labeling scheme for classes of bounded sd-
degeneracy? Is there an O(log n)-adjacency labeling scheme for classes of bounded symmetric
difference?

On the other hand, we prove a surprising phenomenon: not only both symmetric difference
and sd-degeneracy lead to classes that are hard to recognize, but they respectively lead
to para-NP-complete and para-co-NP complete problems. However, the existence of a
polynomial-time approximation for remains open.

▶ Question 2. Is there a polynomial-time algorithm to compute an approximation of sym-
metric difference (and sd-degeneracy)?
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i
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i
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a pair of added vertices vi,p, vi′,p′ .) Then an ordering witnessing sd-degeneracy at most 1
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which the 1-twin of a vertex is its successor.

B More context on signed tree models

A wide range of structural graph invariants, called width parameters, can be expressed via
so-called tree layouts (or at least parameters functionally equivalent to them can). A tree
layout of an n-vertex graph G is a full binary tree T such that the leaves of T , that we
may denote by L(T ), are in one-to-one correspondence with V (G). Width parameters are
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typically defined through evaluating a particular function on bipartitions of V (G) made by
the two connected components of T when removing one edge of T . The width is then the
minimum over tree layouts of the maximum over all such evaluations. In the definition of
signed tree models, we depart from this viewpoint, and instead augment T with a sparse
structure encoding the graph G.

1 2

3

4 5 6 7 8 9

10

11 12 13 14

Figure 5 The signed tree model of Figure 1 made clean.

Every graph of twin-width d admits a signed tree model with A(T ) = ∅ and width
at most d + 1. Tree models or twin-decompositions are signed tree models with A(T ) = ∅,
and further technical requirements. We observe that similar objects to signed tree models
were utilized in [6] to attain a fast matrix multiplication on matrices of low twin-width. We
will not need a definition of twin-width, and refer the interested reader to [7]. In Section 1 we
also mentioned Welzl orders with low alternation number [22], let us now elaborate on that.

A Welzl order of alternation number d for a graph G is a total order < on V (G) such
that the neighborhood of every vertex is the union of at most d intervals along <. We claim
that bipartite graphs G = (X ⊎ Y, E(G)) with a Welzl order < of alternation number d

admit a signed tree model of width 2d. Note that we can assume that for every x ∈ X

and y ∈ Y , x < y. We build a signed tree model (T, A(T ), B(T )) of G as follows. Let us
call binary comb a full binary tree whose internal nodes induce a path, rooted at an endpoint
of this path. We make the root of T adjacent to the roots of two binary combs with |X|
and |Y | leaves, respectively. The leaves are labeled from left to right with the vertices of
G in the order <. To simplify the notations, assume that these labels describe [n] in the
natural order. To represent that vertex i ∈ X has [j, k] ⊆ Y in the partition of its open
neighborhood into maximal intervals, we add a blue edge between leaf i and the parent of k,
and a green edge between i and the parent of j − 1 (to stop the interval). Finally observe
that (V (T ), A(T ) ∪ B(T )) has maximum degree at most 2d. (The subtree whose leaves are
the vertices of X need not be a binary comb.)

A similar construction would work for graphs G of chromatic number q, and would yield
a signed tree model of width 2(q − 1)d. A more permissive definition of signed tree models,
allowing leaf-to-ancestor transversal edges, would give models of width 2d for any graph
with a Welzl order of alternation number d. However, with this alternative definition, the
consequences of Section 4 would not follow. Hence we stick to the given definition of signed
tree models.
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C Proof of Lemma 14

We first deal with the case when a vertex v of the top row (in the entire B) has no neighbor in
V (H) \ V (B). By symmetry, assume that v is the topmost vertex of the first column. Vertex
v is thus d-twin with all the other vertices of the first column. Hence by Observation 12,
either v is not in H, or none of the d/2 + 1 vertices below v are in H.

If the latter holds, then any two vertices in the same column, outside the top row and
rightmost column, are now d-twins. By Observation 12 within these vertices, H can only
contain at most one vertex per column. In turn, the kept vertices are d-twins, so at most
one can be kept overall. We conclude since the vertices of NH(S) ∩ V (B) have at most two
neighbors in S.

We now suppose that v is not in H. Then, in each row but the topmost, the vertices in
the first and penultimate columns are d-twins. Thus, within each pair, at most one vertex
can be in H. This implies that any two vertices in the same column, outside the top row
and rightmost column, are now d-twins. Thus we conclude as in the previous paragraph.

We now deal with the case when two vertices x, y of the right most column have no
neighbor in V (H) \ V (B). By symmetry, we can assume that x is in the second row, and
y is in the third row. Then x (resp. y) is d-twin with the vertex just to its left. After one
vertex is removed in each pair, in each column but the last two, the vertices in the second
and third rows have become d-twins. Therefore, H can only contain at most one vertex from
all these pairs. We reach again the state that any two vertices in the same column, outside
the top row and rightmost column, are d-twins, and conclude as previously.

D Proof of Lemma 19

For each variable x, the vertices x, ¬x are 3-twins, thus at least one of them has to be
removed in a (d + 1)-diverse induced subgraph. The kept literals (if any) define a (partial)
truth assignment. By assumption, this assignment does not satisfy at least one clause cj .
This implies that vcj , dcj are d-twins in the corresponding induced subgraph. Indeed, they
each have exactly d/2 private neighbors in bubble gadgets, and no other private neighbor.

By Lemma 14, the bubble attached to Sj is reduced to at most one vertex, say wj (if
any). In turn, this makes the pairs vcj−1 , dcj−1 and vcj+1 , dcj+1 d-twins (when they exist).
Indeed their symmetric difference is at most 3 + ⌈d/4⌉ + 1 ⩽ d, where 3 accounts for the three
literals of the clause, and 1 for vertex wj . This iteratively collapses every bubble attached
to some Sj′ to a single vertex, as well as the two bubble gadgets attached to {vc1 , dc1 , y1}
and {vcm , dcm , ynt}, in say, w0 and wm. Now all the vertices wj (for j ∈ [0, m]) are 6-twins,
so at most one can be kept. We recall that at most one vertex per clause gadget could be
kept. For j going from 1 to m − 1, the vertex kept (if any) from the clause gadget of cj is an
8-twin of the vertex kept in the next surviving clause gadget. This implies that from all the
clause gadgets and all the bubble gadgets attached to them, one can only keep at most one
vertex overall, say z. This vertex has degree at most 3 in the resulting induced subgraph.

Vertices y1, y2 are now d-twins, so the bubble gadget attached to S′
1 collapses to at most

one vertex. Vertices y1 and z are now 5-twins, so at most one can survive, which we keep
calling z. Even if y2 is kept, it is now a d-twin of y3, thus at most one of y2, y3 can be kept.
This implies the collapse of the bubble gadget attached to S′

2 to at most one vertex, absorbed
by z. In turn, y2 and z collapse to a single vertex. This process progressively eats up all the
vertices yj , and all the bubble gadgets attached to them. As soon as a vertex x or ¬x has
three remaining neighbors, it becomes a 6-twin of z, and is absorbed by it. We end up with
the single vertex z.
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1 Introduction

A proper k-coloring of a graph G = (V, E) is a function c : V 7→ {1, 2, . . . , k} that assigns a
color c(v) to each vertex v ∈ V so that any adjacent vertices are colored differently, i.e., for
each edge {u, w} ∈ E, c(u) ̸= c(w) is satisfied. For a given graph G, the smallest number k

for which G admits a proper k-coloring is the chromatic number of G and is denoted by χ(G).
Graph coloring is one of the most prominent disciplines within graph theory, with plenty
of variants, applications, and deep connections to theoretical computer science. Coloring
problems arise naturally in various job scheduling and resource allocation optimization
scenarios.

The graph coloring problem is also very popular and well motivated in the online setting,
with applications in job scheduling, dynamic storage allocation and resource management [9,
11, 12]. In the online graph coloring problem, an online algorithm receives as input a graph
G = (V, E) presented in an online fashion. The vertices of V are revealed one after one, in
a presentation order v1 ≪ v2 ≪ . . . ≪ vn. When a new vertex vt is revealed in the t-th
round, for 1 ⩽ t ⩽ n, all the edges connecting vt with vertices in Vt−1 = {v1, . . . , vt−1} are
also revealed. An online algorithm A has to immediately assign a feasible color to vt, that is,
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a color that is different from those assigned to the neighbors of vt in Vt−1. The goal is to
minimize the total number of colors used.

The performance of an online graph coloring algorithm A is often measured by its
competitive ratio. If we denote by χA(G, ≪) the number of colors used by A when coloring a
graph G in a presentation order ≪, then the competitive ratio of A is the maximum ratio
χA(G, ≪) / χ(G) over all graphs G and all orders ≪. This means, that for a single graph,
the analysis focuses on the worst case scenario, and the presentation order is often considered
to be selected by an adversary. If A is a randomized algorithm, then it is usual to measure
the competitive ratio with respect to the expected number of colors used when coloring G in
order ≪ over all the random choices of A.

Contrary to the offline setting, even coloring 2-colorable graphs is not easy for online
algorithms. It is impossible to construct an online algorithm that would use any constant
number of colors to color all 2-colorable graphs. Thus, the research focuses on restricted
graph classes, and competitive ratio is often expressed as a function of the number of vertices
in a graph. In fact, even for inputs restricted to online forests with n vertices, the best
competitive ratio that can be achieved by either randomized or deterministic online coloring
algorithm is Θ(log n) colors [3, 6, 1]. The optimal number of colors used by any deterministic
online algorithm to color 2-colorable graphs with n vertices is known to be somewhere
between 2 log2 n − 10 (by a result of Gutowski et al. [5]) and 2 log2 n (see a paper by Lovász,
Saks, and Trotter [10]).

An algorithm known as First-Fit is arguably the simplest and the most understood of
all online deterministic coloring algorithms. When a vertex vt is revealed in the t-th round,
First-Fit picks the least positive integer i which does not occur as a color of any of the
previously colored neighbors of vt and assigns i as a color of vt. First-Fit performs well
on online trees, achieving the competitive ratio of Θ(log n) within this class. To be more
precise, Bean [3] and, independently, Gyárfás and Lehel [6] proved that First-Fit uses at
most log2 n + 1 colors on forests with n vertices. Irani [8] generalized this result, showing
that First-Fit uses O(d log n) colors on d-degenerate graphs with n vertices. Later, Balogh
et. al. [2] with corrections of Chang and Hsu [4] improved the above result to at most
(log d+1

d
n + 2) colors. For bipartite graphs, there is an easy construction by Lovász, Saks,

and Trotter [10] that shows that First-Fit uses as many as n
2 colors to color a 2-colorable

graph with n vertices.

In this paper, we are interested in the random arrival model for online algorithms, that
tries to focus on the average case, rather than the worst case scenario. In this model, the
presentation order of a graph is not determined by an adversary, but instead it is selected
uniformly at random from all possible permutations of the vertex set. The performance
ratio of a deterministic online algorithm A on a graph G is measured by the expectation
E≪

[
χA(G,≪)

χ(G)

]
over the random choice of ≪. The performance ratio of A on a class of graphs

G is the the maximum performance ratio taken over all graphs in G.

In particular, our intention is to start the systematic study of the performance ratio of
First-Fit coloring algorithm in random arrival model. For a class of graphs G, let RFFG(n)
denote the maximum performance ratio of First-Fit taken over all graphs in G with n vertices,
i.e.,

RFFG(n) = max
G∈G,|G|=n

E≪

[
χFF(G, ≪)

χ(G)

]
.
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For an easy comparison to the adversarial model, we define:

FFG(n) = max
G∈G,|G|=n

max
≪

[
χFF(G, ≪)

χ(G)

]
.

In this paper, we prove the following result, which establishes the performance of First-Fit
on the class of forests.

▶ Theorem 1. For the class F of forests, we have RFFF (n) = (1/2 ± o(1)) · ln n / ln ln n.

As mentioned above, we have FFF (n) = Θ(log n). Theorem 1 shows that the randomiza-
tion of the presentation order gives a noticeable, yet rather moderate increase in performance
compared to the adversarial model.

One can also consider the following natural off-line graph coloring algorithm. Given
a graph G, it selects an order ≪ of vertices of G uniformly at random. Then it uses
First-Fit strategy to color vertices of G in order ≪. Theorem 1 shows that this algorithm
uses O(log n / log log n) colors in expectation to color any forest. This algorithm does not
compete with easy 2-coloring algorithms based on graph traversal. Our objective, however,
is to establish the groundwork for a systematic analysis of First-Fit, and other simple online
algorithms, in the random arrival model for other graph classes, such as d-degenerate graphs,
bipartite graphs, and subsequently, k-colorable graphs. It should be noted that for 3-colorable
graphs, the most effective known randomized online algorithm utilizes expected O

(
n1/2

)
colors, as proved by Halldórsson [7]. Considering that the best lower bound for 3-colorable
graphs is in the order of Ω

(
log2 n

)
, as demonstrated by Vishwanathan [13], it appears that

the direction we are pursuing holds promise for intriguing outcomes.
Another rationale for this line of inquiry is that First-Fit in random arrival model serves as

an illustration for the following distributed coloring algorithm that works in the synchronous
model. Each vertex of the graph represents a computation node, and edges represent
communication links. To divide nodes into independent subsets, each node performs a sleep
for a random number of units of time, and then assigns to itself the first possible number
not assigned to any of the neighbors. This algorithm uses a small number of messages and
is quite fast. Although we refrain from further delving into this setting, we underscore the
versatility afforded by our analysis.

The paper is organized as follows. In Section 2 we show that First-Fit uses at most
(1 + o(1)) · ln n / ln ln n different colors in expectation on any forest with n vertices. In
Section 3 we construct a family of trees for which First-Fit uses (1 − o(1)) · ln n / ln ln n

different colors in expectation. The final section contains brief comments and some open
problems regarding the analyzed problem.

2 Upper bound

In this section we show that First-Fit uses at most O(log n / log log n) different colors in
expectation on any forest with n vertices. For this purpose let us first make a basic observation.
For any fixed graph G = (V, E) and any order ≪ of V , we denote by G≪ the acyclic directed
graph obtained from G by orienting every edge {u, v} ∈ E so that it is oriented from u to v

if and only if u ≪ v.

▶ Observation 2. For any graph G = (V, E), a presentation order ≪ of V , a positive
integer i, and a vertex v ∈ V , if First-Fit assigns color i to v when coloring G in order ≪
then there is a directed path in G≪ with i vertices and v as the last vertex.
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Proof. We prove the observation by induction with respect to i. The statement is trivial for
i = 1, so let us assume i ⩾ 1 and that the thesis holds for all values up to i. Suppose that
First-Fit assigns color i + 1 to vertex v in some round of the algorithm. At this point, v has
a neighbor u with u ≪ v that was assigned with color i in some earlier round. By induction
hypothesis, there is a directed path P in G≪ with i vertices and u as the last vertex. Since
u ≪ v, and G≪ is acyclic we know that v does not belong to P . Thus, we get the desired
path by extending P with directed edge (u, v). ◀

We call a simple path P in a directed graph to be bidirected if it is either a directed path,
or P can be split into two directed paths, each starting at one of the end points of P , and
both sharing the same last vertex.

▶ Corollary 3. For any forest T = (V, E), a presentation order ≪ of V , and a positive
integer i ⩾ 2, if First-Fit uses color i when coloring T in order ≪ then there is a bidirected
path in T ≪ with 2i − 2 vertices.

Proof. For i = 2, by Observation 2 we get a directed path with 2 vertices. Suppose i ⩾ 3,
and that First-Fit assigns color i to some vertex v of T . At this point, v has a neighbor u

that is colored i − 1, and a different neighbor w that is colored i − 2. By Observation 2 there
is a directed path with i − 1 vertices and u as the last vertex, and a directed path with i − 2
vertices and w as the last vertex. As T is a forest, these paths are vertex disjoint. Since
u ≪ v, and w ≪ v, we get the desired bidirected path in T ≪ by extending both paths with
directed edges (u, v) and (w, v). ◀

▶ Lemma 4. For the class F of forests, every n ⩾ 3, and an αn = ln ln ln n+1
ln ln n−ln ln ln n−1 , we have:

RFFF (n) ⩽ (1 + αn) ln n

2 ln ln n
+ 3

2 .

Proof. It is straightforward to verify that RFFF (3) = 1 and RFFF (4) < 2, hence the lemma
holds for n = 3, 4. Let us assume that n ⩾ 5. Then, since the function ln ln x−ln ln ln x−1 > 0
for every x > e except x = ee, then ln ln n − ln ln ln n − 1 > 0, and hence αn > 0. Consider
any forest T with n vertices. Let k =

⌈
(1+αn) ln n

ln ln n

⌉
, and observe that our goal is to prove that

First-Fit uses at most k + 2 colors in expectation when coloring T in a random order. Indeed,
we can assume that χ(T ) = 2, as otherwise T is an independent set, and First-Fit uses only
one color when coloring T in any order. Note that (1 + αn) ln n/ ln ln n > ln n/ ln ln n > 1.
Hence, k ⩾ 2. By Corollary 3, for every order ≪ of the vertices of T and a positive integer
i ⩾ 2, if χF F (T, ≪) = i, then there is a bidirected path with 2i − 2 vertices in T ≪. Consider
any two vertices x, y of T . There is at most one simple path in T with end points x and y.
If this path exists, and is a path with exactly 2i − 2 vertices, then the probability that this
path is bidirected in T ≪ for a random order ≪ is exactly 22i−3 / (2i − 2)!. Otherwise, the
probability that there is such a path with end points x and y equals 0.

Thus, by the union bound, the probability that there is at least one bidirected path with
2i − 2 vertices in T ≪ is upper bounded by

(
n2 / 2

)
·
(
22i−3 / (2i − 2)!

)
. Hence, the expected

number of colors used by First-Fit in a random order satisfies:

E≪ [χF F (T, ≪)] =
∞∑

i=1
i · P(χF F (T, ≪) = i) ⩽ k + 1 +

∞∑
i=k+2

i · n2 · 22i−4

(2i − 2)! ⩽

= k + 1 + n2 · 4k−1

(2k)! ·
∞∑

i=k+2

i · 22(i−(k+1))

(2k + 1) · (2k + 2) · . . . · (2i − 3) · (2i − 2) ⩽
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⩽ k + 1 + n2 · 4k−1

(2k)! ·
∞∑

i=k+2

22(i−(k+1))

1 · (2k + 2) · . . . · (2i − 3) · 2 ⩽

⩽ k + 1 + n2 · 4k−1

(2k)! ·
∞∑

i=1

22i−1

(2i − 1)! =

= k + 1 + n2 · 4k−1

(2k)! · sinh 2 ⩽

⩽ k + 1 + n2 · 4k

(2k)! . (1)

For k =
⌈

(1+αn) ln n
ln ln n

⌉
, as x ln x − x is an increasing function for x ⩾ 1, and αn > 0, k ⩾ 2,

we have that

ln
(

(2k)!
4k

)
⩾ 2k ln(2k) − 2k − k ln 4 = 2k ln k − 2k ⩾

⩾ 2 · (1 + αn) ln n

ln ln n
· ln
(

(1 + αn) ln n

ln ln n

)
− 2 · (1 + αn) ln n

ln ln n
⩾

⩾ 2 · (1 + αn) ln n

ln ln n
·
(

ln
(

ln n

ln ln n

)
− 1
)

=

= 2 · ln ln n

ln ln n − ln ln ln n − 1 · ln n

ln ln n
· (ln ln n − ln ln ln n − 1) =

= ln(n2),

and as a consequence, (2k)!
4k ⩾ n2, hence by (1),

E≪ [χF F (T, ≪)] ⩽ k + 2.

As this holds for any forest T with n vertices, we conclude that

RFFF (n) ⩽ (1 + αn) ln n

2 ln ln n
+ 3

2 ,

which ends the proof. ◀

As αn = O(log log log n / log log n) in Lemma 4, we immediately get the following corollary.

▶ Corollary 5.

RFFF (n) ⩽ (1/2 + o(1)) · ln n / ln ln n .

3 Lower bound

In this section, for any given 0 < γ < 1, and a positive integer k we construct a tree T , such
that First-Fit uses k colors to color T in a random presentation order with probability at
least 1 − γ. Thus, E≪[χF F (T, ≪)] ⩾ k(1 − γ). The number of vertices in the constructed
tree is of the order kdk where d is a constant depending on γ. This implies that RFFF (n) =
Ω(log n / log log n).

For the purpose of analysis, we use a slightly modified, yet equivalent random model.
Namely, rather than choosing a permutation in a straightforward manner, we utilize a natural
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two-stage process. We first associate with every vertex v of a graph G an independent
random variable Xv ∼ U [0, 1] uniformly distributed over [0, 1] interval. We call Xv to be
the position of a vertex v. Then, we order the vertices according to their positions, i.e., so
that u ≪ v if and only if Xu ⩽ Xv. Note that such an order is uniquely determined with
probability 1. Moreover, by the symmetry of the process, each resulting vertex permutation
is equiprobable.

▶ Lemma 6. For the class F of forests, we have:

RFFF (n) ⩾ (1/2 − o(1)) · ln n / ln ln n .

Proof. Fix any 0 < γ < 1, and any integer k ⩾ 3. Let c = 10/γ2 and r = ⌈ck ln k⌉. Set
εi = iγ/k for i = 1, 2, . . . , k. We recursively define rooted trees T r

1 , T r
2 , . . . , T r

k as follows. The
tree T r

1 is a single vertex, and for i = 1, 2, . . . , k − 1, the tree T r
i+1 is constructed of r copies

of each of the trees T r
j with j = 1, 2 . . . , i by joining their roots to a single additional vertex –

the root of T r
i+1 (hence the root of T r

i+1 has degree ri). See Figure 1.
Consider First-Fit coloring of T r

i in a random presentation order, for any fixed i ∈
{1, 2, . . . , k}. We assume that the presentation order is given by the positions Xv ∈ [0, 1]
drawn uniformly at random for every vertex v of T r

i . By the construction of T r
i , the longest

simple path ending at the root of T r
i includes at most i vertices. From Observation 2 we

immediately obtain the following claim.

▷ Claim 7. The color assigned by First-Fit to the root of T r
i when coloring T r

i in any order,
does not exceed i.

We define Bi to be the random event that First-Fit assigns color smaller then i to the root
vertex of T r

i when coloring T r
i in a random presentation order.

▷ Claim 8. For every i = 1, 2, . . . , k we have

P(Bi) ⩽ εi = iγ

k
.

Proof. We prove the claim by induction on i. For i = 1, First-Fit assigns color 1 to the only
vertex of T r

1 and hence P(B1) = 0. Now, for the induction step, we fix any 1 ⩽ i ⩽ k − 1,
and assume that

P(Bj) ⩽ εj (2)

holds for every j = 1, 2, . . . , i. We shall prove that P(Bi+1) ⩽ εi+1. For that we focus on the
coloring of T = T r

i+1. Denote the root of T by v and let v
(q)
j with j = 1, . . . , i, q = 1, . . . , r

be the neighbors of v in T where each v
(q)
j is the root of one of the r copies of T r

j attached
to v – we denote this copy as T

(q)
j . See Figure 1. We denote the (random) color First-Fit

assigns to any vertex w by c(w).
Suppose the position of v is fixed and equals x. Note that if for some 1 ⩽ j ⩽ i there is

some q such that c(v(q)
j ) ⩾ j and the position of v

(q)
j is smaller than x, then c(v) ̸= j. Indeed,

due to Observation 2 and the fact that v
(q)
j is positioned before v we have that c(v(q)

j ) ⩽ j

and it is assigned with color j by the assumption c(v(q)
j ) ⩾ j. Therefore, if there is such a q
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v

v
(1)
1

T
(1)
1

a copy of T r
1

v
(2)
1

T
(2)
1

a copy of T r
1

. . . v
(r)
1

T
(r)
1

a copy of T r
1

r copies of T r
1

v
(1)
2

T
(1)
2

a copy of T r
2

. . . v
(r)
2

T
(r)
2

a copy of T r
2

r copies of T r
2

. . . v
(1)
i

T
(1)
i

a copy of T r
i

. . . v
(r)
i

T
(r)
i

a copy of T r
i

r copies of T r
i

Figure 1 Recursive construction of the tree T r
i+1.

for every 1 ⩽ j ⩽ i, then we get c(v) ⩾ i + 1. This allows for the following inequality,

P
(
Bi+1 | Xv = x

)
⩾ P

(
∀j ⩽ i ∃q ⩽ r : c(v(q)

j ) ⩾ j ∧ X
v

(q)
j

< x | Xv = x
)

=

=
i∏

j=1
P
(

∃q ⩽ r : c(v(q)
j ) ⩾ j ∧ X

v
(q)
j

< x | Xv = x
)

=

=
i∏

j=1

(
1 −

r∏
q=1

P
(

c(v(q)
j ) < j ∨ X

v
(q)
j

> x | Xv = x
))

(3)

where the two last equalities above follow by the independence of the corresponding events
for a fixed value of x. Obviously P(X

v
(q)
j

> x | Xv = x) = 1 − x, as positions of the vertices
are independent. Further, for any assignment X of positions to all vertices of T , one can
consider First-Fit coloring of T

(q)
j in order given by the restriction of X to the vertices of

T
(q)
j . Color assigned to the root of T

(q)
j in this restricted coloring is not greater then the

color assigned to this vertex in the coloring of T . Thus, P(c(v(q)
j ) < j | Xv = x) ⩽ P(Bj),

and by (2), for every j ⩽ i, we have:

P
(

c(v(q)
j ) < j ∨ X

v
(q)
j

> x | Xv = x
)
⩽ min {1, 1 − x + εj} . (4)

By (3) and (4), we thus obtain that

P (Bi+1) = 1 − P
(
Bi+1

)
= 1 −

∫ 1

0
P
(
Bi+1 | Xv = x

)
dx ⩽

⩽ 1 −
∫ 1

0

i∏
j=1

max {0, 1 − (1 − x + εj)r)} dx ⩽

⩽ 1 −
∫ 1

εi

(1 − (1 − x + εi)r)idx, (5)
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where the last inequality follows by the fact that εj ⩽ εi for j ⩽ i. Substituting y = 1−x+εi

in (5) we further obtain:

P(Bi+1) ⩽ 1 −
∫ 1

εi

(1 − yr)idy. (6)

Let f(y) = (1 − yr)i. Observe that f(0) = 1, f(1) = 0, and f is strictly decreasing in [0, 1].
Thus, we obtain that

∫ εi

0 f(y)dy ⩽ εi, and by (6),

P (Bi+1) ⩽ εi + 1 −
∫ 1

0
f(y)dy ⩽ εi + 1 −

(
1 − γ

2k

)
· f
(

1 − γ

2k

)
⩽

⩽ εi + γ

2k
+ 1 − f

(
1 − γ

2k

)
. (7)

In order to prove that P (Bi+1) ⩽ εi+1 = εi+ γ
k it thus remains to show that f(1− γ

2k ) ⩾ 1− γ
2k .

Note that

f
(

1 − γ

2k

)
=
(

1 −
(

1 − γ

2k

)r)i

⩾

(
1 −

(
1 − γ

2k

)ck ln k
)k

=
(

1 −
(

1 − γ

2k

) 2k
γ

γ
2 c ln k

)k

.

Now, for α = 2k
γ ⩾ 1 we have that (1 − 1

α )α < 1
e . Thus,

f
(

1 − γ

2k

)
⩾

(
1 − 1

e
γc ln k

2

)k

=
(

1 − 1
k

γc
2

)k

.

As for 0 < β = 1
k

γc
2

< 1 we have that 1 − β > e− β
1−β , we thus further obtain that

f
(

1 − γ

2k

)
⩾ e− βk

1−β = e
− k

k
γc
2 −1 ⩾ 1 − k

k
γc
2 − 1

.

Now, for c = 10
γ2 , and using k ⩾ 3 we get

f
(

1 − γ

2k

)
⩾ 1 − k

k
5
γ − 1

⩾ 1 − 1
k

3
γ

.

Observe that k
3
γ > 2k

γ for γ ∈ [0, 1], and k ⩾ 3. This finally gives that f(1 − γ
2k ) ⩾ 1 − γ

2k ,
and consequently, by (7), P (Bi+1) ⩽ εi+1, which ends the proof of Claim 8. ◁

By Claims 7 and 8, First-Fit assigns color k to the root of T r
k with probability at least 1 − εk.

Using Claim 7 (or Observation 2), one can thus easily deduce the following claim.

▷ Claim 9. P(χF F (T r
k , ≪) = k) ⩾ 1 − γ.

▷ Claim 10. T r
k has exactly (r + 1)k−1 vertices.

Proof. We prove the claim by induction on k. For k = 1 the claim trivially holds. Let us
assume that k ⩾ 1 and that the claim holds for all the trees T r

1 , . . . , T r
k . By the construction

of T r
k+1,

|T r
k+1| = 1 + r ·

k∑
i=1

|T r
i | = 1 + r ·

k∑
i=1

(r + 1)i−1 = 1 + r · 1 − (r + 1)k

1 − (r + 1) = (r + 1)k. ◁
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For any value of k, we set γ = 1
ln k , and for this choice of γ we get c = 10 ln2 k and

r =
⌈
10k ln3 k

⌉
. Let us denote by nk the number of vertices in T r

k . Then the following
hold for k large enough. Firstly, by Claim 10, we have ln nk ⩾ k. Consequently, again by
Claim 10,

ln nk ⩽ (k − 1) ln
(
2 + 10k ln3 k

)
⩽ k (ln k + 4 ln ln k)

⩽ k (ln ln nk + 4 ln ln ln nk) . (8)

By Claim 9 and (8), we thus finally obtain that

E≪ [χF F (T r
k , ≪)] ⩾ k ·

(
1 − 1

ln k

)
(9)

⩾
ln n

ln ln n + 4 ln ln ln n
·
(

1 − 1
ln ln n − 2 ln ln ln n

)
= g(n). (10)

Note that g(n) is an increasing function for large enough n. Note also that nk is also an
increasing function of k. Consider any (large enough) n such that nk ⩽ n ⩽ nk+1 for some k.
Then, since RFFF (n) is a nondecreasing function of n, by (9) and (10),

RFFF (n) ⩾ RFFF (n1) ⩾ 1
2 · E≪ [χF F (T r

k , ≪)] ⩾ 1
2 · k ·

(
1 − 1

ln k

)
⩾

1
2 ·
(

(k + 1) ·
(

1 − 1
ln(k + 1)

)
− 1
)

⩾
1
2 · (g(nk+1) − 1)

⩾
1
2 · (g(n) − 1) =

(
1
2 − o(1)

)
ln n

ln ln n
,

which finishes the proof of Lemma 6. ◀

4 Final comments

Finally, Theorem 1 is obtained by combining the matching bounds of Corollary 5 and
Lemma 6. This concludes our investigation of the efficiency of First-Fit in the random arrival
model on the class of forests. First-Fit is efficient on this class even in the adversarial model.
Still, the randomization of the presentation order allows for some increase in performance.
This raises the hope that First-Fit is more effective in the average case than it is in the worst
case also on some other graph classes.

The systematic analysis of First-Fit in the random arrival model on other graph classes
should continue for the class B of bipartite graphs. There, First-Fit is known to be extremely
inefficient in the adversarial model with FFB = Θ(n). However, there is another simple
algorithm [10], a clever modification of First-Fit, that uses O(log n) colors to color any
bipartite graph with n vertices. A natural extension of our research would be to assess the
First-Fit algorithm in the random arrival model on bipartite graphs. We anticipate that the
outcome will not deviate significantly from the results obtained for forests.

▶ Conjecture 11. First-Fit in the random arrival model uses poly(log n) colors in expectation
when coloring any bipartite graph with n vertices.

Addressing the aforementioned conjecture represents a significant cognitive pursuit.
However, a truly remarkable feat would be to establish some nontrivial bounds for 3-colorable
graphs. We want to thank Anna Zych-Pawlewicz for inspiring the work on this project.
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Abstract
The number of quantifiers needed to express first-order (FO) properties is captured by two-player
combinatorial games called multi-structural games. We analyze these games on binary strings
with an ordering relation, using a technique we call parallel play, which significantly reduces the
number of quantifiers needed in many cases. Ordered structures such as strings have historically
been notoriously difficult to analyze in the context of these and similar games. Nevertheless, in
this paper, we provide essentially tight bounds on the number of quantifiers needed to characterize
different-sized subsets of strings. The results immediately give bounds on the number of quantifiers
necessary to define several different classes of Boolean functions. One of our results is analogous
to Lupanov’s upper bounds on circuit size and formula size in propositional logic: we show that
every Boolean function on n-bit inputs can be defined by a FO sentence having (1 + ε) n

log(n) + O(1)
quantifiers, and that this is essentially tight. We reduce this number to (1 + ε) log(n) + O(1) when
the Boolean function in question is sparse.
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34:2 On the Number of Quantifiers Needed to Define Boolean Functions

1 Introduction

In 1981, Immerman [11] introduced quantifier number (QN) as a measure of the complexity
of first-order (FO) sentences. For a function g: N → N, he defined QN[g(n)] as the class of
properties on n-element structures describable by a uniform sequence of FO sentences with
O(g(n)) quantifiers. He then showed that on ordered structures, for f(n) ≥ logn, one has:

NSPACE[f(n)] ⊆ QN[(f(n))2/ logn] ⊆ DSPACE[(f(n))2], (1)

thereby establishing an important connection between QN and space complexity and so
directly linking a logical object to classical complexity classes.

The same paper [11] described a two-player combinatorial game (which Immerman called
the separability game), that captures quantifier number in the same way that the more
well-known Ehrenfeucht-Fraïssé (EF) game [3,7] captures quantifier rank (QR). The paper
additionally showed that any property whatsoever of n-element ordered structures can be
described with a sentence having a QR of logn+ 3. Since a QR of logn+ 1 is required just
to distinguish a linear order of size n from smaller linear orders [17], QR has limited power
to distinguish properties over ordered structures. QN is potentially a more fine-grained and
powerful measure for this purpose. However, owing to the inherent difficulties of the analysis
of Immerman’s separability game, the study of the game and of QN in general lay dormant
for forty years, until the game was rediscovered and renamed the multi-structural (MS) game
in [4]. In that paper the authors made initial inroads into understanding how to analyze the
game, leading to several follow-up works [1, 5, 18]. Other related games to study the number
of quantifiers were recently introduced in [9], and close cousins of MS games were used to
study formula size in [8, 10]. In [10] the authors study a related problem to ours – they
examine the (existential) sentences of minimum size needed to express a particular set of
string properties. However, even without the existential restriction, the connection between
the minimum size of a sentence and its minimum number of quantifiers is not obvious. It is
possible for a property to be expressible only by a much longer sentence with fewer quantifiers
than one with more quantifiers.

The MS game is played by two players, Spoiler (S, he/him) and Duplicator (D, she/her),
on two sets A,B of structures. Essentially, S tries to break all partial isomorphisms between
all pairs of structures (one from A and the other from B) over a prescribed number of rounds,
whereas D tries to maintain a partial isomorphism between some pair of structures. Unlike
in EF games, D has more power in MS games, since she can make arbitrarily many copies of
structures before her moves, enabling her to play all possible responses to S’s moves. The
fundamental theorem for MS games [4, 11] (see Theorem 1) states that S has a winning
strategy for the r-round MS game on (A,B) if and only if there is a FO sentence φ with at
most r quantifiers that is true for every structure in A but false for every structure in B.
We call such a φ a separating sentence for (A,B). In general, our eventual objective will be
to separate a set A of n-bit strings from all other n-bit strings (i.e., from its complement
AC). This is a particularly interesting question because of its intimate connection to the
complexity of Boolean functions.

Boolean Functions. Any Boolean function on n-bit strings is specified by two complementary
sets, A,AC ⊆ {0, 1}n, representing the input strings that get mapped to 1 and 0 respectively.
For such a function f : {0, 1}n → {0, 1}, we say that a FO sentence φ in the vocabulary
of strings defines the function f if φ is a separating sentence for (f−1(1), f−1(0)). Hence,
the key results of this paper can be thought of as giving sharp bounds on the number of
quantifiers needed to define Boolean functions. Our main results about the definability of
Boolean functions are Theorems A and B below.
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▶ Theorem A. Given an arbitrary ε > 0, every Boolean function on n-bit strings can be
defined by a FO sentence having (1 + ε) n

log(n) +Oε(1) quantifiers, where the Oε(1) additive
term depends only on ε and not n. Moreover, there are Boolean functions on n-bit strings
that require n

log(n) +O(1) quantifiers to define.

Say that a family, F = {fn}∞
n=1, of Boolean functions on n-bit strings, is sparse if the

cardinality of the set of strings mapping to 1 under each fn is polynomial in n. For example,
if L is a sparse language, then the family of Boolean functions, defined for each n, by the
characteristic function of L restricted to n-bit inputs, is sparse [6, 15].

▶ Theorem B. Given an arbitrary ε > 0, and a sparse family, F = {fn}∞
n=1, of Boolean

functions on n-bit strings, each function fn ∈ F can be defined by a FO sentence having
(1 + ε) log(n) +Oε(1) quantifiers, where the Oε(1) additive term depends only on ε and not
n. Moreover, there are sparse families of Boolean functions on n-bit strings, the functions of
which require log(n) quantifiers to define.

Theorem A follows from Theorems 18 and 19 (in Section 5), whereas Theorem B follows
from Theorem 16 and Proposition 14 (in Section 5). Theorem 18 can be viewed as a first-order
logic analog of the upper bounds obtained by Lupanov for minimum circuit size [13] and
minimum propositional formula size [14] to capture an arbitrary Boolean function. Note
that any property whatsoever of n-bit strings can be captured trivially by a sentence with n
existential quantifiers. Similar to Lupanov’s bounds, our result shows that we can shave off
a factor of log(n) from this trivial upper bound. Furthermore, Theorem 19 establishes via a
counting argument that there are functions with a QN lower bound that essentially matches
our worst-case upper bound – a result that can be viewed as a first-order logic analog of the
Riordan-Shannon lower bound [16] for propositional formula size.

Parallel Play. A key technical contribution we make in this paper is the Spoiler strategy
of parallel play, which widens the scope of winning strategies for S compared to previous
work. The essential idea is for S to partition the sets A and B into subsets A1 ⊔ . . . ⊔ Ak

and B1 ⊔ . . . ⊔ Bk, and then play k MS “sub-games” in parallel on (Ai,Bi). In certain
circumstances, S can then combine his strategies for each of those sub-games into a strategy
for the entire game, and thereby save many superfluous moves. Applying the fundamental
theorem, this results in a very small number of quantifiers in the corresponding separating
sentence.

Outline of the Paper. This paper is organized as follows. In Section 2, we set up some
preliminaries. In Section 3, we precisely formulate what we call the Parallel Play Lemma
(Lemma 5) and the Generalized Parallel Play Lemma (Lemma 6). In Section 4, we develop
results on linear orders that are similar to but more nuanced than those in [4, 5], with the
extra nuance being critical for our subsequent string separation results. In Section 5, we
present our results on separating disjoint sets of strings. In Section 6, we wrap up with some
conclusions and open problems.

Owing to space constraints, in some places we provide proof sketches, and refer the reader
to the full proofs in the appendix of the full version of the paper [2].

2 Preliminaries

Fix a vocabulary τ with finitely many relation and constant symbols. We typically designate
structures in boldface (A), their universes in capital letters (A), and sets of structures in
calligraphic typeface (A). This last convention includes sets of pebbled structures (see below).

MFCS 2024



34:4 On the Number of Quantifiers Needed to Define Boolean Functions

We always use log(·) to designate the base-2 logarithm. Furthermore, in several results in
Section 5, we have an O(1) additive term. This term will always be independent of n. Any
additional dependence will be stated in the form of a subscript on the O, e.g., Ot(1) would
denote a term independent of n, but dependent on the choice of some parameter t.

Pebbled Structures and Matching Pairs. Consider a palette C = {r,b, g, . . .} of pebble
colors, with infinitely many pebbles of each color available. A τ -structure A is pebbled if
some of its elements a1, a2, . . . ∈ A have pebbles on them. There can be at most one pebble
of each color on a pebbled structure. There can be multiple pebbles (of different colors) on
the same element ai ∈ A. Occasionally, when the context is clear, we will use the term board
synonymously with “pebbled structure”.

If A is a τ -structure, and the first few pebbles are placed on elements a1, a2, a3 . . . ∈ A,
we designate the resulting pebbled τ -structure as ⟨A | a1, a2, a3, . . .⟩. Note that A can be
viewed as a pebbled structure ⟨A | ⟩ with the empty set of pebbles.

By convention, we use r, b, and g for the first three pebbles we play (in that order), as
a visual aid in our proofs. Hence, the pebbled structure ⟨A | a1, a2, a3⟩ has pebbles r on
a1 ∈ A, b on a2 ∈ A, and g on a3 ∈ A. Note that a1, a2, and a3 need not be distinct.

We say that the pebbled structures ⟨A | a1, . . . , ak⟩ and ⟨B | b1, . . . , bk⟩ are a matching
pair if the map f : A → B defined by:

f(ai) = bi for all 1 ≤ i ≤ k

f(cA) = cB for all constants c in τ

is an isomorphism on the induced substructures. Note that ⟨A | a1, . . . , ak⟩ and ⟨B | b1, . . . , bk⟩
can form a matching pair even when A ̸∼= B.

Multi-Structural Games. Assume r ∈ N, and let A and B be two sets of pebbled structures,
each pebbled with the same set {x1, . . . , xk} ⊆ C of pebble colors. The r-round multi-
structural (MS) game on (A,B) is defined as the following two-player game, played by two
players, Spoiler (S, he/him) and Duplicator (D, she/her). In each round i for 1 ≤ i ≤ r,
S chooses either A or B, and an unused color yi ∈ C; he then places (“plays”) a pebble of
color yi on an element of every board in the chosen set (“side”). In response, D makes as
many copies as she wants of each board on the other side, and plays a pebble of color yi on
an element of each of those boards. D wins the game if at the end of round r, there is a
board in A and a board in B forming a matching pair. Otherwise, S wins. For readability,
we always call the two sets A and B, even though the structures change over the course of a
game in two ways:

A or B can increase in size over the r rounds, as D can make copies of the boards.
The number of pebbles on each of the boards in A and B increases by 1 in each round.

We usually refer to A as the left side, and B as the right side.
Let A and B be two sets of pebbled structures, with each pebbled structure containing

pebbles colored with {x1, . . . , xk} ⊆ C. Let φ(x1, . . . , xk) be a FO formula with free variables
{x1, . . . , xk}. We say φ is a separating formula for (A,B) (or φ separates A and B) if:

for every ⟨A | a1, . . . , ak⟩ ∈ A we have A[a1/x1, . . . , ak/xk] |= φ,
for every ⟨B | b1, . . . , bk⟩ ∈ B we have B[b1/x1, . . . , bk/xk] |= ¬φ.

The following key theorem [4,11], stated here without proof, relates the logical characterization
of a separating formula with the combinatorial property of a game strategy.

▶ Theorem 1 (Fundamental Theorem of MS Games, [4, 11]). S has a winning strategy in the
r-round MS game on (A,B) iff there is a formula with ≤ r quantifiers separating A and B.
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In the theorem above, if A and B are sets of unpebbled structures, and φ is a sentence,
we call φ a separating sentence for (A,B).

We note that D has a clear optimal strategy in the MS game, called the oblivious strategy:
for each of S’s moves, D can make enough copies of each pebbled structure on the other
side to play all possible responses at the same time. If D has a winning strategy, then the
oblivious strategy is winning. For this reason, the MS game is essentially a single-player
game, where S can simulate D’s responses himself.

We make an easy observation here without proof, that will help us discard some boards
during gameplay; we can remove them without affecting the result of the game. This will
help us in the analysis of several results in the paper.

▶ Observation 2. During gameplay in any instance of the MS game, consider a board
⟨A | a1, . . . , ak⟩ such that there is no board on the other side forming a matching pair with
it. Then, ⟨A | a1, . . . , ak⟩ can be removed from the game without affecting the result.

Linear Orders. Let τord = ⟨<; min,max⟩ be the vocabulary of orders, where < is a binary
predicate, and min and max are constant symbols. For every ℓ ≥ 1, we shall use Lℓ to refer
to a structure of type τord, which interprets < as a total linear order on ℓ+ 1 elements, and
min and max as the first and last elements in that total order respectively. Note that there
is only one linear order for any fixed value of ℓ. When unambiguous, we may suppress the
subscript and refer to the linear order as simply L.

We define the length of a linear order L as the size of its universe minus one (equivalently,
as the number of edges if the linear order were represented as a path graph). Hence, the
length of Lℓ is ℓ. Since we only consider ℓ ≥ 1, the length is always positive, and min and
max are necessarily distinct. Our convention is different from [4] and [5], where the length of
a linear order was the number of elements, and the vocabulary had no built-in constants.
Note that having min and max is purely for convenience; each can be defined and reused at
the cost of two quantifiers.

Let L be a linear order with elements a < b. The linear order L[a, b] is the induced linear
order on all elements from a to b, both inclusive. If the variables x and y have been interpreted
by L so that xL = a and yL = b, then we shall use L[x, y] and L[a, b] interchangeably; we
adopt a similar convention for constants. If pebbles r and b have been placed on L on a and
b respectively, we use L[r,b] to mean L[a, b].

We will frequently need to consider sets of linear orders. For ℓ ≥ 1, we will use the
notation L≤ℓ to denote the set of linear orders of length at most ℓ, and L>ℓ to denote the
set of linear orders of length greater than ℓ.

Strings. Let τstring = ⟨<, S ; min,max⟩ be the vocabulary of binary strings, where < is a
binary predicate, S is a unary predicate, and min and max are constant symbols. We encode a
string w = (w1, . . . , wn) ∈ {0, 1}n by the τstring-structure Bw having universe Bw = {1, . . . , n},
relation < interpreted by the linear order on {1, . . . , n}, relation S = {i | wi = 1}, and min
and max interpreted as 1 and n respectively.

For an n-bit string w, and i, j such that 1 ≤ i ≤ j ≤ n, denote by w[i, j] the substring
wi . . . wj of w. Note that w[i, j] corresponds to the induced substructure of Bw on {i, . . . , j}.
We will often interchangeably talk about the string w and the τstring-structure Bw, when the
context is clear. As in τord, having min and max in the vocabulary is purely for convenience.

MFCS 2024



34:6 On the Number of Quantifiers Needed to Define Boolean Functions

3 Parallel Play

In this section, we prove our key lemma, that shows how, in certain cases, S can combine his
winning strategies in two sub-games, playing them in parallel in a single game that requires
no more rounds than the longer of the two sub-games.

To understand why this is helpful, note that in general, if a formula φ is of the form
φ1 ∧ φ2 or φ1 ∨ φ2, the number of quantifiers in φ is the sum of the number of quantifiers
in φ1 and φ2, even if the two subformulas have the same quantifier structure. We will see
that playing parallel sub-games roughly corresponds to taking a φ of the form φ1 ∧ φ2 or
φ1 ∨ φ2 where the subformulas have the same quantifier prefix, and writing φ with the same
quantifier prefix as φ1 or φ2, saving half the quantifiers we normally require.

Suppose S has a winning strategy for an instance (A,B) of the r-round MS game. In
principle, the choice of which side S plays on could depend on D’s previous responses.
However, note that any strategy S used by S that wins against the oblivious strategy also
wins against any other strategy that D plays. Therefore, we may WLOG restrict ourselves
to strategies used by S against D’s oblivious strategy. It follows that the choice of which side
to play on in every round is completely determined by the instance (A,B), and independent
of any of D’s responses. Let S be such a winning strategy for S. We now define the pattern
of S, which specifies which side S plays on in each round, when following S.

▶ Definition 3. Suppose A and B are sets of pebbled structures, and assume that S has a
winning strategy S for the r-round MS game on (A,B). The pattern of S, denoted pat(S),
is an r-tuple (Q1, . . . , Qr) ∈ {∃,∀}r, where:

Qi =
{

∃ if S plays in A in round i,
∀ if S plays in B in round i.

We say that S wins the game with pattern (Q1, . . . , Qr) if S has a winning strategy S for the
game in which pat(S) = (Q1, . . . , Qr).

The following lemma is implicit in the proof of Theorem 1.

▶ Lemma 4. For any two sets A and B of pebbled τ -structures, the following are equivalent:
1. S wins the r-round MS game on (A,B) with pattern (Q1, . . . , Qr).
2. (A,B) has a separating formula with r quantifiers and quantifier prefix (Q1, . . . , Qr).

Note that Lemma 4 implies that, as long as there is a separating formula φ for (A,B)
with r quantifiers, S has a winning strategy for the r-round MS game on (A,B) that “follows”
φ; namely, if φ = Q1 . . . Qrψ, then in round i, S plays in A if Qi = ∃, and in B if Qi = ∀.
Hence, for the rest of the paper, we will refer to S moves in A and B as existential and
universal moves respectively. We are now ready to state our main lemma from this section.

▶ Lemma 5 (Parallel Play Lemma). Let A and B be two sets of pebbled structures, and let
r ∈ N. Suppose that A and B can be partitioned as A = A1 ⊔A2 and B = B1 ⊔B2 respectively,
such that for 1 ≤ i ≤ 2, S has a winning strategy Si for the r-round MS game on (Ai,Bi),
satisfying the following conditions:
1. Both Si’s have the same pattern P = pat(S1) = pat(S2).
2. At the end of the sub-games, both of the following are true:

There does not exist a board in A1 and a board in B2 forming a matching pair.
There does not exist a board in A2 and a board in B1 forming a matching pair.

Then S wins the r-round MS game on (A,B) with pattern P .
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Proof. S plays the r-round MS game on (A,B) by playing his winning strategy S1 on
(A1,B1), and his winning strategy S2 on (A2,B2), simultaneously in parallel. This is a
well-defined strategy, since every Si has the same pattern P . At the end of the game:

for i = j, no board from Ai forms a matching pair with a board from Bj , since S wins
the sub-game (Ai,Bi).
for i ̸= j, no board from Ai forms a matching pair with a board from Bj , by assumption.

Therefore, no matching pair remains after round r, and so, S wins the game. The pattern
for this strategy is P by construction. ◀

We observe that Lemma 5 can be generalized in two ways. Firstly, we could split into k
sub-games instead of two. Secondly, we can weaken assumption 1 in the statement of the
lemma, so that each of the patterns is a subsequence of some r-tuple P = {∃,∀}r. This is
because S can simply extend the strategy Si with pattern Pi to a strategy S ′

i with pattern P ,
where for every “missing” entry in the tuple P , S makes a dummy move on the corresponding
side. We state a generalized version below without a proof.

▶ Lemma 6 (Generalized Parallel Play Lemma). Let A and B be two sets of pebbled structures,
and let r ∈ N. Let P ∈ {∃,∀}r be a sequence of quantifiers of length r. Suppose that A and B
can be partitioned as A = A1 ⊔ . . . ⊔ Ak and B = B1 ⊔ . . . ⊔ Bk respectively, such that for all
1 ≤ i ≤ k, S has a winning strategy Si for the ri-round MS game on (Ai,Bi) (where ri ≤ r),
satisfying the following conditions:
1. For all i, pat(Si) is a subsequence of P .
2. At the end of the sub-games, for i ̸= j, there does not exist a board in Ai and a board in

Bj forming a matching pair.
Then S wins the r-round MS game on (A,B) with pattern P .

Note that Lemmas 5 and 6 can be applied in conjunction with Observation 2 as long
as there is at least one structure remaining on either side, since a winning strategy (and
therefore its corresponding pattern) is unaffected if some of the pebbled structures in the
instance are deleted. Furthermore, in many cases, we can provide a strategy for S where
condition 2 in Lemmas 5 and Lemma 6 will be automatically met after the first move, and
therefore will continue to be satisfied at the end of the game. We shall use these two facts
implicitly in the proofs that follow.

4 Linear Orders

As noted in Section 1, the results in this section are similar to those in [4, 5], but somewhat
more nuanced, leading ultimately to the quantifier alternation theorems (Theorems 12 and
13). Instead of the unwieldy function g(·) studied in those papers, we study the simpler
function q(·), which, given an integer ℓ, returns the minimum number of quantifiers needed
to separate L≤ℓ from L>ℓ. A key result, not appreciated in [4, 5], is that the number of
quantifiers needed to separate two linear orders of different sizes never exceeds the quantifier
rank needed by more than one (Theorem 11).

Let r(ℓ) (resp. q(ℓ)) be the minimum QR (resp. QN) needed to separate L≤ℓ and L>ℓ.
Let q∀(ℓ) (resp. q∃(ℓ)) be the minimum number of quantifiers needed to separate L≤ℓ

and L>ℓ with a sentence whose prenex normal form starts with ∀ (resp. ∃). Note that
q(ℓ) = min(q∀(ℓ), q∃(ℓ)). The values of r(ℓ) are well understood [17]:

▶ Theorem 7 (Quantifier Rank, [17]). For ℓ ≥ 1, we have r(ℓ) = 1 + ⌊log(ℓ)⌋.

MFCS 2024



34:8 On the Number of Quantifiers Needed to Define Boolean Functions

Since QR lower bounds QN, we have r(ℓ) ≤ q(ℓ) for all ℓ. On the other hand, for each
ℓ > 0, we will show that S can always separate L≤ℓ from L>ℓ in a multi-structural game of
at most r(ℓ) + 1 rounds, which shows that q(ℓ) ≤ r(ℓ) + 1.

For notational convenience, we denote by MSL∃,r(ℓ) an r-round MS game on (L≤ℓ, L>ℓ),
in which S must play an existential first round move. We use MSL∀,r(ℓ) analogously, where
the first round move must be universal. Observe that, a priori, any such game may be
winnable by either S or D. Since we are primarily interested in upper bounds, we restrict
our attention only to S-winnable games. We call such games simply winnable.

4.1 The Closest-to-Midpoint with Alternation Strategy
In this section, we describe a divide-and-conquer recursive strategy for S to play winnable
game instances MSLQ,r(ℓ). This strategy will give us upper bounds on q∃(ℓ) and q∀(ℓ), which
we will then relate to r(ℓ).

We define the closest-to-midpoint of a linear order L[x, y] as the element halfway between
the elements corresponding to x and y if L[x, y] has even length, or the element just left of
center if L[x, y] has odd length.

The S-winning strategy is called Closest-to-Midpoint with Alternation (CMA). The
pattern for this strategy will alternate between ∃ and ∀, splitting each game recursively into
two smaller sub-games that can be played in parallel using Lemma 5. In these sub-games,
placed pebbles will take on the roles of min and max. S continues in this way until the
sub-games are on linear orders of length 2 or less, at which point he can win them easily.

The idea is for S to obey the following two rules throughout, except possibly the last
three rounds:

S starts on his designated side (determined by Q), and then alternates in every round;
on every board, S plays on the closest-to-midpoint of a linear order L[x, y], chosen
carefully to ensure he essentially “halves” the length of the instance every round.

Note that one consequence of the second point above is that S will never play on max.
Before getting to a formal description of the strategy, let us illustrate the main idea

through a worked example. Consider the (winnable) game MSL∃,4(5). In round 1, S plays
on the closest-to-midpoint of all boards in L≤5 (by the two conditions in the CMA strategy).
Before D’s response, we reach the position shown in Figure 1.

L≤5 L>5

...

∃rmin max min max

min r max min max

min r max

min r max

min r max

Figure 1 The position after S’s round 1 move in the game MSL∃,4(5). The pebble r is on the
closest-to-midpoint of every board on the left.

Now assume D responds obliviously. We can first use Observation 2 to discard all boards
on the right with r on max. By virtue of S’s first move, every board ⟨L | a1⟩ on the left
satisfies both L[min, r] ≤ 2, and L[r,max] ≤ 3. Now consider any board ⟨L′ | a′

1⟩ on the right.
Note that either L′[min, r] > 2, or L′[r,max] > 3. Partition the right side as B1 ⊔ B2, where
every ⟨L′ | a′

1⟩ ∈ B1 satisfies L′[min, r] > 2, and every ⟨L′ | a′
1⟩ ∈ B2 satisfies L′[r,max] > 3.
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In round 2, S makes a universal move (by the first condition in the CMA strategy). In
all boards in B1, he plays pebble b on the closest-to-midpoint of L′[min, r]; similarly, in all
boards in B2, he plays pebble b on the closest-to-midpoint of L′[r,max]. Note that in either
case, S plays b on an element which is not on r, min, or max.

After D responds obliviously, we can use Observation 2 to discard all boards on the left
where b is on min, max, or r. Since in particular this discards all boards on the left with
r on min, we can again use Observation 2 to discard all boards from the right which have
r on min. Every remaining board in B1 (resp. B2) corresponds to the isomorphism class
min < b < r < max (resp. min < r < b < max). The remaining boards on the left also
correspond to exactly one of those classes. Partition the left side as A1 ⊔ A2 accordingly.

Now, because of this difference in isomorphism classes, we will never obtain a matching
pair from A1 and B2 (or from A2 and B1). Furthermore, for the rest of the game, S will
only play inside L[min, r] on all boards in A1 and B1, and inside L[r,max] on all boards in
A2 and B2. Suppose, in response to such a move on A1, D plays outside the range L[min, r]
on a board from B1; the resulting board cannot form a partial match with any board from
A1 (since there is a discrepancy with r), or with any board from A2 (as observed already).
Therefore, this board from B1 can be discarded using Observation 2. A similar argument
applies if D ever responds outside the corresponding range in B2, A1, or A2.

It follows that the sub-game (A1,B1) (resp. (A2,B2) corresponds exactly to the game
MSL∀,3(2) (resp. MSL∀,3(3)) where S has already made his first move using the CMA strategy
by playing a universal move on the closest-to-midpoints of the (relevant) linear orders. Since
S will alternate sides throughout, the patterns for both sub-game strategies will be the same.

We can now apply Lemma 5. Observe that the lengths of the instances in the sub-games
have been roughly halved, at the cost of a single move. The game then proceeds as shown
in Figure 2. The leaves of the tree correspond to base cases (analyzed in Section 4.2). The
pattern of the strategy is preserved along all branches.

Figure 2 The MSL∃,4(5) game tree. Each leaf is decorated with the associated quantifier prefix.
All paths can be played in parallel using Lemma 6 using the pattern (∃, ∀, ∃, ∀).

4.2 Formalizing the Strategy
The first step in formalizing the CMA strategy for S is to define four base cases, which we
shall call irreducible games. We assert the following (see Appendix A in [2]).
1. MSL∀,1(1) is winnable with the pattern (∀).
2. MSL∃,2(1) is winnable with the pattern (∃,∀).
3. MSL∀,2(2) is winnable with the pattern (∀,∀).
4. MSL∀,3(2) is winnable with the pattern (∀,∃,∀).

The game MSL∃,1(1) is not winnable and hence not considered.
We now give a formalization of the inductive step. For a given quantifier Q ∈ {∃,∀} and

its complementary quantifier Q̄, consider the game MSLQ,k(ℓ). Note that if S employs the
CMA strategy the game splits into the two sub-games MSLQ̄,k−1(ℓ′) and MSLQ̄,k−1(ℓ′′). We
designate this split as:
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MSLQ,k(ℓ) → MSLQ̄,k−1(ℓ′) ⊕ MSLQ̄,k−1(ℓ′′).

We will show in the proof of Lemma 9 that these sub-games can be played recursively, in
parallel. When S reaches an irreducible sub-game, he plays the winning patterns asserted
above. We claim the following about the rules for splitting. The proof is in [2].

▷ Claim 8 (Splitting Rules). For k ≥ 3, we have:

(i) MSL∃,k(2ℓ) → MSL∀,k−1(ℓ) ⊕ MSL∀,k−1(ℓ), ℓ ≥ 1
(ii) MSL∃,k(2ℓ+ 1) → MSL∀,k−1(ℓ) ⊕ MSL∀,k−1(ℓ+ 1), ℓ ≥ 1 (2)
(iii) MSL∀,k(2ℓ) → MSL∃,k−1(ℓ) ⊕ MSL∃,k−1(ℓ− 1), ℓ ≥ 2
(iv) MSL∀,k(2ℓ+ 1) → MSL∃,k−1(ℓ) ⊕ MSL∃,k−1(ℓ), ℓ ≥ 1

Of course, the CMA strategy starts out seemingly promisingly, splitting with both initial
sub-games starting on the same side; we must ensure that the strategy continues to be
well-defined, i.e., this continues throughout the recursion stack, especially since the sub-games
can have different lengths. We show this in Lemma 9, whose proof is in [2].

▶ Lemma 9. The CMA strategy is well-specified. Moreover, for k ≥ 3, if MSLQ,k(ℓ) →
MSLQ̄,k−1(ℓ1) ⊕ MSLQ̄,k−1(ℓ2) with ℓ1 ≥ ℓ2, then the pattern of S’s winning strategy for
MSLQ,k(ℓ) is Q concatenated with the pattern for the winning strategy for MSLQ̄,k−1(ℓ1).

4.3 Bounding and Characterizing the Pattern
Define q∗

∃(ℓ) (resp. q∗
∀(ℓ)) as the minimum r ∈ N such that S wins the game MSL∃,r(ℓ)

(resp. MSL∀,r(ℓ)) using the CMA strategy. Of course, we must have q∃(ℓ) ≤ q∗
∃(ℓ) and

q∀(ℓ) ≤ q∗
∀(ℓ). Let q∗(ℓ) = min(q∗

∃(ℓ), q∗
∀(ℓ)). The following lemma (whose proof is omitted)

follows from the complete description of the strategy from Section 4.2.

▶ Lemma 10. We have q∗
∀(1) = 1, q∗

∃(1) = 2, and q∗
∀(2) = 2. Also:

q∗
∃(2ℓ) = q∗

∀(ℓ) + 1 for ℓ ≥ 1, q∗
∃(2ℓ+ 1) = q∗

∀(ℓ+ 1) + 1 for ℓ ≥ 1,
q∗

∀(2ℓ) = q∗
∃(ℓ) + 1 for ℓ ≥ 2, q∗

∀(2ℓ+ 1) = q∗
∃(ℓ) + 1 for ℓ ≥ 1.

From Lemma 10 it is possible to recursively compute q∗
∀(ℓ) and q∗

∃(ℓ), and therefore q∗(ℓ)
for all values of ℓ ≥ 1. These values are provided for ℓ ≤ 127 in Table 1.

We now state and prove the main result of this section.

▶ Theorem 11. For all ℓ ≥ 1, we have:

r(ℓ) ≤ q(ℓ) ≤ r(ℓ) + 1.

Proof. The first inequality, r(ℓ) ≤ q(ℓ), is obvious. For the second, we will show that q∗
∃(ℓ)

and q∗
∀(ℓ) are both bounded above by r(ℓ) + 1 (and since q(ℓ) ≤ q∗(ℓ) = min(q∗

∃(ℓ), q∗
∀(ℓ)), so

too for q(ℓ)). Lemma 10 shows that the assertion is true for ℓ ≤ 2. Now, it can be shown
recursively (see, e.g., Appendix A in [2]) that q∗

∀(2k) = q∗
∃(2k) = k+ 1 for k ≥ 1. By Theorem

7, we also know that r(2k) = k+ 1 for k ≥ 1. So the three functions, r(·), q∗
∀(·), and q∗

∃(·), all
equal each other at successive powers of two, and increase by one between these successive
powers. Since all three functions are monotonic, they differ from one another by at most one.
Therefore, we have q∗

∃(ℓ) ≤ r(ℓ) + 1 and q∗
∀(ℓ) ≤ r(ℓ) + 1. ◀
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Table 1 Values of q∗
∀(ℓ), q∗

∃(ℓ), q∗(ℓ) and r(ℓ) for 1 ≤ ℓ ≤ 127.

ℓ q∗
∀(ℓ) q∗

∃(ℓ) q∗(ℓ) r(ℓ)
1 1 2 1 1
2 2 2 2 2
3 3 3 3 2
4 3 3 3 3
5 3 4 3 3

6-7 4 4 4 3
8-9 4 4 4 4
10 5 4 4 4

11-15 5 5 5 4
16-18 5 5 5 5
19-21 5 6 5 5
22-31 6 6 6 5
32-37 6 6 6 6
38-42 7 6 6 6
43-63 7 7 7 6
64-75 7 7 7 7
76-85 7 8 7 7
86-127 8 8 8 7

We wrap up this section with two results that will be useful in Section 5. For their proofs,
we refer the reader to the full version [2].

▶ Theorem 12 (Alternation Theorem, Smaller vs. Larger). For every ℓ ≥ 1, there is a separating
sentence σℓ for (L≤ℓ, L>ℓ) with q∗(ℓ) quantifiers (and so at most log(ℓ) + 2 quantifiers), such
that the quantifier prefix of σℓ strictly alternates and ends with a ∀.

▶ Theorem 13 (Alternation Theorem, One vs. All). For every ℓ ≥ 1, there is a sentence φℓ

separating Lℓ from all other linear orders having an alternating quantifier prefix (ending with
a ∀) and consisting of q∗(ℓ) + 2 quantifiers (and so at most log(ℓ) + 4 quantifiers).

5 Strings

In this section, we pursue our main objective: string separation results, in order to characterize
the complexity of Boolean functions. We would like to bound the number of quantifiers
required for these separations as a function of both the length n of the strings, as well as the
sizes of the sets.

In general, we would like to separate a set of n-bit strings from the set of all other n-bit
strings; recall from Section 1 that we can think of this as separating the 1 instances from the
0 instances for a Boolean function on n-bit inputs. To do so, we first need to develop a basic
technique for distinguishing one string from another.

▶ Proposition 14 (One vs. One). Upper Bound: For every pair w,w′ of n-bit strings such
that w ̸= w′, there is a sentence φw,w′ with log(n) + 6 quantifiers separating ({w}, {w′}).
This sentence φw,w′ (in prenex form) has an alternating quantifier prefix ending with ∀.
Lower Bound: For all sufficiently large n, there exist two n-bit strings w,w′, such that
separating them requires ⌊log(n)⌋ quantifiers.
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Proof.

Upper Bound. Let w,w′ ∈ {0, 1}n be any two distinct n-bit strings. There is an index
i ∈ [n] such that wi ̸= w′

i. Let A = {w} and B = {w′}. We will show that S wins the MS
game on (A,B) in log(n) + 6 rounds.

In round 1, S plays pebble r on the A side, on the element wi in w, creating the pebbled
string ⟨w | wi⟩. Assume D responds obliviously on the B side. We can now immediately use
Observation 2 to discard the resulting pebbled string ⟨w′ | w′

i⟩ ∈ B, where the pebble r is
on the element w′

i. Every remaining board in B is of the form ⟨w′ | w′
j⟩, for j ̸= i. Note

that the substring w′[1, j] has length j, which is different from i, the length of the substring
w[1, i] of w ∈ A. So now, S can simply play the strategy from Theorem 13 to separate a
linear order of length i from all other linear orders, which he wins in log(n) + 4 rounds with
an alternating pattern. This gives us the desired result, after at most one more dummy move
to preserve alternation.

Lower Bound. Let ℓ = 2k + 2 for k > 1, and let w = 02k−11002k−1 and w′ = 02k−10102k−1 .
If S plays entirely on one side of the respective 1s then he is effectively playing the MS game
on (L2k−1 , L2k−1−1). By Theorem 7, we have r(2k−1) = k = ⌊log(ℓ)⌋. Since QR lower bounds
QN, the MS game played in this fashion requires at least ⌊log(ℓ)⌋ rounds to win.

Now suppose that instead of playing entirely on the same side of the respective 1s, S
plays on both sides of a 1 and/or on the 1 during these ⌊log(ℓ)⌋ rounds. In this case, D can
play obliviously to the left of the 1 when S plays to the left of the 1, obliviously to the right
of the 1 when S plays to the right of the 1, and on the 1 whenever S plays on the 1, thereby
keeping matching pairs simultaneously on both sides. The lower bound follows. ◀

We also need another helpful lemma, whose proof is in Appendix B of [2].

▶ Lemma 15. Let f : N → N be a function satisfying limn→∞ f(n) = ∞, and let t ≥ 2
be any integer. Then, for some number N(t) depending on t, for all n ≥ N(t), we have
⌈logt(f(n))⌉! ≥ f(n).

We now start with our string separation problems. The first problem we will consider
will be when there is a single n-bit string in A, and the 2n − 1 remaining n-bit strings in B.
Note that this corresponds to our Boolean function of interest being an indicator function.

▶ Theorem 16 (One vs. All). For all n, and for every ε > 0, it is possible to separate each
n-bit string from all other n-bit strings by a sentence with (1 + ε) log(n) +Oε(1) quantifiers.
This sentence (in prenex form) starts with a ∀, then has at most ε log(n) + 1 occurrences of
∃, and then ends with an alternating quantifier prefix of length at most log(n) +Oε(1).

Proof Sketch (see [2] for full proof). Fix any ε > 0, and fix any integer t ≥ 21/ε. By
Lemma 15, we know there is some integer N(t), such that for all n ≥ N(t), ⌈logt(n)⌉! ≥ n.
For any such n, fix an arbitrary w ∈ {0, 1}n, and let A = {w}, and B = {0, 1}n − {w}.

Consider the MS game on (A,B). Every w′ ∈ B differs from w in at least one bit. In round
1, S plays a universal move, placing a pebble on each w′ ∈ B on an index that disagrees with
w at that index. Assume D responds obliviously, so that there are n resulting pebbled strings
in A. For the next ⌈logt(n)⌉ rounds, S plays only existential moves, placing the ⌈logt(n)⌉
pebbles in distinct permutations on the n strings in A, creating n distinct isomorphism
classes2 by Lemma 15. Once we discard structures from the two sides using Observation 2,

2 An isomorphism class is a maximal set of partially isomorphic pebbled structures.
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we are now left with n isomorphism classes, each of them defining a one-vs-all sub-game; in
each of these sub-games, the round 1 pebble is placed at a different index in the single string
on the left from any string on the right. Therefore, S can view this as a game simply about
lengths, and can employ any one-vs-all linear order strategy. The entire game therefore
reduces to n parallel instances of one-vs-all sub-games on linear orders.

By Lemma 6 and Theorem 13, S can now win these parallel games in log(n) + 4 further
moves. Together with the initial universal move and the preprocessing moves, the total
number of rounds is:

⌈logt(n)⌉+log(n)+5 ≤ log(n)
log(t) +log(n)+6 = log(n)

(
1 + 1

log(t)

)
+6 ≤ (1+ε) log(n)+6.

Note that N(t) depends only on t, which in turn depends only on ε. So when n < N(t), the
number of quantifiers can be absorbed directly into the Oε(1) additive term. ◀

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 1 1

Figure 3 Illustration of the technique used by S to partition a set of structures into isomorphism
classes. Here S plays three pebble moves to break the set of six strings into distinct isomorphism
classes: r < b < g, r < g < b, and so on. Note that three pebbling moves suffice to give each string
its own isomorphism class since 3! = 6.

The next problem we will consider has polynomially many n-bit strings in A, and the
remaining n-bit strings in B. This will correspond to our Boolean function of interest being
a sparse function. Note that this immediately implies Theorem B in Section 1.

▶ Theorem 17 (Polynomially Many vs. All). Let f : N → N be a function that satisfies
limn→∞ f(n) = ∞ and f(n) = O(nk) for some constant k. Then, for all n, and for every
ε > 0, it is possible to separate each set of f(n) n-bit strings from all other n-bit strings by a
sentence with (1 + ε) log(n) +Ok,ε(1) quantifiers.

Proof Sketch (see [2] for full proof). Assume n > 2, and pick a sufficiently large constant
k such that f(n) ≤ nk for all n. Next, pick ε > 0. Let t ≥ 4 be a large enough integer so that
t ≥ 22k/ε. By Lemma 15, we know there is some integer N(t), such that for all n ≥ N(t), we
have ⌈logt(f(n))⌉! ≥ f(n). S once again plays ⌈logt(f(n))⌉ existential moves, separating the
f(n) strings in A into distinct isomorphism classes by using different permutations. Now,
as in the proof of Theorem 16, S has reduced the games to f(n) parallel one-vs-all string
separation instances. So now, using Theorem 16, he can win these instances in parallel, using
(1 + ε/2) log(n) + 6 quantifiers for all n ≥ max(N(t), N ′(ε)), for some N ′(ε) depending only
on ε. The total number of rounds used by S is:

⌈logt(f(n))⌉ + (1 + ε/2) log(n) + 6 ≤ (1 + ε/2) log(n) + k logt(n) + 7

= (1 + ε/2) log(n) + k log(n)
2k/ε + 7

≤ (1 + ε) log(n) + 7.
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Again, N(t) depends only on t, which depends only on k and ε, whereas N ′(ε) depends only
on ε. So when n < max(N(t), N ′(ε)), the number of quantifiers can be absorbed into an
additive term that depends only on k and ε, giving us the Ok,ε(1) term. ◀

Our final results concern separating arbitrary sets of n-bit strings from their complements.
As discussed in Section 1, this corresponds exactly to defining arbitrary Boolean functions.
Note that this will immediately imply Theorem A in Section 1.

▶ Theorem 18 (Arbitrary vs. Arbitrary – Upper Bound). For all n, and for every ε > 0,
any two disjoint sets of n-bit strings are separable by a sentence with (1 + ε) n

log(n) +Oε(1)
quantifiers.

Proof Sketch (see [2] for full proof). We first observe that for any real number r > 2, S
can play m := ⌈n/ logr(n)⌉ preprocessing existential moves, putting different permutations of
these m pebbles on the strings in A (i.e., the left side). A Stirling’s approximation argument
similar to Lemma 15 shows that there is some N(r) such that for all n ≥ N(r), this number
m of preprocessing moves suffices to give each string in A its own isomorphism class. Note
that once this is done, S has partitioned the original instance into |A| disjoint instances of
one-vs-all games.

Now, given ε > 0, we first choose r > 2 small enough that log(r) < 1 + ε/2. S now plays
the preprocessing existential moves as described above to obtain |A| parallel one-vs-all
instances. Now, by Theorem 16, he can win these instances in parallel using Lemma 6, using
(1 + ε/2) log(n) + 6 rounds for all n ≥ max(N(r), N ′(ε)), for some N ′(ε) depending only on
ε. The total number of rounds needed, therefore, is:

m+ (1 + ε/2) log(n) + 6 ≤ n

log(n) · log(r) +
(

1 + ε

2

)
log(n) + 7

≤
(

1 + ε

2

) (
n

log(n) + log(n)
)

+ 7

< (1 + ε) n

log(n) + 7

for all n ≥ max(N(r), N ′(ε), N ′′(ε)), where for all n ≥ N ′′(ε), we have (1 + ε/2) log(n) <
(ε/2) n

log(n) . Since each of N(r), N ′(ε), and N ′′(ε) depends only on ε, the number of quantifiers
for smaller n is absorbed into the Oε(1) term. ◀

Remarkably, we cannot improve the upper bound in Theorem 18 by any significant
amount. The following proposition establishes this by means of a counting argument, also
showing that Theorem A is tight.

▶ Theorem 19 (Arbitrary vs. Arbitrary – Lower Bound). For all sufficiently large n, there
is a nonempty set of n-bit strings, A ⊊ {0, 1}n, such that every separating sentence φ for
(A, {0, 1}n − A) must have at least n/ log(n) quantifiers.

Proof Sketch (see [2] for full proof). If we require k quantifiers to separate any instance
on n-bit strings (for sufficiently large n), we can start by counting the number of pairwise
inequivalent sentences that can be written with k quantifiers. Such a sentence has a quantifier
prefix of length at most k (≤ 2k+1 possibilities), followed by a quantifier-free part, which
is a disjunction of types (2kk possibilities). This puts the total number of possible such
formulas to be at most 2k · 22k log(k) . We need this number to be at least 22n − 2, to account
for all nonempty instances of the form (A, {0, 1}n − A), which require pairwise inequivalent
sentences to separate. Solving this shows that we need k ≥ n/ log(n). ◀
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6 Conclusions & Open Problems

We obtained nontrivial quantifier upper bounds with matching lower bounds (up to (1 + ε)
factors) for a variety of string separation problems. All our upper bounds arise as a result of
using the technique of parallel play.

Throughout this work, with very few exceptions, we used MS games to obtain upper
bounds. It might seem unnecessary to exhibit upper bounds using game arguments, when it
ordinarily suffices to exhibit separating sentences. However, the sentences implicitly arising
from our game techniques are highly nontrivial to construct. In the case of QR, since taking
disjunctions and conjunctions do not increase the quantifier rank, one can build up complex
sentences out of simpler ones without paying any cost; we lose this convenience with QN,
and therefore need more nuanced techniques, such as parallel play.

Natural directions to extend this work include the following:
1. It would be illuminating to understand the QN required to express particular string and

graph properties. While our lower bound for the one-vs-one problem (Proposition 14)
gave a pair of strings requiring log(n) quantifiers to separate, the counting argument in
Proposition 19 does not exhibit a specific instance on n-bit strings that provably requires
n/ log(n) quantifiers to separate. Note that by (1), if we can find any property that
requires ω(log(n)) quantifiers to capture, then that property lies outside of NL.

2. Is it possible to use our upper bound in Theorem 18 to obtain Lupanov’s upper bound of
(1 + ε)2n/ log(n) on the minimum formula size needed separate two sets in propositional
logic (or vice versa)?

3. It is known for ordered structures that with O(logn) quantifiers, one can express the
BIT predicate, or equivalently, all standard arithmetic operations on elements of the
universe [12]. In particular, with BIT, some properties that would otherwise require
log(n) quantifiers can be expressed using O(log(n)/ log log(n)) quantifiers. Understanding
the use of BIT and other numeric relations would be valuable.
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Abstract
In 2021, Casares, Colcombet and Fijalkow introduced the Alternating Cycle Decomposition (ACD),
a structure used to define optimal transformations of Muller into parity automata and to obtain
theoretical results about the possibility of relabelling automata with different acceptance conditions.
In this work, we study the complexity of computing the ACD and its DAG-version, proving that
this can be done in polynomial time for suitable representations of the acceptance condition of the
Muller automaton. As corollaries, we obtain that we can decide typeness of Muller automata in
polynomial time, as well as the parity index of the languages they recognise.

Furthermore, we show that we can minimise in polynomial time the number of colours (resp.
Rabin pairs) defining a Muller (resp. Rabin) acceptance condition, but that these problems become
NP-complete when taking into account the structure of an automaton using such a condition.
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1 Introduction

1.1 Context
Automata for the synthesis problem. Since the 60s, automata over infinite words have
provided a fundamental tool to study problems related to the decidability of different
logics [5, 38]. Recent focus has centered on the study of synthesis of controllers for reactive
systems with the specification given in Linear Temporal Logic (LTL). The original automata-
theoretic approach by Pnueli and Rosner [37] remains at the heart of the state-of-the-art
LTL-synthesis tools [19, 29, 33, 35]. Their method consists in translating the LTL formula
into a deterministic ω-automaton which is then used to build an infinite duration game; a
winning strategy in this game provides a correct controller for the system.

Different acceptance conditions. There are different ways of specifying which runs of
an automaton over infinite words are accepting. Generally, we label the transitions of the
automaton with some output colours, and we then indicate which colours should be seen
(or not) infinitely often. This can be expressed in a variety of ways, obtaining different
acceptance conditions, such as parity, Rabin or Muller. The complexity of such acceptance
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conditions is crucial in the performance of algorithms dealing with automata and games
over infinite words. For instance, parity games can be solved in quasi-polynomial time [6]
and parity games solvers are extremely performing in practice [24], while solving Rabin and
Muller games is, respectively, NP-complete [18] and PSPACE-complete [22]. Moreover, many
existing algorithms for solving these games are polynomial on the size of the game graph,
and are exponential only on parameters from the acceptance condition: Muller games can
be solved in time O(k5kn5) [6, Theorem 3.4], where n is the size of the game and k is the
number of colours used by the acceptance condition, and Rabin games can be solved in
time O(nr+3rr!) [36, Theorem 7], where r is the number of Rabin pairs of the acceptance
condition. Also, the emptiness check of Muller automata with the condition represented by a
Boolean formula ϕ (Emerson-Lei condition) can be done in time O(2kkn2|ϕ|) [2, Theorem 1].

Some important objectives are therefore: (1) transform an automaton A using a complex
acceptance conditions into an automaton B using a simpler one, and (2) simplify as much as
possible the acceptance condition used by an automaton A (without adding further states).

The Zielonka tree and Zielonka DAG. The Zielonka tree is an informative representation
of Muller conditions, introduced for the study of strategy complexity in Muller games [42, 17].
Zielonka showed that we can use this structure to tell whether a Muller language can be
expressed as a Rabin or a parity language [42, Section 5]. Moreover, it has been recently
proved that the Zielonka tree provides minimal deterministic parity automata recognising
a Muller condition [10, 31], and can thus be used to transform Muller automata using this
condition into equivalent parity automata.

A natural alternative is to consider the more succinct DAG-version of this structure: the
Zielonka DAG. Hunter and Dawar studied the complexity of building the Zielonka DAG from
an explicit representation of a Muller condition, and the complexity of solving Muller games
for these different representations [23]. Recently, Hugenroth showed that many decision
problems concerning Muller automata become tractable when using the Zielonka DAG to
represent the acceptance condition [21].

The ACD: Theoretical applications. In 2021, Casares, Colcombet and Fijalkow [9] proposed
the Alternating Cycle Decomposition (ACD) as a generalisation of the Zielonka tree. The
main motivation for the introduction of the ACD was to define optimal transformations of
automata: given a Muller automaton A, we can build using the ACD an equivalent parity
automaton that is minimal amongst all parity automata obtained by duplicating states of
A [10, Theorem 5.32]. Moreover, the ACD can be used to tell whether a Muller automaton
can be relabelled with an acceptance condition of a simpler type [10, Section 6.1].

However, the works introducing the ACD [9, 10] are of theoretical nature, and no study
of the cost of constructing it and performing the related transformations is presented.

The ACD: Practice. The transformations based on the ACD have been implemented
in the tools Spot 2.10 [16] and Owl 21.0 [27], and are used in the LTL-synthesis tools
ltlsynt [33] and STRIX [29, 32] (top-ranked in the SYNTCOMP competitions [24]). In
the tool paper [12], these transformation are compared with the state-of-the-art methods to
transform Emerson-Lei automata into parity ones. Surprisingly, the transformation based on
the ACD does not only produce the smallest parity automata, but also outperforms all other
existing paritizing methods in computation time.

In [12, Section 4], an algorithm computing the ACD is proposed. However, the focus
is made in the handling of Boolean formulas to enhance the algorithm’s performance in
practice, but no theoretical analysis of its complexity is provided.
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Simplification of acceptance conditions. As already mentioned, the complexity of the
acceptance conditions play a crucial role in algorithms. One can simplify the acceptance
condition of a Muller automaton by adding further states (and the optimal way of doing this
is determined by the ACD [10]). However, in some cases this leads to an exponential blow-up
in the number of states [28]. A natural question is therefore to try to simplify the acceptance
condition while avoiding adding so many states. We consider two versions of this problem:

Typeness problem. Can we relabel the acceptance condition of a Muller automaton with
one of a simpler type, such as Rabin, Streett or parity?

Minimisation of colours and Rabin pairs. Can we minimise the number of colours used by
the acceptance condition (or, in the case of Rabin automata, the number of Rabin pairs)?

The ACD has proven fruitful for studying the typeness problem: just by inspecting the
ACD of A, we can tell whether we can relabel it with an equivalent Rabin, parity or Streett
acceptance condition [10]. Also, it is a classical result that we can minimise in polynomial
time the number of colours used by a parity automaton [7]. However, it was still unclear
whether the ACD could help to minimise the number of colours of Muller conditions or the
number of Rabin pairs of Rabin acceptance conditions, question that we tackle in this work.

The minimisation of colours in Muller automata has recently been studied by Schwarzová,
Strejček and Major [39]. In their approach, they use heuristics to reduce the number of
colours by applying QBF-solvers. The final acceptance condition is however not guaranteed
to have a minimal number of colours. There have also been attempts to minimise the number
of Rabin pairs of Rabin automata coming from the determinisation of Büchi automata [40].
Also, in their work about minimal history-deterministic Rabin automata, Casares, Colcombet
and Lehtinen left open the question of the minimisation of Rabin pairs [11].

1.2 Contributions
1. Computation of the ACD and the ACD-DAG. We show that we can compute the ACD

of a Muller automaton in polynomial time, provided that the Zielonka tree of its acceptance
condition is given as input (Theorem 13). This shows that the computation of the ACD is
not harder than that of the Zielonka tree, (partially) explaining the strikingly favourable
experimental results from [12]. We also show that we can compute the DAG-version of
the ACD in polynomial time if the acceptance condition of A is given colour-explicitly
or by a Zielonka DAG (Theorem 15). The main technical challenge is to prove that the
ACD has polynomial size in the size of the Zielonka tree.

2. Deciding typeness in polynomial time. Combining the previous contributions with the
results from [10], we directly obtain that we can decide in polynomial time whether a
Muller automaton can be relabelled with an equivalent parity, Rabin or Streett acceptance
condition (Corollary 16). Moreover, we recover a result from Wilke and Yoo [41]: we can
compute in polynomial time the parity index of the language of a Muller automaton.

3. Minimisation of colours and Rabin pairs of acceptance conditions. For a given Muller
(resp. Rabin) language L, we show that we can minimise the number of colours (resp.
Rabin pairs) needed to define L in polynomial time (Theorems 20 and 21). We also relate
the minimisation of Rabin pairs to a subclass of interest of Boolean formulas, called
generalised Horn formulas.

4. Minimisation of colours and Rabin pairs over an automaton structure. Given an au-
tomaton A using a Muller (resp. Rabin) acceptance condition, we show that the problem
of minimising the number of colours (resp. Rabin pairs) to relabel A with an equivalent
acceptance condition over its structure is NP-complete, and it remains NP-hard even
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if the ACD is given as input (Theorems 26 and 27). This came as a surprise to us, as
our first intuition was that the ACD would allow to lift the previous polynomial-time
minimisation algorithms to ones which take into account the structure of the automaton.

We provide proof ideas for all the results, technical proofs can be found in the full
version [13]. The full version also contains further contributions and discussions about the
size of different representations of Muller conditions (summarised in Figure 3).

2 Preliminaries

2.1 Automata over infinite words and their acceptance conditions
Given a set Γ, we write 2Γ

+ for the set of its non-empty subsets. For a word w ∈ Γω, we let
Inf(w) be the set of letters appearing infinitely often in w.

Automata. A (non-deterministic) automaton is a tuple A = (Q, qinit,Σ,∆,Γ, col,W ), where
Q is a finite set of states, qinit ∈ Q is an initial state, Σ is an input alphabet, ∆ ⊆ Q× Σ ×Q

is a set of transitions, Γ is a finite set of output colours, col : ∆ → Γ is a colouring of the
transitions, and W ⊆ Γω is a language over Γ. We call the tuple (col,W ) the acceptance
condition of A. We write q a−→ q′ to denote a transition e = (q, a, q′) ∈ ∆, and q

a:c−−→ q′ to
further indicate that col(e) = c. We write q w:u

q′ to represent the existence of a path from
q to q′ labelled with the input letters w ∈ Σ∗ and output colours u ∈ Γ∗.

Given an automaton A and a word w ∈ Σω, a run over w in A is a path qinit
w0:c0−−−→

q1
w1:c1−−−→ q2

w2:c2−−−→ q3
w3:c3−−−→ · · · ∈ ∆ω. Such a run is accepting if c0c1c2 · · · ∈ W , and rejecting

otherwise. A word w ∈ Σω is accepted by A if it admits an accepting run. The language
recognised by an automaton A is the set L(A) = {w ∈ Σω | w is accepted by A}. Two
automata over the same alphabet are equivalent if they recognise the same language. An
automaton is deterministic (resp. complete) if for every q ∈ Q and a ∈ Σ, there is at most
(resp. at least) one transition q

a−→ q′.
We underline that the colours of the acceptance of runs appear over transitions. For a

discussion on the differences between transition and state-based automata, and arguments in
favour of the former, we refer to [8, Chap. VI].

It is sometimes useful to let transitions carry multiple colours – for instance, this is the
standard model in the HOA format [1]. For many results of this paper (those from Section 3),
allowing or not multiple colours per edge does not make a difference; we could always take
2Γ or ∆ as new set of colours. This will however be relevant in Section 4.2. Also, the HOA
format allows for multiple transitions between the same two states with the same input letter.
These transitions can always be replaced by one carrying multiple colours (we refer to [11,
Prop. 18] for details).

We let the size of A be |A| = |Q| + |Σ| + |∆| + |Γ|. We note that this does not take into
account the size of the representation of its acceptance condition, which can admit different
forms (see page 7). When necessary, we will indicate the size of the representation of the
acceptance condition separately.

Acceptance conditions. We now define the main classes of languages used by automata
over infinite words as acceptance conditions. We let Γ stand for a finite set of colours.

Muller. We define the Muller language of a family F ⊆ 2Γ
+ of non-empty subsets of Γ as:

MullerΓ(F) = {w ∈ Γω | Inf(w) ∈ F}.

We will often refer to sets in F as accepting sets and sets not in F as rejecting sets.
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Rabin. A Rabin condition is represented by a family R = {(g1, r1), . . . , (gr, rr)} of Rabin
pairs, where gj , rj ⊆ Γ. We define the Rabin language of a single Rabin pair (g, r) as

RabinΓ((g, r)) = {w ∈ Γω | Inf(w) ∩ g ̸= ∅ ∧ Inf(w) ∩ r = ∅},

and the Rabin language of a family of Rabin pairs R as: RabinΓ(R) =⋃r
j=1 RabinΓ((gj , rj)).

Streett. The Streett language of a family R = {(g1, r1), . . . , (gr, rr)} of Rabin pairs is defined
as the complement of its Rabin language:

StreettΓ(R) = Γω \ RabinΓ(R).

Parity. We define the parity language over a finite alphabet Π ⊆ N as:

parityΠ = {w ∈ Πω | min Inf(w) is even}.

We say that an automaton is a C automaton, for C one of the classes of languages above,
if its acceptance condition uses a C language. We refer to the survey [3] for a more detailed
account on different types of acceptance conditions.

▶ Remark 1. Muller languages are exactly the languages characterised by the set of letters
seen infinitely often. They are also the languages recognised by deterministic Muller automata
with one state.

We observe that parity languages are special cases of Rabin and Streett languages which
are in turn special cases of Muller languages.

▶ Example 2. In Figure 1 we show different types of automata over the alphabet Σ = {a, b}
recognising the language of words that contain infinitely many bs and eventually do not
encounter the factor abb.

q

r

p

b : 4

a : 3

a : 3

b : 2

a : 3b : 1

Parity automaton A1.

s

t

a : α

b : γa : α

b : β

With a Muller condition

F = {{γ, α}, {β, γ}, {β}}.

With a Rabin condition

R = {({γ}, {β}), ({β}, {α})}.

Automaton A2 with equivalent Muller and
Rabin conditions over it.

Figure 1 Different types of automata recognising the language L = Σ∗bω + Σ∗(a+b)ω. (Note that
the set of outputs that occur infinitely often in a run of A2 cannot be {β, γ}.)

The 8 classes of automata obtained by combining the 4 types of acceptance conditions
above with deterministic and non-deterministic models are equally expressive [30, 34]. We
call the class of languages that can be recognised by these automata ω-regular languages. The
parity index of L is the minimal number k such that L can be recognised by a deterministic
parity automaton using k output colours (which coincides with the minimal number of colours
used by a Muller automaton recognising L [10, Proposition 6.14]).

MFCS 2024
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Typeness. Let A1 = (Q, qinit,Σ,∆,Γ1, col1,W1) be a deterministic automaton, and let C
be a class of languages (potentially containing languages over different alphabets). We say
that A1 can be relabelled with a C-acceptance condition, or that A is C-type, if there is
W2 ⊆ Γω

2 , W2 ∈ C, and a colouring function col2 : ∆ → Γ2 such that A1 is equivalent to
A2 = (Q, qinit,Σ,∆,Γ2, col2,W2). In this case, we say that (col1,W1) and (col2,W2) are
equivalent acceptance conditions over A.

Given a Muller automaton A, we use the expression deciding the typeness of A for the
problem of answering if A is Rabin type, Streett type, parity type, or none of those.1

▶ Remark 3. In this work, we only consider typeness for deterministic automata for simplicity.
For non-deterministic models, typeness admits two non-equivalent definitions [26]: (1) the
acceptance status of each individual infinite path coincide for both acceptance conditions, or
(2) both automata recognise the same language.

▶ Example 4. The automaton A2 from Figure 1 is Rabin type, as we have labelled it with a
Rabin acceptance condition that is equivalent over A to the Muller condition given by F (in
this case, both conditions use the same set of colours Γ = {α, β, γ}). However, we note that
RabinΓ(R) ̸= MullerΓ(F), as γω ∈ RabinΓ(R), while γω /∈ MullerΓ(F). This is possible, as no
infinite path in A2 is labelled by a word that differentiates both languages (such as γω).

2.2 The Zielonka tree and the Zielonka DAG
We represent trees and directed acyclic graphs (DAGs) as pairs T = (N,⪯) with N a non-
empty finite set of nodes and ⪯ the ancestor relation (n ⪯ n′ meaning that n is above n′).
An A-labelled tree (resp. A-labelled DAG) is a tree (resp. DAG) together with a labelling
function ν : N → A. We write |T | to denote the number of nodes of a tree T .

▶ Definition 5 ([42]). Let F ⊆ 2Γ
+ be a family of non-empty subsets of a finite set Γ. The

Zielonka tree for F (over Γ),2 denoted ZF = (N,⪯, ν : N → 2Γ
+) is a 2Γ

+-labelled tree with
nodes partitioned into round nodes and square nodes, N = N⃝ ⊔N□, such that:

The root is labelled Γ.
If a node is labelled X ⊆ Γ, with X ∈ F , then it is a round node, and it has a child for
each maximal non-empty subset Y ⊆ X such that Y ̸∈ F , which is labelled Y .
If a node is labelled X ⊆ Γ, with X ̸∈ F , then it is a square node, and it has a child for
each maximal non-empty subset Y ⊆ X such that Y ∈ F , which is labelled Y .

▶ Example 6. Let F = {{γ, α}, {γ, β}, {β}} be the Muller condition of the automaton from
Example 2, over the alphabet {α, β, γ}. In Figure 2 we show the Zielonka tree of F .

The Zielonka DAG of a family F ⊆ 2Γ
+ is the labelled directed acyclic graph Z-DAGF

obtained by merging the nodes of ZF with a common label. It inherits the partition into
round and square nodes, with children of round nodes being square and vice-versa.

▶ Lemma 7 (Implied by [21, Lemma 1]). Given a 2Γ
+-labelled tree T with a partition into

round and square nodes, we can decide in polynomial time whether there is a family F ⊆ 2Γ
+

such that T = ZF . In the affirmative case, this family is uniquely determined.

1 We could consider further classes of acceptance conditions such as Büchi, coBüchi, generalised Büchi,
weak, etc... We refer to [10, Appendix A] for more details on these acceptance types.

2 The definition of ZF , as well as most subsequent definitions, do not only depend on F but also on the
alphabet Γ. Although this dependence is important, we do not explicitly include it in the notations in
order to lighten them, as most of the times the alphabet will be clear from the context.
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α, β, γ

α, γ β, γ

α γ γ

Figure 2 Zielonka tree ZF for F = {{γ, α}, {γ, β}, {β}}.

Representation of acceptance conditions. There is a wide variety of ways to represent a
Muller language, including as its Zielonka tree, its Zielonka DAG, or colour-explicitly, that is,
as a list of the subsets appearing in F . In Figure 3 we summarise the relationship between
these representations. We highlight that the Zielonka DAG can be built in polynomial
time from both the Zielonka tree and from a colour-explicit representation of a Muller
condition [23, Theorem 3.17]. The exponential-size separation between the Zielonka tree
and colour-explicit representations, as well as explicit examples showing the gap between
Zielonka trees and DAGs are original contributions.

Rabin Zielonka DAG

Zielonka tree

Explicit

Exponential gap

Polynomial translation/

Figure 3 Comparison between the different representations of Muller conditions. A blue bold
arrow from X to Y means that converting an X-representation into the form Y requires exponential
time. A dashed arrow from X to Y means that a conversion can be computed in polynomial time.
The dotted arrow indicates that the polynomial translation can only be applied on a fragment of X,
as it is more expressive than Y .

2.3 The Alternating Cycle Decomposition
We now present the Alternating Cycle Decomposition and its DAG-version, following [10].

Let A be an automaton with Q and ∆ as set of states and transitions, respectively. A
cycle of A is a subset ℓ ⊆ ∆ such that there is a (not necessarily simple) path with the same
starting and ending state such that the set of edges it visits is ℓ. The set of cycles of an
automaton A is written Cycles(A). We will consider the set of cycles ordered by inclusion. If
we see A as a graph, its cycles are the strongly connected subgraphs of that graph, and the
maximal cycles are its strongly connected components (SCCs). Let A be a Muller automaton
with acceptance condition (col,MullerΓ(F)). Given a cycle ℓ ∈ Cycles(A), we say that ℓ is
accepting (resp. rejecting) if col(ℓ) ∈ F (resp. col(ℓ) /∈ F).

▶ Definition 8. Let ℓ0 ∈ Cycles(A) be a cycle. We define the tree of alternating subcycles
of ℓ0, denoted AltTree(ℓ0), as a Cycles(A)-labelled tree with nodes partitioned into round nodes
and square nodes, N = N⃝ ⊔N□, such that:

MFCS 2024
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The root is labelled ℓ0.
If a node is labelled ℓ ∈ Cycles(A), and ℓ is an accepting cycle (col(ℓ) ∈ F), then it is a
round node, and its children are labelled exactly with the maximal subcycles ℓ′ ⊆ ℓ such
that ℓ′ is rejecting (col(ℓ′) /∈ F).
If a node is labelled ℓ ∈ Cycles(A), and ℓ is a rejecting cycle (col(ℓ) /∈ F), then it is a
square node, and its children are labelled exactly with the maximal subcycles ℓ′ ⊆ ℓ such
that ℓ′ is accepting (col(ℓ′) ∈ F).

▶ Definition 9 (Alternating cycle decomposition). Let A be a Muller automaton, and let
ℓ1, ℓ2, . . . , ℓk be an enumeration of its maximal cycles. We define the alternating cycle
decomposition of A to be the forest ACD(A) = {AltTree(ℓ1), . . . ,AltTree(ℓk)}.

▶ Remark 10. The Zielonka tree can be seen as the special case of the alternating cycle
decomposition for an automata with a single state.

As mentioned in the introduction, the ACD was introduced in order to build small parity
automata from Muller ones: given the ACD of a Muller automaton A, we can build in
polynomial time an equivalent parity automaton PACD

A (called the ACD-parity transform of
A) of minimal size amongst all automata obtained from A by “duplication of states”. See [10,
Section 5.2] for a formal statement and further results.

▶ Example 11. Figure 4 contains the alternating cycle decomposition of the automata A1
and A2 from Figure 1. We represent their transitions as pairs (q, a) ∈ Q × Σ. Since both
automata are strongly connected, each ACD consists in a single tree, whose root is the whole
set of transitions.

∆1

(q, b)
(p, a),(p, b)

(r, a)

(p, a)

∆2

(t, b)
(s, a),(s, b)

(t, a)

(s, a)

Figure 4 Alternating cycle decomposition of A1 (on the left) and A2 (on the right), from Figure 1.

The ACD-DAG of a Muller automaton A, written ACD-DAG(A), is the family of labelled
DAGs obtained by merging nodes with the same label in the trees of ACD(A). It is useful
for deciding the typeness and the parity index of L(A), as stated next.

▶ Proposition 12 ([10, Section 6.1]). Given a deterministic Muller automaton A and its
ACD-DAG, we can decide the typeness of A and compute the parity index of L(A) in
polynomial time.

3 Computation of the Alternating Cycle Decomposition

We present in this section our central contribution: a polynomial-time algorithm to compute
the alternating cycle decomposition of a Muller automaton with the acceptance condition
given by a Zielonka tree (Theorem 13). This shows that the computation of the ACD is
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not harder than that of the Zielonka tree, (partially) explaining the strikingly performing
experimental results from [12]. We also show that if the acceptance condition is represented as
a Zielonka DAG, we can compute ACD-DAG(A) in polynomial time (Theorem 15), from which
we can derive decidability in polynomial time of typeness of Muller automata (Corollary 16).

3.1 Statements of the results
▶ Theorem 13 (Computation of the ACD). Given a Muller automaton A with acceptance
condition represented by a Zielonka tree ZF ,3 we can compute ACD(A) in polynomial time
in |A| + |ZF |.

As stated in the previous section, given the ACD of a Muller automaton A, we can
transform A in polynomial time into its ACD-parity-transform: a parity automaton equivalent
to A that is minimal amongst parity automata obtained as a transformation of A. The
previous theorem implies that this can be done even if only the Zielonka tree of the acceptance
condition of A is given as input, together with the automaton structure.4

▶ Corollary 14. We can compute the ACD-parity-transform of a Muller automaton in
polynomial time, if its acceptance condition is given by a Zielonka tree.

▶ Theorem 15 (Computation of the ACD-DAG). Given a Muller automaton A with acceptance
condition represented by a Zielonka DAG Z-DAGF (resp. colour-explicitly), we can compute
ACD-DAG(A) in polynomial time in |A| + |Z-DAGF | (resp. |A| + |F|).

Combining Theorem 15 with Propositions 12, we directly obtain that we can decide
typeness of Muller automata and the parity index of their languages in polynomial time.

▶ Corollary 16 (Polynomial-time decidability of typeness and parity index). Given a deterministic
Muller automaton A with its acceptance condition represented colour-explicitly, as a Zielonka
tree, or as a Zielonka DAG, we can decide the typeness of A, and determine the parity index
of L(A), in polynomial time.

The decidability of the parity index in polynomial time had already been obtained by
Wilke and Yoo [41]. This result contrasts with the fact that deciding the parity index of a
language represented by a deterministic Rabin or Streett automaton is NP-complete [25].

3.2 Main algorithm and complexity
Description of the algorithm. We describe an algorithm computing ACD-DAG(A) from a
Muller automaton A. To obtain ACD(A), it suffices then to unfold this DAG. This algorithm
builds the ACD-DAG in a top-down fashion: first, it computes the strongly connected
components of A and initialises the root of each of the DAGs in ACD-DAG(A). Then, it
iteratively computes the children of the already found nodes as follows: Given a node n
labelled ℓ (assume that ℓ is an accepting cycle), the algorithm goes through all square nodes
m in the Zielonka DAG and for each of them computes the maximal sub-cycles of ℓ whose set
of colours is included in the label of m, but not in those of any of its children. The algorithm
then selects maximal cycles among those found, add them to ACD-DAG(A) (if they do not
already appear there) and sets them as children of n.

3 Lemma 7 lets us check in polynomial time if a tree indeed is the Zielonka tree of a Muller condition.
4 Also, we note that given A and its ACD, it is immediate to compute a Zielonka tree over the set of

colours Γ = ∆ defining an equivalent acceptance condition over A.
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Complexity analysis. We explain now how we obtain a polynomial upper bound on the
complexity of the algorithms presented in the previous paragraph.

We first remark that we need to make at |ACD-DAG(A)| computations of the children of a
node, as each node of the ACD-DAG is considered at most once by the algorithm. Therefore,
to obtain Theorem 15 (computation of the ACD-DAG) we need to show that:
1. We can compute the children of a node in polynomial time in |Q| + |Z-DAGF |, and
2. |ACD-DAG(A)| is polynomial in |Q| + |Z-DAGF |.

To establish Theorem 13 (computation of the ACD), we remark that we can compute
ACD(A) from A and ZF by simply folding ZF to obtain Z-DAGF , apply Theorem 15 to get
ACD-DAG(A), and then unfold the latter to obtain ACD(A). The first two steps require a
time polynomial in |Z-DAGF |+ |Q| ≤ |ZF |+ |Q|, while the third step takes a time polynomial
in |ACD(A)|. Thus, to obtain the theorem, it suffices to establish
3. |ACD(A)| is polynomial in |Q| + |ZF |.

The most technical part lies in the proofs of items 2 and 3, stated below.

▶ Proposition 17. Let A be a Muller automaton and F the family defining its acceptance
condition. Then,
a) |ACD(A)| ≤ |Q| · |ZF |.
b) |ACD-DAG(A)| ≤ |Q| · |Z-DAGF |.

We describe now the main ideas of the proof of Proposition 17. We use the notion
of local subtree at a state of the ACD. If q is a state of A appearing in the SCC ℓi, we
define the local subtree at q, noted Tq, as the subtree of AltTree(ℓi) containing the nodes
Nq = {n ∈ AltTree(ℓi) | q is a state in the label of n}. We define analogously the local
subDAG of ACD-DAG(A) at q, noted Dq.

We remark that |ACD(A)| ≤
∑

q∈Q |Tq| (resp. |ACD-DAG(A)| ≤
∑

q∈Q |Dq|), as each
node of the ACD appears in some local subtree. Therefore, it suffices to bound the size of the
local subtrees (resp. local subDAGs) to obtain a polynomial bound on the size of ACD(A)
(resp. ACD-DAG(A)) to deduce Proposition 17. Quite surprisingly, the arguments to bound
these objects are slightly different in each case.

▶ Lemma 18. For every state q, the tree Tq has size at most |ZF |.

Proof sketch. We define in a top-down fashion an injective function f : Tq → ZF . For the
base case, we send the root of Tq to the root of ZF . Let n be a node in Tq such that f(n)
has been defined, and let n1, . . . , nk be its children. The key technical result is to show that
there are k descendants of f(n), containing the sets of labels of n1, . . . , nk, respectively, that
are incomparable for the ancestor relation. Then, the subtrees rooted at these nodes are
pairwise disjoint, which allows to define f(ni) for all i and carry out the induction. ◀

We conclude that the size of ACD(A) is polynomial in |Q| + |ZF |, deriving the first item
of Proposition 17:

|ACD(A)| ≤
∑
q∈Q

|Tq| ≤ |Q| · |ZF |.

▶ Lemma 19. For every state q, the DAG Dq has size at most |Z-DAGF |.

Proof sketch. As before, we define an injective function f : Dq → Z-DAGF . However, now
we cannot use the fact that the subDAGs rooted at k incomparable elements are disjoint.

To circumvent this difficulty, for each node n in Dq different from the root, we fix an
arbitrary immediate ancestor of n, noted pred(n) (that is, n is a child of pred(n)). For a node
n in Dq, we let Cn be the set of colours appearing in the label of n. We define f recursively:
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For the root n0 of Dq, we let f(n0) be a maximal (deepest) node in Z-DAGF containing Cn0

in its label. For n a node such that we have define f for all its ancestors, we let f(n) be a
maximal node in the subDAG rooted at f(pred(n)) containing Cn in its label (we note that
f(n) is a round node if and only if n is a round node). The most technical part of the proof
is to show injectivity of the obtained function. ◀

4 Minimisation of colours and Rabin pairs

We consider the problem of minimising the representation of the acceptance condition
of automata. That is, given a deterministic automaton A using a Muller (resp. Rabin)
acceptance condition, what is the minimal number of colours (resp. Rabin pairs) needed to
define an equivalent acceptance condition over A?

We first study the minimisation of colours for Muller languages, without taking into
account the structure of the automaton. We show that given the Zielonka DAG of the
condition (resp. set of Rabin pairs), we can minimise its number of colours (resp. number of
Rabin pairs) in polynomial time (Theorems 20 and 21). We provide an alternative point of
view over the minimisation of Rabin pairs, using so-called generalised Horn formulas (see
Remark 23). Then, we tackle the same question taking into account the structure of the
automaton. Surprisingly, we show that in this case both problems are NP-complete, even if
the ACD is given as input (Theorems 26 and 27).

4.1 Minimisation of the representation of Muller languages in PTIME
and generalised Horn formulas

Minimisation of colours for Muller languages. We say that a Muller language MullerΣ(F)
is k-colour type if there is a set of k colours Γ, a family of sets F ′ ⊆ 2Γ

+ and a mapping
ϕ : Σ → Γ such that for all S ∈ 2Σ

+, S ∈ F ⇐⇒ ϕ(S) ∈ F ′.
Note that this is equivalent to asking if all automata using MullerΣ(F) as acceptance

condition can be relabelled with an equivalent Muller condition using at most k colours.
(However, it is not the same as having a Muller automaton recognising MullerΣ(F) using at
most k colours.)

Colour-Minimisation-ML is the problem of deciding whether a given Muller language
(represented by its Zielonka DAG) is k-colour type. We chose to specify the input as a
Zielonka DAG, as it is more succinct than the other representations we consider (c.f. Figure 3).
We now prove that this problem can be solved in polynomial time, which implies that it can
be equally solved in polynomial time if the Muller language is represented colour-explicitly,
or as a Zielonka tree.

▶ Theorem 20 (Tractability of minimisation of colours for Muller languages). The problem
Colour-Minimisation-ML can be solved in polynomial time.

Proof sketch. We define two colours a, b ∈ Σ as equivalent if for every node n of Z-DAGF ,
a ∈ ν(n) ⇐⇒ b ∈ ν(n). It is not difficult to see that we can merge equivalent colours,
that is, we can define Muller(F) using as many colours as the number of classes for this
equivalence relation. We prove that this is optimal: If Muller(F) can be defined using a
mapping ϕ : Σ → Γ, then, for all α ∈ Γ, the colours in ϕ−1(α) are equivalent. Therefore, it
suffices to inspect Z-DAGF to determine the number of equivalence classes. ◀

Minimisation of Rabin pairs for Rabin languages. In this section we tackle the minimisation
of the number of Rabin pairs to represent Rabin languages. We provide a polynomial-time
algorithm which turns a family of Rabin pairs into an equivalent one with a minimal number
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of pairs. The algorithm comes down to partially computing the Zielonka tree of the input
Rabin language from top to bottom, and stopping when we can infer from the partial view
of the tree a set of Rabin pairs equivalent to the input. We present the algorithm differently
to clarify the proofs, in particular the proof that the resulting number of pairs is minimal.

We say that a Rabin language L ⊆ Σω is k-Rabin-pair type if there is a family of k Rabin
pairs R over some set of colours Γ and a mapping ϕ : Σ → Γ such that for all w ∈ Σω,
w ∈ L ⇐⇒ ϕ(w) ∈ RabinΓ(R).

Rabin-Pair-Minimisation-ML is the problem of deciding whether a language RabinΣ(R)
(represented by the Rabin pairs R) is k-Rabin-pair type.

▶ Theorem 21 (Tractability of minimisation of Rabin pairs for Rabin languages). The problem
Rabin-Pair-Minimisation-ML can be solved in polynomial time.

We obtain the minimal set of Rabin pairs iteratively. We start with an empty set of
pairs. While our set of pairs is not equivalent to the input one, we compute a maximal set of
colours S accepted by the input set of pairs and not by our current set of pairs. We then
compute the maximal subset T of S that is rejected by the input set of pairs. We infer from
them a new Rabin pair, which accepts the sets of colours contained in S but not in T . We
add this pair to our set of pairs.

We prove that the resulting set is optimal by showing that at all times, we can define an
injective function from our current set of pairs to any set of pairs equivalent to the input.

The minimisation of pairs for Streett conditions in polynomial time follows by symmetry.

Generalised Horn formulas. We discuss an alternative point of view on the minimisation
of Rabin pairs, via a generalisation of Horn formulas.

Horn formulas are a popular fragment of propositional logic, as they enjoy some convenient
complexity properties. It is well-known that the satisfiability problem for those formulas can
be solved in linear time [15].

We consider a succinct representation of Horn formulas, called generalised Horn formula.
They allow one to merge several Horn clauses with the same premises, e.g. (x1 ∧ x2 =⇒ y1)
and (x1 ∧ x2 =⇒ y2), into a single clause (x1 ∧ x2 =⇒ y1 ∧ y2). We can apply the classical
linear-time algorithm for satisfiability on this generalised form, however, note that it is not
linear in the size of the generalised formula, but in the size of the implicit Horn formula
represented.

▶ Definition 22. A generalised Horn clause (or GH clause) is a Boolean formula of the form
either (x1 ∧ · · · ∧ xn) =⇒ (y1 ∧ · · · ∧ ym) or (x1 ∧ · · · ∧ xn) =⇒ ⊥ (in the latter case, the
clause is called negative). A generalised Horn formula (or GH formula) is a conjunction of
GH clauses. It is simple if none of its GH clauses are negative.

▶ Remark 23 (Correspondence simple GH formulas ↔ Streett conditions). We observe that
there is a correspondence between simple GH formulas and Streett conditions. Define the
function α that turns a GH clause (x1 ∧ · · · ∧ xn) =⇒ (y1 ∧ · · · ∧ ym) into the Rabin pair
({y1, . . . , ym}, {x1, . . . , xn}). We extend it into a function turning simple GH formulas into
families of Rabin pairs by defining α(

∧k
i=1 GHi) = (α(GHi))k

i=1. We can then observe that
α is a bijection (we consider Boolean formulas up to commutation of the terms, for instance
we consider that φ ∨ ψ and ψ ∨ φ are the same formula). We also note that the number of
clauses of a simple GH formula is the number of pairs of its image by α.

Note that for all simple GH formula φ, the set of sets accepted by the Streett condition
α(φ) is {ν−1(⊥) | ν : Var → {⊤,⊥} is a valuation satisfying φ}. As a result, two simple GH
formula are equivalent if and only if their images by α define the same Streett language.
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As a consequence of this correspondence and Theorem 21, we obtain that we can minimise
the number of clauses in a GH formula in polynomial-time. This result contrasts nicely
with the NP-completeness of minimising the number of clauses in a Horn formula [4] (see
also [14]). On the other hand, minimising the number of literals in a GH formula remains
NP-complete, just like in the case of Horn formulas [20]. This can be showed by a slight
adaptation of the reduction from [14] to GH formulas.

▶ Proposition 24. There is a polynomial-time algorithm to minimise the number of clauses
of a GH formula.

Proof sketch. The polynomial-time minimisation of simple GH formulas follows from The-
orem 21 and Remark 23. The extension to all Generalised Horn formulas is essentially a
technicality, due to the fact that negative clauses cannot be directly translated into Rabin
pairs as in the previously. We circumvent this problem by replacing them with some non-
negative clauses and proving that minimising the initial formula comes down to minimising
the resulting simple one. ◀

On the other hand, generalised Horn formulas are likely not a suitable representation
for acceptance conditions on automata, as they yield an NP-complete emptiness problem
(Proposition 25). This is an interesting example of a family of acceptance conditions whose
satisfiability problem is in PTIME but which yields an NP-complete emptiness problem on
automata.

▶ Proposition 25. Checking emptiness of an automaton with an acceptance condition
represented by a GH formula is NP-complete.

Proof sketch. The NP upper bound follows from the one on Emerson-Lei conditions. For
the hardness, we reduce from the Hamiltonian cycle problem. ◀

4.2 Minimisation of acceptance conditions on top of an automaton
We now consider the problem of minimising the number of colours or Rabin pairs used by
a Muller or Rabin condition over a fixed automaton. We could expect that it is possible
to generalise the previous polynomial time algorithms by using the ACD, instead of the
Zielonka DAG. Quite surprisingly, we show that these problems become NP-complete when
taking into account the structure of the automata.

Minimisation of colours on top of a Muller automaton. We say that a deterministic
Muller automaton A is k-colour type if we can relabel it with a Muller condition using at
most k output colours that is equivalent over A (and uses a single colour per edge). We
also consider automata with multiple colours per edge (in this section, multiple labels may
be relevant). We will nevertheless show that allowing them does not change the theoretical
complexity of the problem. We say that A is k-multi-colour type if we can relabel it with an
equivalent Muller condition using at most k colours, with possibly several colours per edge.

Colour-Minimisation-Aut (resp. Multi-Colour-Minimisation-Aut) is the problem of
deciding whether a deterministic Muller automaton is k-colour type (resp. k-multi-colour
type). These problems admit different variants according to the representation of the Muller
condition. We will show that for the three representations we are concerned with (colour-
explicit, Zielonka tree and Zielonka DAG), both problems are NP-complete. This implies
that they are NP-hard even if the ACD is provided as input, by Theorem 13. Hugenroth
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showed5 that, for state-based automata, the problem Colour-Minimisation-Aut is NP-hard
when the acceptance condition of A is represented colour-explicitly or as a Zielonka tree [21].
However, it is not straightforward to generalise it to transition-based automata, since the
classic translation between state-based and transition-based automata does not preserve
minimality.

▶ Theorem 26 (NP-completeness of minimisation of colours for Muller automata). The problems
Colour-Minimisation-Aut and Multi-Colour-Minimisation-Aut are NP-complete, if the
acceptance condition MullerΓ(F) of A is represented colour-explicitly, as a Zielonka tree,
Zielonka DAG or as the ACD of A.

To obtain the NP-hardness, we reduce from the chromatic number problem for graphs.
We note that the fact that these problems lie in NP is not obvious: we could be tempted to
guess an acceptance condition on the same automaton structure and check equivalence of
the two automata. However, reducing the number of colours might blow up the size of the
representation of the acceptance condition.

NP-upper bound: Proof sketch. We guess a colouring col′ : ∆ → [k] and check in polyno-
mial time that there exists a family F ′ over [k] defining an equivalent condition over A. To
do so, we remark that such F ′ exists if and only if there is no pair of words w+ ∈ L(A) and
w− /∈ L(A) such that the sets of colours produced infinitely often under col′ by their runs are
equal. The existence of such words reduces to emptiness of adequate Streett automata. ◀

Minimisation of Rabin pairs on top of a Rabin automaton. We say that a deterministic
Muller automaton A is k-Rabin-pair type if we can relabel it with an equivalent Rabin
condition using at most k Rabin pairs.

Rabin-Pair-Minimisation-Aut is the problem of deciding whether a given deterministic
Rabin automaton is k-Rabin-pair type. As before, we can consider different representations of
the acceptance condition of the automaton: using Rabin pairs, colour-explicitly, the Zielonka
tree, the Zielonka DAG or by providing the ACD.

▶ Theorem 27 (NP-completeness of minimisation of Rabin pairs for Rabin automata). The
problem Rabin-Pair-Minimisation-Aut is NP-complete for all the previous representations of
the acceptance condition.

5 Conclusion

In this work we obtained several positive results concerning the complexity of simplifying the
acceptance condition of an ω-automaton. Our first technical result is that the computation
of the ACD (resp. ACD-DAG) of a Muller automaton is not harder than the computation of
the Zielonka tree (resp. Zielonka DAG) of its acceptance condition (Theorems 13 and 15).
This provides support for the assertion that the optimal transformation into parity automata
based on the ACD is applicable in practical scenarios, backing the experimental evidence
provided by the implementations of the ACD-transform [12].

Furthermore, this result has several implications for our simplification purpose: We can
decide the typeness of Muller automata and compute the parity index of their languages in
polynomial time (Corollary 16). In addition, we showed that we can minimise in polynomial

5 As of today, the proof is not currently publicly available online, we got access to it by a personal
communication. The theorem only expresses the NP-hardness for the colour-explicit representation, but
a look into the reduction works unchanged if the condition is given as a Zielonka tree.
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time the colours and Rabin pairs necessary to represent a Muller language. However, these
problems become NP-hard when taking into account the structure of a particular automaton
using this acceptance condition, even if the ACD of the automaton is provided as input.
Nevertheless, we believe that the methods for the minimisation of colours in the case of
Muller languages could be combined with the structure of the ACD to obtain heuristics
reducing the number of colours used by Muller automata, which might lead to substantial
(although not optimal) reductions.

In sum, our results clarify the potential of the ACD and complete our understanding of
the complexity of simplifying the acceptance conditions of ω-automata.
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Abstract
A temporal graph is a graph whose edges only appear at certain points in time. Reachability in
these graphs is defined in terms of paths that traverse the edges in chronological order (temporal
paths). This form of reachability is neither symmetric nor transitive, the latter having important
consequences on the computational complexity of even basic questions, such as computing temporal
connected components. In this paper, we introduce several parameters that capture how far a
temporal graph G is from being transitive, namely, vertex-deletion distance to transitivity and arc-
modification distance to transitivity, both being applied to the reachability graph of G. We illustrate
the impact of these parameters on the temporal connected component problem, obtaining several
tractability results in terms of fixed-parameter tractability and polynomial kernels. Significantly,
these results are obtained without restrictions of the underlying graph, the snapshots, or the lifetime
of the input graph. As such, our results isolate the impact of non-transitivity and confirm the key
role that it plays in the hardness of temporal graph problems.
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1 Introduction

Temporal graphs have gained attention lately as appropriate tools to capture time-dependent
phenomena in fields as various as transportation, social networks analysis, biology, robotics,
scheduling, and distributed computing. On the theoretical side, these graphs generate interest
mostly for their intriguing features. Indeed, many basic questions are still open, with a
general feeling that existing techniques from graph theory typically fail on temporal graphs.
In fact, most of the natural questions considered in static graphs turn out to be intractable
when formulated in a temporal version, and likewise, most of the temporal analogs of classical
structural properties are false.

One of the earliest examples is that the natural analog of Menger’s theorem does not
hold in temporal graphs [21]. Another early result is that deciding if a temporal connected
component (set of vertices that can reach each other through temporal paths) of a certain
size exists is NP-complete [6]. A more recent and striking result is that there exist temporally
connected graphs on Θ(n2) edges in which every edge is critical for connectivity; in other
words, no temporal analog of sparse spanners exist unconditionally [5] (though they do,
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probabilistically [11]). Moreover, minimizing the size of such spanners is APX-hard [2, 5].
Further hardness results for problems whose static versions are generally tractable include
separators [19], connectivity mitigation [16], exploration [4, 17], flows [1], Eulerian paths [7],
and even spanning trees [9].

Faced by these difficulties, the algorithmic community has focused on special cases, and
tools from parameterized complexity were employed with moderate success. A natural
approach here is to apply the range of classical graph parameters to restrict either the
underlying graph of the temporal graph (i.e. which edges can exist at all) or its snapshots
(i.e. which edges may exist simultaneously). For example, finding temporal paths with
bounded waiting time at each node (which is NP-hard in general) turns out to be FPT
when parameterized by treedepth or vertex cover number of the underlying graph. But the
problem is already W[1]-hard for pathwidth (let alone treewidth) [10]. In fact, as observed
in [18], most temporal graphs problems remain hard even when the underlying graph has
bounded treewidth (sometimes, even a tree or a star [3, 4, 16]).

A possible explanation for these results is that temporal graph problems are very hard.
Another one is that parameters based on static graph properties are not adequate. Some
parameters whose definition is based on that of a temporal graph include timed feedback
vertex sets (counting the cumulative distance to trees over all snapshots) [10] and the p(G)
parameter from [4], that measures in a certain way how dynamic the temporal graph is and
enables polynomial kernels for the exploration problem. While these parameters represent
some progress towards finer-grained restrictions, they remain somewhat structural in the
sense that their definition is stable under re-shuffling of the snapshots.

A key aspect of temporal graphs is that the ordering of events matters. Arguably, a
truly temporal parameter should be sensitive to that. An interesting step in this direction
was recently made by Bumpus and Meeks [7], introducing interval-membership-width, a
parameter that quantifies the extent to which the set of intervals defined by the first and last
appearance of an edge at each vertex can overlap (with application to Eulerian paths). In a
sense, this parameter measures how complex the interleaving of events could be. Another,
perhaps even more fundamental feature of temporal graphs is that the reachability relation
based on temporal paths is not guaranteed to be symmetric or transitive. While the former is
a well-known limitation of directed graphs, the latter is specific to temporal graphs (directed
or not), and it has been suspected to be one of the main sources of intractability since the
onset of the theory. (Note that a temporal graph of bounded interval-membership-width
may still be arbitrarily non-transitive.) In the present work, we explore new parameters that
control how transitive a temporal graph is, thereby isolating, and confirming, the role that
this aspect plays in the tractability of temporal reachability problems.

Our Contributions. We introduce and investigate two parameters that measure how far a
temporal graph is from having transitive reachability. For a temporal graph G, our parameters
directly address the reachability features of G, and as such, they are formulated in terms
of its reachability graph GR = (V, {(u, v) : u⇝ v}), a directed graph whose arcs represent
the existence of temporal paths in G, whether G itself is directed or undirected. Indeed, the
reachability of G is transitive if and only if the arc relation of GR is transitive. Two natural
ways of measuring this distance are in terms of vertex deletion and arc modification, namely:

Vertex-deletion distance to transitivity (δvd) is the minimum number of vertices whose
deletion from GR makes the resulting graph transitive.
Arc-modification distance to transitivity (δam) is the minimum number of arcs whose
addition or deletion from GR makes the resulting graph transitive.

As for the arc-modification distance, we may occasionally consider its restriction to arc-
addition only (δaa).
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Among the many problems that were shown intractable in temporal graphs, one of the
first, and perhaps most iconic one, is the computation of temporal connected components [6]
(see also [13, 23]). In order to benchmark our new parameters, we investigate their impact on
the computational complexity of this problem. Informally, given a temporal graph G (defined
later) on a set of vertices V , a temporal connected component is a subset V ′ ⊆ V such that for
all u and v in V ′, u can reach v by a temporal path. Interestingly, the non-transitive nature
of reachability here makes it possible for such vertices to reach each other through temporal
paths that travel outside the component, without absorbing the intermediate vertices into the
component. This gives rise to two distinct notions of components: open temporal connected
components (Open-TCC) and closed temporal connected components (Closed-TCC), the
latter requiring that only internal vertices are used in the temporal paths, and both being
NP-hard to compute.

The statement of our results requires a few more facts. Both algorithmic and structural
results in temporal graphs are highly sensitive to subtle definitional variations, called settings.
In the non-strict setting, the labels along a temporal path are only required to be non-
decreasing, whereas in the strict setting, they must be increasing. It turns out that both
settings are sometimes incomparable in difficulty, and the techniques developed for each may
be different. Some temporal graphs, called proper, have the property that no two adjacent
edges share a common time label, making it possible to ignore the distinction between strict
and non-strict temporal paths. Whenever possible, hardness results should preferably be
obtained for proper temporal graphs, so that they apply in both settings at once. Finally,
with a few exceptions, our results hold for both directed and undirected temporal graphs.

Bearing these notions in mind, our results are the following. For Open-TCC, we obtain
an FPT algorithm with parameter δvd, running in time 3δvd · nO(1) (in all the settings).
Unfortunately, δvd turns out to be too small for obtaining a kernel of polynomial size. In
fact, we show that under reasonable computational complexity assumptions, no polynomial
kernel in δvd + vc + k exists (except possibly for the non-strict undirected setting), where k

denotes the size of the sought tcc and where vc denotes the vertex cover number of the
underlying graph. Next, we obtain an FPT algorithm running in time 4δam · nO(1) for the
mostly larger parameter δam, and show that Open-TCC admits a polynomial kernel of size
|M |3, where M is a given arc set for which (V, A(GR)∆M) is transitive. It also admits a
polynomial kernel of size δ2

aa when restricting modification to addition-only (again, all these
results hold in all the settings). Closed-TCC, in comparison, seems to be a harder problem,
at least with respect to our parameters. In particular, we show that it remains NP-hard
even if δam = δvd = 1 in all the settings (through proper graphs). It is also W[1]-hard when
parameterized by δvd +δam +k in all the settings, except possibly in the non-strict undirected
setting. In fact, these two results hold even for temporal graphs whose reachability graph
misses a single arc towards being a bidirectional clique.

Put together, these results establish clearly that non-transitivity is a genuine source of
hardness for Open-TCC. The case of Closed-TCC is less clear. On the one hand, the
parameters do not suffice to make this particular version of the problem tractable. This is
not so surprising, as the reachability graph itself does not encode which paths are responsible
for reachability, in particular, whether these paths are internal or external in a component.
On the other hand, this gives us a separation between both versions of the problem and
provides some support for the fact that Closed-TCC may be harder than Open-TCC,
which was not known before. Finally, the negative results for Closed-TCC can serve as
a landmark result for guiding future efforts in defining transitivity parameters that exploit
more sophisticated structures than the reachability graph.

MFCS 2024
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Organization of the Work. The main definitions are given in Section 2. Then, we investigate
each parameter in a dedicated section (δvd in Section 3 and δam in Section 4). The limitations
of these parameters in the case of Closed-TCC are presented in Section 5. Finally, Section 6
concludes the paper with some remarks and open questions. Due to space limitations, the
proofs of statements marked with (⋆) are deferred to a full version.

2 Preliminaries

For concepts of parameterized complexity, like FPT, W[1]-hardness, and polynomial kernels,
we refer to the standard monographs [14, 15]. A reduction g between two parameterized
problems is called a polynomial parameter transformation, if the reduction can be computed
in polynomial time and, if for every input instance (I, k), we have that (I ′, k′) = g(I, k)
with k′ ∈ kO(1). We call a polynomial time reduction from a problem L to L itself a
self-reduction.

Notation. Let j be a positive integer, we denote with [j] the set {1, 2, . . . , j}. Moreover,
for 1 ≤ i ≤ j, we define [i, j] := [j] \ [i − 1]. For a decision problem L, we say that two
instances I1, I2 of L are equivalent if I1 is a yes-instance of L if and only if I2 is a yes-instance
of L. For two sets A and B, we denote with A∆B the symmetric difference of A and B.

Graphs. We consider a graph G = (V, E) to be a static graph. If not indicated otherwise, we
assume G to be undirected. Given a (directed) graph G, we denote by V (G) the set of vertices
of G, by E(G) (respectively, A(G)) the set of edges (arcs) of G. Let G = (V, E) be a graph
and let X ⊆ V (G) be a set of vertices. We denote by EG(X) = {{u, v} ∈ E | u ∈ X, v ∈ X}
the edges in G between the vertices of S. Moreover, we define the following operations
on G: G[X] = (X, EG[X]), G − X = G[V \ X]. We call a sequence ρ = v0, v1, . . . , vr of
vertices a path in graph G if v0, . . . , vr ∈ V (G) and for each i ∈ [r], {vi−1, vi} ∈ E(G). We
denote with NG[v] the closed neighborhood of the vertex v ∈ V (G). A vertex set S ⊆ V is
a clique in an undirected graph, if each pair of vertices in S is adjacent in G. For a directed
graph G = (V, A), we call a set S ⊆ V a bidirectional clique, if for every pair of distinct
vertices u, v in S, we have (u, v) ∈ A and (v, u) ∈ A. Let G = (V, A) be a directed graph.
A strongly connected component (scc) in G is an inclusion maximal vertex set S ⊆ V under
the property that there is a directed path in G between any two vertices of S. For each
directed graph G, there is a unique partition of the vertex set of G into sccs. Moreover, this
partition can be computed in linear time [24].

Temporal graphs. A temporal graph G over a set of vertices V is a sequence G =
(G1, G2, . . . , GL) of graphs such that for all t ∈ [L], V (Gt) = V . We call L the lifetime
of G and for t ∈ [L], we call Gt = (V, Et) the snapshot graph of G at time step t. We call
G = (V, E) with E =

⋃
t∈[L] Et the underlying graph of G. We denote by V (G) the set of

vertices of G. We write V if the temporal graph is clear from context. We call an undirected
temporal graph G = (G1, G2, . . . , GL) proper, if for each vertex v ∈ V (G) the degree of v in
Gt is one, for each t ≤ L. We call a directed temporal graph G = (G1, G2, . . . , GL) proper, if
for each vertex v ∈ V (G) the out-degree or the in-degree of v in Gt is zero, for each t ≤ L.
We further call a (directed) temporal graph G simple, if each edge (arc) exists in exactly one
snapshot. We call a sequence v0, v1, . . . , vr of vertices that form a path in the underlying
graph G of G a strict (non-strict) temporal path in G if for each i ∈ [r], there exists an ji ∈ [L]
such that {vi−1, vi} ∈ E(Gji

) and the sequence of indices ji is increasing (non-decreasing).
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For a temporal graph G, we say that a vertex u ∈ V strictly (non-strictly) reaches a
vertex v ∈ V if there is a strict (non-strict) temporal path from u to v, i.e., with v0 = u and
vr = v. We define the strict (non-strict) reachability relation R ⊆ V × V as: for all u, v ∈ V ,
(u, v) ∈ R if and only if u strictly (non-strictly) reaches v. We call the directed graph
GR = (V, R) the strict (non-strict) reachability graph of G. We say that GR is transitive, if
and only if R is transitive. More generally, we say that a directed graph G is transitive, if
its set of arcs forms a transitive relation. For a directed graph G = (V, A) we call a set of
vertices S ⊆ V a transitivity modulator if G − S is transitive.

▶ Observation 1. Let G be a transitive directed graph. Then, for each vertex v ∈ V (G),
G[V \ {v}] is also transitive.

Next we define our main problems of interest in this work: Finding open and closed
temporal connected components.

Open Temporal Connected Component (Open-TCC)
Input: Temporal graph G = (G1, G2, . . . , GL) and integer k.
Question: Does there exists an open temporal connected component of size at least
k, i.e., a subset C ⊆ V (G) with |C| ≥ k, such that for each u, v ∈ C, u reaches v, and
vice versa.

We differentiate between the strict vs. non-strict and directed vs. undirected version of
Open-TCC depending on whether we consider strict vs. non-strict reachability and directed
vs. undirected temporal graphs. We define the problem Closed Temporal Connected
Component (Closed-TCC) similarly with the additional restriction that at least one
temporal path over which u reaches v is fully contained in C. We abbreviate a temporal
connected component as tcc.

Distance to transitivity. We introduce two parameters that measure how far the reachability
graph GR = (V, A) of a temporal graph is from being transitive. The first parameter, vertex-
deletion distance to transitivity, δvd, counts how many vertices need to be deleted from GR

in order to obtain a transitive reachability graph, i.e., the size of a minimum transitivity
modulator. This parameter is especially suited for temporal graphs for which the reachability
graph consists of cliques with small overlaps. The second parameter, arc-modification distance
to transitivity, δam, counts how many arcs need to be added to or removed from GR in order
to obtain a transitive reachability graph and is especially suited for directed temporal graphs
or temporal graphs for which the reachability graph consists of cliques with large overlaps.
Formally, we define the parameters as follows.

δvd = min
S⊆V

(|S|) for which G′
R = GR − S is transitive.

δam = min
M⊆V ×V

(|M |) for which G′
R = (V, A∆M) is transitive.

For δam, we call the set M an arc-modification set. Note that δvd ≤ 2·δam, since the endpoints
of an arc-modification set form a transitivity modulator.

2.1 Basic Observations
Next, we present basic observations that motivate the study of the considered parameters.

▶ Lemma 2 ([6]). Let G be a temporal graph with reachability graph GR. Then a set S ⊆ V (G)
is a tcc in G if and only if S is a bidirectional clique in GR.

MFCS 2024
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▶ Lemma 3 (⋆). Let G be a transitive directed graph. Then every vertex set S ⊆ V (G) is a
bidirectional clique in G if and only if each pair of vertices of S can reach each other.

Note that this implies the following.

▶ Corollary 4. Let G be a transitive directed graph. Then every scc in G is also a maximal
bidirectional clique and vice versa.

The previous observations thereby imply that both Open-TCC and Closed-TCC can
be solved in polynomial time on temporal graphs with transitive reachability graphs.

3 Vertex-Deletion Distance to Transitivity

We first focus on the parameter δvd. Note that computing this parameter is NP-hard: In a
strict temporal graph G with lifetime 1, the reachability graph GR of G is exactly the directed
graph obtained from orienting each edge of the underlying graph in both directions. Hence,
on such a temporal graph, computing δvd is exactly the cluster vertex deletion number of
the underlying graph, that is, the minimum size of any vertex set to remove, such that no
induced path of length 2 remains. Since computing the latter parameter is NP-hard [22], this
hardness also translates to computing the parameter δvd.

Moreover, note that computing this parameter can be done similarly to computing the
cluster vertex deletion number of a graph: If a directed graph G = (V, A) is not transitive,
then there are vertices u, v, and w in V , such that (u, v) and (v, w) are arcs of A and (u, w)
is not an arc of A. Hence, each transitivity modulator for G has to contain at least one of
the vertices u, v, or w. This implies, that a standard branching algorithm that considers
each of these three vertices to be removed from the graph to obtain a transitive graph, finds
a minimum size transitivity modulator in 3δvd · nO(1) time.

▶ Proposition 5. Let G be a temporal graph with reachability graph GR. Then, we can
compute in time 3δvd · nO(1) a minimal-size transitivity modulator of GR.

Based on this result, we now present an FPT-algorithm for Open-TCC when parameter-
ized by δvd.

▶ Lemma 6. Let I := (G, k) be an instance of Open-TCC with reachability graph GR. Let
S be a given transitivity modulator of GR. Then, we can solve I in time 2|S| · nO(1).

Proof. By Lemma 4, every scc in GR[V \ S] is a bidirectional clique, since S is a transitivity
modulator for GR. Lemma 2 then implies that each tcc C in G with C ∩ S = ∅ is an scc
in GR[V \ S] and vice versa.

The FPT-algorithm then works as follows: We iterate over all subsets S′ of S with the
idea to find a tcc that extends S′. If S′ is not a bidirectional clique in GR, we discard the
current set and continue with the next subset of S, as no superset of S′ is a bidirectional
clique and thus also not a tcc. Hence, assume that S′ is a bidirectional clique. If S′ has
size at least k, I is a trivial yes-instance of Open-TCC. Otherwise, we do the following:
Let V ′ be the vertices of V \ S that are bidirectional connected to every vertex in S′. As
GR[V \ S] is transitive, Observation 1 implies that GR[V ′] is also transitive. Hence, the
sccs in GR[V ′] correspond to tccs in G by Corollary 4 and Lemma 2. Since every vertex in
S′ is bidirectional connected to every other vertex in S′ ∪ V ′ in GR, for each bidirectional
clique C ⊆ V ′ in GR[V ′], C ∪ S′ is a tcc in G. Hence, it remains to check, whether any scc
in GR[V ′] has size at least k − |S′|. Figure 1 illustrates the sets S, S′, and V ′.
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Figure 1 Illustration of the algorithm in Lemma 6. On the left: reachability graph GR with
transitivity modulator S in gray and the chosen subset S′ ⊆ S to extend in blue. On the right: The
subset S′ together with the vertices V ′ that are bidirectionally connected to all vertices in S′.

Finding the strongly connected components of a graph and identifying whether a set of
vertices forms a bidirectional clique can be done in polynomial time. Hence, our algorithm
runs in time 2δvd · nO(1), since we iterate over each subset S′ of S. ◀

Based on Proposition 5 and Lemma 6, we thus derive our FPT-algorithm for Open-TCC
when parameterized by δvd.

▶ Theorem 7. Open-TCC can be solved in 3δvd · nO(1) time.

Kernelization Lower Bounds
In this section, we show that a polynomial kernel for Open-TCC when parameterized
by δvd + vc + k is unlikely, where vc is the vertex cover number of the underlying graph. Note
that δvd and vc are incomparable: On the one hand, consider a temporal graph G where the
underlying graph G is a star with leaf set X ∪ Y and center c, such that the edges from X

to c exist in snapshots G1 and G3 and the edges from Y to c exist in snapshot G2. Then,
each vertex of X can reach each other vertex, but in the strict setting, no vertex of Y can
reach any other vertex of Y . Hence, each minimum transitivity modulator has to contain all
vertices of X or all but one vertex of Y , which implies that for |X| = |Y |, δvd ∈ Θ(|V (G)|),
whereas the vertex cover number of G is only 1. On the other hand, consider a temporal
graph G with only one snapshot G1, such that G1 is a clique. Then, the underlying graph
of G is exactly G1 and has a vertex cover number of |V (G)| − 1, but the strict reachability
graph of G is a bidirectional clique, which is a transitive graph. Hence, δvd(G) = 0.

We now present our kernelization lower bound for the strict undirected version of Open-
TCC.

▶ Theorem 8. The strict undirected version of Open-TCC does not admit a polynomial
kernel when parameterized by vc + δvd + k, unless NP ⊆ coNP/poly, where vc denotes the
vertex cover number of the underlying graph.

Proof. This result immediately follows from the known [21] reduction from Clique which,
in fact, is as a polynomial parameter transformation.

Clique
Input: An undirected graph G = (V, E) and integer k.
Question: Is there a clique of size k in G?

For the sake of completeness, we recall the reduction. Let I := (G = (V, E), k) be an
instance of Clique and let G be the temporal graph with lifetime 1, where G is the unique
snapshot of G.
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Figure 2 For two adjacent vertices u and v of S the vertices and arcs added to the temporal
graph G̃ in the proof of Theorem 9.

Then, for each vertex set X ⊆ V , X is a clique in G if and only if X is a strict
tcc in G. Hence, I is a yes-instance of Clique if and only if (G, k) is a yes-instance of
the strict undirected version of Open-TCC. It is known that Clique does not admit a
polynomial kernel when parameterized by k plus the vertex cover number of G, unless NP ⊆
coNP/poly [12]. Let S be a minimum size vertex cover of G and let GR be the strict
reachability graph of G. Note that GR contains an arc (u, v) with u ̸= v if and only if {u, v}
is an edge of G. Hence, V \ S is an independent set in GR, which implies that S is a
transitivity modulator of GR. Consequently, δvd ≤ |S|. Recall that Clique does not admit a
polynomial kernel when parameterized by k + |S|, unless NP ⊆ coNP/poly [12]. This implies
that the strict undirected version of Open-TCC does not admit a polynomial kernels when
parameterized by vc + δvd + k, unless NP ⊆ coNP/poly. ◀

Next, we present the same lower bound for both directed versions of Open-TCC.

▶ Theorem 9. The directed version of Open-TCC does not admit a polynomial kernel when
parameterized by vc + δvd + k, unless NP ⊆ coNP/poly, where vc denotes the vertex cover
number of the underlying graph. This holds both for the strict and the non-strict version of
the problem.

Proof. Again, we present a polynomial parameter transformation from Clique.
Recall that Clique does not admit a polynomial kernel when parameterized by the size

of a give minimum size vertex cover S of G plus k, unless NP ⊆ coNP/poly [12]. This holds
even if G[S] is (k − 1)-partite [20], which implies that each clique of size k in G contains
exactly k − 1 vertices of S and exactly one vertex of V \ S, since V \ S is an independent set.

Construction. Let I := (G := (V, E), k) be an instance of Clique and let S be a given
minimum size vertex cover S of G, such that G[S] is (k − 1)-partite. Assume that k > 6.

We obtain an equivalent instance of Open-TCC in two steps: First, we perform an
adaptation of a known reduction [6] from the instance (G[S], k − 1) of Clique to an
instance (G̃, k − 1) of the directed version of Open-TCC where each sufficiently large (of
size at least 5) vertex set X of G̃ is a tcc in G̃ if and only if X is a clique in G[S]. Second, we
extend G̃ by the vertices of V \ S and some additional connectivity-gadgets, to ensure that
the resulting temporal graph has a tcc of size k if and only if there is a vertex from V \ S for
which the neighborhood in G contains a clique of size k − 1.

Let (G̃, k − 1) be the instance of Open-TCC constructed as follows: We initialize G̃ as an
edgeless temporal graph of lifetime 5 with vertex set S ∪ {euv, evu | {u, v} ∈ EG(S)}. Next,
for each edge {u, v} ∈ E, we add the arcs (u, euv) and (v, evu) to time step 4 and add the
arcs (euv, v) and (evu, u) to time step 5. This completes the construction of G̃. An example of
the arcs added to G̃ is shown in Figure 2. Note that the first three snapshots of G̃ are edgeless.
This construction is an adaptation of the reduction presented by Bhadra and Ferreira [6]
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Table 1 For each vertex v ∈ V (G′) a lower bound for outmin
v and an upper bound for inmax

v .

outmin
v inmax

v

v ∈ S 2 5
v ∈ V (G̃) \ S 4 5
v ∈ V \ S 1 2
v ∈ {uin | u ∈ S} 3 1

to the case of directed temporal graphs. Note that the temporal graph G̃ has the following
properties that we make use of in our reduction:
1) G̃ is a proper and simple directed temporal graph,
2) the vertex set V of G̃ has size O(|S|2) and contains all vertices of S,
3) each tcc of size at least k − 1 in G̃ contains only vertices of S, and
4) each vertex set X ⊆ S of size at least k − 1 is a tcc in G̃ if and only if X is a clique

in G[S].
Note that the two last properties imply that the largest tcc of G̃ has size at most k − 1,
since G[S] is (k − 1)-partite.

Next, we describe how to extend the temporal graph G̃ to obtain a temporal graph G′

which has a tcc of size k if and only if I is a yes-instance of Clique. Let n := |V |. Moreover,
let G′ be a copy of G̃. We extend the vertex set of G′ by all vertices of V \ S, and a vertex vin
for each vertex v ∈ S.

For each vertex v ∈ S, we add the arc (vin, v) to time step 3. For each vertex v ∈ S and
each neighbor w ∈ V \S of v in G, we add the arc (v, w) to time step 2 and the arc (w, vin) to
time step 1. This completes the construction of G′. Let V ′ denote the newly added vertices,
that is, V ′ := (V \ S) ∪ {vin | v ∈ S}.

Next, we show that there is a clique of size k in G if and only if there is a tcc of size k

in G′.
(⇒) Let K ⊆ V be a clique of size k in G. We show that K is a tcc in G′. As discussed

above, K contains exactly k − 1 vertices of S and exactly one vertex w∗ of V \ S. By
construction of G̃, K \ {w∗} is a tcc in G̃ and thus also a tcc in G′. It thus remains to show
that each vertex K \ {w∗} can reach vertex w∗ in G′ and vice versa. Since each vertex
of K \ {w∗} is adjacent to w∗ in G, by construction, w∗ is an out-neighbor of each vertex
of K \ {w∗} in G′. Hence, it remains to show that w∗ can reach each vertex of K \ {w∗}
in G′. Let v be a vertex of K \ {w∗}. Since v is adjacent to w∗ in G, there is an arc (w∗, vin)
in G′ that exists at time step 1. Hence, there is a temporal path from w∗ to v in G′, since
the arc (vin, v) exists at time step 3. Concluding, K is a tcc in G′.

(⇐) Let X be a tcc of size k in G′. We show that X is a clique of size k in G. To this end,
we first show that X contains only vertices of V . Afterwards, we show that X is a clique
in G.

To show that X contains only vertices of V , we first analyze the reachability of vertices
of V (G′). For a vertex v ∈ V (G′), we denote

by outmin
v the smallest time label of any arc exiting v and

by inmax
v the largest time label of any arc entering v.

Note that a vertex v cannot reach a distinct vertex w in G′ if inmax
w < outmin

v . Table 1 shows
for each vertex v ∈ V (G′) a lower bound for outmin

v and an upper bound for inmax
v .

Based on Table 1, we can derive the following properties about reachability in G′.

▷ Claim 10.
a) No vertex of V (G̃) \ S can reach any vertex of V ′ in G′.
b) No vertex of {vin | v ∈ S} can reach any other vertex of {vin | v ∈ S} in G′.
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c) No vertex of {vin | v ∈ S} can reach any vertex of V \ S in G′.
d) No vertex of S can reach any vertex of {vin | v ∈ S} in G′.
e) No vertex of V \ S can reach any other vertex of V \ S in G′.

Proof. Based on Table 1, we derive Items a) to d). It remains to show Item e). To this end,
observe that each arc with a vertex of V \ S as source has a vertex of {vin | v ∈ S} as sink.
Due to Item c), no vertex of {vin | v ∈ S} can reach any vertex of V \ S in G′. Hence, no
vertex V \ S can reach any other vertex of V \ S in G′. This implies that Item e) holds. ◁

Since X is a tcc in G′, Claim 10 implies that X contains at most one vertex of V \ S

(due to Item e)) and at most one vertex of {vin | v ∈ S} (due to Item b)). In other words, X

contains at most two vertices of V ′. Since k > 6, this then implies that X contains at least
one vertex of V (G̃). Claim 10 thus further implies that X contains no vertex of {vin | v ∈ S}
(due to Items a) and d)). This then implies that X contains at least k − 1 vertices of V (G̃).

To show that X contains only vertices of V and is a clique in G we now show that the
reachability between any two vertices of V (G̃) in G′ is the same as in G̃. Let P be a temporal
path between two distinct vertices of V (G̃) in G′. We show that P is also a temporal path
in G̃. Assume towards a contradiction that this is not the case. Hence, P visits at least one
vertex of V ′. Since no vertex of V (G̃) can reach any vertex of {vin | v ∈ S} (due to Items a)
and d)), P visits no vertex of {vin | v ∈ S}. Moreover, since each vertex of V \ S has only
out-neighbors in {vin | v ∈ S}, P visits no vertex of V \ S either. Consequently, P contains
no vertex of V ′; a contradiction.

Hence, P is a temporal path in G̃, which implies that for each vertex set Y ⊆ V (G̃), Y

is a tcc in G̃ if and only if Y is a tcc in G′. Recall that X contains at least k − 1 vertices
of V (G̃). Since the largest tcc in G̃ has size at most k − 1 and each tcc of size k − 1 in G̃ is a
clique in G, this implies that X ∩ V (G̃) is a clique of size k − 1 in G[S]. Since X contains no
vertex of {vin | v ∈ S}, this implies that X contains exactly one vertex w∗ of V \ S. Hence,
it remains to show that each vertex v ∈ X \ {w∗} is adjacent to w∗ in G. Since X is a tcc
in G′, v can reach w∗ in G′. By construction and illustrated in Table 1, outmin

v ≥ 2 ≥ inmax
w∗ .

Since v reaches w∗ and G′ is a proper temporal graph, the arc (v, w∗) is contained in G′. By
construction, this implies that v and w∗ are adjacent in G. Consequently, X is a clique in G.
This completes the correctness proof of the reduction.

Parameter bounds. It thus remains to show that δvd(G′) and the vertex cover of the
underlying graph of G′ are at most |S|O(1) each. Let V ∗ := V (G′) \ (V \S). Note that V ∗ has
size |V (G̃)| + |S| ∈ O(|S|2) and is a vertex cover of the underlying graph of G′. Hence, the
vertex cover number of the underlying graph of G′ is O(|S|2). To show the parameter bounds,
it thus suffices to show that V ∗ is a transitivity modulator of the reachability graph GR

of G′. Due to Claim 10, GR − V ∗ = GR[V \ S] is an independent set. Consequently, V ∗ is
a transitivity modulator of GR. Hence, δvd(G′) ∈ O(|S|2). By the fact that Clique does
not admit a polynomial kernel when parameterized by |S| + k, unless NP ⊆ coNP/poly,
Open-TCC does not admit a polynomial kernel when parameterized by δvd(G′) plus the
vertex cover number of the underlying graph of G′ plus k, unless NP ⊆ coNP/poly. ◀

Note that our kernelization lower bounds do not include the non-strict undirected version
of Open-TCC. An modification of Theorem 9 seems difficult, unfortunately. This is due
to the fact that undirected edges can be traversed in both direction, which makes it very
difficult to limit the possible reachable vertices in the temporal graph, while preserving a
small transitivity modulator.
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Ĝ G′

Figure 3 Left: the original instance of Clique from Theorem 12 constructed from the reachability
graph of the considered temporal graph. Right: the obtained compressed instance of Clique after
exhaustive application of all reduction rules. In both parts, the blue vertices are the vertices from
the inherent transitivity modulator B and the cycles at the bottom indicate the white clusters. Note
that in both graphs, each blue vertex has neighbors in at most one white cluster (see Claim 14).
Intuitively, RR 1 ensures that small clusters are removed, RR 1 and RR 2 ensure that there are no
isolated white clusters, and RR 3 reduces the size of each white cluster to at most |B| + 1.

4 Arc-Modification Distance to Transitivity - A Polynomial Kernel

Next, we focus on the parameterized complexity of Open-TCC when parameterized by the
size of a given arc-modification set towards a transitive reachability graph. As discussed
earlier, for each arc-modification set M towards a transitive reachability graph, δvd does
not exceed 2 · |M |, since removing the endpoints of all edges of M results in a transitivity
modulator. This implies the following due to Theorem 7 and the fact that a minimum size
arc-modification set towards a transitive graph can be computed in 2.57δam · nO(1) time [25].

▶ Corollary 11. Open-TCC can be solved in 4δam · nO(1) time.

In the remainder of this section, we thus consider this parameter with respect to kernelization
algorithms. In contrast to parameterizations by δvd, we now show that a polynomial
kernelization algorithm can be obtained for Open-TCC when parameterized by the size of a
given arc-modification set towards a transitive reachability graph.

In fact, we show an even stronger result, since our kernelization algorithm does not need
to know the actual arc-modification set but only its endpoints. To formulate this more
general result, we need the following definition: Let G = (V, A) be a directed graph. A
transitivity modulator S ⊆ V of G is called inherent, if there is an arc-modification set M

with M ⊆ S × S for which (V, A∆M) is a transitive graph. Note that the set of endpoint
of an arc-modification set towards a transitive graph always forms an inherent transitivity
modulator.

▶ Theorem 12. Let I = (G, k) be an instance of Open-TCC and let GR = (V, A) be the
reachability graph of G. Moreover, let B ⊆ V be an inherent transitivity modulator of GR.
Then, for each version of Open-TCC, one can compute in polynomial time an equivalent
instance of total size O(|B|3).

Proof. We first present a compression to Clique. Let Ĝ = (V, E) be an undirected graph that
contains an edge {u, v} if and only if (u, v) and (v, u) are arcs of GR. Due to Lemma 2, I is a
yes-instance of Open-TCC if and only if (Ĝ, k) is a yes-instance of Clique. Let W := V \ B.
We call the vertices of B blue and the vertices of W white. Note that GR[W ] is a transitive
graph, since B is a transitivity modulator of GR. Moreover, there exists an arc set M ⊆ B×B

such that G′
R = (V, A∆M) is transitive, since B is an inherent transitivity modulator of GR.
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In the following, we present reduction rules to remove vertices from Ĝ to obtain an equivalent
instance (G′, k′) of Clique with O(|B|2) vertices and where G′ is an induced subgraph of Ĝ.
The graphs Ĝ and G′ are conceptually depicted in Figure 3.

To obtain this smaller instance of Clique, we initialize G′ as a copy of Ĝ and k′ as k and
exhaustively applying three reduction rules. Our first two reduction rules are the following:

RR 1: Remove a vertex v from G′, if v has degree less than k′ − 1 in G′.
RR 2: If a white vertex has at least k′ − 1 white neighbors in G′, output a constant size
yes-instance.

Note that the first reduction rule is safe, since no vertex of degree less than k′ − 1 can be
part of a clique of size at least k′. Moreover, each connected component in G′ has size at
least k′ after this reduction rule is exhaustively applied. The safeness of the second reduction
rule relies on the following observation.

▷ Claim 13. If two white vertices u and v are adjacent in G′, then they are real twins in G′.
That is, NG′ [u] = NG′ [v].

Proof. Assume that u and v are adjacent in G′ and assume towards a contradiction that
there is a vertex w in G′ which is adjacent to u in G′ but not adjacent to v in G′. Since w

and v are not adjacent in G′, GR contains at most one of the arcs (w, v) or (v, w). Assume
without loss of generality that (w, v) is not an arc of GR. Since u is adjacent to both v

and w in G′, GR contains the arcs (v, u) and (u, w). Recall that both u and v are white
vertices. This implies that the arc-modification set M contains no arc incident with any
of these two vertices. Hence, M contains none of the arcs of {(v, u), (u, w), (v, w)}, which
implies that G′

R = (V, A∆M) is not a transitive graph; a contradiction. ◁

Note that this implies that each connected component in G′[W ] is a clique of real twins
in G′. We call each such connected component in G′[W ] a white cluster.

Note that after exhaustive applications of the first two reduction rules, each white cluster
has size at most k′ − 1 and each connected component in G′ has size at least k′. This implies
that each connected component in G′ contains at least one blue vertex. Since G′ contains at
most |B| blue vertices, this implies that G′ has at most |B| connected components.

In the following, we show that no blue vertex has neighbors in more than one white
cluster. This then implies that G′ contains at most |B| · k′ vertices. In a final step, we then
show how to reduce the value of k′.

▷ Claim 14. No blue vertex has neighbors in more than one white cluster.

Proof. Assume towards a contradiction that there is a blue vertex w which is adjacent to
two white vertices u and v in G′, such that u and v are not part of the same white cluster.
Since u and v are not part of the same white cluster, u and v are not adjacent in G′ due
to Claim 13. This implies that GR contains at most one of the arcs (u, v) or (v, u). Assume
without loss of generality that (u, v) is not an arc of GR. Since w is adjacent to both u

and v in G′, GR contains the arcs (u, w) and (w, v). By the fact that both u and v are white
vertices, M contains no arc of {(u, w), (w, v), (u, v)}, which implies that G′

R = (V, A∆M) is
not a transitive graph; a contradiction. ◁

As mentioned above, this implies that G′ contains at most |B| · k′ vertices. Next, we
show how to reduce the size of the white clusters if k′ > |B|. To this end, we introduce our
last reduction rule:

RR 3: If k′ > |B| + 1, remove an arbitrary white vertex from each white cluster and
reduce k′ by 1.
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Note that RR 3 is safe: If k′ > |B| + 1, a clique of size k′ in G′ has to contain at least
two white vertices, since G′ contains at most |B| blue vertices. Since no clique in G′ can
contain vertices of different white clusters, we reduce the size of a maximal clique of size at
least k′ in G′ by exactly one, when removing one vertex of each white cluster.

Hence, after all reduction rules are applied exhaustively, the resulting instance (G′, k′)
of Clique contains at most |B| blue vertices and at most |B| white clusters. Each such
white cluster hast size at most |B| + 1. This implies that the resulting graph G′ contains
O(|B|2) vertices and O(|B|3) edges, since each vertex has degree O(|B|).

Based on a known polynomial-time reduction [6], we can compute for an instance (G∗, k∗)
of Clique, an equivalent instance (G∗, k∗) of Open-TCC, where G∗ is a proper temporal
graph and has O(n + m) vertices and edges, where n and m denote the number of vertices
and the number of edges of G∗, respectively. Since G′ has O(|B|2) vertices and O(|B|3) edges,
this implies that we can obtain an equivalent instance of Open-TCC of total size O(|B|3) in
polynomial time. By the fact that G∗ is a proper temporal graph, this works for all problem
versions of Open-TCC. ◀

Based on the fact that the set B of endpoints of any arc-modification set M towards a
transitive graph is an inherent transitivity modulator of size at most 2 · |M |, this implies
the following for kernelization algorithms with respect to arc-modification sets towards a
transitive graph.

▶ Theorem 15. Let I = (G, k) be an instance of Open-TCC and let GR = (V, A) be the
reachability graph of G. Moreover, let M ⊆ V × V be a set of arcs such that G′

R = (V, A∆M)
is transitive. Then, for each version of Open-TCC, one can compute in polynomial time an
equivalent instance of total size O(|M |3).

Moreover, if the arc-modification set M only adds arcs to the reachability graph, we can
obtain the further even better kernelization result.

▶ Lemma 16 (⋆). Let I = (G, k) be an instance of Open-TCC and let GR = (V, A) be the
reachability graph of G. Moreover, let M ⊆ V × V be a set with A ∩ M = ∅ of arcs such
that G′

R = (V, A∆M) is transitive. Then, for each version of Open-TCC, one can compute
in polynomial time an equivalent instance of total size O(|M |2).

Hence, if we are given an arc-modification set M of size δam, we can compute a polynomial
kernel. Unfortunately, finding a minimum-size arc-modification set of a given directed graph
is NP-hard [25] and no polynomial-factor approximations are known that run in polynomial
time. Hence, we cannot derive a polynomial kernel for the parameter δam. Positively, if
we only consider arc-additions, we can compute the transitive closure of a given directed
graph in polynomial time. This implies that we can find a minimum-size arc-modification
set towards a transitive reachability graph in polynomial time among all such sets that only
add arcs to to reachability graph. Consequently, we derive the following.

▶ Corollary 17. Open-TCC admits a kernel of size O(δ2
aa), where δaa denotes the minimum

number of necessary arc-additions to make the respective reachability graph transitive.

5 Limits of these Parametrizations for Closed TCCs

So far, the temporal paths that realize the reachability between two vertices in a tcc could
lie outside of the temporal connected component. If we impose the restriction that those
temporal paths must be contained in the tcc, the problem of finding a large tcc becomes
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Figure 4 An illustration of the additional vertices and edges that are added to G in the reduction
of Theorem 18. Here, L denotes the lifetime of G and the labels on the edges indicate in which
snapshots the respective edges exist in the constructed temporal graph.

NP-hard even when the reachability graph is missing only a single arc to become a complete
bidirectional clique: In other words, the problem becomes NP-hard even if δvd = δam = 1.
On general temporal graphs, all versions of Closed-TCC are known to be NP-hard [8, 13].

▶ Theorem 18. For each version of Closed-TCC, there is a polynomial time self-reduction
that transforms an instance (G, k) with k > 4 of that version of Closed-TCC into an
equivalent instance (G′, k), such that the reachability graph of G′ is missing only a single arc
to be a complete bidirectional clique.

Proof. Let I := (G, k) be an instance of Closed-TCC with underlying graph G = (V, E) and
let L be the lifetime of G. Moreover, assume for simplicity that the vertices of V are exactly
the natural numbers from [1, n] with n := |V |. To obtain an equivalent instance I ′ := (G′, k)
of Closed-TCC, we extends G as follows: We initialize G′ as a copy of G and for each
vertex v ∈ V , we add a new vertex v′ to G′. Additionally, we add three vertices x1, x2,
and x3 to G′. Furthermore, we append 2n + 4 empty snapshots to the end of G′ and add the
following edges to G′: For each vertex v ∈ V , we add the edge {v, v′} to time steps L + 1
and L + 2n + 4, the edge {v′, x1} to time step L + 1 + v, and the edge {v′, x3} to time
step L + n + 3 + v. Finally, we add the edge {x1, x2} to time step L + n + 2 and the
edge {x2, x3} to time step L + n + 3. This completes the construction of G′. An illustration
of the additional vertices and edges is given in Figure 4.

Before we show the equivalence between the two instances of Closed-TCC, we first show
that the reachability graph G′

R of G′ only misses a single arc to be a bidirectional clique.

▷ Claim 19. The arc (x3, x1) is the only arc that is missing in G′
R.

Proof. First, we show that (x3, x1) is not an arc of G′
R. By construction of G′, (i) no edge

of G′ that is incident with x1 exists in any time step larger than L + n + 2, and (ii) no edge
of G′ that is incident with x3 exists in any time step smaller than L + n + 3. This implies
that no temporal path in G′ that starts in x3 can reach x1. Hence, (x3, x1) is not an arc
of G′

R.
Next, we show that G′

R contains all other possible arcs. To this end, we present strict
temporal paths in G′ that guarantee the existence of these arcs in G′

R. Let u and v be vertices
of V . Consider the temporal path P that starts in vertex u and traverses

the edge {u, u′} in time step L + 1,
the edge {u′, x1} in time step L + 1 + u,
the edge {x1, x2} in time step L + n + 2,
the edge {x2, x3} in time step L + n + 3,
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the edge {x3, v′} in time step L + n + 3 + v, and
the edge {v′, v} in time step L + 2n + 4.

Since each vertex of V is a natural number of [1, n], the times steps in which these edges are tra-
versed by P are strictly increasing, which implies that P is a strict temporal path of G′. Note
that each suffix and each prefix of P is also a strict temporal path in G′. Hence, this implies
that G′

R contains all the arcs {(u, v′), (u, v), (u′, v′), (u′, v)}∪{(u′, x1), (u′, x1), (x1, v′), (x1, v) |
i ∈ {1, 2, 3}} ∪ {(x1, x3)}. Moreover, since {x1, x2} and {x2, x3} are edges in G′, G′

R also
contains the arcs {(x1, x2), (x2, x1), (x2, x3), (x3, x2)}. This implies that (x3, x1) is the unique
arc that is missing in G′

R. ◁

Next, we show that I is a yes-instance of Closed-TCC if and only if I ′ is a yes-instance
of Closed-TCC.

(⇒) This direction follows directly by the fact that G′ is obtained by extending G. Hence,
a closed tcc S of size k in G is also a closed tcc in G′.

(⇐) Let S be a closed tcc of size k in G′. Recall that k > 4. We show that S only
contains vertices of V . To this end, we first show that S does not contain x2.

▷ Claim 20 (⋆). The set S does not contain x2.

Next, we show that the vertex x2 is required to have pairwise temporal paths between
distinct vertices of {w′ | w ∈ V } in G′.

▷ Claim 21 (⋆). Let u and v be distinct vertices of V with u < v. Then, each temporal path
from v′ to u′ in G′ visits x2.

As a consequence, S contains at most one vertex of {w′ | w ∈ V }, since S is a closed
tcc that does not contain vertex x2. Based on the above two claims, we now show that S

contains only vertices of V .

▷ Claim 22 (⋆). Only vertices of V are contained in S.

Since no edge between any two vertices of V was added while constructing G′ from G,
each temporal path in G′ that visits only vertices of V is also a temporal path in G. Together
with Claim 22, this implies that S is a closed tcc in G, which implies that I is a yes-instance
of Closed-TCC. ◀

Recall that all versions of Closed-TCC are NP-hard [8, 13]. Moreover the strict
undirected version of Closed-TCC is W[1]-hard when parameterized by k [8] and both
directed versions of Closed-TCC are W[1]-hard when parameterized by k [13]. Together
with Theorem 18, this implies the following intractability results for Closed-TCC.

▶ Theorem 23. All versions of Closed-TCC are NP-hard even if δvd = δam = 1. More
precisely, this hardness holds on instances where the reachability graph is missing only a
single arc to be a complete bidirectional clique. Excluding the undirected non-strict version
of Closed-TCC, all versions of Closed-TCC are W[1]-hard when parameterized by k

under these restrictions

6 Conclusion

We introduced two new parameters δvd and δam that capture how far the reachability graph of
a given temporal graph is from being transitive. We demonstrated their applicability when the
goal is to find open tccs in a temporal graph, presenting FPT-algorithms for each parameter
individually, and a polynomial kernel with respect to δam, assuming that the corresponding
arc-modification set of size δam is given. Computing such a set is NP-hard in general directed
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graphs [25]. An interesting question, also formulated in that paper, is whether this parameter
is at least approximable to within a polynomial factor of δam. If so, our result implies a
polynomial kernel for Open-TCC when parameterized by δam. Alternatively, the existence
of a proper polynomial kernel for Open-TCC when parameterized by δam could also be
shown by finding an approximation for a minimum-size inherent transitivity modulator due
to Theorem 12 and the fact that the size of a minimum-size inherent transitivity modulator
never exceeds 2 · δam.

Another natural question is to identify what are other (temporal) reachability problems
for which our transitivity parameters could be useful. For instance, consider a variant of the
Open-TCC problem where we search for d-tccs, that is, tccs such that the fastest temporal
path between the vertices has duration at most d. It is plausible that our positive results
carry over to this version when applied to the d-reachability graph, i.e., the graph whose arcs
represent temporal paths of duration at most d.

Regarding Closed-TCC, our intractability results show that neither δvd nor δam suffice
to make this problem tractable. However, our results do not preclude the existence of an
FPT-algorithm in the case that the arc modification operations are restricted to deletion
only, which remains to be investigated. Nonetheless, we still believe that transitivity is a key
aspect of the problem. The problem with Closed-TCC is that the reachability graph itself
does not encode whether the paths responsible for reachability travel through internal or
external vertices.

We would like to initiate the idea of considering further transitivity parameters based on
modifications of the temporal graph itself, not only of the reachability graph. In particular,
could FPT-algorithms for such parameters be achieved for reachability problems such as
Open-TCC with similar performance as our FPT-algorithms for δvd and δam, and could
these parameters make Closed-TCC tractable as well? And if so, how difficult is the
computation of such parameters?
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1 Introduction

Quasi-isometry is an important concept in geometric group theory that has been used to
solve problems in group theory. Loosely speaking, two metric spaces are said to be quasi-
isometric iff there is a mapping (called a quasi-isometry) from one metric space to the other
that preserves the distance between any two points in the first metric space up to some
multiplicative and additive constants. Thus, for example, while the Euclidean plane is not
isometric to R2 equipped with the taxicab distance, the two spaces are quasi-isometric to
each other since the Euclidean distance between any two points does not differ from the
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taxicab distance between them up to a multiplicative factor of
√

2. The study of group
properties – where groups are represented by their Cayley graphs – that are invariant under
quasi-isometries is quite a prominent theme in geometric group theory; examples of such
group properties include hyperbolicity and growth rate [2].

This paper studies quasi-isometries of the ordered sets (N, <) with the objects being
infinite strings, recursive functions from N to a finite alphabet or isomorphic copies of these
structures defined with automatic functions in automata theory replacing recursive ones
(the latter being delayed to the journal version of this paper). The notion of quasi-isometry
for infinite strings was introduced by Khoussainov and Takisaka [6], enabling the study of
global patterns on strings and linking the study of large-scale geometries with automata
theory, computability theory, algorithmic randomness and model theory. Furthermore, quasi-
isometries between hyperbolic metric spaces in general – an example of which is an infinite
string when viewed as a colored metric space – are well-studied in geometric group theory.
Isometries between computable metric spaces have also been studied by Melnikov [10].

Among the various questions investigated by Khoussainov and Takisaka was the compu-
tational complexity of the quasi-isometry problem: given any two infinite strings α and β, is
there a quasi-isometry from α to β? They found that for any two quasi-isometric strings,
a quasi-isometry that is recursive in the halting problem relative to α and β always exists
between them, and that the quasi-isometry problem between any two recursive strings is
Σ0

2-complete [7]1. In comparison, the corresponding problem for isometry with respect to
recursive strings is Π0

1-complete [10]. Khoussainov and Takisaka also had the following open
problem which was mentioned in many talks and discussions: if a quasi-isometric reduction
from α to β exists, does there always exist a recursive quasi-isometric reduction? This is
a very natural question for computer science, specifically for computability theory, since it
seeks to understand how complex such a reduction is. We answered this question in the
negative, that is, there are cases where the reduction exists but cannot be made recursive.
The fourth author’s bachelor thesis [9] which contains this result was cited by Khoussainov
and Takisaka in the journal version [7] of their paper [6].

To complete the picture, the present work examines, in more detail, the recursion-theoretic
aspects of quasi-isometries between infinite strings. We study various natural restrictions
on quasi-isometric reductions between strings: first, many-one reductions, where the quasi-
isometric reduction is required to be recursive and many-one; second, one-one reductions,
which are injective many-one reductions; third, permutation quasi-isometric reductions, which
are surjective one-one reductions.

The main subjects of this work are the structural properties of the equivalence classes
induced by the different types of reductions and the relationships between these reductions.
In accordance with recursion-theoretic terminology, we call an equivalence class induced by
a reduction type a degree of that reduction type. We show, for example, that within each
many-one quasi-isometry degree, any pair of strings has a common upper bound as well as a
common lower bound with respect to one-one reductions. Furthermore, there are two strings
for which their many-one quasi-isometry degrees have a unique least common upper bound.
The main result is the separation of quasi-isometry from recursive quasi-isometry, that is, we
construct two recursive strings such that one is quasi-isometric reducible to the other but
no recursive many-one quasi-isometry exists between them. This main result answers the
above-mentioned open problem posed by Khoussainov and Takisaka.

1 Note that [7] is the journal version of their paper [6], containing some corrections from the earlier paper.
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2 Notation

Any unexplained recursion-theoretic notation may be found in [11, 13, 14]. The set of positive
integers will be denoted by N; N∪ {0} will be denoted by N0. The finite set Σ will denote the
alphabet used. We assume knowledge of elementary computability theory over different size
alphabets [1]. An infinite string α ∈ Σω can also be viewed as a Σ-valued function defined
on N. The length of an interval I is denoted by |I|. For αi ∈ Σ∗ and i ∈ N, we write (αi)∞

i=1
to denote α1α2 · · · , a possibly infinite string.

3 Colored Metric Spaces and Infinite Strings

▶ Definition 1 (Colored Metric Spaces, [6]). A colored metric space (M ; dM , Cl) consists of
the underlying metric space (M ; dM ) with metric dM and the color function Cl : M → Σ,
where Σ is a finite set of colors called an alphabet. We say that m ∈ M has color σ ∈ Σ if
σ = Cl(m).

▶ Definition 2 (Quasi-isometries Between Colored Metric Spaces, [6]). For any A ≥ 1 and
B ≥ 0, an (A, B)-quasi-isometry from a metric space M1 = (M1; d1) to a metric space
M2 = (M2; d2) is a function f : M1 → M2 such that for all x, y ∈ M1, 1

A · d1(x, y) − B ≤
d2(f(x), f(y)) ≤ A · d1(x, y) + B, and for all y ∈ M2, there exists an x ∈ M1 such that
d2(f(x), y) ≤ A.

Given two colored metric spaces M1 = (M1; d1, Cl1) and M2 = (M2; d2, Cl2), a function
f : M1 → M2 is a quasi-isometric reduction from M1 to M2 iff for some A ≥ 1 and B ≥ 0,
f is an (A, B)-quasi-isometry from (M1; d1) to (M2; d2) and f is color-preserving, that is,
for all x ∈ M1, Cl1(x) = Cl2(f(x)).

An infinite string α can then be seen as a colored metric space (N; d, α), where d is the metric
on N defined by d(i, j) = |i − j| and α : N → Σ is the color function. For any two infinite
strings α and β, we write α ≤qi β to mean that there is a quasi-isometric reduction from α

to β. The relation ≤qi is a preorder on Σω. For any pair of distinct letters a1, a2 ∈ Σ, aω
1

and aω
2 are incomparable with respect to ≤qi, so this relation is not total.

The following proposition gives a useful simplification of the definition of quasi-isometry
in the context of infinite strings.

▶ Proposition 3. Given two infinite strings α and β, let f : N → N be a color-preserving
function. Then f is a quasi-isometric reduction from α to β iff there exists a constant C ≥ 1
such that for all x, y in the domain of α, the following conditions hold:
(a) d(f(x), f(x + 1)) ≤ C;
(b) x + C < y ⇒ f(x) < f(y).

Proof. First, suppose that f : N → N is a color-preserving quasi-isometric reduction from α

to β. We show that there exists a constant C ≥ 1 for which Conditions (a) and (b) hold for
any x, y ∈ N. By the definition of a quasi-isometric reduction, there exist constants A ≥ 1
and B ≥ 0 such that

1
A

· d(x, y) − B ≤ d(f(x), f(y)) ≤ A · d(x, y) + B. (1)

We first derive, for each of the two conditions, a choice of C satisfying it.
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(i) Plugging y = x + 1 into the upper bound in (1) yields d(f(x), f(x + 1)) ≤ A + B.
(ii) Assume for the sake of a contradiction that for all C ≥ 1, there are x ∈ N and C ′ > C

such that f(x + C ′) ≤ f(x). We show that if C is chosen so that A + B ≤ 1
A · C − B,

then the existence of some C ′ > C with f(x + C ′) ≤ f(x) would lead to a contradiction.
Fix such a C, and suppose there were indeed some C ′ with C ′ > C ≥ 1 and

f(x + C ′) ≤ f(x) . (2)

Then,

f(x + C ′ + 1) − f(x + C ′) ≤ d(f(x + C ′ + 1), f(x + C ′))
≤ A + B (by statement (i))

≤ 1
A

· C − B (by the choice of C)

<
1
A

· C ′ − B (since C ′ > C)

≤ f(x) − f(x + C ′) (by (1) and (2)) ,

giving f(x + C ′ + 1) < f(x). One can repeat the preceding argument inductively,
yielding the inequality f(x + C ′ + k + 1) − f(x + C ′ + k) < f(x) − f(x + C ′ + k), or
equivalently f(x + C ′ + k + 1) < f(x), for each k ≥ 0. But this is impossible since f(x)
is finite and d(f(x + C ′ + k + 1), f(x + C ′ + k′ + 1)) > 0 whenever |k − k′| is sufficiently
large.

It follows from (i) and (ii) that Conditions (a) and (b) are satisfied for C = A · (A + 2B).
For a proof of the converse direction, fix a C satisfying Conditions (a) and (b). Suppose

x ∈ N. Then by Condition (a), d(f(x), f(x + 1)) ≤ C. Inductively, assume that d(f(x), f(x +
n)) ≤ n · C. Then by the inductive hypothesis and Condition (a), d(f(x), f(x + n + 1)) ≤
d(f(x), f(x+n))+d(f(x+n), f(x+n+1)) ≤ n ·C +C = (n+1) ·C where the first inequality
follows from the triangle inequality. Consequently, for all x, y ∈ N,

d(f(x), f(y)) ≤ d(x, y) · C . (3)

Next, we establish a lower bound for d(f(x), f(y)). Without loss of generality, assume
x < y. Write y = x + i(C + 1) + j for some i ∈ N0 and 0 ≤ j ≤ C. By a simple induction, one
can show that f(x + i(C + 1)) ≥ f(x) + i and thus d(f(x), f(x + i(C + 1)) ≥ i. Furthermore,
d(f(x + i(C + 1)), f(y)) ≤ C2. Thus d(f(x), f(y)) ≥ i − C2 and i ≥ d(x, y)/(C + 1) − 1. It
follows that d(f(x), f(y)) ≥ d(x, y)/(C + 1) − 1 − C2. Thus one can select A = (C + 1) and
B = C2 + 1 to establish the required bounds for the quasi-isometric mapping.

To establish that for all y ∈ M2, there exists an x ∈ M1 such that d2(f(x), y) ≤ A, one
can choose any A ≥ max(C, f(1)), as the distance between f(x) and f(x + 1) is bounded
by C. ◀

By Proposition 3, we can now redefine quasi-isometric reduction in terms of one constant C,
instead of two constants A and B as in Definition 2, reducing the number of constants by 1.

▶ Definition 4. Suppose C ≥ 1. Given infinite strings α and β, a C-quasi-isometry from α

to β is a color-preserving function f : N → N such that for all x, y in the domain of α,
(a) f(1) ≤ C and f(x) − C ≤ f(x + 1) ≤ f(x) + C.
(b) x + C < y ⇒ f(x) < f(y).
For the rest of the paper, we shall use “Condition (a)” and “Condition (b)” to refer to the
above conditions respectively, without necessarily mentioning the definition number.
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A useful property of a C-quasi-isometry f from α to β is that any position of β has at most
C + 1 pre-images under f .

▶ Lemma 5 ([6, Corollary II.4]). Given two infinite strings α and β, suppose that f is a
C-quasi-isometry from α to β. Then for all y ∈ N, |f−1(y)| ≤ C + 1.

It was proven earlier that for any infinite strings α, β and any C-quasi-isometry f from α to
β, there is a constant D such that each position of β is at most D positions away from some
image of f . The next lemma states that each position of β in the range of f is at most C

positions away from a different image of f . The proof is omitted due to space restrictions.

▶ Lemma 6. Given two infinite strings α and β, suppose that f is a C-quasi-isometry
from α to β. Then min{f(x) : x ∈ N} ≤ C and for each y ∈ N, min{f(x) : x ∈ N
and f(x) > f(y)} ≤ f(y) + C. Hence for each z ∈ N, there is some x ∈ N such that
d(f(x), z) ≤ C.

▶ Corollary 7. Let Σ = {a1, . . . , al} and let α, β be two infinite strings. Let f be a C-quasi-
isometry from α to β. Suppose that there is a positive integer K such that there is at least
one occurrence of ai in any interval of positions of α of length K. Then there is at least one
occurrence of ai in any interval of positions of β of length KC.

A quasi-isometry f can fail to be order-preserving in that there are pairs x, y ∈ N with x < y

and f(x) > f(y). Nonetheless, as Khoussainov and Takisaka noted [6, Lemma II.2], every
quasi-isometry enforces a uniform upper bound on the size of a cross-over – the difference
f(x) − f(y) for such a pair x, y ∈ N.

▶ Lemma 8 (Small Cross-Over Lemma, [6, Lemma II.2]). Given two infinite strings α and β,
suppose that f is a C-quasi-isometry from α to β. Then for all n, m ∈ N with n < m, we
have f(n) − f(m) ≤ C2.

4 Recursive Quasi-Isometric Reductions

Khoussainov and Takisaka [6] investigated the structure of the partial-order Σω
qi of the

quasi-isometry degrees over an alphabet Σ = {a1, . . . , al}. They proved that Σω
qi has a

greatest element, namely the degree of (a1 · · · an)ω, and that Σω
qi contains uncountably many

minimal elements. Furthermore, they showed that Σω
qi includes a chain of the type of the

integers, and that it includes an antichain. In connection with computability theory, in
particular with the arithmetical hierarchy, they established that the quasi-isometry relation
on recursive infinite strings is Σ0

2-complete [7]. In this section, we continue research into the
recursion-theoretic aspects of quasi-isometries on infinite strings. We consider the notions
of many-one and one-one recursive reducibilities first introduced by Post [12] as relations
between recursive functions, and apply them to quasi-isometric reductions. We also define a
third type of quasi-isometric reducibility – permutation reducibility – which is bijective. We
then prove a variety of results on the degrees of such reductions.

▶ Definition 9 (Many-One Reducibility). A string α is many-one reducible, or mqi-reducible,
to a string β iff there exists a quasi-isometric reduction f from α to β such that f is recursive.
We call such an f a many-one quasi-isometry (or mqi-reduction), and write α ≤mqi β to
mean that α is many-one reducible to β; if, in addition, f is a C-quasi-isometry, then we
call f a C-many-one quasi-isometry (or C-mqi-reduction). We write α <mqi β to mean that
α ≤mqi β and β ̸≤mqi α.
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37:6 Quasi-Isometric Reductions Between Infinite Strings

▶ Definition 10 (One-One Reducibility). A string α is one-one reducible, or 1qi-reducible, to
a string β iff there exists a many-one quasi-isometry f from α to β such that f is one-one.
We call such an f a one-one quasi-isometry (or 1qi-reduction), and write α ≤1qi β to mean
that α is one-one reducible to β; if, in addition, f is a C-quasi-isometry, then we call f a
C-one-one quasi-isometry (or C-1qi-reduction). We write α <1qi β to mean that α ≤1qi β

and β ̸≤1qi α.

▶ Definition 11 (Permutation Reducibility). A string α is permutation reducible, or pqi-
reducible, to a string β iff there exists a one-one quasi-isometry f from α to β such that f

is surjective. We call such an f a permutation quasi-isometry (or pqi-reduction), and write
α ≤pqi β to mean that α is permutation reducible to β; if, in addition, f is a C-quasi-isometry,
then we call f a C-permutation quasi-isometry (or C-pqi-reduction). We write α <pqi β to
mean that α ≤pqi β and β ̸≤pqi α. Here, note that it can be shown that α ≤pqi β implies
β ≤pqi α.

Given an alphabet Σ, the relations ≤mqi, ≤1qi, ≤pqi and ≤qi are preorders on the class of
infinite strings over Σ. Let ≡mqi be the relation on Σω such that α ≡mqi β iff α ≤mqi β

and β ≤mqi α. Then ≡mqi is an equivalence relation on Σω. We call an equivalence class
on Σω induced by ≡mqi a many-one quasi-isometry degree (or mqi-degree), and denote the
mqi-degree of an infinite string α by [α]mqi. Analogous definitions apply to ≡1qi, [α]1qi, ≡pqi,
[α]pqi, ≡qi and [α]qi.

We denote the partial orders induced by ≤pqi, ≤1qi, ≤mqi and ≤qi on the pqi-degrees,
1qi-degrees, mqi-degrees and qi-degrees by Σω

pqi, Σω
1qi, Σω

mqi and Σω
qi respectively.

By definition, Σω
pqi is a refinement of Σω

1qi in the sense that for all infinite strings α and
β, [α]pqi ≤pqi [β]pqi ⇒ [α]1qi ≤1qi [β]1qi. In a similar manner, Σω

1qi is a refinement of Σω
mqi,

which is in turn a refinement of Σω
qi. The first subsection deals with the mqi-degrees, starting

with the inner structure of each mqi-degree.

4.1 Structure of the mqi-Degrees
Fix any two distinct infinite strings β and γ belonging to [α]mqi. It can be shown that β and
γ have a common upper bound as well as a common lower bound in [α]mqi such that these
bounds are witnessed by 1qi-reductions.

▶ Proposition 12. For any two distinct infinite strings β, γ ∈ [α]mqi, there exists a δ ∈ [α]mqi

such that β ≤1qi δ and γ ≤1qi δ.

Proof. Let f be a C-mqi-reduction from β to γ. Let δ be the infinite string obtained from γ

by repeating C + 1 times each letter of γ. Then γ ≤1qi δ via a (C + 1)-1qi-reduction g defined
by g(n) = (n − 1) · (C + 1) + 1 for each n ∈ N. Furthermore, δ ≤mqi γ via a C-mqi-reduction
g′ defined by g′(n) = ⌈ n

C+1 ⌉. Thus δ ∈ [α]mqi.
Next, one constructs a (C2 + 2C)-1qi-reduction f ′ from β to δ using the function f . For

each y in the range of f , map the pre-image of y under f , which by Lemma 5 has at most
C + 1 elements, to the set of positions of δ corresponding to the C + 1 copies of the letter at
position y. Formally, define

f ′(n) =


g(f(n)) , if f(n) ̸= f(n′) for all n′ < n;
g(f(n)) + C ′ , otherwise; where 1 ≤ C ′ < C + 1 is minimum such that

g(f(n)) + C ′ ̸= f ′(n′) for all n′ < n.
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We verify that f ′ is an injective (C2 + 2C)-quasi-isometry. Injectiveness follows from the
definition of f ′: in the first case, the injectiveness of g ensures that f ′(x) ̸= f ′(x′) for all
x′ < x; in the second case, it is directly enforced that f ′(x) ̸= f(x′) for all x′ < x. Since
f is a C-reduction, x + C < y ⇒ f(x) < f(y) ⇒ g(f(x)) < g(f(y)) ⇒ f ′(x) < f ′(y), and
so f ′ satisfies Condition (b) with constant C. Now we show that f ′ satisfies Condition
(a) with constant C2 + 2C. By Condition (a), d(f(x), f(x + 1)) ≤ C. Without loss of
generality, assume that f(x) ≤ f(x + 1). By the definition of f ′, f ′(x) ≥ g(f(x)) and
f ′(x + 1) ≤ g(f(x + 1)) + C. Since f(x) ≤ f(x + 1), it follows that f ′(x) ≤ f ′(x + 1) and so

d(f ′(x + 1), f ′(x)) ≤ g(f(x + 1)) + C − g(f(x))
= (C + 1) · (f(x + 1) − 1) + 1 + C − (C + 1) · (f(x) − 1) − 1
= (C + 1) · (f(x + 1) − f(x)) + C

≤ C · (C + 1) + C

= C2 + 2C .

This completes the proof. ◀

Next, we prove a lower bound counterpart of Proposition 12.

▶ Proposition 13. For any two distinct infinite strings β, γ ∈ [α]mqi, there exists a δ ∈ [α]mqi

such that δ ≤1qi β and δ ≤1qi γ.

Proof. Suppose β = β1β2 . . ., where βi ∈ Σ. Let f : N → N be a C-mqi-reduction from β to
γ. Now define δ = βi1βi2 . . ., where ik is the minimum index such that ik ̸= il for all l < k

and for all j < ik, f(j) ̸= f(ik). By Condition (b), the range of f is infinite and thus each ik

is well-defined. We verify that δ ≤1qi β and δ ≤1qi γ.
Define f ′(n) = in for all n ∈ N. We show that f ′ is a 1qi-reduction from δ to β. By the

choice of the in’s, f ′(n) > f ′(m) whenever n > m; in particular, f ′ is injective and Condition
(b) holds for f ′. Furthermore, given any n, by applying Condition (b) to f and all n′ ≤ n, it
follows that f ′(n + 1) ≤ f ′(n) + C + 1. Hence f ′ also satisfies Condition (a).

Next, define a 1qi-reduction f ′′ from δ to γ by f ′′(n) = f(in). The injectiveness of
f ′′ follows from the choice of the in’s (though f ′′ is not necessarily strictly monotone
increasing). Using the fact that in+1 ≤ in +C +1, as well as applying Condition (a) in+1 − in

times, d(f ′′(n + 1), f ′′(n)) = d(f(in+1), f(in)) ≤ C · d(in+1, in) ≤ C · (C + 1). Hence f ′′

satisfies Condition (a) with constant C · (C + 1). Since the in’s are strictly increasing,
m + C < n ⇒ im + C < in ⇒ f(im) < f(in). Thus f ′′ is a C · (C + 1)-1qi-reduction.

Lastly, define a mqi-reduction g from β to δ by g(n) = k where k is the minimum integer
with f(n) = f(ik). As the in’s cover the whole range of f , g is well-defined. For any given
n, suppose g(n) = k1 and g(n + 1) = k2, so that f(n) = f(ik1) and f(n + 1) = f(ik2). By
Condition (b), d(n, ik1) ≤ C and d(n + 1, ik2) ≤ C, and so

d(g(n), g(n + 1)) = d(k1, k2)
≤ d(ik1 , ik2)
≤ d(n, ik1) + d(n, n + 1) + d(n + 1, ik2)
≤ 2C + 1 .

Hence g satisfies Condition (a) with constant 2C + 1. To verify that g satisfies Condition
(b) for some constant, fix any n and apply Condition (b) C · (C + 1) times to f , giving
f(n) + C · (C + 1) ≤ f(n + C · (C + 1)2). Suppose g(n) = ik1 and g(n + C · (C + 1)2) = ik2 , so
that f(n) = f(ik1) and f(n + C · (C + 1)2) = f(ik2). Then d(f(ik1), f(ik2)) = d(f(n), f(n +
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C · (C + 1)2)) ≥ C · (C + 1). So by applying Condition (a) d(ik1 , ik2) times to f , we have
C · d(ik1 , ik2) ≥ d(f(ik1), f(ik2)) ≥ C · (C + 1). Dividing both sides of the inequality by
C yields d(ik1 , ik2) ≥ C + 1. Applying the contrapositive of Condition (b) to f then gives
f(ik2) ≥ f(ik1) ⇒ ik2 +C ≥ ik1 . Since d(ik1 , ik2) ≥ C +1, this implies that g(n+C ·(C +1)2)
= ik2 > ik1 = g(n). Thus g satisfies Condition (b) with constant C · (C + 1)2 − 1. ◀

4.2 1qi-Degrees Within mqi-Degrees
We now investigate the structural properties of 1qi-degrees within individual mqi-degrees.
As will be seen shortly, these properties can vary quite a bit depending on the choice of the
mqi-degree.

▶ Proposition 14. There exists an infinite string α such that [α]mqi is the union of an
infinite ascending chain of 1qi-degrees.

Proof. Let Σ = {0, 1} and let α = 10ω. Then [α]mqi consists of all infinite strings with a
finite, positive number of occurrences of 1. Given any infinite string β with k ≥ 1 occurrences
of 1, β is 1qi-equivalent to a string γ in [α]mqi iff γ has exactly k occurrences of 1. If
1 ≤ k < k′, then each string β ∈ [α]mqi with exactly k occurrences of 1 is 1qi-reducible to any
string β′ ∈ [α]mqi with exactly k′ occurrences of 1. Thus [α]mqi is the union of an ascending
chain [α]1qi < [110ω]1qi < [1110ω]1qi < . . ., where the i-th term of this chain is 1i0ω. ◀

▶ Proposition 15. There exists an infinite string α such that the poset of 1qi-degrees within
[α]mqi is isomorphic to N2 with the componentwise ordering. That is, [α]mqi is the union
of infinitely many disjoint infinite ascending chains of 1qi-degrees such that every pair of
these ascending chains has incomparable elements. Also, [α]mqi does not contain infinite
anti-chains of 1qi-degrees.

Proof. Let Σ = {0, 1, 2} and let α = 120ω. Then [α]mqi consists of all infinite strings with a
finite, positive number of 1’s and a finite, positive number of 2’s. Furthermore, [α]1qi consists
of all infinite strings with exactly one occurrence of 1 and exactly one occurrence of 2.

Based on the proof of Proposition 14, [α]mqi is the union, over all k ≥ 1, of chains of the
form [12k0ω]1qi < [122k0ω]1qi < . . ., where the i-th term of each chain is [1i2k0ω]1qi. Given
any two chains Γj = {[1i2j0ω]1qi : i ∈ N} and Γk = {[1i2k0ω]1qi : i ∈ N}, where j < k, the
classes [122j0ω]1qi ∈ Γj and [12k0ω]1qi ∈ Γk are incomparable with respect to ≤1qi.

It remains to show that any anti-chain of 1qi-degrees contained in [α]mqi must be finite.
Consider any anti-chain of 1qi-degrees containing the class [1i2j0ω]1qi ⊆ [α]mqi. Every
element of this anti-chain that is different from [1i2j0ω]1qi is of the form [1i′2j′0ω]1qi, where
either i < i′ and j > j′, or i > i′ and j < j′. Thus, if the anti-chain were infinite, then
it would contain at least 2 1qi-degrees, [β]1qi and [γ]1qi, such that either β has the same
number of occurrences of 1 as γ, or β has the same number of occurrences of 2 as γ. This is
a contradiction as it would imply that either β ≤1qi γ or γ ≤1qi β. ◀

4.3 pqi-Reductions
We now discuss pqi-reductions, which are the most stringent kind of quasi-isometric reductions
considered in the present work. Pqi-reductions are 1qi-reductions that are surjective; an
example of such a reduction is the mapping 2m − 1 7→ 2m, 2m 7→ 2m − 1 from (01)ω to
(10)ω. We record a few elementary properties of pqi-reductions.

▶ Lemma 16. If f is a pqi-reduction and if x + D = f(x) for some D ≥ 1 and some x ∈ N,
then there are at least D positions y > x such that f(y) < f(x).
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Proof. If x + D = f(x) for some D ≥ 1, then {1, . . . , x + D − 1} \ {f(1), . . . , f(x − 1)} must
contain at least D elements as the former set contains D more elements than the latter.
Thus, for f to be a bijection, there must exist at least D positions y > x that are mapped
by f into {1, . . . , x + D − 1} \ {f(1), . . . , f(x − 1)}. ◀

We next observe that for any pqi-reduction f , there is a uniform upper bound on the difference
x − f(x).

▶ Proposition 17. If f is a C-pqi-reduction, then for all x ∈ N, x − f(x) < 2C2 + 1.

Proof. Assume, by way of contradiction, that there is some x ∈ N such that x − f(x) ≥
2C2 + 1. First, suppose that there are at least C2 + 1 numbers z such that z > x and
f(z) ∈ {f(x) + 1, f(x) + 2, . . . , x − 1}. Then there are at least C2 + 1 numbers z′ such that
z′ < x and f(z′) > x > f(x), among which there is at least one z′

0 with f(z′
0) ≥ x + C2 + 1.

This would contradict the fact that by the Small Cross-Over Lemma (Lemma 8), z′
0 < x ⇒

f(z′
0) ≤ f(x) + C2 < x + C2.
Second, suppose that f maps at most C2 numbers greater than x into {f(x) + 1, f(x) +

2, . . . , x − 1}. Then there are at least C2 + 1 numbers less than x that are mapped into
{f(x) + 1, f(x) + 2, . . . , x − 1} and in particular, there is at least one number y < x such
that f(y) ≥ f(x) + C2 + 1, contradicting the Small Cross-over Lemma. Thus for all x ∈ N,
x − f(x) < 2C2 + 1. ◀

Lemma 16 and Proposition 17 together give a uniform upper bound on the absolute difference
between any position number and its image under a C-pqi-reduction.

▶ Corollary 18. If f is a C-pqi-reduction, then for all x ∈ N, |x − f(x)| < 2C2 + 1.

Proof. By Condition (b), there cannot be more than C numbers y such that y > x and
f(y) < f(x). Lemma 16 thus implies that there cannot exist any D > C such that
x + D = f(x), and so f(x) − x ≤ C. Combining the latter inequality with that in Proposition
17 yields |x − f(x)| < max{C + 1, 2C2 + 1} = 2C2 + 1. ◀

Given any infinite string α, it was observed earlier that by the definitions of pqi, 1qi and
mqi-reductions, [α]pqi ⊆ [α]1qi ⊆ [α]mqi. In the following example, we give instances of
strings α where each of the two subset relations is proper or can be replaced with the equals
relation.

▶ Example 19.
(a) [α]pqi = [α]1qi = [α]mqi. Set α = 0ω. For any infinite string γ such that γ ≤mqi 0ω, γ

can only contain occurrences of 0, and therefore [0ω]pqi = [0ω]1qi = [0ω]mqi = {0ω}.
(b) [α]1qi = [α]mqi and [α]pqi ⊂ [α]1qi. Set α = (01)ω. First, (001)ω ≤1qi (01)ω, as witnessed

by the 1qi-reduction 3n − 2 7→ 4n − 3, 3n − 1 7→ 4n − 1, 3n 7→ 4n for n ∈ N. We also have
(01)ω ≤1qi (001)ω via the 1qi-reduction 2n − 1 7→ 3n − 2, 2n 7→ 3n for n ∈ N. However,
(001)ω /∈ [(01)ω]pqi because the density of 0’s and 1’s in the two strings are different,
making it impossible to construct a permutation reduction between them. More formally,
if there were a pqi-reduction from (001)ω to (01)ω, then by Corollary 18, there would be a
constant D such that for each n, the first 3n positions of (001)ω are mapped into the first
3n + D positions of (01)ω. But the first 3n positions of (001)ω contain 2n occurrences of
0 while the first 3n + D positions of (01)ω contain at most

⌈
1.5n + D

2
⌉

occurrences of 0,
and for large enough n, one has 2n >

⌈
1.5n + D

2
⌉
. Hence no pqi-reduction from (001)ω

to (01)ω can exist, and so [α]pqi ⊂ [α]1qi.
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To see that [(01)ω]mqi ⊆ [(01)ω]1qi, we first note that any string that is mqi-reducible to
(01)ω (or to any other recursive string) must be recursive. Thus if β ≤mqi (01)ω, then
a 1qi-reduction from β to (01)ω can be constructed by mapping the n-th position of
β to the position of the matching letter in the n-th occurrence of 01 in (01)ω. Next,
suppose that f is a C-mqi-reduction from (01)ω to β. By Corollary 7, f maps the
positions of (01)ω to a sequence of positions of β that contains 0 and 1 every 2C positions.
Thus a 1qi-reduction can be constructed from (01)ω to β by mapping, for each n, the
(2n − 1)-st and (2n)-th positions of (01)ω to the positions of the first occurrence of 0 and
first occurrence of 1 respectively in the interval [2C(n − 1) + 1, 2Cn] of positions of β.
Therefore β ∈ [(01)ω]1qi.

(c) [α]1qi ⊂ [α]mqi and [α]pqi = [α]1qi. Set α = 10ω. We recall from the proof of Proposition
14 that [10ω]pqi and [10ω]1qi consist of all binary strings with a single occurrence of 1,
while [10ω]mqi consists of all binary strings with a finite, positive number of occurrences
of 1. Thus [10ω]pqi = [10ω]1qi and [10ω]pqi ̸= [10ω]mqi.

(d) [α]pqi ⊂ [α]1qi ⊂ [α]mqi. Set α = (0n1)∞
n=1, the concatenation of all strings 0n1 where

n ∈ N. Then β = (0n11)∞
n=1 ∈ [α]mqi; however, β /∈ [α]1qi as each pair of adjacent

positions of 1’s in β must be mapped to distinct positions of 1’s in α, but the distance
between the n-th and (n + 1)-st occurrences of 1 in α increases linearly with n, meaning
that Condition (a) cannot be satisfied.
To construct an mqi-reduction from β to α, map the positions of the substring 0n11 of β

to the positions of the substring 0n1 of α as follows: for k ∈ {1, . . . , n}, the position of
the k-th occurrence of 0 in 0n11 is mapped to that of the k-th occurrence of 0 in 0n1,
while the two positions of 1’s in 0n11 are mapped to the position of the single 1 in 0n1.
For an mqi-reduction from α to β, for each substring 0n1 of α and each substring 0n11
of β, the positions of 0n in 0n1 are mapped to the corresponding positions of 0n in 0n11,
while the position of 1 in 0n1 is mapped to the position of the first occurrence of 1 in
0n11. Thus β ∈ [α]mqi.
Furthermore, γ = 1(0n1)∞

n=1 ∈ [α]1qi but γ /∈ [α]pqi. The reason for γ not being pqi-
reducible to α is similar to that given in Example (b). If such a pqi-reduction did
exist, then by Corollary 18, there would exist a constant D such that for all n, the first
1 +

∑n
k=1(k + 1) = 1 + n(n+3)

2 positions of γ are mapped into the first 1 + n(n+3)
2 + D

positions of α. But the first 1 + n(n+3)
2 positions of γ contain n + 1 occurrences of 1 and

for large enough n, the first 1 + n(n+3)
2 + D positions of α contain at most n occurrences

of 1. Hence no pqi-reduction from γ to α is possible.
For a 1qi-reduction from γ to α, map the starting position of γ, where the letter 1 occurs,
to the first occurrence of 1 in α. For subsequent positions of γ, for each n ≥ 1, the
set of positions of γ where the substring 0n1 occurs can be mapped in a one-to-one
fashion into the set of positions of α where the substring 0n+11 occurs. To see that α

is 1qi-reducible to γ, it suffices to observe that α is a suffix of γ, so one can map the
positions of α in a one-to-one fashion to the positions of the suffix of γ corresponding to
α. The 1qi-reduction from α to γ is trivial.

Proposition 21 extends the first example in Example 19 by characterising all recursive strings
whose pqi, 1qi and mqi-degrees all coincide. In fact, there are only |Σ| many such strings:
those of the form aω

i , where ai ∈ Σ. We call the pqi, 1qi and mqi-degrees of such strings
trivial. Due to space constraint, the proof of Proposition 21 is omitted.

▶ Definition 20. The pqi, 1qi and mqi-degrees of each string aω
i , where ai ∈ Σ, will be called

trivial pqi, 1qi and mqi-degrees respectively.
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▶ Proposition 21. If, for some recursive string α, [α]pqi = [α]1qi = [α]mqi, then all three
degree classes are trivial.

We observe next that every non-trivial pqi degree must be infinite.

▶ Proposition 22. All non-trivial pqi-degrees are infinite.

Proof. Suppose that at least two distinct letters occur in α. Fix a letter, say a1, that occurs
infinitely often in α. Let a2 be a letter different from a1 that occurs in α. For each n ∈ N,
let βn = an

1 a2α(n+1), where α(n+1) is obtained from α by removing the first occurrence of a2
as well as the first n occurrences of a1. Since βn is built from α by permuting the letters
occurring at a finite set of positions of α, βn ∈ [α]pqi. As the βn’s are all distinct, it follows
that [α]pqi is indeed infinite. ◀

We close this subsection by illustrating an application of Proposition 22, showing that if the
mqi-degree of α contains at least two distinct strings such that one is 1qi-reducible to the
other, then the first string is 1qi-reducible to infinitely many strings in [α]mqi.

▶ Proposition 23. If there exist distinct β ∈ [α]mqi and γ ∈ [α]mqi such that β ≤1qi γ, then
β is 1qi-reducible to infinitely many strings in [α]mqi.

Proof. Suppose that β ≤1qi γ and β ̸= γ for some β ∈ [α]mqi and γ ∈ [α]mqi. Then [α]mqi is
non-trivial, so by Proposition 22, [γ]pqi is infinite. Since [γ]pqi ⊆ [γ]1qi, [γ]1qi is also infinite.
Thus β is 1qi-reducible to each of the infinitely many strings in [γ]1qi. ◀

4.4 The Partial Order of All mqi-Degrees
As discussed earlier, Khoussainov and Takisaka [6] observed that for any alphabet Σ =
{a1, . . . , al}, the partial order Σω

qi has a greatest element equal to [(a1 · · · al)ω]qi. Their proof
also extends to the partial order of all recursive mqi-degrees, showing that for each recursive
string α, [α]mqi ≤mqi [(a1 · · · al)ω]mqi. We next prove that there is a pair of recursive
mqi-degrees whose join is precisely the maximum recursive mqi-degree [(a1 · · · al)ω]mqi.

▶ Proposition 24. Suppose that Σ = {a1, . . . , al}. Then there exist two distinct infinite
strings α and β such that [(a1 · · · al)ω]mqi is the unique recursive common upper bound of
[α]mqi and of [β]mqi under ≤mqi.

Proof. Let α = (a1)ω and β = (a2a3 · · · al)ω. Suppose that for some recursive string γ,
α ≤mqi γ via a C-mqi-reduction. Since a1 is the only letter occurring in α, Condition (a)
implies that there must be at least one occurrence of a1 in γ every C positions. Similarly,
if β ≤mqi γ via a C ′-mqi-reduction, then for each ai with i ≥ 2, since ai occurs every l − 1
positions, it must also occur in γ every C ′ · (l − 1) positions. Hence there exists a constant
C ′′ such that every substring of γ of length C ′′ contains at least one occurrence of ai for
every i ∈ {1, . . . , l}, and therefore (a1 · · · al)ω ≤mqi γ. Since γ ≤mqi (a1 · · · al)ω follows from
the proof of [6, Proposition II.1], one has γ ∈ [(a1 · · · al)ω]mqi, as required. ◀

Khoussainov and Takisaka [6] showed that the partial order Σω
qi is not dense. In particular,

given any distinct ai, aj ∈ Σ, there is no element [β]qi that is strictly between the minimal
element [(aj)ω]qi and the “atom” [ai(aj)ω]qi [6, Proposition II.1]. The next theorem shows
similarly that the partial order Σω

mqi is non-dense with respect to pairs of mqi-degrees. The
high-level proof of the theorem is given below; the proofs of claims used are not shown due
to space limitations.
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▶ Theorem 25. There exist two pairs (α, β) and (γ, δ) of recursive strings such that both α

and β are mqi-reducible to γ as well as mqi-reducible to δ, but there is no string ξ such that
α ≤mqi ξ, β ≤mqi ξ, ξ ≤mqi γ and ξ ≤mqi δ.

Proof. Let Σ = {0, 1}. Define the strings

α = σ1σ2 . . . , where σn = (01)22n

0n1n ;

β = τ1τ2 . . . , where τn = (01)22n

1n0n ;

γ = µ1µ2 . . . , where µn = (01)22n

0n ;

δ = ν1ν2 . . . , where νn = (01)22n

1n .

We first show that α ≤mqi γ. For each i ∈ N, define the following intervals of positions.
Ki = [ki, ki + 22i+1 − 1] is the interval of positions of the substring (01)22i

of σi in α.
Ri = [ri, ri + 2i − 1] is the interval of positions of the substring 0i1i of σi in α.
Li = [li, li + 22i+1 − 1] is the interval of positions of the substring (01)22i

of µi in γ.
L′

i = [li + 22i+1, li + 22i+1 + i − 1] is the interval of positions of the substring 0i of µi in γ.

Define an mqi-reduction g from α to γ as follows. For i ∈ N,

g(ki + 4w + 2u + x) = li + 2(i − 1) + 2w + x , 0 ≤ w ≤ i − 2, u, x ∈ {0, 1} ;

g(ki + m) = li + m , 4i − 4 ≤ m ≤ 22i+1 − 1 ;

g(ri + m) = li + 22i+1 + m , 0 ≤ m ≤ i − 1 ;
g(ri + i + m) = li+1 + 2m + 1 , 0 ≤ m ≤ i − 1.

The mqi-reduction g maps the interval Ki to the suffix of the interval Li starting at its
(2i − 1)-st position such that each of the first i − 1 pairs of positions of this suffix is the image
of two consecutive pairs of positions of Ki, while the remaining |Ki| − 2(i − 1) positions of
Ki is mapped by g to the remaining positions of the suffix of Li in a one-to-one fashion.
Thus g is a 4-mqi-reduction from α to γ. A similar mqi-reduction can be constructed from β

to γ, from α to δ, as well from β to δ.
Assume, by way of contradiction, that there is a string ξ and there are mqi-reductions f1

from α to ξ, f2 from β to ξ, f3 from ξ to γ and f4 from ξ to δ with constants C1, C2, C3 and
C4 respectively. Set C = max{C1, C2, C3, C4} and fix some n > 2C7 + 1.

For i ∈ N, let K ′
i = [ki + C2 + 2, ki + 22i+1 − 3 − C2] be the interval obtained from Ki by

removing the first and last C2 + 2 positions. We make the following observation. The proof
is omitted due to space constraint.

▷ Claim 26. For all positions m ∈ K ′
n, for i ∈ {1, 2} and j ∈ {3, 4}, fj(fi(m)) ∈ Ln.

Define the sets Hi = f1(K ′
i) ∪ f2(K ′

i) for i ∈ N. We show that the sets Hn and Hn+1 are non-
overlapping by proving max(Hn) < min(Hn+1). By Claim 26, for all m ∈ Hn and j ∈ {3, 4}
we have fj(m) ∈ Ln. Then, we have f(min(Hn+1))−f(max(Hn)) ≥ min(Ln+1)−max(Ln) =
n + 1 > 2C7 + 2 > C2. So by the Small Cross-Over Lemma, min(Hn+1) > max(Hn).

Consider the interval [min(Hn), max(Hn)] in the domain of ξ. By Claim 26, f3 (resp. f4)
maps each element of Hn into Ln. Fix any other position z in the interval. Then f3
cannot map z into L′

n, which is the set of positions in γ of the string 0n. To see this, we
note that if ℓ and ℓ + 1 are the two largest values of Kn, then ℓ is at least C2 + 1 more
than the value x such that fi(x) = max(Hn) for some i ∈ {1, 2}, and so by Condition
(b), z + C < max(Hn) + C < fk(ℓ + 1) for k ∈ {1, 2}. Thus f3(z) < f3(fk(ℓ + 1)) for
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k ∈ {1, 2}. Furthermore, by applying Condition (a) repeatedly to f3 and then to fk, we have
d(f3(fk(ℓ+1)), f3(fk(max(K ′

n)))) ≤ C ·d(fk(ℓ+1), fk(max(K ′
n))) ≤ C2 ·(C2 +2) = C4 +2C2.

Since f3(fk(max(K ′
n))) ∈ Ln and we fixed n > 2C7 + 1, then f3(fk(ℓ + 1)) /∈ Ln+1.

Furthermore, the letter at position f3(fk(ℓ + 1)) of γ is 1. Thus f3(z) cannot lie in L′
n as

there is no occurrence of 1 in L′
n. A similar argument, using position ℓ rather than position

ℓ + 1, shows that f4(z) cannot lie in L′
n. One can also prove similarly that none of the

positions in the interval [min(Hn+1), max(Hn+1)] is mapped by f3 or f4 into the interval L′
n.

Next, we consider the positions of ξ between max(Hn) and min(Hn+1). Since none of
the positions of ξ in the union [min(Hn), max(Hn)] ∪ [min(Hn+1), max(Hn+1)] is mapped
by f3 into L′

n and L′
n is an interval of length n > 2C7, Lemma 6 implies that there are at

least ⌊ n
C3

⌋ positions of ξ between Hn and Hn+1 which are mapped into L′
n. Then, we can

make the following observations – the proofs of which are omitted due to space constraint.

▷ Claim 27. The string ξ contains a substring of 0’s (resp. 1’s) of length Ω(C4) between
Hn and Hn+1 such that all positions of this substring are mapped by f3 (resp. f4) into L′

n.

▷ Claim 28. There cannot exist between Hn and Hn+1 two Ω(C4)-long substrings of 0’s
(resp. 1’s) such that an Ω(C4)-long substring of 1’s (resp. 0’s) lies between them.

Based on these two claims, there are exactly two maximal intervals J1 and J2, each of
length Ω(C4), such that the substrings of ξ occupied by J1 and J2 belong to {0}∗ and {1}∗

respectively. Then f1 maps Ω(C3) positions of [rn, rn + n − 1] into J1 and Ω(C3) positions
of [rn + n, rn + 2n − 1] into J2; further, there are two positions that are Ω(C3) positions
apart, one in [rn, rn + n − 1] and the other in [rn + n, rn + 2n − 1], such that f1 maps the
first position into J1 and the second position into J2. This implies that J1 must precede
J2, for otherwise Condition (b) would be violated. Arguing similarly with f2 in place of f1
(that is, the mapping from β to ξ), it follows that J2 must precede J1, a contradiction. We
conclude that the string ξ cannot exist. ◀

Example 19 established separations between various notions of recursive quasi-reducibility:
pqi, 1qi and mqi-reducibilities. It remains to separate general quasi-isometry from its recursive
counterpart. Due to space constraint, we only give a proof sketch of Theorem 29.

▶ Theorem 29. There exist two recursive strings α and β such that α ≤qi β but α ̸≤mqi β.

Proof sketch. We begin with an overview of the construction of α and β. To ensure that
only non-recursive quasi-isometries between α and β exist, we use a tool from computability
theory, which is a Kleene tree [8] – an infinite uniformly recursive binary tree with no infinite
recursive branches (see, for example, [11, §V.5]). The idea of the proof is to encode a fixed
Kleene tree into β, and construct α such that for any quasi-isometry f from α to β, an
infinite branch of the encoded Kleene tree can be computed recursively from f . Hence, f

cannot be recursive, as otherwise the chosen infinite branch of the Kleene tree must be
recursive, contradicting the definition of a Kleene tree.

We now describe the construction of α and β based on some fixed Kleene tree T ⊆ {0, 1}∗.
The building blocks for α and β are called n-blocks, which are strings of the following form
for some n ∈ N:

λ(n,0) = 0n1n,
λ(n,i) = 0⌊ n+1

2 ⌋1i0⌈ n+1
2 ⌉1n, for 1 ≤ i ≤ n − 1,

λ′
n = (01)n1n,

We may also call an n-block as simply a block.
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To construct α and β we concatenate the blocks in stages, where in stage n we arrange
n-blocks to form θn and ζn. Then, θn and ζn for n ∈ N are concatenated to form α and β

respectively. That is, α = θ1θ2 . . . and β = ζ1ζ2 . . . where θn and ζn are defined as follows:
θ1 = ζ1 = λ(1,0).
For n ≥ 2, θn = vn,1 sn,1 vn,2 sn,2 vn,3 tn vn,4 un.
For n ≥ 2, ζn = v′

n,1 s′
n,1 v′

n,2 s′
n,2 v′

n,3 t′
n v′

n,4 u′
n.

We now state the definitions of each variables vn,1 and so on, and explain their purpose later.
For n ≥ 2, we define the following:

Let Bn
1 , Bn

2 , Bn
3 , Bn

4 , Bn
5 , Bn

6 , Bn
7 , Bn

8 be the number of blocks in α before the start of
vn,1, sn,1, vn,2, sn,2, vn,3, tn, vn,4, un respectively.
Join segments vn,i = v′

n,i = (λ(n,0))3nBn
2i−1 .

Scaling segments sn,1vn,2sn,2 and s′
n,1v′

n,2s′
n,2, each containing two of the scaling parts

sn,i = s′
n,i = (λ(n,1))nB(λ(n,2))nB . . . (λ(n,n−1))nB(λ(n,0))2nB where B means Bn

2i.
Branching segments tn = (λ(n,0))2nBn

6 +1 and t′
n = (λ(n,0))2nBn

6 λ′
n.

Selection segments un and u′
n defined as follows. Let

Sn =
{

n−1∑
m=1

bm4n−1−m : b1 · · · bn−1 ∈ T ∩ {0, 1}n−1

}
.

Then, each element
∑n−1

m=1 bm4n−1−m of Sn corresponds to the binary string b1 · · · bn−1 ∈
T . Define un = λ(n,1)(λ(n,0))max(Sn). For 1 ≤ i ≤ max(Sn) + 1, let the i-th block of u′

n

be λ(n,0) if i − 1 ̸∈ Sn and be λ(n,1) if i − 1 ∈ Sn.
Note that the number of blocks in the respective segments of α and β are the same. So, for
example, the number of blocks in α before vn,i is the same as that of β before v′

n,i.
Before we explain the purpose of each segment, we first describe some useful properties of

the n-blocks. The proofs are omitted due to space restrictions. Let f be any C-quasi-isometric
reduction from α to β. For all large enough n:

No position of the i-th occurrence of an n-block in α is mapped by f to the position of
an m-block in β with m < n.
No position of a block λ(n,1) is mapped by f to a position of a block λ(n,0) occurring in β.
For i ≤ n − 2, f maps the sequence of positions of each λ(n,i) block in a scaling segment
of θn into either the sequence of positions of a λ(n,i) block in a scaling segment of ζn or
the sequence of positions of a λ(n,i+1) block in a scaling segment of ζn.
f can map the sequence of positions of a λ(n,n−1) block into the sequence of positions of
exactly k blocks λ(n,0) iff k = 2.
Up to C + 1 blocks λ(n,0) can be mapped to a single λ′

n block.
A single λ(n,0) block can be mapped across λ(n,0)λ

′
n.

We can now describe the purpose of each segment. As above, the proofs are omitted due
to space restrictions. Let f be a C-quasi-isometric reduction from α to β. For sufficiently
large n ≥ 2:

Each join segment vn,i has a non-negative lead ℓ such that for all nBn
2i−1+1 ≤ j ≤ 2nBn

2i−1,
f maps the j-th λ(n,0) block of vn,i to the (j + ℓ)-th λ(n,0) block of v′

(n,i).
The scaling part doubles the lead in the previous join segment. Since a scaling segment
contains two scaling parts, the scaling segment multiplies the lead by four. Hence, if the
lead of vn,1 is ℓ, then the lead of vn,3 is 4ℓ.
The branching segment ensures that the lead is decreased by at most C or increased by 1.
So, if the lead of vn,3 is 4ℓ, then the lead of vn,4 is between 4ℓ − C and 4ℓ + 1 inclusive.
The selection segment ensures that the lead in the previous join segment vn,4 is in Sn.
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Then, one can show that there is some constant c such that for large enough n, the leads
ℓn and ℓn+1 of the join segments vn,4 and vn+1,4 are contained in Sn and Sn+1 respectively,
and the binary strings σn ∈ T ∩ {0, 1}n−1 and σn+1 ∈ T ∩ {0, 1}n, corresponding to ℓn and
ℓn+1 respectively have a common prefix of length n − c. Let τn be the prefix of σn of length
n − c. Then, for some large enough n, τn ≺ τn+1 ≺ τn+2 ≺ . . . give an infinite branch of the
Kleene tree T , which is non-recursive by definition of Kleene trees. Moreover, this infinite
branch can be computed recursively from f . Hence, the quasi-isometric reduction f from α

to β must be non-recursive. Hence, α ̸≤mqi β.
We now describe how to construct a quasi-isometric reduction f from α to β, using some

fixed infinite branch B(1)B(2) · · · of the Kleene tree. Since θ1 = ζ1 = λ(n,0), we can map θ1
to ζ1 in a strictly increasing manner and the lead in the next segment is 0. We can now
describe the mappings for each segment in θn for n ≥ 2. Observe that each block λ(n,i) can
be mapped to a block λ(n,j) in a strictly increasing manner if j = i or i + 1. For each join
segment v(n,i) with lead ℓ1 and 3nBn

2i−1 blocks, map the first 3nBn
2i−1 − ℓ1 blocks of vn,i

to the last 3nBn
2i−1 − ℓ1 blocks of v′

(n,i). Then, map the last ℓ1 blocks of vn,i to the first ℓ1
blocks of the following segment in ζn. The lead in the next segment is ℓ1.

Next we describe the mapping for scaling part sn,i with lead ℓ2. For each 1 ≤ j ≤
(n − 1)nBn

2i − ℓ2, map the j-th block of sn,i to the (j + ℓ2)-th block of s′
n,i. Map each of

the last ℓ2 blocks λ(n,n−1) of sn,i to 2 blocks λ(n,0) of s′
n,i. Map the first 2nBn

2i − 2ℓ2 blocks
λ(n,0) of sn,i to the remaining 2nBn

2i − 2ℓ2 blocks λ(n,0) of s′
n,i. Map the last 2ℓ2 blocks λ(n,0)

of sn,i to the first 2ℓ2 blocks of the following join segment in ζn. The lead of the next join
segment is 2ℓ2.

For the branching segment, suppose that the current lead is ℓ3. If B(n − 1) = 1, map the
(2nBn

6 − ℓ3)-th λ(n,0) block to the concatenation λ(n,0)λ
′
n of two blocks in t′

nvn,4. Otherwise,
map the (2nBn

6 −ℓ3 +1)-st λ(n,0) block to the λ′
n block in t′

n. Map the rest of the λ(n,0) blocks
such that f is strictly increasing. Then, the lead of the next join segment is ℓ3 + B(n − 1).

For the selection segment, suppose that the current lead is ℓ4. Map the λ(n,1) block to
the (ℓ4 + 1)-st block. By induction, ℓ4 ∈ Sn and so the (ℓ4 + 1)-st block in the selection
segment of ζn is λ(n,1). Map the λ(n,0) blocks in a strictly increasing manner. ◀

5 Conclusions and Future Investigations

The present paper introduced finer-grained notions of quasi-isometries between infinite strings,
in particular requiring the reductions to be recursive. We showed that permutation quasi-
isometric reductions are provably more restrictive than one-one quasi-isometric reductions,
which are in turn provably more restrictive than many-one quasi-isometric reductions. One
result was that general many-one quasi-isometries are strictly more powerful than recursive
many-one quasi-isometries, which answers Khoussainov and Takisaka’s open problem.

This work also presented some results on the structures of the permutation, one-one and
many-one quasi-isometric degrees. It was shown, for example, that there are two infinite
strings whose many-one quasi-isometric degrees have a unique common upper bound. It was
also proven that the partial order Σω

mqi is non-dense with respect to pairs of mqi-degrees. We
conclude with the simple observation that the class of mqi-degrees does not form a lattice; in
particular, the mqi-degrees [0ω]mqi and [1ω]mqi do not have a common lower bound.

For future work, we consider an automata-theoretic version of quasi-isometric reduction.
Note that Definition 4 defines quasi-isometric reduction based only on the ordering of
the natural numbers, as well as adding and subtracting constants. Then we can define
an automatic version of Definition 4 for any automatically-ordered set (A, ≤A) which is
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order-isomorphic to (N, ≤): we replace natural number i with the i-th smallest element
of A, and study automatic functions µ, ν : A → Σ instead of infinite recursive strings
α, β : N → Σ. (The complete definitions of automatic functions and relations can be found
in [3, 4, 5].) Note that the successor function is first-order definable in (A, ≤A) as follows:
succ(x) = x + 1 := min{y : x <A y}. So, adding and subtracting constants are automatic
as well. Then this definition corresponds to the quasi-isometric reduction between colored
metric spaces (A; dA, µ) and (A; dA, ν) where the metric function dA is defined in terms of
the order-isomorphism g from (A, ≤A) to (N, ≤); that is, dA(x, y) = |g(x) − g(y)|.

Now one can ask, for which automatic functions µ, ν : A → Σ, is there a quasi-isometric
reduction from µ to ν? And can every quasi-isometric reduction between some given µ, ν be
replaced by an automatic quasi-isometric reduction? The journal version of this paper will
also study this automatic setting and show that the answer to the second question depends
on (A, ≤A). Moreover, the expressibility, that is, which mappings from N to Σ correspond to
automatic functions from A to Σ in (A, ≤A), also depends on the choice of (A, ≤A).
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Abstract
A path cover of a digraph is a collection of paths collectively containing its vertex set. A path cover
with minimum cardinality for a directed acyclic graph can be found in polynomial time [Fulkerson,
AMS’56; Cáceres et al., SODA’22]. Moreover, Dilworth’s celebrated theorem on chain coverings of
partially ordered sets equivalently states that the minimum size of a path cover of a DAG is equal
to the maximum size of a set of mutually unreachable vertices. In this paper, we examine how far
these classic results can be extended to a dynamic setting.

A temporal digraph has an arc set that changes over discrete time-steps; if the underlying
digraph is acyclic, then it is a temporal DAG. A temporal path is a directed path in the underlying
digraph, such that the time-steps of arcs are strictly increasing along the path. Two temporal paths
are temporally disjoint if they do not occupy any vertex at the same time. A temporal path cover
is a collection C of temporal paths that covers all vertices, and C is temporally disjoint if all its
temporal paths are pairwise temporally disjoint. We study the computational complexities of the
problems of finding a minimum-size temporal (disjoint) path cover (denoted as Temporal Path
Cover and Temporally Disjoint Path Cover).

On the negative side, we show that both Temporal Path Cover and Temporally Disjoint
Path Cover are NP-hard even when the underlying DAG is planar, bipartite, subcubic, and there
are only two arc-disjoint time-steps. Moreover, Temporally Disjoint Path Cover remains
NP-hard even on temporal oriented trees. We also observe that natural temporal analogues of
Dilworth’s theorem on these classes of temporal DAGs do not hold.

In contrast, we show that Temporal Path Cover is polynomial-time solvable on temporal
oriented trees by a reduction to Clique Cover for (static undirected) weakly chordal graphs (a
subclass of perfect graphs for which Clique Cover admits an efficient algorithm). This highlights
an interesting algorithmic difference between the two problems. Although it is NP-hard on temporal
oriented trees, Temporally Disjoint Path Cover becomes polynomial-time solvable on temporal
oriented lines and temporal rooted directed trees.

Motivated by the hardness result on trees, we show that, in contrast, Temporal Path Cover
admits an XP time algorithm with respect to parameter tmax + tw, where tmax is the maximum
time-step and tw is the treewidth of the underlying static undirected graph; moreover, Temporally
Disjoint Path Cover admits an FPT algorithm with respect to the same parameterization.
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1 Introduction

A classic theorem of Dilworth from 1950 [14] states that in any partially ordered set (poset),
the minimum number of chains required to cover all the elements is equal to the maximum
size of an antichain. Dilworth’s theorem is fundamental from the mathematical point of
view; furthermore, an algorithmic proof (that enables to construct a chain cover and an
antichain in polynomial time) was published by Fulkerson in 1956 [17]. This theorem and
its algorithmic form have many applications, not only in combinatorics, but also in various
fields such as bioinformatics [6], scheduling [32], databases [22], program testing [36], etc.

A collection P of (resp. pairwise vertex-disjoint) directed paths of a digraph D is a
path cover (resp. path partition) of D if all vertices of D are contained in some path of P.
Dilworth’s theorem can be restated in an equivalent form, equating the minimum cardinality
of path covers on directed acyclic graphs (DAGs) and the maximum size of a set of pairwise
“unreachable” vertices, or antichain vertices [4, 5, 16].

Fulkerson [17] showed that finding a minimum-size path cover of a DAG can be done in
polynomial time. Moreover, by using similar methods, one can also find a minimum-size
path partition in polynomial time for arbitrary DAGs (see [11, Probl. 26-2] or [15, Chapter
11.5]). Improving the best known algorithms for path cover and partitions of DAGs is still
an active field of research, see for example [4, 5, 10, 28, 31] for some recent results.

The notions of directed paths and path covers naturally extends to temporal (di)graphs.
Informally, the arc set of a temporal digraph changes over discrete time-steps and labels of
an arc are the time-steps where the arc appears. Temporal (di)graphs have been extensively
studied in the two last decades, with contributions from and applications to various fields,
see [7, 21, 23, 34, 35, 37]. A temporal path of a digraph is a path that traverses edges appearing
at strictly increasing time-steps. The asymmetric nature of temporal paths has motivated
many recent algorithmic works on related reachability or path problems on temporal graphs,
such as [1, 2, 3, 8, 24, 33].

Two temporal paths are temporally disjoint if they do not occupy a vertex at the same
time-step. Motivated by applications in artificial intelligence, this definition was introduced
by Klobas et al. [25] and has since then garnered some attention from the graph algorithmic
community [29]. Even though the above notion was introduced in the context of temporal
undirected graphs, it naturally extends to temporal digraphs and motivates the corresponding
covering problems. The objective of Temporal Path Cover (resp. Temporally Disjoint
Path Cover) is to cover an input temporal digraph by a minimum number of temporal
paths (resp. temporally disjoint paths).

Main objectives. In this paper, we initiate the algorithmic study of Temporal Path
Cover and Temporally Disjoint Path Cover and focus on temporal directed acyclic
graphs (or simply, temporal DAGs). A temporal digraph is a temporal DAG if the union
of all arcs across all time-steps induces a (static) DAG. We say that a temporal digraph
satisfies the Dilworth property (resp. temporally disjoint Dilworth property, or TD-Dilworth
property for short) if the largest size of a temporal antichain (understood as a set of pairwise
temporally unreachable vertices) is equal to the smallest size of a temporal path cover (resp.
temporally disjoint path cover). The main goals of this paper are the following:
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(a) Determine classes of temporal DAGs satisfying the (TD-)Dilworth property.
(b) Study the computational complexities of Temporal Path Cover and Temporally

Disjoint Path Cover on temporal digraphs.

Practical motivation. Similar to the problems studied by Klobas et al. [25], one natural
application is Multi-Agent Path Finding (MAPF) [13, 40], which can be applied for example
to crime prevention in transportation networks [44]. In this setting, k agents are assigned the
task of surveying a location: collecting data, moving objects around, looking out for hazards,
etc. When the changes over time are predictable (train network, irrigation periods in a field,
departure and arrival of vehicles in a logistics area, blockades at given times in a post-disaster
area, naturally occurring blockades such as tides, ...), the location is modeled as a temporal
digraph. If the location digraph does not contain directed cycles, it is modeled by a temporal
DAG (for example, if it is inherently directed from a start area towards a target area). The
exploration path of an agent can be modeled by a temporal path. Now, Temporal Path
Cover corresponds to the situation where the agents need to explore the whole location,
while for Temporally Disjoint Path Cover, the agents also cannot be simultaneously at
the same place, a scenario described as vertex-conflicts in the literature [39]. In both cases,
we want to minimize the number k of agents.

Spatio-temporal security games [42, 43] are a natural example of applicability of MAPF. In
these games, defenders want to protect spatially-located resources from attackers by covering
them, and have to take time into account whenever they are moving (to be sure that the
edges are available when they need to use them). In these games, the temporal dimension
is generally represented by adding one layer of space per time-step. This representation
induces a DAG, with as many vertices as the size of the initial graph multiplied by the
number of time-steps. It seems natural to encode time through the more compact model of
temporal graphs, which allows these games to be modeled by Temporal Path Cover and
Temporally Disjoint Path Cover.

Our results. We begin by formally defining the problems studied in this paper.

Temporal Path Cover (TPC)
Input: A temporal digraph D, an integer k.
Problem: Does there exist a set C of k temporal paths in D such that every vertex of D is

covered by some path of C?

Temporally Disjoint Path Cover (TD-PC)
Input: A temporal digraph D, an integer k.
Problem: Does there exist a set C of k temporally disjoint temporal paths in D such that

every vertex of D is covered by some path of C?

We observe that in general, temporal DAGs do not have the Dilworth property (see
Figure 1a). Then, we prove the following negative result.

▶ Theorem 1. Temporal Path Cover and Temporally Disjoint Path Cover are
NP-hard on temporal DAGs, even if the input is planar, bipartite, subcubic, of girth 10, has
only one time label per arc, and every label is either 1 or 2.

A temporal DAG D is a temporal oriented tree if the underlying directed graph of D is a
tree. On the positive side, we prove the following.
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(a) A temporal DAG not having the Dilworth
property.
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(b) A temporal oriented tree not having the TD-
Dilworth property.

Figure 1 Each encircled area is a path of a minimum-size (temporally disjoint) temporal path
cover, vertices in a maximum-size temporal antichain are in black.

▶ Theorem 2. There is an O(ℓn2 + n3)-time algorithm for Temporal Path Cover on
temporal oriented trees with n vertices and at most ℓ many labels per arc. Furthermore,
temporal oriented trees satisfy the Dilworth property.

We briefly describe the technique we use for proving Theorem 2. Two vertices of a
temporal digraph are temporally connected if there exists a temporal path from one to the
other. The connectivity graph of a temporal digraph D is an undirected (static) graph whose
vertex set is the same as that of D, and whose edge set consists of all pairs of temporally
connected vertices. To prove the above theorem, we show that the connectivity graph of a
temporal oriented tree is a weakly chordal graph [19] (a subclass of perfect graphs). We show
Temporal Path Cover can be reduced to Clique Cover on weakly chordal graphs. The
above observation, combined with the Weak Perfect Graph Theorem (proved by Lovász [30]),
proves that temporal oriented trees satisfy the Dilworth property. Moreover, the existing
O(nm)-time algorithm [20] to compute a minimum clique cover of a weakly chordal graph
(having n vertices and m edges) completes the proof of Theorem 2. Our proof gives interesting
structural information on the interaction between temporal paths in temporal oriented trees.
Interestingly, another important class of perfect graphs plays an important role in connection
with Dilworth’s theorem and its translation to the setting of static DAGs: the class of
comparability graphs, see [18, Chapter 5.7]. In our case, there does not appear to be any
connection to comparability graphs.

On the other hand, temporal oriented trees do not satisfy the TD-Dilworth property (see
Figure 1b for an example). Then, we prove the following negative result.

▶ Theorem 3. Temporally Disjoint Path Cover is NP-hard on temporal oriented trees.

To find classes that satisfy the TD-Dilworth property, we study temporal oriented lines
(that is, where the underlying digraph is an oriented path) and temporal rooted directed trees.
A tree is a rooted directed tree if it is an oriented tree with a single source vertex called the
root. We prove the following result.

▶ Theorem 4. Temporal Path Cover and Temporally Disjoint Path Cover can be
solved in time:
(a) O(ℓn) on temporal oriented lines;
(b) O(ℓn2) on temporal rooted directed trees;
where ℓ is the maximum number of labels per arc and n is the number of vertices. Furthermore,
both classes satisfy the TD-Dilworth property.

Note that some related problems remain NP-hard for temporal lines, such as Temporally
Disjoint Walks [26]. Theorem 4(a) shows that this is not the case here. To prove



D. Chakraborty, A. Dailly, F. Foucaud, and R. Klasing 38:5

Table 1 Summary of our algorithmic results. For all polynomial-time solvable classes of temporal
DAGs, we also show that the Dilworth property (or TD-Dilworth property for TD-PC) holds.

temporal graph class TPC TD-PC

temporal DAGs (planar bipartite subcubic,
girth 10, two arc-disjoint time-steps) NP-c. NP-c.

temporal oriented trees poly
O(ℓn2 + n3) NP-c.

temporal rooted directed trees poly
O(ℓn2)

poly
O(ℓn2)

temporal oriented lines poly
O(ℓn)

poly
O(ℓn)

general temporal digraphs with
bounded treewidth tw and number of time-steps tmax

poly
(XP w.r.t. tw and tmax)

poly
(FPT w.r.t. tw and tmax)

Theorem 4(b), we begin by constructing a temporal path cover before transforming it into a
temporally disjoint one of the same size. This is in contrast with general temporal oriented
trees, for which, by Theorem 3, such an approach is not possible.

As Temporally Disjoint Path Cover is NP-hard even on temporal oriented trees
and on temporal DAGs with two time-steps, a natural question is what happens when the
number of time-steps is small and the underlying digraph is a tree. Motivated by this
question, we study the case where both the number of time-steps and the treewidth of the
underlying digraph are bounded (where we define the treewidth of a temporal digraph as the
treewidth of the underlying static undirected graph). We show that both problems become
tractable in this setting. More precisely, we give a fixed-parameter tractable (FPT) algorithm
for Temporally Disjoint Path Cover with treewidth and number of time-steps as
parameters. The same technique gives an XP algorithm for Temporal Path Cover.

▶ Theorem 5. There is an algorithm for Temporally Disjoint Path Cover on general
temporal digraphs that is FPT with respect to the treewidth of the underlying undirected
graph and the maximum number of labels per arc. For Temporal Path Cover on general
temporal digraphs, there is an XP algorithm for the same parameter.

See Table 1 for a summary of our algorithmic results.

Further related work. Algorithms for solving several types of path and distance problems
in temporal graphs have been developed, see for example [3, 24, 41]. Recently, the problem
Temporally Disjoint Paths was introduced in [25], as a generalization of the notorious
Disjoint Paths problem (also known as Linkage). In Temporally Disjoint Paths, one
is given a temporal graph with k pairs of vertices called terminals, and the goal is to find a
set of k pairwise temporally disjoint paths, each of them connecting one pair of terminals.
Temporally Disjoint Paths is NP-hard, even for temporal lines and two paths [25]
or temporal stars [29], but becomes FPT for trees when parameterized by the number of
paths [25]. Algorithms that are FPT for certain structural parameters are given in [29].

Structure of the paper. We start with the hardness result for temporal DAGs (Theorem 1)
in Section 3. We then prove our results for temporal oriented trees (Theorem 2 and Theorem 3)
in Sections 4 and 5. We prove Theorem 4, the polynomial-time algorithms for special temporal
oriented trees (temporal rooted directed trees and temporal oriented lines), in Section 6. We
then prove our results for temporal digraphs of bounded treewidth and number of time-steps
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(Theorem 5) in Section 7. We conclude in Section 8. Due to space constraints, proofs of
propositions and lemmas marked with (*) are omitted here and can be found in the full
version of the paper [9].

2 Preliminaries

A temporal digraph D = (V, A1, . . . , Atmax) is given by a sequence of arc-sets representing
tmax discrete time-steps {1, . . . , tmax}, where an arc in Ai is active at time-step i [25]. We
denote by D = (V, A), where A = ∪tmax

i=1 Ai, the underlying digraph of D (sometimes called
the footprint (di)graph [7]). Equivalently, one can view the time-steps as an arc-labelling
function λ : A(D) → 2[tmax], where λ(−→xy) ⊆ [1, tmax] is the set of time-steps where −→xy is
active [24]. In that case, we denote the temporal digraph as D = (D, λ). We say that a
temporal digraph has a given property P (planarity, given girth, ...) if the undirected graph
obtained by forgetting the orientation of the arcs of its underlying digraph has property
P. Similarly, we call a temporal digraph a temporal DAG (resp. temporal oriented tree,
temporal line, ...) if its underlying digraph is a DAG (resp. oriented tree, path, ...). For a
given temporal digraph, we denote by ℓ the maximum number of labels per arc and by n the
number of vertices in the underlying digraph.

For a (temporal) (di)graph D and subset S of its vertices (resp. edges), D \ S denotes
the (temporal) (di)graph obtained by removing the vertices (resp. edges) in S from D.

In a temporal digraph, a temporal (directed) path is a sequence (v1, v2, t1), (v2, v3, t2), . . . ,

(vk−1, vk, tk−1) such that for any i, j with 1 ≤ i < j ≤ k, vi ̸= vj and for any i with
1 ≤ i ≤ k − 1, ti < ti+1 and there is an arc −−−→vivi+1 at time-step ti. These paths are sometimes
called strict in the literature.1 For a temporal path P = (v1, v2, t1), . . . , (vk−1, vk, tk−1), we
denote by V (P ) the set ∪k

i=1{vi} and by A(P ) the set ∪k−1
i=1 {−−−→vivi+1}. Note that we allow a

temporal path to contain exactly one vertex and no arc.
The length of a temporal path is the number of arcs it uses. We say that a temporal path

P = (v1, v2, t1), . . . , (vk−1, vk, tk−1) occupies vertex vi during the time interval [ti−1, ti]. Two
temporal paths P1, P2 temporally intersect if there is a vertex v ∈ V (P1) ∩ V (P2) and two
time intervals [a1, b1], [a2, b2] where [a1, b1] ∩ [a2, b2] ̸= ∅ such that P1 (resp. P2) occupies v

during [a1, b1] (resp. [a2, b2]). Two temporal paths are temporally disjoint if they do not
temporally intersect. In other words, they do not occupy the same vertex at the same time.
A temporal path cover (resp. temporally disjoint path cover) of a temporal digraph D is a
collection of temporal paths (resp. temporally disjoint paths) that cover all vertices of D.
Two vertices are temporally connected in D if there exists a temporal path between them. A
temporal antichain is a set of vertices that are pairwise not temporally connected.

▶ Definition 6. A class C has the Dilworth property (resp. TD-Dilworth property) if, for
every digraph D ∈ C, the cardinality of a minimum temporal path cover (resp. temporally
disjoint path cover) of D is equal to the maximum cardinality of a temporal anti-chain in D.

A hole of a static undirected graph is an induced cycle of length at least 5, and an
anti-hole is the complement of a hole. A hole or anti-hole is even (resp. odd) if it has an
even (resp. odd) number of vertices. A graph G is weakly chordal if it has neither a hole
nor an anti-hole. A (minimum) clique cover of a graph G is a (minimum cardinality) set of
complete subgraphs of G that covers all vertices. A (maximum) independent set of a graph G

is a (maximum cardinality) set of pairwise non-adjacent vertices. We shall use the following
results for weakly chordal graphs.

1 For non-strict paths, the condition ti < ti+1 is replaced with ti ≤ ti+1; argued in [29], the strict
definition is more natural for applications where an agent cannot traverse any number of arcs at once.
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▶ Theorem 7 ([20, 30, 38]). Let H be a weakly chordal graph with n vertices and m edges.
Then, a minimum clique cover of H can be found in O(nm)-time. Furthermore, the maximum
size of an independent set of H equals the minimum size of a clique cover of H.

3 Temporal DAGs

We provide a reduction from a restricted variant of 3-Dimensional Matching to prove the
following (proof deferred to the full version [9] due to space constraints).

▶ Theorem 1. Temporal Path Cover and Temporally Disjoint Path Cover are
NP-hard on temporal DAGs, even if the input is planar, bipartite, subcubic, of girth 10, has
only one time label per arc, and every label is either 1 or 2.

We also show the following.

▶ Proposition 8 (*). There are temporal DAGs (whose underlying digraph is a transitive
tournament) that satisfy neither the Dilworth nor the TD-Dilworth property. Moreover,
the ratio between the minimum-size temporal path cover and the maximum-size temporal
antichain can be arbitrarily large.

4 Temporal Path Cover on temporal oriented trees

In this section we prove the following theorem.

▶ Theorem 2. There is an O(ℓn2 + n3)-time algorithm for Temporal Path Cover on
temporal oriented trees with n vertices and at most ℓ many labels per arc. Furthermore,
temporal oriented trees satisfy the Dilworth property.

For the rest of this section, T = (T, λ) shall denote a temporal oriented tree with n vertices
and at most ℓ-many labels per edge. We construct the connectivity graph of T , denoted by G,
as follows: V (G) = V (T ) and E(G) = {uv | u ̸= v and u and v are temporally connected}.
In other words, the connectivity graph of a temporal oriented tree connects vertices that
are temporally connected. Observe that G can be constructed in O(ℓn2)-time. The next
observation follows immediately from the definition.

▶ Observation 9. A set S of vertices of T is a temporal antichain if and only if S induces
an independent set in G.

We have the following relationship between temporal paths in T and cliques in G.

▶ Lemma 10. Let S be a set of vertices of T . Then S is contained in a temporal path in T
if and only if S is contained in a clique of G.

Proof. Let S be contained in temporal path P in T . Let u1, u2, . . . , uk where k = |S|, be
the ordering of the vertices in S as they are encountered while traversing P from the source
to the sink. Notice that, for each 1 ≤ i < j ≤ k, there is a temporal path from ui to uj .
Therefore, ui is adjacent to uj in G. Hence, S is contained in a clique of G.

Let S be contained in a clique of G and S′ be a maximal complete subgraph of G such
that S ⊆ V (S′). Now, we orient the edges of S′ to create a digraph

−→
S′ as follows. For an edge

uv ∈ E(S′), we introduce an arc −→uv ∈ A(
−→
S′) if there is a temporal path from u to v in T .

Since T is acyclic,
−→
S′ is a transitive tournament. Hence, there is an ordering u1, u2, . . . , uk

of the vertices of S′ where k = |V (S′)| such that for 1 ≤ i < j ≤ k, there is a temporal
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path from ui to uj in T . Now, consider any temporal path P from u1 to uk in T . (P exists
as −−→u1uk ∈ A(

−→
S′). Since T is a temporal oriented tree, P will contain all vertices of S′ and

therefore of S. ◀

Following is an immediate corollary of the above.

▶ Corollary 11. The minimum cardinality of a temporal path cover of T is equal to the
minimum cardinality of a clique cover of G.

We will often use the following lemma.

▶ Lemma 12. Let {u, v, w, x} ⊆ V (T ) be four vertices such that there is a temporal path P1
from u to v and a temporal path P2 from w to x. If P1 and P2 have a vertex in common,
then, there is a temporal path from u to x, or a temporal path from w to v, or both.

Proof. Assume that there is no temporal path from u to x. Let y be the vertex of a temporal
path from w to x that is closest to u in T . Let t be the smallest integer such that there is a
temporal path from u to v that reaches y at time-step t. Observe that no temporal path from
y to x can start at time-step t′ > t since, otherwise, there would be a temporal path from u

to x. This implies that all temporal paths between w and x reach y at time-step t′′ ≤ t. Let
P1 be a temporal path from w to y which is also a subpath of a temporal path from w to x.
Let P2 be a temporal path from y to v which is also a subpath of a temporal path from u

to v. The above arguments imply that the arc incident with y in P1 has time-step at most
t. Similarly, the arc incident with y in P2 has time-step strictly greater than t. Hence, the
concatenation of P1 and P2 is a temporal path in T from w to v. ◀

4.1 The case of holes
In this subsection, we will show that the connectivity graph G does not contain any holes.
We use the following lemma.

▶ Lemma 13. Let H be an induced cycle of length at least 4 in G. Then, for every vertex
v ∈ V (H) and every arc −→a of T incident with v, the vertices of H \ {v} lie in the same
weakly connected component of T \ {−→a }.

Proof. For the sake of contradiction, let there exist vertices {u, v, w} ⊆ V (H) and an arc
−→a of T incident with v such that u and w lie in two different connected components of
T ′ = T \ {−→a }. Let Cu and Cw be the sets of vertices of H \ {v} contained in the same
connected component as u and w, respectively. Since H \ {v} is connected, there exist
u′ ∈ Cu and w′ ∈ Cw such that u′w′ ∈ E(H) i.e. u′w′ ∈ E(G). Hence, there is a temporal
path P from u′ to w′ or w′ to u′ in T . Since T is a tree, P must contain v. Lemma 10 implies
that {u′, v, w′} forms a subset of a clique in G, and therefore {u′, v, w′} forms a triangle.
But this contradicts that H is a hole. ◀

Going forward, we need the following notations. For an edge e = uv ∈ E(G), let Qe

denote a temporal path from u to v or v to u in T . For an induced cycle H of length at
least 4 in G, let TH denote the smallest connected subtree of T containing all vertices of
H. Lemma 13 implies that every vertex of H must be a leaf in TH (that is, a vertex with
degree 1 in the underlying undirected tree). For a vertex v ∈ V (H), let −→a (v) be the arc
incident with v in TH . Let H be an induced cycle of length at least 4 in G. We can partition
the vertex set of H into two sets IN(H) and OUT (H) as follows: a vertex v ∈ V (H) is in
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T ′
H

Figure 2 On the left, a hole H in the connectivity graph. On the right, its corresponding vertices
in the oriented subtree TH , with T ′

H = TH \ V (H). Vertices in IN(H) are in black.

IN(H) if −→a (v) is directed towards v, and otherwise v is in OUT (H) (see Figure 2 for an
illustration of these definitions).

For a vertex v ∈ IN(H), notice that both neighbors of v in H must lie in OUT (H), and
vice versa, since they must be connected by a directed path in T . Hence, H is bipartite, and
therefore G does not contain any odd hole:

▶ Lemma 14. The connectivity graph G does not contain any odd hole.

Without loss of generality, we assume in the following that OUT (H) (resp. IN(H))
contains every odd-indexed (resp. even-indexed) vertex of H. For an even hole H whose
vertices are cyclically ordered as u1, u2, . . . , uk, we use a cyclic definition of addition, so
uk+1 = u1. We first prove the following lemmas.

▶ Lemma 15. Let H be an even hole in the connectivity graph G. Then, for every i, Quiui+1

and Qui+2ui+3 share a common vertex in T .

Proof. Assume by contradiction that Quiui+1 and Qui+2ui+3 are vertex-disjoint. Assume
without loss of generality that Quiui+1 goes from ui to ui+1. Note that, since each vertex of
the hole is a leaf of TH as a consequence of Lemma 13, the two paths Quiui+1 and Qui+1ui+2

have to share a common vertex other than ui+1 (its neighbour in TH). By the same reasoning,
Qui+1ui+2 and Qui+2ui+3 share a common vertex other than ui+2. Hence, since the three paths
Quiui+1 , Qui+1ui+2 and Qui+2ui+3 are in TH , and Quiui+1 and Qui+2ui+3 are vertex-disjoint,
there is an arc −→a contained in Qui+1ui+2 that separates Quiui+1 and Qui+2ui+3 .

Removing −→a from T partitions the vertices of H into two sets H1 and H2: H1 (resp. H2)
contains the vertices of H that are in the same part of T \ −→a as ui+1 (resp. ui+2). Now,
since H is a cycle, there is an edge ujuj+1 such that (without loss of generality) uj ∈ H1,
uj+1 ∈ H2 and (j, j + 1) ̸= (i + 1, i + 2). This implies that the path Qujuj+1 has to use −→a
in T , and thus Qui+1ui+2 and Qujuj+1 share a common vertex. Hence, Lemma 12 implies
that there is a temporal path from uj+1 to ui+1 or from ui+2 to uj . However, since j ̸= i + 3
(uj ∈ H1 and ui+3 ∈ H2) and j + 1 ̸= i (uj+1 ∈ H2 and ui ∈ H1), both temporal paths
would induce a chord in H, a contradiction. ◀

▶ Lemma 16. The connectivity graph G does not contain any hole of size 6.

Proof. Assume by contradiction that there is a hole on six vertices u1, . . . , u6. We know
that Qu1u2 and Qu4u5 are vertex-disjoint (since otherwise, by Lemma 12, at least one of the
chords u1u4 or u2u5 would exist). The ui’s are leaves of TH , so Qu1u2 and Qu1u6 , being paths
with a common leaf in the same subtree, share at least one common vertex other than u1
(its neighbour in TH), let v be the last (with respect to the orientation of T ) vertex in their
common subpath. Now, Qu5u6 has a common vertex with both Qu1u2 (by Lemma 15) and
Qu1u6 (the neighbour of u6 in TH), so it has to contain v by the Helly property of subtrees
of a tree. By the same reasoning, Qu4u5 and Qu5u6 share at least one common vertex other
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than u5 (its neighbour in TH), let w be the last vertex in their common subpath. The Helly
property of subtrees of a tree again implies that both Qu2u3 and Qu3u4 have to contain w,
since they pairwise intersect with Qu4u5 . But this means that Qu2u3 and Qu5u6 share both v

and w as common vertices, and so by Lemma 12 there is at least one of the two chords u2u5
or u3u6, a contradiction. ◀

We can now prove that there is no even hole in G:

▶ Lemma 17. The connectivity graph G does not contain any even hole.

Proof. Assume by contradiction that G contains an even hole H on k ≥ 8 vertices (k = 6 is
impossible by Lemma 16). We know by Lemma 15 that both Qu3u4 and Quk−1uk

intersect
Qu1u2 , but do not intersect each other (otherwise, by Lemma 12, at least one of the edges
u3uk or u4uk−1 would exist, and both would be chords since k ≥ 8), so there is an arc −→a
in T that separates them. Removing −→a from T partitions the vertices of H into two sets
H1 and H2: H1 (resp. H2) contains the vertices of H that are in the same part of T \ −→a as
u3 (resp. uk). Now, since H is a cycle, there is an edge ujuj+1 such that (without loss of
generality) uj ∈ H1 and uj+1 ∈ H2. This implies that the path Qujuj+1 has to use −→a in T ,
and thus Qu1u2 and Qujuj+1 , both containing −→a , share a common vertex. Hence, Lemma 12
implies that there is a temporal path from uj+1 to u2 or from u1 to uj . However, since
j ≠ k (uj ∈ H1 and uk ∈ H2) and j + 1 ̸= 3 (uj+1 ∈ H2 and u3 ∈ H1), by Lemma 12 both
temporal paths would induce a chord in H, a contradiction. ◀

4.2 The case of anti-holes
In this subsection, we will show that the connectivity graph G does not contain any anti-
hole. For an anti-hole H, let its vertices be circularly ordered as u1, u2, . . . , uk as they are
encountered while traversing the complement of H (which is a hole). Let ODD (H) (resp.
EV EN (H)) denote the set of vertices with odd (resp. even) indices.

▶ Lemma 18. The connectivity graph G does not contain any anti-hole.

Proof. Throughout this proof, recall that T is a tree, in particular, if two vertices are
temporally connected, then there is a unique temporal path from one to the other. Assume
by contradiction that G contains an anti-hole H with k vertices. If k = 5, then H is a hole,
which contradicts Lemma 14; hence, assume k ≥ 6.

When k is odd, let F1 = ODD (H) \ {uk}, F2 = EV EN (H). When k is even, let
F1 = ODD (H) , F2 = EV EN (H). Observe that |F1| = |F2| ≥ 3 and both sets induce
(vertex-disjoint) cliques in G. By Lemma 10, there are temporal paths P1 and P2 in T
containing F1 and F2, respectively, which we can assume are minimal vertex-inclusion-wise
(so that, for each i ∈ {1, 2}, both end-vertices of Pi lie in Fi). For i ∈ {1, 2}, let vi and wi

denote the source and sink of Pi, respectively. We have two cases.

Case 1: V (P1) ∩ V (P2) = ∅. Let Q be the shortest temporal path that contains vertices
from both P1 and P2 (note that, since every vertex in F1 is temporally connected to at least
one vertex in F2, Q necessarily exists). Let p1, p2 be the end-vertices of Q that lie on P1 and
P2, respectively. Since for each i ∈ {1, 2} and Z ∈ {F1, F2}, NG(wi) ∩ Z ̸= ∅, Q is oriented
from p1 to p2, or vice versa. Without loss of generality, assume that Q is oriented from p2
to p1. Then, necessarily p2 = w2, since otherwise w2 is not temporally connected with any
vertex of F1, a contradiction. By a similar argument, we have p1 = v1. Now, consider the
clique induced by NG(v2) ∩ F1. Due to Lemma 10, all vertices of NG(v2) ∩ F1 and v2 itself
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are contained in a temporal path, which also necessarily contains w2. Hence all of F2 (P2,
even) is in a temporal path containing v1, since the path has to go through v1 to reach other
vertices of F1, and so F2 ∪ {v1} forms a clique. This is a contradiction as v1 necessarily has
at least one non-neighbor in F2.

Case 2: V (P1) ∩ V (P2) ̸= ∅. Let Q denote the maximal vertex-inclusion-wise path
that is common to both P1 and P2, i.e., the path induced by the set V (P1) ∩ V (P2). Note
that Q does not contain any vertex from H, since a vertex of H in Q would be temporally
connected to every other vertex of F1 ∪ F2, a contradiction. Let p denote source of Q and
for each i ∈ {1, 2} let Qi (resp. Q′

i) be the subpath of Pi between p and wi (resp. p and vi).
Note that no vertex of Q′

1 \ {p} can be in a directed path with any vertex of Q′
2 \ {p}.

Similarly, no vertex of Q1 \ Q can be in a directed path with any vertex of Q2 \ Q. Thus, the
two subgraphs of the connectivity graph G induced by the vertices of (V (Q1)∪V (Q2))\V (Q)
and (V (Q′

1) ∪ V (Q′
2)) \ {p} each induce the complement of a complete bipartite graph. As

H does not contain any complement of a 4-cycle as an induced subgraph, this implies that
there are exactly three vertices of H in each of these two subsets of vertices (since Q does
not contain any vertex of H). In particular, H has size either 6 or 7.

Without loss of generality, we assume that Q′
1 contains only one vertex of H, which must

be v1. Thus, there are two vertices of H in Q′
2: v2 and another vertex, say, v′

2. Since F1 and
F2 both have size 3, the vertices of H in Q1 are w1 and (say) w′

1, and the only vertex of
H in Q2 is w2. Now, observe that if v2 is contained in a temporal path with w1, then v2,
v′

2, w′
1 and w1 are in a common temporal path. This is not possible, since in H, there is

either one or two non-edges among these four vertices (depending on whether H has size 7
or 6). Thus, w1 and v2 are in no common temporal path. Since v2 has no non-neighbour
in H other than v1 and w1, v2 and w′

1 are in a common temporal path, that also contains
v′

2. Thus, {v2, v′
2, w′

1} form a clique in H. Similarly, {v′
2, w′

1, w1} also form a clique in H. If
H had size 6, v′

2 and w′
1 would need to be non-neighbours in H (since w1 already has two

non-neighbours in H), a contradiction. Thus, H has size 7, and the two non-neighbours in
H of u7 (the vertex of H not in F1 ∪ F2) are v′

2 and w′
1 (since they are the only ones without

two non-neighbours in H). But u7 has to be temporally connected to all of v1, v2, w1 and
w2, so u7 has to be in Q. But any temporal path from v2 to a vertex of Q has to contain v′

2,
and so u7 and v′

2 are temporally connected, a contradiction. This completes the proof. ◀

4.3 Completion of the proof of Theorem 2
Lemmas 14, 17, and 18 imply that the connectivity graph of a temporal oriented tree is
weakly chordal. Note that this cannot be strengthened to chordal, as there are temporal
oriented trees whose connectivity graphs contain induced 4-cycles: let λ(−→s1c) = λ(−→s2c) = 1
and λ(−→ct1) = λ(−→ct2) = 2, the vertices s1, t1, s2 and t2 induce a C4 in the connectivity
graph. Corollary 11 implies the correspondence between a minimum temporal path cover
of a temporal oriented tree and a minimum clique cover of the corresponding connectivity
graph. We then conclude using Theorem 7 for the algorithm. Observation 9, Corollary 11
and Theorem 7 together give the Dilworth property.

5 Temporally Disjoint Path Cover on temporal oriented trees

We provide a reduction from Unary Bin Packing to prove the following (proof deferred to
the full version [9] due to space constraints).
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▶ Theorem 3. Temporally Disjoint Path Cover is NP-hard on temporal oriented trees.

We also show the following.

▶ Proposition 19 (*). There are temporal oriented trees (whose underlying digraph is a star)
that do not satisfy the TD-Dilworth property.

6 Subclasses of temporal oriented trees

▶ Theorem 4. Temporal Path Cover and Temporally Disjoint Path Cover can be
solved in time:
(a) O(ℓn) on temporal oriented lines;
(b) O(ℓn2) on temporal rooted directed trees;
where ℓ is the maximum number of labels per arc and n is the number of vertices. Furthermore,
both classes satisfy the TD-Dilworth property.

Proof. (a) Let P = (P, λ) be a temporal oriented line, and let v be a leaf of P . We construct
C as follows. Assume that v is incident with an in-arc −→uv. We construct a maximum-length
temporal path that covers v. Set (b, c) = (u, v), ℓ = max λ(−→uv), and apply the following
routine: while b is incident with an in-arc

−→
ab, if there is a time label smaller than ℓ in λ(

−→
ab),

add
−→
ab to the path, update (b, c) = (a, b) and ℓ = max{k ∈ λ(

−→
ab) | k < ℓ}. When the routine

stops, add the path to C, remove its vertices from P , and start again on a new leaf (or return
C if P is empty). If v was incident with an out-arc, we would do the same but with out-arcs,
start with the smallest possible time label, and update ℓ = min{k ∈ λ(

−→
ab) | k > ℓ}.

This algorithm computes its output in time O(ℓn): every arc is visited at most once, but
we need to parse the time labels in order to see whether we can keep on extending the path
or not. Furthermore, the set of leaves v where we start the routine are a temporal antichain:
assume on the contrary that v1 and v2 are such vertices that are temporally connected,
and assume without loss of generality that there is a path from v1 to v2 in the underlying
oriented path; in this case, our algorithm would have added v1 to the path that started being
computed at v2, a contradiction. Hence, C is a temporally disjoint path cover with the same
size as a temporal antichain, proving that it is minimum-size and that temporal oriented
lines satisfy the TD-Dilworth property.

(b) We give an algorithm that solves Temporal Path Cover on a temporal rooted
directed tree T = (T, λ). First, we sort the vertices of T with respect to their topological
distance from the root in T (with the highest distances first). Then, we construct a maximum-
length temporal path covering the first uncovered vertex (which will be a sink of that path),
and repeat until T is fully covered.

Note that this algorithm outputs C which is clearly a temporal path cover: every vertex
is covered by some path of C. Furthermore, it is an adaptation of the algorithm for temporal
oriented lines: instead of successive leaves, we construct the paths from successive leaves with
highest topological distance from the root. We will show that C is minimum-size, and later
we will explain how to modify the algorithm in order to obtain a minimum-size temporally
disjoint path cover.

Let S be the set of sinks of paths of C. First, let vi and vj be two vertices of S (without
loss of generality, assume that vi was covered by the algorithm after vj). They cannot be
temporally connected, since otherwise, the graph being a temporal rooted directed tree, one
of them is necessarily the predecessor of the other in a path from the root, and thus the
maximum-length temporal path ending in vj would necessarily contain vi, since there is a
temporal path from vi to vj , and thus vi would have been covered at this step and cannot
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be in S. Hence, S is a temporal antichain. Furthermore, since |C| = |S|, C is minimum-size
and S is maximum-size, implying that temporal rooted directed trees satisfy the Dilworth
property.

We now modify the algorithm to obtain a minimum-size temporally disjoint path cover.
Indeed, we can see that the maximum-length temporal path construction, which is executed
for every vertex of S, can re-cover some vertices that had already been covered at a previous
step. Let vi and vj be two vertices of S such that their maximum-length temporal paths
constructed by the algorithm Pi and Pj intersect. Since the graph is a temporal rooted
directed tree, we can divide Pi and Pj into the following parts, without loss of generality:
Pi = P top

i ∪ (Pi ∩ Pj) ∪ P bot
i and Pj = (Pi ∩ Pj) ∪ P bot

j , where P top
i ∩ Pj = P bot

i ∩ Pj =
P bot

j ∩ Pi = ∅ (note that we can have P top
i = ∅). In other words, P top

i (resp. P bot
i ) contains

the vertices of Pi \ Pj that are ancestors (resp. descendants) of Pi ∩ Pj in the underlying
rooted tree, with the equivalent definition for P top

j and P bot
j . Hence, we can modify the

algorithm by adding a loop that, for each such pair (Pi, Pj), defines these subpaths and then
removes Pi ∩ Pj from Pj . Now, C will still be a temporal path cover, but the paths will be
vertex-disjoint and thus temporally disjoint, and its size will not change. This implies that
temporal rooted directed trees satisfy the TD-Dilworth property (contrasting the general
temporal oriented trees), and thus the modified algorithm outputs the optimal solution for
these two problems. The result of the algorithm and its modification is depicted in Figure 3.

Finally, one can check that the algorithm and its modification compute C in time O(ℓn2).
For each vertex in the antichain S, we have to construct the maximum-length temporal
path. This can be done in time O(ℓn) by taking at every arc the largest label that allows to
extend the path, thus we have to parse all the labels of every arc along the path, which can
be of linear-size in the worst case. Since we can have a linear number of antichain vertices,
we have a complexity of O(ℓn2) to get the temporal path cover. The modification to make
it temporally disjoint can be done in O(n2) time afterwards, by considering all pairs of
intersecting paths starting from the root. ◀

2
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2 2

2

3 1

2 2

1
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2 1
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Figure 3 Minimum-size temporal path covers and temporally disjoint path covers of the same
temporal rooted directed tree (on the left, with one label per arc; on the right, with any labels per
arc), as computed by our algorithm and its modification in the proof of Theorem 4.

7 Algorithms for temporal digraphs of bounded treewidth

Recall that an algorithm is FPT with respect to some parameter k of the input, if it runs in
time f(k)nO(1) for inputs of size n, where f is any computable function; the algorithm is XP
for this parameter if the running time is in nf(k) [12]. We prove the following theorem.
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▶ Theorem 5. There is an algorithm for Temporally Disjoint Path Cover on general
temporal digraphs that is FPT with respect to the treewidth of the underlying undirected
graph and the maximum number of labels per arc. For Temporal Path Cover on general
temporal digraphs, there is an XP algorithm for the same parameter.

Proof (sketch). To prove the theorem, we use the well-known concept of nice tree decom-
positions [27]. The algorithm is a classic bottom-up dynamic programming. To simplify the
algorithm, we replace each arc by a set of parallel arcs, each of them with a distinct time-label.
This makes it easier to deal with temporally disjoint paths, as in this representation, one arc
cannot be used in two solution paths (for Temporally Disjoint Path Cover).

To give the intuition behind the algorithm, we informally describe the states of the
dynamic programming. For a bag Xv ⊆ V (G) corresponding to a node v of the tree
decomposition, every state corresponds to a distinct way a potential solution interacts with
Xv. Primarily, it consists of a set of (solution) subpaths that cover the vertices in Xv. Each
subpath may consist of several disconnected parts (possibly, a part may have only one vertex).
The order in which the vertices of each solution path appear is also specified. We also store
the information, for every vertex, whether it is connected via an arc to one vertex (or two
vertices) in its solution path, but lying outside the bag Xv, and whether this vertex lies in a
lower (already handled) or upper (to be handled) part of the tree decomposition.

We show that this information is enough to encode a partial solution, and as there are at
most p =

(tw
2

)
· tmax arcs in each bag, we deduce that the maximum possible number of states

for a bag is at most 2O(p log p) in the case of Temporally Disjoint Path Cover (since
every arc may appear in at most one solution path) and nO(p log p) in the case of Temporal
Path Cover (since a specific subpath may appear in any number of solution paths, so
we must also encode the number of appearances of each subpath). The running times are
essentially dominated by these functions.

Due to space constraints, the details are deferred to the full version [9]. ◀

8 Conclusion

We have initiated the study of two natural path covering problems in temporal DAGs, which,
in the static case, are related to Dilworth’s theorem and are polynomial-time solvable. Both
problems become NP-hard for temporal DAGs, even in a very restricted setting. Interestingly,
and somewhat unexpectedly, they behave differently on temporal oriented trees: we showed
that Temporal Path Cover is polynomial-time solvable on temporal oriented trees (and a
temporal version of Dilworth’s theorem holds in this setting), while Temporally Disjoint
Path Cover remains NP-hard for this class. On the other hand, this distinction is inverted
in the parameterized case, where we obtained an FPT algorithm for Temporally Disjoint
Path Cover but an XP algorithm for Temporal Path Cover. However, we do not know
if our algorithms for treewidth and number of time-steps are optimal. In particular, can we
obtain an FPT algorithm for Temporal Path Cover for this parameter? One could also
explore other (structural) parameterizations of the problems.

To prove our polynomial-time algorithm for Temporal Path Cover on temporal
oriented trees, we have reduced the problem to Clique Cover in a static undirected graph,
which turns out to be weakly chordal. This is a powerful technique, and the correspondence
between the two problems is quite enlightening for the structure of temporal paths in an
oriented tree. Nevertheless, it seems unlikely that this particular technique can be used on
temporal digraph classes that are far from trees, as it was essential for the proof that any two
vertices are joined by only one path in the underlying tree. However, this general technique
could likely be applied in other temporal settings.
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We note that many of our results for Temporally Disjoint Path Cover also hold
for its stricter vertex-disjoint version (note that a vertex-disjoint version of Temporally
Disjoint Paths is studied in [24]), in particular, the NP-hardness result for restricted DAGs
and the polynomial-time algorithms for rooted directed trees and oriented lines.
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Abstract
Given a graph G, an isometric path cover of a graph is a set of isometric paths that collectively
contain all vertices of G. An isometric path cover C of a graph G is also an isometric path partition
if no vertex lies in two paths in C. Given a graph G, and an integer k, the objective of Isometric
Path Cover (resp. Isometric Path Partition) is to decide whether G has an isometric path
cover (resp. partition) of cardinality k.

In this paper, we show that Isometric Path Partition is NP-complete even on split graphs,
i.e. graphs whose vertex set can be partitioned into a clique and an independent set. In contrast, we
show that both Isometric Path Cover and Isometric Path Partition admit polynomial time
algorithms on cographs (graphs with no induced P4) and chain graphs (bipartite graphs with no
induced 2K2).
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1 Introduction and results

Finding paths in graphs is of fundamental interest to the algorithmic graph theory community.
An example is the Path Cover where the objective is to decide whether the vertex set of
a graph can be covered by at most k paths. This problem is NP-hard even if k = 1 which
is equivalent to Hamiltonian Path. Recently, researchers have studied the problem of
covering graphs with isometric paths i.e. shortest path between its end-vertices. Given a
graph G, an isometric path cover of a graph is a set of isometric paths that collectively
contain all vertices of G. An isometric path cover C of a graph G is also an isometric path
partition if no vertex lies in two paths in C. Given a graph G, and an integer k, the objective
of Isometric Path Cover (resp. Isometric Path Partition) is to decide whether G

has an isometric path cover (resp. partition) of cardinality at most k. Besides algorithmic
graph theory, Isometric Path Cover has been studied in different contexts like machine
learning [14], combinatorial games [1] etc.

Despite being a natural covering problem, the algorithmic complexity of Isometric
Path Cover has thus far remained mostly unexplored. Isometric Path Cover and
Isometric Path Partition have been proven to be NP-hard in chordal graphs (i.e. graphs
without induced cycles of order four or higher) and bipartite graphs of diameter 4 [5, 8]. The

© Dibyayan Chakraborty, Haiko Müller, Sebastian Ordyniak, Fahad Panolan, and Mateusz Rychlicki;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 39; pp. 39:1–39:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chakraborty@leeds.ac.uk
https://orcid.org/0000-0003-0534-6417
mailto:H.Muller@leeds.ac.uk
https://orcid.org/0000-0002-1123-1774
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:f.panolan@leeds.ac.uk
https://orcid.org/0000-0001-6213-8687
mailto:mkrychlicki@gmail.com
https://orcid.org/0000-0002-8318-2588
https://doi.org/10.4230/LIPIcs.MFCS.2024.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 Covering and Partitioning with Isometric Paths

Parameterized complexity of Isometric Path Cover has been studied with respect to
various parameters like solution size, neighbourhood diversity, etc [7, 8]. Approximability
of Isometric Path Cover has also been studied [4, 5]. It was shown that Isometric
Path Cover admits constant factor approximation algorithms on graph classes like chordal
graphs and more generally on graphs with bounded treelength and bounded hyperbolicity,
outerstring graphs, universally-signable graphs and more generally on (theta, pyrmaid,
prism)-free graphs [4, 5]. It was also shown that Isometric Path Cover admits O(log n)-
approximation algorithm on general graphs [14]. On the other hand, polynomial time
solvability of Isometric Path Cover is only known for special graph classes such as
block graphs [12] which is a subclass of chordal graphs. This motivated us to study the
computational complexities of Isometric Path Cover and Isometric Path Partition
on split graphs which is a popular subclass of chordal graphs.

A graph is a split graph if the vertex set can be partitioned into a clique C and an
independent set I. In this paper, we prove that the Isometric Path Partition problem
remains NP-hard on split graphs answering an open question in the literature [5]

▶ Theorem 1. Isometric Path Partition is NP-hard on split graphs.

Our reduction techniques deviate significantly from the known ones which typically reduce
the problem of partitioning a graph into induced Pk (for appropriately chosen k, also known
as Induced Pk Partition) by adding few vertices of large degree, so that a path in the
reduced graph is isometric if and only if it was an induced Pk in the original graph. However,
one difficulty in applying this technique is that the complexity of Induced Pk Partition
for k ∈ {3, 4} on split graphs is not known. The problems of partitioning split graphs into
(non-induced) P3’s can be solved in polynomial time [15] by reducing it to finding a maximum
matching in some auxiliary graph.

We reduce from the NP-complete problem 3-XSAT [13] where the input is a CNF formula
that has exactly 3 positive literals in every clause and every variable occurs exactly 3 times,
and the objective is to decide if there is an assignment that satisfies exactly one literal from
every clause. As a biproduct of our proof, we also get the following corollary. Isometric
P≥t Partition denotes the problem of partitioning the vertex set of a graph into isometric
paths with at least t vertices.

▶ Corollary 2. For t ≤ 3, Isometric P≥t Partition is NP-hard on split graphs.

We note that the computational complexity of Isometric Path Cover on split graphs
remains open. Theorem 1 motivates the study of Isometric Path Partition on natural
subclasses of split graphs. Threshold graphs, the class of split graphs without an induced P4,
is one of the well-studied subclass of split graphs [11]. We show that both Isometric Path
Cover and Isometric Path Partition admit polynomial-time algorithms on threshold
graphs. In fact, we prove the following more general result. Cographs were introduced in [6]
and are exactly the class of graphs with no induced P4.

▶ Theorem 3. Isometric Path Cover and Isometric Path Partition admit polynomial
time algorithms on cographs.

Our algorithm for Isometric Path Partition on cographs is based on dynamic pro-
gramming on cotrees [6], which also characterise cographs. The class of cographs contains
the class of threshold graphs, which are exactly the class of split graphs whose vertices in the
independent set can be linearly ordered under inclusion of their open neighbourhoods. We
note that designing algorithms for cographs is a popular direction of research in algorithmic
graph theory [2, 3, 9, 10].
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(a) (b)

Figure 1 Normal forms of optimal solutions for Isometric Path Partition on chain graphs.
Connected components or marked vertices indicate isometric paths in the solution.

Motivated by the success on cographs we then consider the class of chain graphs, the
bipartite analogue of threshold graphs. A chain graph is a bipartite graph such that the
vertices of each color class can be linearly ordered under inclusion of their open neighbourhoods.
We show the following result:

▶ Theorem 4. Isometric Path Cover and Isometric Path Partition admit polynomial
time algorithms on chain graphs.

Note that a path in a chain graph or a cograph is an isometric path if and only if it is
induced. Due to Theorems 3 and 4, we have the following corollary.

▶ Corollary 5. Induced Path Partition and Induced Path Cover admit polynomial
time algorithms on cographs and chain graphs.

Our algorithm for Isometric Path Partition on chain graphs is based on the observation
that any (optimal) solution can be converted into one of three normal forms, two of which are
illustrated in Figure 1 and where the induced paths can be thought of (roughly) as following
the ordering of the vertices according to the neighbourhood inclusion relation. Obtaining the
normal forms is also the main challenge behind the algorithm as it turned out to be surprising
difficult to find the right order of operations required to transform any solution into one
of these normal forms without sacrificing previously made progress. Once the normal form
is obtained, however, Isometric Path Partition can be solved via a simple brute-force
algorithm that guesses the important positions of a solution in normal form. Finally, a simple
reduction from Isometric Path Cover to Isometric Path Partition on chain graphs
then allows us to obtain the polynomial-time algorithm for Isometric Path Cover on
chain graphs.

Structure of the paper. In Section 2 we introduce some definitions. In Section 3 and
Section 4 we prove Theorems 3 and 4 respectively. In Section 5 we prove Theorem 1.
Statements whose full proofs are omitted due to space constraints can be found in the full
version.

2 Preliminaries

All graphs considered here are finite, simple, and undirected. That is, a graph G = (V, E)
consists of a finite set V of vertices and a set E ⊆ V (2) of edges, where V (2) is the set of
2-element subsets of V . An edge {u, v} will also be written as uv. The graph H = (U, F ) is
a subgraph of G = (V, E) if U ⊆ V and F ⊆ E. The subgraph H is induced if F = E ∩ U (2),
denoted as H = G[U ]. The neighbourhood NG(v), or simply N(v) if G is clear from the
context, of a vertex v ∈ V in graph G is {u | uv ∈ E}. Moreover, for a subset V ′ of vertices,
we denote by NG(V ′) the set

⋃
v∈V ′ NG(v).
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39:4 Covering and Partitioning with Isometric Paths

A path in G is a subgraph P = (U, F ) with U = {ui | 0 ≤ i ≤ l} and F = {ui−1ui | 1 ≤
i ≤ l}. We usually refer to P by the sequence (u0, u1, u2, . . . , ul). The length of this path is
l, the number of edges in P .

The distance between two vertices u and v of G is the length of a shortest path between
u and v. It is denoted by dG(u, v). A path P = (u, . . . , v) is isometric if dG(u, v) = dP (u, v).
Every isometric path is an induced path, and induced paths of length at most two are
isometric.

3 Algorithms for Chain Graphs

Here, we provide our algorithms for Isometric Path Partition and Isometric Path
Cover on chain graphs. A bipartite graph G = (T, B, E) is a chain graph if, for every pair
of vertices v, u ∈ T or v, u ∈ B, we have N(v) ⊆ N(u) or N(v) ⊇ N(u), respectively; see also
[16]. This implies an ordering < of the vertices in T and the vertices in B such that u < v if
NG(u) ⊆ NG(v). For convinience and by resolving ties arbitrarily, we will assume that < is
a total ordering on T and on B.

The main step of our proofingredient and the main challenge for the algorithms is to show
that any solution to Isometric Path Partition on a chain graph can be transformed into
an equally-sized solution that follows a certain normal form (Section 3.1). Assuming this
normal form, then essentially allows us to solve Isometric Path Partition in polynomial-
time via a brute-force approach (Section 3.2). Finally, our polynomial-time algorithm for
Isometric Path Cover then uses a simple reduction from Isometric Path Cover to
Isometric Path Partition (Section 3.2).

3.1 Normal Form
In this subsection we introduce our normal form for solutions to Isometric Path Partition
on chain graphs and show that there is always an optimal solution adhering to this normal
form. We start by introducing some important notation.

Let G = (T, B, E) be a chain graph and let P be a set of isometric paths. A pattern can
be thought of as a string over the symbols , , , , , and , where it is possible for symbols
to overlap with each other; such as in or , which consists of two overlapping symbols

and respectively and . We also allow special symbols to indicate that a symbol is
repeated arbitrary many times, e.g., , , , and represent arbitrary many (non-crossing) ’s,
’s, ’s, and ’s, respectively. Moreover, represents arbitrary many ’s that are pairwise

in pattern , e.g., is an element of .
We say that P has pattern α if the drawing of all paths in P, i.e., the drawing obtained

by drawing all vertices in T from right to left in the order < on top of all vertices in B drawn
according to < from left to right, looks like α. For instance, if P ∈ P is a single path, then
P has pattern , , , , , or , if |V (P ) ∩ T | = 0 and |V (P ) ∩ B| = 1, |V (P ) ∩ T | = 1 and
|V (P ) ∩ B| = 2, |V (P ) ∩ T | = 1 and |V (P ) ∩ B| = 1, |V (P ) ∩ T | = 2 and |V (P ) ∩ B| = 1,
|V (P ) ∩ T | = 2 and |V (P ) ∩ B| = 2, or |V (P ) ∩ T | = 1 and |V (P ) ∩ B| = 0, respectively.
Alternatively, we also say that P is an α-path, if P has pattern α. We denote by Pα the set
of all α-paths in P and we denote by P◦ the set P ∪ P . Observe that since G is a chain
graph every path in P is either a -path, a -path, an -path, a -path, a -path, or a -path.

We say that a path P ∈ P is before (or to the left) of a path P ′ ∈ P if b < b′ for
every b ∈ V (P ) ∩ B and b′ ∈ V (P ′) ∩ B and moreover t > t′ for every t ∈ V (P ) ∩ T and
t′ ∈ V (P ′) ∩ T . We say that P is after (or to the right of P ′) if P ′ is before P . We say that
P and P ′ cross if P is neither before nor after P ′.
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The main aim of this section is to show the following theorem.

▶ Theorem 6. Let G = (T, B, E) be a chain graph. G has an optimal isometric path partition
that has one of the following patterns:
(1) , i.e., any number of -paths, followed by any number of -paths, followed by any

number of -paths, followed by any number of -paths,
(2) , i.e., same as (1) but with exactly one -path in the center,
(3) , i.e., same as (2) but with the -path replaced by any number of -paths,

-paths, and -paths such that every pair of those paths has one of the following patterns
, , , , , or .

Towards showing Theorem 6, we will introduce various intermediate normal forms and we
will then show that a solution can be transformed step-by-step into more and more restrictive
normal forms. Let G = (T, B, E) be a chain graph and P be an isometric path partition of G.
Most of our normal forms are based on the correct relationships between pairs of paths in P .
In particular, we say that two distinct paths P and P ′ in P are in normal position if either:
(1) If P or P ′ is a -path, then {P, P ′} has pattern , , , , or . In other words, all

-paths are to the left of all other paths in P.
(2) If P or P ′ is a -path, then {P, P ′} has pattern , , , , or . In other words, all

-paths are to the right of all other paths in P.
(3) If P is a -path and P ′ is a -path ( -path), then {P, P ′} has pattern ( ). In other

words, all -paths are to the right of all -paths and to the left of all -paths in P.
(4) If both P and P ′ are -paths, then {P, P ′} has pattern . In other words, no two

-paths in P cross each other.
(5) If both P and P ′ are -paths, then {P, P ′} has pattern . In other words, no two

-paths in P cross each other.
(6) If both P and P ′ are -paths, then {P, P ′} has pattern .
(7) If P is a -path and P ′ is a -path ( -path), then {P, P ′} has pattern or ( or

).
(8) If P is a -path and P ′ is a -path, then {P, P ′} has pattern .
We say that P satisfies (i), i ∈ [8], if condition (i) holds for every two distinct paths P and
P ′ in P. We are now ready to define our normal forms.

▶ Definition 7. Let P be an isometric path partition of a chain graph G.
We say that P is NI-minimal if either P = ∅ and |P | ≤ 1 or P ̸= ∅ and P = ∅.
We say that P is in S-normal form if P is NI-minimal and P satisfies (1) and (2).
We say that P is in I-normal form, A-normal form, V-normal form, or N-normal form if
P satisfies (3), (4), (5), or (6), respectively.
We say that P is in mixed normal form if P is in S-normal form and additionally P
satisfies (7) and (8).
We say that P is in pair-normal form if P is in mixed normal form, in I-normal form, in
A-normal form, in V-normal form, and in N-normal form.

All normal forms given above are purely defined in terms of restrictions on the relationships
between pairs of paths in an isometric path partition. However, to obtain a normal form for
the pattern given in Theorem 6 (3), we need to additionally put restrictions on the patterns
allowed for triples of isometric paths. We say that P is in AN-normal form if there are no
distinct PA ∈ P , PN , P ′

N ∈ P such that {PN , PA} has pattern and {P ′
N , PA} has pattern

. In other words, for every PA ∈ P it holds that either {PA, PN } has pattern for every
PN ∈ P or {PA, PN } has pattern for every PN ∈ P . Similarily, we say that P is in
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39:6 Covering and Partitioning with Isometric Paths

NV-normal form if and there are no distinct PV ∈ P , PN , P ′
N ∈ P such that {PN , PV } has

pattern and {P ′
N , PV } has pattern . Finally, we say that P is in normal form if P is in

pair-normal form, AN-normal form, and in NV-normal form.
Observe that any isometric path partition in normal form has one of the three patterns

given in Theorem 6. To show Theorem 6, it therefore suffices to show the following.

▶ Theorem 8 (⋆). Let G = (T, B, E) be a chain graph. There is an optimal isometric path
partition of G in normal form.

The main challenge for proving Theorem 8, whose proof turned out to be surprisingly difficult,
is to define the right operations and to apply them in the right order to obtain more and more
restricted normal forms while maintaining the progress already made. In particular, after
defining the required operations, we will show how to obtain normal form in the following
order: S-normal form, mixed normal form, I-normal form, A-normal form, N-normal form,
V-normal form, AN-normal form, and finally NV-normal form.

We say that a pattern α implies a pattern β (denoted by α → β) if for any chain graph
that contains a set P of pairwise disjoint isometric paths with pattern α there is a set P ′ of
pairwise disjoint isometric paths with pattern β such that V (P) = V (P ′). (Here V (P) is the
set of vertices covered by the paths in P.) For a set ∆ of patterns we write ∆ → β if δ → β

for every δ ∈ ∆.
For a pattern α, we denote by α↷ the pattern obtained from α after rotating α by 180◦

degrees around the center of the pattern. For instance, ↷ = , ↷ = , ↷ = ,
↷ = , and α = α↷↷. Moreover, for a set of patterns ∆, we define ∆↷ as { δ↷ | δ ∈ ∆ }.

The following observation is very useful to reduce the number of cases that have to be
considered in the proofs and follows easily from the symmetry of chain graphs w.r.t. rotation
by 180◦ degree around the center.

▶ Observation 9. Let α and β be patterns. Then α → β implies α↷ → β↷.

We say that a pattern α is valid if there is a set of pairwise disjoint isometric paths in
some chain graph with pattern α. For a pattern α, we denote by [α], the set of all valid
patterns that can be obtained from α after reordering the endpoints of the lines on the top
and/or on the bottom of the pattern α in an arbitrary manner. For instance, [ ] = { , , }
and [ ] = { , , , , , }. Note that [ ] does not contain any pattern where the lines
of the cross each other because those patterns are not valid.

The following auxiliary lemma provides the most important production rules on patterns
that we will use to transform an arbitrary solution into a solution in normal form.

▶ Lemma 10 (⋆). The following holds:
(a) [ ] → and [ ] → ,
(b) [ ] → ,
(c) [ ] → and [ ] → ,
(d) [ ] → and [ ] → ,
(e) [ ] ∪ [ ] → and [ ] ∪ [ ] → ,
(f) [ ] ∪ [ ] \ { } → and [ ] ∪ [ ] \ { } → ,
(g) [ ] → and [ ] → ,
(h) [ ] ∪ [ ] → ,
(i) [ ] \ { } → and [ ] \ { } → ,
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Sketch. (a) and (b) follow immediately because [ ] = { }, [ ] = { }, and [ ] = { }.
Let G = (T, B, E) be a chain graph and let P and P ′ be two isometric paths in G.

Let (V (P ) ∪ V (P ′)) ∩ T = {t1, . . . , tc} and (V (P ) ∪ V (P ′)) ∩ B = {b1, . . . , bd} such that
t1 > · · · > tc and b1 < · · · < bd.

Towards showing (e), assume that {P, P ′} has pattern α for some α ∈ [ ] ∪ [ ]. Then,
c = 2, d = 2 and b1 must have degree at least 1 in G. Therefore, because NG(t2) ⊆ NG(t1),
it follows that b1t1 ∈ E(G), which in turn implies that b2t1 ∈ E(G) since NG(b1) ⊆ NG(b2).
Therefore, {(b1, t1, b2), (t2)} is a pair of isometric paths with pattern , as required. Because
of Observation 9, we also obtain [ ] ∪ [ ] → . The remaining cases can be shown in an
analogous manner. ◀

The remainder of this subsection is about showing that there are optimal solutions that
have more and more restrictive normal forms. As an illustrative example we show next how
to obtain a mixed normal form from a solution in S-normal form. We start by stating the
lemma required to obtain a S-normal form.

▶ Lemma 11 (⋆). Let G = (T, B, E) be a chain graph. There is an optimal isometric path
partition P which is in S-normal form.

Building upon S-normal form, the following lemma now shows that we can achieve mixed
normal form. The proof of the lemma is based on an exhaustive application of certain
production rules from Lemma 10 combined with a potential function approach for showing
that this process terminates.

▶ Lemma 12 (⋆). Let G = (T, B, E) be a chain graph. There is an optimal isometric path
partition of G in mixed normal form.

Sketch. Let G = (T, B, E) be a chain graph and let P be an optimal isometric path partition
of G. Because of Lemma 11, we can assume that P is in S-normal form.

Let P ′ be the isometric path partition of G obtained from P after exhaustively applying
the following transformation rules from Lemma 10:
(1) [ ] → ,
(2) [ ] \ { } → , and
(3) [ ] \ { } → ,
Observe that if P ′ exists, then it trivially satisfies all the claims made in the statement of
the lemma. It therefore suffices to show the existence of P ′ or in other words that the above
rules can only be applied finitely often to P.

Towards showing this we will define a potential function Φ that assigns a two dimensional
vector of natural numbers to every isometric path partition of G. For the definition of Φ,
we need the following additional notation. For two vertices u and v of G such that either
u, v ∈ B or u, v ∈ T , we denote by [u, v]G the set {u, v} ∪ { w | u < w < v } of vertices of G.

For a path P = (p1, p2, p3, p4) ∈ P , we denote by WG(P ) the integer |[p1, p3]G|+|[p2, p4]G|.
For a path P = (p1, p2, p3) ∈ P , we denote by LG(P ) the integer |[fb, p1]G| + |[fb, p3]G| +
|[ft, p2]G|, where fb is the smallest vertex in B and ft is the largest vertex in T w.r.t. <.

For a path P = (p1, p2, p3) ∈ P , we denote by RG(P ) the integer |[lt, p1]G| + |[lb, p2]G| +
|[lt, p3]G|, where lt is the smallest vertex in T and lb is the largest vertex in B w.r.t. <.

For a isometric path partition P⋆ of G, we define the first and second component of
Φ(P⋆) as follows.

Φ(P⋆)[1] =
∑

P ∈P⋆

WG(P ) Φ(P⋆)[2] = −
( ∑

P ∈P⋆

LG(P )
)

−
( ∑

P ∈P⋆

RG(P )
)
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39:8 Covering and Partitioning with Isometric Paths

Let P1 and P2 be two isometric path partitions of G such that P2 is obtained from P1 by
applying exactly one of the operations given in (1)–(3). We claim that Φ(P2) > Φ(P1),
where > is the lexicographical ordering among two dimensional integer vectors. Because Φ is
finite, i.e., (0, −|B||P⋆ ∪ P⋆|) ≤ Φ(P⋆) ≤ (|B||P⋆|, 0), this then shows that P ′ is well defined.

It suffices to show the claim for the cases that P2 is obtained from P1 using one of the
operations (1)–(3). We show the case for operation (1) as an illustration and leave operations
(2) and (3) for the full version. If P2 is obtained from P1 by applying operation (1) to two
paths PA ∈ P1 and PV ∈ P1, then Φ(P2)[1] = Φ(P1)[1] and Φ(P2)[2] > Φ(P1)[2] because
no path in P1 other than PA and PV is changed and moreover because is the unique
pattern that maximizes Φ({P, P ′}) for any two paths P ∈ P1 and P ′ ∈ P1. ◀

Surprisingly, even after reaching mixed normal form, we are still rather far away from
our final normal form. In particular, we will go through the following normal forms (in that
order): I-normal form, A-normal form, N-normal form, V-normal form, AN-normal form,
and finally NV-normal form (⋆).

3.2 The Algorithms
Having developed our normal forms, we are now ready to show Theorem 4. We start by
showing the result for Isometric Path Partition.

▶ Lemma 13 (⋆). Isometric Path Partition admits a polynomial-time algorithm on
chain graphs.

Sketch. Let G = (T, B, E) be a chain graph. Theorem 6 implies that there is an optimal
isometric path partition of G having pattern , , or . It therefore suffices
to show that we can compute an optimal solution having any of these patterns in polynomial-
time. It suffices to provide the proof for the most involved of those patterns, i.e., the pattern

, as the proof of the other two patterns is analogous. Hence, let P be an isometric
path partition of G having pattern , then P can be defined by the following 6
numbers:

the number p1 of -paths,
the number p2 of -paths that are to the left of any -path,
the number p3 of -paths,
the number p4 of -paths that are inside all -paths,
the number p5 of -paths that are inside all -paths, and
the number p6 of -paths that are to the right of any -path.

We say that a tuple U = (p1, . . . , p6) of those six numbers is valid if there is an isometric
path partition of G with pattern with the number of paths as given by U . It
is now straightforward to show that the validity of any tuple U can be verified in time
O(|V (G)|) by checking the existence and non-existence of certain edges in G.

Putting everything together, we can solve Isometric Path Partition in time O(|V (G)|7)
by enumerating all of the at most |V (G)|6 tuples U in time O(|V (G)|6), testing their validity
in time O(|V (G)|), and then returning the solution that corresponds to a valid tuple U

minimizing p1 + p2 + p3 + p4 + p5 + p6 + (|T | − p2 − 2p3 − p4 − 2p5 − 2p6). ◀

We will now show that Isometric Path Cover on chain graphs can be reduced to
Isometric Path Partition on chain graphs with the help of the following lemma.
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▶ Lemma 14 (⋆). Let G = (T, B, E) be a chain graph, t ∈ T be a vertex such that t > t′ for
all t′ ∈ T \ {t}, and b ∈ B be a vertex such that b′ < b for all b′ ∈ B \ {b}. Then, there is an
optimal isometric path cover P of G such that all vertices in V (G) \ {t, b} appear in exactly
one path in P.

Now to solve Isometric Path Cover on a chain graph G = (T, B, E) we do the
following. Fix two vertices t ∈ T and b ∈ B such that t > t′ for all t′ ∈ T \ {t}, and b′ < b

for all b′ ∈ B \ {b}. From Lemma 14, we know that there is an optimal isometric path cover
C such that no vertex in V (G) \ {t, b} belongs to more than one path. Now we guess the
numbers nt and nb such that the number of paths in C that contain t and b are nt and
nb, respectively, and create a new graph G′ by adding nt − 1 copies a1, . . . , ant−1 of t, and
nb − 1 copies c1, . . . , cnb−1 of b. Moreover, each vertex in {a1, . . . , ant−1} is adjacent to all
the neighbours of t and each vertex in {c1, . . . , cnb−1} is adjacent to all the neighbours of b.
Then, clearly there is an isometric path partition P in G′ of size |C|. Also, any isometric
path partition Q in G′ can be converted into an isometric path cover in G of size |Q|. Hence,
we solve Isometric Path Partition on G′ and output accordingly.

4 Algorithms on Cographs

Here we design polynomial time algorithms for Isometric Path Partition and Isometric
Path Cover on cographs. Complement-reducible graphs (or cographs for short) were
introduced in [6]. To define the class we use the operations union ⊕ and join ⊗ for
graphs G = (V, E) and H = (U, F ) with V ∩ U = ∅, i.e., G ⊕ H = (V ∪ U, E ∪ F ) and
G ⊗ H = (V ∪ U, E ∪ F ∪ {vu | v ∈ V, u ∈ U}).

▶ Definition 15. The cographs can be defined recursively:
K1 is a cograph.
If G and H are cographs then so are G ⊕ H and G ⊗ H.
There are no other cographs.

A cotree T of a graph G = (V, E) can be defined as a rooted binary tree where the leaves
are the vertices in V and the inner nodes are marked with ⊕ and ⊗ such that two vertices
u, v ∈ V are adjacent if and only if their least common ancestor in T is marked by ⊗. Then
we say that G has a cotree.

▶ Theorem 16 ([6]). For every graph G the following conditions are equivalent.
1. G is a cograph.
2. G does not contain P4 as induced subgraph.
3. G has a cotree.

The following observations follow from the definition of cotrees.

▶ Observation 17. Let T be a cotree of a cograph G. Let (v1, v2, v3) be an induced path in
G. Then, there is a node t labelled ⊗ in the tree such that the least common ancestor of v1
and v2, as well as v2 and v3 is t.

▶ Observation 18. Let T be a cotree of a cograph G. For a node t in T , let Tt be the subtree
of T rooted at t. For a node t, if Gt is the cograph that has the cotree Tt, then Gt is the
subgraph of G induced on V (Gt). This implies that for any u, v ∈ V (Gt), if (u, v) /∈ E(Gt),
then (u, v) /∈ E(G).
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Now, we discuss an algorithm for Isometric Path Partition on cographs. For a
cograph G = (V, E) let Q(G) denote the set of quadruples (p̈, p1, p2, p3) such that V has a
partition S into p̈ + p1 + p2 + p3 subsets S ⊆ V such that

for i ∈ {1, 2, 3}, exactly pi sets S ∈ S induce a graph G[S] isomorphic to Pi, which is a
path on i vertices, and
for the remaining p̈ subsets S ∈ S the subgraph G[S] is isomorphic to 2P1, which is an
edgeless graph on two vertices.

Theorem 16 implies that each partition of a cograph into isometric paths consists of P1s, P2s
and P3s only.

▶ Lemma 19. For a cograph G on n vertices we can compute Q(G) in time O(n10).

Proof. A cotree T of G can be computed in linear time [6]. We compute Q(G) as follows:

Q(K1) = {(0, 1, 0, 0)}
Q(G′ ⊕ H) = {(p̈ + q̈ + r, p1 + q1 − 2r, p2 + q2, p3 + q3) | 0 ≤ r ≤ min{p1, q1},

(p̈, p1, p2, p3) ∈ Q(G′), (q̈, q1, q2, q3) ∈ Q(H)}
Q(G′ ⊗ H) = {

(
(p̈ − k) + (q̈ − l), (p1 − i − l) + (q1 − i − k), p2 + q2 + i,

(p3 + k) + (q3 + l)
)

| 0 ≤ i, 0 ≤ k ≤ p̈, 0 ≤ i + k ≤ q1, 0 ≤ l ≤ q̈,

0 ≤ i + l ≤ p1, (p̈, p1, p2, p3) ∈ Q(G′), (q̈, q1, q2, q3) ∈ Q(H)}

The equation for ⊕ holds because G′ ⊕ H does not contain any edges between G′ and H.
Every path in G′ ⊕ H is either a path in G′ or in H. We can count a P1 in G′ and a P1 in
H as one 2P1 in the first coordinate or as two P1 in the second. For ⊗ we can create i paths
P2 from a P1 in G and a P1 in H, k paths P3 from one 2P1 in G and one P1 in H, and l

paths P3 from one P1 in G and one 2P1 in H. Using induction on the nodes of the cotree
and the Observations 17 and 18, we prove that the above recursive formulae are correct.

Note that for any cograph G′, the number of quadruples in Q(G′) is at most n3, because,
by knowing specific values for p̈, p2 and p3, we can determine p1 through the equation
2p̈ + p1 + 2p2 + 3p3 = |V (G′)|. The cotree T has 2n − 1 nodes. Now we estimate the time
to compute Q(G′ ⊗ H), which is asymptotically larger than that of Q(G′ ⊕ H). For each
(p̈, p1, p2, p3) ∈ Q(G′) and (q̈, q1, q2, q3) ∈ Q(H), we run over three values k, l, i, each of them
is upper bounded by n, and constructs tuples in Q(G′ ⊗ H). The number of choices for k, l, i

is at most n3. Thus, for each each (p̈, p1, p2, p3) ∈ Q(G′) and (q̈, q1, q2, q3) ∈ Q(H), we will
be taking O(n3) time. Since the cardinalities of Q(G′) and Q(H) are upper bounded by n3

each, the total running time to compute Q(G′ ⊗ H) is O(n9). Since the cotree has 2n − 1
nodes, the total running time of our algorithm is O(n10). ◀

▶ Lemma 20. Isometric Path Partition can be solved in O(n10) time on cographs.

Proof. The recurrence for Q leads to a dynamic programming algorithm computing the
isometric path partition number of a cograph G, which is min{p1 + p2 + p3 | (0, p1, p2, p3) ∈
Q(G)}. ◀

Next, we explain how to use the values in Q(G) to solve Isometric Path Cover on
connected cographs.

▶ Lemma 21. Let G be a connected cograph. Let Q(G) be the set defined before in this
section. Then, the cardinality of an optimal isometric path cover of G is

min{p̈ + p1 + p2 + p3 | (p̈, p1, p2, p3) ∈ Q(G)}.
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Proof. Let (p̈, p1, p2, p3) ∈ Q(G). We claim that there is an isometric path cover of G of
size p̈ + p1 + p2 + p3. Since (p̈, p1, p2, p3) ∈ Q(G), we know that V (G) has a partition into
p̈ + p1 + p2 + p3 subsets S ⊆ V (G) of which,
(a) for i ∈ {1, 2, 3}, exactly pi induced G[S] is isomorphic to Pi, and
(b) for the remaining p̈ subsets we have G[S] isomorphic to 2P1.

Since G is a connected cograph, in Case (b), there is an induced path of length 2 with the
vertices in S being its end vertices. So these paths along with the paths in Case (a) forms
an isometric path cover of G of size p̈ + p1 + p2 + p3.

Now we prove the reverse direction. Without loss of generality we assume that there is an
optimal isometric path cover P of G where for each path P ∈ P , its end vertices appear only
in one path which is P . Let ℓ = |P|. Now we claim that there is a tuple (p̈, p1, p2, p3) ∈ Q(G)
such that p̈+p1 +p2 +p3 = ℓ. Let P = P1 ∪P2 ∪P3, where Pj contains all paths on j vertices
from P. Let Q1 = {V (P ) : P ∈ P1} and Q2 = {V (P ) : P ∈ P2}. Now we construct Q̈ and
Q3. Initially, we set Q̈ := ∅ and Q3 := ∅. Consider a vertex z such that z is an intermediate
vertex in a path in P3. Suppose z is present in nz paths. Because of our assumption of P , we
know that z is the intermediate vertex in all those nv paths in P3. Let R1, R2, . . . , Rnz be
these paths. Now let Sz,i be the set containing the end vertices of Ri for all i ∈ [nz − 1] and
Sz,nz = V (Rnz ). Now we set Q̈ := Q̈ ∪ {Sz,i : i ∈ [nz − 1]} and Q3 := Q3 ∪ {Si,nz }. We do
this procedure for each z such that it is an intermediate vertex of a path in P3. Let p̈ = |Q̈|
and pi = |Qi| for all i ∈ {1, 2, 3}. It is easy to see that p̈ + p1 + p2 + p3 = ℓ and the above
construction of Q̈ and Q3 implies that (p̈, p1, p2, p3) ∈ Q(G). ◀

Lemma 21 implies that Isometric Path Cover can be solved in time O(n10) on
cographs.

5 Hardness on Split Graphs

Here, we show that Isometric Path Partition is already NP-hard on split graphs.

▶ Theorem 22 (⋆). Isometric Path Partition is NP-hard on split graphs.

Sketch. We provide a polynomial-time reduction from the NP-complete 3-XSAT problem [13,
Lemma 5], where given a propositional formula Φ in CNF such that every clause of Φ has
exactly 3 positive literals and every variable occurs exactly in 3 clauses of Φ, the task is
to decide whether there is an assignment of the variables of Φ that satisfies exactly one
literal from every clause. Let Φ be the given instance of 3-XSAT. We will construct a split
graph G = (T, B, E) where T is the independent set and B is the clique such that Φ has
an assignment satisfying exactly one literal from every clause if and only if G has isometric
path partition P of size at most 32n2 − 4n, where n is a number of clauses (and also the
number of variables) of Φ. We shall frequently refer to B as “bottom” and T as “top”.

Let C = {C1, . . . , Cn} be the set of clauses of Φ and let X = {x1, . . . , xn} be the set of
variables of Φ. G is constructed from three types of gadgets defined as follows and illustrated
in Figure 2. For every variable xa, G contains the gadget GX (xa) defined as follows. Let Ci,
Cj and Ck with 1 ≤ i < j < k ≤ n be the 3 clauses that contain xa. For every b ∈ {i, j, k},
GX (xa) has the vertices xa,b, xa,b, x⊗

a,b and x⊙
a,b with xa,b, xa,b ∈ B and x⊗

a,b, x⊙
a,b ∈ T and

the edges xa,bx⊗
a,b and xa,bx⊙

a,b. Additionally, GX (xa) contains the edges xa,ix
⊗
a,j , xa,jx⊗

a,k,
and xa,kx⊗

a,i. Intuitively, the gadget is used to ensure that all occurrences of the variable xa

are assigned in the same manner, which is achieved by forcing that any solution for G can
cover all vertices in the gadget in only two manners, which are illustrated in Figure 2.
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GC(Ci) GX (xa) GD(x⊙
a,j , x⊙

a,k)
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i
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i
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x⊗
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a,i
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d
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xa,j xa,j

x⊗
a,j x⊙
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xa,k xa,k
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a,k x⊙
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d

d⊙
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X (a) PD(d)

c⊗
i
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i
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x⊗
a,i x⊙

a,i
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a,j x⊙

a,j

xa,k xa,k

x⊗
a,k x⊙

a,k d⊗

d

d⊙

Figure 2 Illustration of the gadgets GC(Ci), GX (xa), and GD(x⊙
a,j , x⊙

a,k) used in the proof of
Theorem 1. The colors of the edges indicate, which gadget they belong to, i.e., red, blue, and
green edges are part of GC(Ci), GX (xa), and GD(x⊙

a,j , x⊙
a,k), respectively. The top figure provides

the edges that are part of each gadget (without the edges that are part of the clique on B). The
dashed green edges indicate pairs of twin vertices, i.e., the only pairs on the top that can be used as
endpoints of isometric paths of length 3. The center and the bottom figure together provide the
two possible configurations for how the vertices of the gadgets can be cover in an isometric path
partition, which is also descripted in (1), (3), and (4). The center figure illustrates the case that
the variable xa is set to 0 and does not satisfy the clause Ci and the bottom figure illustrates the
opposite case.

For every clause Ci ∈ C, G contains the gadget GC(Ci). The gadget GC(Ci) consists of
1 new bottom vertex ci, 2 new top vertices c⊗

i and c⊙
i , and the edges cic

⊗
i and xa,ic

⊙
i for

every xa ∈ Ci. This gadget GC(Ci) will ensure that every clause in Φ is satisfied by exactly
one literal. Given two distinct top vertices u and v, the last gadget GD(u, v), which we call
the destroyer gadget, has 1 bottom vertex du,v, 2 top vertices d⊗

u,v and d⊙
u,v and the edges

du,vd⊗
u,v, du,vd⊙

u,v, du,vu and du,vv. The purpose of the destroyer gadget is to ensure that
the two top vertices u and v can not occur together in a path of length 3.

We are now ready to define the graph G. Let G′ =
⋃

x∈X GX (x) ∪
⋃

C∈C GC(C). Note
that |T (G′)| = 6n + 2n = 8n. We say that two top vertices v and v′ from T (G′) are twins,
if there exists u ∈ B(G′) such that v = u⊗ and v′ = u⊙. Then, G is the union of G′ and
an instance of the destroyer gadget GD(u, v) for every two distinct top vertices u and v of
T (G′) that are not twins. Let BD be the set of all bottom vertices from all of the destroyer
gadgets. Note that |T (G)| = |T (G′)|(|T (G′)| − 2) + |T (G′)| = 64n2 − 8n.

Consider an isometric path partition P of G with |P| = |T (G)|
2 = 32n2 − 4n. The

correctness of the reduction can now be shown rather straightforwardly from the following
properties (⋆):
(1) For every d ∈ BD, the path PD(d) = (d⊗, d, d⊙) is included in P.
(2) If a path P ∈ P is of length 3, then its endpoints are twins.
(3) For every i ∈ [n] there exists a ∈ [n] such that PC(a, i) = (c⊗

i , ci, xa,i, c⊙) is in P.
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(4) For any a, i, j, k ∈ [n] with xa belonging to Ci ∩ Cj ∩ Ck and i < j < k, precisely one of
the following scenarios occurs:
(a) The set of paths P1

X (a) = { (x⊗
a,ℓ, xa,ℓ, xa,ℓ, x⊙

a,ℓ) | ℓ ∈ {i, j, k} } is a subset of P, or
(b) P2

X (a) = { (x⊗
a,i, xa,k, x⊙

a,k), (x⊗
a,j , xa,i, x⊙

a,i), (x⊗
a,k, xa,j , x⊙

a,j) } is a subset of P.
(5) For every a, i ∈ [n] and P ∈ P, such that xa ∈ Ci and xa,i ∈ V (P ), P = PC(a, i) or

P ∈ P1
X (a). ◀

6 Conclusion

In this paper we proved that Isometric Path Partition remains NP-hard on split graphs.
We also showed that both Isometric Path Cover and Isometric Path Partition
admit polynomial time algorithms on chain graphs and cographs. Algorithms faster than the
ones provided in this paper would be interesting. Another direction of research is to look
for other graph classes where Isometric Path Cover and Isometric Path Partition
admit polynomial time algorithms. Graph classes like bipartite permutation graphs, proper
interval graphs, strongly chordal split graphs, etc. are natural candidates. The computational
complexities of Isometric Path Cover and Induced Path Cover on split graphs remain
open.
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Abstract
Given an Abelian group G, a Boolean-valued function f : G → {−1, +1}, is said to be s-sparse, if it
has at most s-many non-zero Fourier coefficients over the domain G. In a seminal paper, Gopalan
et al. [15] proved “Granularity” for Fourier coefficients of Boolean valued functions over Zn

2 , that
have found many diverse applications in theoretical computer science and combinatorics. They also
studied structural results for Boolean functions over Zn

2 which are approximately Fourier-sparse. In
this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions
over Abelian groups G of the form, G := Zn1

p1 × · · · × Znt
pt

, for distinct primes pi. We also obtain a
lower bound of the form 1/(m2s)⌈φ(m)/2⌉, on the absolute value of the smallest non-zero Fourier
coefficient of an s-sparse function, where m = p1 · · · pt, and φ(m) = (p1 − 1) · · · (pt − 1). We carefully
apply probabilistic techniques from [15], to obtain our structural results, and use some non-trivial
results from algebraic number theory to get the lower bound.

We construct a family of at most s-sparse Boolean functions over Zn
p , where p > 2, for arbitrarily

large enough s, where the minimum non-zero Fourier coefficient is o(1/s). The “Granularity” result
of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse
Boolean valued function over Zn

2 are Ω (1/s). So, our result shows that one cannot expect such a
lower bound for general Abelian groups.

Using our new structural results on the Fourier coefficients of sparse functions, we design an
efficient sparsity testing algorithm for Boolean function, which tests whether the given function is
s-sparse, or ϵ-far from any sparse Boolean function, and it requires poly((ms)φ(m), 1/ϵ)-many queries.
Further, we generalize the notion of degree of a Boolean function over an Abelian group G. We use it
to prove an Ω(

√
s) lower bound on the query complexity of any adaptive sparsity testing algorithm.
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1 Introduction

Boolean functions are fundamental objects of study in computer science. For a discrete
domain D, a Boolean function f : D → {+1,−1} models a decision task where each member
of D is classified into one of two classes. Boolean functions play a vital role in the study of
digital circuits and computer hardware. They are also significant in the study of algorithms
and complexity, particularly in problems where the set D of instances is endowed with an
algebraic structure. Examples of such problems include matrix multiplication and polynomial
evaluation.

The case of Boolean function complexity with D = Zn
2 has been widely studied. These

functions are often analyzed in connection with their Fourier transform (see Section 2)
and a significant amount of research has focused on the structural properties of Fourier
spectra of important classes of these functions. One such class that this work focuses on
is that of Fourier-sparse functions. These are functions with only a few non-zero Fourier
coefficients, formally defined in Definition 18. We will denote by sf the Fourier sparsity of a
Boolean function f . Fourier sparsity and Fourier-sparse functions have known connections
with a variety of areas of Boolean function analysis and computational complexity like
property testing [15], learning theory [20, 3], distance estimation [35] and communication
complexity [23, 31, 19, 27, 22]. These connections provide enough motivation to comprehend
the structure of Fourier coefficients for Fourier-sparse Boolean functions.

In this work, we extend the study of Fourier-sparse Boolean functions to the domains
D, which are Abelian groups of the form Zn1

p1
× · · · × Znt

pt
, where p1, . . . , pt are distinct

prime numbers. Boolean functions over general Abelian groups have been studied in both
mathematics and computer science. A celebrated result regarding such functions is Chang’s
Lemma [10]. Chang’s lemma over Zn

2 has found numerous applications in complexity theory
and algorithms [5, 9], analysis of Boolean functions [16, 31], communication complexity
[31, 21], extremal combinatorics [13], and many more. Recently, [8] improved Chang’s lemma
over Zn

2 for some special settings of parameters, where Fourier sparsity played a crucial
role. One motivation to study Fourier sparsity over a broader class of Abelian groups is to
investigate possible generalizations of their bounds to those groups.

Fourier analysis over finite Abelian groups in cryptography. For the past three decades,
the field of cryptography has been utilizing concepts derived from Fourier analysis, specifically
over finite Abelian groups. Akavia, Goldwasser, and Safra [2] have combined some of these
concepts to develop a comprehensive algorithm that can detect “large” Fourier coefficients of
any concentrated function on finite Abelian groups, and compute a sparse approximation for
the same. This algorithm has gained significant attention within the cryptography community,
especially regarding the notion of “bit security” of the discrete logarithm problem (DLP),
RSA, and learning with errors (LWE) problems; see [25, 14, 1]. In particular, the “nice”
structural results on the Fourier coefficients of a Boolean-valued function over the general
Abelian group are of utmost importance and interest from a crypto-theoretic point of view.

Interestingly, there are strong relationships between learning, sparsity, and sampling,
in the context of Fourier-sparse Boolean functions. They have been rigorously studied
in [28, 29, 30]. In [28], the authors asked the following:

▶ Question 1.1. What can be said about the structure of the Fourier coefficients of a Boolean
function f over an Abelian group G = Zn

p , where the support is significantly smaller compared
to G?
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Gopalan et al. [15] proved that any non-zero Fourier coefficient of a Boolean function
over Zn

2 with Fourier sparsity at most sf , is at least 1
sf

in its absolute value. This gave a
satisfactory answer of Question 1.1 over Zn

2 . Furthermore, they proved robust versions of their
result for functions which are approximately Fourier-sparse. Finally, their structural results
were used to design a sample-efficient algorithm to test whether a function is Fourier-sparse.

In our work, we undertake the same task for Boolean functions over Abelian groups of the
form Zn

p , for a prime p ≥ 3. We prove lower bounds on the absolute value of any non-zero
coefficient in terms of sf and p. We also prove a tightness result that complements our
lower bounds. In particular, our bound implies that a lower bound of 1

Θ(sf ) that [15] showed
does not hold anymore for Zn

p . Finally, we use our bounds to design a testing algorithm for
Fourier-sparse Boolean functions over Zn1

p1
× · · · × Znt

pt
. This is probably the first time, we

have advanced on understanding some structure on the Fourier-sparse coefficients over a
general Abelian group, and shed some light on Question 1.1.

It is well-known that any Abelian group is isomorphic to a group of the form Zp
n1
1

× · · · ×
Zp

nt
t

where p1, . . . , pt are prime numbers and n1, . . . , nt are positive integers. Unfortunately,
our techniques fall short of handling even a simpler case of Zp2 , fundamentally because of the
absence of a linear structure on the solution space of systems of equations over Zp2 . Therefore,
we are leaving the task of investigating the existence of similar bounds and algorithmic
results when the domain of the function is a general Abelian group to future research.

Why care about Fourier-sparse Boolean functions over Abelian groups?

There has been a considerable amount of interest in studying the complexity of reconstructing
or learning functions of the form f : D → C, where D is a known domain (more general than
a hypercube, such as a general finite Abelian group), and f is Fourier-sparse; see [30, 26,
24, 11, 34]. Fourier-sparse functions over various finite Abelian groups have gained much
interest with the advancement in sparse Fourier transform algorithms [17, 18, 4]. These
algorithms improve the efficiency of the standard Fast Fourier Transform algorithms by
taking advantage of the sparsity itself. To reliably use sparse Fourier transform algorithms, it
is beneficial to have a way to test if a function is s-sparse or, more generally, to estimate the
distance of a function to the closest s-sparse function. In this work, we consider the problem
of non-tolerant sparsity-testing of Boolean functions over finite Abelian groups.

Finally, apart from mathematical curiosity and potential cryptographic applications (as
mentioned previously), structural results on Fourier-sparse functions f : ZN → C, for some
N ∈ N, have also found algorithmic applications in SOS-optimization and control theory.
These applications have further implications in certifying maximum satisfiability (MAX-SAT)
and maximum k-colorable subgraph (MkCS) problems; see [12, 33, 32].

1.1 Our results

Throughout the article, we will be working with the Abelian group G := Zn1
p1

× · · · × Znt
pt

where pi are primes. Let f : G → {−1,+1}, and f(x) =
∑

χ∈Ĝ f̂(χ)χ(x) be the Fourier
transform of f , where Ĝ is the set of characters of the Abelian group G.

We say a Boolean function is s-sparse, if it has at most s non-zero Fourier coefficients.
[15] proved that for any s-sparse Boolean functions over Zn

2 , the magnitude of the Fourier
coefficients are k-granular where k = ⌈log2 s⌉ + 1. A real number is k-granular if it is an
integer multiple of 1/2k. One wonders whether such a phenomenon still holds over a more
general group G.
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This notion of granularity made sense over Zn
2 , since in this case, all the Fourier coefficients

are rational (and hence real) numbers. But when the domain of the function is a general
group G, the Fourier coefficients are necessarily complex numbers. So, we would like to
suitably define granularity, and show that such a property still holds for s-sparse Boolean-
valued functions over G. Our first conceptual contribution in this paper is to generalize the
notion of granularity appropriately.

▶ Definition 1 (Granularity). A complex number is said to be k-granular or has granularity k
with respect to Zp if it is of the form g(ωp)

pk , where g(X) ∈ Z[X] and ωp is a primitive pth

root of unity.
More generally, a complex number is said to be (m1, . . . ,mt)-granular with respect to

(Zp1 , . . . ,Zpt
) if it is of the form g(ωp1 ,...,ωpt )

p
m1
1 ···pmt

t

, where g(X1, . . . , Xt) ∈ Z[X1, . . . , Xt] and ωpi

is a primitive pth
i root of unity, i ∈ [k].

Note that, this goes well with the definition of granularity in [15] for the case of Z2 as ω2
is either +1 or −1 and hence g(ω2) is an integer for any g(X) ∈ Z[X].

A function f : G → {−1,+1} is said to be (m1, . . . ,mt)-granular with respect to
(Zp1 , . . . ,Zpt

) if each Fourier coefficient of f is (m1, . . . ,mt)-granular.
We will also need a robust version of the definition of granularity of a complex number.

▶ Definition 2 (µ-close to k-granular). A complex number v is said to be µ-close to
k-granular with respect to Zp if |v − g(ωp)

pk | ≤ µ, for some non-zero polynomial g(X) ∈ Z[X].
Note that a similar notion can be defined for the case of µ-close to (m1, . . . ,mt)-granular

with respect to (Zp1 , . . . ,Zpt).

Now, we are ready to formally state our two main structural results. All our results hold
for Boolean-valued functions over the more general Abelian group G. But for simplicity
of presentation and ease of understanding, we first present the result for Boolean-valued
functions over Zn

p . Later, we present more general versions of our results, see the archived
version of the paper [7] for more details.

Our first theorem says that for any Boolean-valued function over Zn
p that is close to being

sparse, all its large Fourier coefficients are close to being granular. This is a generalization of
the structural theorem of [15, Theorem 3.3], which was proved over Zn

2 .

▶ Theorem 3 (Structure theorem 1). Let f : Zn
p → {−1,+1} be a Boolean-valued function

and let B be the set of characters corresponding to the set of s-largest Fourier coefficients of
f (in terms of magnitude). If

∑
χ∈B |f̂(χ)|2 ≥ (1 − µ) then for all χ ∈ B, f̂(χ) is µ√

s
-close

to ⌈logp s⌉ + 1-granular.

For a function f : Zn
p → {−1,+1},

∑
χ∈B |f̂(χ)|2 ≥ (1 − µ) (where B is the set of

characters corresponding to the set of s largest coefficients of f) can also be stated as “there
is an s-sparse function g : Zn

p → C with the ℓ2-distance between f and g is at most √
µ”.

But note that this does not guarantee that there is an s-sparse Boolean-valued function
g : Zn

p → {−1,+1} with ℓ2-distance between f and g being at most √
µ. However, our

second theorem proves that one can indeed find an s-sparse Boolean-valued function in a
close enough vicinity, thus generalizing [15, Theorem 3.4].

▶ Theorem 4 (Structure theorem 2). Let f : Zn
p → {−1,+1} be a Boolean-valued function

and let B be the set of characters corresponding to the set of s-largest Fourier coefficients of
f (in terms of magnitude). If

∑
χ∈B |f̂(χ)|2 ≥ (1 − µ), with µ ≤ 1

8(p2s)p−1 then there exists
an s-sparse Boolean-valued function F : Zn

p → {−1,+1} with ℓ2 distance between f and F is
at most

√
2µ.
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Theorem 3 and Theorem 4 can be suitably generalized to functions from G to {−1,+1}.
But for the clarity of presentation, we state the generalized theorems and present their proofs
in the archived version of the paper [7].

One important corollary of Theorem 3 is that for any s-sparse Boolean function f :
Zn

2 → {−1,+1} the non-zero Fourier coefficients has magnitude at least 1/2k, where k =
⌈log2 s⌉ + 1. Unfortunately, such a simple corollary cannot be claimed for s-sparse functions
f : Zn

p → {−1,+1} if p ̸= 2. The main reason is that the definition of granularity is for
complex numbers, rather than real numbers and hence such a lower bound cannot be directly
deduced. However, borrowing results from algebraic number theory, we can obtain a lower
bound on the Fourier coefficients of Boolean-valued functions from Zn

p to {−1,+1} for any
arbitrary prime p.

▶ Theorem 5 (Fourier coefficient lower bound). Let f : Zn
p → {−1,+1}, with Fourier sparsity

sf . Then, for any χ ∈ supp(f), we have |f̂(χ)| ≥ 1
(p2sf )⌈(p−1)/2⌉ .

▶ Remark. One can also prove a weaker lower bound of the form 1/((sf + 1)√sf )sf , which
is p-independent; for details, see the archived version of the paper [7].
Observe that the lower bound in Theorem 5 is much lower than 1/sf . One may wonder
how tight our result is. It is known that 1/s is tight for the case when p = 2. For example,
consider the function AND : Zn

2 → {−1,+1}. Its non-empty Fourier coefficients are either
1

2n−1 or − 1
2n−1 , while the empty (constant) coefficient being 1 − 1

2n−1 .
To our pleasant surprise, we construct s-sparse Boolean-valued functions over Zn

p , for
p ≥ 5, such that they have nonzero Fourier coefficients with absolute value being o(1/s).

▶ Theorem 6 (Small Fourier coefficients). For every prime p ≥ 5, and large enough n, there
exist a positive constant αp that depends only on p and a function f : Zn

p → {−1,+1} with
Fourier sparsity sf satisfying the following property:

min
χ∈supp(f)

∣∣∣f̂(χ)
∣∣∣ ≤ 1/s1+αp

f .

We prove a generalized version of the lower bound result (Theorem 5) for Boolean-valued
functions over G. The above example (from Theorem 6) can also be easily extended to obtain
Boolean-value functions over G demonstrating similar bounds on the absolute value of the
non-trivial Fourier coefficients.

Finally, we design efficient algorithms for testing whether a function f : Zn
p → {−1,+1}

is s-sparse or “far” from s-sparse-Boolean. To state our results we need to define what we
mean by a function f : Zn

p → {−1,+1} is ϵ-far from s-sparse.

▶ Definition 7. A function f : Zn
p → {−1,+1} is ϵ-far from s-sparse-Boolean if for every

s-sparse function g : Zn
p → {−1,+1} the ℓ2-distance of f and g is at least

√
ϵ.1

We say that an algorithm (property tester) A ϵ-tests C, for a class of functions f : Zn
p →

{−1,+1}, if given access to the truth table of a function f , whether f ∈ C, or f , is “ϵ-far
from C” can be tested using A with success probability (called the confidence) ≥ 2/3. The
number of queries to the truth-table of f made by A is called the query complexity of A.

1 In property testing usually the distance measure used is Hamming distance between two Boolean
functions. But since we are using ℓ2 distance in our other theorem, so for ease of presentation, we
have defined the farness in terms of ℓ2 instead of Hamming distance. Also, note that for a pair of
Boolean-valued functions the square of the ℓ2 distance and Hamming distance are the same up to a
multiplicative factor of 4, see the archived version of the paper [7]
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Using the structure theorems (Theorem 3 and Theorem 4), we prove the following theorem
which tests sparsity of a Boolean-valued function f : Zn

p → {−1,+1}.

▶ Theorem 8 (Testing s-sparsity). For a fixed prime p, there is a non-adaptive poly(s, 1/ϵ)
query algorithm with confidence 2/3, which tests whether a given function f : Zn

p → {−1,+1},
is s-sparse or ϵ-far from s-sparse-Boolean.

We can also obtain a similar testing algorithm for sparsity, for a Boolean-valued function
over G. The generalized algorithm is discussed in the archived version of the paper [7].

We complement our result by showing a query-complexity lower bound for sparsity-testing
algorithms. Gopalan et al. [15] gave a Ω(

√
s) lower bound for s-sparsity testing algorithms

over Zn
2 . An important component of their proof was to cleverly use an alternative notion

of degree (borrowed from [6]) of a Boolean function over Z2. We also give a similar lower
bound over Zn

p , by appropriately generalizing the useful notion of degree. For details on the
definition of degree, see proof idea of Theorem 9 in Section 1.2 and in the archived version of
the paper [7].

▶ Theorem 9. For Boolean valued functions on Zn
p , to adaptively test s-sparsity, the query

lower bound of any algorithm is Ω(
√
s).

Theorem 9 can be generalized for Boolean valued functions on G, which will give us the same
lower bound.

1.2 Proof ideas

In this section, we briefly outline the proof ideas of our main theorems. Although some of
the proofs are indeed inspired by [15] (which worked over Z2), the proof techniques does not
directly generalize over Zp. So, we will first discuss the proof ideas, and then clarify the
differences between [15] and our techniques (see Section 1.2.1). While doing so, we will try
to convey the hurdles for generalizing over Zp. Let us first sketch the proof of Theorem 3.

Proof idea of Theorem 3. Our goal is to show that if f is µ-close to some s-sparse complex-
valued function in ℓ2, then there exists a non-zero polynomial g(X) ∈ Z[X] such that the
following properties hold.
1. The sum of the absolute values of its coefficients is at most pk, where k := ⌈logp s⌉ + 1.
2. The distance between the absolute value of each non-zero Fourier coefficient of f and

|g(ωp)|/pk is at most µ/
√
s.

To show the above, we first utilize a probabilistic method to prove that for each character
χi ∈ B in the Fourier support of f , there exists a matrix A ∈ Zk×n

p , and a column vector
b ∈ Zn×1

p , such that – (1) χi is a solution of the linear system Aχ = b, and (2) no other
character in the Fourier support of f is a solution of Aχ = b, where B be the set of s-largest
Fourier coefficients of f . After establishing the existence of such A and b, we consider the
Fourier transform of the projection operator for the solution space of Aχ = b (see the archived
version of the paper [7]). The projection operator, as the name suggests, is an operator that
projects Zn

p onto a linear subspace which yields a partition of the Fourier spectrum of f .
Then we show that the ℓ2 Fourier weight of S ∩H, i.e.,

∑
χ∈S∩H |f̂(χ)|2 is upper bounded

by µ/
√
s, where S = B, and H is a coset of A⊥ that are solutions to the system of linear

equations Aχ = b. For details, see the archived version of the paper [7].
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Proof idea of Theorem 5. If we put µ = 0 in Theorem 3, we get that there exists a
g ∈ Z[X], with the sum of the absolute values of its coefficients is at most pk, such that
|f̂(χ)| ≥ |g(ωp)/pk|, where k = ⌈logp sf ⌉ + 1, sf being the sparsity of the Boolean valued
function f . The remaining part of the proof is to show that for any polynomial g with the
aforementioned properties, |g(ωp)|/pk ≥ 1/(p2sf )⌈(p−1)/2⌉.

As stated earlier, we use a non-trivial result from algebraic number theory (Theorem 25),
which states that if f ∈ Z[x], such that f(ωn) ̸= 0, where ωn be a primitive root of unity,
then, |

∏
i∈Z∗

n
f(ωi

n)| ≥ 1. We also use the fact that the sum of the absolute values of the
coefficients of g is at most pk, to get an upper bound on the quantities |g(ωi

p)|, for any
i ∈ [p−1]. Combining these two facts, we obtain our lower bound; for details see the archived
version of the paper [7].

Proof idea of Theorem 4. We first show that the given function f : Zn
p → {−1,+1}, that

is µ-close to some s-sparse complex-valued function in ℓ2, can be written as the sum of two
functions F and G, where the Fourier coefficients of F are ⌈logp s⌉ + 1-granular and the
absolute value of the Fourier coefficients of G are upper bounded by µ/

√
s, where p is an

odd prime. This follows from Theorem 3. Then we show that the range of F is {−1,+1},
which uses the following facts:
1. (F +G)2 = f2 = 1 and
2. F 2 is 2⌈logp s⌉ + 1-granular.
We compute E[G(x)2] in order to find an upper bound on the Fourier coefficients of H :=
G(2f −G), which helps us to conclude that F̂ 2(χ) = 0 for all χ ̸= χ0, and F̂ 2(χ0) = 1, where
χ0 is the character which takes the value 1 at all points in Zn

p . Then we complete the proof
by showing that the Prx[x ∈ Zn

p |f(x) ̸= g(x)] is ≤ µ2/2, which implies that F is
√

2µ close
to f in ℓ2 (see Lemma 22). This idea has also been employed in [15]. We have also extended
this proof to a more general Abelian group G, (see the archived version of the paper [7]).

Proof idea of Theorem 6. The example that we construct to prove Theorem 6 is a simple
one. The crucial observation in this regard is that there are functions from Zp to {−1,+1},
whose Fourier coefficients are smaller than 1/p. In this work, we work with one such
function I≥ p+1

2
: Zp → {−1,+1}. We claim that the composition function ANDn ◦ I≥ p+1

2
is

one such desired function from Zn
p to {−1,+1}, such that its minimum Fourier coefficient is

less than 1/pn. Here, we assume a trivial bound of pn on the Fourier sparsity of the function
ANDn ◦ I≥ p+1

2
.

Proof idea of Theorem 8. We sketch the algorithmic idea over Zn
p , where p is an odd prime;

this idea can be canonically extended to more general Abelian groups G. The main idea of
the algorithm is to partition the set of characters into buckets and estimate the weights of
the individual buckets (that is the sum of the squares of the absolute values of the Fourier
coefficients corresponding to the characters in the buckets). We know from Theorem 5 that
all the coefficients of an s-sparse function are at least as large as 1/(p2s)⌈(p−1)/2⌉. So, we
are certain that if the weights of the buckets can be approximated within an additive error
or τ/3, where τ ≥ 1/(p2s)p−1, then in the case the function is s-sparse, not more than s of
the buckets can have weight more than τ/2. On the other hand, we will show that if the
function f is ϵ-far from any s-sparse Boolean function then with a high probability at least
(s+ 1) buckets will have weight more than τ , making the estimated weight at least 2τ/3; see
the archived version of the paper for more details [7].
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The challenge is that estimating the weights of the buckets is not easy if the characters
the randomly partitioned into buckets. Here we use the ideas from Gopalan et al [15] and
appropriately modify them to handle the technicalities of working with Zn

p . We choose the
buckets carefully. The buckets corresponds to the cosets of H⊥ in Zn

p , where H is a random
subspace of Zn

p of dimension, t = Θ(s2). For such kinds of buckets, we show that estimation
of the weight can be done using a small number of samples. We also need to use the concept
of “random shift”, see the archived version of the paper [7], to avoid the corner case of
characters being put into the trivial bucket.

Unlike [15], it becomes a bit more challenging to prove that if f is ϵ-far from any s-sparse
Boolean function over Zn

p , then with high probability at least (s + 1) buckets will have
weight more than τ . Since we partition the set of characters by cosets, the events whether
two characters land in the same bucket (that is same coset) are not independent – since
two characters (in the case p ̸= 2) can be scalar multiple of each other; this is where some
additional care is required (which was not the case in [15]). Under random shifts and
case-by-case analysis, we can show that the two events are not correlated, i.e., the covariance
of the corresponding indicator variables of the two events is 0; see the archived version of the
paper [7]. Thus, we can use Chebyshev’s inequality and then Markov’s inequality to bound
the number of buckets that can be of low weight, or in other words prove that the number of
“heavy” weight buckets is more than s+ 1. The proof of Theorem 8 is given in the archived
version of the paper [7].

Proof idea of Theorem 9. In [15], Gopalan et al. proved a query lower bound over Zn
2 , by

using a natural notion of degree of a Booelan function, denoted deg2. They crucially used
the fact that for a Boolean function f over Z2, 2dim(f) ≥ sf ≥ 2deg2(f); this was originally
proved in [6]. To define the degree, let us consider all possible restrictions f |Vb,r1,...,rt

of f ,
where Vb,r1,...,rt

is a coset of V0,r1,...,rt
in Zn

p as defined as

Vb,r1,...,rk
:= {x ∈ Zn

p : rj · x = bj (mod p) ∀j ∈ [t]} .

Then the degree over Zp of f , denoted by degp, is defined in the following way.

degp(f) = max
ℓ

{ℓ = dim(Vb,r1,...,rt
) : sf |Vb,r1,...,rt

= pdim(Vb,r1,...,rt )},

where sf |Vb,r1,...,rt
is the Fourier sparsity of the function f |Vb,r1,...,rt

. [15] defined the degree
over Zn

2 via similar restrictions. However, [15] argued that this is a natural definition of the
degree over Zn

2 . To argue, observe that f̂ = 1
2nHnf , where Hn is the 2n × 2n Hadamard

matrix, when xi ∈ Zn
2 are seen in lexicographic order. Consider the restrictions f |Vb,r1,...,rt

that takes the value 1 at those points such that each entry of f̂ |Vb,r1,...,rt
is nonzero. Then

deg2 can be defined as the dimension of the coset Vb,r1,...,rt
which is largest amongst them!

In that case, all the Fourier coefficients of f |Vb,r1,...,rt
are nonzero.

Interestingly, we can also show that the above definition of degp is natural, mainly
because f̂ = 1

pnVnf , where V1 is a p × p Vandermonde matrix V1, whose (i, j)-th entry
is (V1)i,j := ω

(i−1)(j−1)
p , and Vn is defined by taking n many Kronecker products of V1,

i.e., Vn := V ⊗n
1 = V1 ⊗ · · · ⊗ V1. Note that Hn = Vn, over Zn

2 . Similar to [6], one can also
show that pdim(f) ≥ sf ≥ pdegp(f) (see the archived version of the paper [7]). This plays a
crucial role in the proof.

We first define two distributions DY es and DNo on the set of Boolean valued functions
from Zn

p to {−1,+1}. Let us choose a random t-dimensional subspace H of ZCt
p , for some

parameter C (to be fixed later). Let C be the set of all cosets of H. There are 2 main steps
as follows.
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1. We construct random functions f by making f a constant on each coset of C. The constant
is chosen randomly from {−1,+1}. We call this probability distribution Dyes.

2. We choose a random function f randomly from ZCt
p , conditioned on the fact that f is

2 − τ far in ℓ2 from any function which has degp = t, where τ is as defined in Theorem 8.
Let us call this distribution DNo.

We show that if an adaptive query algorithm makes less than q < Ω(pt/2) queries, then
the total variation distance ||DY es −DNo||T V between the two distributions DY es and DNo is
≤ 1

3 . This proves that any adaptive query algorithm which distinguishes between DY es and
DNo, i.e., where ||DY es − DNo||T V > 1

3 , must make at least Ω(pt/2) queries. This essentially
proves Theorem 9.

1.2.1 Comparison with Gopalan et al. [15]
In this section, we discuss the main differences and points between our proof and the one by
Gopalan et al. [15]. Our proofs (and the analysis of the testing algorithm) are more elaborate,
subtle, case-dependent, and complicated than [15].

Linear dependence is bad. [15] used the similar idea as in Theorem 3, see the archived
version of the paper for more details [7]. However, their proof took advantage of the fact
that any two distinct non-zero vectors in Zn

2 are linearly independent. This is not true for
Zn

p , as distinct vectors can be scalar multiples of each other; e.g., (1, · · · , 1) and (2, · · · , 2) in
Zn

p , for any p ≥ 3. Thus, our proof technique is capable of handling and overcoming these
difficulties effectively. This is also why our analysis of the structure theorems and algorithms
are very much case-dependent.

Different granularity. In case of Zn
2 , [15] defined a function f : Zn

2 → {−1,+1} to be
k-granular, where k is a positive integer, if all of its nonzero Fourier coefficients are an integer
multiple of 1

2k . In the case of Zn
p , since the Fourier coefficients are truly complex numbers, we

define a function f : Zn
p → {−1,+1} to be k-granular if all of its nonzero Fourier coefficients

are of the form g(ωp)
pk (see Definition 1), where g ∈ Z[X] and ωp is a primitive pth root of

unity.

Algebraic integer lower bounds are harder. While proving a lower bound on the absolute
value of the Fourier coefficients, in the case of Zn

2 , proving a lower bound on the magnitude of
a Fourier coefficient [15] translates to proving a lower bound on |g(−1)|/2k (since ω2 = −1).
Note that |g(−1)| ≥ 1, because g(−1) ∈ Z \ {0}; hence the lower bound follows. However,
for a general prime p, ωp is truly a complex number, and hence, g(ωp) is no longer an integer
(and therefore, there is no way to conclude that |g(ωp)| ≥ 1). We use a non-trivial result from
algebraic number theory (Theorem 25) to tackle this problem, in the proof of Theorem 5.
We also crucially use the fact that the sum of the absolute values of the coefficients of g is at
most pk, to get an upper bound on the quantities |g(ωi

p)|, for any i ∈ [p− 1]. Clearly, this
part requires much more non-triviality than [15].

Do not expect a tight linear lower bound. For p = 2, it follows from [15] that the
lower bound on the absolute value of the Fourier coefficients is equal to 1

sf
. We show in

Theorem 6 that there exists a family of Boolean valued functions on Zn
p , p > 3 such that

minχ∈supp(f)

∣∣∣f̂(χ)
∣∣∣ ≤ 1/s1+αp

f , hence proving that the lower bound on the absolute value of
the Fourier coefficients is not linear in 1

sf
in case of p > 3.
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Generalizing the notion of degree. For functions from Zn
2 to {−1,+1}, it is known that

f̂ = 1
pnHnf , where Hn denotes the Hadamard matrices (see [6]). Then, the degree deg2 is

defined naturally in the case of Zn
2 . The definition of degp becomes slightly challenging, since

the relation f̂ = 1
pnHnf is simply false over Zn

p . To define degp for Boolean valued functions
on Zn

p (see the archived version of the paper [7]), where p is an odd prime, we have defined
the matrix V1 using Vandermonde matrix, and have inductively defined the matrices Vn,
where n is a positive integer, via Kronecker product. Then we have shown that f̂ = 1

pnVnf ,
which helps us to define degp(f). We claim that this is an appropriate generalization of
degree, since Hn = Vn, over Zn

2 .

Finally, we remark that because of the absence of a linear structure on the solution space
of systems of equations over arbitrary Abelian groups (e.g. Zp2), we could not generalize this
to arbitrary Abelian groups.

2 Preliminaries

2.1 Fourier Analysis over Zn1
p1

× · · · × Znt
pt

Zn1
p1

× · · · × Znt
pt

forms a finite Abelian group under addition whose order is pn1
1 · · · pnt

t ,
where p1, . . . , pt are distinct primes. Its individual components form a vector space, that
is, Zni

pi
is a vector space over the field Zpi

for all i ∈ {1, 2, . . . t} whenever pi’s are primes.
Throughout this paper we will denote Zn1

p1
× · · · × Znt

pt
by G. So G is a finite Abelian group

with |G| = pn1
1 · · · pnt

t , where |.| denotes the order of G.
We will denote this root of unity by ωp a pth primitive root of unity, that is e2πι/p.
Let us begine by defining the characters of G.

▶ Definition 10 (Character). A character of G is a homomorphism χ : G → C× of G, that is,
χ satisfies the following:

χ(x+ y) = χ(x)χ(y), x, y ∈ G.

Equivalently, a character χ of G can be defined by

χ(x1, . . . , xt) = χr1(x1) · · ·χrt
(xt) = ωr1·x1

p1
· · ·ωrt·xt

pt
,

where χri
is a character of Zni

pi
for each i and is defined by χri

(xi) = ωri·xi
pi

, xi, ri ∈ Zni
pi

for
all i, ri ·xi =

∑ni

j=1 ri(j)xi(j), ri(j) and xi(j) being the jth component of ri and xi respectively
(It follows from the fact that any character χ of G can be written as the product of characters
of Zn1

p1
, . . . ,Znt

pt
). Let us denote this character by χr1,...,rt .

Now let us look at some properties of characters.

▶ Lemma 11. Let χ be a character of G. Then,
1. χ0(x) = 1 for all x ∈ G.
2. χ(−x) = χ(x)−1 = χ(x) for all x ∈ G.
3. For any character χ of G, where χ ̸= χ0,

∑
x∈G χ(x) = 0.

4. |χ0(x)| = 1 for all x ∈ G.

Now let us define the dual group of G.

▶ Definition 12 (Dual group). The set of characters of G forms a group under the operation
(χψ)(x) = χ(x)ψ(x) and is denoted by Ĝ, where χ and ψ are characters of G. Ĝ is called the
dual group of G.



S. Chakraborty, S. Datta, P. Dutta, A. Ghosh, and S. Sanyal 40:11

The following theorem states that G is isomorphic to its dual group.

▶ Theorem 13. Ĝ ∼= G.

Let us look at the definition of Fourier transform for functions on G.

▶ Definition 14 (Fourier transform). For any function f : G → C, the Fourier transform
f̂ : Ĝ → C is defined by

f̂(χr1,...,rt
) = 1

|G|
∑
x∈G

f(x)ω−r1·x1
p1

· · ·ω−rt·xt
pt

,

where xi, ri ∈ Zni
pi

for all i, and ri ·xi =
∑ni

j=1 ri(j)xi(j), ri(j) and xi(j) being the jth component
of ri and xi respectively.

▶ Remark 15. The Fourier transform of a function f : G → C is defined by

f̂(χ) = 1
|G|

∑
x∈G

f(x)χ(x),

where χ(x) is the conjugate of χ(x). The Definition 14 follows from this, as χ = χr1,...,rt
for

some ri ∈ Zni
pi
, i ∈ {1, . . . , t}.

The following theorem states that any function from G to C can be written as a linear
combination of characters of G.

▶ Theorem 16 (Fourier inversion formula). Any function f : G → C can be uniquely written
as a linear combination of characters of G, that is,

f(x) =
∑

χr1,...,rt ∈Ĝ

f̂(χr1,...,rt
)ωr1·x1

p1
· · ·ωrt·xt

pt
,

where xi, ri ∈ Zni
pi

for all i, ri · xi =
∑ni

j=1 ri(j)xi(j), ri(j) and xi(j) being the jth component
of ri and xi respectively.

▶ Theorem 17 (Parseval). For any two functions f, g : G → C,

Ex∈G [f(x)g(x)] =
∑
χ∈Ĝ

f̂(χ)ĝ(χ).

More specifically, if f : G → {−1,+1} is a Boolean-valued function then∑
χ∈Ĝ

|f̂(χ)|2 = 1.

Now let us define the Fourier sparsity of a function f on G.

▶ Definition 18 (Sparsity and Fourier Support).
The Fourier sparsity sf of a function f : G → C is defined to be the number of non-zero
Fourier coefficients in the Fourier expansion of f (Theorem 16). In this paper, by sparsity
of a function, we will mean the Fourier sparsity of the function.
Fourier support supp(f) of a function f : G → C denotes the set

{
χ | f̂(χ) ̸= 0

}
.

The following lemma states an important property of characters of a subgroup H =
H1 × · · · ×Ht of G.

MFCS 2024
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▶ Lemma 19.
∑

h∈H χh = |H| · 1H⊥ , where H = H1 × · · · × Ht is a subgroup of G, and
h = (h1, . . . , ht), hi ∈ Hi ∀i. That is,∑

h1∈H1,...,ht∈Ht

χh1 · · ·χht
= |H1| · · · |Ht| · 1H⊥

1
· · · 1H⊥

t
.

Here, for each i, Hi is a subgroup of Zni
pi

and hence a subspace Zni
pi

, as Zni
pi

is a vector space.

The proof of Lemma 19 is given in the archived version of the paper [7] due to lack of
space.

▶ Lemma 20. Let f, g be two Boolean valued functions from G to {−1,+1}. Then,

|f̂g(χ)| ≤ ||f ||2||g||2,

for any character χ ∈ Ĝ.

The proof of Lemma 20 is given in the archived version of the paper [7] due to lack of
space.

Now let us formally define the notion of ϵ-close and ϵ-far in ℓ2 below.

▶ Definition 21 (µ-close to s-sparse). Let f and g be two functions with domain Zn
p and range

C. Then the square of the ℓ2 distance between f and g is defined as Ex∈G [|f(x) − g(x)|2].
By Parseval’s identity the square of the ℓ2-distance between f and g can also be written as∑

χ∈Ẑn
p

| ̂(f − g)(χ)|2.
We say that f is ϵ-close to g in ℓ2 if the square of the ℓ2 distance between f and g is less

than ϵ. Similarly, f is ϵ-far from g in ℓ2 if the square of the ℓ2 distance between f and g is
at least ϵ.

The following lemma gives us a relation between the ℓ2 distance between two Boolean
valued functions f and g defined in Definition 21 and Prx[x ∈ G|f(x) ̸= g(x)].

▶ Lemma 22. The square of the ℓ2 distance between two Boolean valued functions f and g
defined in Definition 21 is equal to 4 Prx[x ∈ G|f(x) ̸= g(x)]. 2

The proof of Lemma 22 is given in the archived version of the paper [7] due to lack of
space.

Now let us define the total variation distance between two probability distributions.

▶ Definition 23. Let (Ω,F) be a probability space, and P and Q be probability distributions
defined on (Ω,F). The total variation distance between P and Q is defined in the following
way.

||P −Q||T V = sup
A∈F

|P (A) −Q(A)|.

▶ Lemma 24. Given two probability distributions P and Q on a probability space (Ω,F), the
total variation distance between P and Q is half of the L1 distance between them. That is,

||P −Q||T V = 1
2

∑
x

|P (x) −Q(x)|.

2 If f and g are two Booelan-valued functions then Prx[x ∈ G|f(x) ̸= g(x)] is also called the Hamming
distance between the two functions. So the ℓ2 norm between two Boolean-valued functions is 4 times
the Hamming distance between two Boolean-valued functions.
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3 Lower bound on the Fourier coefficients

In this section, we will prove Theorem 5 assuming Theorem 3, which gives us a lower bound
on the Fourier coefficients of functions from Zn

p to {−1,+1}, where p is a prime number.
This is a generalization on the granularity of a function f : Zn

2 → R when the domain of the
function is Zn

p . We will use the following theorem; for more details see the archived version
of the paper [7].

▶ Theorem 25. For n ∈ Z, let ωn be a primitive root of unity. Let f ∈ Z[x], such that
f(ωn) ̸= 0. Then,∣∣∣∣ ∏

i∈Z∗
n

f(ωi
n)

∣∣∣∣ ≥ 1 .

Proof of Theorem 5. If we put µ = 0 in Theorem 3, we get that there exists a g ∈ Z[X],
such that |f̂(χ)| ≥ |g(ωp)/pk|, where k = ⌈logp sf ⌉ + 1, sf being the sparsity of the Boolean
valued function f . We know by Theorem 25 that |

∏p−1
i=1 g(ωi

p)| ≥ 1. Therefore,

∣∣∣∣ p−1∏
i=1

g(ωi
p)

∣∣∣∣ ≥ 1 ⇒
p−1∏
i=1

∣∣∣∣g(ωi
p)

pk

∣∣∣∣ ≥
(

1
pk

)p−1
⇒

∣∣∣∣g(ωp)
pk

∣∣∣∣ ≥ 1
pk(p−1) ≥ 1

(p2sf )p−1 .

For p = 2, g(ωi
p) is an integer, so∣∣∣∣g(ωp)

pk

∣∣∣∣ ≥ 1
4sf

(3.1)

For p ̸= 2, the conjugate of g(ωi
p), namely g(ωi

p), is nothing but = g(ωp−i
p ). Since

|g|1 ≤ pk, it follows that for any i ∈ [p− 1], |g(ωi
p)/pk| ≤ 1. Therefore,

∣∣∣∣ p−1∏
i=1

g(ωi
p)

∣∣∣∣ ≥ 1 ⇒
(p−1)/2∏

i=1
|g(ωi

p)|2 ≥ 1

⇒
(p−1)/2∏

i=1

∣∣∣∣g(ωi
p)

pk

∣∣∣∣2
≥ ( 1

pk
)p−1

⇒
∣∣∣∣g(ωp)
pk

∣∣∣∣2
≥ 1

pk(p−1)

⇒
∣∣∣∣g(ωp)
pk

∣∣∣∣ ≥ 1
pk(p−1)/2 ≥ 1

(p2sf )(p−1)/2 . (3.2)

So, from Equation (3.1) and Equation (3.2), we have∣∣∣∣g(ωp)
pk

∣∣∣∣ ≥ 1
(p2sf )⌈(p−1)/2⌉ . ◀

▶ Remark 26. Let p be a prime. The proof-technique of Theorem 5 gives the following. If
the Fourier coefficients of a Boolean function f are k granular, where k = ⌈logp s⌉ + 1, then
the Fourier coefficients of f2 are 2k-granular, and their absolute values are ≥ 1

(p2s)(p−1) .
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4 Sparse Boolean-valued function with small Fourier coefficients

In this section, for a fixed prime p ≥ 5, and arbitrarily large s, we give an example of a
function f : Zn

p → {−1,+1}, such that the minimum of the absolute value of its Fourier
coefficients is at most o (1/s). In this section, we give the details of the construction of
Theorem 6; see the archived version of the paper [7].

To prove Theorem 6 we define a function, which is basically composition of ANDn and
univariate Threshold functions; we call AT.
▶ Definition 27. Let us define function AT : Zn

p → {−1,+1} by

AT(x1, x2, . . . , xn) := ANDn

(
I≥ p+1

2
(x1), I≥ p+1

2
(x2), . . . , I≥ p+1

2
(xn)

)
,

where the univariate Threshold function I≥ p+1
2

: Zp → {−1,+1}, is defined as:

I≥ p+1
2

(x) =
{

1 for x ≥ p+1
2

−1 otherwise.

▶ Lemma 28. There is a Fourier coefficient of AT, whose absolute value is 1
pnc , where c is a

constant > 1.
The proof of Lemma 28 is given in the archived version of the paper [7]. Now we are

ready to prove Theorem 6.

Proof of Theorem 6. This directly follows, as we can claim from Lemma 28 that there exists
a family of functions in Zn

p whose absolute value of the minimum coefficient is not linear in
1

sparsity , but actually = Ω( 1
sparsity1+ϵp ). where ϵp > 0, is a p-dependent constant. ◀

▶ Lemma 29. There exists a function whose one of the Fourier coefficients is less than that
of AT.

The proof of Lemma 29 is given in the archived version of the paper [7].

5 Testing Algorithm for Sparsity

Here we present the whole algorithm (Algorithm 1) for sparsity testing over Zn
p (see next

page). However, we describe the various steps of the algorithm in the archived version of the
paper [7], including the correctness and the analysis of the algorithm in the archived version
of the paper [7].

6 Conclusion

Gopalan et al. [15] was the first to study the problem of testing Fourier sparsity of Boolean
function over Zn

2 . Along the way, they were able to drive fundamental properties of Boolean
functions over Zn

2 , like Granularity of the Fourier spectrum, that have found many other
applications [3]. In this work, we have extended their results for groups that can be written
as Zn1

p1
× · · · × Znt

pt
.

The most natural question that arises from our work will be to study this problem for
(finite) general Abelian groups. Unfortunately, our work does not extend to finite Abelian
groups, because of the absence of the component-wise vector space structure. In particular,
it would be nice to get a lower bound on the absolute value of non-zero Fourier coefficients
of a sparse Boolean-valued function over Zn

p2 . In any way, our results in this paper should be
seen as a first step toward solving the lower bound problem over finite Abelian group.

Finally, we ask whether it is possible to show a better (p-dependent) lower bound over Zn
p

on the query-complexity of any adaptive sparsity testing algorithm.
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Algorithm 1 Test Sparsity.

1: Input: s, ϵ, and query access to f : Zn
p → {−1,+1}.

2: Output: YES, if f is s-sparse, and NO, if it is ϵ-far from any Boolean valued function.

3: Parameter setting: Set t := ⌈2 logp s + logp 20⌉ + 1, τ := min( ϵ2

40pt ,
1

(p2s)p−1 ) M :=
O(log(pt) · 1

τ2 )

4: Choose v1, . . . , vt linearly independent vectors uniformly at random from Zn
p .

5: Let H = Span{v1, . . . , vt}
6: Pick (z1, x1), . . . , (zM , xM ) uniformly and independently from H × Zn

p

7: Query f(x1), . . . , f(xM ) and f(x1 − z1), . . . , f(xM − zM )
8: for For every r ∈ Zn

p do
9: Let 1

M

∑M
i=1 χr(zi)f(xi)f(xi − zi) be the estimate of wt(r +H⊥)

10: end for
11: if number of r for which the estimate of wt(r +H⊥) is ≥ 2τ

3 is ≤ s then
12: Output YES
13: else
14: Output NO
15: end if
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Abstract
Greenberger–Horne–Zeilinger (GHZ) states are quantum states involving at least three entangled
particles. They are of fundamental interest in quantum information theory, and the construction of
such states of high dimension has various applications in quantum communication and cryptography.
Krenn, Gu and Zeilinger discovered a correspondence between a large class of quantum optical
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can be defined, which is the same as the dimension of the GHZ state produced by the corresponding
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vertices is at most 2. An affirmative resolution of the Krenn-Gu conjecture has implications for
quantum resource theory. Moreover, this would save huge computational resources used for finding
experiments which lead to higher dimensional GHZ states. On the other hand, the construction of a
GHZ graph on a large number of vertices with a high dimension would lead to breakthrough results.

In this paper, we study the existence of GHZ graphs from the perspective of the Krenn-Gu
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1 Introduction

Quantum entanglement theory implies that two particles can influence each other, even though
they are separated over large distances. In 1964, Bell demonstrated that quantum mechanics
conflicts with our classical understanding of the world, which is local (i.e. information can be
transmitted maximally with the speed of light) and realistic (i.e. properties exist prior to and
independent of their measurement) [2]. Later, in 1989, Greenberger, Horne, and Zeilinger
(abbreviated as GHZ) studied what would happen if more than two particles are entangled [8].
Such states in which three particles are entangled (|GHZ3,2⟩ = 1√

2 (|000⟩ + |111⟩)) were
observed rejecting local-realistic theories [4, 21]. While the study of such states started purely
out of fundamental curiosity [24, 16, 17], they are now used in many applications in quantum
information theory, such as quantum computing [11]. They are also essential for early tests
of quantum computing tasks [28], and quantum cryptography in quantum networks[22].
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41:2 Krenn-Gu Conjecture for Sparse Graphs

Zeilinger became a co-recipient of the Nobel Prize for Physics in 2022, for experiments
with entangled photons, establishing the violation of Bell inequalities and pioneering quantum
information science. We note that the work on experimentally constructing GHZ states is
at the heart of Zeilinger’s Nobel prize-winning work [1]. Increasing the number of particles
involved and the dimension of the GHZ state is essential both for foundational studies and
practical applications. Motivated by this, a huge effort is being made by several experimental
groups around the world to push the size of GHZ states. Photonic technology is one of the
key technologies used to achieve this goal [28, 27]. The Nobel Laureate himself, with some
co-authors, proposed a scheme of optical experiments in order to achieve this, which gives an
opportunity for graph theorists to get involved in this fundamental research: In 2017, Krenn,
Gu and Zeilinger [14] discovered (and later extended [10, 9]) a bridge between experimental
quantum optics and graph theory. They observed that large classes of quantum optics
experiments (including those containing probabilistic photon pair sources, deterministic
photon sources and linear optics elements) can be represented as an edge-coloured edge-
weighted graph, though the edge-colouring goes a little beyond what graph theorists are used
to. Conversely, every edge-coloured edge-weighted graph (also referred to as an experiment
graph) can be translated into a concrete experimental setup. This technique has led to the
discovery of new quantum interference effects and connections to quantum computing [10].
Furthermore, it has been used as the representation of efficient AI-based design methods for
new quantum experiments [15, 23].

However, despite several efforts, a way to generate a GHZ state of dimension d > 2 with
more than n = 4 photons with perfect quality and finite count rates without additional
resources [13] could not be found. This led Krenn and Gu to conjecture that it is not possible
to achieve this physically (stated in graph theoretic terms in Conjecture 6). They have also
formulated this question purely in graph theoretic terms and publicised it widely among
graph theorists for a resolution [19]. We now formally state this problem in graph-theoretic
terms and explain its equivalence in quantum photonic terms. For a high-level overview
of how the experiments are converted to edge-coloured edge-weighted graphs, we refer the
reader to the appendix of [6]. For the exact details, the reader can refer to [14, 10, 9, 13].

1.1 Graph theoretic preliminaries and notations
We first define some commonly used graph-theoretic terms. For a graph G, let V (G), E(G)
denote the set of vertices and edges, respectively. We use κ(G) to denote the vertex
connectivity of G. For S ⊆ V (G), G[S] denotes the induced subgraph of G on S. N,N0,C
denote the set of natural numbers, non-negative numbers and complex numbers, respectively.
The cardinality of a set S is denoted by |S|. For a positive integer r, [r] denotes the set
{1, 2 . . . , r}. Given a multi-graph, its skeleton is its underlying simple graph. We do not
consider self-loops in multi-graphs.

Usually, in an edge colouring, each edge is associated with a natural number. However,
in such edge colourings, the edges are assumed to be monochromatic. But in the graphs
corresponding to experiments, we are allowed to have bichromatic edges, i.e. one half coloured
by a certain colour and the other half coloured by a different colour. For example, in the
graph shown in Figure 1a, the simple edge between vertices 4 and 6 is a bichromatic edge.
We develop some new notation to describe bichromatic edges.

Each edge of a multi-graph can be thought to be formed by two half-edges, i.e., an edge
e between vertices u and v, consists of the half-edge starting from the vertex u to the middle
of the edge e (hereafter referred to as the u-half-edge of e) and the half-edge starting from
the vertex v to the middle of the edge e (hereafter referred to as the v-half-edge e). Thus,
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the edge set E of the multi-graph gives rise to the set of half-edges H, with |H| = 2|E|. For
an edge e between vertices u and v, we may denote the v-half-edge of e by ev and u-half
edge of e by eu. Consider the edge e between vertices 4 and 6 in Figure 1a. The 4-half edge
of e (e4) is of colour red, and the 6-half edge (e6) is of colour green.

The type of edge colouring that we consider in this paper is more aptly called a half-edge
colouring. It is a function from H to N0, say c : H → N0. (Note that we use non-negative
numbers to name the colours.) In other words, each half-edge gets a colour. An edge is called
monochromatic if both its half-edges get the same colour (in which case we may use c(e)
to denote this colour); otherwise, it is called a bi-chromatic edge. In Figure 1a, the colour
0 is shown in red, and the colour 1 is shown in green. It is easy to see that c(e4) = 0 and
c(e6) = 1 (recall that e is the simple edge between vertices 4 and 6). Consider the edge e′

between vertices 1 and 6. As c(e′
1) = c(e′

6) = 0, e′ is monochromatic and moreover, c(e′) = 0.
We then assign a weight w(e) ∈ C to each such coloured edge e. We denote the multi-graph
G with the edge colouring c and edge weights w(e) as Gw

c .
We call a subset P of edges in this edge-weighted edge-coloured graph a perfect matching

if each vertex in the graph has exactly one edge in P incident on it.

▶ Definition 1. The weight of a perfect matching P , w(P ) is the product of the weights of
all its edges

∏
e∈P

w(e)

▶ Definition 2. The weight of an edge-coloured edge-weighted multi-graph Gw
c is the sum of

the weights of all perfect matchings in Gw
c .

A vertex colouring vc associates a colour i to each vertex in the graph for some i ∈ N.
We use vc(v) to denote the colour of vertex v in the vertex colouring vc. A vertex colouring
vc filters out a sub-graph F(Gc, vc) of Gc on V (Gc) where for an edge e ∈ E(Gc) between
vertices u and v, e ∈ E(F(Gc, vc)) if and only if c(eu) = vc(u) and c(ev) = vc(v). Filtering
also extends to weighted graphs where the weight of each edge in F(Gw

c , vc) is the same
as its weight in Gw

c . Let vc be a vertex colouring in which 1, 2, 3, 6 are associated with the
colour green and 4, 5 are associated with the colour red. The filtering operation of vc on
the edge-coloured graph Gw

c shown in Figure 1a is given in Figure 1b. A vertex colouring
vc is defined to be feasible in Gw

c if F(Gw
c , vc) has at least one perfect matching. It is easy

to see that each perfect matching P is part of F(Gw
c , vc) for a unique vertex colouring vc.

Such a P is said to induce vc. It is interesting to notice that there is a partition of perfect
matchings (not edges) based on the vertex colourings.

▶ Definition 3. The weight of a vertex colouring vc in the multi-graph Gw
c is denoted by

w(Gw
c , vc) and is equal to the weight of the graph F(Gw

c , vc).

The weight of a vertex colouring, which is not feasible, is zero by default.

▶ Definition 4. An edge-coloured edge-weighted graph is said to be GHZ, if:
1. All feasible monochromatic vertex colourings have a weight of 1.
2. All non-monochromatic vertex colourings have a weight of 0.

An example of a GHZ graph is shown in Figure 1a.

▶ Definition 5. The dimension of a GHZ graph Gw
c , µ(G, c, w) is the number of feasible

monochromatic vertex colourings (having a weight of 1).

For a given multi-graph G (experimental set up), many possible edge-colourings (mode
numbers of photons) and edge-weight (amplitude of photon pairs) assignments may lead it
a GHZ graph (GHZ state). Finding a GHZ graph with n vertices and dimension d would

MFCS 2024
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Figure 2 GHZ graphs.

immediately lead to an experiment which result in a d-dimensional GHZ state with n particles.
For each such GHZ graph, a dimension is achieved. The maximum dimension achieved over
all possible GHZ graphs with the unweighted uncoloured simple graph G as their skeleton is
known as the matching index of G, denoted by µ(G). In Figure 2b, we have an edge-coloured
edge-weighted GHZ K2 of dimension t. Note that t can be arbitrarily large. Therefore,
µ(K2) = ∞. However, only two particles are involved; for a GHZ state to form, we need
more than two particles. Therefore, such a construction will not give a GHZ state. We note
that the matching index is defined for a simple graph G by taking the maximum over all
possible multi-graphs with a skeleton G. For instance, the simple graph K2 has only one
edge. However, we considered all possible multi-graphs having a skeleton K2 to define µ(K2).

It is easy to see that if a graph has a perfect matching, it must contain an even number
of vertices. So, we consider matching indices of graphs with even and at least 4 vertices for
the rest of the manuscript. From Figure 2a, we know that µ(K4) ≥ 3 and, despite the use of
huge computational resources [15, 23, 20], this is the only (up to an isomorphism) known
graph of the matching index at least 3. Any graph with a matching index of at least 3 and
n > 4 vertices would lead to a new GHZ state of dimension at least 3 with n > 4 entangled
particles. Motivated by this, this problem has been extensively promoted[19, 12]. Krenn and
Gu conjectured that

▶ Conjecture 6. If |V (G)| > 4, then µ(G) ≤ 2

Several cash rewards were also announced for a resolution of this conjecture [12]. We note
the following implications of resolving this conjecture
1. Finding a counterexample for this conjecture would uncover new peculiar quantum

interference effects of a multi-photonic quantum system using which we can create new
GHZ states
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2. a. Proving this conjecture would immediately lead to new insights into resource theory
in quantum optics

b. Proving this conjecture for different graph classes would help us understand the
properties of a counterexample and guide experimentalists in finding it. This is
particularly important since huge computational efforts are going into finding such
graphs [15, 23, 20].

A graph is matching covered if every edge of it is part of at least one perfect matching. If
an edge e is not part of any perfect matching M , then we call the edge e to be redundant. By
removing all redundant edges from the given graph G, we get its unique maximum matching
covered sub-graph mcg(G). Note that a colouring c and a weight assignment w of G induces
a colouring and a weight assignment for every subgraph of G, respectively. When there is no
scope for confusion, we use c, w itself to denote this induced colouring and weight assignment,
respectively. It is easy to see that if c and w make G a GHZ graph, they also make mcg(G)
a GHZ graph and µ(G, c, w) = µ(mcg(G), c, w). Therefore, µ(G) = µ(mcg(G)).

One can also notice that, if there are two edges, say e, e′ between vertices u and v such
that c(eu) = c(e′

u) and c(ev) = c(e′
v), then they can be replaced with an edge e′′ such that

w(e′′) = w(e) + w(e′),c(e′′
u) = c(eu) and c(e′′

v) = c(ev). Such a reduction will retain the GHZ
property and dimension of the graph. Therefore, in the rest of the manuscript, we only
deal with such reduced graphs, i.e, between two vertices between vertices u and v and given
i, j ∈ [µ(G)] there exists at most one edge e such that c(eu) = i and c(ev) = j. We also note
that, if an edge e has weight 0, it can be treated as if the edge were absent.

1.2 Related work
No destructive interference. The special case of all edges having a real positive weight
corresponds to the case when there is no destructive interference. With this restriction,
Krenn-Gu conjecture was resolved due to the following observation by Bogdanov [3].

▶ Theorem 7. In a coloured multi-graph Gc with |V (G)| > 4, if there exist three monochro-
matic perfect matchings of different colours, then there must be a non-monochromatic perfect
matching.

Due to this result, when there is no destructive interference, every matching covered graph
non-isomorphic to K4 can achieve a maximum dimension of 1 or 2 and thus can be classified
into Type 1 and Type 2 graphs(See [6] for detailed discussion). Chandran and Gajjala [6]
gave a structural classification for Type 2 graphs. They further proved that for any half-edge
colouring and edge weight assignment on a simple Type 2 unweighted uncoloured graph,
a dimension of 3 or more can not be achieved! The computational aspects of the vertex
colourings arising from these experiments were studied by Vardi and Zhang [25, 26]

Absence of bi-coloured edges. The problems get easier in the absence of bi-coloured edges
and have opened up work in several directions. We list some of the known results in this
direction. Cervera-Lierta et al. [5] used SAT solvers to prove that if the number of vertices is
6 or 8, the maximum dimension achievable is 2 or, at most, 3, respectively. Chandran and
Gajjala [7] proved that the maximum dimension achievable for an n > 4 vertex graph is less
than n√

2
.

Unrestricted results. For the general case, the only known result is due to Mantey [18]. He
proved the following theorem using the Gröbner basis.

MFCS 2024
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▶ Theorem 8. If |V (G)| = 4, then µ(G) ≤ 3. Moreover, if µ(G, c, w) = 3, then between any
pair of vertices in Gw

c , there is exactly one non-zero edge (and isomorphic to the coloured
graph shown in Figure 2a).

Surprisingly, there is no known analytical proof even for such small graphs. We encourage the
reader to attempt to prove Theorem 8 to understand the difficulty arising due to multi-edges.
One has to tune 54 variables which can be complex numbers (the number of possible edges
when 3 colours are allowed) such that 81 equations (the number of possible vertex colourings
when 3 colours are allowed) are satisfied, even for graphs as small as 4 vertex graphs.

1.3 Our results
We give the first results, which resolve the Krenn-Gu conjecture for a large class of graphs
in the completely general setting, that is, when both bi-coloured edges and multi-edges
are allowed. We prove that the Krenn-Gu conjecture is true for all graphs with vertex
connectivity at most 2 in the full version.

▶ Theorem 9. For a graph G, if κ(G) ≤ 2, then µ(G) ≤ 2.

Our next main contribution is a reduction technique, which implies Theorem 10. We
explain and prove our reduction in Section 2. We introduce a scaling lemma in Section 1.4,
which gives us an equivalent version of Krenn-Gu conjecture and which may turn out to be
more useful in some situations.

▶ Theorem 10. Given a graph G with κ(G) ≤ 3 and V (G) > 4, there exists a graph G′ with
|V (G′)| ≤ |V (G)| − 2 and µ(G′) ≥ µ(G).

Due to Theorem 10, a minimal counter-example (a counter-example with the minimum
number of vertices) to Krenn-Gu conjecture must be 4-connected. Using Theorem 10, we
can resolve Krenn-Gu conjecture for some interesting graph classes like cubic graphs (that is,
3 regular graphs). We prove Theorem 11 and Theorem 12 in Section 2.3.

▶ Theorem 11. If the maximum degree of a graph G is 3, Conjecture 6 is true.

▶ Theorem 12. If the minimum degree of a graph G is 3, then µ(G) ≤ 3

1.4 Reformulation of Krenn-Gu conjecture
Recall that we denote the weight of the vertex colouring vc over a set of vertices U ⊆ V (G)
as w(U, vc), which is the sum of weights of all perfect matching on G[U ] which induce the
vertex colouring vc on U and we denote the monochromatic vertex colouring vc : V → {i}
by iV .

For a graph G, let U, U ′ ⊆ V (G). Let vc : U → N and vc′ : U ′ → N. If vc(v) = vc′(v) for
all v ∈ U ∩ U ′, we call vc, vc′ to be compatible with each other. When vc, vc′ are compatible,
we define their union [vc ∪ vc′] : U ∪ U ′ → N as follows: [vc ∪ vc′](v) = vc(v) for v ∈ U and
[vc ∪ vc′](v) = vc′(v) for v ∈ U ′.

We broaden the definition of GHZ graphs to g-GHZ graphs. An edge-coloured edge-
weighted graph Gw

c satisfying the following properties is defined to be g-GHZ
1. All feasible monochromatic vertex colourings have a non-zero weight (instead of necessarily

being 1).
2. All non-monochromatic vertex colourings have a weight of 0.
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Note that this generalization allows each of the monochromatic vertex colourings to have
different weights. The dimension of a g-GHZ graph is the number of feasible monochromatic
vertex colourings. For a graph G, the maximum dimension achievable over all possible g-GHZ
colouring and weight assignments is its generalized matching index µg(G).

▶ Conjecture 13. µg(K4) = 3 and for a graph G which is non-isomorphic to K4, µg(G) ≤ 2.

We prove that Conjecture 6 and Conjecture 13 are equivalent. Trivially, a counter-example
to Conjecture 6 would immediately give a counter-example to Conjecture 13. We prove that
any counter-example to Conjecture 13 would also yield a counter-example to Conjecture 6 in
Lemma 14. This reformulation is more suitable for our proofs in the following sections.

▶ Lemma 14 (Scaling lemma). If there is a graph Gw
c , which is g-GHZ, then there is a graph

Gw′

c , which is a GHZ graph with the same dimension.

Proof. We denote the weight of the vertex colouring w(iV , G) using W (i). Note that by
definition of g-GHZ graphs, the weight of a monochromatic colouring W (i) is always non-zero.
So, for each edge e ∈ Gc whose half-edges are of colour i, j, we assign the weight

w′(e) = w(e)(W (i)W (j))−1/n

Let M be a matching in Gc, which induces the vertex colouring vcM . The weight of an
edge e ∈ M between vertices u, v will be,

w′(e) = w(e)(W (vcM (u))W (vcM (v)))−1/n

As each vertex is incident by exactly one edge of the perfect matching M , the weight of M
will be

w′(M) = w(M)
∏
v∈V

W (vcM (v))−1/n

Since the weights of all perfect matchings which induce a vertex colouring, vc will increase
by a factor of

∏
v∈V

W (vc(v))−1/n, the weight of the vertex colouring vc will be

w′(vc) = w(vc)
∏
v∈V

W (vc(v))−1/n

As w(vc) is zero for all non-monochromatic vertex colourings, w′(vc) will remain to be zero.
For a monochromatic vertex colouring vc = iV , we know that vc(v) = i for all v ∈ V .

Therefore, w′(iV ) = w(iV )((w(iV ))−1/n)n = 1
Therefore, Gw′

c is a GHZ graph. ◀

2 Reduction

We prove a stronger theorem than Theorem 10 as stated below.

▶ Theorem 15. Let G be a multi-graph with a vertex cut S of size 3. Let V1 and V2 be a
partition of V (G) \ S such that V1 and V2 are non-empty and there are no edges between V1
and V2 in G. Moreover, let |V1| be odd and |V2| be even. There exists a graph G′ such that
|V (G′)| ≤ |V1| + 3 ≤ |V (G)| − 2 and µ(G′) ≥ µ(G).

MFCS 2024



41:8 Krenn-Gu Conjecture for Sparse Graphs

Let w, c be a colouring and weight assignment of G for which µ(G, c, w) = µ(G). Then G′

would be a graph on the vertex set V1
⊔

S. The edge set, the edge weight function and
the edge colouring of G′ would be the same as in G[V1

⊔
S] except for the edges with both

endpoints inside S; We redefine the set of edges, edge-weight function, edge-colouring within
S. Let c′ and w′ represent the edge-colouring and the edge-weight function of G′. We will
show that µ(G′) ≥ µ(G′, c′, w′) = µ(G, c, w) = µ(G).

Let V = V (G) and S = {u1, u2, u3}. Note that any perfect matching of G, should match
an odd number of vertices of S to V1 (since |S| is odd). Therefore the perfect matchings of
G can be grouped into 4 types:

Type 0: Let P0 denote the set of all perfect matchings on G[V1 ∪ S] in which all the three
vertices of S are matched with vertices in V1. Let W0(vc) denote the sum of weights of the
perfect matchings from P0 that induce the vertex colouring vc on V1

⊔
S. Let P ′

0 denote the
set of all perfect matchings on G[V2]. Let W ′

0(vc) denote the sum of weights of the perfect
matchings from P ′

0 that induce the vertex colouring vc on V2. Type 0 perfect matchings of
G are the perfect matchings that belong to P0 × P ′

0. Clearly, the sum of the weights of Type
0 perfect matchings that induce the colouring vc equals W0(vc)W ′

0(vc).

Type i: For i ∈ {1, 2, 3}, Let Pi denote the set of perfect matchings of V1
⊔

{ui}, and let P ′
i

denote the set of perfect matchings of V2
⊔

(S \ {ui}). Let Wi(vc) denote the sum of weights
of all perfect matchings from Pi that induce the vertex colouring vc on V1

⊔
{ui} and W ′

i (vc)
denote the sum of weights of all perfect matchings from P ′

i that induce the colouring vc on
V2
⊔

(S \ {ui}). Type i matchings of G are the perfect matchings that belong to Pi × P ′
i.

Clearly, the sum of weights of Type i perfect matchings that induce the colouring vc equals
Wi(vc)W ′

i (vc). From the above discussion, it is easy to see that

w(vc) =
∑

i∈{0,1,2,3}

Wi(vc)W ′
i (vc) (1)

Recall that cV2 denotes the monochromatic vertex colouring with the colour c on V2. Let us
partition [µ(G)] into C1 ⊔ C2 such that c ∈ C1, if and only if there exists some colouring c′ on
V1 ⊔ S such that W ′

0(cV2)W0(c′) ̸= 0. The remaining colors from [µ(G)] belong to C2 (Note
that this happens if W ′

0(cV2) = 0 or if for all colourings c′ on V1 ⊔ S, W0(c′) = 0.). We will
now prove Theorem 15 in two cases. When C1 = ∅ (Theorem 1) and C1 ̸= ∅ (Theorem 2)

▶ Theorem 1. Let G be a multi-graph with a vertex cut of size 3. If C1 = ∅ (as defined
earlier), then µ(G) ≤ µ(K4)

▶ Theorem 2. Let G be a multi-graph with a vertex cut of size 3. If C1 ̸= ∅ (as defined earlier),
then there exists a graph G′ such that |V (G′)| ≤ |V1| + 3 ≤ |V (G)| − 2 and µ(G′) ≥ µ(G).
Recall that V1 and V2 is a partition of V (G) \ S such that V1 and V2 are non-empty and there
are no edges between them. Moreover |V1| is odd and |V2| is even.

2.1 Construction for Theorem 1
Let V (G′) = {v0, v1, v2, v3}. The reader may mentally map the vertices v1, v2, v3 to the
vertices u1, u2, u3 of the vertex cut S and v0 to the set of vertices V1. Note that G′ is a
multi-graph (without self loops) and each pair of vertices from V (G′) may have many edges
between them. In fact, we would define µ(G)2 number of edges between each pair of vertices
in {v0, v1, v2, v2}, one edge for each ordered pair in [µ(G)] × [µ(G)].
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Let i, j ∈ {1, 2, 3} with i ̸= j. Let (p, q) ∈ [µ(G)] × [µ(G)]. We will define an edge e for
each such (p, q) between vi and vj . This edge e would be coloured such that the vi-half edge
of e (i.e., evi

) has colour p and the vj-half edge of e (i.e., evj
) has colour q. The weight of the

edge would be w(e) =
∑

c∈C2
w(cV2puiquj ) The reader may recall that cV2puiquj represents

the colouring in which V2, ui, uj are coloured with c, p, q respectively. Its weight is the weight
of the induced subgraph of G on V2 ∪ {ui, uj} filtered out by the colouring cV2puiquj . In this
case, C1 = ∅; so C2 = [µ(G)]; and therefore there are µ(G) terms in the summation.

We will now consider the edges between v0 and vi, when i ∈ {1, 2, 3}. Let (p, q) ∈
[µ(G)] × [µ(G)]. We will define an edge e for each such (p, q) between v0 and vi. This edge e

would be coloured such that the v0-half edge of e (i.e., ev0) has colour p and the vi-half edge
of e (i.e., evi) has colour q. The weight of such an edge e is defined as w(e) = w(pV1qui)

2.2 Proof of construction for Theorem 1

Consider any vertex colouring vc : V ′ → N on G′. We will prove that w(V (G′), vc) = 0, if
vc is non-monochromatic and w(V (G′), vc) = 1, if vc is monochromatic.

Let the vertex colouring vc be iv0jv1kv2 lv3 . To find the weight of vc, we consider the
subgraph of G′ filtered out by vc. For instance, between the vertices v2 and v3, the colouring
vc would filter exactly one edge, and such an edge would have the v2-half edge of colour k

and v3-half edge of colour l. Clearly, this gives a graph which is isomorphic to K4 (with some
edges possibly getting a weight of zero). Observe that there are only three perfect matchings
in K4. So, it is now easy to find the weight of vc by enumeration.

As an example, consider the vertex colouring in which v0, v1 are coloured red and v2, v3
are coloured green and blue, respectively. Its filtering is shown in Figure 3. Its weight would
be w1w′

1 + w2w′
2 + w3w′

3.

w1

w′
3

w′
1

w3

w2

w′
2

v0 v1

v2v3

Figure 3 K4 obtained by a filtering operation.

We will first compute the weight of perfect matching {{v0, v1}, {v2, v3}} in vc. By
substituting the edge weights from the construction, we get the weight of the perfect
matching to be

= w(iV1ju1)
∑

c∈[µ(G)]

w(cV2ku2 lu3) =
∑

c∈[µ(G)]

w(iV1ju1)w(cV2ku2 lu3)

As w(iV1ju1)w(cV2ku2 lu3) is exactly the sum of weights of Type 1 perfect matchings for the
vertex colouring iV1ju1ku2 lu3cV2

=
∑

c∈[µ(G)]

W1(iV1ju1ku2 lu3cV2)W ′
1(iV1ju1ku2 lu3cV2) (2)
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Similarly, the weight of the weight of perfect matching {{v0, v2}, {v1, v3}} in vc is

=
∑

c∈[µ(G)]

W2(iV1ju1ku2 lu3cV2)W ′
2(iV1ju1ku2 lu3cV2) (3)

and the weight of the weight of perfect matching {{v0, v3}, {v1, v2}} in vc is

=
∑

c∈[µ(G)]

W3(iV1ju1ku2 lu3cV2)W ′
3(iV1ju1ku2 lu3cV2) (4)

As the weight of the vertex colouring vc′ is the sum of these three perfect matchings, by
adding the equations Equations (2)–(4), we get

w(vc′) =
∑

r∈{1,2,3}

∑
c∈[µ(G)]

Wr(iV1ju1ku2 lu3cV2)W ′
r(iV1ju1ku2 lu3cV2)

By rearranging the summation and using Equation (1),

=
∑

c∈[µ(G)]

∑
r∈{1,2,3}

Wr(iV1ju1ku2 lu3cV2)W ′
r(iV1ju1ku2 lu3cV2) =

∑
c∈[µ(G)]

w(iV1ju1ku2 lu3cV2)

First suppose that vc = iv0jv1kv2 lv3 is non-monochromatic. Clearly, iV1ju1ku2 lu3cV2 is
also non-monochromatic for all c ∈ [µ(G)]. Since the weight of all such colourings is zero,
their sum is also zero. It now follows that w(vc) = 0

On the other hand, suppose vc = iv0jv1kv2 lv3 is monochromatic, i.e., i = j = k =
l. Clearly, if c = i, iV1ju1ku2 lu3cV2 is also monochromatic and has weight 1. If c ̸= i,
iV1ju1ku2 lu3cV2 is non-monochromatic and has weight 0. Since we take the sum over all c, it
now follows that w(vc) = 1.

2.3 Applications of construction for Theorem 1
▶ Corollary 16. If the minimum degree of a graph G is 3, then µ(G) ≤ 3

Proof. Let u be a three-degree vertex, and x, y, z be its neighbours. Let V1 = {u}, S =
{x, y, z} and V2 = V \ {u, x, y, z}. Note that there are no Type 0 matchings as u can match
with at most one vertex in S in any perfect matching. Therefore, W0(c) is zero for all
c ∈ [µ(G)]. It is now easy to see that C1 = ∅. Therefore, from Theorem 1, µ(G) ≤ µ(K4).
From Theorem 8, it is known that the matching index of graphs with 4 vertices is at most 3.
Therefore, µ(G) ≤ µ(K4) = 3. ◀

▶ Corollary 17. Conjecture 6 is true for all graphs whose maximum degree is at most 3.

Proof. From Corollary 16, we know that µ(G) ≤ 3. Towards a contradiction, let µ(G) = 3
for graph with |V (G)| >4 and maximum degree 3. Therefore, there exists a colouring c and
weight assignment w such that µ(G, c, w) = 3. Let the three colours be 1, 2, 3.

We first claim that between any pair of vertices, there is at most one non-zero edge
incident on it. Suppose not. Then, there exist vertices u and x1 with multiple non-zero edge
between them. Since the maximum degree of the skeleton G is at most 3, there exists a
vertex set (for instance, all neighbours of u if the degree is 3) {x1, x2, x3} which separates
u from the V − {u, x1, x2, x3}. Let V1 = {u}, S = {x1, x2, x3} and V2 = V \ {u, x1, x2, x3}.
Recall that C1 = ∅. By the construction from Section 2.1, the weights of edges between u

and the vertices {x1, x2, x3} remain unchanged. Therefore, we obtain a graph with 4 vertices
of dimension 3 such that a pair of vertices have multiple non-zero edges between them. But
this is not possible from Theorem 8. Therefore, there are no multi-edges in Gw

c .
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Since the matching index is 3, there are perfect matchings (of non-zero edges) of colours
1, 2, 3. Therefore, from Theorem 7, there must be at least one non-monochromatic perfect
matching M (of non-zero edges), say inducing the non-monochromatic vertex colouring vc.
But there is exactly one non-zero edge of colours 1, 2, 3 incident on u. Therefore, for any
vertex colouring vc, there can be at most one perfect matching M ′ inducing vc. It now
follows that w′(M) = w′(vc) = 0. Therefore, there must be an edge, say of colour 1, whose
weight is zero; hence, the monochromatic vertex colouring of 1 must be zero. Contradiction.

Therefore, µ(G) ≤ 2 when |V (G)| > 4. ◀

2.4 Construction for Theorem 2
Recall that S = {u1, u2, u3} is a vertex cut separating V1 from V2 in the graph G, where |V1|
is odd, |V2| is even. Assume that C1 ̸= ∅. For this case, we will construct an edge-weighted,
edge coloured multi-graph G′ with V (G′) = V1 ∪ S and µ(G′) ≥ µ(G). Since |V2| ≥ 2,
|V (G′)| ≤ |V (G)| − 2.

If a pair of vertices is such that at least one of them lies in V1, then the set of edges
in G′ between this pair of vertices is the same as those in G with the same weights and
colours. Between the pairs of vertices with both vertices from S, we define one edge for each
pair of colours in [µ(G)] × [µ(G)]. Thus there would be (µ(G))2 edges between each pair,
{ui, uj}, i ̸= j.

We now describe how to assign weight to a coloured edge e between the vertices ui and
uj , where i < j and i, j ∈ {1, 2, 3} such that the ui-half of e is coloured p and the uj-half of
e is coloured q.

w′(e) =
∑
c∈C2

W (cV2pui
quj

) + 1
|C1|

∑
c∈C1

W (cV2pui
quj

)
W (cV2) (5)

▶ Remark 18. Recall that our plan is to remove V2 and the edges incident on V2 completely
in order to get the reduced graph G′. This should be done without losing the information
about the weights of monochromatic vertex colourings of V2 to make sure that µ(G′) does
not become smaller than µ(G). The weight assignment is similar in spirit to the weight
assignment done for the construction of Theorem 1. The expression here is more complicated
in this case, because of the adjustments required to make it work: This will be clear when
the reader goes through the proof carefully.

2.5 Proof of the construction for Theorem 2
Consider any vertex colouring vc′ : V1 ∪S → N of G′. Let us denote vc′ more explicitly, using
the notation describe in Section 2.1, as (α)V1iu1ju2ku3 . Note that α here is the vertex colouring
induced on V1 by the vertex colouring vc′, i, j, k are the colours of u1, u2, u3 respectively
under the vertex colouring vc′. (Note that we use the notation (α)V1 to emphasize that this is
not necessarily a monochromatic colouring of V1, using a single colour named α; rather it can
be any vertex colouring, monochromatic or non-monochromatic.) We will use the notation
of w′ to denote the weights of vertex colourings of G′ and its subgraphs and w to denote the
weights of vertex colourings of G and its subgraphs. For example, w(iV1jS) is the weight
of the vertex colouring iV1jS with respect to the edge-set of G, whereas w′(iV1jS) denotes
the weight of the same vertex colouring with respect to the edge-set of G′. Our intention is
to prove that w′((α)V1iu1ju2ku3) = 0, whenever (α)V1iu1ju2ku3 is non-monochromatic and
w′((α)V1iu1ju2ku3) ̸= 0, whenever (α)V1iu1ju2ku3 is monochromatic, i.e. i = j = k and α is a
monochromatic vertex colouring of V1 using colour i, i.e. (α)V1 = iV1 . The reader may note
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that we are not insisting the weight to be equal to 1 in the monochromatic case; non-zero
is sufficient since we can then use the Scaling Lemma (Lemma 14) to scale the weights of
the monochromatic vertex colourings to 1, thus constructing an edge-weight function w′ and
edge-colouring c′ of G′ such that µ(G′, c′, w′) = µ(G) implying µ(G′) ≥ µ(G).

Recall that vc′ = (α)V1iu1ju2ku3 filters out a simple graph from G′ and the weight of vc′

is the sum of weights of all the perfect matchings (PMs) in this filtered out simple graph.
Perfect matchings (PMs) of this graph can be grouped into 4 categories: (1) Type 0′: PMs
containing none of the edges with both endpoints in S. (2) Type 1′: PMs containing the
edge (u2, u3) (3) Type 2′: PMs containing the edge (u1, u3) (4) Type 3′: PMs containing the
edge (u1, u2) For t = 0, 1, 2, 3, we denote the total weight of Type t′ PMs by W ′

t . Clearly
w′(vc′) =

∑
0≤t≤3 W ′

t .
Now let us consider a corresponding vertex colouring of G, vc = (α)V1iu1ju2ku3cV2 , which

is obtained by taking the same vertex colouring vc′ for V1 ∪ S, and then extending it by the
monochromatic vertex colouring cV2 of V2, using the colour c. Since we may use any colour
c ∈ [µ(G)] to extend the vertex colouring vc′ of V1 ∪ S to a vertex colouring of V1 ∪ S ∪ V2,
it is more appropriate to call the extended colouring (α)V1iu1ju2ku3cV2 , it is better to denote
vc(c), rather than just vc.

The weight of vc on G can also be decomposed into 4 terms corresponding to 4 different
groups of perfect matchings of the subgraph filtered out by vc from G.
(1) Type 0: The PMs in which all the three vertices of S are matched to vertices in V1.
(2) Type t for t = 1, 2, 3: The PMs in which only ut is matched to some vertex of V1, and

the remaining two vertices of S are either matched to each other or to vertices of V2.
The total weight of the perfect matchings (in the the subgraph of G filtered out by the vertex
colouring vc(c)) of Typet, 0 ≤ t ≤ 3 will be denoted by Wt(c) where c ∈ [u(G)]. Clearly
w(vc(c)) =

∑
0≤t≤3 Wt(c). Now we show that W ′

t can be expressed as a (weighted) sum of
Wt(c) over the colours c ∈ [µ(G)].

▶ Observation 19. For t = 1, 2, 3 : W ′
t =

∑
c∈C2

Wt(c) + 1
|C1|

∑
c∈C1

Wt(c)
w(cV2)

Proof. Let us calculate the total weight W ′
1 of Type 1 perfect matchings of the vertex

colouring αV1iu1jv2kv3 . (The case when t = 2, 3 is similar.) Clearly these PMs are obtained
by adding the edge (u2, u3) of colour (j, k) to each perfect matching of the induced subgraph
on V1 ∪ {u1} (after filtering out by the vertex colouring αV1iu1). Therefore the total weight
of these PMs can be written as W ′

1 = w′(αV1iu1)w′(e) where e is the edge between u2 and
u3 of colour (i, j), that is, the edge e with u2-half of e coloured j and u3-half of e coloured k.
Now substituting for w′(e), the right hand side of equation 5, we get

W ′
1 = w′(αV1iu1)

(∑
c∈C2

w(cV2ju2ku3) + 1
|C1|

∑
c∈C1

w(cV2ju2ku3)
w(cV2)

)
(6)

Note that w′((α)V1iu1) = w((α)V1iu1) since in the induced subgraph on V1 ∪ {u1} the edge
set, weights and colour are same for both G and G′. It follows that,

W ′
1 =

∑
c∈C2

w((α)V1iu1))w(cV2ju2ku3) + 1
|C1|

∑
c∈C1

w((α)V1iu1))w(cV2ju2ku3)
w(cV2) (7)

Noting that w(αV1iu1)w(cV2ju2ku3) = w(αV1iu1ju2ku3cV2) = W1(c) we get,

W ′
1 =

∑
c∈C2

w(αV1iu1cV2ju2ku3)+ 1
|C1|

∑
c∈C1

w(αV1iu1cV2ju2ku3)
w(cV2) =

∑
c∈C2

W1(c)+ 1
|C1|

∑
c∈C1

W1(c)
w(cV2)

Similar arguments allow us establish the required result for t = 2, 3 also. ◀



L. S. Chandran, R. Gajjala, and A. M. Illickan 41:13

▶ Observation 20. w(vc′) =
∑

c∈C2
w(vc(c)) + 1

|C1|
∑

c∈C1

w(vc(c))
w(cV2)

Proof. Now w′(vc′) = W ′
0 + W ′

1 + W ′
2 + W ′

3

= W ′
0 +

∑
c∈C2

(W1(c) + W2(c) + W3(c)) + 1
|C1|

∑
c∈C1

W1(c) + W2(c) + W3(c)
w(cV2)

Recall that for any colour c ∈ [µ(G)], w(vc(c)) = W0(c) + W1(c) + W2(c) + W3(c). Note
that for colours c ∈ C2, W0(c) = W ′

0.w(cV2); and therefore W1(c)+W2(c)+W3(c) = w(vc(c)),
the weight of the vertex colouring αV1iu1ju2ku3cV2 . Now W ′

0 can be trivially rewritten

as 1
|C1|

∑
c∈C1

W ′
0.w(cV2)
w(cV2) . Since W ′

0.w(cV2) = W0(c), this expression can be rewritten as

1
|C1|

∑
c∈C1

W0(c)
w(cV2) .

So we can combine the terms of this expression, term by term with the terms inside the
sum over c ∈ C1 and rewrite the expression as follows:

=
∑
c∈C2

w(vc(c)) + 1
|C1|

∑
c∈C1

W0(c) + W1(c) + W2(c) + W3(c)
w(cV2) (8)

Since for colours c ∈ C1, W0(c) + W1(c) + W2(c) + W3(c) = w(vc(c)) we get the required
result. ◀

If vc′ is non-monochromatic, then vc(c) is also non-monochromatic for any c ∈ [µ(G)].
Therefore, w(vc(c)) = 0 for all c and hence w′(vc′) = 0 from Observation 20.

If vc′ is monochromatic, say of colour i, vc(c) will be monochromatic if and only if
c = i. Therefore, if i ∈ C2, then w(vc′) = w(vc(i)) = 1. Similarly, if i ∈ C1, then
w′(vc′) = 1

|C1|w(iV2) from Observation 20. In both the cases this will be non-zero as required.

The weights can now be readjusted by the Scaling Lemma (Lemma 14) to get a GHZ
graph.

2.6 Limitations of our reduction
A careful reader might observe that the difficulty in extending our reduction technique to
cuts of larger size comes from the case when two newly introduced edges are part of the
same perfect matching. For instance, for the case when there is a 4 vertex cut {u1, u2, u3, u4}
separating V1, V2 (both of even size) in G, one could try to extend our ideas and capture the
weights from V2 ∪ {u3, u4} and V2 ∪ {u1, u2} on the edges (v3, v4), (v1, v2) of G′, respectively.
However, this would create some extra terms in G′ due to the perfect matchings in which
(v1, v2) and (v3, v4) are contained. Such terms could destroy the GHZ property of G′. We
believe that finding a way to bypass this difficulty and finding a more general reduction will
resolve Krenn and Gu’s conjecture for all graphs.
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classes with extended d-compression schemes, proving the analog of a conjecture of Floyd and
Warmuth [4] for Littlestone dimension.
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1 Introduction

In query learning, a learner attempts to identify an unknown concept from a collection via
a series of data requests called queries. Typically, algorithms designed for learning in this
setting attempt to bound the number of required queries to identify the target concept in
the worst-case scenario. If one imagines the queries of the learner being answered by a
teacher, the usual setup imagines the teacher answering queries in an adversarial manner,
with minimally informative answers. Alternatively, for a given algorithm, the bounds for the
traditional model are on the worst-case answers over all potential targets. In variations of
the model, one of these two factors is usually modified.

For instance, Kumar, Chen, and Singla [7] study the case in which the answers are
assumed to be maximally informative in a certain sense. In this manuscript, we first work in
the setup originating with Angluin and Dohrn [1], where we assume that the answers to the
queries are randomly selected with respect to some fixed probability distribution.
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42:2 Applications of Littlestone Dimension to Query Learning and to Compression

Consider a concept class C = {C1, . . . , Cn}, subsets of a fixed set X. Fix a target concept
A ∈ C. An equivalence query consists of the learner submitting a hypothesis B ∈ C to a
teacher, who either returns yes if A = B, or a counterexample x ∈ A△B. In the former case,
the learner has learned A, and in the latter case, the learner uses the new information to
update and submit a new hypothesis.

Angluin and Dohrn [1] fix a probability distribution µ on X and assume that the teacher
selects the counterexamples randomly with respect to µ restricted to A△B. They show
that for a concept class C of size n, there is an algorithm in which the expected number
of queries to learn any concept is at most log2(n). It is natural to wonder whether there
is a combinatorial notion of dimension which can be used to bound the expected number
of queries independent of the size of the class - perhaps even in infinite classes. In fact,
Angluin and Dohrn [1] (Theorem 25) already consider this and show that the VC-dimension
of the concept class is a lower bound on the number of expected queries. On the other hand,
Angluin and Dohrn [1] (Theorem 26), using an example of [9], show that the VC-dimension
cannot provide an upper bound for the number of queries.

The motivation for bounds depending on some notion of dimension rather than the
number of concepts is two-fold:

Many combinatorial notions of dimension (e.g. Littlestone or VC) of a class C can be
small while |C| is large.

Investigating this model of learning in settings where C is an infinite class will require
methods and bounds that do not use |C|.

Roughly speaking, the Littlestone dimension (or Ldim) [9] of a concept class C over
domain X is the maximal depth of a complete binary decision tree T such that T ’s nodes are
associated with elements of X and T ’s edges are associated with binary labels such that each
root-to-leaf path in T agrees in the labeling of its respective elements with some concept in
C. If we require all nodes of T at the same depth to be associated with the same element of
X, this yields the definition of VC dimension.

We show that the Littlestone dimension provides such an upper bound; we give an
algorithm that yields a bound that is linear in the Littlestone dimension for the expected
number of queries needed to learn any concept. In Section 2 we establish the bounds for
finite concept classes C.

In Section 3 we give a specific example that shows finite Littlestone dimension of an
infinite class C is not sufficient to guarantee the learnability of the class in the model of
Angluin and Dohrn [1]. That is, we show the expected number of queries is impossible
to bound over all target concepts, even in very simple infinite classes. Suppose that the
target concept is itself selected randomly with respect to some (perhaps unrelated to the
feedback mechanism) probability distribution. In this case, we give an algorithm so that the
expected number of queries (over both sources of randomness) is at most Õ(d) where d is the
Littlestone dimension of the class C. This result uses the bounds developed in Section 2 in an
essential way, in particular by using the finite class’s Littlestone dimension instead of its size.

In Section 4, we give another application of Littlestone dimension - to compression
schemes, which answers a question of Johnson and Laskowski [6] on d-compression with b

extra bits, a notion originating with Floyd and Warmuth [4]. The existence of a d-compression
is closely related to various notions of learning; d-compressibility of a class C implies the
class has VC-dimension at most d. A famous conjecture of Floyd and Warmuth [4] asks if
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every VC-class has a d-compression where d is the VC-dimension.1 Our result in Section
4 proves a strong version of the conjecture for Littlestone dimension. In Section 4 we also
explain some of the many variants of this problem which have been previously solved.

2 Random counterexamples and EQ-learning

In this section, we essentially work in the setting of Angluin and Dohrn [1] with slightly
different notation. Throughout this section, let X be a finite set, let C be a set system on X,
and let µ be a probability measure on X. For A, B ∈ C, let

∆(A, B) = {x ∈ X | A(x) ̸= B(x)}

denote the symmetric difference of A and B.

▶ Definition 2.1. We denote, by Cx̄=ī for x̄ ∈ Xn and ī ∈ {0, 1}n, the set system {A ∈
C | A(xj) = ij , j = 1, . . . , n}. For A ∈ C and a ∈ X, we let

u(A, a) = Ldim(C) − Ldim(Ca=A(a)).

For any a ∈ X, either Ca=1 or Ca=0 has Littlestone dimension strictly less than that of C and
so:

▶ Lemma 2.2. For A, B ∈ C and a ∈ X with A(a) ̸= B(a),

u(A, a) + u(B, a) ≥ 1.

Next, we define a directed graph that is similar to the elimination graph of Angluin and
Dohrn [1].

▶ Definition 2.3. We define the thicket query graph GT Q(C, µ) to be the weighted directed
graph on vertex set C such that the directed edge from A to B has weight d(A, B) equal to the
expected value of Ldim(C) − Ldim(Cx=B(x)) over x ∈ ∆(A, B) with respect to the distribution
µ|∆(A,B).

2

▶ Definition 2.4. The query rank of A ∈ C is defined as: infB∈C(d(A, B)).

▶ Lemma 2.5. For any A ̸= B ∈ C, d(A, B) + d(B, A) ≥ 1.

Proof. Noting that ∆(A, B) = ∆(B, A), and using Lemma 2.2:

d(A, B) + d(B, A) =
∑

a∈∆(A,B)

µ(a)
µ(∆(A, B)) (u(A, a) + u(B, a))

≥
∑

a∈∆(A,B)

µ(a)
µ(∆(A, B))

= 1. ◀

▶ Definition 2.6 (Angluin and Dohrn [1], Definition 14). Let G be a weighted directed graph
and l ∈ N, l > 1. A deficient l-cycle in G is a sequence v0, . . . vl−1 of distinct vertices such
that for all i ∈ [l], d(vi, v(i+1) ( mod l)) ≤ 1

2 with strict inequality for at least one i ∈ [l].

1 Resolving whether there is an O(d) compression has a reward of 600 dollars [12].
2 Here one should think of the query by the learner as being A, and the actual hypothesis being B. The

teacher samples from ∆(A, B), and the learner now knows the value of the hypothesis on x.

MFCS 2024



42:4 Applications of Littlestone Dimension to Query Learning and to Compression

The next result is similar to Theorems 16 (the case l = 3) and Theorem 17 (the case
l > 3) of Angluin and Dohrn [1], but our proof is rather different (note that the case l = 2
follows easily from Lemma 2.5).

▶ Theorem 2.7. The thicket query graph GT Q(C, µ) has no degenerate l-cycles for l ≥ 2.

The analogue of Theorem 16 of Angluin and Dohrn [1] can be adapted in a very similar
manner to the technique employed by them. However, the analogue of the proof of Theorem
17 of Angluin and Dohrn [1] falls apart in our context; the reason is that Lemma 2.2 is
analogous to their Lemma 6 (and Lemma 2.5 is analogous to their Lemma 13), but our
lemmas involve inequalities instead of equations. The inductive technique of Angluin and
Dohrn [1, Theorem 17] is to shorten degenerate cycles by considering the weights of a
particular edge in the elimination graph along with the weight of the edge in the opposite
direction. Since one of those weights being large forces the other to be small (by the equalities
of their lemmas), the induction naturally separates into two useful cases. In our thicket query
graph, things are much less tightly constrained - one weight of an edge being large does not
force the weight of the edge in the opposite direction to be small. However, the technique
employed in our proof seems to be flexible enough to adapt to prove Theorems 16 and 17 of
Angluin and Dohrn [1].

Proof. Suppose the vertices in the degenerate l-cycle are A0, . . . , Al−1. By the definition of
degenerate cycles and d(−, −), we have, for each i ∈ Z/lZ, that

∑
a∈∆(Ai,Ai+1)

µ(a)
µ(∆(Ai, Ai+1))u(Ai, a) ≤ 1

2 .

Clearing the denominator we have∑
a∈∆(Ai,Ai+1)

µ(a)u(Ai, a) ≤ 1
2µ(∆(Ai, Ai+1)). (2.1)

Note that throughout this argument, the coefficients are being calculated modulo l. Notice
that for at least one value of i, the inequality in 2.1 must be strict.

Let G, H be a partition of

X = {A1, . . . , Al}.

Now define

D(G, H) := {a ∈ X | ∀A1, B1 ∈ G, ∀A2, B2 ∈ H, A1(a) = B1(a), A2(a) = B2(a), A1(a) ̸= A2(a)} .

The following fact follows from the definition of ∆(A, B) and D(−, −).

▶ Fact 2.8. The set ∆(Ai, Ai+1) is the disjoint union, over all partitions of X into two
pieces G, H such that Ai ∈ G and Ai+1 ∈ H of the sets D(G, H).

Now, take the sum of the inequalities 2.1 as i ranges from 1 to l. On the LHS of the
resulting sum, we obtain

l∑
i=1

 ∑
G,H a partition of X , Ai∈G,Ai+1∈H

 ∑
a∈D(G,H)

µ(a)u(Ai, a)

 .
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On the RHS of the resulting sum, we obtain

1
2

l∑
i=1

 ∑
G,H a partition of X , Ai∈G,Ai+1∈H

 ∑
a∈D(G,H)

µ(a)

 .

Given a partition G, H of {A1, . . . , Al} we note that the term D(G, H) = D(H, G) appears
exactly once as an element of the above sum for a fixed value of i exactly when Ai ∈ G and
Ai+1 ∈ H or Ai ∈ H and Ai+1 ∈ G.

Consider the partition G, H of X . Suppose that Aj , Aj+1, . . . , Ak is a block of elements
each contained in G, and that Aj−1, Ak+1 are in H. Now consider the terms i = j − 1 and
i = k of the above sums (each of which where D(G, H) appears).

On the left hand side, we have
∑

a∈D(G,H) µ(a)u(Aj−1, a)) and
∑

a∈D(G,H) µ(a)u(Ak, a)).
Note that for a ∈ D(G, H), we have a ∈ ∆(Aj−1, Ak). So, by Lemma 2.2, we have∑

a∈D(G,H)

µ(a)u(Aj−1, a) +
∑

a∈D(G,H)

µ(a)u(Ak, a) ≥
∑

a∈D(G,H)

µ(a).

On the RHS, we have

1
2

 ∑
a∈D(G,H)

µ(a) +
∑

a∈D(G,H)

µ(a)

 =
∑

a∈D(G,H)

µ(a).

For each G, H a partition of X, the terms appearing in the above sum occur in pairs as
above by Fact 2.8, and so, we have the LHS is at least as large as the RHS of the sum of
inequalities 2.1, which is impossible since one of the inequalities must have been strict by
our degenerate cycle. ◀

▶ Theorem 2.9. There is at least one element A ∈ C with query rank at least 1
2 .

Proof. If not, then for every element A ∈ C, there is some element B ∈ C such that
d(A, B) < 1

2 . So, pick, for each A ∈ C, an element f(A) such that d(A, f(A)) < 1
2 . Now, fix

A ∈ C and consider the sequence of elements of C given by (f i(A)); since C is finite, at some
point the sequence repeats itself. So, take a list of elements B, f(B), . . . , fn(B) = B. By
construction, this yields a bad cycle, contradicting Theorem 2.7. ◀

2.1 The thicket max-min algorithm
In this subsection we show how to use the lower bound on query rank proved in Theorem
2.9 to give an algorithm that yields the correct concept in linearly (in the Littlestone
dimension) many queries from C. The approach is fairly straightforward – essentially the
learner repeatedly queries the highest query rank concept. The approach is similar to that
taken in Angluin and Dohrn [1, Section 5] but with query rank in place of their notion of
informative.

Now we informally describe the thicket max-min-algorithm. At stage i, the learner is
given information of a concept class Ci. The learner picks the query

A = argmaxA∈Ci
(minB∈Ci

dCi
(A, B)) .

The algorithm halts if the learner has picked the actual concept C. If not, the teacher returns
a random element ai ∈ ∆(A, C) at which point the learner knows the value of C(ai). Then

Ci+1 = (Ci)ai=C(ai).

Let T (C) be the expected number of queries before the learner correctly identifies the target
concept.

MFCS 2024



42:6 Applications of Littlestone Dimension to Query Learning and to Compression

▶ Theorem 2.10. The expected number of queries to learn a concept in a class C is less than
or equal to 2 Ldim(C).

Proof. The expected drop in the Littlestone dimension of the concept class induced by any
query before the algorithm terminates is at least 1/2 by Theorem 2.9; so the probability that
the drop in the Littlestone dimension is positive is at least 1/2 for any given query. So, from
2n queries, one expects at least n drops in Littlestone dimension, at which point the class is
learned. ◀

3 Equivalence queries with random counterexamples and random
targets

Let C consist the collection of intervals
{(

1
n+1 , 1

n

)
| n ∈ N

}
with µ the Lebesgue measure on

the unit interval. This concept class has Littlestone dimension one since any two concepts
are disjoint. There is no upper bound on the number of expected queries (using the model
with random counterexamples of the previous section) that is uniform over all targets.

To see why, suppose the learner guesses interval
(

1
n+1 , 1

n

)
for some n. For any ϵ > 0 there

is N ∈ N such that with probability greater than 1 − ϵ, the learner gets a counterexample
from the interval they guessed,

(
1

n+1 , 1
n

)
. Of course, even with this additional information,

no matter the learner’s guess at any stage at which they have received only negative
counterexamples, this is clearly still the case. Thus, there can be no bound on expected
queries which is uniform over all target concepts.

In this section we introduce an additional source of randomness, which allows for learning
over infinite classes C.3 So, suppose C is a (possibly infinite) set of concepts on a set X.
Suppose that we have probability measures µ on X and τ on C. Suppose a target A ∈ C is
selected randomly according to the distribution τ and the counterexamples to equivalence
queries are selected randomly according to the distribution µ.

▶ Theorem 3.1. Suppose that C is countable with finite Littlestone dimension d. There is
an algorithm such that the expected number of queries over distributions µ on X and τ on C
is at most Õ(d).

Proof. Let ϵk = 1
2k+1 for k ∈ N. The idea of the algorithm is to run our earlier algorithm on

a 1 − ϵk fraction of the concepts with respect to the measure τ .
At stage k of the algorithm, we observe the following. Since C is countable, enumerate the

collection C = {Ci}i∈N. Then since
∑∞

i=1 P (Ci) = 1, for any ϵk > 0, there is Nk = N(ϵk) ∈ N
such that

∑∞
i=1 P (Ci) ≥ 1 − ϵk.

Conditional on the target being among the first Nk concepts, the next idea is to run
the algorithm from the previous section on this finite set for n steps where n is such that
the probability that we have not identified the target after n steps is less than ϵ, for some
0 < ϵ < 1. This number n = nd,ϵ depends only on the Littlestone dimension and ϵ, but not
on N as we will explain.

We now bound the probability that the algorithm has not terminated after n steps,
conditional on the target being in the first Nk many concepts. Since at any step, the
probability that the Littlestone dimension drops is at least 1

2 by Theorem 2.9, the probability
that the algorithm has not terminated after n steps is at most the probability of a binomial
random variable with probability 1

2 achieving at most d − 1 successes in n attempts, which is

3 One might also think of the random EQ learning of Angluin and Dohrn as analyzing the maximum
number of expected number of queries over all possible targets, while our model will analyze the
expected number of queries where the expectation is taken over the concepts (with a fixed but arbitrary
distribution) and over the counterexamples.
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d−1∑
k=0

(
n

k

)(
1
2

)n

≤ nd/2n.

Note that nd/2n < ϵ whenever n − d log n > log
( 1

ϵ

)
. Hence,

n ≥ Õ(d + log(1/ϵ))

is sufficient.
So at stage k, we run the algorithm for n steps as specified above. Either the target

concept is found or we continue to stage k + 1 on the larger concept class Nk. Since

(1 − ϵ1)
( ∞∑

k=1
ϵk

)
= 1/2

∞∑
k=1

1/2k+1 < 1,

the expected total number of queries is still bounded by Õ(d + log(1/ϵ)).4 ◀

4 Compression schemes and stability

In this section, we follow the notation and definitions given in Johnson and Laskowski [6]
on compression schemes, a notion due to Littlestone and Warmuth [10]. Roughly speaking,
C admits a d-dimensional compression scheme if, given any finite subset F of X and some
f ∈ C, there is a way of encoding the set F with only d-many elements of F in such a way
that F can be recovered.

We will give a formal definition, but we note that numerous variants of this idea appear
throughout the literature, including as size d-array compression [2], extended compression
schemes with b extra bits [4], and as unlabeled compression schemes [8]. In the definitions
below, we let dom(f) denote the domain of f and Cfin the restriction of C to finite subsets.

The following definition gives the notion of compression we consider within this section; the
notion is equivalent to the notion of a d-compression with b extra bits [4]. The equivalence of
these two notions is proved by Johnson and Laskowski [6, Proposition 2.1]. In our compression
schemes, the role of the b extra bits is played by the reconstruction functions, and of course,
the number of extra bits can be bounded in terms of the number of reconstruction functions
(and vice versa). Of course, one is interested in optimizing both the size of the compression
and the number of reconstruction functions (extra bits) in general.

▶ Definition 4.1. We say that a concept class C has a d-compression if there is a compression
function κ : Cfin → Xd and a finite set R of reconstruction functions ρ : Xd → 2X such that
for any f ∈ Cfin
1. κ(f) ⊆ dom(f)
2. f = ρ(κ(f))|dom(f) for at least one ρ ∈ R.

We work with the above notion mainly because it is the notion used in Johnson and
Laskowski [6], and our goal is to improve a result therein. That result was later improved by
Laskowski and appears in the unpublished notes of Guingona [5] (Theorem 4.1.3). When the
original work on this result was completed, we were not aware of the work of Guingona [5],
but as it turns out, our result improves both of these (the latter uses exponentially many
reconstruction functions, while we use linearly many).

4 There isn’t anything particularly special about the sequence ϵk that we chose. Any sequence (ϵk) going
to zero whose sum converges can be seen to work in the algorithm and affects only the constants in the
expected number of steps, which we are not optimizing.

MFCS 2024



42:8 Applications of Littlestone Dimension to Query Learning and to Compression

Johnson and Laskowski [6] prove that a concept class with finite Littlestone dimension
has an extended d-compression for some d.5 The precise value of d is not determined there,
but was conjectured to be the Littlestone dimension. In Theorem 4.4, we will show that
d can be taken to be the Littlestone dimension and d + 1 many reconstruction functions
suffice.6

The question in Johnson and Laskowski [6] is the analogue (for Littlestone dimension) of
a well-known open question from VC-theory [4]: is there a bound A(d) linear in d such that
every class of VC-dimension d has a compression scheme of size at most A(d)? In general,
there is known to be a bound that is at most exponential in d [11].

▶ Definition 4.2. Suppose Ldim(C) = d. Given a partial function f , say that f is exceptional
for C if for all a ∈ dom(f),

C(a,f(a)) := {g ∈ C | g(a) = f(a)}

has Littlestone dimension d.

▶ Definition 4.3. Suppose Ldim(C) = d. Let fC be the partial function given by

fC(x) =


0 Ldim(C(x,0)) = d

1 Ldim(C(x,1)) = d

undefined otherwise.

It is clear that fC extends any partial function exceptional for C.

▶ Theorem 4.4. Any concept class C of Littlestone dimension d has an extended d-
compression with (d + 1)-many reconstruction functions.

Proof. If d = 0, then C is a singleton, and one reconstruction function suffices. So we may
assume d ≥ 1.

Fix some f ∈ Cfin with domain F . We will run an algorithm to construct a tuple of length
at most d from F by adding one element at each step of the algorithm. During each step of
the algorithm, we also have a concept class Ci, with C0 = C initially.

If f is exceptional in Ci−1, then the algorithm halts. Otherwise, pick either:
ai ∈ F such that f(ai) = 1 and

(Ci−1)(ai,1) := {g | g ∈ Ci−1, g(ai) = 1}

has Littlestone dimension less than Ldim(Ci−1). In this case, set Ci := (Ci−1)(ai,1) =
{g | g ∈ Ci−1, g(ai) = 1}.

di ∈ F such that f(di) = 0 and

(Ci−1)(di,0) := {g | g ∈ Ci−1, g(di) = 0}

has Littlestone dimension less than Ldim(Ci−1). In this case, set Ci := (Ci−1)(di,0).

5 Their result is formulated for the sets of realizations of first-order formulas that are stable, but their
proofs work for general concept classes, and Chase and Freitag [3] explain that stability is equivalent to
finite Littlestone dimension.

6 After proving this, we became aware of the unpublished result of Laskowski appearing as [5, Theorem
4.1.3] which shows one can take d to be the Littlestone dimension and uses 2d many reconstruction
functions.
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We allow the algorithm to run for at most d steps. There are two distinct cases. If our
algorithm has run for d steps, let κ(f) be the tuple (ā, d̄) of all of the elements ai as above
followed by all of the elements di as above for i = 1, . . . , d. By choice of ai and di, this tuple
consists of d distinct elements. By construction the set

C(ā,d̄) := {g ∈ C| g(ai) = 1, g(di) = 0}

has Littlestone dimension 0, that is, there is a unique concept in this class. So, given
(c1, c2, . . . , cn) ∈ Xd consisting of distinct elements, for i = 0, . . . , d, we let ρi(c1, . . . , cn) be
some g belonging to

{g ∈ C | g(cj) = 1 for j ≤ i, g(cj) = 0 for j > i},

if such a g exists. By construction, for some i, the Littlestone dimension of the concept class
{g ∈ C ∩ F | g(cj) = 1 for j ≤ i, g(cj) = 0 for j > i} is zero, and so g is uniquely specified
and will extend f .

We handle cases where the algorithm halts early by augmenting two of the reconstruction
functions ρ0 and ρ1 defined above. Because ρ0 and ρ1 have so far only been defined for
tuples consisting of d distinct elements, we can extend these to handle exceptional cases by
generating tuples with duplicate elements.

If the algorithm stops at some step i > 1, then it has generated a tuple of length i − 1
consisting of some elements aj and some elements dk. Let ā consist of the elements aj chosen
during the algorithm, and let d̄ consist of the elements dk chosen during the running of the
algorithm. Observe that f is exceptional for C(ā,d̄).

If ā is not empty, with initial element a′, then let κ(f) = (ā, a′, d̄, a′, . . . , a′) ∈ F d. From
this tuple, one can recover (ā, d̄) (assuming ā is nonempty), so we let ρ1(ā, a′, d̄, a′, . . . , a′) be
some total function extending fC(ā,d̄)

, which itself extends f . So ρ1(ā, d̄) extends f whenever
the algorithm halts before step d is completed and some ai was chosen at some point. If
ā is empty, then let κ(f) = (d̄, d′, . . . , d′) ∈ F d, where d′ is the initial element of d̄. From
this tuple, one can recover (∅, d̄) (assuming ā is empty), so we let ρ0(d̄, d′, . . . , d′) be total
function extending fC(∅,d̄)

, which itself extends f . Finally, if the algorithm terminates during
step 1, then it has generated the empty tuple. In this case, let κ(f) = (c, . . . , c) for some
c ∈ F . Then Ldim(C) = Ldim(C(c,l)) for some l ∈ {0, 1}. In particular, if we have defined
κ(f ′) = (c, . . . , c) above for some f ′ where the algorithm only returns c (rather than the
empty tuple), then 1 − l = f ′(c) ̸= f(c), and so any such f ′ is handled by ρ1−l. So we may
overwrite ρl to set ρ(c, . . . , c) to be a total function extending fC , which itself extends f . For
any tuple output by our algorithm, one of the reconstruction functions produces an extension
of the original concept. ◀
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Finding a simple path of even length between two designated vertices in a directed graph is a
fundamental NP-complete problem [24] known as the EvenPath problem. Nedev [28] proved in
1999, that for directed planar graphs, the problem can be solved in polynomial time. More than
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this problem. We give a polynomial time algorithm to solve the EvenPath problem for classes of
H-minor-free directed graphs,1 where H is a single-crossing graph.

We make two new technical contributions along the way, that might be of independent interest.
The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking
networks. These are graphs that mimic parities of all possible paths between a designated set of
terminals of the original graph.

Finding vertex disjoint paths between given source-destination pairs of vertices is another
fundamental problem, known to be NP-complete in directed graphs [14], though known to be
tractable in planar directed graphs [34]. We encounter a natural variant of this problem, that of
finding disjoint paths between given pairs of vertices, but with constraints on parity of the total
length of paths. The other significant contribution of our paper is to give a polynomial time algorithm
for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions
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43:2 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

1 Introduction

Given a directed graph G, and two vertices s and t in it, checking for the existence of a
a simple directed path from s to t is a fundamental problem in graph theory, known as
the Reachability problem. The EvenPath problem is a variant of Reachability, where given a
directed graph G and two vertices s and t we need to answer whether there exists a simple
path of even length from s to t. EvenPath was shown to be NP-complete by LaPaugh and
Papadimitriou [24] via a reduction from an NP-complete problem, the Path-Via-A-Vertex
problem. On the other hand, they also show in [24] that its undirected counterpart is solvable
in linear time. Several researchers have recently studied both the space, and simultaneous
time-space complexity of EvenPath for special classes of graphs [5, 10]. A similar problem,
that of finding a simple directed cycle of even length, called EvenCycle (which easily reduces
to EvenPath), has also received significant attention. While polynomial-time algorithms have
been known since long for the undirected version ([24, 39]), the question of tractablility of
the directed version was open for over two decades before polynomial-time algorithms were
given by McCuiag, and by Robertson, Seymour and Thomas [27]. More recently, Björklund,
Husfeldt and Kaski [3] gave a randomized polynomial-time algorithm for finding a shortest
even directed cycle in directed graphs.

Although EvenPath is NP-complete for general directed graphs, it is natural and interesting
to investigate the classes of graphs for which it can be solved efficiently. In 1994, before the
algorithm of [27], Gallucio and Loebl [15] gave a polynomial-time algorithm for EvenCycle
in planar directed graphs. They did so by developing a routine for a restricted variant of
EvenPath (when s, t lie on a common face, and there are no even directed cycles left on
removal of that face). Following that, Nedev in 1999, showed that EvenPath in planar graphs
is polynomial-time solvable [28]. Planar graphs are an example of a minor-closed family,
which are families of graphs that are closed under edge contraction and deletion. Minor-closed
families include many more natural classes of graphs, like graphs of bounded genus, graphs
of bounded treewidth, apex graphs. A theorem of Robertson-Seymour [33] shows that every
minor-closed family can be characterized by a set of finite forbidden minors. Planar graphs,
for example, are exactly graphs with K3,3,, K5 as forbidden minors [38]. In this paper, we
consider the family of H-minor-free graphs, where H is any fixed single-crossing graph, i.e.,
H can be drawn on the plane with at most one crossing. Such families are called single-
crossing-minor-free graphs. They include well-studied classes of graphs like K5-minor-free
graphs, K3,3-minor-free graphs.2 Robertson and Seymour showed that single-crossing-minor
free graphs admit a decomposition by (upto) 3-clique-sums, into pieces that are either of
bounded treewidth, or planar [30]. This is a simpler version of their more general theorem
regarding decomposition of H-minor free graphs, (where H is any fixed graph) by clique
sums, into more complex pieces, involving apices and vortices [32]. Solving EvenPath on
single-crossing-minor free graphs would therefore be a natural step to build an attack on
more general minor closed familes.

Many results on problems like reachability, matching, coloring, isomorphism, for planar
graphs have been extended to K3,3-minor-free graphs and K5-minor-free graphs as a next
step (see [36, 21, 22, 37, 35, 11, 2]). Chambers and Eppstein showed in [6] that using the
results of [4, 17] for maximum flows in planar and bounded treewidth graphs, respectively,
maximum flows in single-crossing-minor-free graphs can be computed efficiently. Following
the result of [1] which showed that perfect matching in planar graphs can be found in NC,
Eppstein and Vazirani in [13], extended the result to single-crossing-minor-free graphs.

2 Both K5, K3,3 have crossing number one. Also, note that both the families, K5-minor-free, and K3,3-
minor-free, have graphs of O(n) genus.
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1.1 Our Contributions
From here onwards, we will drop the term “directed” and assume by default that the
graphs we are referring to are directed, unless otherwise stated. Operations like clique sums,
decomposing the graphs along separating triples, pairs, etc., will be applied on the underlying
undirected graphs. The following is the main theorem we prove in this paper:

▶ Theorem 1. Given an H-minor-free graph G for any fixed single-crossing graph H, the
EvenPath problem in G can be solved in polynomial time.

We first apply the theorem of Robertson-Seymour (theorem 3), and decompose G using
3-clique sums into pieces that are either planar or of bounded treewidth. Though EvenPath is
tractable in planar graphs, and can also be solved in bounded treewidth graphs by Courcelle’s
theorem, straightforward dynamic programming does not yield a polynomial-time algorithm
for the problem, as we will explain in subsequent sections. One of the technical ingredients
that we develop to overcome the issues is that of parity-mimicking networks, which are graphs
that preserve the parities of various paths between designated terminal vertices of the graph it
mimics. We construct them for upto three terminal vertices. The idea of mimicking networks
has been used in the past in other problems, like flow computation [6, 7, 17, 20, 23], and in
perfect matching [13]. The ideas we use for constructing parity mimicking networks however,
do not rely on any existing work that we know of. For technical reasons, we require our
parity mimicking networks to be of bounded treewidth and planar, with all terminals lying
on a common face. These requirements make it more challenging to construct them (or even
to check their existence), than might seem at a first glance. One of our main contributions is
to show (in lemma 8) the construction of such networks, for upto three terminals. It might
be of independent interest to see if a more simpler construction exists (perhaps a constructive
argument to route paths, that has eluded us so far), that avoids the hefty case analysis we
do, and also if they can be constructed for more than three terminals.

We also come across a natural variant of another famous problem. Suppose we are given
a graph G and vertices s1, t1, s2, t2 . . . sk, tk (we may call them terminals) in it. The problem
of finding pairwise vertex disjoint paths, from each si to ti is a well-studied problem called
the disjoint paths problem. In undirected graphs, the problem is in P when k is fixed [31, 29],
but NP-complete otherwise [26]. For (directed) graphs, the problem is NP-complete even for
k = 2 [14]. In planar graphs, it is known to be in P for fixed k [34, 9, 25]. We consider this
problem, with the additional constraint that the sum of lengths of the si-ti paths must be of
specified parity. We hereafter refer to the parity of the sum of lengths as total parity, and
refer to the problem as DisjPathsTotalParity. In the undirected setting, a stricter version of
this problem has been studied, where each si-ti path must have parity pi that is specified
in input. This problem was shown to be in P for fixed k, by Kawarabayashi et al. [18].
However much less is known in directed setting. While DisjPathsTotalParity can be solved for
fixed k in bounded treewidth graphs using Courcelle’s theorem [8], we do not yet know if
it is tractable in planar graphs, even for k = 2. The other main technical contribution of
our paper is in lemma 10, where we show that in some special cases, i.e., when there are
four terminals, three of which lie on a common face of a planar graph, DisjPathsTotalParity
can be solved in polynomial time for k = 3. We do this by showing that under the extra
constraints, the machinery developed by [28] can be further generalized and applied to find a
solution in polynomial time. The question of tractability of DisjPathsTotalParity in planar
graphs, without any constraint of some terminals lying on a common face is open, and would
be interesting to resolve. A polynomial-time algorithm for it (for fixed k), would yield a
polynomial-time algorithm for EvenPath in graphs with upto k crossings, which is currently
unknown.
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Though the proofs of lemmas 8,10 form the meat of technical contributions of the paper,
we give a proof idea, deferring the proofs to the full version of the paper.

2 Preliminaries

From now onwards we will refer to simple, directed paths as just paths. For a path P , and a
pair of vertices u and v on P , such that u occurs before v in P , P [u, v] denotes the subpath
of P from u to v. If P1 and P2 are two paths that are vertex disjoint, except possibly sharing
starting or ending vertices, then we say that P1, P2 are internally disjoint paths. If P1’s
ending vertex is same as the starting vertex of P2, then we denote the concatenation of P1
and P2 by P1.P2. We will use the numbers 0, 1 to refer to parities, 0 for even parity and 1
for odd parity. We say a path P is of parity p (p ∈ {0, 1}), if its length modulo 2 is p. We
will use a well-known structural decomposition of H-minor-free graphs due to [30]. We recall
the definition of clique sums:

▶ Definition 2. A k-clique-sum of two graphs G1, G2 can be obtained from the disjoint union
of G1, G2 by identifying a clique in G1 of at most k vertices with a clique of the same number
of vertices in G2, and then possibly deleting some of the edges of the merged clique.

Thus when separating G along a separating pair/triplet, we can add virtual edges if needed, to
make the separating pair/triplet a clique. The virtual edges will not be used in computation
of path parities, they are only used to compute the decomposition. We can keep track of
which edges in the graph are virtual edges and which are the real edges throughout the
algorithm. We can repeatedly apply this procedure to decompose any graph G into smaller
pieces. The following is a theorem from [30].

▶ Theorem 3 (Robertson-Seymour [30]). For any single-crossing graph H, there is an integer
τH such that every graph with no minor isomorphic to H is either
1. the proper 0-, 1-, 2- or 3-clique-sum of two graphs, or
2. planar
3. of treewidth ≤ τH .
Thus, every H-minor-free graph, where H is a single-crossing graph, can be decomposed by 3-
clique sums into graphs that are either planar or have treewidth at most τH . Polynomial time
algorithms are known to compute this decomposition [12, 19, 16] (and also NC algorithms [13]).
The decomposition can be thought of as a two colored tree (see [12, 6, 13] for further details
on the decomposition), where the blue colored nodes represent pieces (subgraphs that are
either planar or have bounded treewidth), and the red nodes represent cliques at which two
or more pieces are attached. We call these nodes of the tree decomposition as piece nodes

and clique nodes, respectively. The edges of the tree describe the incidence relation between
pieces and cliques (see Figure 2). We will denote this decomposition tree by TG. We will
sometimes abuse notation slightly and refer to a piece of TG (and also phrases like leaf piece,
child piece), when it is clear from the context that we mean the piece represented by the
corresponding node of TG. Note that the bounded treewidth and planarity condition on the
pieces we get in the decomposition, is along with their virtual edges. As explained in [6, 13],
we can assume that in any planar piece of the decomposition, the vertices of a separating
pair or triplet lie on a common face (Else we could decompose the graph further).

Suppose G decomposes via a 3-clique sum at clique c into G1 and G2. Then we write
G as G1⊕cG2. More generally, if G1, G2, . . . , Gℓ all share a common clique c, then we use
G1 ⊕c G2 ⊕c . . . ⊕c Gℓ to mean G1, G2, . . . , Gℓ are glued together at the shared clique. If it is
clear from the context which clique we are referring to, we will sometimes drop the subscript
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Figure 1 An example of a graph G.
We ignore directions here.

v6

v2

v4

v6

v2

v5

v4

v6

v2

v7

v4

v1

v6

v2

v4

v1

v2

v4

v1

v2

v4

v3

v2

v10

v8

v7

v9

v2

v7

Figure 2 A clique sum decomposition of G. Red nodes
are the clique nodes and blue node the piece nodes. Dashed
edges denote virtual edges.

and simply use G1 ⊕ G2 ⊕ . . . ⊕ Gℓ instead. Suppose G′
2 is a graph that contains the vertices

of the clique c shared by G1 and G2. We denote by G[G2 → G′
2], the graph G1⊕cG′

2, i.e.,
replacing the subgraph G2 of G, by G′

2, keeping the clique vertices intact. We will also use
the notion of snapshot of a path in a subgraph. If G can be decomposed into G1 and G2
as above, and P is an s-t path in G, its snapshot in G1 is the set of maximal subpaths of
P , restricted to vertices of G1. Within a piece, we will sometimes refer to the vertices of
separating cliques, and s and t, as terminals.

In figures, we will generally use the convention that a single arrow denotes a path segment
of odd parity and double arrow denotes a path segment of even parity, unless there is an
explicit expression for the parity mentioned beside the segment.

3 Overview and Technical Ingredients

We first compute the 3-clique sum decomposition tree of G, TG. We can assume that s, t,

each occur in only one piece of TG, S and T , respectively.3 We call the pieces S and T , along
with the pieces corresponding to nodes that lie in the unique path in TG joining S and T , as
the main pieces of TG, and the remaining pieces are called the branch pieces of TG. We will
assume throughout that TG is rooted at S.

The high level strategy of our algorithm follows that of [6]. The algorithm has two phases.
In the first phase, we simplify the branch pieces of the decomposition tree. Any s-t even
path P must start and end inside the main pieces S and T , respectively. However, it may

3 If they are part of a separating vertex/pair/triplet then they may occur in multiple pieces of TG. Say s
is a part of many pieces in TG. To handle that case, we can introduce a dummy s′ and add an edge
from s′ to s and reduce the problem to finding an odd length path from s′ to t. The vertex s′ now will
occur in a unique piece in TG. Vertex t can be handled similarly.

MFCS 2024



43:6 The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

take a detour into the branch pieces. Suppose L is a leaf branch piece of TG, attached to
its parent piece, say Gi, via a 3-clique c. Using Nedev’s algorithm or Courcelle’s theorem,
we can find paths of various parities between vertices of c in L, which constitutes the parity
configuration of L with respect to c (formally defined in next subsection). We will replace L

by a parity mimicking network of L with respect to vertices of c, L′. L′ will mimic the parity
configuration of L and hence preserve the parities of all s-t paths of original graph. The
parity mimicking networks we construct are small and planar, with the terminals (vertices
of c) all lying on a common face, as decribed in lemma 8. Therefore, if Gi is of bounded
treewidth, then Gi ⊕ L′ will be of bounded treewidth. And if Gi is planar, then we can plug
L′ in the face of Gi that is common to vertices of c, and Gi ⊕ L′ will be planar. This allows
us compute the parity configurations of the merged piece, and repeat this step until a single
branch, i.e. a path, remains in the decomposition tree, consisting only of the main pieces
(connected by cliques), including S and T .

In the second phase, we start simplifying the main pieces, starting with the leaf piece T .
Instead of a single mimicking network for T , we will store a set of small networks, each of
them mimicking a particular snapshot of a solution. We call them projection networks. Since
a snapshot of an s-t even path in T can possibly be a set of disjoint paths between the (upto)
four terminals in T , we require the DisjPathsTotalParity routine of lemma 10 to compute these
projection networks. We combine the parent piece with each possible projection network.
The merged piece will again be either planar or of bounded treewidth, allowing us to continue
this operation towards the root node until a single piece containing both s and t remains.
We query for an s-t even path in this piece and output yes iff there exists one. At each step,
the number of projection networks used to replace the leaf piece, and their combinations
with its parent piece will remain bounded by a constant number.

Once we have the decision version of EvenPath, we show a poly-time self-reduction using
the decision oracle of EvenPath to construct a solution, in the full version of the paper.

Necessity of a two phased approach

We mention why we have two phases and different technical ingredients for each.
Instead of a single parity mimicking network, we need a set of projection networks for
the leaf piece in the second phase because it can have upto four terminals (three vertices
of the separating clique and the vertex t), and we do not yet know how to find (or even
the existence of) parity mimicking networks with the constraints we desire, for graphs
with four terminals.
We cannot however use a set of networks for each piece in phase I because of the
unbounded degree of TG. Suppose a branch piece Gi is connected to its parent piece
by clique c, and suppose Gi has child pieces L1, L2, . . . , Lℓ, attached to Gi via disjoint
cliques c1, c2, . . . , cℓ, respectively. An even s-t path can enter Gi via a vertex of c, then
visit any of L1, L2, . . . , Lℓ in any order and go back to the parent of Gi via another vertex
of c. If we store information regarding parity configurations of L1, L2, . . . , Lℓ as sets of
projection networks, we could have to try exponentially many combinations to compute
information of parity configurations between vertices of c in the subtree rooted at Gi

(note that ℓ could be O(n)). Therefore, we compress the information related to parity
configurations of Li into a single parity mimicking network L′

i, while preserving solutions,
so that the combined graph (((Gi ⊕c1 L′

1)⊕c2 L′
2 . . .)⊕cℓ

L′
ℓ) is either planar or of bounded

treewidth.
We will now describe these ingredients formally in the remaining part of this section.
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Figure 3 Figure a) shows the input graph and b) shows the graph with L replaced by an erroneous
mimicking network L′. Suppose the original graph in a) has no s-t even path but does have an s-t
even walk as shown in the figure, using vertex v2 twice. If we query for a path from v1 to v3 in L,
and add a direct v1 to v3 path of that parity in L′, we end up creating a false solution since v2 is
freed up to be used outside L′. Hence there must be equality between corresponding direct sets.

3.1 Parity Mimicking Networks
We first define the parity configuration of a graph, which consists of subsets of {0, 1} for each
pair, triplet of terminals, depending on whether there exists “direct” or “via” paths of parity
even, odd, or both (we use 0 for even parity and 1 for odd). We formalise this below.

▶ Definition 4. Let L be a directed graph and T (L) = {v1, v2, v3} be the set of terminal
vertices of L. Then, ∀i, j, k ∈ {1, 2, 3}, such that i, j, k are distinct, we define the sets
DirL(vi, vj), and ViaL(vi, vk, vj) as:

DirL(vi, vj) ={p | there exists a path of parity p from vi to vj in L − vk }
ViaL(vi, vk, vj) ={p | there exists a path of parity p from vi to vj via vk and
there does not exist a path of parity p from vi to vj in L − vk}

We say that the DirL, ViaL sets constitute the parity configuration of the graph L with respect
to T (L). We call the paths corresponding to elements in DirL, ViaL sets as Direct paths and
Via paths, respectively.

The parity configuration of a graph can be visualised as a table. We have defined it for three
terminals, it can be defined in a similar way for two terminals. It is natural to ask the question
that given a parity configuration P independently with respect to some terminal vertices,
does there exist a graph with those terminal vertices, realising that parity configuration. If
not, we say that P is unrealisable. It is easy to see that the number of parity configurations
for a set of three terminals is bounded by 412, many of which are unrealizable. We now
define parity mimicking networks.

▶ Definition 5. A graph L′ is a parity mimicking network of a another graph L (and vica
versa), if they share a common set of terminals, and have the same parity configuration, P,
w.r.t. the terminals. We also call them parity mimicking networks of parity configuration P.

The reason we differentiate between direct paths and via paths while defining parity config-
urations is to ensure that no false solutions are introduced on replacing a leaf piece of TG by
its mimicking network (see Figure 3). Note that in our definition of Via sets, we exclude
parity entries of via paths between two terminals if that parity is already present in Dir set
between the same terminals. We do so because this makes the parity configurations easier to
enumerate in our construction of parity mimicking networks. In Figure 4, we describe why
doing this will still preserve solutions.
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We also need to consider the case where multiple leaf pieces, in TG are attached to a
common parent piece via a shared clique (as seen in Figure 2). In this case, we will replace
the entire subgraph corresponding to the clique sum of the sibling leaf pieces by one parity
mimicking network. To compute the parity configuration of the combined subgraph of leaf
pieces, we make the following observation:

▶ Observation 6. Let L1, L2, . . . , Lℓ be leaf branch pieces that are pairwise disjoint except
for a common set of terminal vertices, say {v1, v2, v3}. Let L = L1 ⊕ L2 ⊕ . . . ⊕ Lℓ. Then
the parity configuration of L with respect to {v1, v2, v3} can be computed by:

DirL(vi, vj) =
ℓ⋃

a=1
DirLa

(vi, vj) (1)

ViaL(vi, vk, vj) = ℓ⋃
a=1

ViaLa(vi, vk, vj) ∪
ℓ⋃

a,b=1
(DirLa(vi, vk) ⊞ DirLb

(vk, vj))

 \DirL(vi, vj) (2)

where A ⊞ B denotes the set formed by addition modulo 2 between all pairs of elements in
sets A, B, and i, j, k ∈ {1, 2, 3} are distinct.

The intuition behind the observation is simple. Any direct path in L from vi to vj must
occur as a direct path in one of L1, L2 . . . Lℓ since they are disjoint except for terminal
vertices. Any via path in L from vi to vj via vk can occur in two ways, either as a vi-vk-vj

via path in one of L1, L2 . . . Lℓ, or as a concatenation of two direct paths, one from vi to vk

in some piece Li, and another from vk to vj in another piece Lj . Note that although the
observation is for the case when all L1, L2, . . . , Lℓ share a common 3-clique {v1, v2, v3}, it is
easy to see it can be tweaked easily to handle the cases when some of the L′

is are attached
via a 2-clique that is a subset of the 3-clique.

The next lemma states that replacing leaf piece nodes in TG by parity mimicking networks
obeying some planarity conditions, will preserve the existence of s-t paths of any particular
parity, and also preserve conditions on treewidth and planarity for the combined piece.

▶ Lemma 7. Let G be a graph with clique sum decomposition tree TG, and let L1, L2 . . . , Lℓ

be set of leaf branch pieces of TG, attached to their parent piece G1 via a common clique c.
Let L′ be a parity mimicking network of L1 ⊕ L2 ⊕ . . . Lℓ with respect to c, such that L′ is
planar, and vertices of c lie on a common face in L′. Then:
1. There is a path of parity p from s to t in G iff there is a path of parity p from s to t in

G[L1 ⊕ L2 ⊕ . . . Lℓ → L′].
2. If G1 is planar, then G1 ⊕ L′ is also planar.
3. If G1 has treewidth τH , and L′ has treewidth τL′ , then G1 ⊕ L′ has treewidth max(τH , τL′)

Proof.
1. The proof essentially follows from the definition of parity mimicking networks and

observation 6, since we can replace the snapshot of any s-t path P in Li by a path of
corresponding parity in L′

i and vice-versa.
2. This follows since in the decomposition, vertices of separting cliques in every piece lie on

the same face, and so is the case for L′ by assumption. Therefore we can embed L′ inside
the face in G1, on the boundary of which v1, v2, v3 lie.

3. This follows since we can merge tree decompositons of G1, L′ along bags consisting of the
common clique. ◀
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Figure 4 Figure a) denotes the original graph which has both a direct path, as well as a via path
of even parity from v1 to v3. Suppose the via path is part of an even s-t path solution, as marked
by blue. Then in L itself, we could replace the via path by the direct path and it would still be a
valid even s-t path, as marked in blue in b). Hence in the mimicking network L′, too (shown in c)),
we could use the direct v1 to v3 path of the same parity. Therefore we do not need to put the parity
of the v1-v2-v3 path in ViaL(v1, v2, v3), since the same parity is already present in DirL(v1, v3), and
DirL(v1, v3) = DirL′ (v1, v3).

Now we will show how to compute parity mimicking networks that are small in size (and
hence of bounded treewidth), and also planar, with terminal vertices lying on the same face,
for a given parity configuration of a graph L.

▶ Lemma 8. Suppose L is a graph with terminals T (L) = {v1, v2, v3}, and suppose we know
the parity configuration of L with respect to {v1, v2, v3}. We can in polynomial-time, find a
parity mimicking network L′ of L, with respect to {v1, v2, v3} which consists of at most 18
vertices, and is also planar, with v1, v2, v3 lying on a common face.

Proof. We give a brief idea of the proof and defer the full proof to the full version of this
paper.As noted above, the number of possible parity configurations are finite (bounded by
412 for three terminals), but the number is too large to enumerate over all of them and
individually construct the mimicking networks. We use some observations to make the
case analysis tractable. We refer to elements of sets DirL(vi, vj) as entries. But we abuse
notation slightly and distinguish them from the boolean values 0, 1. For example, we always
distinguish between an entry of DirL(v1, v2), and an entry of DirL(v2, v3), even if they have
the same value (0 or 1). A natural constructive approach would be to iteratively do the
following step for all i, j, p : add a path of length 2 − p from vi to vj in L′, disjoint from
existing paths of L′, if there is an entry of parity p present in DirL′(vi, vj). Its easy to check
that this will result in a planar L′ with terminals on a common face. However, this could lead
to wrong parity configurations in L′. For example, L could have a direct paths of parity 1
from v1 to v2, and a direct path of parity 0 from v2 to v3, but no path of parity 1 from v1 to
v3, either direct or via v2 (see Figure 5). We will call pairs of such entries as bad pairs. The
entries that are part of any bad pair are called bad entries. Though the example in Figure 5
has a simple fix for the bad pair, it becomes more complicated to maintain the planarity
conditions as the number of bad pairs increase. Let PL be the parity configuration of L. The
idea of the proof is to define a bad kernel of PL, as the sub-configuration consisting of all
the bad entries of PL. The closure of the bad kernel is defined as the parity configuration
obtained from it by adding “minimal” number of entiries to make it realizable. We observe
that the closure remains a sub-configuration of PL. Suppose that we can somehow construct
a planar mimicking network for the closure of the bad kernel of PL, with terminals lying on a
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1
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0

DirL′(v3, v2)

−
DirL′(v1, v3)

0

Figure 5 Fig a) denotes a graph L with its parity configuration table (only relevant sets). Fig b)
denotes a “parity mimicking network”, if for each pair of terminals, we just independently put paths
of correct parity, disjoint from each other. It leads to an extra path (highlighted in red) from v1 to
v3 via v2 in L′, of odd parity. Pairs of such entries, for which we cannot add disjoint paths are called
bad entries as marked by the dashed red line in the parity configuration table in a). Fig c) outlines
the approach used to construct the correct mimicking network. The two paths corresponding to bad
pair entries, form the bad kernel, for which we construct a mimicking network by enumerating cases.
The remaining paths can be added iteratively, disjoint from all existing paths, on the outer face.

DirP(v1, v2) DirP(v2, v3) DirP(v3, v1)

0
1

0 0
1 1

DirP(v2, v1) DirP(v3, v2) DirP(v1, v3)

1 0

V iaP(v3, v1, v2)

0
1

v1

v2 v3

a b c d

e f

g h i j

−

Figure 6 An example of a more non-trivial bad kernel, and a mimicking network realising its
closure. This is a subcase of case (4, 0) described in the full proof. We give a list of paths along with
their lengths, for ease of reader to check that the network obeys the parity configuration.

common face. Then we show that paths corresponding to leftover parity entries of L can be
safely added using the constructive approach described above. Hence it suffices to construct
parity mimicking networks for closures of all possible bad kernels. We use some observations
to show that the number of possible types of bad kernels cannot be too large, and enumerate
over each type, explicitly constructing the parity mimicking networks of their closures. ◀

3.2 Disjoint Paths with Parity Problem
In this section, we will define and solve the DisjPathsTotalParity problem for some special
cases and types of graphs. We define the problem for three paths between four terminals.

▶ Definition 9. Given a graph G and four distinct terminals v1, v2, v3, and v4 in V (G), the
DisjPathsTotalParity problem is to find a set of three pairwise disjoint paths, from v1 to v2,
v2 to v3, and from v3 to v4, such that the total parity is even, if such a set of paths exist,
and output no otherwise.
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The problem where total parity must be odd can be easily reduced to this by adding a dummy
neighbour to v4. The problem is NP-hard in general graphs since the even path problem
trivially reduces to this. We show that the above problem can be solved in polynomial time
in following two cases:

▶ Lemma 10. Let G be a graph, and v1, v2, v3, v4 be four vertices of G. Both decision as well
as search versions of DisjPathsTotalParity for these vertices as defined above can be solved in
polynomial time in the following cases:
1. If G has constant treewidth.
2. If G is planar and v1, v2, v3 lie on a common face of G.

Proof. Proofs of both parts can be found in the full version of the paper. We give a high
level idea of the proof of the second part. The argument of Nedev for EvenPath uses two
main lemmas. One lemma states that if there are two paths P1, P2, of different parities
from s to t, then their union forms a (at least one) structure, which they call an odd list
superface. It (roughly) consists of two internally disjoint paths of different parities, with a
common starting vertex, say b and a common ending vertex, say e. Let F denote such a
superface. They show that there exist two disjoint paths in P1 ∪ P2 − F , one from s to b,
and one from e to t. This provides a “switch” in P1 ∪ P2, and if we can find this switch
efficiently, then we can use existing 2-disjoint path algorithms to connect s and t via this
switch. But the number of odd list superfaces in a graph can be exponential. The second
lemma of Nedev says that we can exploit the structure of planarity and show that each of
the odd list superfaces formed by P1 ∪ P2, “contain” a “minimal” odd list superface, which
they call a simple odd list superface, that obeys the same conditions. The set of simple odd
list superfaces is small and can be enumerated in polynomial time. In our setting, we start
from the case that two instances of three disjoint paths between the specified terminals exist,
such that they have different total parity. Say the instances are P1, P2, P3, and P ′

1, P ′
2, P ′

3.
At least one of Pi, P ′

i must be of different parity. We show that using the constraints of
three terminals on a face, and using ideas of leftmost (and rightmost) paths of Pi ∪ P ′

i , for
each case of i ∈ {1, 2, 3}, there does exist an analogous structure: a simple odd list super
face, and four disjoint path segments connecting the required vertices. A point to note is
that in Nedev’s argument, any odd list superface formed by P1, P2 could be trimmed to a
simple odd list superface that would give a valid solution. That does not hold true here.
We generalise their lemma, and argue that there does exist at least one odd list superface
between Pi, P ′

i that will work in our setting. ◀

4 Main Algorithm

We now explain the two phases of the algorithm.

4.1 Phase 1
1. Find the 3-clique sum decomposition tree TG. Mark the piece that contains the vertex s

as the root of TG.
2. Pick any maximal set of leaf branch pieces of TG, say L1, L2, . . . , Lℓ, which are attached

to a parent piece Gi via a common clique. Compute their parity configurations using
Nedev’s algorithm, or using Courcelle’s theorem.Then compute the parity configuration
of L1 ⊕ L2 ⊕ . . . ⊕ Lℓ using observation 6.

3. Compute the parity mimicking network, L′, of L1 ⊕ L2 ⊕ . . . ⊕ Lℓ using lemma 8. Replace
L1 ⊕ L2 ⊕ . . . ⊕ Lℓ by L′ and merge it with Gi.

4. Since Gi ⊕ L′ is either of bounded treewidth or is planar by lemma 7, we can repeat this
step until no branch pieces remain.
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4.2 Phase II
Let G′ denote the graph after phase I. After phase I, the modified tree TG′ looks like a path
of pieces, G1, G2, . . . , Gm, joined at cliques c1, c2 . . . cm−1.4 The vertex s is in root piece G1,
and t in leaf piece Gm (we use G1, Gm instead of S, T here for notational convenience). We
can write G′ = G1 ⊕c1 G2 ⊕c2 . . . ⊕cm−1 Gm. Since it is clear in this phase that ci is the
clique joining Gi, Gi+1, we will omit the subscript for notational convenience and just write
G1 + G2 + . . . + Gm instead. Let cm−1 = {v1, v2, v3} and let i, j, k ∈ {1, 2, 3} be distinct. The
snapshot of any even s-t path P in Gm, can be one of the following four types (see figure 7):

Type 1 : A path from vi to t without using vj , vk.
Type 2 : A path from vi to t via vj , without using vk.
Type 3 : A path from vi to t via vj , vk.
Type 4 : A path from vi to vj and a path from vk to t, both disjoint from each other.

We call any path/set of paths in Gm of one of the above types as a potential snapshot of Gm.
We now construct the projection networks of potential snapshots of Gm.

▶ Definition 11. Let Gm be the leaf piece as described above with clique cm−1 = {v1, v2, v3},
and vertex t present in Gm.

For each of the types described above, for all i ∈ {1, 2, 3}, and for all p ∈ {0, 1}, find a
potential snapshot (if it exists) in Gm from vi to t, of total parity p, using lemma 10.
Let J be a potential snapshot found in the previous step, Its projection network, is defined
as the graph obtained from J by keeping terminal vertices intact, and replacing every
terminal to terminal path in J by a path of length 2 − p.

The type of the projection network is the type of the corresponding potential snapshot.
The set of projection networks of Gm, denoted by N (Gm), is the set of all projection networks
obtained for Gm by the above procedure.

See Figure 7 for an example. Since the total number of terminals is at most 4 (with one
fixed as t), it is easy to see that the number of possible projections networks for Gm is
bounded. Therefore N (Gm) can be computed in polynomial time. Note that N (Gm) is not
uniquely defined. But it is sufficient for our purpose, to compute any one of the various
possible choices of the set N (Gm) as explained in Figure 7. The next lemma shows that the
projection networks of Gm preserve solutions, and also maintain invariants on planarity and
treewidth, when merged with the parent piece.

▶ Lemma 12. Given G′ = G1 + . . . + Gm as described above.
1. Given a N (Gm), there is an s-t path in G′ of parity p iff ∃N ∈ N (Gm) such that

G′[Gm → N ] has an s-t path of parity p.
2. If Gm−1 is planar/of bounded treewidth, then for any projection network N ∈ N (Gm),

Gm−1 + N is planar/of bounded treewidth, respectively.

Proof.
1. This follows from the definition of projection networks. The only minor technical point to

note is that N (Gm) is not unique. For example, suppose there are two potential snaphots
in Gm of type 4. One is J1, consisting of a path P1 from v1 to v2 of even parity, and a
path P2 from v3 to t of odd parity. The other is J2, consisting of a path P ′

1 from v1 to v2

4 Note that the vertices of a clique, say ci need no longer lie on the same face of Gi after phase I, since
we might have merged the parity mimicking network of the branch pieces incident at ci into the face
corresponding to ci.
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Figure 7 Fig 1) Denotes the decomposition tree after phase 1, with G1, G2 . . . , Gm denoting
the pieces. We skip drawing clique nodes here. On the right are examples of projection networks
of different types. In fig 1), the snapshot of the s-t path in Gm is of type 4. The two projection
networks of type 4 drawn on the right have same total parity, but different parities of individual
segments. It is sufficient for our purpose to find any one of them since they are interchangeable.

of odd parity, and a path P ′
2 from v3 to t, of even parity. Since the total parity of J1 and

J2 is same, Lemma 10 could output either one of them. We don’t have control over it
to find both. But finding any one of them is sufficient for us, since if J1 is a snapshot
of an actual solution, then replacing J1 by J2 would also give a valid solution and vice
versa.(See Figure 7)

2. Suppose cm1 = {v1, v2, v3} is the clique where Gm−1, Gm are attached. The argument
of treewidth bound is same as that of Lemma 7 in previous phase, when we attached
mimicking networks to parent pieces. However if Gm−1 is planar, there could have been a
parity mimicking network L′ attached to Gm−1 via cm−1 during phase I. Hence v1, v2, v3
might not lie on a common face in Gm−1 after phase I. We observe however, since L′ was
attached at a 3-clique, cm−1, every pair vi, vj of vertices of cm−1, must share a common
face in Gm−1. Now, the projection networks consist of at most three paths, two between
v1, v2, v3, and one from them to t. For any vi, vj , we can embed the path between vi, vj

in N , in the face in Gm−1 shared by vi, vj , and finally just add the path leading to t.
Therefore if Gm−1 is planar, all projection networks of Gm can be embedded in their
parent nodes. ◀

We make the following observation to compute a N (Gi + . . . Gm) recursively:

N (Gi + . . . Gm) =
⋃

N∈N (Gi+1+...Gm)

N (Gi + N) (3)

Thus we can proceed as follows:

1. Compute N (Gm) using lemma 10

2. For all N ∈ N (Gm), compute Gm−1 + N , and hence compute N (Gm + Gm−1) using the
observation above.

3. For all N ∈ N (Gm + Gm−1), compute Gm−2 + N , and hence compute N (Gm + Gm−1 +
Gm−2). Repeat until we reach G1.
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Abstract
We present a new technique to encode Post’s Correspondence Problem into automaton semigroups
and monoids. The encoding allows us to precisely control whether there exists a relation in the
generated semigroup/monoid and thus show that the freeness problems for automaton semigroups
and for automaton monoids (listed as open problems by Grigorchuk, Nekrashevych and Sushchansk̆ıi)
are undecidable. The construction seems to be quite versatile and we obtain the undecidability of
further problems: Is a given automaton semigroup (monoid) (left) cancellative? Is it equidivisible
(which – together with the existence of a (proper) length function – characterizes free semigroups and
monoids)? Does a given map extend into a homomorphism between given automaton semigroups?
Finally, our construction can be adapted to show that it is undecidable whether a given automaton
generates a free monoid whose basis is given by the states (but where we allow one state to act as
the identity). In the semigroup case, we show a weaker version of this.
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1 Introduction

In the 1980s, Grigorchuk solved a famous question by Milnor (see [20] for a nice introduction)
by presenting the first group with intermediate growth: the number of elements that can
be written as a word of length at most 𝑛 over the generators grows sub-exponentially but
super-polynomially. The group has even more noteworthy properties. It is amenable but
not elementary amenable (e. g. [24]) and an infinite 2-group (giving a counter-example to
Burnside’s problem, e. g. [33, 3]). Its peculiar properties stirred interest in Grigorchuk’s group
and groups of similar form where it soon became important that Grigorchuk’s group has a nice
description using what is simply called an automaton in this context (e. g. [33] or [3]). The
simplicity of this presentation (the automaton only uses a binary alphabet and four states –
with an additional identity state) contrasts the complex nature of the group. An “automaton”
here is what more precisely is called a finite-state letter-to-letter transducer (i. e. an automaton
with input and output). The idea is that in such an automaton every state induces a mapping
of input to output words and the closure of these functions under composition forms a
semigroup. If the automaton is additionally invertible, the functions are bijections and
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we may consider the generated group. This leads to the classes of automaton semigroups
and groups, which contain further noteworthy examples (e. g. Gupta-Siki 𝑝-groups [22], the
lamplighter group [21] and more general lamplighter-like groups [37, 38]).

Being able to finitely describe groups without classical finite presentations (consisting of
generators and relations) additionally highlights the usefulness of considering (semi)groups
generated by automata. Starting from Grigorchuk’s group, the study of automaton groups
and semigroups is nowadays a thriving research field with important connections to many
neighboring areas (such as geometry, dynamical systems and symbolic dynamics; see e. g. [33,
3] for more background information). The extensive research in Mathematics and Computer
Science on the semigroup (and monoid) case (e. g. [9, 26, 7, 34, 1, 15]) arises naturally
from the group case for example via the dual automaton where states and input/output
letters swap places. The connection between an automaton and its dual has been exploited
algebraically and algorithmically (e. g. [18, 41, 42, 26, 27, 11]).

In this work, we look further at the algorithmic aspects of this interesting class by showing
that its freeness problem is undecidable. This problem asks whether a given automaton
generates a free semigroup (or monoid). It has been studied extensively for other classes
of groups and semigroups. Since freeness is a Markov property, the problem is undecidable
for classical finite group (and, thus, semigroup) presentations (see e. g. [29]). Further
important results include the undecidability of the freeness problem for matrix semigroups,
originally shown using a reduction from Post’s Correspondence Problem [25], which has been
improved and contrasted in many further publications (e. g. [31, 10, 4]). Interestingly, matrix
(semi)groups and automaton (semi)groups are connected in the sense that the former can be
presented as subgroups of the latter [8] (see also [40, 12, 43]) but this does not help to prove
the freeness problem undecidable for automaton (semi)groups [13].

With our result, we continue this line of research but also further contribute to the study
of freeness in self-similar (i. e. generated by infinite automata) and automaton structures as
well as their algorithmic aspects. For the former, we refer the reader to the survey [36] and
only point out that, while it is known that free groups are automaton groups [41, 42, 39],
these constructions are usually deemed rather difficult. For automaton semigroups and
monoids, the situation seems to be simpler: every free semigroup of (finite) rank at least two
can be generated by an automaton (see [9] or Example 2.5) but the free semigroup of rank
one cannot [9]. All free monoids of finite rank are automaton semigroups, though.

Regarding algorithmic questions for automaton (semi)groups, we point out that, while
one may easily be misled into believing that using a finite automaton as the generating
combinatorial object should be rather simple, the situation is actually quite complex and
only a few natural algorithmic problems are known to be undecidable while many others
notoriously remain open problems. An exception here seems to be that the word problem
for automaton (semi)groups is PSpace-complete. Interestingly, this was first known for
semigroups [14] and was later extended to groups [43]. Some subclasses have simpler word
problems. For example, using finitary automata to present finite groups results in a coNP-
complete word problem [28] and the word problem of an automaton group of polynomial
activity is in polylogarithmic space [5] (see [44] for more information). On the other hand,
there is an automaton group with an undecidable conjugacy problem [40] (“are two given
group elements conjugate in the group?”). The construction used there also shows that
the isomorphism problem for automaton groups (“are the groups generated by two given
automata isomorphic?”) and, thus, automaton semigroups is undecidable.1 There are two
constructions for an automaton group with undecidable order problem (“has a given group

1 Unfortunately, this does not seem to be written down explicitly anywhere.
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element finite or infinite order?”) [17, 2]. The latter of the two even yields a contracting
automaton. The undecidability was also first known for automaton semigroups [16] and the
problem is decidable for bounded automaton groups [6] and monoids [1].

All these constructions encoding Turing machines in automaton (semi)groups make
a statement about individual (semi)group elements. Since the interaction between the
generating automaton and generated algebraic structure is often surprising and still not well
understood, it is much more challenging to construct reductions where the entire generated
(semi)group (or monoid) has a certain property (based on whether we input a positive or
negative problem instance). The only known result of this kind seems to be that the finiteness
problem for automaton semigroups (“Is the semigroup generated by a given automaton
finite?”) is undecidable [16]. The corresponding group problem is still open [19].

Our reduction from Post’s Correspondence Problem [35] to the freeness problems for
automaton semigroups and for monoids in this paper is a second result of this form. It solves
the corresponding open problem by Grigorchuk, Nekrashevych and Sushchansk̆ıi [19, 7.2 b)]
and, despite previous attempts [12, 13] and a positive result for semigroups generated by
invertible and reversible automata with two states [26] as well as a negative result on testing
for relations of the form 𝑤 = 1 [12], the problem had remained open quite a while for groups
and for semigroups. The main challenge seems to be that we need very precise control over
the relations in the generated semigroup (which seems to be much more difficult than, e. g.,
ensuring that the semigroup is finite or infinite) while the interaction between the structure
of the generating automaton and the semigroup/monoid relations is highly non-obvious.

Our construction yields further results beyond the freeness problem(s). Namely, testing
whether a given automaton generates a (left) cancellative semigroup/monoid and whether
the semigroup/monoid generated by a given automaton is equidivisible (a notion strongly
related to freeness by Levi’s lemma, see Fact 2.2) are undecidable. We also obtain that it
is undecidable whether a given automaton generates a free semigroup with a given basis
and whether a given map between the state sets of two given automata can be extended
into an iso- or homomorphism. The latter problem is connected to the (undecidable, see
above) isomorphism problem for automaton semigroups in the sense that it asks whether all
relations of the first automaton semigroup also hold in the second one.

Finally, the construction seems to be flexible enough to be adapted to similar problems,
which gives us hope that our results could also contribute towards showing that the freeness
problem is undecidable in the group case. For example, it can be adapted to show that the
free presentation problem for automaton monoids is undecidable: does a given automaton
generate a free monoid whose rank is equal to the number of its states (minus an identity
state)? In other words, we cannot test whether a given automaton monoid contains any
relations (although this is semi-decidable as the word problem is decidable, see above).

Adapting our construction for this is necessary because the construction in the semigroup
case always yields semigroup relations since we need to use a result on the closure of the class
of automaton semigroups under (certain) free products [30] in order to construct some kind
of “partial” powers of the generating automaton. However, no details of this construction will
be required to understand our results. More generally, the presentation in this work is meant
to be self-contained (although the construction may be considered to be rather technical).

2 Preliminaries

Fundamentals, Semigroups and Monoids. We write 𝐴 ⊎𝐵 for the disjoint union of sets
and consider the set of natural numbers N to contain 0. We assume the reader to be familiar
with fundamental notions of semigroup theory (see e. g. [23]). We write 1𝑀 for the neutral
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element of a monoid 𝑀 or, if 𝑀 is clear from the context, simply 1. For a monoid 𝑀 , we let
𝑀1 = 𝑀 and, if 𝑆 is a semigroup but not a monoid, we may adjoin a neutral element 1 ̸∈ 𝑆

to 𝑆 by letting 11 = 1 and 1𝑠 = 𝑠 = 𝑠1 for all 𝑆 and denote the resulting monoid by 𝑆1.

Words, Free Semigroups and Free Monoids. Let 𝐵 be a finite, non-empty set, which
we call an alphabet. A word 𝑤 over 𝐵 is a finite sequence 𝑎1 . . . 𝑎𝑛 with 𝑎1, . . . , 𝑎𝑛 ∈ 𝐵,
whose length is |𝑤| = 𝑛. We denote the unique word of length 0 (i. e. the empty word) by
𝜀. The set of all words over 𝐵 is denoted by 𝐵*. Words have the natural operation of
juxtaposition (where we let 𝑢𝑣 = 𝑎1 . . . 𝑎𝑚𝑏1 . . . 𝑏𝑛 for 𝑢 = 𝑎1 . . . 𝑎𝑚 and 𝑣 = 𝑏1 . . . 𝑏𝑛 with
𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑛 ∈ 𝐵), which turns 𝐵* into a monoid with the neutral element 𝜀. This
monoid 𝐵* is the free monoid with basis 𝐵 (or over 𝐵) and a monoid 𝑀 is free (with basis
𝐵) if it is isomorphic to 𝐵* (for some alphabet 𝐵). Closely related to the free monoid is the
free semigroup 𝐵+, which is formed by the set of all non-empty words (i. e. 𝐵+ = 𝐵* ∖ {𝜀})
and (again) juxtaposition as operation. Similarly, a semigroup 𝑆 is free (with basis 𝐵) if
it is isomorphic to 𝐵+ (for some alphabet 𝐵). Note that 𝐵* is (isomorphic to) (𝐵+)1 and
that the basis of a free monoid or semigroup is unique (see e. g. [23, Proposition 7.1.3]). The
rank of a free monoid or semigroup is the cardinality |𝐵| of its basis 𝐵. We will use common
conventions from formal language theory and, e. g., write 𝑞+ and 𝑞* for {𝑞}+ and {𝑞}*.

Properties of Free Semigroups and Monoids. We will need some properties of free
semigroups and monoids. A (general) semigroup 𝑆 is left cancellative if 𝑠𝑡 = 𝑠𝑡′ implies
𝑡 = 𝑡′ for all 𝑠, 𝑡, 𝑡′ ∈ 𝑆. Symmetrically, it is right cancellative if 𝑠𝑡 = 𝑠′𝑡 implies 𝑠 = 𝑠′ for all
𝑠, 𝑠′, 𝑡 ∈ 𝑆 and, finally, it is cancellative if it is both left and right cancellative. It is easy to
see that 𝐵* and, thus, 𝐵+ are cancellative (see, e. g. [23, Proposition 7.1.1]).

▶ Fact 2.1. Free semigroups and free monoids are cancellative.

A length function of a semigroup 𝑆 is a homomorphism 𝑆 → N>0 where N>0 is the
additive semigroup of strictly positive natural numbers. A monoid 𝑀 has a proper length
function if there is a monoid homomorphism 𝑀 → N (where N is the additive monoid of the
natural numbers including 0) such that 1 is the only pre-image of 0 (i. e. only 1 has length 0,
all other elements have strictly positive length). A semigroup 𝑆 that is not a monoid has a
length function if and only if 𝑆1 has a proper one and free semigroups and monoids do have
(proper) length functions (mapping a word to its length).

A semigroup (or monoid) 𝑆 is equidivisable if, for all 𝑠1, 𝑠2, 𝑠
′
1, 𝑠

′
2 ∈ 𝑆 with 𝑠1𝑠2 = 𝑠′

1𝑠
′
2,

there is some 𝑥 ∈ 𝑆1 with 𝑠1 = 𝑠′
1𝑥 and 𝑥𝑠2 = 𝑠′

2 or with 𝑠1𝑥 = 𝑠′
1 and 𝑠2 = 𝑥𝑠′

2. It
is not difficult to see that free semigroups and monoids are equidivisible (see e. g. [23,
Proposition 7.1.2]). Together with having a (proper) length function, this turns out to
characterize free semigroups and monoids (see e. g. [23, Proposition 7.1.8]).

▶ Fact 2.2 (Levi’s Lemma). A semigroup (monoid) 𝑆 is free if and only if it is equidivisible
and has a (proper) length function.

Free Products of Semigroups. A semigroup presentation is a pair ⟨𝑄 | ℛ⟩S of a set of
generators 𝑄 and a (possibly infinite) set of relations ℛ ⊆ 𝑄+ ×𝑄+. We will only consider
presentations where 𝑄 is finite and non-empty. If we denote by 𝒞 the smallest congruence
𝒞 ⊆ 𝑄+ × 𝑄+ with ℛ ⊆ 𝒞, the semigroup presented by such a presentation is 𝑆 = 𝑄+/𝒞
formed by the congruence classes [·] of 𝒞 with the (well-defined!) operation [𝑢] · [𝑣] = [𝑢𝑣].
Every semigroup generated by a finite, non-empty set 𝑄 is presented by some semigroup
presentation of this form.
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𝑎

𝑝 𝑞

𝑏

(a) Single transition
cross diagram.

𝑎0,1 . . . 𝑎0,𝑚

𝑞1,0 𝑞1,1 . . . 𝑞1,𝑚−1 𝑞1,𝑚

𝑎1,1 𝑎1,𝑚...
...

...
...

𝑎𝑛−1,1 𝑎𝑛−1,𝑚

𝑞𝑛,0 𝑞𝑛,1 . . . 𝑞𝑛,𝑚−1 𝑞𝑛,𝑚

𝑎𝑛,1 . . . 𝑎𝑛,𝑚

(b) Multiple crosses combined in one diagram.

𝑢

𝑝 𝑞

𝑣

(c) Abbreviated cross
diagram.

Figure 1 Combined and abbreviated cross diagrams.

The free product of the semigroups 𝑆 = ⟨𝑄 | 𝒮⟩S and 𝑇 = ⟨𝑃 | ℛ⟩S is the semigroup
𝑆 ⋆ 𝑇 = ⟨𝑄 ⊎ 𝑃 | 𝒮 ∪ ℛ⟩S . For example, we have {𝑝, 𝑞}+ = 𝑝+ ⋆ 𝑞+.
▶ Remark. Of course, there is also the free product of monoids (and monoid presentations).
However, we will only consider free products of semigroups (in particular: {𝑝, 𝑞}* ̸≃ 𝑝* ⋆ 𝑞*).

Automata. In the current context, an automaton is a triple 𝒯 = (𝑄,Σ, 𝛿) consisting of a
non-empty, finite set of states 𝑄, an alphabet Σ and a set 𝛿 ⊆ 𝑄× Σ × Σ ×𝑄 of transitions.
▶ Remark. What we simply call an automaton here would rather be called a finite-state,
letter-to-letter transducer in more general automaton-theoretic terms. However, simply using
the term “automaton” is standard terminology in the area. We also do not use initial or
final states as they do not interact nicely with the self-similar nature of the semigroups and
monoids generated by automata we are about to define.

For transitions, we will use the graphical notation 𝑝 𝑞𝑎/𝑏 to denote (𝑝, 𝑎, 𝑏, 𝑞) ∈
𝑄 × Σ × Σ × 𝑄. Such a transition starts in 𝑝, ends in 𝑞, its input is 𝑎 and its output is 𝑏.
This reflects the common way of depicting automata (see e. g. Figure 2). When dealing with
an automaton 𝒯 = (𝑄,Σ, 𝛿), we are actually dealing with two alphabets (𝑄 and Σ). In order
to avoid confusion, we call the elements of 𝑄 states and the elements of 𝑄* state sequences,
while reserving the terms letters and words for the elements of Σ and Σ*, respectively.

Another somewhat graphical tool that we will make heavy use of are cross diagrams. Here,
a cross diagram as given in Figure 1a indicates the existence of a transition 𝑝 𝑞𝑎/𝑏 in the
automaton. Cross diagrams can be stacked together in order to create larger ones. For exam-
ple, the diagram in Figure 1b indicates the existence of the transition 𝑞𝑖,𝑗−1 𝑞𝑖,𝑗

𝑎𝑖−1,𝑗/𝑎𝑖,𝑗

for all 0 < 𝑖 ≤ 𝑛 and 0 < 𝑗 ≤ 𝑚. When combining cross diagrams, we will sometimes omit
unnecessary states and letters. Additionally, we will also abbreviate them: for example, if
we let 𝑝 = 𝑞𝑛,0 . . . 𝑞1,0, 𝑢 = 𝑎0,1 . . . 𝑎0,𝑚, 𝑣 = 𝑎𝑛,1 . . . 𝑎𝑛,𝑚 and 𝑞 = 𝑞𝑛,𝑚 . . . 𝑞1,𝑚, the cross
diagram in Figure 1c is an abbreviation of the cross diagram in Figure 1b. It is important
here to note the order we write the state sequences in: in our example, 𝑞1,0 is the first state
in the top left of the cross diagram but it is the rightmost state in the sequence 𝑝. This
order will later be more natural as we will define a left action based on cross diagrams.

An automaton 𝒯 = (𝑄,Σ, 𝛿) is called complete and deterministic if, for every 𝑝 ∈ 𝑄 and
every 𝑎 ∈ Σ, there is exactly one 𝑞 ∈ 𝑄 and exactly one 𝑏 ∈ Σ such that the cross diagram
in Figure 1a holds (i. e. in every state 𝑝 and for every letter 𝑎 ∈ Σ, there is exactly one
transition starting in 𝑝 with input 𝑎). We call such an automaton a complete S-automaton
(as they naturally generate semigroups).

An automaton 𝒮 = (𝑃,Σ, 𝜎) is a subautomaton of another automaton 𝒯 = (𝑄,Γ, 𝛿) if
𝑃 ⊆ 𝑄, Σ ⊆ Γ and 𝜎 ⊆ 𝛿. In this case, any cross diagram of 𝒮 is also valid for 𝒯 .
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Automaton Semigroups and Monoids. Let 𝒯 = (𝑄,Σ, 𝛿) be a complete S-automaton. By
induction, there is exactly one 𝑣 ∈ Σ+ and exactly one 𝑞 ∈ 𝑄+ for every 𝑝 ∈ 𝑄+ and 𝑢 ∈ Σ+

such that the cross diagram in Figure 1c holds. This allows us to define a left action of 𝑄+

on Σ+ by letting 𝑝 ∘ 𝑢 = 𝑣 and to define a right action of Σ+ on 𝑄+, called the dual action,
by letting 𝑝 · 𝑢 = 𝑞. The reader may verify that this indeed defines well-defined actions by
the way cross diagrams work. We may extend these into an action of 𝑄* on Σ* and an action
of Σ* on 𝑄* by letting 𝜀 ∘ 𝑢 = 𝑢 for all 𝑢 ∈ Σ*, 𝑝 ∘ 𝜀 = 𝜀 for all 𝑝 ∈ 𝑄*, 𝜀 · 𝑢 = 𝜀 again for
all 𝑢 ∈ Σ* and, finally, 𝑝 · 𝜀 = 𝑝 for (again) all 𝑝 ∈ 𝑄*.

By the way cross diagrams work, there is an interaction between the two actions: for all
𝑝, 𝑞 ∈ 𝑄* and all 𝑢, 𝑣 ∈ Σ*, we have 𝑝 ∘𝑢𝑣 = (𝑝 ∘𝑢)[(𝑝 ·𝑢) ∘ 𝑣] and 𝑞𝑝 ·𝑢 = [𝑞 · (𝑝 ∘𝑢)](𝑝 ·𝑢).

The action 𝑝 ∘ 𝑢 allows us to define the congruence =𝒯 ⊆ 𝑄* × 𝑄* by 𝑝 =𝒯 𝑞 ⇐⇒
∀𝑢 ∈ Σ* : 𝑝 ∘ 𝑢 = 𝑞 ∘ 𝑢. We denote the class of 𝑝 ∈ 𝑄* with respect to =𝒯 by [𝑝]𝒯 . The set
M (𝒯 ) = 𝑄*/=𝒯 of these classes forms a monoid, which is called the monoid generated by
𝒯 . In other words, it is the faithful quotient of 𝑄* with respect to the action 𝑞 ∘ 𝑢. Note
that 𝜀 acts like the identity on all 𝑢 ∈ Σ* and the class of 𝜀, thus, forms the neutral element
of M (𝒯 ). A monoid arising in this way is called a complete automaton monoid.

Similarly, the semigroup generated by 𝒯 is the semigroup S (𝒯 ) = 𝑄+/=𝒯 and any such
semigroup is a complete automaton semigroup. Note that monoid and semigroup generated
by a complete S-automaton coincide if there is a non-empty state sequence acting trivially.

▶ Remark 2.3. We only consider complete S-automata in this work but will make this
explicit by talking about complete S-automata and complete automaton semigroups and
monoids. In the literature, these objects are often simply called “automaton semigroups”
(the term “automaton monoid” is less common). This is a convention that we could also
follow here but choose not to since the concepts generalize naturally also to non-complete
automata, yielding (partial) automaton semigroups and monoids. It is not known whether
the two classes coincide (see [15] for more details).

▶ Remark 2.4. There is a subtle difference between an automaton monoid and an automaton
semigroup which happens to be a monoid. In the latter, the neutral element not necessarily
acts as the identity map. In fact, it is not known whether the two classes coincide (see [9,
Proposition 3.1] for the analogue for groups).

Free Semigroups (Monoids) as Automaton Semigroups (Monoids). As examples of
complete automaton semigroups and monoids, we will next look at how to generate free
semigroups and monoids. The free monoid of rank one is generated by an automaton known
as the adding machine (see e. g. [33] or [3]), which turns it into both a complete automaton
monoid and a complete automaton semigroup. The free semigroup of rank one, on the other
hand, is neither [9, Proposition 4.3] (see also [7, Theorem 15], [15, Theorem 19] and [43,
Theorem 1.2.1.4]).

However, free semigroups of higher rank (and their monoid counter-parts) are indeed
complete automaton semigroups [9, Proposition 4.1]:

▶ Example 2.5. Let 𝑅 be a finite set with |𝑅| ≥ 2. Consider the automaton ℛ = (𝑅,𝑅, 𝜌)
with 𝜌 = {𝑎 𝑏𝑏/𝑎 | 𝑎, 𝑏 ∈ 𝑅} (see Figure 2 for the binary case). One easily verifies that
ℛ is a complete S-automaton and we claim that it generates 𝑅+. For this, it suffices to
show that, for every 𝑝, 𝑞 ∈ 𝑅+ with 𝑝 ̸= 𝑞, there is some 𝑢 ∈ 𝑅* with 𝑝 ∘ 𝑢 ̸= 𝑞 ∘ 𝑢. We may
assume |𝑝| ≥ |𝑞| and there needs to be some 𝑎 ∈ 𝑅 with 𝑝 ̸= 𝑞𝑎|𝑝|−|𝑞| (we just need to take
𝑎 different to the last letter of 𝑝 if the lengths differ). Now, observe that, for all 𝑛 ≥ 1 and
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𝑎 𝑏𝑎/𝑎

𝑏/𝑎

𝑏/𝑏

𝑎/𝑏

Figure 2 A complete S-automaton generat-
ing {𝑎, 𝑏}+.

𝑏1 . . . 𝑏𝑛

𝑎1 𝑏1 . . . 𝑏𝑛−1 𝑏𝑛

𝑎1 𝑏𝑛−1...
...

...
...

𝑎𝑛−1 𝑏1
𝑎𝑛 𝑎𝑛−1 . . . 𝑎1 𝑏1

𝑎𝑛 . . . 𝑎1

Figure 3 Cross diagram of ℛ.

all 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛 ∈ 𝑅, we have the cross diagram in Figure 3 by the construction of
ℛ. This shows, in particular, 𝑝 ∘ 𝑎|𝑝| = 𝑝 and 𝑝 · 𝑎|𝑝| = 𝑎|𝑝|. By a similar cross diagram, we
obtain 𝑝 ̸=ℛ 𝑞 (since 𝑞 ∘ 𝑎|𝑝| = (𝑞 ∘ 𝑎|𝑞|)(𝑎|𝑞| ∘ 𝑎|𝑝|−|𝑞|) = 𝑞𝑎|𝑝|−|𝑞| ̸= 𝑝 = 𝑝 ∘ 𝑎|𝑝|).

There is no state sequence which acts like the identity and this means that M (ℛ) is
S (ℛ)1 ≃ 𝑅*, which shows that 𝑅* is a complete automaton monoid.

The construction presented in Example 2.5 is clearly computable and we obtain:

▶ Fact 2.6. For every finite set 𝑅 with |𝑅| ≥ 2, one can compute an S-automaton ℛ =
(𝑅,𝑅, 𝜌) with S (ℛ) ≃ 𝑅+ and M (ℛ) ≃ 𝑅*.

Automaton Operations. The union of two automata 𝒯1 = (𝑄1,Σ1, 𝛿1) and 𝒯2 = (𝑄2,Σ2, 𝛿2)
is the automaton 𝒯1 ∪ 𝒯2 = (𝑄1 ∪𝑄2,Σ1 ∪ Σ2, 𝛿1 ∪ 𝛿2). If 𝒯1 and 𝒯2 are both complete S-
automaton with non-intersecting state sets (𝑄1 ∩𝑄2 = ∅) but a common alphabet Σ1 = Σ2,
their union 𝒯1 ∪𝒯2 is also a complete S-automaton (which allows us, for example, to consider
the semigroup S (𝒯1 ∪ 𝒯2)). Similarly, the union of two complete S-automata with the same
state set but disjoint alphabets is again a complete S-automaton. This operation basically
adds the transitions of 𝒯2 to the existing transitions of 𝒯1.

The composition of two automata 𝒯2 = (𝑄2,Σ, 𝛿2) and 𝒯1 = (𝑄1,Σ, 𝛿1) over a common
alphabet Σ is the automaton 𝒯2 ∘ 𝒯1 = (𝑄2𝑄1,Σ, 𝛿2 ∘ 𝛿1) with

𝛿2 ∘ 𝛿1 =
{︁
𝑝2𝑝1 𝑞2𝑞1

𝑎/𝑐
⃒⃒⃒
∃𝑏 ∈ Σ : 𝑝1 𝑞1

𝑎/𝑏 ∈ 𝛿1 and 𝑝2 𝑞2
𝑏/𝑐 ∈ 𝛿2

}︁
(where 𝑄2𝑄1 = {𝑞2𝑞1 | 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2} is the cartesian product of 𝑄2 and 𝑄1). If 𝒯2 and
𝒯1 are complete S-automata, also their composition is.

The 𝑘-th power 𝒯 𝑘 of an automaton 𝒯 is the 𝑘-fold composition of 𝒯 with itself. It is
computable and, if 𝒯 (and, thus, 𝒯 𝑘) is a complete S-automaton, the actions of some 𝑝 ∈ 𝑄*

of length |𝑝| = 𝑘 seen as a state of 𝒯 𝑘 or seen as a state sequence over 𝒯 coincide. Thus
(and by an analogue for the dual action), the notations 𝑝 ∘ 𝑢 and 𝑝 · 𝑢 remain unambiguous
and we have S (𝒯 ) = S (𝒯 ∪ 𝒯 𝑘) for all 𝑘 ≥ 1, which is usually used to ensure that any
fixed state sequence 𝑝 ∈ 𝑄+ may be assumed to be congruent to a single state under =𝒯
(i. e. equal in the semigroup or monoid).

Finally, the dual of an automaton 𝒯 = (𝑄,Σ, 𝛿) is the automaton 𝜕𝒯 = (Σ, 𝑄, 𝜕𝛿) with
𝜕𝛿 =

{︁
𝑎 𝑏𝑝/𝑞

⃒⃒⃒
𝑝 𝑞𝑎/𝑏 ∈ 𝛿

}︁
(i. e. we swap the roles of the states 𝑄 and the letters Σ).

Clearly, the dual of a complete S-automaton is again a complete S-automaton.
The dual automaton can make it sometimes more accessible to understand how a letter is

transformed by a state sequence: we just have to follow a path in the graphical representation
of the dual automaton. For example, from Figure 5, it is obvious that the only way for
𝑝 ∘ 𝛼 = 𝑞 ∘ 𝛽 to hold is for both of them to be equal to 𝑓 .
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44:8 The Freeness Problem for Automaton Semigroups

Adding Free Generators. For our results, we will need to add new free generators to existing
automaton semigroups 𝑆 computationally (in the sense that we do not change the behavior
of existing state sequences but add a new state 𝑞 such that the new automaton generates the
(semigroup) free product 𝑆 ⋆ 𝑞+). More precisely, we will use the following statement, which
follows from the construction used for [30, Theorem 13].

▶ Proposition 2.7. On input of a complete S-automaton 𝒮 = (𝑃,Σ, 𝜎), one can compute a
complete S-automaton 𝒯 = (𝑄,Γ, 𝛿) with 𝑄 = 𝑃 ⊎ {𝑞} such that the identity on 𝑄 extends
into a well-defined isomorphism S (𝒯 ) → S (𝒮) ⋆ 𝑞+ (for the free product of semigroups).

3 The Freeness Problem for Semigroups

We reduce Post’s Correspondence Problem2 PCP

Constant: an alphabet Λ
Input: homomorphisms 𝜙,𝜓 : 𝐼 = {1, . . . , 𝑛} → Λ+

Question: ∃𝑖 ∈ 𝐼+ : 𝜙(𝑖) = 𝜓(𝑖)?

to (the complement of) the freeness problem for automaton semigroups. For this, we fix an
instance 𝜙,𝜓, 𝐼 for PCP3 over an alphabet Λ and describe how to map it to a complete S-
automaton 𝒯 = (𝑄,Σ, 𝛿) in such a way that 𝒯 can be computed and the PCP instance has a
solution if and only if S (𝒯 ) is not a free semigroup.

Starting from the free semigroup, we will construct 𝒯 (in steps) such that the semigroup
has a relation #1𝑖#1 =𝒯 #1𝑖#2 for 𝑖 ∈ 𝐼+ if and only if 𝑖 belongs to a PCP solution (if there
is no solution, S (𝒯 ) is free). Throughout this process, the reader may find it convenient to
refer to Table 1 for the various symbols we are going to use.

The rough idea is to add an input symbol 𝜄 whose dual action turns 𝑖#1 into 𝜙(𝑖) and
𝑖#2 into 𝜓(𝑖). But we also have to be careful not to introduce any unwanted relations and
to keep the underlying free semigroup structure intact.

Without loss of generality, we may assume |𝐼| = 𝑛 ≥ 1, |Λ| ≥ 2 and 𝐼 ∩ Λ = ∅. In the
following, we let 𝐿 = max{|𝜙(𝑖)|, |𝜓(𝑖)| | 𝑖 ∈ 𝐼}, Λ̂ = ∪𝐿

ℓ=1Λℓ, 𝑅 = Λ ∪ 𝐼 and �̂� = Λ̂ ∪ 𝐼.

Definition of ℛ̂. First, we compute a complete S-automaton ℛ̂ with state set �̂� generating
the free semigroup over 𝑅:

▶ Proposition 3.1. On input 𝐼, Λ and 𝐿, one can compute a complete S-automaton
ℛ̂ = (�̂�,Γ, 𝜌) with state set �̂� = Λ̂ ∪ 𝐼 (for Λ̂ = ∪𝐿

ℓ=1Λℓ) and S (ℛ̂) ≃ 𝑅+ = (Λ ∪ 𝐼)+ (where
the isomorphism is given by �̂� ↦→ �̂� for all �̂� ∈ Λ̂ and 𝑖 ↦→ 𝑖 for all 𝑖 ∈ 𝐼).

Proof. Let ℛ1 be an S-automaton with state set Λ generating the free semigroup Λ+ (see
Fact 2.6) and let ℛ̂1 =

⋃︀𝐿
ℓ=1 ℛℓ

1 be the union of the first 𝐿 powers of ℛ1. Note that the
state set of ℛ̂1 is Λ̂ = ∪𝐿

ℓ=1Λℓ and that we still have S (ℛ̂1) ≃ Λ+ (where an isomorphism is
induced by Λ̂ ∋ �̂� ↦→ �̂� ∈ Λ+). Now, we may apply Proposition 2.7 sequentially for every
element of 𝐼 = {1, . . . , 𝑛}, which yields the sought automaton ℛ̂ with state set �̂� = Λ̂ ∪ 𝐼

whose generated semigroup is isomorphic to Λ+ ⋆⋆𝑖∈𝐼 𝑖
+ = Λ+ ⋆ 𝐼+ = (Λ ∪ 𝐼)+. ◀

2 Post’s statement of the problem [35] is equivalent to ours. In particular, we may assume 𝜙(𝑖), 𝜓(𝑖) ̸= 𝜀.
3 It is worth mentioning that we may assume 𝐼 to only contain five elements [32] and Λ to be a binary

alphabet (using standard encoding techniques). Note that we may only allow non-empty entries,
however.
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The states in �̂� of ℛ̂ do not form a basis of the free semigroup. To simplify working with
this fact, we make the following definition(s).

▶ Definition 3.2 (natural projection). There is a natural projection 𝜋 : Λ̂* → Λ* where
Λ̂ =

⋃︀𝐿
ℓ=1 Λℓ, which interprets a letter �̂� ∈ Λ̂ as the corresponding word over Λ. We extend

this projection into a homomorphism 𝜋 : �̂�* → 𝑅* by setting 𝜋(𝑖) = 𝑖 for all 𝑖 ∈ 𝐼. Two
elements 𝑟1, 𝑟2 ∈ �̂�* are 𝑅-equivalent (written as 𝑟1 =𝑅 𝑟2) if 𝜋(𝑟1) = 𝜋(𝑟2). Finally, |𝑟|𝑅
for 𝑟 ∈ �̂�* is |𝑟|𝑅 = |𝜋(𝑟)|.

Note that we have 𝑟1 =𝑅 𝑟2 if and only if 𝑟1 =ℛ̂ 𝑟2 for all 𝑟1, 𝑟2 ∈ �̂�* as S (ℛ̂) ≃ 𝑅+.

Definition of 𝒮. We use the automaton ℛ̂ = (�̂�,Γ, 𝜌) as a building block for our target
automaton 𝒯 = (𝑄,Σ, 𝛿) for the reduction. We fix some arbitrary element 𝜆# ∈ Λ ⊆ �̂�.
To compute 𝒮 from ℛ̂, we duplicate the state 𝜆# twice and call these copies #1 and #2.
Formally, we have 𝒮 = (𝑄,Γ, 𝜎) where 𝑄 = �̂� ⊎ {#1,#2} for the new symbols #1 and #2
and 𝜎 = 𝜌 ∪ {#1 𝑞𝑐/𝑑 ,#2 𝑞𝑐/𝑑 | 𝜆# 𝑞𝑐/𝑑 ∈ 𝜌}. Thus, the new states #1 and #2
act in the same way as 𝜆# and we have S (𝒮) = S (ℛ̂) ≃ 𝑅+.

Definition of 𝒯 . The next step is to fix another 𝜆𝑅 ∈ Λ ⊆ 𝑄 arbitrarily but different to
𝜆# and take 𝒯1 = (𝑄,Γ ∪ {𝑎, 𝑏}, 𝛿1) = 𝒮 ∪ 𝒯 ′

1 where 𝒯 ′
1 is given via its dual in Figure 4 (i. e.

we add two new letters 𝑎, 𝑏 to the alphabet and some additional transitions). Note that we
have the transitions 𝜆# 𝜆𝑅

𝑎/𝑎 and the self-loops 𝜆ℓ
𝑅 𝜆ℓ

𝑅
𝑎/𝑎 for all 1 ≤ ℓ ≤ 𝐿 in 𝒯1.

The idea for this part is that we may factorize a state sequence 𝑞 ∈ 𝑄* into blocks from
�̂�* and symbols #1 and #2 and then remove the blocks one after another using the letter 𝑎.
We will explain this precisely later in Fact 3.3.

Finally, we let 𝒯 = (𝑄,Σ, 𝛿) = 𝒯1 ∪ 𝒯2 where 𝒯2 is given via its dual in Figure 5. Note,
in particular, that we have 𝜙(𝑖), 𝜓(𝑖) ∈

⋃︀𝐿
ℓ=1 Λℓ = Λ̂ ⊆ �̂�.

In other words, we obtain 𝒯 from 𝒯1 by adding new symbols to the alphabet resulting in
Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓} and adding the transitions depicted in Figure 5 for
all 𝑖 ∈ 𝐼 and �̂� ∈ Λ̂. Clearly, 𝒯 can be computed and is a complete S-automaton.

The Role of 𝑎 and 𝑏 in 𝒯 . As already mentioned above, we may use the letter 𝑎 to remove
a block from a certain factorization of a state sequence (the proof is by induction on 𝜇):

▶ Fact 3.3. Let 𝑝 ∈ 𝑄* and factorize it as 𝑝 = (𝑝𝑠#𝑥𝑠
) . . . (𝑝1#𝑥1) 𝑝0 for 𝑝0, . . . ,𝑝𝑠 ∈ �̂�*

and 𝑥1, . . . , 𝑥𝑠 ∈ {1, 2}. Then, for any 1 ≤ 𝜇 ≤ 𝑠, we have (in 𝒯 ):

𝑝 · 𝑎𝜇 = (𝑝𝑠#𝑥𝑠
) . . . (𝑝𝜇+1#𝑥𝜇+1) 𝑝𝜇 𝜆#𝜆

𝜇−1+|𝑝𝜇−1...𝑝0|𝑅

𝑅

Correctness. It remains to show that the PCP instance 𝜙,𝜓, 𝐼 has a solution if and only if
S (𝒯 ) is not a free semigroup. We start with the (easier) “only if” direction and show that
the additional transitions from 𝒯1 and 𝒯2 do not affect the subautomaton ℛ̂: if two state
sequences are 𝑅-equivalent, they are also equal with respect to 𝒯 .

▶ Lemma 3.4. Let 𝑟1, 𝑟2 ∈ �̂�* with 𝑟1 =𝑅 𝑟2. Then, we have 𝑟1 =𝒯 𝑟2.

Proof Sketch. We need to show 𝑟1 ∘ 𝑢 = 𝑟2 ∘ 𝑢 for all 𝑢 ∈ Σ* and this can be done by
induction on 𝑢. Thus, write 𝑢 = 𝑐𝑢′ for some 𝑐 ∈ Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓}
and 𝑢′ ∈ Σ*.

Most cases for 𝑐 are straight-forward (for example, for 𝑐 ∈ Γ – the alphabet of ℛ̂
– we inherit this property from ℛ̂) and we only demonstrate the case 𝑐 ∈ {𝛼, 𝛼′, 𝛽, 𝛽′}.
Here, we factorize 𝑟1 = 𝑠1�̂�1𝑖1 with 𝑖1 ∈ 𝐼* maximal, �̂�1 ∈ Λ̂ ∪ {𝜀} and 𝑠1 ∈ �̂�* with
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44:10 The Freeness Problem for Automaton Semigroups

Table 1 Various symbols in the order of their definition.

symbol usage

Λ : PCP base alphabet, |Λ| ≥ 2
𝐼 : PCP index set, |𝐼| ≥ 1, 𝐼 ∩ Λ = ∅

𝜙,𝜓 : 𝐼 → Λ+ PCP homomorphisms
𝐿 = max{|𝜙(𝑖)|, |𝜓(𝑖)| | 𝑖 ∈ 𝐼}
Λ̂ =

⋃︀𝐿

ℓ=1 Λℓ

𝑅 = Λ ∪ 𝐼

�̂� = Λ̂ ∪ 𝐼 : state set of ℛ
ℛ̂ = (�̂�,Γ, 𝜌) : complete S-automaton generating 𝑅+ = (Λ ∪ 𝐼)+

𝜌 : transition set of ℛ̂
Γ : alphabet of ℛ̂ and 𝒮
𝜋 : Λ̂* → Λ, �̂�* → 𝑅* natural projection with 𝜋(𝑖) = 𝑖 for all 𝑖 ∈ 𝐼

|𝑟|𝑅 : length of 𝜋(𝑟) for 𝑟 ∈ �̂�*

𝜆# ∈ Λ ⊆ �̂� : arbitrarily chosen element
#1,#2 : copies of 𝜆#

𝒮 = (𝑄,Γ, 𝜎) : complete S-automaton, extension of ℛ̂ still generating 𝑅+

𝑄 = �̂� ⊎ {#1,#2} : state set of 𝒮 and 𝒯
𝜎 : transition set of 𝒮

𝜆𝑅 ∈ Λ ⊆ 𝑄 : arbitrarily chosen element with 𝜆𝑅 ̸= 𝜆#

𝑎, 𝑏 ̸∈ Γ : new letters for 𝒯1

𝒯 ′
1 = (𝑄, {𝑎, 𝑏}, 𝛿′

1) : complete S-automaton, additional transitions for 𝒯1, see Figure 4
𝒯1 = (𝑄,Γ ⊎ {𝑎, 𝑏}, 𝛿1) = 𝒮 ∪ 𝒯 ′

1 : complete S-automaton, extension of 𝒮 by 𝒯 ′
1

𝛿1 : transition set of 𝒯1

𝒯 = (𝑄,Σ, 𝛿) = 𝒯1 ∪ 𝒯2 : complete S-automaton with 𝑒 =𝒯 𝜀, result of the reduction
𝒯2 : complete S-automaton with new transitions for 𝒯 , see Figure 5
Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓} : alphabet of 𝒯
𝜋# : 𝑄* → {#1,#2}* homomorphism with 𝜋#(#𝑥) = #𝑥 but 𝜋#(𝑟) = 𝜀 for 𝑟 ∈ �̂�

𝜋′ : 𝑄* → (𝑅 ∪ {#1,#2})* homomorphism extending 𝜋 with 𝜋′(#𝑥) = #𝑥 for 𝑥 ∈ {1, 2}

𝑎 𝑏𝑟/𝜆
|𝑟|𝑅

𝑅

#𝑥/𝜆#
𝑞/𝑞

Figure 4 The dual 𝜕𝒯 ′
1 . The transitions exist for all 𝑟 ∈ �̂�, 𝑥 ∈ {1, 2} and 𝑞 ∈ 𝑄.

𝜄

𝛼 𝛼′

𝑓𝛼

𝛽 𝛽′

𝑓𝛽

𝑓𝑟/𝜆
|𝑟|𝑅

𝑅

#1/𝜆#

#2/𝜆#

𝑖/𝜙(𝑖)

#𝑥/𝜆#

�̂�/𝜆
|�̂�|𝑅

𝑅

𝑖/𝜙(𝑖)
�̂�/𝜆

|�̂�|𝑅

𝑅

#𝑥/𝜆#

#𝑥/𝜆#

𝑟/𝜆
|𝑟|𝑅

𝑅

𝑖/𝜓(𝑖)

�̂�/𝜆
|�̂�|𝑅

𝑅

#𝑥/𝜆#

𝑖/𝜓(𝑖)
�̂�/𝜆

|�̂�|𝑅

𝑅

#𝑥/𝜆#

𝑟/𝜆
|𝑟|𝑅

𝑅

#𝑥/𝜆#

#𝑥/𝜆#

𝑟/𝜆
|𝑟|𝑅

𝑅

Figure 5 The dual 𝜕𝒯2. The transitions exist for all 𝑖 ∈ 𝐼, 𝑟 ∈ �̂�, �̂� ∈ Λ̂ and 𝑥 ∈ {1, 2}.
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𝛼′

𝑖 𝜙(𝑖)

𝛼′

�̂�1 𝜆
|�̂�1|𝑅

𝑅

𝑓𝛼

𝑠1 𝜆
|𝑠1|𝑅

𝑅

𝑓𝛼

and

𝛼′

𝑖 𝜙(𝑖)

𝛼′

�̂�2 𝜆
|�̂�2|𝑅

𝑅

𝑓𝛼

𝑠2 𝜆
|𝑠2|𝑅

𝑅

𝑓𝛼

Figure 6 Cross diagrams for Lemma 3.4.

𝜄

#1 𝜆#
𝛼

𝑖1 𝜙(𝑖1)
𝛼′

𝑖2 𝜙(𝑖2)
𝛼′

...
...

𝛼′

𝑖𝐾 𝜙(𝑖𝐾)
𝛼′

#1 𝜆#
𝑓

and

𝜄

#2 𝜆#
𝛽

𝑖1 𝜓(𝑖1)
𝛽′

𝑖2 𝜓(𝑖2)
𝛽′

...
...

𝛽′

𝑖𝐾 𝜓(𝑖𝐾)
𝛽′

#1 𝜆#
𝑓

Figure 7 Cross diagrams for Lemma 3.5.

𝜆1 = 𝜀 =⇒ 𝑠1 = 𝜀. Analogously, we factorize 𝑟2 = 𝑠2�̂�2𝑖2. Observe that, since we have
𝑟1 =𝑅 𝑟2, we must have 𝑖1 = 𝑖2 = 𝑖, 𝑠1�̂�1 =𝑅 𝑠2�̂�2 and �̂�1 = 𝜀 ⇐⇒ �̂�2 = 𝜀. This yields
the cross diagrams in Figure 6 where the shaded parts only exist if �̂�1, �̂�2 ̸= 𝜀 and where
we have 𝛼′ after applying 𝑖 if 𝑖 ̸= 𝜀. In both diagrams, we have the same state sequence on
the right hand side (because of 𝑠1�̂�1 =𝑅 𝑠2�̂�2) and, thus, are done. The case 𝑐 ∈ {𝛽, 𝛽′} is
analogous (using 𝜓). ◀

Finally, we show that a solution for the PCP instance implies a proper relation in the
semigroup generated by 𝒯 and, thus, that it is not free.

▶ Lemma 3.5. If 𝑖 ∈ 𝐼+ is a solution for the PCP instance, then we have #1𝑖#1 =𝒯 #1𝑖#2.

Proof Sketch. We show #1𝑖#1 ∘ 𝑢 = #1𝑖#2 ∘ 𝑢 for all 𝑢 ∈ Σ*. For 𝑢 = 𝜀, there is
nothing to show. So, let 𝑢 = 𝑐𝑢′ for some 𝑐 ∈ Σ = Γ ∪ {𝑎, 𝑏} ∪ {𝜄, 𝛼, 𝛼′, 𝑓𝛼, 𝛽, 𝛽

′, 𝑓𝛽 , 𝑓}
and 𝑢′ ∈ Σ*. Again, we only fully demonstrate the most interesting case 𝑐 = 𝜄 (the
other cases may be found in Figure 8 where Figure 8e requires induction). Writing 𝑖 =
𝑖𝐾 . . . 𝑖2𝑖1 for 𝑖1, . . . , 𝑖𝐾 ∈ 𝐼, we obtain the diagrams in Figure 7. Since 𝑖 = 𝑖𝐾 . . . 𝑖2𝑖1 is a
solution, we have 𝜙(𝑖𝐾) . . . 𝜙(𝑖2)𝜙(𝑖1) =𝑅 𝜓(𝑖𝐾) . . . 𝜓(𝑖2)𝜓(𝑖1). Thus, Lemma 3.4 implies
𝜆#𝜙(𝑖𝐾) . . . 𝜙(𝑖2)𝜙(𝑖1)𝜆# =𝒯 𝜆#𝜓(𝑖𝐾) . . . 𝜓(𝑖2)𝜓(𝑖1)𝜆#. ◀

𝛼/𝛽

#𝑥 𝜆#
𝑓𝛼/𝑓𝛽

𝑖 𝜆
|𝑖|
𝑅

𝑓𝛼/𝑓𝛽

#1 𝜆#
𝑓𝛼/𝑓𝛽

(a) 𝑐 ∈ {𝛼, 𝛽}

𝛼′/𝛽′

#𝑥 𝜆#
𝑓

𝑖 𝜆
|𝑖|
𝑅

𝑓

#1 𝜆#
𝑓

(b) 𝑐 ∈ {𝛼′, 𝛽′}

𝑓𝛼/𝑓𝛽/𝑓

#𝑥 𝜆#
𝑓𝛼/𝑓𝛽/𝑓

𝑖 𝜆
|𝑖|
𝑅

𝑓𝛼/𝑓𝛽/𝑓

#1 𝜆#
𝑓𝛼/𝑓𝛽/𝑓

(c) 𝑐 ∈ {𝑓𝛼, 𝑓𝛽 , 𝑓}

𝑎

#𝑥 𝜆#
𝑏

𝑖 𝑖

𝑏

#1 #1
𝑏

(d) 𝑐 = 𝑎

𝑏

#𝑥 #𝑥

𝑏

𝑖 𝑖

𝑏

#1 #1
𝑏

(e) 𝑐 = 𝑏

Figure 8 Various cases for 𝑐 ∈ Σ. The cross diagrams hold for 𝑥 ∈ {1, 2}.
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▶ Proposition 3.6. If the PCP instance has a solution, S (𝒯 ) is not (left) cancellative and,
thus, not a free semigroup.

Converse Direction. To show that the PCP instance has a solution if the semigroup is not
free, we introduce the notion of compatibility and observe that every relation is compatible.
The proof relies on Fact 3.3 for removing blocks from the factorization used in Definition 3.7
and that 𝒮 (generating 𝑅+) survives as a subautomaton of 𝒯 . The latter allows us to use
the cancellativity of 𝑅+ to show that the individual blocks are the same in 𝑅+.

▶ Definition 3.7 (compatible state sequences). Factorize 𝑝, 𝑞 ∈ 𝑄* (uniquely) as 𝑝 =
(𝑝𝑠#𝑥𝑠

) . . . (𝑝1#𝑥1) 𝑝0 and 𝑞 = (𝑞𝑡#𝑦𝑡
) . . . (𝑞1#𝑦1) 𝑞0 with 𝑝0, . . . ,𝑝𝑠, 𝑞0, . . . , 𝑞𝑡 ∈ �̂�* and

𝑥1, . . . , 𝑥𝑠, 𝑦1, . . . , 𝑦𝑡 ∈ {1, 2}. They are compatible if 𝑠 = 𝑡 and ∀ 0 ≤ 𝑖 ≤ 𝑠 = 𝑡 : 𝑝𝑖 =𝑅 𝑞𝑖.

▶ Lemma 3.8. Let 𝑝, 𝑞 ∈ 𝑄* with 𝑝 =𝒯 𝑞. Then, we have that 𝑝 and 𝑞 are compatible.

Proof. We factorize 𝑝 and 𝑞 in the same way as in Definition 3.7 and show the statement by
induction on 𝑠+ 𝑡. For 𝑠 = 𝑡 = 0, we have 𝑝0 = 𝑝 =𝒯 𝑞 = 𝑞0. Since ℛ̂ is a subautomaton of
𝒯 , this implies 𝑝0 =ℛ̂ 𝑞0 and, equivalently, 𝑝 = 𝑝0 =𝑅 𝑞0 = 𝑞.

For the inductive step (𝑠+ 𝑡 > 0), we may assume 𝑠 > 0 (due to symmetry) or, in other
words, that 𝑝 contains at least one #1 or #2. We have 𝑝 ∘ 𝑎 = 𝑏 (compare to Figure 4) and,
thus, due to 𝑝 =𝒯 𝑞, also 𝑞 ∘𝑎 = 𝑝 ∘𝑎 = 𝑏. This is only possible (again, compare to Figure 4)
if 𝑞 also contains at least one #1 or #2, i. e. if 𝑡 > 0.

From Fact 3.3 (with 𝜇 = 1), we obtain (for both 𝑝 and 𝑞):

𝑝 · 𝑎 = 𝑝′𝜆#𝜆
|𝑝0|𝑅

𝑅

for 𝑝′ = (𝑝𝑠#𝑥𝑠
) . . . (𝑝2#𝑥2) 𝑝1 and

𝑞 · 𝑎 = 𝑞′𝜆#𝜆
|𝑞0|𝑅

𝑅

for 𝑞′ = (𝑞𝑡#𝑥𝑡
) . . . (𝑞2#𝑥2) 𝑞1

Now, 𝑝 =𝒯 𝑞 implies 𝑝′𝜆#𝜆
|𝑝0|𝑅

𝑅 = 𝑝 · 𝑎 =𝒯 𝑞 · 𝑎 = 𝑞′𝜆#𝜆
|𝑞0|𝑅

𝑅 and we may apply the
induction hypothesis, which yields that 𝑝′𝜆#𝜆

|𝑝0|𝑅

𝑅 and 𝑞′𝜆#𝜆
|𝑞0|𝑅

𝑅 are compatible. This
means that we have 𝑠 = 𝑡, 𝑝𝜇 =𝑅 𝑞𝜇 for all 2 ≤ 𝜇 ≤ 𝑠 = 𝑡 and 𝑝1𝜆#𝜆

|𝑝0|𝑅

𝑅 =𝑅 𝑞1𝜆#𝜆
|𝑞0|𝑅

𝑅 .
Observe that the latter implies 𝑝1 =𝑅 𝑞1 (as we have chosen 𝜆# and 𝜆𝑅 as different elements
of Λ). In particular, we also obtain 𝑝𝑠𝜆#𝑝𝑠−1 . . . 𝜆#𝑝1 =𝑅 𝑞𝑡𝜆#𝑞𝑡−1 . . . 𝜆#𝑞1.

Since 𝒮 is a subautomaton of 𝒯 , 𝑝 =𝒯 𝑞 implies 𝑝 =𝒮 𝑞. As #1 and #2 act in the same
way as 𝜆# in 𝒮 by construction, this shows 𝑝𝑠𝜆# . . .𝑝1𝜆#𝑝0 =𝒮 𝑞𝑡𝜆# . . . 𝑞1𝜆#𝑞0 and, because
of S (𝒮) ≃ 𝑅+, also 𝑝𝑠𝜆# . . .𝑝1𝜆#𝑝0 =𝑅 𝑞𝑡𝜆# . . . 𝑞1𝜆#𝑞0. Now, because 𝑅* as a free monoid
is cancellative (see Fact 2.1) and because we have 𝑝𝑠𝜆#𝑝𝑠−1 . . . 𝜆#𝑝1 =𝑅 𝑞𝑡𝜆#𝑞𝑡−1 . . . 𝜆#𝑞1
(from above), we obtain 𝜆#𝑝0 =𝑅 𝜆#𝑞0 and, finally, 𝑝0 =𝑅 𝑞0, which concludes the proof
that 𝑝 and 𝑞 are compatible. ◀

On the other hand, not every compatible pair forms a semigroup relation. However, this
is true by Lemma 3.4 if, additionally, the subsequence containing only #1 and #2 is the
same in both entries. To formalize this, we introduce the following definition.

▶ Definition 3.9 (projection on {#1,#2}). Let 𝜋# : 𝑄* → {#1,#2}* be the homomorphism
given by 𝜋#(#𝑥) = #𝑥 for both 𝑥 ∈ {1, 2} and 𝜋#(𝑟) = 𝜀 for all other 𝑟 ∈ 𝑄 ∖ {#1,#2} = �̂�.

▶ Lemma 3.10. Let 𝑝, 𝑞 ∈ 𝑄* be compatible with 𝜋#(𝑝) = 𝜋#(𝑞). Then, we have 𝑝 =𝒯 𝑞.
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Combining the last two lemmas, we obtain that S (𝒯 ) is a free semigroup if all its
relations have the same projection under 𝜋#. Most importantly, we will later on apply the
contraposition of the “only if” direction of the following lemma to obtain a relation with
different images under the projection if the semigroup is not free.

▶ Lemma 3.11. Let 𝜋′ : 𝑄* → (𝑅 ∪ {#1,#2})* be the extension of the natural projection 𝜋

(from Definition 3.2) with 𝜋′(#𝑥) = #𝑥 for 𝑥 ∈ {1, 2}. The following are equivalent:
1. For all 𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞, we have 𝜋#(𝑝) = 𝜋#(𝑞).
2. The map 𝜋′ induces a well-defined homomorphism S (𝒯 ) → (𝑅 ∪ {#1,#2})+.
3. The map 𝜋′ induces a well-defined isomorphism S (𝒯 ) → (𝑅 ∪ {#1,#2})+.

In particular, S (𝒯 ) is isomorphic to (𝑅 ∪ {#1,#2})+ if we have 𝜋#(𝑝) = 𝜋#(𝑞) for all
𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞.

Now a relation whose sides have different images under 𝜋# yields a PCP solution.

▶ Lemma 3.12. If there are 𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞 but 𝜋#(𝑝) ̸= 𝜋#(𝑞), then the PCP
instance has a solution.

Proof. We factorize these 𝑝 and 𝑞 in the same way as in Definition 3.7 and observe that 𝑝

and 𝑞 are compatible by Lemma 3.8. We may assume that there is some 1 ≤ 𝜇0 ≤ 𝑠 = 𝑡

with #𝑥𝜇0
= #1 but #𝑦𝜇0

= #2 (due to symmetry).
We may assume 𝜇0 = 1 without loss of generality. This is because we may substitute 𝑝

by 𝑝′ = 𝑝 · 𝑎𝜇0−1 and 𝑞′ = 𝑞 · 𝑎𝜇0−1 (we still have 𝑝′ =𝒯 𝑞′) by Fact 3.3 (for 𝜇0 > 1).
With these assumptions, we apply 𝑝 and 𝑞 to 𝜄 and obtain (see Figure 5) the cross

diagrams depicted in Figure 9 for 𝑝 = 𝑝𝑠#𝑥𝑠
. . .𝑝3#𝑥3𝑝2, 𝑞 = 𝑞𝑡#𝑦𝑡

. . . 𝑞3#𝑦3𝑞2 and some
𝑝′

1,𝑝
′, 𝑞′

1, 𝑞
′ ∈ 𝑄*, 𝑝′

2, 𝑞
′
2 ∈ 𝑄 and 𝑐1, 𝑐2, 𝑐, 𝑑1, 𝑑2, 𝑑 ∈ Γ. Since we have 𝑝 =𝒯 𝑞, we must

have 𝑐 = 𝑑 and, by the construction of 𝒯 , this is only possible if 𝑐 = 𝑓 = 𝑑 (see Figure 5).
This, in turn, is only possible if we have 𝑝1 = 𝑖 ∈ 𝐼+ and 𝑞1 = 𝑗 ∈ 𝐼+. Since 𝑝 and 𝑞 are
compatible, we must even have 𝑖 = 𝑝1 =𝑅 𝑞1 = 𝑗, which implies 𝑖 = 𝑗. Additionally, we
also obtain 𝑝′

1 =𝑅 𝜙(𝑖), 𝑐1 = 𝛼′, 𝑝′
2 = 𝜆#, 𝑐2 = 𝑓 , 𝑞′

1 =𝑅 𝜓(𝑖), 𝑑1 = 𝛽′, 𝑞′
2 = 𝜆#, 𝑑2 = 𝑓

and 𝑝′ = 𝜆
|𝑝𝑠|𝑅

𝑅 𝜆# . . . 𝜆
|𝑝3|𝑅

𝑅 𝜆#𝜆
|𝑝2|𝑅

𝑅 as well as 𝑞′ = 𝜆
|𝑞𝑡|𝑅

𝑅 𝜆# . . . 𝜆
|𝑞3|𝑅

𝑅 𝜆#𝜆
|𝑞2|𝑅

𝑅 from the
construction of 𝒯 . This shows

𝜆
|𝑝𝑠|𝑅

𝑅 𝜆# . . . 𝜆
|𝑝3|𝑅

𝑅 𝜆#𝜆
|𝑝2|𝑅

𝑅 𝜆#𝜙(𝑖)𝜆# 𝜆
|𝑝0|𝑅

𝑅

=𝒯 𝜆
|𝑞𝑡|𝑅

𝑅 𝜆# . . . 𝜆
|𝑞3|𝑅

𝑅 𝜆#𝜆
|𝑞2|𝑅

𝑅 𝜆#𝜓(𝑖)𝜆# 𝜆
|𝑞0|𝑅

𝑅

𝜄

𝑝0 𝜆
|𝑝0|𝑅

𝑅

𝜄

#1 𝜆#
𝛼

𝑝1 𝑝′
1

𝑐1
#𝑥2 𝑝′

2
𝑐2

𝑝 𝑝′

𝑐

and

𝜄

𝑞0 𝜆
|𝑞0|𝑅

𝑅

𝜄

#2 𝜆#
𝛽

𝑞1 𝑞′
1

𝑑1
#𝑦2 𝑞′

2
𝑑2

𝑞 𝑞′

𝑑

Figure 9 Cross diagrams for Lemma 3.12.
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and, by Lemma 3.8, also that both sides are 𝑅-equivalent. Since 𝑝 and 𝑞 are compatible, we
have 𝜆|𝑝𝜇|𝑅

𝑅 =𝑅 𝜆
|𝑞𝜇|𝑅

𝑅 for all 0 ≤ 𝜇 ≤ 𝑠 = 𝑡. Combining this with the cancellativity of 𝑅*,
we obtain 𝜙(𝑖) =𝑅 𝜓(𝑖) and, thus, that 𝑖 is a solution for the PCP instance. ◀

We have now shown that the PCP instance has a solution if the semigroup generated
by 𝒯 is not free. A careful analysis of the proof yields more, however, which we collect in
Proposition 3.14 (which follows from the lemmas and propositions above). For one part of
this statement, we will first state another consequence of Lemma 3.8:

▶ Proposition 3.13. Mapping 𝑟 to |𝑟|𝑅 for every 𝑟 ∈ �̂� and #𝑥 to 1 for 𝑥 ∈ {1, 2} induces
a well-defined proper length function of M (𝒯 ) (and a well-defined length function of S (𝒯 )).

▶ Proposition 3.14. The following statements are equivalent:
1. The PCP instance has a solution 𝑖 ∈ 𝐼+.
2. We have #1𝑖#1 =𝒯 #1𝑖#2 for some 𝑖 ∈ 𝐼+.
3. There are 𝑝, 𝑞 ∈ 𝑄+ with 𝑝 =𝒯 𝑞 but 𝜋#(𝑝) ̸= 𝜋#(𝑞).
4. S (𝒯 ) is not a free semigroup.
5. S (𝒯 ) is not isomorphic to

(𝑅 ∪ {#1,#2})+.
6. S (𝒯 ) is not (left4) cancellative.
7. S (𝒯 ) is not equidivisible.

4’. M (𝒯 ) is not a free monoid.
5’. M (𝒯 ) is not isomorphic to

(𝑅 ∪ {#1,#2})*.
6’. M (𝒯 ) is not (left) cancellative.
7’. M (𝒯 ) is not equidivisible.

Main Theorem and other Consequences. Proposition 3.14 shows that we have reduced
PCP to (the complements of) the freeness problem for (complete) automaton semigroups and
monoids (as the construction of 𝒯 is computable). Since PCP is undecidable [35], we obtain:

▶ Theorem 3.15. The freeness problem for automaton semigroups
Input: a (complete) S-automaton 𝒯
Question: is S (𝒯 ) a free semigroup?

and the freeness problem for automaton monoids
Input: a (complete) S-automaton 𝒯
Question: is M (𝒯 ) a free monoid?

are undecidable.

▶ Theorem 3.16. The following problems are undecidable:
Input: a complete S-automaton 𝒯
Question: is S (𝒯 ) (left) cancellative/equidivisible?

Input: a complete S-automaton 𝒯
Question: is M (𝒯 ) (left) cancellative/equidivisible?

Finally, we obtain that it is undecidable whether a given map on the generators induces a
homomorphism (or an isomorphism) between two automaton semigroups (using 𝒯 from above
as 𝒯1 and an automaton generating (𝑅 ∪ {#1,#2})+ for 𝒯2). Note that the isomorphism
problem for automaton groups (and, thus, also for automaton semigroups and monoids) is
known to be undecidable (as it follows from [40]).

4 Recall that we defined automaton semigroups by a left action here.



D. D’Angeli, E. Rodaro, and J. P. Wächter 44:15

▶ Theorem 3.17. The following two problems are undecidable:

Input: two (complete) S-automata 𝒯1 = (𝑄1,Σ1, 𝛿1) and 𝒯2 = (𝑄2,Σ2, 𝛿2)
and a map 𝑓 : 𝑄1 → 𝑄2

Question: does 𝑓 extend into a homomorphism S (𝒯1) → S (𝒯2)?

Input: two (complete) S-automata 𝒯1 = (𝑄1,Σ1, 𝛿1) and 𝒯2 = (𝑄2,Σ2, 𝛿2)
and a map 𝑓 : 𝑄1 → 𝑄2

Question: does 𝑓 extend into an isomorphism S (𝒯1) → S (𝒯2)?

For our construction, we need that all 𝜙(𝑖) and 𝜓(𝑖) are states in the automaton. This
immediately yields relations of the form 𝑢 𝑣 =ℛ̂ 𝑢𝑣 for 𝑢, 𝑣, 𝑢𝑣 ∈ Λ̂ that still exist in the
eventual automaton 𝒯 . In the monoid case, however, we may use the neutral element as a
“padding symbol” and thus avoid using a power automaton. This then yields:

▶ Theorem 3.18. The free presentation problem for automaton monoids is undecidable:

Input: a (complete) S-automaton 𝒯 = (𝑄,Σ, 𝛿) with a dedicated state 𝑒 ∈ 𝑄 acting
as the identity map

Question: is M (𝒯 ) ≃ (𝑄 ∖ {𝑒})*?

In the semigroup case, we only get a weaker form of this result (using 𝑃 = 𝑅 ∪ {#1,#2}):

▶ Theorem 3.19. The following problem is undecidable:

Input: a (complete) S-automaton 𝒯 = (𝑄,Σ, 𝛿) and
a subset 𝑃 ⊆ 𝑄

Question: is S (𝒯 ) ≃ 𝑃+?

4 Open Problems

Theorem 3.18 immediately raises the question whether the corresponding problem for
automaton semigroups is also undecidable:

▶ Open Problem 4.1. Is the following problem decidable?

Input: a (complete) S-automaton 𝒯 = (𝑄,Σ, 𝛿)
Question: is S (𝒯 ) ≃ 𝑄+?

In Theorem 3.16, we have also shown that it is not possible to test whether a given
automaton semigroup (or monoid) is equidivisible. By Levi’s lemma (Fact 2.2) this is one
part of a semigroup (monoid) being free while the other one is the existence of a (proper)
length function. So, the following question naturally arises.

▶ Open Problem 4.2. Is the following problem decidable?

Input: a (complete) S-automaton 𝒯
Question: does S (𝒯 ) (M (𝒯 )) admit a (proper) length function?

We highly suspect this problem to be undecidable and it seems likely that our construction
can be adapted to show this.

Of course, it also remains open whether the freeness problem for automaton groups [19,
7.2 b)] is decidable.

MFCS 2024



44:16 The Freeness Problem for Automaton Semigroups

References
1 Laurent Bartholdi, Thibault Godin, Ines Klimann, Camille Noûs, and Matthieu Picantin. A

new hierarchy for automaton semigroups. International Journal of Foundations of Computer
Science, 31(08):1069–1089, 2020. doi:10.1142/S0129054120420046.

2 Laurent Bartholdi and Ivan Mitrofanov. The word and order problems for self-similar and
automata groups. Groups, Geometry, and Dynamics, 14:705–728, 2020. doi:10.4171/GGD/560.

3 Laurent Bartholdi and Pedro Silva. Groups defined by automata. In Jean-Éric Pin, editor,
Handbook of Automata Theory, volume II, chapter 24, pages 871–911. European Mathematical
Society, September 2021.

4 Paul Bell and Igor Potapov. Reachability problems in quaternion matrix and rotation
semigroups. Information and Computation, 206(11):1353–1361, 2008. doi:10.1016/j.ic.
2008.06.004.

5 Ievgen V. Bondarenko. Growth of Schreier graphs of automaton groups. Mathematische
Annalen, 354(2):765–785, 2012. doi:10.1007/s00208-011-0757-x.

6 Ievgen V. Bondarenko, Natalia V. Bondarenko, Said N. Sidki, and Flavia R. Zapata. On the
conjugacy problem for finite-state automorphisms of regular rooted trees. Groups, Geometry,
and Dynamics, 7:232–355, 2013. doi:10.4171/GGD/184.

7 Tara Brough and Alan J. Cain. Automaton semigroups: New constructions results and
examples of non-automaton semigroups. Theoretical Computer Science, 674:1–15, 2017.
doi:10.1016/j.tcs.2017.02.003.

8 Andrew M. Brunner and Said Sidki. The generation of GL(𝑛,Z) by finite state automata.
International Journal of Algebra and Computation, 08(01):127–139, 1998. doi:10.1142/
S0218196798000077.

9 Alan J. Cain. Automaton semigroups. Theoretical Computer Science, 410(47):5022–5038, 2009.
doi:10.1016/j.tcs.2009.07.054.

10 Julien Cassaigne, Tero Harju, and Juhani Karhumäki. On the undecidability of freeness of
matrix semigroups. International Journal of Algebra and Computation, 09(03n04):295–305,
1999. doi:10.1142/S0218196799000199.

11 Daniele D’Angeli, Dominik Francoeur, Emanuele Rodaro, and Jan Philipp Wächter. Infinite
automaton semigroups and groups have infinite orbits. Journal of Algebra, 553:119–137, 2020.
doi:10.1016/j.jalgebra.2020.02.014.

12 Daniele D’Angeli, Emanuele Rodaro, and Jan Philipp Wächter. Automaton semigroups and
groups: On the undecidability of problems related to freeness and finiteness. Israel Journal of
Mathematics, 237:15–52, 2020. doi:10.1007/s11856-020-1972-5.

13 Daniele D’Angeli, Emanuele Rodaro, and Jan Philipp Wächter. Erratum to “semigroups and
groups: On the undecidability of problems related to freeness and finiteness”. Israel Journal of
Mathematics, 245:535–542, 2021. doi:10.1007/s11856-021-2206-1.

14 Daniele D’Angeli, Emanuele Rodaro, and Jan Philipp Wächter. On the complexity of the word
problem for automaton semigroups and automaton groups. Advances in Applied Mathematics,
90:160–187, 2017. doi:10.1016/j.aam.2017.05.008.

15 Daniele D’Angeli, Emanuele Rodaro, and Jan Philipp Wächter. On the structure theory
of partial automaton semigroups. Semigroup Forum, pages 51–76, 2020. doi:10.1007/
s00233-020-10114-5.

16 Pierre Gillibert. The finiteness problem for automaton semigroups is undecidable. International
Journal of Algebra and Computation, 24(01):1–9, 2014. doi:10.1142/S0218196714500015.

17 Pierre Gillibert. An automaton group with undecidable order and Engel problems. Journal of
Algebra, 497:363–392, 2018. doi:10.1016/j.jalgebra.2017.11.049.

18 Yair Glasner and Shahar Mozes. Automata and square complexes. Geometriae Dedicata,
111:43–64, 2005. doi:10.1007/s10711-004-1815-2.

19 Rostislav I. Grigorchuk, Volodymyr V. Nekrashevych, and Vitaly I. Sushchansk̆ıi. Automata,
dynamical systems, and groups. Proceedings of the Steklov Institute of Mathematics, 231:128–
203, 2000.

https://doi.org/10.1142/S0129054120420046
https://doi.org/10.4171/GGD/560
https://doi.org/10.1016/j.ic.2008.06.004
https://doi.org/10.1016/j.ic.2008.06.004
https://doi.org/10.1007/s00208-011-0757-x
https://doi.org/10.4171/GGD/184
https://doi.org/10.1016/j.tcs.2017.02.003
https://doi.org/10.1142/S0218196798000077
https://doi.org/10.1142/S0218196798000077
https://doi.org/10.1016/j.tcs.2009.07.054
https://doi.org/10.1142/S0218196799000199
https://doi.org/10.1016/j.jalgebra.2020.02.014
https://doi.org/10.1007/s11856-020-1972-5
https://doi.org/10.1007/s11856-021-2206-1
https://doi.org/10.1016/j.aam.2017.05.008
https://doi.org/10.1007/s00233-020-10114-5
https://doi.org/10.1007/s00233-020-10114-5
https://doi.org/10.1142/S0218196714500015
https://doi.org/10.1016/j.jalgebra.2017.11.049
https://doi.org/10.1007/s10711-004-1815-2


D. D’Angeli, E. Rodaro, and J. P. Wächter 44:17

20 Rostislav I. Grigorchuk and Igor Pak. Groups of intermediate growth: an introduction.
L’Enseignement Mathématique, 54:251–272, 2008.

21 Rostislav I. Grigorchuk and Andrzej Żuk. The lamplighter group as a group generated by a
2-state automaton, and its spectrum. Geometriae Dedicata, 87:209–244, 2001. doi:10.1023/A:
1012061801279.

22 Narain Gupta and Saïd Sidki. On the burnside problem for periodic groups. Mathematische
Zeitschrift, 182(3):385–388, 1983.

23 John M. Howie. Fundamentals of Semigroup Theory. London Mathematical Society Mono-
graphs. Clarendon Press, 1995.

24 Kate Juschenko. Amenability of discrete groups by examples. American Mathematical Society,
2022.

25 David A. Klarner, Jean-Camille Birget, and Wade Satterfield. On the undecidability of the
freeness of integer matrix semigroups. International Journal of Algebra and Computation,
1(2):223–226, 1991.

26 Ines Klimann. Automaton semigroups: The two-state case. Theory of Computing Systems,
58:664–680, 2016. doi:10.1007/s00224-014-9594-0.

27 Ines Klimann. To Infinity and Beyond. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 131:1–131:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2018.131.

28 Maximilian Kotowsky and Jan Philipp Wächter. The word problem for finitary automaton
groups. In Henning Bordihn, Nicholas Tran, and György Vaszil, editors, Descriptional
Complexity of Formal Systems, pages 94–108, Cham, 2023. Springer Nature Switzerland.

29 Roger Lyndon and Paul Schupp. Combinatorial Group Theory. Classics in Mathematics.
Springer, 2001. First edition 1977.

30 Tara Macalister Brough, Jan Philipp Wächter, and Janette Welker. Automaton semigroup
free products revisited. arXiv preprint, 2023. doi:10.48550/arXiv.2003.12810.

31 Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer
Science, 5(2):101–111, 1977. doi:10.1016/0304-3975(77)90001-9.

32 Turlough Neary. Undecidability in Binary Tag Systems and the Post Correspondence Problem
for Five Pairs of Words. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 649–661, Dagstuhl, Germany, 2015.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2015.649.

33 Volodymyr V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2005. doi:10.1090/surv/117.

34 Matthieu Picantin. Automatic Semigroups vs Automaton Semigroups. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 124:1–124:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2019.124.

35 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52:264–269, 1946. doi:10.1090/s0002-9904-1946-08555-9.

36 Emanuele Rodaro and Jan Philipp Wächter. The self-similarity of free semigroups and groups.
In Munehiro Iwami, editor, Logic, Algebraic system, Language and Related Areas in Computer
Science, volume 2229 of RIMS Kôkyûroku, pages 11–20. Research Institute for Mathematical
Sciences, Kyoto University, 2022. doi:10.48550/arXiv.2205.10248.

37 Pedro V. Silva and Benjamin Steinberg. On a class of automata groups generalizing lamplighter
groups. International Journal of Algebra and Computation, 15(05n06):1213–1234, 2005.
doi:10.1142/S0218196705002761.

MFCS 2024

https://doi.org/10.1023/A:1012061801279
https://doi.org/10.1023/A:1012061801279
https://doi.org/10.1007/s00224-014-9594-0
https://doi.org/10.4230/LIPIcs.ICALP.2018.131
https://doi.org/10.48550/arXiv.2003.12810
https://doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.4230/LIPIcs.STACS.2015.649
https://doi.org/10.1090/surv/117
https://doi.org/10.4230/LIPIcs.ICALP.2019.124
https://doi.org/10.1090/s0002-9904-1946-08555-9
https://doi.org/10.48550/arXiv.2205.10248
https://doi.org/10.1142/S0218196705002761


44:18 The Freeness Problem for Automaton Semigroups

38 Rachel Skipper and Benjamin Steinberg. Lamplighter groups, bireversible automata, and
rational series over finite rings. Groups, Geometry and Dynamics, 14(2):567–589, 2020.
doi:10.4171/GGD/555.

39 Benjamin Steinberg, Mariya Vorobets, and Yaroslav Vorobets. Automata over a binary alphabet
generating free groups of even rank. International Journal of Algebra and Computation,
21(01n02):329–354, 2011. doi:10.1142/S0218196711006194.

40 Zoran Šunić and Enric Ventura. The conjugacy problem in automaton groups is not solvable.
Journal of Algebra, 364:148–154, 2012. doi:10.1016/j.jalgebra.2012.04.014.

41 Mariya Vorobets and Yaroslav Vorobets. On a free group of transformations defined by an
automaton. Geometriae Dedicata, 124:237–249, 2007. doi:10.1007/s10711-006-9060-5.

42 Mariya Vorobets and Yaroslav Vorobets. On a series of finite automata defining free transfor-
mation groups. Groups, Geometry, and Dynamics, 4:337–405, 2010. doi:10.4171/GGD/87.

43 Jan Philipp Wächter. Automaton Structures – Decision Problems and Structure Theory.
Doctoral thesis, Institut für Formale Methoden der Informatik, Universität Stuttgart, 2020.
doi:10.18419/opus-11267.

44 Jan Philipp Wächter and Armin Weiß. Automata and Languages – GAGTA Book 3, chapter
“The Word Problem for Automaton Groups”. DeGruyter, 2024. In preparation.

https://doi.org/10.4171/GGD/555
https://doi.org/10.1142/S0218196711006194
https://doi.org/10.1016/j.jalgebra.2012.04.014
https://doi.org/10.1007/s10711-006-9060-5
https://doi.org/10.4171/GGD/87
https://doi.org/10.18419/opus-11267


Nearly-Tight Bounds for Flow Sparsifiers in
Quasi-Bipartite Graphs
Syamantak Das #

IIIT Delhi, India

Nikhil Kumar #

University of Waterloo, Canada

Daniel Vaz #

LAMSADE, CNRS, Université Paris-Dauphine, Université PSL, France

Abstract
Flow sparsification is a classic graph compression technique which, given a capacitated graph G on
k terminals, aims to construct another capacitated graph H, called a flow sparsifier, that preserves,
either exactly or approximately, every multicommodity flow between terminals (ideally, with size
as a small function of k). Cut sparsifiers are a restricted variant of flow sparsifiers which are only
required to preserve maximum flows between bipartitions of the terminal set. It is known that exact
cut sparsifiers require 2Ω(k) many vertices [Krauthgamer and Rika, SODA 2013], with the hard
instances being quasi-bipartite graphs, where there are no edges between non-terminals. On the
other hand, it has been shown recently that exact (or even (1 + ε)-approximate) flow sparsifiers on
networks with just 6 terminals require unbounded size [Krauthgamer and Mosenzon, SODA 2023,
Chen and Tan, SODA 2024].

In this paper, we construct exact flow sparsifiers of size 3k3
and exact cut sparsifiers of size 2k2

for quasi-bipartite graphs. In particular, the flow sparsifiers are contraction-based, that is, they are
obtained from the input graph by (vertex) contraction operations. Our main contribution is a new
technique to construct sparsifiers that exploits connections to polyhedral geometry, and that can be
generalized to graphs with a small separator that separates the graph into small components. We
also give an improved reduction theorem for graphs of bounded treewidth [Andoni et al., SODA
2011], implying a flow sparsifier of size O(k · w) and quality O

( log w
log log w

)
, where w is the treewidth.
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1 Introduction

Graph sparsification is a classic and influential technique in algorithm design. The idea
behind graph sparsification is to compress a given graph into a “smaller” graph (the notion
of small depends on the context) which preserves certain crucial properties of the graph. The
notion of edge sparsification dates back to the work of Gomory and Hu [21] and to Nagamochi
and Ibaraki [32], who developed techniques to find a sparser graph – that is, with fewer
edges – preserving s-t-cuts and k-edge-connectivity, respectively. This work was continued
by Benczur and Karger [5] and Spielman and Teng [35], who extended the techniques to
preserving cut values, or more generally the Laplacian spectrum, up to a factor of 1 + ε.
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Relatively recent is the study of vertex sparsification. Arguably, the most extensively
explored notions here are flow sparsification and cut sparsification. Specifically, suppose we
are given an undirected graph G = (V, E) along with a capacity function u on the edges
and a subset of vertices T called terminals, with |T | = k. A cut sparsifier H of quality
q ≥ 1 is a graph on (potentially) fewer vertices which preserves the minimum cut value
between every possible bipartition of the terminal set, up to a factor of q. A more general
notion is flow sparsification where the sparsifier must preserve all multicommodity flows
between the terminals (formal definitions are introduced in Section 2). Hence, we can see
cut sparsification as a special case where it is only required to preserve the single-commodity
flows between bipartitions of terminals.

The main focus in cut and flow sparsification research is to strike the ideal trade-off
between the size of H and its quality q. In their seminal work, Moitra [31] and later Moitra
and Leighton [29] showed that there is a flow sparsifier on just the terminal set (that is
with size k) of quality O

( log k
log log k

)
, and their work was later made constructive by different

works [9, 16, 30]. These works also showed that any sparsifier of size k would have a quality
loss of at least Ω(

√
log k/ log log k) [30]. Hence, a significant improvement in the quality

would either require more vertices in the sparsifier or special properties of the graph.
Considerable research effort has been dedicated to cut and flow sparsification in more

restricted settings. For instance, one can construct a flow sparsifier on only the terminals
with quality O(r) for graphs that exclude Kr,r as a minor by exploiting connections between
flow sparsification and the 0-extension problem [8, 31]. For general graphs, Chuzhoy [12]
gave a construction with quality O(1) and size CO(log log C), where C is the total capacity
of edges incident on terminals (and hence might be as large is Ω(nk)). On the other hand,
one can construct quality-1 cut sparsifiers of size O(22k ) for general graphs [22, 24], of size
O(k2 · 2k) for planar graphs [27] and O(k) · 22O(w) for graphs with treewidth w [10] (such
sparsifiers are also known as mimicking networks or exact sparsifiers in the literature). The
scenario is drastically different for exact flow sparsifiers. Recent breakthroughs have ruled
out the existence of exact flow sparsifiers [26], as well as contraction-based quality-(1 + ε)
flow sparsifiers [11], with size as a function of k, which is achieved by demonstrating hard
instances on 6 terminal networks. On the other hand, contraction-based flow sparsifiers of
quality 1 + ε and size 2poly(1/ε) exist for every 5-terminal network [11].

For the special case of quasi-bipartite graphs [34], where non-terminals form an independent
set, Andoni et al. [2] improved the bound of Chuzhoy significantly: they give a quality-(1 + ε)
flow sparsifier of size poly(k/ε), recently improved to size k · poly(log k, ε−1) [1, 23]. The
significance of these result lies in the fact that for the simpler case of cut sparsification, these
graphs present some of the hardest known instances [24, 27], where a quality-1 cut sparsifier
requires 2Ω(k) vertices [24, 27]. Thus, their result raises hope that we can overcome the lower
bounds by designing quality-(1 + ε) sparsifiers, even in the flow sparsification setting.

Andoni et al. also prove a second result where they show a generic reduction from graphs
of bounded treewidth to general graphs in the following sense: They give a construction
whereby the existence of any quality-q(k) sparsifier of size S(k) implies a quality-q(6w)
sparsifier of size k4 · S(6w) where w is the treewidth of the graph.

Our Results. We give the following results on quasi-bipartite graphs and their extensions:
1. A cut sparsifier of size 2k2 for quasi-bipartite graphs (Theorem 3.1);
2. A contraction-based flow sparsifier of size 3k3 for quasi-bipartite graphs (Theorem 3.2);
3. A cut sparsifier of size k + 2c2 and a flow sparsifier of size k + 3c3 when the graph has a

vertex cover of size c (Theorem 4.1);
4. A cut sparsifier of size kd + 4d3 when G has vertex integrity d [4, 19], that is, a separator

X ⊆ V such that |X| + |C| ≤ d for every component C of G − X (Corollary 4.3).
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Note that our result almost matches the lower bound given by Krauthgamer and Rika [27]
(up to a polynomial in the exponent). Further, our result on flow sparsifiers shows that
instances on quasi-bipartite graphs are not hard for flow sparsification, as they admit better
bounds than general graphs.

Our main contribution lies in developing a novel tool for constructing sparsifiers that is
based on connections to polyhedral geometry. We show that this technique can be applied to
obtain cut and flow sparsifiers, and even when the terminal set separates the graph into small
components. Furthermore, we show that the size of the sparsifier actually grows with the size
of the separator whose removal leaves only small components, thus obtaining improved results
for bounded vertex cover and vertex integrity, two structural graph parameters that have
recently gained popularity in the parameterized community [7, 18, 19, 20, 28, 33]. These have
particular relevance when studying problems that are hard for more general parameters, such
as treewidth [17] and treedepth [7, 19]; they also allow for stronger meta-theorems [20, 28]
compared to the classic theorem of Courcelle for bounded-treewidth graphs [14].

We give an additional result for graphs with treewidth w, improving the results of Andoni
et al. [2] and Chaudhuri et al. [10]: we construct a flow sparsifier of size k · S(2w) and quality
g(2w) provided that every k-terminal network admits a quality g(k) flow sparsifier with size
S(k) (see Section 5). This implies an O

( log w
log log w

)
-quality sparsifier with size O(k · w) for

graphs with treewidth w using results from [16, 29].
Due to space constraints, we defer some proofs to the full version; the corresponding

lemmas are marked with an asterisk (*).

Techniques. The main idea behind our construction of cut and flow sparsifiers for bipartite
graphs is to consider them as a union of stars centered on Steiner vertices, which can be
handled independently as they do not share any edges. By showing that the number of
different ways that stars can participate in cuts is bounded, we get a sparsifier with the same
bound on the size, as equivalent stars can be contracted together. Thus, it is sufficient to
show how to put stars into a bounded number of classes.

Our approach is based on polyhedral theory. We represent each star by a vector in
Rk

≥0 where each coordinate is the capacity of an edge between the center of the star and
a terminal. We show that there are 2k2 stars, which we refer to as basic stars, such that
any star is the conic combination of at most k of them. Using this idea, we obtain two
constructions: the first is to construct H from the terminals and the set of basic stars with
appropriately scaled-up capacities; whereas the second (slightly larger) is to simply contract
vertices that are the conic combination of the same set of basic stars. Since the second
construction is contraction-based, a consequence of our results is that optimal algorithm for
contraction-based sparsifiers presented by Khan et al. [24] obtains a sparsifier of size at most
2k3 for bipartite graphs.

The construction of the flow sparsifiers is much more involved. A first attempt would
be to use our result for cut sparsifier along with a result from Andoni et al. [2, Theorem
7.1] which roughly implies that if the flow-cut gap for the given graph is γ, then an exact
contraction-based cut sparsifier is also a flow sparsifier of quality γ. Unfortunately, bipartite
networks can have a flow-cut gap of Ω(log k) and hence this approach fails.

We rather take a more direct approach: by relying on the above mentioned polyhedral
tool to define equivalence classes on the stars, we show that we can contract the stars in
each equivalence class into a single one. Applying this technique is much more challenging in
the case of flow sparsifiers, since one has to ensure that every multicommodity flow between
terminals (and not just bipartitions) must be preserved.
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The main technical difficulty is to show that merging two stars preserves the routing
of multicommodity flows, and in particular, that if a demand can be routed in the merged
star, then it can also be routed in the original stars (if the original stars are in the same
equivalence class). We achieve this by splitting the demand so that each part can be routed
in a different star, by a process which iteratively adds demand to one of the two stars, and if
that is no longer possible, refines the partition by globally switching demands between the
two stars. We show that when the process can no longer introduce new demand, then there
is a saturated cut in the merged star, and thus all of the demand must be already routed.

2 Preliminaries

A network G = (V, E, u) is a graph (V, E) with edge capacities u : E(G) → R≥0. It is usually
associated with a set of terminals K ⊆ V (G), whose size we denote by k. We refer to vertices
in V (G) \ K as non-terminal or Steiner vertices, and say that two networks G1, G2 are
Steiner-disjoint if V (G1) ∩ V (G2) ⊆ K.

We consider a cut to be a subset of vertices X ⊂ V , with cut edges δ(X) = E(X, V − X).
For convenience, we usually write u(X) to mean u(δ(X)) for any X ⊆ V . A cut X separates
A ⊆ K if A ⊆ X and K − A ⊆ V − X, and it is a min-cut for A if it minimizes the capacity
among all cuts separating A. We denote by mcG(A) the smallest (minimum |X|) min-cut
(in G) that separates A, and κG(A) its capacity. If the network is clear from context, we
drop the subscript in mc(A), κ(A).

Cut sparsifiers. A cut sparsifier of quality q ≥ 1 for a network G with terminals K is a
network H such that K ⊆ V (H) and for every subset A ⊂ K, the capacity of the min-cut
separating A is q-approximated, that is,

κG(A) ≤ κH(A) ≤ q · κG(A).

Unless specified, a cut sparsifier is of quality 1.

Flow sparsifiers. A flow sparsifier of quality q ≥ 1 for a network G with terminals K is a
network H that q-approximately preserves the multi-commodity flows for any demand. We
use the formal description in the work of Andoni et al. [2].

We say that a demand d ∈ RK×K
≥0 is routed in G by flow f ≥ 0 if

∑
P ∈Ps,t

fP = d(s, t)
and

∑
P ∋e fP ≤ u(e), where f is defined over paths and Ps,t is the set of all s-t-paths. We

consider both demands and paths as symmetric, that is, d(s, t) = d(t, s), but Ps,t = Pt,s so
the same flows can satisfy both demands.

The demand polytope [2] for a network is the set all demands that can be routed in G,
D(G) = {d : d can be routed in G}. Given a demand vector d, its flow factor is the value
λG(d) = sup{λ ≥ 0 : λd ∈ D(G)}.

We formally define flow sparsifiers as follows: H is a quality-q flow sparsifier for G with
terminals K if for all demand vectors d,

λG(d) ≤ λH(d) ≤ q · λG(d).

In particular for q = 1, we have that d ∈ D(G) if and only if d ∈ D(H).

Treewidth. A tree decomposition (T, B) of a graph G is a tree T together with a collection
of subsets of vertices B = {Bi}i∈V (T ) called bags, such that:
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For each edge uv ∈ E(G), there is a bag Bi containing both u and v.
For each vertex v ∈ V (G), the collection of bags containing v induces a non-empty subtree
of T .

The width of (T, B) is w(T, B) = maxi∈V (T )(|Bi| − 1). The treewidth of G is the minimum
width achievable by any tree decomposition.

We assume that there are no two identical bags in the decomposition, as otherwise we can
simply contract the edge connecting the corresponding nodes. We consider that each edge uv

is associated with a single node of T , namely the node closest to the root whose bag contains
both u and v. The collection of edges associated with a node i ∈ T is denoted by Ei, and
the subgraph induced by a bag is G[i] = (Bi, Ei). This notation is particularly useful when
talking about the graph induced by collections of bags, and thus for a subset R ⊆ V (T ) we
write B(R) =

⋃
i∈R Bi, E(R) =

⋃
i∈R Ei, and G[R] = (B(R), E(R)). We remark that G[R]

and G[B(R)] are subgraphs on the same subset of vertices but with different sets of edges.
Computing the treewidth of a graph, together with the corresponding tree decomposition,

is an NP-hard problem [3], but can be computed in time wO(w3) ·n [6] for a graph of treewidth
w. For a faster running time, we can get a tree decomposition with width 2w + 1 in time
2O(w) · n due to the recent work by Korhonen [25]. For a more detailed introduction to
treewidth, see e.g. the book by Cygan et al. [15].

2.1 Basic Tools
▶ Lemma 2.1 (*). Let G be a network. If H is a quality-q sparsifier for G with terminals
K, and L is a quality-r sparsifier for H with terminals K ′, K ′ ⊆ K, then L is a quality-qr

sparsifier for G with terminals K ′, where the statement works if H, L are cut sparsifiers or
flow sparsifiers.

We recall the splicing lemma of Andoni et al. [2] for flow sparsifiers, which shows that it
is sufficient for a sparsifier to preserve routings along terminal-free paths.

▶ Lemma 2.2 ([2, Lemma 5.1]). Let G and H be two networks with the same set of terminals
K, and fix ρ ≥ 1. Suppose that whenever a demand d between terminals in K can be routed
in G using terminal-free flow paths, demand d/ρ can be routed in H (by arbitrary flow paths).

Then for every demand d between terminals in K that can be routed in G, demand d/ρ

can be routed in H.

Finally, we show the following generalization of the composition lemma to both cut and
flow sparsifiers.

▶ Lemma 2.3 (*). Let G1 and G2 be Steiner-disjoint networks for terminal set K.
If H1 and H2 are quality-q (cut or flow) sparsifiers for G1, and G2 with terminal set

K ∩ V (G1), K ∩ V (G2), respectively, then H := H1 ⊎ H2 is a quality-q (cut or flow, resp.)
sparsifier for G := G1 ⊎ G2 (parallel edges in K are joined and their capacities summed).

The proof for flow sparsifiers is given by Andoni et al. [2, Lemma 5.2]; the proof for cut
sparsifiers follows using similar arguments.

Let G/vw be the network obtained from G by contracting v and w into a vertex denoted
vw, that is, removing v and w, adding a vertex vw with edges to vertices (N(v)∪N(w))\{v, w},
and setting the capacity of each new edge {vw, x} to wG/vw({vw, x}) = uG(vx) + uG(wx),
where uG(vx) = 0 if the edge does not exist.

▶ Lemma 2.4 (*). Let v, w be vertices such that for every A ⊆ K, there is a min-cut X

separating A that either contains both v and w or neither of them.
Then G/vw is an exact cut sparsifier for G with terminals K.
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3 Sparsifiers for Quasi-Bipartite Graphs

In this section we show how to compute cut and flow sparsifiers for quasi-bipartite graphs,
where the left side is the set of terminals. In a later section we show how to improve this
to a more general case of bounded vertex cover. Our results are formalized in the following
theorems:

▶ Theorem 3.1. Let G = (V, E, u) be a network with terminal set K of size k.
If G is bipartite with partition V = K ⊎ (V \ K), then G has a cut sparsifier of size 2k2

and a contraction-based cut sparsifier of size 2k3 .

▶ Theorem 3.2. Let G = (V, E, u) be a network with terminal set K of size k.
If G is bipartite with partition V = K ⊎ (V \ K), then G has a contraction-based flow

sparsifier of size 3k3 .

We remark that quasi-bipartite and bipartite graphs are equally hard to handle, as we can
simply consider a quasi-bipartite graph as the Steiner-disjoint union of G[K] and G − E(K).

▶ Corollary 3.3. Quasi-bipartite networks (with no edges between Steiner vertices) have cut
sparsifiers of size 2k2 and flow sparsifiers of size 3k3 .

3.1 Cut Sparsifiers
This section is dedicated to proving Theorem 3.1.

Let v be the center of a star, and (c(1), c(2), . . . , c(k)) be the capacity vector of the
edges to the terminals (with some ordering K = {t1, . . . , tk}). For each cut S ⊆ K, either
c(S) ≤ c(K − S), c(S) = c(K − S), or c(S) ≥ c(K − S). Using the inequalities for c and
each subset S ⊆ K, we can define a polyhedron Pc of all the capacity vectors that cut the
star in the same way as c. Thus, the capacity vector c is a conic combination of the extreme
rays of Pc, and therefore we can replace it in the graph by a conic combination of the stars
corresponding to the extreme rays, which we call basic stars. Finally, we show that since
c agrees on every inequality with the basic stars in its conic combination, the replacement
preserves the value of min-cuts, and so by replacing every star we obtain a sparsifier of G.

Basic stars. Let c ∈ Rk be a capacity vector. We define Sc to be the collection of subsets
S ⊆ K such that c(S) ≤ c(K − S), i.e. Sc = {S ⊆ K : c(S) ≤ c(K − S)}, and the star cone
of c to be:

Pc :=
{

x ∈ Rk
≥0 : x(S) ≤ x(K − S) ∀S ∈ Sc

}
We say that a vector x agrees with c (on every cut) if x(S) ≤ x(K − S) for all S ∈ Sc, and
thus Pc is the polyhedron containing all of the capacity vectors that agree with c. It is a
cone since it is defined by constraints of the form αT x ≤ 0. We remark that for every S ⊆ K,
S ∈ Sc or K − S ∈ Sc, and both are present if and only if x(S) = x(K − S).

We define the set of basic stars as stars constructed from extreme rays of any such
cone. For a given c, the extreme rays of the cone Pc are found at the intersection of k − 1
tight inequalities: xi ≥ 0 for some indices i ∈ I, and x(S) = x(K − S) for some S ∈ J ,
with |I| + |J | = k − 1 (see e.g. [13, Sec. 3.12]). Notice that, regardless of the capacity
vector c, the extreme rays of Pc are all found using a tight subset of the same collection of
inequalities. However, not every extreme ray belongs to every Pc, as they might disagree
on some inequalities outside of J . For convenience, we represent each ray by a vector with
coordinates summing to 1.
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Let Q be the set of extreme rays of any cone as obtained above, that is, the set of
extreme rays obtained from intersection of k −1 independent tight constraints with x(K) = 1.
Formally, let Ik be the collection of pairs (I, J), |I| + |J | = k − 1, such that the constraints
x(i) = 0 for i ∈ I, x(S) = x(K − S) for S ∈ J and x(K) = 1 are all independent. Then

Q =
{

qIJ ∈ Rk
≥0 : qIJ(K) = 1; qIJ(I) = 0;

qIJ(S) = qIJ(K − S) ∀S ∈ J ; (I, J) ∈ Ik

}
.

For each q ∈ Q, we can construct a star with center denoted vq and an edge to each
terminal ti ∈ K with capacity qi. These stars are denoted basic stars and are referred to by
their center vq.

The size of Q is determined by the possible sets of inequalities that define each of its
elements. As the tight inequalities for S and K \ S are the same, there are effectively at
most 2k−1 + k ≤ 2k inequalities to choose from. Each element of Q is defined by k − 1 of
these, and thus |Q| ≤

( 2k

k−1
)

≤ 2k2 .

▶ Lemma 3.4. Any capacity vector c can be written as the conic combination of at most k

points in Q, all of which agree with c.
Formally, there are q1, . . . , qk ∈ Q, λ(q1), . . . , λ(qk) ≥ 0 such that :

k∑
i=1

λ(qi) · qi = c and qi(S) ≤ qi(K − S) ∀i ∈ [k], S ∈ Sc

Proof. Let Pc be the star cone corresponding to c. By Carathéodory’s theorem (see e.g. [13,
Sec. 3.14]), c is a conic combination of at most k extreme rays of Pc (which are contained
in Q). In other words, there are q1, . . . , qk ∈ Pc ∩ Q and λ(q1), . . . , λ(qk) ≥ 0 such that
c =

∑k
i=1 λ(qi) · qi.

All it remains to show is that every qi agrees with c on every cut. Indeed, since every qi is
an extreme ray of Pc, it must satisfy the inequalities defining Pc, and thus agree with c. ◀

We obtain a sparsifier for G as follows: for each v ∈ V − K, write the capacity vector cv

of the star centered at v as a conic combination of the points in Q, i.e. as cv =
∑

q∈Q λv(q)q.
Then, define VQ = {vq : q ∈ Q} and take H = (K ∪ VQ, K × VQ, u′); the capacity vector for
each vq is q scaled up by the sum of the corresponding values λv: u′(vq, ·) = q ·

∑
v λv(q).

To determine the values λv, we can use the constructive proof of Carathéodory’s theorem,
starting by computing the set Q by enumeration in time 2k2 · poly(k). Given a capacity
vector c, start by finding q1 ∈ Q∩Pc that agrees with c on every cut; then, find the maximum
value of λ(q1) such that c − λ(q1)q1 ∈ Pc; finally, set c′ = c − λ(q1)q1 and repeat the process
for c′ to find the remaining q2, . . . and λ2, . . . Notice that at each step, c′ has at least one
more tight inequality than c (otherwise we could increase λ(q1)), and thus the process stops
after k iterations. In conclusion, the process of computing the set Q takes time 2O(k2), and
the process of finding the coefficients for each star takes time 2O(k2) (per star).

The following lemma allows us to relate a star to its conic combination using basic stars.

▶ Lemma 3.5. Let v be a vertex with degree k and capacity vector c for its incident edges.
If c can be written as the conic combination of points q1, q2, . . . , qℓ ∈ Q, all of which agree

with c, then G has a sparsifier given by G − {v} + {w1, . . . , wℓ}, where the neighbors of
vertices w1, . . . , wℓ are also neighbors of v and the capacities of the edges incident on each
vertex wi are given by λ(qi) · qi.
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Proof. We will use the fact that the definition of sparsifier is reflexive, and thus show that
G is a sparsifier for G − {v} + {w1, . . . , wℓ}. We will iteratively contract two vertices in
{w1, . . . , wℓ}, until we have the original graph. We assume that each vertex wi has the same
neighbors as v by adding edges with capacity 0.

Let G′ = G −{v} + {w1, . . . , wℓ} so that uG(v) =
∑ℓ

i=1 uG′(wi). For any i ∈ [ℓ], qi agrees
with c, so uG′(wi) = λ(qi) ·qi also agrees with c, as Pc is a cone (and thus scale-invariant). We
observe that if some A ∈ Sc, then c(A) ≤ c(K − A), and thus there is a min-cut separating
A that does not contain v, as it is at least as cheap to cut the edges to A as to K − A;
the same argument applies to any vertex whose capacities agree with c, such as any wi.
Therefore, for any A ⊆ K, there is a min-cut separating A that contains both wℓ−1 and wℓ

(if K − A ∈ Sc) or neither (if A ∈ Sc), and thus we can apply Lemma 2.4 to merge wℓ−1
and wℓ to obtain a new vertex w′

ℓ−1 with capacities uG′(wℓ−1) + uG′(wℓ). This ensures that
uG(v) =

∑ℓ−2
i=1 uG′(wi) + uG′(w′

ℓ−1), and thus we can repeat the process until we only have
a single w′

1 left, with capacities uG′(w′
1) =

∑ℓ
i=1 uG′(wi) = uG(v), which is equivalent to the

original graph. ◀

We can now finish the proof of Theorem 3.1.

Proof of Theorem 3.1. We start by computing the basic stars Q for k terminals, and then
computing the coefficients λv : Q → R≥0 for each v ∈ V \K. We can now obtain two different
constructions for a sparsifier, one that replaces all the vertices with basic stars, and another
which simply contracts vertices that have the same cut profile.

Basic star sparsifier. We take VQ = {vq : q ∈ Q} as the set of all basic stars, and construct
our sparsifier by adding edges from every vq ∈ Q to every terminal t ∈ K. The capacities are
given by summing over the λv as follows: u′(vq, ti) = qi ·

∑
v λv(q). The sparsifier is then

given by H = (K ∪ VQ, K × VQ, u′).
This construction is equivalent to decomposing each v into a conic combination of basic

stars using Lemma 3.5, and then (iteratively) contracting all of the vertices created for the
same q ∈ Q (and different v ∈ V \ K) using Lemma 2.4. This also proves correctness of the
sparsifier.

Contraction-based sparsifier. For this variant of the sparsifier, we will only use Lemma 2.4
and Carathéodory’s theorem [13, Sec. 3.14], as well as the algorithm introduced by Hagerup
et al. [22], in which we compute all 2k minimum cuts, and contract any two vertices whose
capacity vectors agree with each other.

The running time is O(2k · n2) to compute the set Sc for each of the at most n stars,
and then comparing the sets for each pair of stars to decide whether to contract them.
Alternatively, the sets Sc can be computed in time O(2k · kn) and the vertices placed in
buckets according to their set Sc, after which the vertices in each bucket can be contracted.

Thus, all that we need to do is to show that if two capacity vectors are the conic
combination of the same basic stars, then they agree, and thus can be contracted.

▶ Lemma 3.6. If capacity vectors c and c′ can be written as the conic combination of points
q1, q2, . . . , qℓ ∈ Q and each qi agrees with both c and c′, then c and c′ agree with each other.

Proof. As the lemma is symmetric, we will simply show that if S ∈ Sc, then S ∈ Sc′ . If
S ∈ Sc, then S ∈ Sqi

and so qi(S) ≤ qi(K \ S) by definition of agreement. Therefore,

c′(S) − c′(K \ S) =
∑

i

λc′(qi) ·
(
qi(S) − qi(K \ S)

)
≤ 0 ⇒ S ∈ Sc′ . ◀
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Given Lemma 3.6, it is sufficient to bound the number of possible ways that capacity
vectors can be written as conic combinations, as vectors that are written as a conic combination
of the same basic stars are always on the same minimal min-cuts, and thus can be contracted
by Lemma 2.4. As there are 2k2 basic stars, and by Carathéodory’s theorem each capacity
vector can be written as the conic combination of at most k of them, there are at most
2k3 such combinations, and thus after contraction, we are left with a sparsifier of size at
most 2k3 . ◀

3.2 Flow Sparsifiers
We will show that a slight modification to the contraction-based sparsifier in Section 3.1
increases its size to 3k3 but makes it a flow sparsifier on bipartite graphs, proving Theorem 3.2.

Let c be a capacity vector. The only modification we need is to consider all inequalities
of the form c(A) ≤ c(B) for A, B ⊆ K, A ∩ B = ∅. Surprisingly, the cut sparsifiers of
Theorem 3.1 preserve min-cuts separating a subset A ⊆ K from a disjoint subset B ⊆ K

without requiring these inequalities. However, for the construction of flow sparsifiers it is
necessary that the vertices we contract agree on the inequalities for each pair (A, B).

We define S ′
c = {(A, B) ⊆ K : c(A) ≤ c(B)} and say that c′ strongly agrees with c if

c′(A) ≤ c′(B) for all (A, B) ∈ S ′
c. Notice that S ′

c has at most 3k sets, as an element can be
placed in A, B or neither.

The strong star cone of c is defined as P ′
c :=

{
x ∈ Rk

≥0 : x(A) ≤ x(B) ∀(A, B) ∈ S ′
c

}
,

and the set of extreme rays Q′ := {q ∈ Rk
≥0 : q is an extreme ray of some P ′

c}. The size of
Q′ is upper-bounded by the possible combinations of k − 1 tight inequalities, which implies
that |Q′| ≤ 3k2 .

We use the contraction-based construction of Section 3.1 using the concept of strong
agreement. As before, we can show that each capacity vector is the conic combination of k

extreme rays.

▶ Lemma 3.7. Any capacity vector c can be written as the conic combination of at most k

points in Q′, all of which strongly agree with c.
Formally, there are q1, . . . , qk ∈ Q′, λ(q1), . . . , λ(qk) ≥ 0 such that :

k∑
i=1

λ(qi) · qi = c and qi(A) ≤ qi(B) ∀i ∈ [k], (A, B) ∈ S ′
c

Proof. Let P ′
c be the star cone corresponding to c. By Carathéodory’s theorem, c is a conic

combination of at most k extreme rays of P ′
c (contained in Q′). Each qi is in P ′

c, and thus
strongly agrees with c. ◀

As Q′ has at most 3k2 extreme rays, this means that there are at most 3k3 classes where
capacity vectors can be placed according to which set of extreme rays produce it as a conic
combination. As part of our proof, we need to show that if two capacity vectors are in the
same class, then they strongly agree.

▶ Lemma 3.8. If capacity vectors c and c′ can be written as the conic combination of points
q1, q2, . . . , qℓ ∈ Q′ and both strongly agree with each qi on every cut, then c and c′ strongly
agree.

Proof. As the lemma is symmetric, we will simply show that if (A, B) ∈ S ′
c, then (A, B) ∈ Sc′ .

If (A, B) ∈ Sc, then (A, B) ∈ Sqi and so qi(A) ≤ qi(B) by definition of agreement. Therefore,

c′(A) − c′(B) =
∑

i

λc′(qi) ·
(
qi(A) − qi(BS)

)
≤ 0 ⇒ (A, B) ∈ Sc′ . ◀
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K1 K2d1(i, j)

d2(j, i′)

c1(i) c2(j)

P

d′(X) = cB(X)

Figure 1 Representation of the graph GB; a path (left, red) as found in Step 3a; a cut (right,
blue) representing the situation in which no path is found.

We then show that if we have two stars where their capacity vectors agree, we can contract
them to obtain a flow sparsifier. By repeating the process until we have at most 1 vertex per
class, we obtain a flow sparsifier of size 3k3 .

▶ Lemma 3.9. Let v1, v2 be centers of stars with leaves K and let c1, c2 ∈ Rk
≥0 be their

capacity vectors (respectively).
If c1 and c2 strongly agree with each other, that is S ′

c1
= S ′

c2
, then G/v1v2 is an exact

flow sparsifier for G with terminals K.

Proof. Let c := c1 + c2, and v := v1v2 be the vertex created in G′ := G/v1v2. We will show
that if we can route a demand d in G then we can route it G′ and vice-versa. If we can route
a demand in G, then any demand routed on v1w or v2w can be routed instead on vw, as
c1(w) + c2(w) = c(w). We now show that a demand routed in G′ can also be routed in G.

By Lemma 2.2, and since the neighbors of v1 and v2 are terminals, we can “splice” the
flows so that any demand is routed only through (internally) terminal-free paths. Thus, we
focus on the demands that are routed through paths tivtj , ti, tj ∈ K in G′. Let d be any
such demand that can be routed in K ∪ {v}, and we will construct vectors d1, d2 of the
demands that will be routed through v1, v2, such that d1 + d2 = d.

▶ Observation 3.10. In a star K ∪ {v} with capacities c, a demand d can be routed if and
only if for every i ∈ [k], d(i) :=

∑
j d(ti, tj) ≤ c(i).

We use the following directed bipartite graph GB to assist us in the algorithm and
proof: GB has as vertices two copies of K, V (GB) = K1 ∪ K2, and has arcs A(GB) =
(K1 × K2) ∪ (K2 × K1). We also impose node capacities for outgoing arcs, with capacity
vector c1 for the vertices in K1 and c2 for vertices in K2; we represent the capacity vector
for GB as cB (so cB(K1) = c1, cB(K2) = c2). See Figure 1 for a visual representation of the
graph.

Our goal is to add demand to the graph in the form of demands on arcs, with arcs from K1
to K2 representing d1, and arcs from K2 to K1 representing d2. We will use d′ to represent
the demand in the graph (so d1 = d′(K1, K2), d2 = d′(K2, K1)), and d̃ to represent leftover
demand (initially d′ = 0, d̃ = d). Whenever we say to add some demand to dι(i, j), it is
implied that we add the demand to d′(iι, j3−ι) and remove it from d̃(i, j), as well as make the
same changes to (j, i) (increase dι(j, i) and d′(jι, i3−ι), decrease d̃(j, i)), where i1, j1 ∈ K1,
i2, j2 ∈ K2 are the copies of i and j in K1, K2, respectively.
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We repeat the following steps until d̃ = 0:
1. if there is d̃(i, j) > 0 such that d1(i) < c1(i) and d1(j) < c1(j), add to d1(i, j) a value of

ε := min(d̃(i, j), c1(i) − d1(i), c1(j) − d1(j));
2. similarly for d2, if there is (i, j) such that ε := min(d̃(i, j), c2(i)−d2(i), c2(j)−d2(j)) > 0,

add ε to d2(i, j);
3. let d̃(i, j) > 0, and assume w.l.o.g. that d2(i) = c2(i):

a. find a path P = (i2 = ℓ0, ℓ1, ℓ2, . . . ℓp) such that for all 0 < r < p, d′(ℓr) = cB(ℓr),
d′(ℓr, ℓr+1) > 0, and for the endpoint, d′(ℓp) < cB(ℓp);

b. switch demand between d1 and d2 as follows: let ε := min
(
c1(i)−d1(i), cB(ℓp) − d′(ℓp),

minr d′(ℓr, ℓr+1)
)
; for any arc (x1, y2) ∈ K1 × K2 (resp. (x2, y1) ∈ K2 × K1) in P ,

decrease d′(x1, y2) (resp. d′(x2, y1)) and increase d′(x2, y1) (resp. d′(y1, x2)) by ε;
c. add min(d̃(i, j), ε, c2(j) − d2(j)) to d2(i, j).

We will show that such a path always exists as long as there is demand to be routed,
but first, let us show that these operations maintain the invariants that d′(i) ≤ cB(i), for
all i ∈ V (GB). For the first two steps, d1(i) (resp. d2(i)) increases by at most c1(i) − d1(i)
(resp. c2(i) − d2(i)), which maintains the invariant. For the third step, notice that every ℓi

except the endpoints has two arcs in the path, one corresponding to d1 and the other to d2,
hence the decrease on d1 on one edge is compensated by the increase on the other, and the
same for d2. Furthermore, as we choose ε to be the smallest value on the path, no demand
can go below 0. Finally, for the endpoints, we know that ℓp has spare capacity by definition,
and for i we decrease d2(i) and increase d1(i), but d2(i) = c2(i) implies that d1(i) < c1(i),
as d̃(i) + d1(i) + d2(i) = d(i) ≤ c(i) = c1(i) + c2(i) and d̃(i) > 0.

We will now show by contradiction that a path must exist. Assume that the process
above cannot complete, i.e. there is some demand d̃(i, j) > 0 that cannot be placed in d1 or
d2, and there is no path P as specified above. Then there is a set X ⊆ V (GB) of vertices
reachable from i by edges with positive demand in d′, all of which have saturated capacity
d′(ℓr) = cB(ℓr). Writing X1 = X ∩ K1, X2 = X ∩ K2, we get that d1(X1) =

∑
ℓ∈X1

d1(ℓ) =
c1(X1) and d2(X2) = c2(X2). We can furthermore deduce that d1(X1) ≤ d1(X2), since all
of the demand in d1 incident on X1 is represented as demand in an arc (X1, X2), which is
thus also incident on X2. Similarly, we know that d2(X2) ≤ d2(X1). Putting these facts
together, we conclude that:

c1(X1) = d1(X1) ≤ d1(X2) ≤ c1(X2) and c2(X2) = d2(X2) ≤ d2(X1) ≤ c2(X1)

Since S ′
c1

= S ′
c2

, it must be the case that c1(X1) = c1(X2) and c2(X2) = c2(X1), and
thus from the inequalities above we can conclude that d1(X2) = c1(X2), and in particular,
since i2 ∈ X2, it must be that d1(i) = c1(i). But this is a contradiction, as d(i) =
d̃(i) + d1(i) + d2(i) = d̃(i) + c1(i) + c2(i) > c(i), and thus d would not be routable in G′.

We conclude that, as long as d̃ ̸= 0, the process above finds a path and thus makes
progress in each iteration. Therefore, d is routable in G by splitting it into demands d1 for
v1 and d2 for v2 as described above. ◀

4 Sparsifiers for Small Vertex Cover and Integrity

The vertex cover number c of a graph G is the size of the smallest set X such that G − X

contains no edges. The vertex integrity d of a graph extends this by allowing G − X to have
small components, and it is the smallest number for which there is a set X such that G − X

has components of size at most d − |X| (i.e. the size of a component plus X does not exceed
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d). We show that if either of these parameters is bounded, the exponential complexity in the
size of the sparsifier is limited to an additive term depending only on the parameter. The
result of Section 3.1 corresponds to the case of c = k (or d = k + 1).

Our formal results are the following:

▶ Theorem 4.1. Let G = (V, E, u) be a network with terminal set K of size k.
If G has a vertex cover of size c, it has a cut sparsifier of size k + 2c2 and a flow sparsifier

of size k + 3c3 .

Proof. Let X be a vertex cover of size c. We will start by splitting the graph into a
subgraph with all of the terminals and another containing only X and non-terminals. Let
GK = G[K ∪ X] be the first of these graphs, and GS = G[(V \ K) ∪ X] − E(X)] be the
second. Notice that the graphs are Steiner-disjoint for terminal set K ∪ X, and thus we can
use Lemma 2.3. Furthermore, if we compute a sparsifier HS for GS (with terminal set X)
and take the sparsifier H = GK ⊎ HS for G, the size of H is k + |V (H)|. All that remains is
to apply Theorem 3.1 to obtain a cut sparsifier HS of size 2c2 or Theorem 3.2 to obtain a
flow sparsifier HS of size 3c3 , which completes the proof of the theorem. ◀

▶ Theorem 4.2. Let G = (V, E, u) be a network with terminal set K of size k.
If G has a separator X ⊆ V of size a and |C| ≤ b for every component C of G − X, then

it has a sparsifier of size kb + 4b(a+b)2 .

As a corollary, we get that small sparsifiers exist when vertex integrity is bounded.

▶ Corollary 4.3. Let G = (V, E, u) be a network with terminal set K of size k.
If G has a separator X ⊆ V such that |X| + |C| ≤ d for every component C of G − X,

then it has a cut sparsifier of size kd + 4d3 .

The rest of the section is dedicated to proving Theorem 4.2.
We use the same strategy of separating out the terminals, though in this case we need

to show a new bound when G − X has small connected components. We will use similar
polyhedral techniques adjusted for the case of small components.

Let X ⊆ V be a separator of size a such that G − X has components of size at most b.
Let C = cc(G − X), and let CK be the set of connected components containing any terminals.
We define GK = G[X ∪

⋃
{C ∈ CK}] and GS = G[(V (G) \ V (GK)) ∪ X]. The graphs

are Steiner-disjoint for terminals X ∪ K, and |V (GK) \ V (GS)| ≤ kb, thus by Lemma 2.3,
H = GK ⊎ HS is a sparsifier for G of size kb + |V (HS)|, where HS is a sparsifier for GS .

All that is left is then to show that GS with terminal set X has a sparsifier of size
4b(a+b)2 . Though on stars (components of size 1), there are only two possible cuts for each
subset of terminals, here there are more possibilities for cuts, and thus we need multiple
inequalities for each subset of terminals. Therefore, we show that there are at most 4b(a+b)2

basic components of size at most b, such that any connected component can be written as
the conic combination of these. We then replace each component by a conic combination of
basic components, and contract all of the components of the new graph corresponding to the
same basic component.

Basic components. Let C be a component with vertices v1, . . . , vb, and let the terminals
be ordered K = {t1, . . . , tk}. To simplify the analysis, we consider that every component has
size b by adding isolated vertices if needed. We represent the edge capacities for C as a vector
c ∈ RC×(C∪X)

≥0 (where c(vi, vj) = c(vj , vi) for all vi, vj ∈ C, c(vi, vi) = 0 for all vi ∈ C).
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We define Sc to be the collection of triples (A, B, B′), A ⊆ K, B, B′ ⊆ V (C), such that
c(A ∪ B) ≤ c(A ∪ B′), i.e. Sc = {(A, B, B′) ⊆ K × V (C)2 : c(A ∪ B) ≤ c(A ∪ B′)}, and the
cut cone of c to be:

Pc :=
{

x ∈ RC×(C∪X)
≥0 : x(A ∪ B) ≤ x(A ∪ B′) ∀(A, B, B′) ∈ Sc;

x(vi, vj) = x(vj , vi), x(vi, vi) = 0 ∀vi, vj ∈ V (C)
}

We say that a vector x agrees with c if c(A ∪ B) ≤ c(A ∪ B′) for all (A, B, B′) ∈ Sc, and thus
Pc is the polyhedron containing all of the capacity vectors that agree with c. It is a cone
since it is defined by constraints of the form αT x ≤ 0.

We can now define the set Q of extreme rays similarly to the star case, as the set of all capa-
city vectors that satisfy b(a+(b−1)/2) many linearly independent constraints. For each q ∈ Q,
we can construct a corresponding basic component Cq with vertices X ∪ {vq,1, vq,2, . . . , vq,b}
and capacities defined according to q.

The size of Q is determined by the possible sets of inequalities that define each of its
elements. Out of the 2a+2b, we choose at most b(a + b/2), which gives us an upper bound of
|Q| ≤ 2b(a+2b)(a+b) ≤ 4b(a+b)2 .

The following lemma expresses components as conic combinations of basic components:

▶ Lemma 4.4. Any capacity vector c for a component C can be written as the conic
combination of at most ℓ = b(a + b/2) points in Q, all of which agree with c.

Formally, there are q1, . . . , qℓ ∈ Q, λ(q1), . . . , λ(qℓ) ≥ 0 such that :

ℓ∑
i=1

λ(qi) · qi = c and qi(A ∪ B) ≤ qi(A ∪ B′) ∀i ∈ [ℓ], (A, B, B′) ∈ Sc

Proof. The proof mimics that of Lemma 3.4, with some slight adjustments to consider the
different definition of Sc, Pc and Q.

Let Pc be the cut cone corresponding to c. Notice that Pc always includes equality
constraints to ensure symmetry (x(vi, vj) = x(vj , vi), x(vi, vi) = 0), and these

(
b
2
)

+ b

constraints are independent. Thus, by Carathéodory’s theorem c is a conic combination of at
most ℓ = ab −

(
b
2
)

− b ≤ b(a + b/2) extreme rays of Pc (which are contained in Q). In other
words, there are q1, . . . , qk ∈ Pc ∩ Q and λ(q1), . . . , λ(qk) ≥ 0 such that c =

∑k
i=1 λ(qi) · qi.

Furthermore, each qi agrees with c on every cut since it is an extreme ray of Pc, and thus
satisfies its inequalities. ◀

We obtain a sparsifier H for G as follows: given a separator X, |X| ≤ a such that
G − X only has connected components of size at most b, we start by partitioning G into
GK = G[X ∪

⋃
{C ∈ CK}] and GS = G[(V (G) \ V (GK)) ∪ X]. We then compute Q and the

coefficients λC for each component C of GS − X, in time 2O(b(a+b)2). Then, we define the
collection of graphs CQ(GS) = {C ′

q : q ∈ Q}, where C ′
q = Cq ·

∑
C∈C λC(q) is Cq with the

capacities scaled up by
∑

C∈C λC(q). The sparsifier is obtained by doing the Steiner-disjoint
union of the graphs in CQ(GS) and GK , that is, H = GK ⊎

⊎
C′

q∈CQ(GS) C ′
q.

The analysis follows similarly to Section 3.1, by applying Lemmas 4.4 and 4.5 to GS .

▶ Lemma 4.5 (*). Let G be a network with a separator X ⊆ V (G) of size a and |C| ≤ b for
every component C of G − X.

Then H = GK ⊎
⊎

C′
q∈CQ(GS) C ′

q is a sparsifier for G of size at most 4b(a+b)2 .
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5 Reduction Theorem for Bounded-Treewidth Graphs

In this section, we show that given a graph G with k terminals and a tree decomposition
for G of width w, we can compute in linear time a sparsifier for G with size linear in k. In
particular, by using as a black-box algorithm for computing a sparsifier with size S(k) and
quality g(k), we obtain a sparsifier of size O(k) · S(2w) and quality g(2w), which can be
computed with O(k) calls to the original sparsifier algorithm. The result is formalized in
Theorem 5.1.

▶ Theorem 5.1. Let G = (V, E, u) be a network with terminal set K of size k. Let S : N → N,
g : N → R≥1 be functions such that every network (of treewidth w) has a quality-g(k) cut
(resp. flow) sparsifier of size S(k).

Then any network of treewidth at most w has a cut (resp. flow) sparsifier with quality
g(2w) and size O(k) · S(2w).

Furthermore, given a tree decomposition of width w, the sparsifier can be computed in
time O(nw) plus O(k) calls to an algorithm computing sparsifiers on edge-disjoint subgraphs
of G with at most 2w terminals.

As an immediate consequence of Theorem 5.1 and work on flow sparsifiers [9, 16, 30], we
obtain the following corollary:

▶ Corollary 5.2. Any network with treewidth at most w has a quality-O(log w) flow sparsifier
of size O(k · w), which can be computed in polynomial time.

Let (T, B) be a tree decomposition for G of width w. We recall that we associate each
edge with a single bag, and that we assume that no two identical bags exist.

Let Y ⊆ V (T ) be a subset of bags obtained as follows: first, for each terminal t ∈ K, add
to Y a node u ∈ V (T ) containing t, i.e. t ∈ Bu; then add the lowest common ancestors of
any two nodes Y to Y as well.

The algorithm first constructs the set Y , and then partitions T into a set of regions
R(T, Y ) as follows: consider the components of T −Y , and group them into regions according
to their neighboring nodes. Finally, it returns the sparsifier H = G[Y ] ⊎

⊎
R∈R(T,Y ) HR,

where HR is a sparsifier for the subgraph G[R] with terminal set G[R] ∩ B(Y ), computed
using the black-box algorithm.

Since T has O(n) nodes, constructing Y as well as the graphs G[R] for every region can
be done in time O(nw), and computing the sparsifiers simply requires |R(T, Y )| calls to the
given sparsifier algorithm. We remark that the calls to the sparsifier algorithm are run on
subgraphs G[R] for disjoint R, and thus induce edge-disjoint subgraphs of G.

We will now show that the size of Y and R(T, Y ) is bounded, before showing that each
G[R] has a small sparsifier, and that all of these can be joined into H.

▶ Lemma 5.3. There are at most 2k nodes in Y and 2|Y | regions in R(T, Y ), with each
region neighboring at most two nodes of Y .

Proof. Let T ′ be the tree obtained from T by iteratively contracting every edge that does
not connect to nodes in Y . T ′ has (at most) one node for every terminal in K, plus nodes
for the lowest common ancestors. In particular, the nodes for the lowest common ancestors
have at least 2 children, as they were added to Y because there are terminals in two of its
children subtrees. As there are at most k nodes with at most 1 child, T ′ must have at most
2k − 1 nodes.

We now show that every region neighbors at most two nodes of Y . Assume that there is
a region R neighboring more than 2 nodes in Y . If there are two nodes u, v such that one
is not the ancestor of the other, then their lowest common ancestor a is also in Y and in
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R, since the u-v-path in T is contained in R. But then a is a cut in T which splits R into
smaller regions, and thus R cannot be a region in R(T, Y ). The remaining possibility is that
the nodes neighboring R all are ancestors or descendants of one another, and thus are all
contained in a root-leaf path in T . However, in that case, the middle points (not the highest
or lowest neighbor of R) are all vertex cuts which would split R into smaller regions. We
conclude that each region neighbors at most two nodes of Y , and that one is the parent of
the other in T ′.

As a consequence of the above, there can be at most |Y | regions that have only a single
node as neighbor, and |Y | regions that have two neighbors in Y (a node u and its parent). ◀

We now show that we can apply a sparsifier to G[R] to obtain a good sparsifier.

▶ Lemma 5.4. Given R ∈ R(T, Y ), its induced subgraph G[R] with terminal set G[R] ∩ B(Y )
has a sparsifier HR of quality g(2w) and size S(2w).

Proof. As G has treewidth w, any of its subgraphs has treewidth w as well. Thus, we only
need to prove that |G[R] ∩ B(Y )| ≤ 2w, as we assume that every graph of treewidth w has a
quality-g(k) sparsifier of size S(k), with k = |G[R] ∩ B(Y )| for G[R].

If R has only one neighbor y ∈ V (T ), then |G[R] ∩ B(Y )| = |G[R] ∩ By| ≤ w + 1 ≤ 2w,
as the only neighboring bag to R is y and thus G[R] and G[T − R] only intersect in By.

Otherwise, R has two neighbors y1, y2 ∈ V (T ). Let u1, u2 be the nodes of R neighboring
y1, y2, respectively. Notice that R must correspond to a single connected component of
T − Y , as there is a single path connecting y1 and y2 in T , and thus y1 and y2 each have a
single neighbor in R.

By the properties of the tree decomposition, any vertex v that is simultaneously in G[R]
and G[T − R] must either be contained in By1 and Bu1 , or be contained in By2 and Bu2 ,
as the subtree induced by the bags containing v must connect R and T − R and thus must
contain the edge y1u1 or the edge y2u2. Since no two bags are the same, |By1 ∩ Bu1 | ≤ w,
|By2 ∩ Bu2 | ≤ w, and thus |G[R] ∩ B(Y )| ≤ |By1 ∩ Bu1 | + |By2 ∩ Bu2 | ≤ 2w. ◀

We complete the proof by taking the sparsifier H = G[Y ] ⊎
⊎

R∈R(T,Y ) HR. H is a
sparsifier for G because G = G[Y ] ⊎

⊎
R∈R(T,Y ) G[R] and, by Lemma 5.4, each HR is a

sparsifier for G[R], thus by (repeated application of) Lemma 2.3, H is a sparsifier for G with
terminal set B(Y ) ⊇ K. The size of H is at most 2k(w + 1) + 2kS(2w) = O(k) · S(2w),
by using Lemma 5.3 and it can be computed in running time O(nw) plus O(k) calls to
edge-disjoint subgraphs of G.
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1 Introduction

Dynamic descriptive complexity [23, 10] is a framework for studying the amount of resources
that are necessary to maintain the result of a query when the input changes slightly, possibly
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contains all queries for which the update of the query result (and possibly of further useful
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auxiliary data) can be expressed in first-order logic FO. Equivalently1, the updates can be
computed using (DLOGTIME) uniform circuits with constant-depth and polynomial size that
consist of ¬- as well as ∧- and ∨-gates with unbounded fan-in, that is, within uniform AC0.

It is known that many important queries can be maintained in DynFO if only one bit of the
input changes in every step. This includes reachability for acyclic graphs [11, 23], undirected
graphs [23, 12, 17], and general directed graphs [6], tree isomorphism [14] and every problem
definable in monadic second-order logic MSO for graphs of bounded treewidth [8], all under
insertions and deletions of single edges. Also, membership in context-free languages can be
maintained under changes of single positions of the input word [15].

Some of these results have been extended to changes beyond single-bit changes: reachability
in undirected graphs is in DynFO if simultaneously polylog(n) = (log n)O(1) edges can be
inserted or deleted [7], where n is the size of the graph; regular languages are in DynFO
under changes of polylog(n) positions at once [24]. Reachability in directed graphs can be
maintained under insertions and deletions of O( log n

log log n ) many edges [9].
Thus, only for few problems it is known that changes of polylogarithmic size (or: even

non-constant size) can be handled in DynFO, or, equivalently, by AC0-updates. Trivially, if a
problem can be maintained in DynFO under single-bit changes it can also be maintained under
polylog(n) changes using AC-circuits of polylog(n)-depth. This is achieved by processing the
changed bits “sequentially” by “stacking” polylog(n) copies of the constant-depth circuit for
processing single-bit changes.

The starting point for the present paper is the question which problems can be maintained
by AC-circuits of less than polylog(n) depth under polylog(n)-sized changes, in particular
which of the problems known to be in DynFO under single-bit changes. The answer is short:
for almost all of them circuits of depth O(log log n) suffice.

A first observation is that directed reachability under polylogarithmic changes can be
maintained by AC-circuits of depth O(log log n). This can be derived by analyzing the
proof from [9] (see Section 3). For this reason, we introduce the dynamic complexity class2

DynFOLL of problems that can be maintained using circuits with polynomial size and depth
O(log log n) or, equivalently, by first-order formulas that are iterated O(log log n) times. We
investigate its power when changes affect polylog(n) input bits and prove that almost all
problems known to be maintainable in DynFO for constant-size changes fall into this class
for changes of polylog(n)-size, see Table 1. One important problem left open is whether all
MSO-definable queries for bounded treewidth graphs can be maintained in DynFOLL under
polylog(n) changes. We present an intermediate result and show that tree decompositions
can be maintained within DynFOLL (see Section 5).

This power of depth-O(log log n) update circuits came as a surprise to us. Statically,
circuits of this depth and polynomial size still cannot compute the parity of n bits due
to Håstad’s famous lower bound for parity: depth-(d + 1) AC-circuits with alternating ∧-
and ∨-layers require 2Ω(n1/d) gates for computing parity (see, e.g., [20, Theorem 12.3]).
Dynamically, while such update circuits are powerful for changes of non-constant size, they
seem to provide not much more power for single-bit changes. As an example, the parity-exists
query from [26] is conjectured to not be in DynFO, and it also cannot easily be seen to be in
DynFOLL.

1 assuming that first-order formulas have access to numeric predicates ≤, +, ×
2 The class could equally well be called (uniform) DynAC[log log n]. We opted for the name DynFOLL as

it extends DynFO and its static variant was introduced as FOLL [2].
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Table 1 Overview of results for DynFO and DynFOLL. Entries indicate the size of changes that
can be handled by DynFO and DynFOLL programs, respectively.

Dynamic query DynFO DynFOLL
reachability

general graphs O( log n
log log n

) [9] (log n)O(1) (Theorem 3)
undirected graphs (log n)O(1) [7] (log n)O(log log n) (Theorem 4)
acyclic graphs O( log n

log log n
) [9] (log n)O(1) (Theorem 3)

distances
general graphs open open
undirected graphs O(1) [17] (log n)O(1) (Theorem 6)
acyclic graphs O(1) (log n)O(1) (Theorem 6)

bounded tree width
tree decomposition open (log n)O(1) (Theorem 16)
MSO properties O(1) [8] O(1)

other graph problems
tree isomorphism O(1) [14] (log n)O(1) (Theorem 12)
minimum spanning forest (log n)O(1) (Theorem 5) (log n)O(log log n) (Theorem 5)
maximal matching O(1) [23] (log n)O(1) (Theorem 5)
(δ + 1)-colouring (log n)O(1) (Theorem 5) n2 (static, [16])

word problem
regular languages (log n)O(1) [24] (log n)O(log log n) (Theorem 4)
context-free languages O(1) [15] (log n)O(1) (Theorem 9)

The obtained bounds are almost optimal. For all mentioned problems, DynFO can
handle changes of size at most polylog(n) and DynFOLL can handle changes of size at most
(log n)O(log log n). This is an immediate consequence of Håstad’s lower bound for parity and
standard reductions from parity to these problems. For the queries that are known to be
maintainable under polylog(n) changes in DynFO, we show that they can be maintained
under (log n)O(log log n) changes in DynFOLL.

Our results rely on two main techniques for handling changes of polylogarithmic size:
In the small-structure technique (see Section 3), it is exploited that on structures of
polylogarithmic size, depth-O(log log n) circuits have the power of NC2 circuits. Dynamic
programs that use this technique first construct a substructure of polylogarithmic size
depending on the changes and the current auxiliary data, then perform a NC2-computation
on this structure, and finally combine the result with the rest of the current auxiliary data
to obtain the new auxiliary data. This technique is a slight generalization of previously
used techniques for DynFO.
In the hierarchical technique (see Section 4), it is exploited that auxiliary data used in
dynamic programs is often “composable”. Dynamic programs that use this technique first
construct polynomially many structures depending on the current auxiliary data, each of
them associated with one of the changes (in some cases, known dynamic programs for
single changes can be exploited for this step). Then, in O(log log n) rounds, structures are
combined hierarchically such that after ℓ rounds the program has computed polynomially
many structures, each associated with 2ℓ changes.

2 Preliminaries and setting

We introduce some notions of finite model theory, circuit complexity and the dynamic
complexity framework.

MFCS 2024
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Finite model theory & circuit complexity. A (relational) schema σ is a set of relation
symbols and constant symbols. A relational structure S over a schema σ consists of a finite
domain D, relations RS ⊆ Dk for every k-ary relation symbol R ∈ σ, and interpretations
cS ∈ D of every constant symbol c ∈ σ. We assume in this work that every structure has a
linear order ≤ on its domain. We can therefore identify D with the set {0, . . . , n − 1}.

First-order logic FO is defined in the usual way. Following [19], we allow first-order formulas
to access the linear order on the structures and corresponding relations + and × encoding
addition and multiplication. We write FO(≤, +, ×) to make this explicit. FO(≤, +, ×) can
express iterated addition and iterated multiplication for polylogarithmically many numbers
that consist of polylog(n) bits, see [18, Theorem 5.1].

First-order logic with ≤, +, × is equivalent to (DLOGTIME) uniform AC0, the class of
problems decidable by uniform families of constant-depth circuits with polynomially many
“not”-, “and”- and “or”-gates with unbounded fan-in. We write AC[f(n)] for the class that
allows for polynomial-sized circuits of depth O(f(n)), where n is the number of input bits.
For polynomially bounded and first-order constructible functions f , the class AC[f(n)] is
equal to IND[f(n)], the class of problems that can be expressed by inductively applying an
FO(≤, +, ×) formula O(f(n)) times [19, Theorem 5.22]. So, we can think of an AC[f(n)]
circuit as being a stack of O(f(n)) copies of some AC0 circuit. The class FOLL, see [2], is
defined as IND[log log n] = AC[log log n].

The circuit complexity classes uniform NCi and SACi are defined via uniform circuits
of polynomial size and depth O((log n)i); besides “not”-gates, NC circuits use “and”- and
“or”-gates with fan-in 2, SAC circuits allow for “or”-gates with unbounded fan-in.

Dynamic complexity. The goal of a dynamic program Π is to maintain the result of a query
applied to an input structure I that is subject to changes. In this paper, we consider changes
of the form insR(P ), the insertion of a set P of tuples into the relation R of I, and delR(P ),
the deletion of the set P from R. We usually restrict the size of the set P to be bounded
by a function s(n), where n is the size of the domain of I. Most of the time, the bound is
polylogarithmic in n, so s(n) = log(n)c for some constant c. A pair (Q, ∆) of a query Q and
a set ∆ of (size-bounded) change operation insR, delR is called a dynamic query.

To maintain some dynamic query over σ-structures, for some schema σ, Π stores and
updates a set A of auxiliary relations over some schema σaux and over the same domain as the
input structure. For every auxiliary relation symbol A ∈ σaux and every change operation δ,
Π has an update program φA

δ (x̄), which can access input and auxiliary relations. Whenever
an input structure I is changed by a change δ(P ), resulting in the structure I ′, the new
auxiliary relation AA′ in the updated auxiliary structure A′ consists of all tuples ā such that
φA

δ (ā) is satisfied in the structure (I ′, A).

We say that a dynamic program Π maintains a dynamic query (Q, ∆), if after applying
a sequence α of changes over ∆ to an initial structure I0 and applying the corresponding
update programs to (I0, A0), where A0 is an initial auxiliary structure, a dedicated auxiliary
relation is always equal to the result of evaluating Q on the current input structure. Following
Patnaik and Immerman [23], we demand that the initial input structure I0 is empty, so, has
empty relations. The initial auxiliary structure is over the same domain as I0 and is defined
from I0 by some first-order definable initialization.
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The class DynFO is the class of all dynamic queries that are maintained by a dynamic
program with FO(≤, +, ×) formulas as update programs3. Equivalently, we can think of the
update programs as being AC0 circuits. The class DynFO[f(n)] allows for AC[f(n)] circuits
as update programs. We often use the equivalence AC[f(n)] = IND[f(n)] and think of update
programs that apply an FO(≤, +, ×) update formula f(n) times. In this paper, we are
particularly interested in the class DynFOLL = DynFO[log log n].

3 The small-structure technique

The small-structure technique has been used for obtaining maintenance results for DynFO for
non-constant size changes [7, 24]. The idea is simple: for changes of size m, (1) compute a
structure with a domain of size roughly m, depending on the changes and the current auxiliary
data, then (2) compute information about this structure (as m ≪ n, this computation can
be more powerful than AC0), and (3) combine the result with the current auxiliary data to
obtain the new auxiliary data.

For DynFO and changes of polylogarithmic size, one can use SAC1-computations in
step (2), as formalized in the next lemma.

▶ Lemma 1 ([24, Corollary 3]). Let Q be a k-ary query on σ-structures, for some k ∈ N. If Q

is uniform SAC1-computable, then there is an FO(≤, +, ×) formula φ over schema σ ∪ {C}
such that for any σ-structure S with n elements, any subset C of its domain of size polylog(n)
and any k-tuple ā ∈ Ck it holds that: ā ∈ Q(S[C]) if and only if (S, C) |= φ(ā). Here, S[C]
denotes the substructure of S induced by C.

For DynFOLL, this generalizes in two directions: (a) for structures of size polylog(n)
one can use NC2-computations, (b) for structures of size (log n)O(log log n) one can use SAC1-
computations. This is captured by the following lemma.

▶ Lemma 2. Let Q be a k-ary query on σ-structures, for some k ∈ N.
(a) If Q is uniform NC2-computable, then there is an FOLL formula φ over schema σ ∪ {C}

such that for any σ-structure S with n elements, any subset C of its domain of size
polylog(n) and any k-tuple ā ∈ Ck it holds that: ā ∈ Q(S[C]) if and only if (S, C) |= φ(ā).

(b) If Q is uniform SAC1-computable, then there is an FOLL formula φ over schema σ ∪ {C}
such that for any σ-structure S with n elements, any subset C of its domain of size
(log n)O(log log n) and any k-tuple ā ∈ Ck it holds that: ā ∈ Q(S[C]) if and only if
(S, C) |= φ(ā).

Proof.
(a) Let C have size m, which is polylogarithmically bounded in n. The NC2-circuit for Q

has polynomial size in m and depth O((log m)2), so its size is polylogarithmic in n and
the depth is O((log log n)2). It is well-known4 that for every NC-circuit of depth f(n)
there is an equivalent AC-circuit of depth O( f(n)

log log n ) and size polynomial in the original
circuit, so we can obtain an AC-circuit for answering Q on C with depth O(log log n).

3 Other papers write DynFO for the class that uses FO update formulas without a priori access to the
arithmetic relations ≤, +, × and DynFO(≤, +, ×) for the class that uses FO(≤, +, ×) update formulas. If
changes only affect single tuples, there is no difference for most interesting queries, see [6, Proposition 7].
For changes that affect sets of tuples of non-constant size, all DynFO maintainability results use
FO(≤, +, ×) update formulas, as FO update formulas without arithmetic are not strong enough to
maintain interesting queries. We therefore just write DynFO and omit the suffix (≤, +, ×) to avoid
visual clutter.

4 Divide the circuit into layers of depth log log n. Each layer depends only on log n gates of the previous
layer, as each gate has fan-in at most 2, and can be replaced by a constant-depth circuit for the CNF of
the layer, which has polynomial size.
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(b) The proof of [1, Lemma 8.1] can easily be extended towards the following statement: if a
language L is decided by a non-deterministic Turing machine with polynomial time bound
mc and polylogarithmic space bound (log m)d then for every positive, non-decreasing
and first-order constructible function t(n) there is a uniform AC circuit family for L with
depth O(t(n)) and size 2O(m

c
t(n) (log m)d). For m = log ne log log n and t(n) = 2ce log log n,

the size is exponential in
√

log n (log log n)O(1), and therefore, as this function grows
slower than log n, polynomial in n. The statement follows as all SAC1 languages can be
decided by a non-deterministic Turing machine with polynomial time bound and space
bounded by (log n)2, see [4]. ◀

A straightforward application of the technique to dynamic programs from the literature
yields the following DynFOLL-programs. For directed reachability, adapting the DynFO-
program for O( log n

log log n ) changes from [9] yields (with more proof details in the full version):

▶ Theorem 3. Reachability in directed graphs is in DynFOLL under insertions and deletions
of polylog(n) edges.

For undirected reachability and regular languages, replacing Lemma 1 by Lemma 2(b) in
the DynFO maintainability proofs for polylog(n) changes from [7, 24] directly yields:

▶ Theorem 4.
(a) Reachability in undirected graphs is in DynFOLL under insertions and deletions of

(log n)O(log log n) edges.
(b) Membership in regular languages is in DynFOLL under symbol changes at (log n)O(log log n)

positions.

The small-structure technique has further applications beyond graph reachability and
regular languages. We mention a few here. The proofs are deferred to the full version.

▶ Theorem 5.
(a) A minimum spanning forest for weighted graphs can be maintained

(i) in DynFO under changes of polylog(n) edges, and
(ii) in DynFOLL under changes of (log n)O(log log n) edges.

(b) A maximal matching can be maintained in DynFOLL under changes of polylog(n) edges.
(c) For graphs with maximum degree bounded by a constant δ, a proper (δ + 1)-colouring can

be maintained in DynFO under changes of polylog(n) edges.

4 The hierarchical technique

In this section we describe and use a simple, yet powerful hierarchical technique for handling
polylogarithmic changes in DynFOLL. After changing m

def= (log n)c many tuples, auxiliary
data R1, . . . , Rk is built in k

def= d log log n rounds, for suitable d. The auxiliary data Rℓ−1

after round ℓ − 1 encodes information for certain subsets of the changes of size 2ℓ−1. This
information is then combined, via first-order formulas, to information on 2ℓ changes in
round ℓ. The challenge for each concrete dynamic query is to find suitable auxiliary data
which is defined depending on a current instance as well as on subsets of changes, and can
be combined via first-order formulas to yield auxiliary data for larger subsets of changes.

We apply this approach to maintaining distances in acyclic and undirected graphs, context-
free language membership, and tree-isomorphism under polylogarithmic changes. In these
applications of the hierarchical technique, information is combined along paths, binary trees,
and arbitrary trees, respectively.
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4.1 Undirected and acyclic reachability and distances
The articles that introduced the class DynFO showed that reachability for undirected and for
acyclic graphs is in DynFO under single-edge changes [10, 23]. For these classes of graphs,
also distances, that is, the number of edges in a shortest path between two reachable nodes,
can be maintained. For undirected graphs, this was proven in [17], for acyclic graphs it is a
straightforward extension of the proof for reachability from [10].

While reachability for undirected graphs is in DynFO under polylogarithmically many
edge changes [7], we only know the general O( log n

log log n ) bound for acyclic graphs [9]. It is
unknown whether distances can be maintained in DynFO under changes of non-constant size,
both for undirected and for directed, acyclic graphs.

▶ Theorem 6. Distances can be maintained in DynFOLL under insertions and deletions of
polylog(n) edges for
(a) undirected graphs,
(b) acyclic directed graphs.

To maintain distances, a dynamic programs can use a relation of the form dist(u, v, d)
with the meaning “the shortest path from u to v has length d”. The proof of Theorem 6 is then
a direct application of the hierarchical technique on paths. After inserting polylogarithmically
many edges, distance information for two path fragments can be iteratively combined to
distance information for paths fragments that involve more changed edges. Thus polylog n

path fragments (coming from so many connected components before the insertion) can be
combined in log log n many iterations.

To handle edge deletions, we observe that some distance information is still guaranteed
to be valid after the deletion: the shortest path from u to v surely has still length d after
the deletion of some edge e if there was no path of length d from u to v that used e. These
“safe” distances can be identified using the dist relation. We show that after deleting
polylogarithmically many edges, shortest paths can be constructed from polylogarithmically
many “safe” shortest paths of the original graph. We make this formal now.

▶ Lemma 7. Let G = (V, E) be an undirected or acyclic graph, e ∈ E an edge and u, v ∈ V

nodes such that there is a path from u to v in G′ = (V, E − e). For every shortest path
u = w0, w1, . . . , wd−1, wd = v from u to v in G′ there is an edge (wi, wi+1) such that no
shortest path from u to wi and no shortest path from wi+1 to v in the original graph G uses e.

Proof. For undirected graphs, this was proven in [22, Lemma 3.5c]. We give the similar
proof for acyclic graphs. If no node wi+1 on a shortest path u = w0, w1, . . . , wd−1, wd = v

from u to v in G′ exists such that some shortest path from u to wi+1 in G uses the edge e,
the edge (wd−1, v) satisfies the lemma statement. Otherwise, let wi+1 be the first such node
on the path. It holds i + 1 ≥ 1, as the shortest path from u to u trivially does not use e. So,
no shortest path from u to wi in G uses e. There is no shortest path from wi+1 to v in G

that uses e: otherwise, there would be a path from e to wi+1 and a path from wi+1 to e in
G, contradicting the assumption that G is acyclic. ◀

▶ Corollary 8. Let G = (V, E) be an undirected or acyclic graph and ∆E ⊆ E with |∆E| = m.
For all nodes u and v such that v is reachable from u in G′ def= (V, E \ ∆E) there is a shortest
path in G′ from u to v that is composed of at most m edges and m + 1 shortest paths of G,
each from some node ui to some node vi for i ≤ m + 1, such that no shortest path from ui to
vi in G uses an edge from ∆E.
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Proof idea. Via induction over m. For m = 1, this follows from Lemma 7. For m > 1 this is
immediate from the induction hypothesis. ◀

We can now prove that distances in undirected and in acyclic graphs can be maintained
in DynFOLL under changes of polylogarithmic size.

Proof of Theorem 6. We construct a DynFOLL program that maintains the auxiliary relation
dist(u, v, d) with the meaning “the shortest path from u to v has length d”.

Suppose m
def= (log n)c edges ∆E are changed in G = (V, E) yielding the graph

G′ = (V, E′). W.l.o.g. all edges in ∆E are either inserted or deleted. In both cases,
the program executes a first-order initialization, yielding auxiliary relations dist0(u, v, d),
and afterwards executes a first-order procedure for k

def= c log log n rounds, yielding auxiliary
relations dist1, . . . , distk. The superscripts on the relations are for convenience, they are all
subsequently stored in dist.

For insertions, we use the standard inductive definition of reachability and distances.
Set dist0(u, v, d) def= dist(u, v, d), where dist(u, v, d) is the distance information of the
unchanged graph G. Then, for k rounds, the distance information is combined with the new
edges ∆E, doubling the amount of used edges from ∆E in each round. Thus distℓ(u, v, d) is
computed from distℓ−1 by including distℓ−1 and all tuples which satisfy the formula:

φins
def= ∃z1∃z2∃d1∃d2(∆E(z1, z2)∧d1 +d2 +1 = d∧distℓ−1(u, z1, d1)∧distℓ−1(z2, v, d2))

For deletions, the program starts from shortest paths u, . . . , v in G such that no shortest
path from u to v uses edges from ∆E and then combines them for k rounds, which yields
the correct distance information for G′ according to Corollary 8. Thus, the first-order
initialization yields dist0(u, v, d) via

dist(u, v, d)∧¬∃z1∃z2∃d1∃d2(d = d1 +d2 +1∧∆E(z1, z2)∧dist(u, z1, d1)∧dist(z2, v, d2))

Then distℓ(u, v, d) is computed from distℓ−1(u, v, d) via a formula similar to φins, using
E instead of ∆E. ◀

4.2 Context-free language membership
Membership problems for formal languages have been studied in dynamic complexity starting
with the work of Gelade, Marquardt, and Schwentick [15]. It is known that context-free
languages can be maintained in DynFO under single symbol changes [15] and that regular
languages can even be maintained under polylog changes [25, 24].

It is an open problem whether membership in a context-free language can be maintained
in DynFO for changes of non-constant size. We show that this problem is in DynFOLL under
changes of polylogarithmic size.

▶ Theorem 9. Every context-free language can be maintained in DynFOLL under changes of
size polylog n.

Suppose G = (V, Σ, S, Γ) is a grammar in Chomsky normal form with L
def= L(G). For

single changes, 4-ary auxiliary relations RX→Y are used for all X, Y ∈ V [15], with the
intention that (i1, j1, j2, i2) ∈ RX→Y iff X ⇒∗ w[i1, j1)Y w(j2, i2], where w

def= w1 . . . wn is
the current string. Let us call I = (i1, j1, j2, i2) a gapped interval. For a gapped interval I

and a set P of changed positions, denote by #(I, P ) the number of changed positions p ∈ P

with p ∈ [i1, j1) ∪ (j2, i2].
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The idea for the DynFOLL program for handling polylog changes is simple and builds on
top of the program for single changes. It uses the same auxiliary relations and, after changing
a set P of positions, it collects gapped intervals I into the relations RX→Y for increasing
#(I, P ) in at most O(log log n) rounds. Initially, gapped intervals with #(I, P ) ≤ 1 are
collected using the first-order update formulas for single changes. Afterwards, in each round,
gapped intervals I with larger #(I, P ) are identified by splitting I into two gapped intervals
I1 and I2 with #(I, P ) = #(I1, P ) + #(I2, P ) such that I can be constructed from I1 and I2
with a first-order formula.

To ensure that O(log log n) many rounds suffice, we need that the intervals I1 and I2 can
always be chosen such that #(I1, P ) and #(I2, P ) are of similar size. This will be achieved
via the following simple lemma, which will be applied to parse trees. For a binary tree
T = (V, E) with red coloured nodes R ⊆ V , denote by #(T, R) the number of red nodes of
T . For a tree T and a node v, let Tv be the subtree of T rooted at v.

▶ Lemma 10. For all rooted binary trees T = (V, E, r) with red coloured nodes R ⊆ V , there
is a node v ∈ V such that:

#(Tv, R) ≤ 2
3 · #(T, R) and

#(T \ Tv, R) ≤ 2
3 · #(T, R)

Proof idea. Walk down the tree starting from its root by always choosing the child whose
subtree contains more red coloured nodes. Stop as soon as the conditions are satisfied. ◀

We now provide the detailed proof of Theorem 9.

Proof (of Theorem 9). We construct a DynFOLL program that maintains the auxiliary
relations RX→Y for all X, Y ∈ V . Suppose m

def= (log n)c positions P are changed. The
program executes a first-order initialization, yielding auxiliary relations R0

X→Y , and after-
wards executes a first-order procedure for k

def= d log log n rounds, for d ∈ N chosen such that
( 3

2 )k > m, yielding auxiliary relations R1
X→Y , . . . , Rk

X→Y . The superscripts on the relations
are for convenience, they are all subsequently stored in RX→Y .

For initialization, the DynFOLL program includes gapped intervals (i1, j1, j2, i2) into the
relations R0

X→Y for which
no position in [i1, j1) ∪ (j2, i2] has changed and (i1, j1, j2, i2) was previously in RX→Y , or
exactly one position in [i1, j1) ∪ (j2, i2] has changed and the dynamic program for single
changes from [15] includes the tuple (i1, j1, j2, i2) into RX→Y .

Afterwards, for k rounds, the DynFOLL program applies the following first-order definable
procedure to its auxiliary relations. A gapped interval I = (i1, j1, j2, i2) is included into
Rℓ

X→Y in round ℓ if it was included in Rℓ−1
X→Y or one of the following conditions hold (see

Figure 1 for an illustration):
(a) There are gapped intervals I1 = (i1, u1, u2, j2) and I2 = (u1, j1, j2, u2) and a non-terminal

Z ∈ V such that I1 ∈ Rℓ−1
X→Z and I2 ∈ Rℓ−1

Z→Y . This can be phrased as first-order formula
as follows:

φa
def= ∃u1, u2

[
(i1 ≤ u1 ≤ j1 ≤ j2 ≤ u2 ≤ i2) ∧

∨
Z∈V

(
RX→Z(i1, u1, u2, i2) ∧ RZ→Y (u1, j1, j2, u2)

)]
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(a) X

Z

Y

i1 u1 j1 j2 u2 i2

(b) X

Z

Z1 Z2

Z ′ Y

i1 v1 u1 u2 v2 j1 j2 v3 i2

(c) X

Z

Z1 Z2

Z ′Y

i1 v1 j1 j2 v2 u1 u2 v3 i2

Figure 1 Illustration of when a gapped interval (i1, j1, j2, i2) is added to RX→Y in the proof of
Theorem 9.

(b) There are gapped intervals I1 = (i1, v1, v3, i2), I2 = (v1, u1, u2, v2), and I3 = (v2, j1, j2, v3)
and non-terminals Z, Z1, Z2, Z ′ ∈ V such that Z → Z1Z2 ∈ Γ and I1 ∈ Rℓ−1

X→Z , I2 ∈
Rℓ−1

Z1→Z′ , I3 ∈ Rℓ−1
Z2→Y and w[u1, u2] can be derived from Z ′. This can be phrased as

first-order formula as follows:

φb
def= ∃u1, u2, v1, v2, v3

[
(i1 ≤ v1 ≤ u1 ≤ u2 ≤ v2 ≤ j1 ≤ j2 ≤ v3 ≤ i2) ∧∨

Z,Z1,Z2,Z′∈V
Z→Z1Z2∈Γ

(
RX→Z(i1, v1, v3, i2) ∧ RZ1→Z′(v1, u1, u2, v2)

∧ RZ′(u1, u2) ∧ RZ2→Y (v2, j1, j2, v3)
)]

Here, RZ′(u1, u2) is an abbreviation for the formula stating that w[u1, u2] can be derived
from Z ′, i.e. RZ′(u1, u2) def= ∃v

∨
W →σ∈Γ (RZ′→W (u1, v, v, u2) ∧ σ(v)).

(c) Symmetrical to (b), with gapped intervals I1 = (i1, v1, v3, i2), I2 = (v1, j1, j2, v2), and
I3 = (v2, u1, u2, v3) and non-terminals Z, Z1, Z2, Z ′ ∈ V such that Z → Z1Z2 ∈ Γ and
I1 ∈ Rℓ−1

X→Z , I2 ∈ Rℓ−1
Z1→Y , I3 ∈ Rℓ−1

Z2→Z′ and w[u1, u2] can be derived from Z ′.

Note that #(I, P ) = #(I1, P ) + #(I2, P ) in case (a) and #(I, P ) = #(I1, P ) + #(I2, P ) +
#(I3, P ) in cases (b) and (c). Using Lemma 10, the intervals Ij can be chosen such that
#(Ij , P ) ≤ 2

3 · #(I, P ) and thus k rounds suffice. ◀

It is known that for single tuple changes one can maintain for edge-labeled, acyclic graphs
whether there is a path between two nodes with a label sequence from a fixed context-free
language [21]. The techniques we have seen can be used to also lift this result to changes of
polylogarithmic size.

▶ Proposition 11. Context-free path queries can be maintained under changes of polylogar-
ithmic size in DynFOLL on acyclic graphs.

4.3 Tree isomorphism
The dynamic tree isomorphism problem – given a forest F = (V, E) and two nodes x, x∗ ∈ V ,
are the subtrees rooted at x and x∗ isomorphic? – has been shown to be maintainable in
DynFO under single edge insertions and deletions by Etessami [14].

It is not known whether tree isomorphism can be maintained in DynFO under changes of
size ω(1). We show that it can be maintained in DynFOLL under changes of size polylog n:
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▶ Theorem 12. Tree isomorphism can be maintained in DynFOLL under insertion and
deletion of polylog n edges.

Intuitively, we want to use Etessami’s dynamic program as the base case for a DynFOLL-
program: (1) compute isomorphism information for pairs of subtrees in which only one change
happened, then (2) combine this information in log log n many rounds. Denote by subtreex(r)
the subtree rooted at r, in the tree rooted at x, within the forest F . The main ingredient in
Etessami’s program is a 4-ary auxiliary relation t-iso for storing tuples (x, r, x∗, r∗) such
that subtreex(r) and subtreex∗(r∗) are isomorphic and disjoint in F . It turns out that this
information is not “composable” enough for step (2).

We therefore slightly extend the maintained auxiliary information. A (rooted) context
C = (V, E, r, h) is a tree (V, E) with root r ∈ V and one distinguished leaf h ∈ V , called the
hole. Two contexts C = (V, E, r, h), C∗ = (V ∗, E∗, r∗, h∗) are isomorphic if there is a root-
and hole-preserving isomorphism between them, i.e. an isomorphism that maps r to r∗ and
h to h∗. For a forest F and nodes x, r, h occurring in this order on some path, the context
C(x, r, h) is defined as the context we obtain by taking subtreex(r), removing all children of
h, and taking r as root and h as hole. Our dynamic program uses

a 6-ary auxiliary relation c-iso for storing tuples (C, C∗) def= (x, r, h, x∗, r∗, h∗) such that
the contexts C

def= C(x, r, h) and by C∗ def= C(x∗, r∗, h∗) are disjoint and isomorphic,
a ternary auxiliary relation dist for storing tuples (x, y, d) such that the distance between
nodes x and y is d, and
a 4-ary auxiliary relation #iso-siblings for storing tuples (x, r, y, m) such that y has m

isomorphic siblings within subtreex(r).
The latter two relations have also been used by Etessami. From distances, a relation
path(x, y, z) with the meaning “y is on the unique path between x and z” is FO-definable
on forests, see [14]. The relation t-iso(x, r, x∗, r∗) can be FO-defined from c-iso.

We will now implement the steps (1) and (2) with these adapted auxiliary relations.
Suppose a forest F

def= (V, E) is changed into the forest F ′ def= (V, E′) by changing a set ∆E

of edges. A node v ∈ V is affected by the change, if v is adjacent to some edge in ∆E. The
DynFOLL program iteratively collects isomorphic contexts C and C∗ of F ′ with more and
more affected nodes. Denote by #(C, C∗, ∆E) the number of nodes in contexts C and C∗,
excluding hole nodes, affected by change ∆E.

The following lemma states that c-iso can be updated for pairs of contexts with at most
one affected node each. Its proof is very similar to Etessami’s proof.

▶ Lemma 13. Given c-iso, dist, and #iso-siblings and a set of changes ∆E, the set of
pairs (C, C∗) of contexts such that C, C∗ are disjoint and isomorphic and such that both C

and C∗ contain at most one node affected by ∆E is FO-definable.

The dynamic program will update the auxiliary relation c-iso for contexts with at most
one affected node per context using Lemma 13. Isomorphic pairs (C, C∗) of contexts with
larger #(C, C∗, ∆E) are identified by splitting both C and C∗ into smaller contexts.

The splitting is done such that the smaller contexts have fewer than 2
3 · #(C, C∗, ∆E)

affected nodes. To this end, we will use the following simple variation of Lemma 10. For
a tree T = (V, E) and a function p : V → {0, 1, 2} which assigns each a node number of
pebbles, let #(T, p) be the total number of pebbles assigned to nodes in T .

▶ Lemma 14. Let T be a tree of unbounded degree and p such that either (i) #(T, p) > 2,
or (ii) #(T, p) = 2 and p(v) ≤ 1 for all v ∈ V . Then there is a node v such that either:
(1) #(T \ Tv, p) ≤ 2

3 · #(T, p) and #(Tv, p) ≤ 2
3 · #(T, p), or

(2) #(T \ Tv, p) ≤ 1
3 · #(T, p) and #(Tu, p) ≤ 1

3 · #(T, p) for any child u of v.
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Proof idea. Use the same approach as for Lemma 10. If no node v of type (1) is found, a
node of type (2) must exist. ◀

We now prove that tree isomorphism can be maintained in DynFOLL under changes of
polylogarithmic size.

Proof (of Theorem 12). We construct a DynFOLL program that maintains the auxiliary
relations c-iso, dist, and #iso-siblings. Suppose m

def= (log n)c edges ∆E are changed.
As a preprocessing step, the auxiliary relation dist is updated in depth O(log log n) via
Theorem 6. Then, c-iso is updated by first executing a first-order initialization for computing
an initial version c-iso0. Afterwards a first-order procedure is executed for k

def= d log log n

rounds, for d ∈ N chosen such that ( 3
2 )k > m, yielding auxiliary relations {c-isoℓ}ℓ≤k and

{#iso-siblingsℓ}ℓ≤k. The superscripts on the relations are for convenience, they are all
subsequently stored in c-iso, dist, and #iso-siblings.

The goal is that after the ℓth round
c-isoℓ contains all pairs C, C∗ with #(C, C∗, ∆E) ≤ ( 3

2 )ℓ which are isomorphic and
disjoint, and
#iso-siblingsℓ contains the number of isomorphic siblings identified so far (i.e., with
respect to c-isoℓ).

Round ℓ first computes c-isoℓ with a first-order procedure, and afterwards computes
#iso-siblingsℓ. For initialization, the DynFOLL program first computes c-iso0, using
Lemma 13, and #iso-siblings0. Afterwards, for k rounds, the DynFOLL program combines
known pairs of isomorphic contexts into pairs with more affected nodes and adapts c-iso
and #iso-siblings accordingly.

Computing C-ISOℓ. In the ℓth round, the program tests whether contexts C
def= C(x, r, h)

and C∗ def= C(x∗, r∗, h∗) with #(C, C∗, ∆E) ≤ ( 3
2 )ℓ are isomorphic by splitting both C and

C∗ into contexts with fewer affected nodes. The splitting is done by selecting suitable nodes
z ∈ C and z∗ ∈ C∗, and splitting the context depending on these nodes.

We first provide some intuition of how z and z∗ are intended to be chosen. Suppose C

and C∗ are isomorphic via isomorphism π. With the goal of applying Lemma 14, let p be
the function that assigns to each non-hole node v of C a number of pebbles from {0, 1, 2}
indicating how many of the two nodes v and π(v) have been affected by the change ∆E.
Note that if (C, p) does not fulfill the precondition of Lemma 14, then (C, C∗) must have
already been included in c-iso0 during the initialization. Therefore, assume the precondition
holds for (C, p). Let Cz denote the subcontext of C rooted at z. Now, applying Lemma 14
to (C, p) yields a node z such that one of the following cases holds:
(1) #(C \ Cz, p) ≤ 2

3 · #(C, p) and #(Cz, p) ≤ 2
3 · #(C, p), or

(2) #(C \ Cz, p) ≤ 1
3 · #(C, p) and #(Cu, p) ≤ 1

3 · #(C, p) for any child u of z.

Intuitively our first-order procedure tries to guess this node z and its image z∗ def= π(z)
and split the contexts C and C∗ at these nodes.

For testing that C and C∗ are isomorphic, the program guesses two nodes z and z∗ and
(disjunctively) chooses case (1) or (2). Note that the program cannot be sure that it has
correctly guessed z and z∗ according to the above intuition. For this reason, the program
first tests that the size restrictions from the chosen case (1) or (2) are fulfilled, which is easily
possible in FO(≤, +, ×) as there are at most polylogarithmically many affected nodes. Since
#(C, C∗, ∆E) ≤

( 3
2
)ℓ, this ensures that, by induction, c-isoℓ−1 is fully correct for all pairs

of contexts that will be compared when testing isomorphism of C and C∗. Note that in case
(2) the subtrees of any pair of children u1 and u2 of z have at most 2

3 · #(C, C∗, ∆E) affected
nodes.
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Next, the procedure tests that there is an isomorphism between C and C∗ that maps z

to z∗. The following claim is used:

▷ Claim 15. Suppose z and z∗ are nodes in C and C∗ that satisfy Condition (1) or (2)
with children Z ⊎ Y and Z∗ ⊎ Y ∗, respectively, with |Y | = |Y ∗| constant. Then a first-order
formula can test whether there is an isomorphism between the forests {subtreez(u) | u ∈ Z}
and {subtreez∗(u∗) | u∗ ∈ Z∗} using the relations c-isoℓ−1 and #iso-siblingsℓ−1.

Proof. The forests are isomorphic iff for each u ∈ Z there is a u∗ ∈ Z∗ such that subtreez(u) ∼=
subtreez∗(u∗) and such that the number of nodes v ∈ Z with subtreez(u) ∼= subtreez(v) is
the same as the number of nodes v∗ with subtrees subtreez∗(u∗) ∼= subtreez∗(v∗), and vice
versa with roles of u and u∗ swapped.

Because z and z∗ satisfy condition (1) or (2), c-isoℓ−1 is correct on the forest
{subtreez(u) | u ∈ Z} ∪ {subtreez∗(u∗) | u∗ ∈ Z∗} by induction. Additionally,
#iso-siblingsℓ−1 is consistent with c-isoℓ−1 by induction. From c-isoℓ−1, the tree isomorph-
ism relation t-isoℓ−1 – storing tuples (x, r, x∗, r∗) such that subtreex(r) and subtreex∗(r∗)
are isomorphic and disjoint – is FO-definable.

For testing whether a node u ∈ Z satisfies the above condition, a first-order formula
existentially quantifies a node u∗ ∈ Z∗ and checks that t-isoℓ−1(z, u, z∗, u∗). The num-
ber of isomorphic siblings of u, u∗ is compared using #iso-siblingsℓ−1 and subtract-
ing any siblings y ∈ Y for which t-isoℓ−1(z, u, z, y) (and, respectively, y∗ ∈ Y ∗ for
which t-isoℓ−1(z∗, u∗, z∗, y∗)). This is possible in FO because (a) |Y | is constant and
(b) #iso-siblingsℓ−1 is consistent with c-isoℓ−1 (even though c-isoℓ−1 is not necessarily
complete on subtrees in Y, Y ∗). ◁

For testing whether there is an isomorphism between C and C∗ mapping z to z∗, the
program distinguishes the cases (1) and (2) from above. Further, in each of the cases it distin-
guishes (A) path(r, z, h) and path(r∗, z∗, h∗), or (B) ¬path(r, z, h) and ¬path(r∗, z∗, h∗).
For all these first-order definable cases, a first-order formula can test whether there is an
isomorphism between C and C∗ mapping z to z∗. The detailed case analysis is deferred to
the full version of the paper.

Computing #ISO-SIBLINGSℓ. The relation #iso-siblingsℓ can be first-order defined
from c-isoℓ and the 4-ary relation #iso-siblingunchanged containing tuples

(x, r, y, m) with m > 0 if subtreex(y) has no affected nodes and the number of isomorphic
siblings of y in subtreex(r) with no affected nodes is m; and
(x, r, y, 0) if subtreex(y) contains an affected node.

Thus the relation #iso-siblingunchanged contains isomorphism counts for “unchanged” sib-
lings. It is FO-definable from the old auxiliary data (from before the change) and the set of
changes.

Given #iso-siblingunchanged and c-isoℓ, the relation #iso-siblingℓ is FO-definable as
follows. Include a tuple (x, r, y, m) into #iso-siblingℓ if m = m1 + m2 where m1 is the
number of unchanged, isomorphic siblings of y and m2 is the number of isomorphic siblings
of y affected by the change (but by at most ( 3

2 )ℓ−1 changes).
The number m1 can be checked via distinguishing whether subtreex(y) has changed or

not. If subtreex(y) has not changed, the formula checks that m1 is such that (x, r, y, m1) ∈
#iso-siblingunchanged. If subtreex(y) has changed, find a sibling y∗ of y with an unchanged,
isomorphic subtree. If y∗ exists then the formula checks that m1 is such that (x, r, y∗, m1) ∈
#iso-siblingunchanged, and otherwise that m1 is 0.

MFCS 2024
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For checking m2, let S(y) be the set of siblings y∗ of y in subtreex(r) that contain at least
one affected node and where t-isoℓ(x, y, x, y∗). Since there are at most polylog n changes,
|S(y)| = O(polylog n). Therefore, |S(y)| can be counted and compared to m2 in FO. ◀

5 Tree decompositions of bounded-treewidth graphs

One of the best-known algorithmic meta-theorems is Courcelle’s theorem, which states that
all graph properties expressible in monadic second-order logic MSO can be decided in linear
time for graphs with tree-width bounded by some constant k [5]. The tree-width is a graph
parameter and measures how “tree-like” a graph is and is defined via tree decompositions,
see below for details. Courcelle’s theorem is based on Bodlaender’s theorem, stating that in
linear time (1) one can decide whether a graph has tree-width at most k and (2) one can
compute a corresponding tree decomposition [3].

Elberfeld, Jakoby and Tantau [13] proved variants of these results and showed that “linear
time” can be replaced with “logarithmic space” in both theorem statements. A dynamic
version of Courcelle’s theorem was proven in [8]: every MSO-definable graph property is in
DynFO under changes of single edges. The proof of the latter result circumvented providing
a dynamic variant of Bodlaender’s theorem, by using the result of Elberfeld et al. that tree
decompositions can be computed in LOGSPACE, showing that a tree decomposition can be
used to decide the graph property if only logarithmically many single-edge changes occurred
after its construction, and that this is enough for maintenance in DynFO.

It is an open problem to generalize the DynFO maintenance result of [8] from single-edge
changes to changes of polylogarithmically many edges, even for DynFOLL. Here, we provide
an intermediate step and show that tree decompositions for graphs of bounded treewidth
can be maintained in DynFOLL. This result may lead to a second strategy for maintaining
MSO properties dynamically, in addition to the approach of [8].

A tree decomposition (T, B) of a graph G = (V, E) consists of a rooted tree T and a
mapping B from the nodes of T to subsets of V . For a tree node t, we call the set B(t) the
bag of t. A tree decomposition needs to satisfy three conditions. First, every vertex v ∈ V

needs to be included in some bag. Second, for every edge (u, v) ∈ E there needs to be bag
that includes both u and v. Third, for each vertex v ∈ V , the nodes t of T such that v ∈ B(t)
form a connected subgraph in T . The width of a tree decomposition is the maximal size of a
bag B(t), over all tree nodes t, minus 1. The treewidth of a graph G is the minimal width of
a tree decomposition for G.

In addition to the width, important parameters of a tree decomposition are its depth, the
maximal distance from the root to a leaf, and its degree, the degree of the tree T . Often, a
binary tree decomposition of depth O(log |V |) is desirable, while width O(k) for a graph of
treewidth k is tolerable. We show that one can maintain in DynFOLL a tree decomposition
of logarithmic depth but with unbounded degree. The proof is deferred to the full version
of the paper. It does not use the hierarchical technique; a tree decomposition is defined in
FOLL from auxiliary information that is maintained in DynFO.

▶ Theorem 16. For every k, there are numbers c, d ∈ N such that a tree decomposition of
width ck and depth d log n can be maintained in DynFOLL under changes of polylog(n) edges
for graphs of treewidth k, where n is the size of the graph.
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6 Conclusion and discussion

We have shown that most existing maintenance results for DynFO under single tuple changes
can be lifted to DynFOLL for changes of polylogarithmic size. A notable exception are queries
expressible in monadic second-order logic, which can be maintained on graphs of bounded
treewidth under single-tuple changes.

Thus it seems very likely that one can find large classes of queries such that: If a query
from the class can be maintained in DynFO for changes of size O(1), then it can be maintained
in DynFOLL for polylogarithmic changes. Identifying natural such classes of queries is an
interesting question for future research.
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Abstract
We revisit the work studying homomorphism preservation for first-order logic in sparse classes of
structures initiated in [Atserias et al., JACM 2006] and [Dawar, JCSS 2010]. These established that
first-order logic has the homomorphism preservation property in any sparse class that is monotone
and addable. It turns out that the assumption of addability is not strong enough for the proofs given.
We demonstrate this by constructing classes of graphs of bounded treewidth which are monotone
and addable but fail to have homomorphism preservation. We also show that homomorphism
preservation fails on the class of planar graphs. On the other hand, the proofs of homomorphism
preservation can be recovered by replacing addability by a stronger condition of amalgamation
over bottlenecks. This is analogous to a similar condition formulated for extension preservation in
[Atserias et al., SiCOMP 2008].
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1 Introduction

Preservation theorems have played an important role in the development of finite model
theory. They provide a correspondence between the syntactic structure of first-order sentences
and their semantic behaviour. In the early development of finite model theory it was noted
that many classical preservation theorems fail when we limit ourselves to finite structures.
An important case in point is the Łoś-Tarski or extension preservation theorem, which asserts
that a first-order formula is preserved by embeddings between all structures if, and only
if, it is equivalent to an existential formula. Interestingly, this was shown to fail on finite
structures [15] much before the question attracted interest in finite model theory [12]. On the
other hand, the homomorphism preservation theorem, asserting that formulas preserved by
homomorphisms are precisely those equivalent to existential-positive ones, was remarkably
shown to hold on finite structures by Rossman [14], spurring applications in constraint
satisfaction and database theory.

However, even before Rossman’s celebrated result, these preservation properties were
investigated on subclasses of the class of finite structures. In the case of both the extension
and homomorphism preservation theorems, the direction of the theorem stating that the
syntactic restriction implies the semantic closure condition is easy and holds in restriction to
any class of structures. It is the other direction that may fail and, restricting to a subclass
weakens both the hypothesis and the conclusion, therefore leading to an entirely new question.
Thus, while the class of all finite structures is combinatorially wild, it contains tame classes
which are both algorithmically and model-theoretically better behaved [6]. A study of
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preservation properties for such restricted classes of finite structures was initiated in [3]
and [2], which looked at homomorphism preservation and extension preservation respectively.
The focus was on tame classes defined by sparsity conditions, which allows for methods based
on the locality of first-order logic. In particular, the sparsity conditions were based on what
have come to be called wideness conditions.

We recall the formal definition of wideness in Section 4 below but, informally, a class of
structures C is called wide if in any large enough structure in C we can find a large set of
elements that are pairwise far away from each other. The class C is almost wide if there is a
constant s so that in any large enough structure in C, removing at most s elements gives a
structure in which we can find a large set of elements that are pairwise far away from each
other. Finally, C is said to be quasi-wide if there is a function s so that in any large enough
structure in C, removing at most s(d) elements gives a structure in which we can find a large
set of elements that are pairwise at distance d from each other. In the latter two cases, we
refer to a set of elements whose removal yields a large scatterd set as a bottleneck set.

The main result asserted in [3] is that homomorphism preservation holds in any class
C which is almost wide and is monotone (i.e. closed under substructures) and addable (i.e.
closed under disjoint unions). From this, it is concluded that homomorphism preservation
holds for any class C whose Gaifman graphs exclude some graph G as a minor, as long as C
is monotone and addable. The result was extended from almost wide to quasi-wide classes
in [7], from which homomorphism preservation was deduced for classes that locally exclude
minors and classes that have bounded expansion, again subject to the proviso that they are
monotone and addable. Quasi-wide classes were later identified with nowhere dense classes,
which are now central in structural and algorithmic graph theory [13].

The main technical construction in [3] is concerned with showing that classes of graphs
which exclude a minor are indeed almost wide. The fact that homomorphism preservation
holds in monotone and addable almost wide classes is deduced from a construction of Ajtai
and Gurevich [1] which shows the “density” of minimal models of a first-order sentence
preserved by homomorphisms, and the fact that in an almost wide class a collection of such
dense models must necessarily be finite. While the Ajtai and Gurevich construction is carried
out within the class of all finite structures, it is argued in [3] that it can be carried out in any
monotone and addable class because of “the fact that disjoint union and taking a substructure
are the only constructions used in the proof” [3, p. 216]. This argument is sketched in a bit
more detail in [7, Lemma 7]. The starting point of the present paper is that this argument is
flawed. The construction requires us to take not just disjoint unions, but unions that identify
certain elements: in other words amalgamations over sets of points. On the other hand, we
can relax the requirement of monotonicity to just hereditariness (i.e. closure under induced
substructures). The conclusion is that homomorphism preservation holds in any class C that
is quasi-wide, hereditary and closed under amalgamation over bottleneck points. The precise
statement is given in Theorem 9 below. We also show that the requirements formulated in [3]
are insufficient by constructing a class that is almost wide (indeed, has bounded treewidth),
is monotone and addable, but fails to have the homomorphism preservation property.

Interestingly, the requirement of amalgamations over bottlenecks is similar to that used
to define classes on which the extension preservation property holds in [2], even though the
construction uses rather different methods. The result there can be understood, in our terms,
as showing that the extension preservation theorem holds in any almost wide, hereditary
class with amalgamation over bottlenecks. As we observe below (in Corollary 3), this implies
that homomorphism preservation holds in all such classes. Our Theorem 9 then strengthens
this to quasi-wide classes, where we do not know if extension preservation holds. The class
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of planar graphs is an interesting case as it is used in [2] as an example of a hereditary,
addable class with excluded minors in which extension preservation fails. We show here that
homomorphism preservation also fails in this class, strengthening the result of [2].

In the rest of this paper, we introduce notation and necessary background in Section 2.
We construct a monotone, addable class of graphs of small treewidth in Section 3, providing
the first counterexample to the claims of [3]. Section 4 states and proves the corrected version
of the preservation theorems and Section 5 shows the failure of homomorphism preservation
in the class of planar graphs.

2 Preliminaries

We assume familiarity with the standard notions of finite model theory and structural graph
theory, and refer to [10] and [13] for reference. We henceforth fix a finite relational vocabulary
τ ; by a structure we implicitly mean a τ -structure. We often abuse notation and do not
distinguish between a structure and its domain. Given two structures A,B, a homomorphism
f : A → B is a map such that for all relation symbols R and tuples ā from A we have
ā ∈ RA =⇒ f(ā) ∈ RB. If moreover f(ā) ∈ RB =⇒ ā ∈ RA then f is said to be strong.
An injective strong homomorphism is called an embedding. We also call a homomorphism
f : A → B full if it is surjective and for any relation symbol R and tuple b̄ from B we have
b̄ ∈ RB =⇒ ∃ā ∈ RA with f(ā) = b̄.

A structure B is said to be a weak substructure of a structure A if B ⊆ A and the inclusion
map ι : B ↪→ A is a homomorphism. Likewise, B is an induced substructure of A if the
inclusion map is an embedding. Given a structure A and a subset S ⊆ A we write A[S] for
the unique induced substructure of A with underlying set S. An induced substructure B
of A is said to be free in A if there is some structure C such that A is the disjoint union
B + C. Finally, a substructure B of A is said to be proper if the inclusion map is not full.
We say that a class of structures is monotone if it is closed under weak substructures, and it
is hereditary if it is closed under induced substructures. Moreover a class is called addable
if it is closed under taking disjoint unions. We often consider classes of undirected graphs.
Seen as a relational structure, this is a set with an irreflexive symmetric relation E on it.
A weak substructure of such a graph need not be a graph. However, when we speak of a
monotone class of undirected graphs, we mean it in the usual sense of a class of graphs closed
under the operations of removing edges and vertices.

Given a structure A and an equivalence relation E ⊆ A×A we define the quotient structure
A/E as the structure whose domain A/E = {[a]E : a ∈ A} is the set of E-equivalence classes
and such that for every relation symbol R of arity n we have RA/E = {([a1], . . . , [an]) ∈
A/E : (a1, . . . , an) ∈ RA}. Clearly, the quotient map πE : A↠ A/E is a full homomorphism
which we call the quotient homomorphism. Given structures A,B and a set S ⊆ A ∩B such
that A[S] = B[S], we write A⊕S B for the free amalgam of A and B over S. This can be
defined as the quotient of the disjoint union A+ B by the equivalence relation generated
by {(ιA(s), ιB(s)) : s ∈ S}, where ιA : S → A and ιB : S → B are the inclusion maps.
Evidently, there is an injective homomorphism A → A⊕SB given by composing the inclusion
A → A + B with the quotient A + B → A ⊕S B, and a full homomorphism A + A → A

which descends to a full homomorphism A⊕S A → A.
By the Gaifman graph of a structure A we mean the undirected graph Gaif(A) with

vertex set A such that two elements are adjacent if, and only if, they appear together in
some tuple of a relation of A. Given a structure A, r ∈ N, and a ∈ A, we write Br

A(a) for
the ball of radius r around a in A, that is, the set of elements of M whose distance from a
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in Gaif(A) is at most r; we shall often abuse notation and write Br
A(a) to mean the induced

substructure A[Br
A(a)] of A, possibly with a constant for the element a. A set S ⊆ A is said

to be r-independent if b /∈ Br
A(a) for any a, b ∈ S.

For r ∈ N, let dist(x, y) ≤ r be the first-order formula expressing that the distance between
x and y in the Gaifman graph is at most r, and dist(x, y) > r its negation. Evidently, the
quantifier rank of dist(x, y) ≤ r less than r. A basic local sentence is a sentence

∃x1, . . . , xn(
∧
i ̸=j

dist(xi, xj) > 2r ∧
∧

i∈[n]

ψBr(xi)(xi)),

where ψBr(xi)(xi) denotes the relativisation of ψ to the r-ball around xi, i.e. the formula
obtained from ψ by replacing every quantifier ∃x θ with ∃x(dist(xi, x) ≤ r ∧ θ), and likewise
every quantifier ∀x θ with ∀x(dist(xi, x) ≤ r → θ). We call r the locality radius, n the width,
and ψ the local condition of ϕ. Recall the Gaifman locality theorem [10, Theorem 2.5.1].

▶ Theorem 1 (Gaifman Locality). Every first-order sentence of quantifier rank q is equivalent
to a Boolean combination of basic local sentences of locality radius 7q.

We say that a formula ϕ is preserved by homomorphisms (resp. extensions) over a class of
structures C if for all A,B ∈ C such that there is a homomorphism (resp. embedding) from A

to B, A |= ϕ implies that B |= ϕ. We say that a class of structures C has the homomorphism
preservation property (resp. extension preservation property) if for every formula ϕ preserved
by homomorphisms (resp. extensions) over C there is an existential-positive (resp. existential)
formula ψ such that M |= ϕ ⇐⇒ M |= ψ for all M ∈ C.

Given a formula ϕ and a class of structures C, we say that M ∈ C is a minimal induced
model of ϕ in C if M |= ϕ and for any proper induced substructure N of M with N ∈ C
we have N ̸|= ϕ. The relationship between minimal models and preservation theorems is
highlighted by the following lemma, which is standard, and combines [3, Theorem 3.1] and [2,
Lemma 2.1]

▶ Lemma 2. Let C be a hereditary class of finite structures. Then a sentence preserved
by homomorphisms (resp. extensions) in C is equivalent to an existential-positive (resp.
existential) sentence over C if and only if it has finitely many minimal induced models in C.

▶ Corollary 3. Let C be a hereditary class of finite structures. If C has the extension
preservation property, then C has the homomorphism preservation property.

Proof. If a formula ϕ is preserved by homomorphisms then, in particular, it is preserved
by extensions. It follows that ϕ is equivalent to an existential sentence over C, and so by
Lemma 2 it has finitely many minimal induced models in C. Consequently, the same lemma
implies that ϕ is equivalent to an existential-positive sentence over C as required. ◀

Another immediate consequence of the above is that both preservation properties hold
over any class C that is well-quasi-ordered by the induced substructure relation, i.e. for every
infinite subclass {Mi : i ∈ I} ⊆ C there are i ̸= j ∈ I such that either Mi is an induced
substructure of Mj or vice versa. In fact, any property (i.e. not necessarily definable by
a first-order formula) preserved by homomorphisms (resp. extensions) is equivalent to an
existential positive (resp. existential) formula over a well-quasi-ordered class. In particular,
this applies to classes of cliques or more generally classes of bounded shrub-depth [11].
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3 Preservation can fail on classes of small treewidth

Theorem 4.4 of [3] can be paraphrased in the language of this paper as saying that homo-
morphism preservation holds over any monotone and addable class of bounded treewidth. In
this section we provide a simple counterexample to this, exhibiting a monotone and addable
class of graphs of treewidth 3 where homomorphism preservation fails. More generally, this
contradicts Corollary 3.3 of [3] and Theorem 9 of [7]. To witness failure of preservation, we
must exhibit the relevant class, a formula preserved by homomorphisms over this class, and
an infinite collection of minimal induced models in the class. We then conclude by Lemma 2.

▶ Definition 4. Fix k ∈ N and ni ≥ 3 for every i ∈ [k]. We define the bouquet of cycles of
type (n1, . . . , nk), denoted by Wn1,...,nk

, as the graph obtained by taking the disjoint union of
k cycles of length n1, . . . , nk respectively, and adding an apex vertex, i.e. a vertex adjacent to
every vertex in these cycles. When k = 1, we refer to the graph Wn as the wheel of order n.

Figure 1 The bouquet of cycles of type (6, 9, 10) and the wheel of order 9 respectively.

▶ Lemma 5. Fix n,m ∈ N odd. Then the wheel Wn has chromatic number 4, while its proper
subgraphs have chromatic number 3. Consequently, any homomorphism Wn → Wm is full.

Proof. Fix n,m ∈ N odd. Clearly, any proper colouring of Wn must use a unique colour for
the apex as it is adjacent to every other node in Wn. Moreover, we require an additional
three colours to colour the vertices in the odd-length cycle of Wn. It follows that χ(Wn) = 4.
Now, let W be a proper subgraph of Wn. It follows that there is at least one edge (u, v)
present in Wn which is not in W . If u and v are both in the cycle of odd length then we may
define a proper 3-colouring of W by giving u and v the same colour, alternating between
this and a second colour along the cycle, and using a final third colour for the apex. If one
of u or v is the apex of Wn, then we once again colour u and v with the same colour and use
an additional two colours to alternate between along the cycle. In particular, it follows that
the chromatic number of any homomorphic image of Wn is at least 4, and so it cannot be a
proper substructure of Wm. This implies that any homomorphism f : Wn → Wm is full. ◀

The advantage of working with bouquets of cycles is that, unlike single cycles, there is a
formula that asserts the existence of such a structure as a free induced subgraph. Indeed, let

ϕ := ∃x∃y[E(x, y) ∧ ∀z(z ̸= x ∧ dist(x, z) ≤ 2 → E(x, z) ∧ ψ(x, z)], where

ψ(x, z) := ∃u∃v[u ̸= v∧u ̸= x∧v ̸= x∧E(z, u)∧E(z, v)∧∀w(E(w, z) → w = u∨w = v∨w = x)]

Intuitively, ϕ asserts the following: “there is a vertex x of degree at least one such that every
other vertex reachable from x by a path of length two is adjacent to x and has exactly two
distinct neighbours which are not x”.
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▶ Lemma 6. Let G be an arbitrary finite graph. Then G |= ϕ if, and only if, it contains a
bouquet of cycles as a free induced subgraph.

Proof. Suppose that G contains a bouquet W as a free induced subgraph. Then the apex of
the bouquet is a vertex of degree at least one, while every vertex reachable from the apex by
a path of length two must be in one of the cycles, since W is free in G. Since all vertices in
the cycles have degree exactly two, not considering the apex itself, it follows that G |= ϕ.

Conversely, suppose that G |= ϕ, and let x be the vertex that is guaranteed to exist by
ϕ. Let S ⊆ V (G) be the vertices that are adjacent to x. Since x has degree at least one it
follows that S is non-empty. Partition S into k classes S1, . . . , Sk, by putting two vertices
in the same class if, and only if, there is a path between them in G \ {x}. We argue that
for each i ∈ [k], Si is a free induced cycle in G \ {x}. First, notice that since every vertex
reachable from x by a path of length two has degree exactly two in G \ {x}, it follows that Si

induces a cycle in G \ {x}. Moreover, there is no y ∈ G \ ({x} ∪ Si) which is adjacent to Si.
Indeed, if y ̸= x is adjacent to some v ∈ Si then y is reachable from x by a path of length
two. It follows that y is itself adjacent to x, and therefore y is in S; in particular, y and v

are in the same class and so y ∈ Si. Consequently each Si is a free induced cycle in G \ {x},
and so the connected component of x is a free induced bouquet of cycles in G. ◀

It is evident that ϕ is not preserved by homomorphisms in general as every Wn maps
homomorphically to the structure Wn ∪ {c} with an additional vertex adjacent to the apex,
and while the latter contains a bouquet as an induced subgraph, it does not contain a bouquet
as a free induced subgraph. However, when restricting to subgraphs of disjoint unions of
wheels we no longer have non-free-occurring bouquets. This is the core of the next argument.

▶ Theorem 7. Let C be the monotone and addable closure of {W2n+1 : n ∈ N}. Then
homomorphism preservation fails over C.

Proof. Let ϕ be as above; we argue that it is preserved by homomorphisms over C. Indeed,
if some G ∈ C is such that G |= ϕ then by Lemma 6 it contains a bouquet of cycles as a free
induced subgraph. By the choice of C, this necessarily implies that G contains Wn as a free
induced subgraph for some odd n. Let H ∈ C and f : G → H be a homomorphism. Then
f restricts onto a homomorphism Wn → H which, by the connectivity of Wn and the fact
that H ∈ C, descends to a homomorphism f̂ : Wn → Wm for some odd m ∈ N. It follows by
Lemma 5 that f̂ is full, and therefore H contains Wm as a subgraph. The choice of C once
again ensures that Wm is a free induced subgraph of H, and so Lemma 6 implies that H |= ϕ

as required. Finally, Lemma 6 implies that every Wn is a model of ϕ, while every proper
subgraph of Wn cannot possibly contain a bouquet of cycles as a free induced subgraph,
and so it cannot model ϕ. Consequently, each Wn is a minimal model of ϕ in C, and so we
conclude by Lemma 2 that ϕ is not equivalent to an existential-positive formula over C. ◀

Finally, observe that each graph Wn has treewidth 3 (in fact even pathwidth 3). Indeed,
taking a tree decomposition of the cycle Cn of width 2, and adding the apex to every bag in
the decomposition gives the required tree decomposition of Wn.

4 Preservation under bottleneck amalgamation

The results of [3] were later extended to classes that are quasi-wide. Recall that a class is
called quasi-wide if for every r ∈ N there exist kr ∈ N and fr : N → N such that for all m ∈ N
and M ∈ C of size at least fr(m) there are disjoint sets A,S ⊆ M with |A| ≥ m, |S| ≤ kr

and such that A is r-independent in M \S. Intuitively, quasi-wideness ensures that, for every
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choice of distance, we may find in suitably large structures a large set of elements that are
pairwise far away after removing a small set of bottleneck points. This notion was introduced
for the purpose of extending the arguments of [3] to more general sparse classes, such as
classes of bounded expansion, or classes that locally exclude a minor. Paraphrased into the
language of this paper, Theorem 9 of [7] asserts that: homomorphism preservation holds over
any monotone and addable quasi-wide class. Evidently, this is violated by Theorem 7 above.
Nonetheless, we may salvage the proof by replacing additivity by the stronger assumption of
closure under amalgamation over the bottleneck points that witness quasi-wideness.

The proof proceeds by arguing that any suitably large model M of a sentence ϕ preserved
by homomorphisms over a class C satisfying our assumptions, has a proper induced substruc-
ture N which also models ϕ. We thus obtain a concrete bound on the size of minimal models
of ϕ, and conclude by Lemma 2. The existence of this bound is guaranteed by quasi-wideness,
as any large enough structure contains a large scattered set after removing a small number
of bottleneck points. To isolate the bottleneck points p̄ of M we consider a structure p̄M in
an expanded language which is bi-interpretable with M , and work with the corresponding
interpretation ϕk of ϕ; in particular p̄M contains a large scattered set itself and it models
ϕk. Then, by removing a carefully chosen point from the scattered set of p̄M , we obtain a
proper induced substructure p̄N of p̄M such that N ∈ C by hereditariness. To argue that
this still models ϕk, we use a relativisation of the locality argument of Ajtai and Gurevich
from [1]. While in its original version the argument only considers disjoint copies of M ,
working with the interpretation p̄M of M corresponds to taking free amalgams of M over
the set of bottleneck points; this is precisely the subtlety that was missed in [3] and [7].

We now define the structure p̄M ; in the following we only consider the case of undirected
graphs for simplicity. For arbitrary relational structures the idea is analogous, in that we
isolate the tuple p̄ by forgetting any relation that contains some pi, and introduce new
relation symbols of smaller arities to recover the forgotten relations.

▶ Definition 8. Fix k ∈ N, and let σ = {E,P1, . . . , Pk, Q1, . . . , Qk} be the expansion of the
language of graphs with 2k unary predicates. Given a graph G = (V,E) and a tuple p̄ ∈ V k,
define the σ-structure p̄G on the same domain V such that for all i ∈ [k] :

Ep̄G = {(u, v) ∈ E : u, v /∈ {p1, . . . , pk}};
P p̄G

i = {pi};
Qp̄G

i = {v ∈ V : (pi, v) ∈ E}.

Consider the formula ϵ(x, y) :=
∨

i∈[k](Pi(x)∧Qi(y))∨E(x, y). Given a sentence ϕ, write
ϕk for the σ-sentence obtained by ϕ by replacing every atom E(x, y) by (ϵ(x, y) ∨ ϵ(y, x)). It
is then clear that for every G = (V,E) and p̄ ∈ V k as above G |= ϕ ⇐⇒ p̄G |= ϕk.

With this, we turn to our main theorem in this section. Instead of proving a base case
and invoking that for the interpretation step as in [2], [3], and [7], we opt for a direct proof
to illustrate the relevance of our assumptions on the class.

▶ Theorem 9. Let C be hereditary such that for every r ∈ N there exist kr ∈ N and fr : N → N
so that for every m ∈ N and M ∈ C of size ≥ fr(m) there are disjoint sets A,S ⊆ M with:

|A| ≥ m and |S| ≤ kr;
A being r-independent in M \ S;
⊕n

SM := M ⊕S M ⊕S · · · ⊕S M︸ ︷︷ ︸
n times

∈ C for every n ∈ N.

Then homomorphism preservation holds over C.
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Proof. Let C be as above, and fix ϕ which is preserved by homomorphisms over C. Denote
the quantifier rank of ϕ by q, and let r = 2 · 7q. It follows that there is some k ∈ N and
some f : N → N such that for every m ∈ N and every M in C of size at least f(m), there
are disjoint sets A,S ⊆ M such that |A| ≥ m, |S| ≤ k, |A| is r-independent in M \ S, and
⊕n

SM ∈ C for every n ∈ N. We consider the formula ϕk: by Gaifman locality, there is a set
{ϕ1, . . . , ϕs} of basic local sentences such that ϕk is equivalent to a Boolean combination
of these. For i ∈ [s], let ri and ni be the radius and width of locality respectively of ϕi,
and ψi its local condition. Observe that ϕ and ϕk have the same quantifier rank, and so
2 · maxi∈[s] ri ≤ r. Set n := maxi∈[s] ni and m := 2s + 1. We argue that every minimal model
M ∈ C of ϕ has size < f(m).

Let M be a minimal model of ϕ, and assume for a contradiction that |M | ≥ f(m). It
follows that there is a set S ⊆ M of size k such that M \ S contains an r-independent set
A of size m. Let p̄ ∈ Mk be an enumeration of S; this implies that p̄M |= ϕk and A is an
r-independent set in p̄M . For each i ∈ [s] define

Ψi(x) := ∃y(dist(x, y) ≤ ri ∧ ψ
Bri (y)
i (y)).

Since |A| ≥ m = 2s + 1, it follows that there are at least two vertices u, v ∈ A satisfying

B2ri

p̄M (u) |= Ψi(u) ⇐⇒ B2ri

p̄M (v) |= Ψi(v)

for all i ∈ [s]. Let N ′ be the substructure of p̄M induced on p̄M \ {u}. Since A does
not intersect the vertices in S, the substructure N of M induced on M \ {u} satisfies that
N ′ = p̄N . We shall argue that p̄N |= ϕk and so N |= ϕ, contradicting that M is a minimal
induced model of ϕ.

By our closure assumptions on C, Nn := ⊕n
SN and Mn := M ⊕S (⊕n

SN) are both in C, as
the latter is an induced substructure of ⊕n+1

S M . Since there is a homomorphism M → Mn

we obtain that Mn |= ϕ and thus p̄Mn |= ϕk. We shall argue that

p̄Mn |= ϕi ⇐⇒ p̄Nn |= ϕi

for all basic local sentences ϕi of ϕk. In particular, this implies that p̄Nn |= ϕk, and so
Nn |= ϕ. Since there is a homomorphism Nn → N , the preservation of ϕ implies that N |= ϕ

as claimed.
Clearly, if p̄Nn |= ϕi then p̄Mn |= ϕi by the fact that ϕi is a local sentence and p̄Nn a

free induced substructure of p̄Mn. Conversely, if p̄Mn |= ϕi then there is a 2ri-independent
subset X of size ni such that Bri

p̄Mn
(x) |= ψi(x) for every x ∈ X. Observe that if X ⊆ S then

clearly p̄Nn |= ϕi. So, since S is isolated in p̄Mn and p̄Nn, we focus on elements of X \ S,
which we may assume to be non-empty. We therefore distinguish two cases.

If |X \S| > 1 then, by the 2ri-independence of X, there is at least one x ∈ X \S such that
u /∈ Bri

p̄Mn
(x). It follows that the ri-ball centered at x is isomorphic to an ri-ball centered at

an element in a disjoint copy of N \S. Since p̄Nn contains n ≥ ni such copies, it follows that
there is a 2ri-independent subset Y of Nn of size ni such that Bri

p̄Nn
(y) |= ψi(y) for every

y ∈ Y , i.e. p̄Nn |= ϕi.
On the other hand if |X \ S| = 1, let x be the unique element of X \ S. Clearly if

u /∈ Bri

p̄Mn
(x) then the ri-ball centered at x is isomorphic to the ri-ball centered at an element

in p̄Nn, and so p̄Nn |= ϕi. If u ∈ Bri

p̄Mn
(x), then p̄M |= Ψi(u), and so by the choice of u

and v, p̄M |= Ψi(v). Consequently, there is some y ∈ Bri

p̄M (v) such that Bri

p̄M (v) |= ψi(v).
Observe that because v and u are 2ri-independent, u /∈ Bri

p̄Mn
(y). As before, this implies

that p̄(Bn) |= ϕi.
The above implies that there are finitely many minimal induced models of ϕ in C, and so

we conclude that ϕ is equivalent to an existential-positive formula over C by Lemma 2. ◀
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Going back to bouquets of cycles, it is easy to see that if a bouquet has more than
m2 · (r + 1) vertices then after removing the apex it either contains m disjoint cycles or
it contains a cycle of size at least m · (r + 1); in either case it contains an r-independent
set of size m. In this case the apex is the only bottleneck point, and so amalgamating
over this corresponds to adding more cycles to the bouquet. Consequently, homomorphism
preservation holds for the hereditary closure of the class of bouquets of cycles by Theorem 9
above.

Closure under amalgamation over bottlenecks is a technical condition and one might
consider if it could be replaced by more natural conditions. For example, we could strengthen
it by considering closure under arbitrary amalgamation. However, this is a condition that
does not sit well with sparsity requirements. Indeed, any hereditary class of undirected graphs
that is also closed under arbitrary amalgamation contains arbitrarily large 1-subdivided
cliques, and hence, cannot be quasi-wide. Nonetheless, there are naturally defined sparse
families of structures that satisfy the conditions of Theorem 9. One such class is known
to exist by [2], that is, the class Tk of all graphs of treewidth bounded by k, for any value
of k ∈ N. Indeed, for any suitably large graph of bounded treewidth we may pick a set of
bottleneck points that comes from the same bag in a tree decomposition of the graph, and
so amalgamating over this set of points does not increase the treewidth. Another naturally
defined such class is the class of outerplanar graphs. For our purposes, we may define
outerplanar graphs as those omitting K4 and K2,3 as minors [4]. The quasi-wideness of this
class follows by the following fact, which moreover permits some control over the bottleneck
points.

▶ Theorem 10 ([3]). For every k, r,m ∈ N there is an N = N(k, r,m) ∈ N such that if G is
a graph of size at least N excluding Kk as a minor, then there are disjoint sets A,S ⊆ V (G)
with |A| ≥ m and |S| ≤ k− 2 such that A is 2r-independent in G \S. Moreover, the bipartite
graph KA,S with parts A and S defined by putting an edge between a ∈ A and s ∈ S if and
only if there is some u ∈ Br

G\S(a) such that (u, s) ∈ E(G) is complete.

▶ Theorem 11. Homomorphism preservation holds for the class of outerplanar graphs.

Proof. Since outerplanar graphs are K4-minor-free, it follows by Theorem 10 that for every
r,m ∈ N there exists an N = N(r,m) ∈ N such that if G is an outerplanar graph of size at
least N , then there are disjoint sets A,S ⊆ V (G) with |A| ≥ m, |S| ≤ 2, A r-independent
in G \ S, and KA,S complete. Since outerplanar graphs also forbid K2,3 as a minor, this
implies that |S| ≤ 1. It is then clear that for any such G and S ⊆ V (G), the graph ⊕n

SG is
still outerplanar for all n ∈ N, as no 1-point free amalgams can create K4 or K2,3 minors.
We thus conclude by Theorem 9. ◀

Interestingly, the examples exhibited above are in fact almost-wide, that is, the number of
the bottleneck points does not depend on the radius of independence. It would be interesting
to find natural quasi-wide classes which are not almost-wide, and which are closed under
bottleneck amalgamation. One potential candidate might be the class of all graphs whose
local treewidth is bounded by the same constant.

5 Homomorphism preservation fails on planar graphs

In this section we witness that homomorphism preservation fails on the class of planar
graphs. Previously, it was established [2] that the extension preservation property fails
on planar graphs. Since extension preservation implies homomorphism preservation on
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hereditary classes by Corollary 3, our result strengthens the above. Recall that by Wagner’s
theorem [16] a graph is planar if and only if it omits K3,3 and K5 as minors. Our construction,
in fact, also reveals that homomorphism preservation fails on the class of K5-minor-free
graphs.

▶ Definition 12. Fix n ∈ N. Define Gn as the undirected graph on vertex set V (Gn) =
{v1, v2} ∪ {ai : i ∈ [n]} ∪ {bi : i ∈ [n]} and edge set

E(Gn) = {(v1, ai) : i ∈ [n]} ∪ {(v2, bi) : i ∈ [n]} ∪ {(ai, bi) : i ∈ [n]}

∪{(ai, ai+1) : i ∈ [n− 1]} ∪ {(bi, bi+1) : i ∈ [n− 1]} ∪ {(ai+1, bi) : i ∈ [n− 1]}.

We define Dn as the extension of Gn on the same vertex set, with

E(Dn) = E(Gn) ∪ {(a1, an), (b1, bn), (a1, bn)}.

We also define An as the graph obtained from Gn by taking the quotient over the equivalence
relation generated by (a1, an), and we write αn : Gn → An for the corresponding quotient
homomorphism. Likewise, we let Bn := Gn/(a1, bn) and Cn := Gn/(b1, bn), and write
βn : Gn → Bn and γn : Gn → Cn for the respective quotient homomorphisms.

v1

v2

v1

v2

Figure 2 Planar embeddings of G9 and D9 respectively.

Consider the following observations. First, for every n ≥ 3 the graphs Gn, Dn, An, Bn, Cn

are all planar and 4-chromatic. In particular Dn, Bn, Cn are maximal planar. For n = 3 the
graphs Dn and Bn contain a copy of K4, while for n ≥ 4 they are K4-free. Likewise, for
n ∈ {3, 4} the graphs An and Cn contain a copy of K4, while for n ≥ 5 they are K4-free.
Finally, for 3 ≤ m ≤ n there is a homomorphism δn,m : Gn → Dm that “wraps” Gn around
Dm. Labelling their vertices as above, this satisfies

δn,m(v1) = v1, δn,m(v2) = v2, δn,m(ai) = ai mod m and δn,m(bi) = bi mod m,

for all i ∈ [n].
We proceed to characterise the K5-minor-free homomorphic images of Dn. We argue that

these either contain K4, or an induced copy of Dm for some m with m|n. The proof proceeds
by first characterising the K5-minor-free homomorphic images of Gn by induction, and then
using that Gn is a subgraph of Dn. While this requires a fair amount of book-keeping, it is
not conceptually difficult. The base case of the induction is the following lemma.
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Figure 3 Planar embeddings of A6, B6, and C6 respectively.

▶ Lemma 13. Let f : G3 → H be a homomorphism. If H is K4-free then f is injective.

Proof. Let H be a K4-free graph, and f : G3 → H a homomorphism. Label the vertices of
G3 as in the picture below; we shall argue that f is injective.

v1

v2

a1 a2 a3

b1 b2 b3

First, notice that f is injective on {v2, b1, b2} since they form a triangle in G3.
If f(a2) = f(v2) then the set {f(v2), f(b2), f(a3), f(b3)} induces K4 in H; it follows
that f(a2) ̸= f(v2), and so f is injective on {v2, b1, b2, a2}. Likewise, f(b3) ̸= f(a2)
as otherwise {f(b1), f(b2), f(b3), f(v2)} induce K4 in H. Moreover, f(b3) ̸= f(b1)
as {f(b1), f(b2), f(a2), f(a3)} would otherwise induce K4 in H. It follows that f

is injective on {v2, b1, b2, b3, a2}. From this we deduce that f(a3) ̸= f(b1) as oth-
erwise {f(v2), f(b1), f(b2), f(b3)} would induce K4 in H, and that f(a3) ̸= f(v2) as
otherwise {f(v2), f(b1), f(b2), f(a2)} would also induce K4. Hence, f is injective on
{v2, b1, b2, b3, a2, a3}. By symmetry, it follows that f is also injective on {v1, a1, a2, a3, b1, b2}.
Notice that f(a1) ̸= f(b3) and f(v1) ̸= f(b3) since otherwise {f(a2), f(a3), f(b2), f(b3)}
would induce K4 in H. Finally, f(a1) ̸= f(v2) and f(v1) ̸= f(v2) as otherwise
{f(a2), f(b1), f(b2), f(v2)} would induce K4 in H. Putting all the above together, we
conclude that f is injective on all of G3 as required. ◀

We now proceed to the general case.
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▶ Lemma 14. Fix n ≥ 3. Let f : Gn → H be a homomorphism, where H is K4-free and
K5-minor-free. Then one of the following is true:
1. f is injective;
2. there is some m ∈ [4, n− 1] and an embedding f̂ : Dm → H such that f = f̂ ◦ δn,m;
3. n ≥ 5 and there is an injective homomorphism f̂ : An → H such that f = f̂ ◦ αn;
4. n ≥ 4 and there is an embedding f̂ : Bn → H such that f = f̂ ◦ βn;
5. n ≥ 5 and there is an embedding f̂ : Cn → H such that f = f̂ ◦ γn;

Proof. We prove the claim by induction on n. The base case n = 3 follows by Lemma 13.
So, fix a K4-free and K5-minor-free graph H and consider a homomorphism f : Gn+1 → H.
Evidently, this restricts to a homomorphism f ′ : Gn → H. By the induction hypothesis, we
may assume that f ′ satisfies one of the five conditions of this proposition.

Assume that f ′ satisfies (1), i.e. f is injective on Gn = Gn+1 \ {an+1, bn+1}. We consider
the images of the vertices an+1 and bn+1 under f . Observe that (an+1, bn+1) ∈ E(Gn+1) so
f(an+1) ̸= f(bn+1). Clearly, if f(an+1) and f(bn+1) are not any of the vertices in f [Gn],
then f is itself injective and (1) holds. We hence distinguish three cases.

First, suppose that f(an+1) ∈ f [Gn] and f(bn+1) /∈ f [Gn]. Since there are edges
(v1, an+1), (an, an+1), and (bn, an+1), it follows that f(an+1) /∈ {f(v1), f(an), f(bn)}.
Moreover, f(an+1) ̸= f(v2) as otherwise {f(bn−1), f(bn), f(an), f(v2)} would induce K4
in H. Similarly, f(an+1) ̸= f(an−1), as otherwise {f(an−1), f(bn−1), f(an), f(bn)} would
induce K4, and f(an+1) ̸= f(bn−1), as otherwise {f(v1), f(an−1), f(an), f(bn−1)} would
induce K4. In addition, f(an+1) /∈ {f(ai) : 2 ≤ i ≤ n − 2} as otherwise an edge
(f(ai), f(an)) for some i ∈ [2, n − 2] would produce a K5-minor in H, namely the minor
arising from S1 = {f(v1)}, S2 = {f(ai)}, S3 = {f(an)}, S4 = {f(aj) : i + 1 ≤ j ≤
n − 1}, S5 = {f(v2), f(b1), f(a1), f(bi), f(bi+1), f(bn)}. A similar argument reveals that
f(an+1) /∈ {f(bi) : 2 ≤ i ≤ n − 2}. It follows that f(an+1) = f(b1) or f(an+1) = f(a1).
The former case would produce a copy of K4, namely {f(v1), f(a1), f(a2), f(b1)}, leading
to a contradiction. Hence f(an+1) = f(a1). Since f(bn+1) /∈ f [Gn], it follows that f factors
through the quotient homomorphism αn, i.e. case (3) is true.

Next, suppose that f(an+1) ∈ f [Gn] and f(bn+1) ∈ f [Gn]. As before, we deduce from
the first assumption that f(an+1) = f(a1). This implies that there are edges (f(a1), f(an))
and (f(a1), f(bn)) in H. Since there are edges (an+1, bn+1), (bn, bn+1), (v2, bn+1) in Gn+1 we
deduce that f(bn+1) /∈ {f(a1), f(bn), f(v2)}. Moreover, f(bn+1) ̸= f(v1) as otherwise the
edge (f(v1), f(v2)) would produce a K5-minor in H, namely S1 = {f(v1)}, S2 = {f(a1)}, S3 =
{f(an)}, S4 = {f(aj) : j ∈ [2, n−1]}, S5 = {f(v2), f(b1), f(b2), f(bn)}. Similarly, a K5-minor
arises in H if f(bn+1) ∈ {f(ai), f(bi) : i ∈ [2, n− 1]}. We thus deduce that f(bn+1) = f(b1),
from which we conclude that f [Gn+1] induces a copy of Dn in H, and more precisely, case
(2) holds.

So, suppose that f(an+1) /∈ f [Gn] and f(bn+1) ∈ f [Gn]. We consider the possible
images of bn+1 under f . Since there are edges (an+1, bn+1), (v2, bn+1), (bn, bn+1) in Gn+1
we deduce that f(bn+1) /∈ {f(an+1), f(v2), f(bn)}. Moreover, f(bn+1) ̸= f(v1) as oth-
erwise {f(v1), f(an), f(an+1), f(bn)} would induce K4 in H. Likewise, f(bn+1) ̸= f(an)
as otherwise {f(v2), f(ab−1), f(bn), f(an)} would induce K4 in H. Moreover f(bn+1) /∈
{f(ai) : i ∈ [2, n − 1]} as otherwise the edge (f(ai), f(an+1)) would produce a K5-
minor in H, namely S1 = {f(v1)}, S2 = {f(ai)}, S3 = {f(an+1)}, S4 = {f(aj) : j ∈
[i + 1, n]}, S5 = {f(v2), f(b1), f(a1), f(bi), f(bi+1), f(bn)}. Very similarly, we deduce that
f(bn+1) /∈ {f(bi) : i ∈ [2, n− 1]}. It follows that f(bn+1) = f(a1) or f(bn+1) = f(b1). In the
former case, it follows that f factors through the quotient homomorphism βn, and so (4) is
true, while in the latter case, it follows that f factors through γn, and so (5) is true.
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Next, assume that f ′ satisfies (2), i.e. there is some m ∈ [4, n− 1] and and an embedding
f̂ : Dm → H such that f ′ = f̂ ◦δn,m. Arguing as before, it is easy to see that the assumptions
on H force f(an+1) to be equal to f̂(an+1 mod m), and likewise f(bn+1) = f̂(bn+1 mod m),
implying that f = f̂ ◦ δn+1,m. Hence f also satisfies (2).

Finally, we argue that f ′ cannot satisfy any of (3), (4), and (5). Indeed, assume for a
contradiction that f ′ satisfies (3) and write f ′ as f̂ ◦ αn for some injective homomorphism
f̂ : An → H. In particular, we know that n ≥ 5. Consider the image of an+1 under f ; this
is some vertex adjacent to f(an) = f(a1), f(v1), and f(bn). If f(an+1) /∈ f [Gn], then we
obtain a K5-minor in H, namely S1 = {f(v1)}, S2 = {f(a1)}, S3 = {f(an−1)}, S4 = {f(ai) :
i ∈ [2, n − 1]}, S5 = {f(v2), f(b1), f(b2), f(bn−1), f(bn), f(an+1)}. So f(an+1) ∈ f [Gn]. If
f(an1) = f(ai) for some i ∈ [2, n − 2] then we obtain a K5-minor in H by picking some
j ∈ [2, n − 2] \ {i} and letting S1 = {f(v1), f(aj)}, S2 = {f(a1)}, S3 = {f(an−1)}, S4 =
{f(bi) : i ∈ [n − 1]}, S5 = {f(v2), f(bn), f(ai)}. Likewise, if f(an+1) = f(an−1) then we
obtain the K5-minor S1 = {f(v1)}, S2 = {f(a1)}, S3 = {f(bn−1), f(bn−2), f(an−2)}, S4 =
{f(ai) : i ∈ [2, n − 3]}, S5 = {f(v2), f(bn), f(an−1)}. Consequently, f(an+1) = f(bi) for
some i ∈ [1, n− 1]. This produces an edge (f(v1), f(bi)) and thus gives rise to the K5-minor
S1 = {f(v1)}, S2 = {f(aj) : j ∈ [1, i−1]}, S3 = {f(ai)}, S4 = {f(aj) : j ∈ [i+1, n−1]}, S5 =
{f(v2), f(b1), f(bi), f(bn−1)}. It follows that f ′ cannot satisfy (3); via very similar reasoning,
we exclude cases (4) and (5). ◀

Having established the above, our characterisation of the K5-minor-free homomorphic
images of Dn follows easily.

▶ Proposition 15. Fix n ≥ 4. Then any K4-free and K5-minor-free homomorphic image of
Dn contains an induced copy of Dm for some m ≥ 4 such that m|n.

Proof. Consider a homomorphism f : Dn → H where H is K4-free and K5-minor-free. Then
f descends to a homomorphism f ′ : Gn → H. It follows that one of the five cases of Lemma 14
holds. If f ′ is injective, then in particular f is injective; since the addition of any edge in Dn

creates a K5-minor, it follows that f is in fact an embedding as required. Suppose that case
(2) is true, and let m ∈ [4, n− 1] and f̂ : Dm → H be such that f ′ = f̂ ◦ δn,m. In particular,
Dm is an induced subgraph of H and m|n. Finally, case (3) leads to a contradiction as the
edge (a1, an) in Dn implies that f(a1) ̸= f(an), case (4) leads to a contradiction as the edge
(a1, bn) implies that f(a1) ̸= f(bn), and likewise, case (5) leads to a contradiction as the edge
(b1, bn) implies that f(b1) ̸= f(bn). ◀

We also define G∞ as the countably infinite analogue of Gn, i.e. the graph on the vertex
set V (G∞) = {v1, v2} ∪ {ai : i ∈ N>0} ∪ {bi : i ∈ N>0} and edge set

E(Gn) = {(v1, ai) : i ∈ N>0} ∪ {(v2, bi) : i ∈ N>0} ∪ {(ai, bi) : i ∈ N>0}

∪{(ai, ai+1) : i ∈ N>0} ∪ {(bi, bi+1) : i ∈ N>0} ∪ {(ai+1, bi) : i ∈ N>0}.

Likewise, we define the homomorphism δ∞,m : G∞ → Dm in analogy to the homomorphisms
δn,m : Gn → Dm. Lemma 14 allows us to also characterise the finite K5-minor-free
homomorphic images of G∞.

▶ Lemma 16. Let f : G∞ → H be a homomorphism where H is finite, K4-free, and
K5-minor-free. Then there is some m ≥ 4 and an embedding f̂ : Dm → H such that
f = f̂ ◦ δ∞,m.
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Proof. Fix f as above and let n := |H|. It follows that f restricts to a homomorphism
f ′ : Gn → H; this satisfies one of the five cases of Lemma 14. Clearly, cases (1),(3),(4),
and (5) are ruled out due to size restrictions. Consequently, case (2) holds and the claim
follows. ◀

With the above, we show that the existence of the graphs Dn as induced subgraphs is
definable among K4-free K5-minor-free graphs by a simple first-order formula. Indeed, let

χ(x1, x2, y1, z1, y2, z2) = E(x1, y2)∧E(y1, y2)∧E(z1, y2)∧E(z1, z2)∧E(y2, z2)∧E(z2, x2), and

ϕ = ∃x1, x2, y, z[E(x1, y) ∧ E(y, z) ∧ E(z, x2) ∧ ∀a, b(E(x1, a) ∧ E(a, b) ∧ E(b, x2))

→ ∃c, d χ(x1, x2, a, b, c, d))]

▶ Lemma 17. Let H be a finite K4-free and K5-minor free graph. If H |= ϕ then there is
some n ≥ 4 such that H contains Dn as an induced subgraph.

Proof. Fix a graph H as above, and suppose that G |= ϕ. We inductively define a chain of
partial homomorphisms f1 ⊆ f2 ⊆ f3 ⊆ . . . from G∞ → H such that dom(fn) = Gn. Then
the map f = ∪∞

n=1fn is a homomorphism G∞ → H, and hence Lemma 16 implies that H
contains some Dn as an induced subgraph.

Since H |= ϕ it follows that there are x1, x2, y, z ∈ V (H) such that

H |= E(x1, y) ∧ E(y, z) ∧ E(z, x2).

Consequently, the map f1 : G1 → H given by f(v1) = x1, f(v2) = x2, f(a1) = y, f(b1) = z is
a homomorphism as required. So, suppose that fn has been defined. Since

H |= E(x1, f(an)) ∧ E(f(an), f(bn)) ∧ E(f(bn), x2)

it follows that

H |= ∃c, d χ(x1, x2, f(an), f(bn), c, d).

We consequently extend fn : Gn → H to fn+1 : Gn+1 → H by letting fn+1(an+1) = c and
fn+1(bn+1) = d; this is easily seen to be a valid homomorphism by the choice of χ. ◀

▶ Lemma 18. Let H be a K5-minor-free graph. If H contains some Dn for n ≥ 3 as an
induced subgraph then H |= ϕ.

Proof. Let Dn ≤ H be as above. Clearly, H |= E(v1, a1) ∧ E(a1, b1) ∧ E(b1, v2) So, let
a, b ∈ V (H) be arbitrary vertices such that H |= E(v1, a) ∧ E(a, b) ∧ E(b, v2); we first
argue that a ∈ {ai : i ∈ [n]} and b ∈ {bi : i ∈ [n]}. Towards this, observe first that
b /∈ {ai : i ∈ [n]} ∪ {v1} as otherwise the edge (v2, ai) or (v2, v1) would contradict that Dn

is induced in H. So, assume for a contradiction that a /∈ {ai : i ∈ [n]}. Since there is an
edge (v1, a) it follows that a ̸= v1, and so in particular the sets S1 = {v1}, S2 = {a1}, S3 =
{an}, S4 = {aj : j ∈ [2, n − 1]}, S5 = {v2, b1, bn, a, b} produce a K5-minor in H. With a
symmetric argument we obtain that b ∈ {bi : i ∈ [n]}. Now, since there is an edge (a, b) it
follows that there is some i ∈ [n] such that a = ai and b = bi or b = bi−1 mod n. In these two
respective cases we have that

H |= χ(v1, v2, a, b, ai+1 mod n, bi+1 mod n), or H |= χ(v1, v2, a, b, ai−1 mod n, bi−2 mod n).

In either case, H |= ∃c, d χ(v1, v2, a, b, c, d), and since the choice of a, b ∈ V (H) was arbitrary
we obtain that H |= ϕ as required. ◀



A. Dawar and I. Eleftheriadis 47:15

Putting all the above together, we deduce the main theorem of this section.

▶ Theorem 19. The class of planar graphs does not have the homomorphism preservation
property.

Proof. Let ϕ̂ be the disjunction of ϕ with the formula that induces a copy of K4, i.e.

ϕ̂ := ϕ ∨ ∃x1, x2, x3, x4
∧
i̸=j

E(xi, xj).

We argue that ϕ̂ is preserved by homomorphisms over the class of planar graphs. Indeed, let
f : G → H be a homomorphism with G,H planar such that G |= ϕ̂. Clearly, if H contains
a copy of K4 then H |= ϕ̂. So, without loss of generality we may assume that G |= ϕ and
G,H are K4-free. It follows by Lemma 17 that there exists some n ≥ 4 such that G contains
Dn as a subgraph. Consequently, Proposition 15 implies that there is some m ≥ 4 such that
H contains Dm as a subgraph. Lemma 18 then implies that H |= ϕ, and thus H |= ϕ̂ as
required. To conclude, observe that the minimal models of ϕ̂ over the class of planar graphs
are K4 and the graphs Dn for n ≥ 4; since these are infinitely many Lemma 2 implies that ϕ̂
is not equivalent to an existential-positive formula over the class of planar graphs. ◀

Since we only use exclusion of K5-minors in the above, we additionally obtain the
following.

▶ Theorem 20. The class of all K5-minor-free graphs does not have the homomorphism
preservation property.

Finally, while we have not referred to topological minors to simplify our arguments, an
easy check reveals that the above are still valid when considering graphs that forbid K5 as
a topological minor, implying that homomorphism preservation also fails on the class of
K5-topological-minor-free graphs.

6 Conclusion

Much work in finite model theory explores tame classes of finite structures. In [6], two related
notions of tameness are identified: algorithmic tameness and model-theoretic tameness. The
former is centred around the tractability of model-checking for first-order logic while the
latter is illustrated by preservation theorems and it was argued that these occurred together
in sparse classes of structures. More recently, algorithmic tameness has been explored
extensively for dense classes as well (see [8] for example). On the other hand, the results
here show that the status of preservation theorems on sparse classes is more subtle and relies
on closure properties that are not always present in natural classes such as planar graphs.
Nonetheless, it is an interesting question whether the recent understanding of tame dense
classes, such as monadically stable and more generally monadically dependent classes, can
also cast light on preservation theorems. The arguments for homomorphism and extension
preservation rely on quasi-wideness and almost-wideness respectively. Similar wideness
phenomena occur for dense classes, by replacing deletion of bottleneck points with performing
flips, that is, edge-complementations within subsets of the domain (see Table 1 in [9]). A
question inspired by this is whether, for every k ∈ N, the class of all graphs of cliquewidth at
most k has the extension preservation property. For k ≤ 2 this follows from the fact that
cographs are well-quasi-ordered by the induced subgraph relation [5].
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Abstract
The goal of local certification is to locally convince the vertices of a graph G that G satisfies a
given property. A prover assigns short certificates to the vertices of the graph, then the vertices
are allowed to check their certificates and the certificates of their neighbors, and based only on this
local view and their own unique identifier, they must decide whether G satisfies the given property.
If the graph indeed satisfies the property, all vertices must accept the instance, and otherwise at
least one vertex must reject the instance (for any possible assignment of certificates). The goal is to
minimize the size of the certificates.

In this paper we study the local certification of geometric and topological graph classes. While it
is known that in n-vertex graphs, planarity can be certified locally with certificates of size O(log n),
we show that several closely related graph classes require certificates of size Ω(n). This includes
penny graphs, unit-distance graphs, (induced) subgraphs of the square grid, 1-planar graphs, and
unit-square graphs. These bounds are tight up to a constant factor and give the first known examples
of hereditary (and even monotone) graph classes for which the certificates must have linear size. For
unit-disk graphs we obtain a lower bound of Ω(n1−δ) for any δ > 0 on the size of the certificates,
and an upper bound of O(n log n). The lower bounds are obtained by proving rigidity properties of
the considered graphs, which might be of independent interest.
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1 Introduction

Local certification is an emerging subfield of distributed computing where the goal is to assign
short certificates to each of the nodes of a network (some connected graph G) such that the
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to some given graph class C) by only inspecting their unique identifier, their certificate and
the certificates of their neighbors. This assignment of certificates is called a proof labeling
scheme, and its complexity is the maximum number of bits of a certificate (as a function of
the number of vertices of G, which is usually denoted by n in the paper). If a graph class
C admits a proof labeling scheme of complexity f(n), we say that C has local complexity
f(n). Proof labelling schemes are distributed analogues of traditional non-deterministic
algorithms, and graph classes of logarithmic local complexity can be considered as distributed
analogues of classes whose recognition is in NP [7]. The notion of proof labeling scheme was
formally introduced by Korman, Kutten and Peleg in [17], but originates in earlier work on
self-stabilizing algorithms (see again [7] for the history of local certification and a thorough
introduction to the field). While every graph class has local complexity O(n2) [17],1 the
work of [13] identified three natural ranges of local complexity for graph classes:

Θ(1): this includes k-colorability for fixed k, and in particular bipartiteness;
Θ(log n): this includes non-bipartiteness and acyclicity; and
Θ(poly(n)): this includes non-3-colorability and problems involving symmetry.

It was later proved in [19] that any graph class which can be recognized in linear time (by
a centralized algorithm) has an “interactive” proof labeling scheme of complexity O(log n),
where “interactive” means that there are several rounds of interaction between the prover
(the entity which assigns certificates) and the nodes of the network (see also [16] for more on
distributed interactive protocols). A natural question is whether the interactions are necessary
or whether such graph classes have classical proof labeling schemes of complexity O(log n) as
defined above, that is, without multiple rounds of interaction. This question triggered the
work of [9] on planar graphs, which have a well-known linear time recognition algorithm. The
authors of [9] proved that the class of planar graphs indeed has local complexity O(log n), and
asked whether the same holds for any proper minor-closed class.2 This was later proved for
graphs embeddable on any fixed surface in [10] (see also [6]) and in [2] for classes excluding
small minors, while it was proved in [12] that classes excluding a planar graph H as a minor
have local complexity O(log2 n). The authors of [12] also proved the related result that any
graph class of bounded treewidth which is expressible in second order monadic logic has
local complexity O(log2 n) (this implies in particular that for any fixed k, the class of graphs
of treewidth at most k has local complexity O(log2 n)). Similar meta-theorems involving
graph classes expressible in some logic were proved for graphs of bounded treedepth in [8]
and graphs of bounded cliquewidth in [11].

Closer to the topic of the present paper, the authors of [14] obtained proof labeling schemes
of complexity O(log n) for a number of classes of geometric intersection graphs, including
interval graphs, chordal graphs, circular-arc graphs, trapezoid graphs, and permutation
graphs. It was noted earlier in [15] (which proved various results on interactive proof labeling
schemes for geometric graph classes) that the “only” classes of graphs for which large lower
bounds on the local complexity are known (for instance non-3-colorability, or some properties
involving symmetry) are not hereditary, meaning that they are not closed under taking
induced subgraphs. It turns out that an example of a hereditary class with polynomial local
complexity had already been identified in [4] a couple of years earlier: triangle-free graphs
(the lower bound on the local complexity given there was sublinear). It was speculated in [15]

1 Give to every vertex the adjacency matrix of the graph.
2 Note that it is easy to show that for any minor-closed class C, the complement of C has local complexity

O(log n), using Robertson and Seymour’s Graph Minor Theorem [21].
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that any class of geometric intersection graphs has small local complexity, as such classes are
both hereditary and well-structured.

Results

In this paper we identify a key rigidity property in graph classes and use it to derive a number
of linear lower bounds on the local complexity of graph classes defined using geometric or
topological properties. These bounds are all best possible, up to no(1) factors. So our main
result is that for a number of classical hereditary graph classes studied in structural graph
theory, topological graph theory, and graph drawing, the local complexity is Θ(n). These are
the first non-trivial examples of hereditary classes (some of our examples are even monotone)
with linear local complexity. Interestingly, all the classes we consider are very close to the
class of planar graphs (which is known to have local complexity Θ(log n) [9, 6]): most of these
classes are either subclasses or superclasses of planar graphs. Given the earlier results on
graphs of bounded treewidth [12] and planar graphs, it is natural to try to understand which
sparse graph classes have (poly)logarithmic local complexity. It would have been tempting
to conjecture that any (monotone or hereditary) graph class of bounded expansion (in the
sense of Nešetřil and Ossona de Mendez [20]) has polylogarithmic local complexity, but our
results show that this is false, even for very simple monotone classes of linear expansion.

We first show that every class of graphs that contains at most 2f(n) unlabeled graphs of
size n has local complexity f(n) + O(log n). This implies all the upper bounds we obtain in
this paper, as the classes of graphs we consider usually contain 2O(n) or 2O(n log n) unlabeled
graphs of size n.

We then turn to lower bounds. Using rigidity properties in the classes we consider, we
give a Ω(n) bound on the local complexity of penny graphs (contact graphs of unit-disks
in the plane), unit-distance graphs (graphs that admit an embedding in R2 where adjacent
vertices are exactly the vertices at Euclidean distance 1), and (induced) subgraphs of the
square grid. We then consider 1-planar graphs, which are graphs admitting a planar drawing
in which each edge is crossed by at most one edge. This superclass of planar graphs shares
many similarities with them, but we nevertheless prove that it has local complexity Θ(n)
(while planar graphs have local complexity Θ(log n)).

Next, we consider unit-square graphs (intersection graphs of unit-squares in the plane).
We obtain a linear lower bound on the local complexity of triangle-free unit-square graphs
(which are planar) and of unit-square graphs in general. Finally, we consider unit-disk graphs
(intersection of unit-disks in the plane), which are widely used in distributed computing as a
model of wireless communication networks. For this class we reuse some key ideas introduced
in the unit-square case, but as unit-disk graphs are much less rigid we need to introduce
a number of new tools, which might be of independent interest in the study of rigidity in
geometric graph classes. In particular we answer questions such as: what is asymptotically
the minimum number of vertices in a unit-disk graph G such that in any unit-disk embedding
of G, two given vertices u and v are at Euclidean distance at least n and at most n + 1? Or
at distance at least n and at most n + ε, for ε ≪ n? Using our constructions we obtain a
lower bound of Ω(n1−δ) (for every δ > 0) on the local complexity of unit-disk graphs. As
there are at most 2O(n log n) unlabelled unit-disk graphs on n vertices [18], our first result
implies that the local complexity of unit-disk graphs is O(n log n), so our results are nearly
tight.
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Techniques
All our lower bounds are inspired by the set-disjointness problem in non-deterministic com-
munication complexity. This approach was already used in earlier work in local certification,
in order to provide lower bounds on the local complexity of computing the diameter [3], or
for certifying non-3-colorability [13]. Here the main challenge is to translate the technique
into geometric constraints. The key point of the set-disjointness problem is informally the
following: let A, B ⊆ {1, . . . , N} be the input of some kind of “two-party system” that must
decide whether A and B are disjoint, given that one party knows A and the other knows B;
then at least N bits of shared (or exchanged) information are necessary for them to decide
correctly. Otherwise, there are fewer bit combinations than the 2N entries of the form (A, A),
hence the two parties can be fooled to accept a negative instance built from two particular
positive instances sharing the same bit combination. In the setting of non-deterministic
communication complexity, the two parties are Alice and Bob; in our setting, the two parties
will be two subsets of vertices covering the graph and with small intersection (the intersection
must be a small cutset of the whole graph): in the following, we refer to those two connected
subsets of vertices as respectively the “left” part and the “right” part of the graph. The
“shared” bits of information will be the certificates given to their intersection (and to its
neighborhood). To express the sets A, B and their disjointness, the left (resp. right) part of
the graph will be equipped with a path PA (resp. PB) of length Ω(N), such that PA and PB

only intersect in their endpoints.3 The crucial rigidity property which we will require is that
in any embedding of G as a geometric graph from some class C, the two paths PA and PB

will be very close, in the sense that if PA = a1, . . . , aℓ and PB = b1, . . . , bℓ, then ai is close to
bi for any 1 ≤ i ≤ ℓ. Using this property, we will attach some gadgets to the vertices of the
path PA (resp. PB) depending on A (resp. B), in such a way that the resulting graph lies in
the class C if and only if A and B are disjoint. As there is little connectivity between the left
and the right part, the endpoints of the paths will have to contain very long certificates in
order to decide whether A and B are disjoint, hence whether G ∈ C or not.

We present the results in increasing order of difficulty. Subgraphs or induced subgraphs
of infinite graphs such as grids are perfectly rigid in some sense, with some graphs having
unique embeddings up to symmetry. Unit-square graphs are much less rigid but we can use
nice properties of the ℓ∞-distance and the uniqueness of embeddings of 3-connected planar
graphs. We conclude with unit-disk graphs, which is the least rigid class we consider. The
Euclidean distance misses most of the properties enjoyed by the ℓ∞-distance and we must
work much harder to obtain the desired rigidity property.

Outline
We start with some preliminaries on graph classes and local certification in Section 2. We
prove our general upper bound result in Section 3. Section 4 introduces the notion of
disjointness-expressing class of graphs, highlighting the key properties needed to derive our
local certification lower bounds. We deduce in Section 5 linear lower bounds on the local
complexity of subgraphs of the grid, penny graphs, and 1-planar graphs. Section 6 is devoted
for the linear lower bound on the local complexity of unit-square graphs, while Section 7
contains our main result, a quasi-linear lower bound on the local complexity of unit-disk
graphs. We conclude in Section 8 with a number of questions and open problems.

Due to the limit on the number of pages of the submission, most of the proofs have been
omitted in this version. They are available in the full version of the paper [5].

3 We note here that the proof for 1-planar graphs diverges from this approach, but it is the only one.
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2 Preliminaries

In this paper logarithms are binary, and graphs are assumed to be simple, loopless, undirected,
and connected. The length of a path P , denoted by |P |, is the number of edges of P . The
distance between two vertices u and v in a graph G, denoted by dG(u, v) is the minimum
length of a path between u and v. The neighborhood of a vertex v in a graph G, denoted by
NG(v) (or N(v) if G is clear from the context), is the set of vertices at distance exactly 1
from v. The closed neighborhood of v, denoted by NG[v] := {v} ∪ NG(v), is the set of vertices
at distance at most 1 from v. For a set S of vertices of G, we define NG[S] :=

⋃
v∈S NG[v].

2.1 Local certification

The vertices of any n-vertex graph G are assumed to be assigned distinct (but otherwise
arbitrary) identifiers (id(v))v∈V (G) from {1, . . . , poly(n)}. When we refer to a subgraph H

of a graph G, we implicitly refer to the corresponding labeled subgraph of G. Note that the
identifiers of each of the vertices of G can be stored using O(log n) bits, where log denotes
the binary logarithm. We follow the terminology introduced by Göös and Suomela [13].

Proofs and provers

A proof for a graph G is a function P : V (G) → {0, 1}∗ (as G is a labeled graph, the proof
P is allowed to depend on the identifiers of the vertices of G). The binary words P (v) are
called certificates. The size of P is the maximum size of a certificate P (v), for v ∈ V (G). A
prover for a graph class G is a function that maps every G ∈ G to a proof for G.

Local verifiers

A verifier A is a function that takes a graph G, a proof P for G, and a vertex v ∈ V (G) as
inputs, and outputs an element of {0, 1}. We say that v accepts the instance if A(G, P, v) = 1
and that v rejects the instance if A(G, P, v) = 0.

Consider a graph G, a proof P for G, and a vertex v ∈ V (G). We denote by G[v] the
subgraph of G induced by N [v], the closed neighborhood of v, and similarly we denote by
P [v] the restriction of P to N [v].

A verifier A is local if for any v ∈ G, the output of v only depends on its identifier and
P [v].

Note that our lower bounds hold in the stronger model of locally checkable proofs of Göös
and Suomela [13], where in addition the output of v is allowed to depend on G[v], that is
A(G, P, v) = A(G[v], P [v], v) for any vertex v of G.

Proof labeling schemes

A proof labeling scheme for a graph class G is a prover-verifier pair (P, A) where A is local,
with the following properties.

Completeness: If G ∈ G, then P := P(G) is a proof for G such that for any vertex v ∈ V (G),
A(G, P, v) = 1.

Soundness: If G ̸∈ G, then for every proof P ′ for G, there exists a vertex v ∈ V (G) such
that A(G, P ′, v) = 0.
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48:6 Local Certification of Geometric Graph Classes

In other words, upon looking at its closed neighborhood (labeled by the identifiers and
certificates), the local verifier of each vertex of a graph G ∈ G accepts the instance, while if
G ̸∈ G, for every possible choice of certificates, the local verifier of at least one vertex rejects
the instance.

The complexity of the proof labeling scheme is the maximum size of a proof P = P(G)
for an n-vertex graph G ∈ G, and the local complexity of G is the minimum complexity of a
proof labeling scheme for G. If we say that the complexity is O(f(n)), for some function f ,
the O(·) notation refers to n → ∞. See [7, 13] for more details on proof labeling schemes
and local certification in general.

2.2 Geometric graph classes
In this section we collect some useful properties that are shared by most of the graph classes
we will investigate in the paper.

A unit-disk graph (respectively unit-square graph) is the intersection graph of unit-disks
(respectively unit-squares) in the plane. That is, G is a unit-disk graph if every vertex of G

can be mapped to a unit-disk in the plane so that two vertices are adjacent if and only if the
corresponding disks intersect, and similarly for squares. A penny graph is the contact graph
of unit-disks in the plane, i.e., in the definition of unit-disk graphs above we additionally
require the disks to be pairwise interior-disjoint. A unit-distance graph is a graph whose
vertices are points in the plane, where two points are adjacent if and only if their Euclidean
distance is equal to 1. Unit-distance graphs clearly form a superclass of penny graphs.

A drawing of a graph G in the plane is a mapping from the vertices of G to distinct
points in the plane and from the edges of G to Jordan curves, such that for each edge uv in
G, the curve associated to uv joins the images of u and v and does not contain the image
of any other vertex of G. A graph is planar if it has a drawing in the plane with no edge
crossings (such a drawing will also be called a planar graph drawing in the remainder). Every
planar graph drawing of a graph G gives a clockwise cyclic ordering of the neighbors around
each vertex of G. We say that that two planar graph drawings of G are equivalent if the
corresponding cyclic orderings are the same. A planar graph embedding of a graph G is an
equivalence class of planar graph drawings of G. Given a planar graph embedding of a graph
G, all the corresponding (equivalent) planar drawings of G have the same set of faces (but
different choices of outerface yield different planar drawings).

A graph is 1-planar if it has a drawing in the plane such that for each edge e of G, there
is at most one edge e′ of G distinct from e such that the interior of the curve associated to e

intersects the interior of the curve associated to e′.

Figure 1 Triangle-free intersection graphs of unit-disks and unit-squares in the plane, and the
associated planar graph embeddings.



O. Defrain, L. Esperet, A. Lagoutte, P. Morin, and J.-F. Raymond 48:7

The following well-known proposition will be useful (see Figure 1 for an illustration).

▶ Proposition 2.1. Consider a family of unit-disks or a family of unit-squares in the plane,
and assume that the intersection graph G of the family is connected and triangle-free. Then G

is planar, and moreover each representation of G as such an intersection graph of unit-disks
or unit-squares in the plane gives rise to a planar graph embedding of G in a natural way
(see for instance Figure 1). Furthermore, the representation of G as an intersection graph
(of unit-disks or unit-squares) and the resulting planar graph embedding are equivalent, in
the sense that the clockwise cyclic ordering of the neighbors around each vertex is the same.

We will often need to argue that some planar graphs have unique planar embeddings.
The following classical result of Whitney will be crucial.

▶ Theorem 2.2 ([22]). If a planar graph G is 3-connected (or can be obtained from a
3-connected simple graph by subdividing some edges), then it has a unique planar graph
embedding, up to the reversal of all cyclic orderings of neighbors around the vertices.

We note that the reversal of all cyclic orderings in the statement of Theorem 2.2 corre-
sponds to a reflection of the corresponding planar drawings.

3 Linear upper bounds for tiny classes

Given a class of graphs C and a positive integer n, let Cn be the set of all unlabeled graphs
of C having exactly n vertices (i.e., we consider graphs up to isomorphism).

If there is a constant c > 0 such that for every positive integer n, |Cn| ≤ cn, then the
class C is said to be tiny. This is the case for all proper minor-closed classes (for instance
planar graphs). On the other hand, unit-interval graphs and unit-disk graphs do not form
tiny classes as proved in [18]. The local complexity and the number of unlabeled graphs in a
class are related by the following simple result.

▶ Theorem 3.1 ([5]). Any class C of connected graphs has local complexity at most log(|Cn|)+
O(log n). In particular if C is a tiny class, then the local complexity is O(n).

Proof (sketch). The prover gives each vertex v the same description of G (as an unlabelled
graph, so using log(|Cn|) bits), together with the name of the image of v in this description,
and the number n of vertices of G. Each vertex checks that its neighborhood is consistent
with its image in the description of G, and if so the graph under consideration must have a
locally bijective homomorphism to G. The vertices then check that the number of vertices of
the graph is indeed n = |V (G)|, which implies that this locally bijective homomorphism is
an isomorphism to G, as desired. ◀

As a consequence, we immediately obtain the following.

▶ Corollary 3.2. The following classes have local complexity O(n): the class of all (induced)
subgraphs of the square grid, penny graphs, 1-planar graphs, triangle-free unit-square graphs,
and triangle-free unit-disk graphs.

The next result directly follows from a bound of order 2O(n log n) on the number of
unit-square graphs and unit-disk graphs [18], and on the number of unit-distance graphs [1].

▶ Corollary 3.3. The classes of unit-distance graphs, unit-square graphs, and unit-disk graphs
have local complexity O(n log n).
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48:8 Local Certification of Geometric Graph Classes

The remainder of the paper consists in proving lower bounds of order Ω(n) (or Ω(n1−δ),
for any δ > 0), for all the classes mentioned in Corollaries 3.2 and 3.3, except triangle-free
unit-disk graphs (our quasi-linear lower bound only applies to unit-disk graphs).

4 Disjointness-expressing graph classes

In this section we describe the framework relating the disjointness problem to proof labeling
schemes. Our main source of inspiration is [13], where a lower bound on the local complexity
of non-3-colorability is proved using a similar approach, and [3] where an explicit reduction
to the non-deterministic communication complexity of the disjointness problem is used.

Here we adapt the disjointness problem to fit in our local certification setting. A class
C of graphs is said to be (s, κ)-disjointness-expressing if for some constant α > 0, for every
positive integer N and every X ⊆ {1, . . . , N}, one can define graphs L(X) (referred to as
the “left part”) and R(X) (“right part”), each containing a labeled set S of special vertices
such that for every A, B ⊆ {1, . . . , N} the following holds:
1. the graph g(L(A), R(B)) obtained by identifying vertices of S in L(A) to the corresponding

vertices of S in R(B) is connected and has at most αN1/κ vertices;
2. the subgraph of g(L(A), R(B)) induced by the closed neighborhood Ng(L(A),R(B))[S] of

S is independent4 of the choice of A and B and has at most s vertices; and
3. g(L(A), R(B)) belongs to C if and only if A ∩ B = ∅.

The idea is that S is a small cutset between vertices of L(A), having information on A,
and vertices of R(B), having information on B. Deciding whether the graph g(L(A), R(B))
belongs to C amounts to deciding whether A and B are disjoint, which requires N bits of
information even in a non-deterministic setting, thus the small cutset at the frontier between
L(A) and R(B) must receive long certificates. Otherwise, there are fewer bit combinations
at the frontier than the 2N entries of the form (A, A), hence the vertices can be fooled to
accept a negative instance built from two particular positive instances sharing the same bit
combination.

The role of s and κ is explained by the result below.

▶ Theorem 4.1 ([5]). Let C be a (s, κ)-disjointness-expressing class of graphs. Then any
proof labeling scheme for the class C has complexity Ω

(
nκ

s

)
. In particular if s is a constant

and κ = 1, the complexity is Ω(n).

Proof (sketch). Let (P, A) be a proof labeling scheme for the class C and let p : N → N be
its complexity. For every A ⊆ {1, . . . , N}, let GA = g(L(A), R(A)). Clearly GA ∈ C so the
verifier A accepts the proof PA = P (GA) on every vertex of GA. Let n denote the maximum
order of GA for A ⊆ {1, . . . , N}.

There are 2N choices for the set A. On the other hand, in GA there are at most 2s·p(n)

different ways to assign certificates to the vertices of N [S]. By the Pigeonhole Principle, if
2N > 2sp(n) there are two sets A, A′ ⊆ {1, . . . , N} such that the proofs PA and PA′ coincide
on the subgraph of GA and GA′ induced by N [S]. Since A ≠ A′, we may assume without
loss of generality that A ∩ A′ ̸= ∅. So the graph G = g(L(A), R(A′)) does not belong to C.
We now consider a proof P for G defined as follows: if v ∈ V (L(A)) then P (v) := PA(v)
and if v ∈ V (R(A′)) then P (v) := PA′(v). The verifier A will accept P on every vertex
of G, contradiction. Therefore 2N ≤ 2s·p(n). Recall that n ≤ αN1/κ, by the definition of
disjointness-expressibility. Hence p(n) = Ω(nκ/s), as claimed. ◀

4 i.e., for every A, A′, B, B′ ⊆ {1, . . . , N} there is an isomorphism from g(L(A), R(B))[Ng(L(A),R(B))[S]]
to g(L(A′), R(B′))[Ng(L(A′),R(B′))[S]] that is the identity on S.



O. Defrain, L. Esperet, A. Lagoutte, P. Morin, and J.-F. Raymond 48:9

5 Linear lower bounds in rigid classes

In this section we obtain linear lower bounds on the local complexity of several graph classes
using the framework described in Section 4. We only sketch the argument in the case of
penny graphs.

a2

a1

h

h = 3N + 1

c1

c2

x2

x′
2

x1

x′
1

b2

b1

h

h = 3N + 1

c1

c2

y2

y′2

y1

y′1

a2

a1

b2

b1

c1

c2

x2

x′
2

x1

x′
1

y2

y′2

y1

y′1

Figure 2 Construction of L, R and g for penny graphs in the case where N = 2, with A, B ⊆
{1, . . . , N}. Color red highlights vertices and edges that depend on the choice of A, and color blue
highlights vertices and edges that depend on the choice of B.

▶ Theorem 5.1 ([5]). The class of penny graphs is (6, 1)-disjointness-expressing.

Proof (sketch). The proof is illustrated in Figure 2. The graph g(L(A), R(B)) (on the right)
is obtained by identifying each ci (i = 1, 2) in L(A) with the corresponding vertex in R(B).
The graphs L(A) and R(B) are depicted on the left. Vertices aj , xj , x′

j are added to the
graph L(A) if and only if j ∈ A, and similarly vertices bj , yj , y′

j are added to the graph R(B)
if and only if j ∈ B. The crucial properties of the construction are that (1) the graph without
the added gadgets has a unique embedding as a penny graph, and (2) there is a small cut
separating the left and right parts ({c1, c2}, which is far from the gadgets on both sides),
and (3) if two gadgets ai, xi, x′

i and bj , yj , y′
j are added with i = j , then the graph is not a

penny graph. The last item follows from the fact that ai and bj would be mapped to the
same point in the plane, and thus ai would also need to be adjacent to yj and y′

j in the
graph (which they are not). ◀

From Theorems 5.1 and 4.1, together with Corollary 3.2, we immediately deduce the
following.

▶ Theorem 5.2. The local complexity of the class of penny graphs is Θ(n).

Using our framework we obtain the following results (whose proofs are available in
appendix).
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▶ Theorem 5.3. The class of unit-distance graphs is (6, 1)-disjointness-expressing.

▶ Theorem 5.4 ([5]). The class of subgraphs of the square grid is (6, 1)-disjointness-expressing.

▶ Theorem 5.5 ([5]). The class of 1-planar graphs is (20, 1)-disjointness-expressing.

We immediately deduce the following.

▶ Theorem 5.6. The classes of subgraphs of the square grid, unit-distance graphs and
1-planar graphs all have local complexity Θ(n).

6 Unit-square graphs

≥ n ∈ [n, n+O(1)]

v1
v1

v2
v2 v2

v1

L(A)

R(B)

Figure 3 A sketch of the general approach to prove Theorems 6.1 and 7.1.

The graph we constructed in the previous section had some perfect rigidity properties: if
the images of a constant number of vertices in the plane were fixed, then the whole graph
had at most one embedding in the plane. This does not hold in unit-square graphs, but for
our framework it is enough to make sure that once a constant number of vertices are fixed,
each vertex of the graph can only be mapped to a small fixed region in any embedding. More
precisely, we construct for any n a unit-square graph with O(n) vertices with two specific
vertices v1, v2 that are at ℓ∞-distance at least n in any embedding. We add a shortest path
connecting v1 and v2, so that the resulting graph is still a unit-square graph with O(n)
vertices, and the ℓ∞-distance between v1 and v2 is at least n and at most n + O(1) in any
embedding. This is illustrated in Figure 3 above, where the path between v1 and v2 is close
from being mapped to the line segment between the image of v1 and the image of v2. This
path is then used as an interface to add gadgets expressing any set A for part L(A) and any
set B for part R(B), very much as in the proof of Theorem 5.1. The difficulty lies in proving
this approximate rigidity property, which follows from the rigidity of the ℓ∞ norm.

▶ Theorem 6.1 ([5]). The classes of triangle-free unit-square graphs and unit-square graphs
are both (6, 1)-disjointness-expressing.

Using Theorem 4.1, together with Corollaries 3.2 and 3.3, we immediately deduce the
following.

▶ Theorem 6.2. The local complexity of the class of triangle-free unit-square graphs is Θ(n),
and the local complexity of the class of unit-square graphs is Ω(n) and O(n log n).

We note that the proof approach of Theorem 6.1 naturally extends to higher dimension.
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n

√
n

n+O(1)
n

n+O(1)

O(1)

Figure 4 The difference between the ℓ∞-distance (left) and the ℓ2-distance (right).

7 Unit-disk graphs

We would like to prove a variant of Theorem 6.1 for unit-disk graphs, but there are two major
obstacles. The first is that there does not seem to be a simple unit-disk graph with O(n)
vertices with two specified vertices that are at Euclidean distance at least n in any unit-disk
embedding. Our construction of such a graph will be significantly more involved (and thus
the number of vertices will be only upper bounded by O(n1+ε) for any ε > 0, rather than
O(n)). The second obstacle comes from Pythagoras’ theorem: In the unit-square case, if we
consider a path P of length n + O(1) between two vertices u, v embedded in the plane such
that their x- and y-coordinates both differ by exactly n, then in any unit-square embedding
of P , the vertices of P deviate by at most a constant from the line segment [u, v] between
u and v. This is what we used in the proof of Theorem 6.1 to make sure that L(A) and
R(B) are so close that the i-th gadget cannot exist both on L(A) and R(B) simultaneously
when i ∈ A ∩ B. However, as illustrated in Figure 4, Pythagoras’ theorem implies that in
the Euclidean case, when the Euclidean distance between u and v is equal to n, the vertices
of P can deviate by Θ(

√
n) from the line segment [u, v], which is too much for our purpose

(we need a constant deviation). So we need different ideas to make sure the gadgets are
embedded sufficiently close to each other.

Figure 5 A summary of the construction used in the proof of Theorem 7.1.

The main result of this paper is the following.

▶ Theorem 7.1 ([5]). For any δ > 0, the class of unit-disk graphs is (O(log n), 1 − δ)-
disjointness-expressing.

Proof (sketch). A summary of our construction is depicted in Figure 5. The first component
of the construction is the arch-shaped part, which is defined recursively and has the property
that its endpoints lie at Euclidean distance Ω(n) in any unit-disk embedding, while the
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graph only contains O(n1+ε) vertices (for any ε > 0). We then add a shortest possible path
P between the endpoints of the arch (with the condition that the resulting graph is still a
unit-disk graph) and we would like to argue that the path P is tight, in the sense that in any
embedding, all the unit-disks corresponding to the vertices of P lie at distance O(1) from
the line segment between the endpoints of P . For this we need to add a number of paths
connecting P to the arch to make P even tighter. These paths delimit subpaths of P and the
construction forces at least one of those subpaths to be tight. Since we do not know which
subpath will be tight, we add gadgets, called decorated corridors, along all these subpaths.
When a subpath is tight, the corresponding corridor is sufficiently narrow so that gadgets of
L(A) and R(B) along the corridor can emulate the disjointness problem between A and B,
as in the proof of Theorem 5.1. There is a gadget of L(A) at position j of every corridor if
and only if j ∈ A and similarly for R(B), and the gadgets of L(A) and R(B) intersect at
position j of some corridor if and only if j ∈ A ∩ B. Since these gadgets are not adjacent
in the graph, this shows that the graph is a unit-disk graph if and only if A ∩ B = ∅, as
desired. ◀

Using Theorem 4.1, together with Corollary 3.3, we immediately deduce the following.

▶ Theorem 7.2. The local complexity of the class of unit-disk graphs is O(n log n) and
Ω(n1−δ) for any δ > 0.

8 Open problems

In this paper we have obtained a number of optimal (or close to optimal) results on the local
complexity of geometric graph classes. Our proofs are based on a new notion of rigidity. It is
natural to ask which other graph classes enjoy similar properties. A natural candidate is
the class of segment graphs (intersection graphs of line segments in the plane), which have
several properties in common with unit-disk graphs. In particular the recognition problems
for these classes are complete for the existential theory of the reals, and the minimum bit size
for representing an embedding of some of these graphs in the plane is at least exponential in
their number of vertices. We believe that the local complexity of segment graphs (and that
of the more general class of string graphs) is at least polynomial in their number of vertices.
More generally, is it true that all classes of graphs for which the recognition problem is hard
for the existential theory of the reals have polynomial local complexity?

It might also be interesting to investigate the smaller class of circle graphs (intersection
graphs of chords of a circle). The authors of [14] proved that the closely related class of
permutation graphs has logarithmic local complexity. It is quite possible that the same holds
for circle graphs. See [15] for results on interactive proof labeling schemes for this class and
related classes.

We proved that 1-planar graphs have local complexity Θ(n). What can we say about
the local complexity of other graph classes defined with constrained on their drawings in
the plane? For instance is it true that for every k ≥ 2, the local complexity of the class of
graphs with queue number at most k is polynomial? What about graphs with stack number
at most k?

We have given the first example of non-trivial hereditary (and even monotone) classes
of local complexity Ω(n). Can this be improved? Are there hereditary (or even monotone)
classes of local complexity Ω(nc) for c > 1?
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Abstract
An anonymous dynamic network is a network of indistinguishable processes whose communication
links may appear or disappear unpredictably over time. Previous research has shown that determin-
istically computing an arbitrary function of a multiset of input values given to these processes takes
only a linear number of communication rounds (Di Luna–Viglietta, FOCS 2022).

However, fast algorithms for anonymous dynamic networks rely on the construction and transmis-
sion of large data structures called history trees, whose size is polynomial in the number of processes.
This approach is unfeasible if the network is congested, and only messages of logarithmic size can be
sent through its links. Observe that sending a large message piece by piece over several rounds is
not in itself a solution, due to the anonymity of the processes combined with the dynamic nature of
the network. Moreover, it is known that certain basic tasks such as all-to-all token dissemination
(by means of single-token forwarding) require Ω(n2/ log n) rounds in congested networks (Dutta et
al., SODA 2013).

In this work, we develop a series of practical and efficient techniques that make it possible to use
history trees in congested anonymous dynamic networks. Among other applications, we show how
to compute arbitrary functions in such networks in O(n3) communication rounds, greatly improving
upon previous state-of-the-art algorithms for congested networks.
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1 Introduction

Dynamic networks. In recent years, distributed computing has seen a remarkable increase
in research on the algorithmic aspects of networks that constantly change their topology [7,
30, 32]. The study of these dynamic networks is motivated by technologies such as wireless
sensors networks, software-defined networks, and networks of smart devices. Typically, the
distributed system consists of n processes that communicate with each other in synchronous
rounds. At each round, the network topology is rearranged arbitrarily, and communication
links appear or disappear unpredictably.
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Anonymity and leadership. There are efficient algorithms for various tasks that work under
the assumption that processes have unique IDs [6, 27, 28, 29, 32, 34]. However, unique
IDs may not be available due to operational limitations [34] or to protect user privacy; for
instance, assigning temporary random IDs to users of COVID-19 tracking apps was not
sufficient to eliminate privacy concerns [40]. Systems where processes are indistinguishable
are called anonymous.

It is known that many fundamental problems for anonymous networks cannot be solved
without additional “symmetry-breaking” assumptions: A notable example is the Counting
problem, i.e., determining the total number of processes n. The most typical symmetry-
breaking choice is assuming the presence of a single distinguished process in the system,
called leader [1, 2, 3, 4, 14, 19, 21, 23, 31, 39, 42]. A leader process may represent a base
station in a sensor network, a super-node in a P2P network, etc.

Disconnected networks. Another common assumption is that the network is connected
at every round [28, 34]. However, this assumption appears somewhat far-fetched when one
considers the highly dynamic nature of some real-world networks, such as P2P networks
of smart devices moving unpredictably. A weaker and more reasonable assumption is that
the union of all the network’s links across any T consecutive rounds induces a connected
(multi)graph on the processes [25, 36]. Such a network is said to be T -union-connected, and
T ≥ 1 is its dynamic disconnectivity [17].

Congested networks. Almost all previous research on anonymous dynamic networks pertains
to models that impose no limit on the size of messages exchanged by processes [11, 15, 21, 22,
23, 24, 26, 34, 36]. Unfortunately, in most mobile networks, sending small-size messages is
not only desirable but also a necessity; for example, in sensor networks, short communication
times significantly increase battery life. A more realistic model assumes the network to be
“congested” and limits the size of every message to O(log n) bits, where n is the number of
processes [38].2

General computation. A recent innovation in the study of anonymous dynamic networks
with leaders was the introduction of history trees in [15], which led to an optimal deterministic
solution to the Generalized Counting problem3 in the non-congested network model. This
problem is “complete” for a large class of functions called multiset-based functions, which
in turn are the only computable functions in this model. The theory of history trees was
extended in [17] to leaderless networks, providing optimal algorithms for the Frequency
problem:4 This problem is complete for the class of frequency-based functions, which are
the only computable functions in leaderless systems. Thus, the computational landscape for
the non-congested network model is fully understood, and optimal linear-time algorithms
are known for anonymous dynamic systems with and without leaders. No previous research
exists on the congested network model, except for a recent preprint that gives a Counting
algorithm in Õ(n2T (1+ϵ)+3) rounds for networks with leaders [25]. Note that its running
time is exponential in the dynamic disconnectivity T and becomes Õ(n5+ϵ) for connected
networks.

2 This O(log n) limit on message sizes does not imply that the processes have a-priori information about
n. The size limit is not explicitly given to the processes, and it is up to the algorithm to automatically
prevent larger messages from being sent.

3 In the Generalized Counting problem, each process starts with a certain input, and the goal is to
determine how many processes have each input. That is, each process has to compute the multiset of
all inputs.

4 In the Frequency problem, the goal is to determine the percentage of processes that have each input.
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1.1 Contributions and Techniques
Contributions. In this paper, we provide a state-of-the-art general algorithmic technique
for T -union-connected anonymous dynamic congested networks, with and without leaders.
The resulting algorithms run in O(Tn3) rounds, where n is the (initially unknown) total
number of processes.

In Section 4 we give a basic and slightly inefficient Counting algorithm that applies to a
limited setting but already contains all of the key ideas of our technique. In Section 5 we
sketch its correctness (the technical details of the proof are found in the arXiv version linked in
the title page), and in Section 6 we discuss optimizations and extensions of the basic algorithm
to several other settings. This includes the computation of all multiset-based functions. Sec-
tion 7 concludes the paper with some directions for future research.

Technical background. Informally, a history tree is a way of representing the history of
a network in the form of an infinite tree. Each node in a history tree represents a set of
anonymous processes that are “indistinguishable” at a certain round, where two processes
become “distinguishable” as soon as they receive different sets of messages (see Section 3).

The theory of history trees developed in [15, 17] yields optimal general algorithms
for anonymous dynamic networks with and without leaders, assuming the network is not
congested. The idea is that processes can work together to incrementally construct the
history tree by repeatedly exchanging and merging together their respective “views” of it.
Once they have a sufficiently large portion of the history tree (i.e., a number of “levels”
proportional to n), each process can locally analyze its structure and perform arbitrary
computations on the multiset of input values originally assigned to the processes.

Challenges. Unfortunately, implementing the above idea requires sending messages con-
taining entire “views” of the history tree. The size of a view is Θ(n3 log n) bits in the worst
case, and is therefore unsuitable for the congested network model [15]. There is a major
difficulty in dealing with this problem deterministically, which stems from the lack of unique
IDs combined with the dynamic nature of the network.

It is worth noting that the “naive” approach of breaking down large messages into smaller
pieces to be sent in different rounds does not work. Indeed, it is not clear how the original
message can then be reconstructed, because the pieces carry no IDs and a process’ neighbors
may change at every round. This may result in messages from different processes being
mixed up and non-existent messages being reconstructed.

Methodology. Our main contribution is a general method that allows history trees to
be transmitted reliably and deterministically between anonymous processes in a dynamic
congested network with a leader. To overcome the fundamental issues outlined above, we
devised a basic protocol combining different techniques, as well as a number of extensions,
including leaderless ones. Although the techniques introduced in this paper are self-contained
and do not rely on the results of [15], they effectively allow us to reduce the congested
network model to the non-congested one, making it possible to apply the Counting algorithm
in [15] as a “black box”.

Firstly, we developed a method for dynamically assigning temporary (non-unique) IDs
to processes; this method is an essential part of the history tree transmission algorithm.
In fact, the nodes of our history trees are now augmented with IDs, meaning that each
node represents the set of processes with a certain ID. When processes with equal IDs get
disambiguated, they get new IDs.

MFCS 2024
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The transmission of history trees occurs level by level, one edge at a time. Since the total
ordering between IDs induces a total ordering on the history tree’s edges, the processes can
collectively transmit sets of edges with a method reminiscent of Token Dissemination [28].

Essentially, all processes participate in a series of broadcasts; the goal of each broadcast
is to transmit the next “highest-value” edge to the whole network. The problem is that no
upper bound on the dynamic diameter of the network is known, and so there is no way of
knowing how many rounds it may take for all processes to receive the edge being broadcast.

We adopt a self-stabilizing approach to ensure that all messages are successfully broadcast.
We give a communication protocol based on acknowledgments by the leader, where failure
to broadcast a message alerts at least one process. Alerted processes start broadcasting
error messages, which eventually cause a reset of the broadcast that caused the error. A
mechanism that dynamically estimates the diameter of the network guarantees that no more
than O(log n) resets are performed.

Finally, in order to achieve a cubic running time, we do not construct the history tree
of the actual network, but a more compact history tree corresponding to a virtual network.
The virtual network is carefully derived from the real one in such a way as to amortize the
number of edges in the resulting history tree and further reduce the final worst-case running
time by a factor of n.

2 Previous Work

Non-congested networks. The study of computation in anonymous dynamic networks has
been mainly devoted to two fundamental problems: The Counting problem in networks with
a leader [11, 12, 13, 21, 22, 23, 24, 26] and the Average Consensus problem in leaderless
networks [5, 8, 9, 10, 24, 33, 35, 37, 41, 43]. This research thread produced a series of
algorithms for these problems; the underlying technique used is a local averaging or mass-
distribution method coupled with refined termination strategies.

A radically different technique based on history trees was recently used to optimally
compute arbitrary multiset-based functions in 3n rounds in networks with a leader [15]. This
approach was successfully extended to multi-leader, leaderless, and disconnected networks [17].

Congested networks. As for the congested model, the only paper that has ever studied
deterministic algorithms for anonymous dynamic networks, to the best of our knowledge, is
the recent preprint [25], which solves the Counting problem in Õ(n2T (1+ϵ)+3) rounds. As
usual, T is the dynamic disconnectivity of the network and ϵ is an arbitrarily small positive
constant. By comparison, our main algorithm has a running time of O(Tn3) rounds; hence,
its dependence on T is linear (as opposed to exponential) and, for connected networks (i.e.,
when T = 1), the improvement is a factor of Θ(n2+ϵ logk n).

Most previous research efforts on congested networks in the dynamic setting have focused
on randomized algorithms or processes with unique IDs [18, 20, 28]. In this context, a
problem similar to Counting is Token Dissemination, where each process starts with a token
and the goal is for every process to collect all tokens. In connected networks, this problem is
solved in O(n2) rounds by a simple token-forwarding algorithm (i.e., no manipulation is done
on tokens other than storing, copying, and individually transmitting them) [28]. Interestingly,
solving the Token Dissemination problem by token-forwarding algorithms requires at least
Ω(n2/ log n) rounds [18].

It is worth remarking that the randomized algorithm in [28] only solves the Counting
problem approximately and assumes a-priori knowledge of an upper bound on n. Moreover,
this algorithm only works with high probability. These are three key differences that make our
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contribution preferable. Furthermore, assuming processes to have unique IDs (or randomly
generating unique IDs) as in [28] defeats the purpose of safeguarding user privacy, which is a
motivation of our work.

3 Definitions and Fundamentals

Computation model. A dynamic network is modeled by an infinite sequence G = (Gt)t≥1,
where Gt = (V, Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn} is a
system of n anonymous processes and Et is a multiset of edges representing links between
processes. Hence, there may be multiple links between two processes, or even from a process
to itself.5

If there is a constant T ≥ 1 such that, for every t ≥ 1, the multigraph G⋆
t =(

V,
⋃t+T −1

i=t Ei

)
is connected, the network is said to be T -union-connected, and the smallest

such T is its dynamic disconnectivity.6
Each process pi starts with an input, which is assigned to it at round 0. It also has an

internal state, which is initially determined by its input. At each round t ≥ 1, every process
composes a message (as a function of its internal state) and sends it to its neighbors in Gt

through all its incident links.7 In the congested network model, only messages of O(log n)
bits can be sent.8 By the end of round t, each process reads all messages coming from its
neighbors and updates its internal state according to a local algorithm A. Note that A is the
same for all processes, and is a deterministic function of the internal state and the multiset
of messages received in the current round.

The input of each process also includes a leader flag. In Section 4, we will assume that
the leader flag of exactly one process is set (this process is the unique leader); in Section 6,
we will discuss the leaderless case, where none of the processes has the leader flag set.

A process may return an output at the end of a round, which must be a function of its
current internal state. A process may also terminate execution after returning an output.
An algorithm A solves the Counting problem if executing A at every round eventually causes
all processes to simultaneously output n and terminate. The (worst-case) running time of A,
as a function of n, is the maximum number of rounds it takes for A to solve the problem,
across all possible dynamic networks of size n and all possible input assignments.

History trees. History trees were introduced in [15] as a tool of investigation for anonymous
dynamic networks; an example is found in Figure 1. A history tree is a representation of a
dynamic network given some inputs to the processes. It is an infinite graph whose nodes
are partitioned into levels Lt, with t ≥ −1; each node in Lt represents a class of processes

5 Each self-loop in Gt represents a single link, hence a single message being sent and received by the same
process.

6 A similar parameter for dynamic networks is the dynamic diameter D, defined as the maximum number
of rounds it may take for a message to be broadcast from a process to all other processes. The parameters
T and D are related by the inequalities T ≤ D ≤ T (n − 1), which are best possible [17].

7 Contrary to static networks, where processes may be allowed to send different messages to different
neighbors, dynamic networks usually require processes to “broadcast” the same message through all
incident links due to the lack of unique port numbers. This is the case, for instance, in wireless
radio communications, where messages are sent to all processes within communication range, and the
anonymity of the network prevents destinations from being specified.

8 We may want to assume that the total number of links in a network multigraph Gt (counted with their
multiplicities) is bounded by a polynomial in n. In fact, when dealing with congested networks, we
explicitly make this assumption, as it ensures that the multiplicity of a link can always fit in a single
O(log n)-sized message.

MFCS 2024
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Figure 1 The first rounds of a dynamic network with n = 9 processes and the corresponding
levels of the history tree. Level Lt consists of the nodes at distance t + 1 from the root r, which
represent indistinguishable processes after the tth communication round. There are no leaders in
the network, but each process has an input from the set {A, B, C}. Only the nodes in L0 have
explicit labels; all labels of the form ai and bi were added for the reader’s convenience, and indicate
classes of indistinguishable processes (in contrast, the nodes of the virtual history tree introduced in
Section 4 do have IDs). Note that the two processes in b4 are still indistinguishable at the end of
round 2, although they are linked to the distinguishable processes b5 and b6. This is because such
processes were in the same class a5 at round 1. The subgraph induced by the nodes in the green
blob is the view of the two processes in b1. We remark that a history tree does not contain any
explicit information about how many processes each node represents.

that are indistinguishable at the end of round t (with the exception of L−1, which contains a
single node r representing all processes). The definition of distinguishability is inductive:
At the end of round 0, two processes are distinguishable if and only if they have different
inputs. At the end of round t ≥ 1, two processes are distinguishable if and only if they were
already distinguishable at round t − 1 or if they have received different multisets of messages
at round t. (We refer to “multisets” of messages, as opposed to sets, because multiple copies
of identical messages may be received; each message has a multiplicity.)

Each node in level L0 has a label indicating the input of the processes it represents.
There are also two types of edges connecting nodes in adjacent levels. The black edges induce
an infinite tree spanning all nodes, rooted at node r ∈ L−1. The presence of a black edge
{v, v′}, with v ∈ Lt and v′ ∈ Lt+1, indicates that the child node v′ represents a subset of the
processes represented by the parent node v. The red multi-edges represent communications
between processes. The presence of a red edge {v, v′} with multiplicity m, with v ∈ Lt and
v′ ∈ Lt+1, indicates that, at round t + 1, each process represented by v′ receives m (identical)
messages from processes represented by v.

The view of a process p at round t ≥ 0 as the subgraph of the history tree which is
spanned by all the shortest paths (using black and red edges indifferently) from the root r to
the node in Lt representing p (Figure 1 shows an example of a view).

Applications of history trees. As proved in [15], the view of any process at round 3n

contains enough information to determine the multiset of the initial inputs (i.e., how many
processes have each input value). Thus, once a process is able to locally construct a view
spanning 3n levels of a history tree, it can immediately do any computation on the inputs,
and in particular determine n and solve the Generalized Counting problem.
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History trees were adopted in [15, 17], where it is shown how processes can construct their
views of the history tree in real time. For the algorithm to work, each process is required to
repeatedly send its current view to all its neighbors at every round, merging it with all the
views it receives from them.

This approach is not feasible in the congested network model, because a view at round t

has size Θ(tn2 log n) in the worst case, since there may be Θ(n2) red edges in each level. In
the following, we will develop a strategy whereby processes can construct a history tree one
red edge at a time. The core idea is that the nodes of the history tree are assigned unique
IDs, and therefore a single red edge can be encoded in only O(log n) bits as a pair of IDs
and a multiplicity.

4 Basic Counting Algorithm

In this section we describe our deterministic Counting algorithm for congested anonymous
dynamic networks in its most basic version. The algorithm assumes the network to be
connected (T = 1), to have a unique leader, and execution terminates in O(n3 log n) rounds
with the leader reporting the total number of processes in the system, n. The complete
pseudocode is found in the arXiv version of this paper.

In Section 6, we will optimize this basic algorithm, making it terminate in O(n3) rounds.
We will also extend the algorithm in several directions, for instance by making all processes
(as opposed to the leader only) simultaneously output n and terminate. Furthermore, we will
show how to not only count the number of processes, but also compute arbitrary (multiset-
based, cf. [15]) functions, assuming that input values are assigned to the processes. Finally,
we will extend the algorithm to leaderless networks and T -union-connected networks.

4.1 Algorithm Outline
The only input given to each process is whether or not it is the leader. Each process also has
some private memory which is used to permanently store information in the form of internal
variables.

Virtual history tree (VHT). The overall goal of the algorithm is for the processes to
implicitly agree on the first O(n) levels of a particular history tree, called virtual history tree
(VHT), which corresponds to a dynamic network N of n processes. Once the construction
of each new level of the VHT is complete (refer to Section 4.5), the leader locally runs the
Counting algorithm from [15] on the VHT. If this algorithm successfully returns a number
(as opposed to “Unknown”), the leader outputs it; otherwise, the construction of a new level
of the VHT is initiated.

Virtual network (N ). The dynamic network N = (N1, N2, . . . ) represented by the VHT
is in fact a virtual network, in the sense that none of the multigraphs Nt necessarily
coincides with any multigraph of links actually occurring in the real communication network
G = (G1, G2, . . . ). However, each Nt is obtained by carefully adding and removing links
from some Git

(see Figure 2). This manipulation has the purpose of reducing the size of the
resulting VHT by a factor of n (see Section 4.4).

Temporary IDs. To cope with the fact that processes are anonymous and information can
only be sent in small chunks of size O(log n), each process has a temporary ID stored in
a local variable called MyID. Each node v in the VHT also has an ID, indicating that v
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represents all processes having that ID. Thus, a red-edge triplet of the form (ID1, ID2, Mult)
can be used to unambiguously represent a red edge of multiplicity Mult between the nodes
of the VHT whose IDs are ID1 and ID2. Since a red-edge triplet has size O(log n), it can be
included in a single message. Note that the variable MyID of each process may be modified
over time as the VHT acquires more nodes.

Broadcast phases. The construction of the VHT is carried out level by level, and is
done through several broadcast phases, which are indirectly coordinated by the leader (see
Section 4.3). At first, each process knows the red edges incident to its corresponding node
of the VHT. Then, ideally every two broadcast phases, the whole network learns a new red
edge of the VHT. The broadcast phases continue until all processes know all red edges in the
level (see Section 4.6).

Estimating the diameter. In order to guarantee the success of a broadcast phase, all
processes must keep sending each other information for a certain number of rounds, which
depends on the dynamic diameter of the network, and is n − 1 in the worst case [28]. Since
the processes do not initially possess any information at all, they can only make estimations
on the dynamic diameter. The current estimate is stored by each process in the variable
DiamEstimate. Its value is initially 1, and it is doubled every time the processes detect an
error in a broadcast.

Error phases. Detecting broadcasting errors and consistently reacting to them is by no
means a trivial task, and is discussed in Section 4.7. Our broadcasting technique ensures
that, if some red-edge triplet fails to be broadcast to the entire network and does not become
part of the local VHT of all processes, at least one process becomes aware of this fact. Such
a process enters an error phase, sending a high-priority message at every round containing
the level number at which the error occurred. Error messages supersede the regular ones and
eventually reach the leader.

Reset phases. When the leader finally receives an error message, it initiates a reset phase,
whose goal is to force the whole network to restore a previous state of the VHT and continue
from there. This is achieved by broadcasting a high-priority reset message. Since the error
must have occurred because DiamEstimate was too small, its value is doubled at the end of
the reset phase.

Note that there is no obvious way for the leader to tell if any level of the VHT is actually
missing some parts: At any time, there may be processes in an error phase unbeknownst
to the leader. One of the challenges of our method is to ensure that the leader will not
terminate with an incorrect guess on n due to the VHT being incomplete.

4.2 Communication and Priority

Counting rounds. The processes have to implicitly synchronize with one another to start
and finish each broadcast phase at the same time. Part of the synchronization is achieved by
the function SendAndReceive, which is called by each process at every communication round.
This function simply sends a given message to all neighbors, collects all messages coming from
the neighbors, and increments the internal variable CurrentRound. Since communications in
the network are synchronous, all processes always agree on the value of CurrentRound.
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Message types. The processes use messages of various types to share information with one
another. Each message has a label describing its type, as well as at most three additional
integer parameters. As it will turn out in the analysis of the algorithm, each parameter has
size O(log n) bits.9 The message types and their parameters are as follows.

Null message. Label: “Null”. No parameters.
Level-begin message. Label: “Begin”. Parameters: ID.
Level-end message. Label: “End”. No parameters.
Done message. Label: “Done”. Parameters: ID.
Red-edge message. Label: “Edge”. Parameters: ID1, ID2, Mult.
Error message. Label: “Error”. Parameters: ErrorLevel.
Reset message. Label: “Reset”. Parameters: ResetLevel, StartingRound, NewDiam.

Priority. Messages have priorities that determine how they are handled during a broadcast.
The priority of a message is defined as follows:

Null < Begin < End < Done < Edge < . . . < Reset k + 1 < Error k < Reset k < . . . < Error 1 < Reset 1

That is, the message with lowest priority is the Null message, followed by all possible Level-
begin messages, then the Level-end message, etc. The priority of a Level-begin message is
independent of its parameter. For all other message types, however, the priority is also a
function of the parameters.

As for Done messages, different ID parameters yield different priorities. Thus, priority
induces a total ordering on the set of all possible Done messages; the precise ordering is
irrelevant, as long as all processes implicitly agree on it. All Done messages have greater
priority than Null, Level-begin and Level-end messages. The same goes for Red-edge messages:
Different parameters yield different priorities, and all processes agree on the priority function.
All Red-edge messages have greater priority than all Done messages, and lower priority than
all Error and Reset messages.

An Error message (respectively, a Reset message) with a smaller ErrorLevel (respectively,
ResetLevel) has a greater priority. Moreover, the priorities of Error and Reset messages are
interleaved: The priority of an Error message with ErrorLevel = k is strictly between the
priority of a Reset message with ResetLevel = k + 1 and the priority of a Reset message
with ResetLevel = k.

4.3 Broadcasting Data
During the execution of the algorithm, a non-leader process may have a particular piece
of information that it wishes to send to the leader. Similarly, the leader may have some
information that it wishes to share with all processes in the network. Both operations are
performed via a broadcast spanning several rounds.

The broadcast technique used to construct the VHT is implemented as follows. It is
assumed that all processes participating in the broadcast are synchronized, i.e., they start at
the same round and continue broadcasting for the same number of rounds (which is equal
to DiamEstimate). Each process is also assumed to have the information it wishes to share
packed in a message of the appropriate type (see Section 4.6), which is passed to the function
BroadcastPhase as the argument Message.

9 As already remarked, the algorithm spontaneously creates O(log n)-sized messages without any a-priori
knowledge on n.

MFCS 2024



49:10 Efficient Computation in Congested Anonymous Dynamic Networks

At each broadcast round, each process sends its message to all its neighbors. Then it
examines the messages received from the neighbors, as well as its own message, and keeps
only the message with highest priority, discarding all others (function BroadcastStep). This
is the message the process will send in the next round, and so on.10

Ideally, if the broadcast is continued for a sufficiently large number of rounds, all processes
participating in the broadcast will eventually obtain the message having the highest priority
among the ones initially owned by the processes (note that this may be an Error or Reset
message, as well).

4.4 Defining the Virtual Network
Definition. Recall that the VHT is the history tree of the virtual network N =
(N1, N2, N3, . . . ). We will now define Nt by induction on t. That is, assuming that the mul-
tigraphs N1, N2, . . . , Nt−1 are already known, we will construct Nt based on the multigraph
Git , which represents the real communication network G at a selected round it (Section 4.6
explains how it is selected).

Since the first t − 1 rounds of the virtual network are known, we can construct the
first levels of the VHT up to level Lt−1. By definition of history tree, each node v ∈ Lt−1
represents a class Pv of processes that are indistinguishable after the first t − 1 “virtual
rounds” modeled by the communication networks N1, N2, . . . , Nt−1.

Consider the simple undirected graph H = (V, E), where V = Lt−1 and {u, v} ∈ E if
and only if u ̸= v and there is at least one link in Git between a process in Pu and one in
Pv. Recall that we are assuming that Git

is connected, and therefore H is connected, as
well (disconnected networks will be discussed in Section 6). Let S = (V, E′) be an arbitrary
spanning tree of H.

Now, Nt is the network having the following links (refer to Figure 2):
For every edge {u, v} ∈ E′ of S, the multigraph Nt contains all the links in Git

having
an endpoint in Pu and an endpoint in Pv (with the respective multiplicities).
For every v ∈ V , the multigraph Nt contains a cycle Cv spanning all the processes in Pv.
In the special case where Pv contains exactly two processes p1 and p2, Cv is a double link
between p1 and p2. If Pv contains a single process p, Cv is a double self-loop on p.

Note that, in every case, Cv induces a 2-regular multigraph on Pv. The purpose of these
(possibly degenerate) cycles Cv is to ensure that Nt is connected. On the other hand, the
purpose of using a spanning tree S, as opposed to the full graph H, is to reduce the size of
the VHT.

Implementation. In the actual algorithm, Nt is defined only implicitly in a distributed
manner (because the ultimate goal is merely the construction of the VHT). The implicit
construction of Nt starts at round it, where each process (not in an error phase) invokes
the function SetUpNewLevel and sends a Begin message containing its own ID to each
neighbor. As a result, each process learns the IDs of all its neighbors in Git

, as well as their
multiplicities, and stores this information as a list of pairs of the form (ID, Mult) in the
internal variable ObsList. It should be noted that a process discards all Begin messages
from processes with the same ID as its own. These are replaced by the single pair (MyID, 2),
which accounts for the two edges of the cycle Cv incident to the process in Nt.

10 Note that our broadcasting strategy implements a token-forwarding mechanism, and the sequence of all
broadcast phases is akin to a Token Dissemination algorithm. It is known that any such algorithm must
have a worst-case running time of at least Ω(n2/ log n) rounds [18].
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Figure 2 Construction of the virtual network N2 and level L2 of the virtual history tree (VHT).
The real network Gi2 consists of the n = 9 processes in the upper-left picture, connected by the red
and blue links (not the green ones). Before the construction starts, the IDs in the network are 5, 2,
and 3. Same-colored processes have equal IDs when the construction of L2 starts; the labels indicate
their IDs when the construction finishes. Accordingly, level L1 of the VHT has three nodes with IDs
5, 2, 3. The graph H is a triangle on these three nodes, while its spanning tree S is the same as
LevelGraph. Therefore, to construct N2 we remove the blue edges from Gi2 and keep the red ones
(see Section 4.4). For example, after the triplets (6, 3, 1) and (6, 5, 1) are accepted, any elements
of ObsList corresponding to the two blue edges incident to the yellow process are deleted and are
never broadcast. We also have to add the green edges, which represent the cycles Cv. Note that
failing to add them would result in a disconnected network, because the process with ID 7 would be
isolated. For clarity, the edges of the (temporary) VHT are colored red or green to match the edges
of the virtual network that they represent (although technically they are all red edges).

The choice of links to be included in Nt (which directly reflects on the red edges included
in the VHT) is guided by the construction and maintenance of an auxiliary graph stored in
each process’ internal variable LevelGraph. The auxiliary graph is a graph on V = Lt−1 and
starts with no edges at all; it gradually acquires more edges until it becomes the spanning
tree S (as defined above). This is carried out as part of the function UpdateTempVHT, which is
invoked every time a red-edge triplet (ID1, ID2, Mult) is selected to become a new red edge of
the VHT at the end of a broadcast phase. Among other operations (described in Section 4.5),
this function adds an edge to the auxiliary graph which connects the two nodes corresponding
to ID1 and ID2. Then the function PreventCyclesInLevelGraph is called, which deletes all
the pairs in ObsList whose selection would cause the creation of a cycle in the auxiliary
graph. This guarantees that, eventually, LevelGraph will be a tree (representing S).

4.5 Constructing the Virtual History Tree (VHT)
Initialization. The VHT is initialized by the function InitializeVariables. At first, the
VHT only contains level L−1 (a single root node whose ID is −1) and level L0 (two nodes with
IDs 0 and 1, representing the leader and the non-leader processes, respectively). Accordingly,
the leader initializes its own MyID variable to 0 and the non-leaders to 1.

Temporary VHT. Then, for all t ≥ 1, the level Lt of the VHT is constructed based on the
virtual network Nt as in Figure 2. When the construction begins, all processes (that are not
in an error phase) acquire new pairs of the form (ID, Mult) at the same round it and store
them in ObsList, as explained in Section 4.4. The construction of a new level is not carried
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out directly on the VHT, but in a separate temporary VHT stored in the internal variable
TempVHT. Initially, this is just a copy of level Lt−1 of the VHT, i.e., a set of nodes, each with
a distinct ID, and no edges.

Adding red edges. In order to determine how TempVHT should be updated, several broadcast
phases are performed, allowing the processes to share their red-edge triplets with one another.
Note that a process can transform each element of ObsList of the form (ID, Mult) into a
red-edge triplet by simply adding its own ID as the first element. Every time a red-edge
triplet (ID1, ID2, Mult) has been broadcast by a process to the entire network and has been
“accepted” (see Section 4.6 for details), the function UpdateTempVHT is called. The result
is that the node v of TempVHT whose ID is ID1 gets a new child v′ with a new unique ID.
Pictorially, a black edge is created connecting v′ to v. Also, a red edge with multiplicity
Mult is added to TempVHT, connecting the new node with the node whose ID is ID2.

Updating IDs. By definition, the red-edge triplet (ID1, ID2, Mult) indicates that some
processes whose ID is ID1 have received exactly Mult messages from processes whose ID is
ID2. These processes, which were previously represented by the node v, are now represented
by v′. Therefore, every process whose ID is ID1 that has the pair (ID2, Mult) in its local
ObsList removes it from the list and modifies its own ID from ID1 to the ID of v′.11

Updating the VHT. When a process has no more red-edge triplets to share (that is, its
ObsList is empty), it broadcasts a Done message containing its current ID. Recall that
Done messages have lower priority than Red-edge messages (see Section 4.2). When the final
result of a broadcast is a Done message containing a certain ID, all processes assume that
some processes with that ID have sent all their red-edge triplets. Therefore, the node of the
temporary VHT with that ID is ready to be added to the VHT.

To this end, the function UpdateVHT is called with the ID contained in the Done message.
This function creates a new node v in level Lt of VHT corresponding to the node v′ of TempVHT
whose ID is the one passed to the function (refer to Figure 2). The node v gets the same ID
as v′ and becomes a child of the node u ∈ Lt−1 having the same ID as the root v′′ of the
tree containing v′. Then, v takes all the red edges found along the path from v′ to v′′.

Finalizing the level. When the ObsList of a process is empty and the VHT already contains
a node with its ID, the process broadcasts an Level-end message, which has lower priority
than Done and Red-edge messages. When the result of a broadcast is an Level-end message,
the construction of the level is finished.

4.6 Main Loop
The entry point of the algorithm is the function Main. After initializing the internal variables
as already explained, the function goes through a loop that constructs the VHT level by
level. At several points in this loop there may be errors that cause some of the levels to be
undone and execution to resume from the beginning of the loop; we will discuss errors in
Section 4.7. Next, we will describe an ideal error-free execution.

11 To clarify, the nodes of the VHT have unique IDs. Each node represents a class of “indistinguishable”
processes, all of which have the same ID as the node itself. When processes disambiguate in the virtual
network, they obtain different IDs. However, it is not necessarily true that all processes will have distinct
IDs eventually. For example, if the network is the (static) complete graph, all non-leader processes will
always have the same ID (which is incremented at every virtual round).
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Level initialization. With each iteration of the main loop, a new level of the VHT is
constructed. At the beginning, the function SetUpNewLevel is executed by all processes:
This marks a selected round Git

as defined in Section 4.4 (the non-trivial fact that all
processes always call this function at the same round will become apparent from our analysis
of the algorithm, in Section 5).

VHT broadcast. Then an inner loop is entered; the purpose of each iteration is for all
processes to learn new information, which causes an update of the temporary VHT or the
VHT itself. At first, each process calls the function MakeVHTMessage, which picks an element
from ObsList, converts it into a red-edge triplet by adding its own ID to it, and wraps it
in a Red-edge message. If ObsList is empty, a Done message containing the process’ ID is
generated instead. The resulting message is used in a first broadcast phase which, after a
number of rounds equal to DiamEstimate, returns the highest-priority message circulating
in the network. This message is stored in the variable VHTMessage.

Acknowledgment broadcast. Note that, in the presence of a faulty broadcast, different
processes may end up having different versions of VHTMessage. To ensure that all processes
(that are not in an error phase) update their local copies of the (temporary) VHT in a
consistent way, an “acknowledgment” broadcast phase is performed. Its purpose is for the
leader to inform all other processes of the accepted message; by definition, the accepted
message is the leader’s version of VHTMessage.

In the acknowledgment phase, all non-leader processes broadcast a low-priority Null
message, while the leader broadcasts the accepted message. The message resulting from the
broadcast is then stored in the variable AckMessage.

Updating the level. Now, each process compares the contents of the two messages
VHTMessage and AckMessage. If they are the same (hence not Null), then this is indeed
the accepted message coming from the leader, and the data therein is used to update the
temporary VHT or the VHT. Specifically, if AckMessage is a Red-edge message, the red-edge
triplet therein is used to update the temporary VHT. If it is a Done message, the VHT is
updated instead.

Finalizing the level. When a process is done broadcasting red-edge triplets and the VHT
already contains a node representing it, the process broadcasts a low-priority Level-end
message. As soon as the accepted message is the Level-end message, the level is considered
complete and the inner loop is exited.

Counting processes. Now the leader extracts its own view from the VHT and locally runs
the Counting algorithm from [15] on it (function CountFromView). By “extracts its own
view” we mean that it makes a copy of the VHT and deletes all nodes that are not on a
shortest path from the root to the deepest leader’s node.

If the value returned by CountFromView is a number, this is taken as the correct number
n of processes in the virtual network N (and hence in the real network G) and becomes the
leader’s output. Otherwise, a new iteration of the main loop starts, a new level of the VHT
is constructed, and so on.
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4.7 Handling Errors and Resets
Detecting errors. As mentioned, a broadcast phase lasts a number of rounds indicated by
the variable DiamEstimate. If this number happens to be smaller than the dynamic diameter
of the network, the broadcast may be unsuccessful, in the sense that not all processes may
end up agreeing on the same highest-priority message. Fortunately, the protocol described
in Section 4.6 makes error detection very simple: At the end of every acknowledgment
broadcast, if the contents of a process’ variables VHTMessage and AckMessage are different,
the broadcast was unsuccessful. Any process that detects this event enters an error phase.

Error phase. When a process enters an error phase, it runs the function BroadcastError;
as it turns out, only non-leader processes ever execute this function. During an error phase,
a process continually broadcasts an Error message containing the index of the level of the
VHT where the error was detected. This message is replaced by any other message of higher
priority received by the process during the error phase (see Section 4.2). As soon as the
process receives a Reset message for a level of smaller or equal depth than the one indicated
by the current Error message (i.e., a Reset message of higher priority), it ends the error
phase and enters a reset phase.

Another situation where a non-leader process enters an error phase is when it receives an
Error message from some other process. In this case, it calls the function HandleError and
starts broadcasting a new Error message containing the smaller between the index of the
current level and the one contained in the received Error message. This causes higher-priority
error messages to propagate through the network and eventually reach the leader.

Reset phase. This phase is initiated by the leader at the end of a broadcast phase (or after
sending a Begin message) in case it received an Error message. The leader first waits for
2 ·DiamEstimate+1 rounds, sending only Null messages. This is to ensure that all non-leader
processes finish any broadcast phase and enter an error phase. In turn, this prevents any
possible conflicts between different broadcast phases before and after a reset.

Then the leader creates a Reset message containing the index of the VHT level where the
error occurred, the current round number, and the new estimate on the dynamic diameter,
i.e., twice the current one, since the error occurred because the estimate was too small.

Now the leader calls the function BroadcastReset, where it broadcasts the Reset message;
any process that receives this message starts broadcasting it as well (provided that it has
higher priority than the Error message it is currently broadcasting, as usual). The broadcast
continues for a total number of rounds equal to the new dynamic diameter estimate. All
processes that receive the Reset message are able to synchronize with one another and finish
the reset phase at the same round, thanks to the information contained in the message itself.

At the end of the reset phase, the reset is actually performed: Every process that got
the Reset message deletes the most recent levels of the VHT up to the level where the error
occurred (this information is contained in the Reset message) and reverts its ID to the one it
had at the beginning of the construction of that level. The variable DiamEstimate is also
updated with the new estimate. At this point, the network is ready to resume construction
of the VHT.

5 Proof of Correctness

We will now sketch a proof of correctness for the Counting algorithm in Section 4. The
interested reader may refer to the arXiv version for a detailed and technically rigorous proof.
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We say that two processes agree on a variable at a certain round if their local instances
of that variable are equal. As it turns out, all processes that are not in an error phase must
always agree on the variable DiamEstimate: this can be proved by induction on the number
of reset phases that the leader has completed.

In turn, this implies that all processes (that are not in an error phase) are able to implicitly
synchronize their broadcast phases with the leader, since these phases have a duration of
DiamEstimate rounds. As a consequence, all processes (not in an error phase) also agree on
the variables CurrentLevel, VHT, TempVHT, LevelGraph, and NextFreshID, because these
variables are updated either at the beginning or at the end of a broadcast or reset phase.

Thus, we can unambiguously refer to phases and variables with no explicit mention of any
individual process, because these phases and variables are the same throughout the whole
network (excluding the processes in an error phase).

The goal of the algorithm is to construct the first levels of the VHT, i.e., the history tree of
the virtual network N . However, information on the virtual network is shared by all processes
through several broadcast phases, and there is no guarantee that every broadcast phase
will have the correct outcome (some data may fail to be communicated if DiamEstimate is
smaller than the network’s actual dynamic diameter). Thus, we distinguish between the ideal
VHT, i.e., the “correct” history tree corresponding to N , and the effective VHT, i.e., the one
that is actually being constructed by the processes, which may be missing some information.

It is a byproduct of our protocol that, whenever a node is added to the effective VHT,
then all red edges incident to it (and to nodes in the previous level of the ideal VHT) are
also included. In particular, extracting the leader’s view from the effective VHT yields a
graph isomorphic to the view of the leader in the ideal VHT. This implies that the function
CountFromView is always given as input a view of the history tree of a connected network
of n processes. As proved in [15], this function must return either “Unknown” or n; in
particular, it returns n when the input view spans at least 3n levels.

Hence, our algorithm cannot return an incorrect number. It remains to prove that it does
terminate within the desired number of rounds. Every time a faulty broadcast is detected
and the leader is notified of it, a reset phase is initiated and DiamEstimate is doubled. It
follows that no more than O(log n) reset phases ever occur, and DiamEstimate is always
O(n); this is also the duration of each broadcast phase.

Recall that links are not included in the virtual network if they cause cycles to appear in
LevelGraph (see Section 4.4). Although this strategy may not guarantee that every level of
the VHT has O(n) red edges, it does amortize the total number of red edges over several
levels. In fact, the first O(n) levels of the ideal VHT only contain O(n2) red edges (as
opposed to O(n3), which may be the case for the history tree of a generic network).

Summarizing, it takes O(n2) broadcast phases to construct the first 3n levels of the
VHT, resulting in a total of O(n3) rounds. The construction process is partially undone and
repeated at most O(log n) times due to resets, and so the final running time is O(n3 log n).

It is straightforward to prove that the algorithm works in the congested network model,
because all the data contained in a message are binary representations of values that are
polynomial in n, e.g., round numbers, estimates of the dynamic diameter, or temporary IDs
of processes. Since each message contains at most three of these values, its size is O(log n).

6 Extensions and Improvements

Simultaneous termination. In Section 4 we showed how the leader can determine n. If
we want all processes, not just the leader, to simultaneously output n and terminate, we
can use the following protocol. As soon as the leader knows n, it broadcasts a message of
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maximum priority containing n and the current round number c. Any process that receives
this message keeps forwarding it until round c + n. By this round they all have it, and thus
can output n and terminate simultaneously.

General computation. If each process is assigned an O(log n)-sized input (other than the
leader flag), we can also perform general computations on the multiset of inputs. We only
have to adapt the algorithm of Section 4 to work with history trees whose level L0 contains
one node per input occurring in the system, and then run the algorithm in [15] on this
extended history tree. This can easily be done with the techniques developed in Section 4:
We can construct L0 like any other level, except that we use broadcast phases to transmit
inputs instead of red edges.

Optimized running time. We can sightly speed up our algorithm at the cost of some
additional bookkeeping. The idea is to refine the error and reset mechanism by resuming the
construction of the VHT not from the level that caused an error, but from the broadcast
phase that caused it.

The processes have to remember the order in which the leader accepted Red-edge and
Done messages, as well as the Begin messages received at every begin round. When a process
detects an error, it broadcasts an Error message containing not the current level number, but
the number of messages that the leader has accepted up to that time. The advantage is that
the reset phase can rewind the (temporary) VHT exactly to the desired point without erasing
entire levels. Furthermore, by looking up the Begin messages received in the appropriate
begin round, each process is also able to reconstruct its local ObsList at the desired time.

If a broadcast phase causes an error, the leader receives a notification after less than n

rounds, and so it only has to undo the work done in O(n) rounds. Since there can be at most
O(log n) resets, the total time spent in reset phases or doing work that later gets undone is
O(n log n) rounds. Thus, the new algorithm runs in O(n3) + O(n log n) = O(n3) rounds.

Leaderless computation. It is known that doing any non-trivial computation in a leaderless
network requires some extra assumptions, for example the knowledge of an upper bound D

on its dynamic diameter [17]. However, knowing D allows processes to reliably broadcast
messages in phases of D rounds. This immediately yields an extension of our algorithm to
leaderless networks in O(Dn2) rounds, where no acknowledgment phases or error and reset
phases are needed.

Disconnected networks. We can extend our algorithm to T -union-connected networks,
assuming the parameter T is known. As discussed in [17], the idea is to divide the sequence
of rounds into blocks of size T . Within every block, each process keeps sending the same
message and stores all incoming messages. At the end of a block, each process runs the
algorithm from Section 4 (or its optimization) pretending that all the stored messages arrived
in a single round. This is equivalent to running the algorithm on the dynamic network
G⋆ = (G⋆

1, G⋆
T +1, G⋆

2T +1, . . . ), which is always connected (G⋆
t is defined in Section 3). The

running time is simply O(Tn3) rounds.

7 Concluding Remarks

In this paper we have extended the theory of history trees by introducing the tools necessary
for the distributed construction and transmission of history trees in the congested network
model. This resulted in a new state of the art for general computation in disconnected
anonymous dynamic congested networks, with or without leaders.
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Our history tree construction technique leads to general algorithms whose running time
is cubic in the size of the network. An immediate open problem is whether this running
time can be reduced. Since our algorithm broadcasts information using a token-forwarding
approach, and by virtue of the Ω(n2/ log n) lower bound of [18], we believe that it would be
unlikely to achieve a better running time without a radical change in the technique used.

Understanding whether the Counting problem has as a super-linear lower bound in
congested networks is of special importance, because it would mark a computational difference
between anonymous dynamic networks in the congested and non-congested models.

It would be interesting to do a thorough fine-grained tradeoff analysis of our algorithm.
For instance, it is not difficult to show that, if messages have size O(n log n), the running
time of our algorithm can be reduced to O(n2).
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Abstract
We construct an oracle relative to which NP = PSPACE, but UP has no many-one complete sets.
This combines the properties of an oracle by Hartmanis and Hemachandra [25] and one by Ogiwara
and Hemachandra [38].

The oracle provides new separations of classical conjectures on optimal proof systems and
complete sets in promise classes. This answers several questions by Pudlák [43], e.g., the implications
UP =⇒ CONN and SAT =⇒ TFNP are false relative to our oracle.

Moreover, the oracle demonstrates that, in principle, it is possible that TFNP-complete problems
exist, while at the same time SAT has no p-optimal proof systems.
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1 Introduction

We investigate relationships between the following classical conjectures on NP, optimal proof
systems, and complete sets in promise classes. They are deeply rooted in formal logic, but
also have far reaching practical implications. Each of these conjectures remains open.

P ̸= NP: P does not equal NP [12, 35]
NP ̸= coNP: NP does not equal coNP [16]

CON: p-optimal proof systems for TAUT do not exist [34]
CONN: optimal proof systems for TAUT do not exist [34]

SAT: p-optimal proof systems for SAT do not exist [34]

TFNP: TFNP does not contain many-one complete problems [36]
NP ∩ coNP: NP ∩ coNP does not contain many-one complete problems [30]

UP: UP does not contain many-one complete problems [25]
DisjNP: DisjNP does not contain many-one complete pairs [45]

DisjCoNP: DisjCoNP does not contain many-one complete pairs [37, 42]

We refer to Pudlák [41] for a comprehensive elaboration of the conjectures and their context.
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P ̸= NP

NP ̸= coNP

NP ∩ coNP

CON SAT

TFNPCONN

DisjNP DisjCoNP

UP

?

Thm. 24

Thm. 24

Figure 1 Hypotheses that are true relative to our oracle are filled green and have borders, whereas
those that are false relative to the oracle are red without borders. Solid arrows mean relativizable
implications. A dashed arrow from one conjecture A to another conjecture B means that there is an
oracle X against the implication A ⇒ B, meaning that A ∧ ¬B holds relative to X. For clarity, we
only depict the two strongest separations proved in this paper, and omit those that either follow
from these, as well as those already known before. All possible separations have now been achieved,
except for the one depicted as the red dotted arrow.

Pudlák’s program. The known implications between these conjectures are shown in Figure 1.
They raise the question of whether further implications can be recognized with the currently
available methods. Pudlák [43] therefore initiated a research program to either prove further
implications or to disprove them relative to an oracle. The latter shows that the implication
is beyond the reach of current methods. Hence, from today’s perspective, the corresponding
conjectures are not mere reformulations of one another, but instead deserve individual
attention.

So far several implications have been disproved relative to an oracle. The following
selection of oracles covers all previously known disproofs of implications, in the sense that
each such implication fails relative to at least one of these oracles:

CONN ∧ ¬DisjNP (Glaßer, Selman, Sengupta, Zhang [20])
DisjCoNP ∧ ¬CON (Khaniki [31])

DisjNP ∧ NP ∩ coNP ∧ ¬UP (Dose, Glaßer [15])
NP ∩ coNP ∧ ¬CON (Dose [13])

P ̸= NP ∧ ¬CON ∧ ¬SAT (Dose [13])
DisjNP ∧ UP ∧ NP ∩ coNP ∧ ¬SAT (Dose [14])

DisjNP ∧ UP ∧ DisjCoNP ∧ ¬NP ∩ coNP (Egidy, Ehrmanntraut, Glaßer [17])

Optimal proof systems. The hypotheses CON, CONN, and SAT are concered with the
existence of (p-)optimal proof systems. The study of proof systems was initiated by Cook
and Reckhow [11] and motivated by the NP ?= coNP question, because the set of tautologies
TAUT has a proof system with polynomially bounded proofs if and only if NP = coNP.
Krajíček and Pudlák [34, 33, 44] link questions about proof systems to questions in bounded
arithmetic. Especially the notions of optimal and p-optimal proof systems have gained
much attention in research. They are closely connected to the separation of fundamental
complexity classes, e.g., Köbler, Messner, and Torán [32] show that the absence of optimal
proof systems for TAUT implies NEE ̸= coNEE. Moreover, (p-)optimal proof systems have
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tight connections to promise classes, e.g., if TAUT has p-optimal proof systems, then UP
has many-one complete sets [32]. Many more relationships are known between proof systems
and promise classes [3, 4, 5, 6, 7, 8, 21, 22, 32, 43, 45].

TFNP-complete problems. The class TFNP contains a multitude of problems that are of
central importance to various practical applications, and as such is currently being researched
with great intensity. The search for a complete problem in TFNP is of primary concern to
certain fields such as cryptography, but it remains open whether such a problem exists.

For instance, the security of RSA [46] is primarily based on the hardness of integer factor-
ization, which is a TFNP problem. However, no solid argument is known that factorization
actually is a particularly hard problem within TFNP, i.e., being able to solve factorization
might not require being able to solve arbitrary TFNP problems. RSA is now widely considered
to no longer represent the state of the art in modern cryptography. Hence researchers develop
cryptoschemes whose security is based on the hardness of other problems. However, it is still
not clear whether these are strictly harder than factorization. A TFNP-complete problem
would allow cryptoschemes that are at least as hard to break as any TFNP problem, i.e.,
schemes with optimal security guarantees.

Since the search for TFNP-complete problems has been unsuccessful, various subclasses
were defined and studied in order to construct at least a complete problem for those subclasses.
Their definitions are based on the proof of totality used to show the membership to TFNP.
Prominent examples are PLS [29], based on the argument that every dag has a sink, PPA
[39], based on the fact that every graph has an even number of nodes with odd degree, PPAD
[39] and PPADS, based on slight variations of PPA for directed graphs, and PPP [40], based
on the polynomial pigeonhole principle.1 All of them have complete problems [29, 40] and
can be defined in a syntactical way too [40]. Beame et al. [2] constructed oracles relative to
which these classes are not a subset of P, and no inclusions exist beyond the few that are
already known. The classes are significant to various practical applications like polynomially
hard one way functions [9, 19], collision resistant hash functions [23], computing square roots
modulo n [28], and the security of prominent homomorphic encryption schemes [27].

Our Contribution
1. Oracle with NP = PSPACE, but UP has no many-one complete sets.
Hartmanis and Hemachandra [25] construct an oracle relative to which UP does not have
many-one complete sets. Ogiwara and Hemachandra [38] construct an oracle relative to which
UP ̸= NP = PSPACE. Our oracle provides both properties at the same time, but this is
achieved using completely different methods. Due to the far-reaching collapse NP = PSPACE
and the close connection between UP-completeness and optimality of proof systems, we
obtain a number of useful properties summarized in Corollary 25.

2. Consequences for Pudlák’s program.
Regarding the conjectures shown in Figure 1, all known implications are presented in the
figure, while for some of the remaining implications there exist oracles relative to which the
implications do not hold. From the implications that were left open, our oracle refutes all but
one. The key to this observation was to take the conjecture NP ̸= coNP into consideration.
As we make sure that our oracle satisfies NP = coNP, the conjectures CONN and TFNP are

1 For precise definitions we refer to recent papers [23], [24, notably Figure 1].
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false, while the conjectures CON and SAT are equivalent. In addition, the oracle satisfies
the conjecture UP, which implies CON, and thereby in summary refutes all of the following
previously open implications:

UP =⇒ CONN UP =⇒ NP ̸= coNP UP =⇒ DisjNP
CON =⇒ CONN CON =⇒ NP ̸= coNP SAT =⇒ DisjCoNP
SAT =⇒ TFNP SAT =⇒ NP ̸= coNP

3. Consequences for TFNP-complete problems.
Regarding the search for TFNP-complete problems, our oracle demonstrates that, in principle,
it is possible that NP = coNP and hence TFNP-complete problems exist, while at the same
time SAT has no p-optimal proof systems.

Open questions

Hemaspaandra, Jain, and Vereshchagin [26] improve the oracle of Hartmanis and Hem-
achandra [25]. They show the existence of an oracle relative to which FewP [1] does not have
Turing-hard sets for UP [26, Thm. 3.1]. They note that the theorem still holds when replacing
the class FewP by Few [10]. Since UP ⊆ FewP ⊆ Few and many-one reducibility implies
Turing reducibility, this raises the following questions (in ascending order of difficulty):
Does there exist an oracle relative to which
1. NP = PSPACE and UP has no set that is Turing-hard for UP?
2. NP = PSPACE and FewP has no set that is Turing-hard for UP?
3. NP = PSPACE and Few has no set that is Turing-hard for UP?

Regarding Pudlák’s research program, all implications that are not presented in Figure 1
fail relative to some oracle, except for one single implication, which we leave as open question:

TFNP ?=⇒ DisjCoNP

We suspect that such construction of an oracle with TFNP and ¬DisjCoNP is a particular
challenge.

2 Preliminaries

2.1 Basic Definitions and Notations

This section covers the notation of this paper and introduces well-known complexity theoretic
notions.

Words and sets. All sets and machines in this paper are defined over the alphabet Σ = {0, 1}.
Σ∗ denotes the set of all strings of finite length, and for a string w ∈ Σ∗ let |w| denote the
length of w. We write N for the set of non-negative integers, N+ for the set of positive
integers, and ∅ for the empty set. For a set A and k ∈ N we write A=k := {x ∈ A | |x| = k}
as the subset of A containing only words of length k. We define this analogously for ≤. For
a clearer notation, we use the abbreviations Σk := Σ∗=k and Σ≤k := Σ∗≤k. Let <lex denote
the quasi-lexicographic (i.e., “shortlex”) ordering of words over Σ∗.
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Functions. Let enc be a polynomial-time computable, polynomial-time invertible order-
isomorphism between (Σ∗, <lex) and (N, <), i.e., a variant of the dyadic representation. The
domain and range of a function f are denoted by dom(f) and ran(f). For a function f and
A ⊆ dom(f), we define f(A) := {f(x) | x ∈ A}. We define certain polynomial functions
pi : N → N for i ∈ N by pi(n) := ni + i for i ∈ N+, and pi(n) := 1 for i = 0.

Let ⟨·⟩ :
⋃

i≥0(Σ∗)i → Σ∗ be an injective, polynomial-time computable and polynomial-
time invertible sequence encoding function2 such that |⟨u1, . . . , un⟩| = 2(|u1|+· · ·+|un|+n)+1.
The sequence encoding function has the following property.

▷ Claim 1. Let w, x ∈ Σ∗. If |w| ≥ |x| + 3, then |w| ≥ |⟨x, w⟩|/4.

Proof. The following calculation proves the claimed statement:

|⟨x, w⟩| = 2(|x| + |w| + 2) + 1 = 2|x| + 5 + 2|w| ≤ 2|w| + 2|w| = 4|w| ◁

Machines. We use the default model of a Turing machine in the deterministic as well as in
the non-deterministic variant, abbreviated by DTM, resp., NTM. The language decided by a
Turing machine M is denoted by L(M). We use Turing transducers to compute functions.
For a Turing transducer F we write F (x) = y when on input x the transducer outputs y.
We sometimes refer to the function computed by F as ‘the function F ’.

Complexity Classes and Reductions. The classes P, NP, coNP, FP and PSPACE denote
the standard complexity classes. Furthermore, we are interested in several promise classes.
Originally defined by Valiant [50], UP denotes the set of languages that can be decided by
so called UP-machines, i.e., NTMs that have at most one accepting path on every input.
The common polynomial-time many-one reducibility for sets A, B ⊆ Σ∗ is denoted by ≤p

m,
i.e., A ≤p

m B if there exists an f ∈ FP such that x ∈ A ⇔ f(x) ∈ B. If ≤ is some notion
of reducibility for some class C, then we call a set A ≤-complete for C, if A ∈ C and for all
B ∈ C the reduction B ≤ A holds.

Oracle-specific definitions and notations. An oracle B is a subset of Σ∗. We relativize the
concept of Turing machines and Turing transducers by giving them access to a write-only
oracle tape as proposed by Simon [48]3. Furthermore, we relativize complexity classes, proof
systems, reducibilities and (p-)simulation by defining them over machines with oracle access,
i.e., whenever a Turing machine or Turing transducer is part of a definition, we replace
them by an oracle Turing machine or an oracle Turing transducer. We indicate the access
to some oracle B in the superscript of the mentioned concepts, i.e., PB, NPB, FPB, . . .

for complexity classes, MB for a Turing machine or Turing transducer M , and ≤p,B
m for

reducibility. We sometimes omit the oracles in the superscripts, e.g., when sketching ideas in
order to convey intuition, but never in the actual proof.

Let {Fi}i∈N be a standard enumeration of polynomial-time oracle Turing transducers,
such that relative to any oracle B, F B

i has running time exactly pi and for any function
f ∈ FPB, there is some i such that F B

i computes f . Since the functions computed by
{F B

i }i∈N form exactly FPB , we call such machines FPB-machines. Similarly, let {Ni}i∈N be

2 Notice that the sequence encoding function explicitly is not surjective, so invertibility is meant in
the sense that ran(⟨·⟩) ∈ P, and there is a function f ∈ FP such that ⟨f(y)1, . . . , f(y)n⟩ = y for all
y ∈ ran(⟨·⟩).

3 When considering time-bounded computation, this machine model reflects the usual relativization of
Turing machines. For space-bounded computations, the oracle tape is also subject to the space-bound.
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a standard enumeration of polynomial-time non-deterministic oracle Turing machines, such
that relative to any oracle B, NB

i has running time exactly pi on each path and for any set
L ∈ NPB, there is some i such that L(NB

i ) = L. Since the sets decided by {NB
i }i∈N form

exactly NPB, we call such machines NPB-machines. If p is an encoding of a computation
path, then Q(p) denotes the set of oracle queries on p. For a Turing transducer F , an NTM
N and some word x, let Q(N(F (x)) denote the set of oracle queries of the computations
F (x) and N(F (x)). Hence, we interpret N(F (x)) as one computation which computes F (x)
first, followed by the computation N on input F (x).

Relativized QBF. For any oracle B, we define the relativized problem QBFB as the typical
QBF problem as defined by Shamir [47], but the boolean formulas are extended by expressions
B(w) for w ∈ Σ∗, which evaluate to true if and only if w ∈ B. It holds that for any oracle B,
QBFB is ≤p,B

m -complete for PSPACEB .
Throughout the remaining sections, M will be a polynomial-space oracle Turing machine

which, given access to oracle B, accepts QBFB . Choose k ≥ 3 such that M on input x ∈ Σ∗

completes using at most t(x) := |x|k + k space (including queries to the oracle).

2.2 Notions for the Oracle Construction
In this section we define all necessary objects and properties for the oracle construction and
convey their intuition.

Tools for UP. In order to achieve that UPΦ has no complete set, we will ensure that for
any set L(NΦ

i ) ∈ UPΦ a set W Φ
i ∈ UPΦ exists such that W Φ

i does not reduce to L(NΦ
i ), i.e.,

W Φ
i ̸≤p,Φ

m L(NΦ
i ). Here, W Φ

i is a witness that L(NΦ
i ) is not complete for UPΦ. For this, we

injectively assign countably infinitely many levels of the oracle to each set Wi, where a level
consists of certain words of the same length as follows.

▶ Definition 2 (Hi).
Let e(0) := 2, e(i + 1) := 2e(i) and Hi := {e(2i · 3j) | j ∈ N} for i ∈ N.

▶ Corollary 3 (Properties of Hi).
(i) For every i ∈ N, the set Hi is countably infinite and a subset of the even numbers.
(ii) Hi ∈ P for all i ∈ N.
(iii) For i, j ∈ N with i ̸= j, it holds that Hi ∩ Hj = ∅.

▶ Definition 4 (Witness language W B
i ).

For i ∈ N and an oracle B, we define the set

W B
i := {0n | n ∈ Hi and there exists x ∈ Σn with x ∈ B}

▶ Corollary 5 (Sufficient condition for W B
i ∈ UPB).

For any oracle B and any i ∈ N, the following implication holds:

|B=n| ≤ 1 for all n ∈ Hi =⇒ W B
i ∈ UPB

Proof. Let B and i be arbitrary. Since Hi ∈ P, an NP-machine can reject on all inputs
except 0n with n ∈ Hi. On these inputs 0n the machine can non-deterministically query all
words x ∈ Σn and accept if x ∈ B. Now, this machine accepts W B

i , and if |B=n| ≤ 1, then it
has at most one accepting path on all inputs. Hence, W B

i ∈ UPB . ◀

We can control the membership of Wi to UP in the oracle construction. We will never add
more than one word on the levels Hi, except for when we can rule out Ni as a UP-machine.
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Tools for NP = PSPACE. In order to achieve that NPΦ = PSPACEΦ, we will encode
QBFΦ into the oracle Φ, such that QBFΦ ∈ NPΦ, from which NPΦ = PSPACEΦ follows.

▶ Definition 6 (Coding set ZB).
For any oracle B, we define the set

ZB := {x ∈ Σ∗ | ∃w ∈ Σt(x) : ⟨x, w⟩ ∈ B}

▶ Corollary 7. For any oracle B, it holds that ZB ∈ NPB.

We will assemble the oracle Φ in such a way that ZΦ = QBFΦ, i.e., ZΦ will be PSPACEΦ-hard,
and thus NPΦ = PSPACEΦ.

Goals of the construction.

▶ Definition 8 (Desired properties of Φ).
The later constructed oracle Φ should satisfy the following properties:
P1 ∀x ∈ Σ∗ : (x ∈ QBFΦ ⇐⇒ x ∈ ZΦ).

(Meaning: QBFΦ ∈ NPΦ.)
P2 ∀i ∈ N, at least one of the following statements holds:

(I) ∃x ∈ Σ∗ : NΦ
i (x) accepts on more than one path.

(Meaning: NΦ
i is not a UPΦ-machine.)

(II) Both of the following statements hold:
(a) ∀n ∈ Hi : |Φ=n| ≤ 1

(Meaning: W Φ
i ∈ UPΦ.)

(b) ∀j ∈ N ∃x ∈ Σ∗ : NΦ
i (F Φ

j (x)) accepts if and only if x /∈ W Φ
i .

(Meaning: W Φ
i does not reduce to L(NΦ

i ) via F Φ
j .)

The following lemma shows that these properties imply our desired structural properties of
complexity classes.

▶ Lemma 9. Let Φ ⊆ Σ∗.
(i) If statement P1 is satisfied relative to Φ, then NPΦ = PSPACEΦ.
(ii) If statement P2 is satisfied relative to Φ, then there is no ≤p,Φ

m -complete set for UPΦ.

Proof. To (i): Recall that QBFΦ is ≤p,Φ
m -complete for PSPACEΦ. Since property P1 holds

relative to Φ, ZΦ = QBFΦ. From Corollary 7 we get ZΦ ∈ NPΦ and thus NPΦ = PSPACEΦ.
To (ii): Assume there is a ≤p,Φ

m -complete set C for UPΦ. Let NΦ
i be a UPΦ-machine

such that L(NΦ
i ) = C. Then property P2.I cannot hold for i, because Ni would not be

a UP-machine. Hence, property P2.II holds for i. By P2.II.a and Corollary 5, we get
W Φ

i ∈ UPΦ. Since L(NΦ
i ) is complete, there is some j ∈ N such that for all x ∈ Σ∗ we have

x ∈ W Φ
i ⇐⇒ F Φ

j (x) ∈ L(NΦ
i ).

This is a contradiction to the satisfaction of property P2.II.b, because there has to be some
x where this equivalence does not hold. Hence, the assumption has to be false and there is
no ≤p,Φ

m -complete set for UPΦ. ◀
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Stages. We choose certain stages on which we will deal with property P2.II.b. They are
chosen as the range of a certain function m. We will call the values of m ‘UP-stages’, since
only on these we will contribute to enforcing property P2.II.b and consequently UPΦ. For
now, it suffices to know that the stages will be chosen ‘sufficiently large’.

We choose a total injective function m : N × N → N, (i, j) 7→ m(i, j) which meets the
following requirements:
M1 m(i, j) ∈ Hi.

(Meaning: UP-stages m(i, ·) are important to the witness-language Wi.)
M2 2m(i,j)/4 > 4(pi(pj(m(i, j))))2 + 2pi(pj(m(i, j))) + 1.

(Meaning: The number of words of length m(i, j) is far bigger than the number of words
the computation Ni(Fj(0m(i,j))) can query.)

M3 m(i, j) > m(i′, j′) =⇒ m(i, j) > pi′(pj′(m(i′, j′))).
(Meaning: The stages are sufficiently distant from another such that for no i′, j′ ∈ N, the
computation Ni′(Fj′(0m(i′,j′))) can query any word of the UP-stages following m(i′, j′).)

▶ Observation 10. For all k ∈ ran(m): ran(⟨·⟩) ∩ Σk = ∅, because ⟨·⟩ only maps to odd
lengths. In particular, if |x| = m(i, j) for some i, j ∈ N, then x /∈ ran(⟨·⟩).

3 Oracle Construction

In this section we will construct an oracle Φ such that UPΦ has no complete set and
NPΦ = PSPACEΦ.

Construction of Φ. We construct the oracle Φ sequentially. For each x ∈ Σ∗, we decide
whether to add some words to the oracle. We give a brief sketch of the construction and its
ideas:

To P1: Whenever the input x has the form ⟨x′, 0t(x′)⟩, we add ⟨x′, w⟩ for some w ∈ Σt(x′)

to the oracle if and only if x′ ∈ QBF. Since M(x′) cannot query words of length |⟨x′, w⟩|,
the membership of x′ to QBF does not change after adding ⟨x′, w⟩. From then on, we never
add shorter words to Φ, thus the encoding persists correct for the finished oracle.

To P2: On every UP-stage n := m(i, j), we try to achieve property P2.I or P2.II. For this,
we differentiate between three cases.
1. If Ni(Fj(0n)) accepts relative to the oracle constructed so far, we leave the stage n empty.

In subsequent iterations, we ensure that added words will not interfere with this accepting
path. This achieves property P2.II, because 0n /∈ Wi and Fj(0n) ∈ L(Ni).

2. If Ni(Fj(0n)) rejects relative to the oracle constructed so far, we add a word of length n

to the oracle such that this computation keeps rejecting. This achieves property P2.II,
because 0n ∈ Wi and Fj(0n) /∈ L(Ni). Notice that finding appropriate words may not be
possible.

3. If Ni(Fj(0n)) rejects relative to the oracle constructed so far, and there is no choice of a
word to add such that Ni(Fj(0n)) keeps rejecting (i.e., case 2 is not possible), then we
force Ni(Fj(0n)) to accept on two different paths (which is possible, as we will show). In
subsequent iterations, we ensure that added words will not interfere with these accepting
paths. This achieves property P2.I.

In iterations after a UP-stage, if we have to add words to maintain P1, we choose them in
such a way that property P2 still remains upheld for the previous stage. This is captured
in Procedure 3, handle_UP_stage_aftercare. Once the next stage is reached, our word
length will have increased enough such that the stage before cannot be affected anymore.
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▶ Definition 11 (Oracle construction).
Define Φ0 := ∅. For k ∈ N+, define Φk+1 := Φk ∪ construct(enc(k), Φk) according to

Procedure 1. Finally, define Φ :=
⋃

k∈N Φk.

Procedure 1 construct(x,B).
1 If x = ⟨x’,0t(x’)⟩ and MB(x’) accepts :
2 If the largest UP -stage m(i,j) < |x| exists :
3 Return handle_UP_stage_aftercare(x’,i,j,B)
4 Return {x}
5 Elif x = 0m(i,j) for some i,j ∈ N:
6 Return handle_UP_stage(i,j,B)
7 Else:
8 Return ∅.

Procedure 2 handle_UP_stage(i,j,B).
1 n := m(i,j)
2 If NB

i(FB
j(0n)) accepts :

3 Return ∅
// Here , NB

i(FB
j(0n)) rejects

4 If ∃y ∈ Σn s.th. NB∪{y}
i (FB∪{y}

j (0n)) rejects :
5 Return {y}
6 Else:
7 Let y,z ∈ Σn s.th. NB∪{y,z}

i (FB∪{y,z}
j (0n)) accepts on ≥ 2 paths

8 Return {y,z}

Procedure 3 handle_UP_stage_aftercare(x’,i,j,B).

1 n := m(i,j)
2 If NB

i(FB
j(0n)) accepts on at least one path p1:

3 Q :=

{
Q(p1) ∪ Q(p2) if NB

i(FB
j(0n)) accepts on another path p2 ̸= p1

Q(p1) else
4 Choose w ∈ Σt(x’) s.th. ⟨x’,w⟩ /∈ Q
5 Return {⟨x’,w⟩}

// Here , NB
i(FB

j(0n)) rejects
6 If ∃y ∈ {⟨x’,w⟩ | w ∈ Σt(x’)} s.th. NB∪{y}

i (FB∪{y}
j (0n)) rejects :

7 Return {y}
8 Let y,z ∈ {⟨x’,w⟩ | w ∈ Σt(x’)} s.th. NB∪{y,z}

i (FB∪{y,z}
j (0n)) accepts on ≥ 2 paths

9 Return {y,z}

Notice that in handle_UP_stage reaching line 3 corresponds to case 1 of the construction
sketch for P2, reaching line 5 corresponds to case 2, and reaching lines 7–8 corresponds to
case 3. In lines 2–4 of construct, because M accepts, we need to add at least one word
⟨x′, w⟩ to the oracle in order to achieve P1. Procedure 3, handle_UP_stage_aftercare,
ensures that a previous UP-stage either remains unaffected by this (lines 2–7), or at least i

now satisfies property P2.I instead (lines 8–9).
It is not clear that the oracle construction can be performed as stated, because lines 4

and 8 in handle_UP_stage_aftercare and line 7 in handle_UP_stage claim the existence
of words with complex properties. The following claims attend to this problem.

▷ Claim 12 (Line 7 in handle_UP_stage can be performed).
If the line 7 is reached in handle_UP_stage in the step construct(enc(k), Φk), then y and
z can be chosen as stated.
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Proof. Let x := enc(k). When reaching this line, then for some i, j ∈ N with n := m(i, j)
we have that NΦk

i (F Φk
j (0n)) rejects, and for all extensions Φk ∪ {x′} with x′ ∈ Σn,

N
Φk∪{x′}
i (F Φk∪{x′}

j (0n)) accepts. Since the accepting paths appear after adding x′ to Φk,
these paths must query x′. There are 2n words of length n and an accepting path can
query at most pi(pj(n)) + pj(n) ≤ 2pi(pj(n)) of these words. Let X be a set consisting of
4(pi(pj(n)))2 + 2pi(pj(n)) + 1 pairwise different words x′ of length n. By M2,

2n/4 > 4(pi(pj(n)))2 + 2pi(pj(n)) + 1,

whereby such a set exists. We show that there must be two different words y, z ∈ X such
that N

Φk∪{y}
i (F Φk∪{y}

j (0n)) (resp., N
Φk∪{z}
i (F Φk∪{z}

j (0n))) accepts and does not query z

(resp., y) on some accepting path.
To choose y, we look at X ′ ⊆ X consisting of 2pi(pj(n)) + 1 pairwise different words.

When extending Φk by a word from X ′ for each word in X ′ separately, the resulting leftmost
accepting paths query at most

2pi(pj(n)) · |X ′| = 2pi(pj(n)) · (2pi(pj(n)) + 1) = 4(pi(pj(n)))2 + 2pi(pj(n))

different words in total. Hence, there is at least one unqueried word y ∈ X.
To choose z, consider N

Φk∪{y}
i (F Φk∪{y}

j (0n)), which on the leftmost accepting path
queries at most pi(pj(n)) + pj(n) ≤ 2pi(pj(n)) words. Hence, there is some unqueried word
z ∈ X ′ ⊆ X.

So, N
Φk∪{y}
i (F Φk∪{y}

j (0n)) accepts on a path which queries y but not z, and
N

Φk∪{z}
i (F Φk∪{z}

j (0n)) accepts on a path which queries z but not y (because z ∈ X ′). Thus,
y ≠ z, both accepting paths are different and both are preserved when extending by both y

and z, resulting in at least two different accepting paths for N
Φk∪{y,z}
i (F Φk∪{y,z}

j (0n)). ◁

▷ Claim 13 (Line 8 in handle_UP_stage_aftercare can be performed).
If the line 8 is reached in handle_UP_stage_aftercare in the step construct(enc(k), Φk),
then y and z can be chosen as stated.

Proof. Let x := enc(k). When reaching this line, then for x = ⟨x′, 0t(x′)⟩ and the biggest UP-
stage n := m(i, j) ≤ |x| we have that NΦk

i (F Φk
j (0n)) rejects, but for all extensions Φk ∪ {y}

with y ∈ {⟨x′, w⟩ | w ∈ Σt(x′)} =: Y , the computation N
Φk∪{y}
i (F Φk∪{y}

j (0n)) accepts. Since
the accepting paths appear after adding y to Φk, these paths must query y. By Claim 1,
|t(x′)| ≥ |x|/4 ≥ n/4. Hence, there are ≥ 2n/4 words w ∈ Σt(x′), and thus |Y | ≥ 2n/4. An
accepting path can query at most pi(pj(n)) + pj(n) ≤ 2pi(pj(n)) of these words. Let X be a
set consisting of 4(pi(pj(n)))2 + 2pi(pj(n)) + 1 pairwise different words y ∈ Y . By M2,

2n/4 > 4(pi(pj(n)))2 + 2pi(pj(n)) + 1,

whereby such a set exists. From here on, we can proceed exactly as in the proof of Claim 12
to find two fitting words y and z. ◁

▷ Claim 14 (Line 4 in handle_UP_stage_aftercare can be performed).
If the line 4 is reached in handle_UP_stage_aftercare in the step construct(enc(k), Φk),
then w can be chosen accordingly.

Proof. Let x := enc(k). When reaching this line, then for x = ⟨x′, 0t(x′)⟩ and the biggest
UP-stage n := m(i, j) ≤ |x| it holds that NΦk

i (F Φk
j (0n)) accepts. In the worst case, there

are at least two accepting paths. Up to two accepting paths p1 and p2 query at most
2pi(pj(n)) + 2pj(n) ≤ 4pi(pj(n)) words in total. Together with M2, we get

|Q(p1) ∪ Q(p2)| ≤ 4pi(pj(n)) ≤ 4(pi(pj(n)))2 + 2pi(pj(n)) < 2n/4.
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By Claim 1, |t(x′)| ≥ |x|/4 ≥ n/4 and thus

|Σt(x′)| ≥ 2n/4 > 4(pi(pj(n)))2 + 2pi(pj(n)) + 1 ≥ |Q(p1) ∪ Q(p2)|.

Consequently, there is some w ∈ Σt(x′) with ⟨x′, w⟩ /∈ (Q(p1) ∪ Q(p2)). ◁

The Claims 12, 13, and 14 show that Φk+1 := Φk ∪ construct(enc(k), Φk) is well-defined.
We make three further observations about construct.

▶ Observation 15. For k ∈ N, construct(enc(k), Φk) only adds words of length | enc(k)|.

The next two observations follow from Observation 15 combined with Observation 10.

▶ Observation 16. Let n ∈ Hi for some i ∈ N and k := enc−1(0n).
Then only the step construct(0n, Φk) can add words of length n to Φ.

▶ Observation 17. Let x := ⟨x′, 0t(x′)⟩ for x′ ∈ Σ∗ and k := enc−1(x).
Then only the step construct(x, Φk) can add words of the form ⟨x′, w⟩ with w ∈ Σt(x′) to Φ.

Proving the Properties. Finally, we show that the properties P1 and P2 hold relative to Φ.
We start with property P1.

▶ Lemma 18. The oracle Φ satisfies property P1.

Proof. First, recall that by definition of Z,

x ∈ ZΦ ⇐⇒ ∃w ∈ Σt(x) : ⟨x, w⟩ ∈ Φ (1)

Let x ∈ Σ∗ be arbitrary, and consider the step of the oracle construction where Φk is defined
as construct(⟨x, 0t(x)⟩, Φk−1). By Observation 17, only construct(⟨x, 0t(x)⟩, Φk−1) may
add words of the form ⟨x, w⟩ for w ∈ Σt(x) to Φ. From this we can draw x /∈ ZΦk−1 , and
further, together with Φk ⊆ Φ,

∃w ∈ Σt(x) : ⟨x, w⟩ ∈ Φ ⇐⇒ ∃w ∈ Σt(x) : ⟨x, w⟩ ∈ Φk (2)

The lines 5 and 6 in construct(⟨x, 0t(x)⟩, Φk−1) are skipped, since, by M1, m(i, j) is always
even, whereas ⟨x, 0t(x)⟩ has odd length (see Observation 10). Hence, handle_UP_stage will
not be entered. Since at the lines 2–4 of construct always at least one word is added to the
oracle, construct(⟨x, 0t(x)⟩, Φk−1) adds a word ⟨x, w⟩ with w ∈ Σt(x) to Φk−1 if and only
if the condition in line 1 is met and these lines are entered, i.e., if MΦk−1(x) accepts. This
gives

x ∈ QBFΦk−1 ⇐⇒ ∃w ∈ Σt(x) : ⟨x, w⟩ ∈ Φk (3)

Since MΦk−1(x) has a space bound of t(x), it cannot ask words longer than t(x). Thereby
MΦk−1(x) cannot notice a transition to the oracle Φk, because we only add words ⟨x, w⟩
with w ∈ Σt(x), which have length > t(x). So, MΦk (x) accepts if and only if MΦk−1(x)
accepts. For the same reason, MΦk (x) cannot notice a transition to the oracle Φ, because
by Observation 15, all words in the set Φ \ Φk have length ≥ |⟨x, 0t(x)⟩|, and thus MΦ(x)
accepts if and only if MΦk (x) accepts. Combining these two facts gives

x ∈ QBFΦ ⇐⇒ x ∈ QBFΦk−1 (4)
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In total, we conclude

x ∈ QBFΦ (4)⇐⇒ x ∈ QBFΦk−1 (3)⇐⇒ ∃w ∈ Σt(x) : ⟨x, w⟩ ∈ Φk

(2)⇐⇒ ∃w ∈ Σt(x) : ⟨x, w⟩ ∈ Φ
(1)⇐⇒ x ∈ ZΦ

Since x ∈ Σ∗ was chosen arbitrarily, property P1 holds. ◀

Before proving Lemma 21, i.e., proving that property P2 holds, we state the helpful claim
that construct does not alter certain accepting paths.

▷ Claim 19. Let i, j, k ∈ N such that k > enc−1(0m(i,j)), and n := m(i, j). If NΦk
i (F Φk

j (0n))
accepts (resp., accepts on more than one path), then so does N

Φk+1
i (F Φk+1

j (0n)).

Proof. If enc(k) ≥lex 0pi(pj(n))+1, then by Observation 15, only words of length > pi(pj(n))
are added to Φk. Hence, all paths of NΦk

i (F Φk
j (0n)) and N

Φk+1
i (F Φk+1

j (0n)) are the same,
from which the claimed statement follows.

Otherwise, enc(k) ≤lex 1pi(pj(n)). By M3, m(i, j) has to be the biggest UP-stage
≤ | enc(k)|. Consider the step construct(enc(k), Φk). Either Φk+1 = Φk and the claim holds,
or some words are added to Φk. The procedure handle_UP_stage is not entered, because
enc(k) >lex 0n, so the condition in line 5 of construct is false, whereby any added words
would need to be added by handle_UP_stage_aftercare. Further, since NΦk

i (F Φk
j (0n)) ac-

cepts, this can only happen via the lines 3 to 5. Here, line 4 makes sure that N
Φk+1
i (F Φk+1

j (0n))
remains accepting (resp., remains accepting on more than one path), since the respective
paths do not query the chosen words. ◁

▶ Corollary 20. Let i, j, k ∈ N such that k > enc−1(0m(i,j)), and n := m(i, j). If
NΦk

i (F Φk
j (0n)) accepts (resp., accepts on more than one path), then so does NΦ

i (F Φ
j (0n)).

▶ Lemma 21. The oracle Φ satisfies property P2.

Proof. Let i ∈ N be arbitrary. Assume that for i the property P2.I does not hold. Then we
show that property P2.II holds.

▷ Claim 22. The property P2.II.a holds.

Proof. Let n ∈ Hi be arbitrary and k := enc−1(0n). By Observation 16, only the step
construct(0n, Φk) adds words of length n to Φ. Since n has even and ⟨·, ·⟩ has always odd
length (see Observation 10), the condition in line 1 of construct evaluates to ‘false’. So,
only if line 8 in handle_UP_stage is executed, more than one word of length n is added to
Φk and consequently to Φ. In this case, since the sets H0, H1, . . . are disjoint, there is some
j ∈ N with m(i, j) = n where N

Φk+1
i (F Φk+1

j (0n)) accepts on more than one path. Invoking
Corollary 20 with i, j and k + 1, we get that also NΦ

i (F Φ
j (0n)) accepts on more than one

path. This is a contradiction to the assumption that the property P2.I does not hold for
i. Hence, line 8 in handle_UP_stage cannot be executed during construct(0n, Φk). This
gives |Φ=n| ≤ 1, as required. ◁

▷ Claim 23. The property P2.II.b holds.
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Proof. Let j ∈ N be arbitrary, n := m(i, j), and k := enc−1(0n). Consider the step
construct(0n, Φk). Since n has even length, the condition in line 1 of construct evaluates
to ‘false’. But the condition in line 5 is satisfied, so handle_UP_stage will define which words
are added to the oracle. Also recall that only at this step words of length n are added to Φ
(Observation 16), i.e., Φ=n

k+1 = Φ=n. We distinguish between the three cases on how Φk+1
can be defined in handle_UP_stage.

If Φk+1 is defined via line 3, then Φ=n = ∅ and N
Φk+1
i (F Φk+1

j (0n)) accepts. By Corollary
20, NΦ

i (F Φ
j (0n)) accepts too. Hence, NΦ

i (F Φ
j (0n)) accepts and 0n /∈ W Φ

i , i.e., 0n satisfies
property P2.II.b.

If Φk+1 is defined via line 8, then N
Φk+1
i (F Φk+1

j (0n)) accepts on more than one path. By
Corollary 20, NΦ

i (F Φ
j (0n)) also accepts on more than one path. But then, property P2.I

holds for i, a contradiction to the assumption at the start of Lemma 21. Hence, this case
cannot occur.

If Φk+1 is defined by line 5, then |Φ=n| = 1 and N
Φk+1
i (F Φk+1

j (0n)) rejects. Let k′ > k + 1
be the smallest number such that N

Φk′
i (F Φk′

j (0n)) accepts. Either k′ does not exist and
hence, NΦ

i (F Φ
j (0n)) rejects, satisfying property P2.II.b.

Otherwise enc(k′) ≤lex 1pi(pj(n)), because Ni(Fj(0n)) can query only words of length
≤ pi(pj(n)), and for bigger k′, only words of length > pi(pj(n)) are added (Observation 15).
Consider the step construct(enc(k′ − 1), Φk′−1). By M3, m(i, j) is the biggest UP-stage
≤ | enc(k′ − 1)|. Since

0n = enc(k) <lex enc(k + 1) ≤lex enc(k′ − 1),

the condition in line 5 is not met, thus handle_UP_stage is skipped. Since by the minimality
of k′ the computation N

Φk′−1
i (F Φk′−1

j (0n)) rejects, Φk′ can only be defined via line 9 in
handle_UP_stage_aftercare. But then, N

Φk′
i (F Φk′

j (0n)) accepts on more than one path.
Invoking Corollary 20 for i, j, k′, we get that also NΦ

i (F Φ
j (0n)) accepts on more than one

path. Consequently, property P2.I holds for i, a contradiction to the assumption at the start
of Lemma 21. Hence, this case cannot occur. ◁

Since i is arbitrary, the Claims 22 and 23 show that if property P2.I does not hold, property
P2.II does. Thus, property P2 holds. ◀

4 Conclusion

The oracle from the previous section gives the following result.

▶ Theorem 24. There exists an oracle relative to which UP has no ≤p
m-complete sets and

NP = PSPACE.

Proof. This follows from the Lemmas 9, 18, and 21. ◀

We summarize the properties of the oracle from Theorem 24 relating to the hypotheses of
Pudlák [43] and mention a few more.

▶ Corollary 25. Relative to the oracle from Theorem 24, all of the following hold:
1. NP = coNP, i.e., ¬NP ̸= coNP.
2. UP does not have ≤p

m-complete sets, i.e., UP.
3. TAUT does not have p-optimal proof systems, i.e., CON.
4. SAT does not have p-optimal proof systems, i.e., SAT.
5. TFNP has a complete problem, i.e., ¬TFNP.

MFCS 2024
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6. TAUT has optimal proof systems, i.e., ¬CONN.
7. DisjNP has ≤pp

m -complete pairs, i.e., ¬DisjNP.
8. DisjCoNP has ≤pp

m -complete pairs, i.e., ¬DisjCoNP.
9. NP ∩ coNP has ≤p

m-complete sets, i.e., ¬NP ∩ coNP.
10. P ⊊ UP ⊊ NP ∩ coNP = NP.
11. The conjecture Q does not hold [18, Def. 2].
12. The conjecture Q′ does not hold [18, Def. 3].
13. TFNP ̸⊆c PF.

Proof. To 1 and 2: Follows from Theorem 24.
To 3: Follows from 2 by Köbler, Messner, and Torán [32, Cor. 4.1].
To 4: Follows from 3 and 1.
To 5: Follows from 1 by Megiddo and Papadimitrou [36, Thm. 2.1].
To 6: Follows from 1 and the fact that NP has optimal proof systems [37, Thm. 3.1].
To 7: Follows from 6 by Köbler, Messner, Torán [32, Cor. 6.1].
To 8: Follows from 7 and 1.
To 9: Follows from 1 and that NPΦ has ≤p

m-complete sets.
To 10: Follows from P ⊆ UP ⊆ NP, P has complete sets, UPΦ does not have complete sets
(2), NP has complete sets and NPΦ = coNPΦ (1).
To 11 and 12: Follows from P ̸= NP ∩ coNP (which is implied by 10), as shown by Fenner et
al. [18, Thm. 2,Prop. 9].
To 13: Follows from 11, as shown by Fenner et al. [18, Prop. 7]. ◀
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Abstract
We study half-space separation in the convexity of chordless paths of a graph, i.e., monophonic
convexity. In this problem, one is given a graph and two (disjoint) subsets of vertices and asks
whether these two sets can be separated by complementary convex sets, called half-spaces. While it
is known this problem is NP-complete for geodesic convexity – the convexity of shortest paths – we
show that it can be solved in polynomial time for monophonic convexity.
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1 Introduction

A (finite) convexity space is a pair (V, C) where V is a (finite) groundset and C a collection
of subsets of V , called convex sets, containing ∅, V and closed under taking intersections.
Graphs provide a wide variety of different convexity notions, known as graph convexities.
These are usually defined based on paths and include for instance the geodesic convexity [20],
the monophonic convexity [10, 12, 15], the m3-convexity [11], the triangle-path convexity [5],
the toll convexity [1], or the weakly toll convexity [9].

In this paper, we are interested in the half-space separation problem: with an implicitly
given convexity space (V, C) and two (convex) subsets A, B of V , are there complementary
convex sets H, H – the so-called half-spaces – such that A ⊆ H and B ⊆ H? This problem
is a generalization to abstract convexity of the half-space separation problem in Rd, being
well-studied in machine learning [3, 16, 25]. Half-space separation has motivated the study
of structural separation properties of convexity spaces. Among these properties, two have
received particular attention, notably within graph convexities (see e.g. [2, 7, 14, 18, 23]):
the S3 property stating that any convex set C can be separated from any element of V

not in C; and the S4 or Kakutani property stating that any pair of disjoint convex sets
can be separated. Besides, the study of the half-space separation problem on its own has
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recently been brought to the context of graph convexities [21, 22]. In particular, Seiffarth et
al. [21] show that half-space separation is NP-complete for geodesic convexity, the convexity
induced by the shortest paths of a graph. To our knowledge though, the complexity status
of half-space separation for the other aforementioned graph convexities is still unknown.

In our contribution, we follow this latter line of research and study half-space separation
for the monophonic convexity. Given a graph G with vertices V (G), a set C ⊆ V (G) is
monophonically convex if for any two vertices u, v of C, all the vertices on a chordless path
u and v lie in C. We prove that half-space separation can be decided in polynomial time for
monophonic convexity. More formally, our main theorem reads as follows:

▶ Theorem 1. Given a graph G and two subsets A, B of V (G), whether A, B are separated
by monophonic half-spaces can be decided in polynomial time.

Theorem 1 contrasts with the NP-completeness of half-space separation for geodesic
convexity [21] and suggests to study separation in further graph convexities. Besides,
half-space separation also relates to the p-partition problem (in graph convexities). In
the p-partition problem, one is given a graph G and has to decide whether V (G) can be
partitioned into p convex sets, where the meaning of convex depends on the convexity at
hand. For monophonic convexity, Gonzalez et al. [17] show that p-partition is NP-complete
for p ≥ 3, but they leave open the case p = 2. Since 2-partition is possible if and only if
there exists two separable vertices, Theorem 1 proves that 2-partition can be decided in
polynomial time.
▶ Remark 2. In very recent contributions, Chepoi [8] and Bressan et al. [4] also showed that
half-space separation can be decided in polynomial time for monophonic convexity. Their
results have been obtained independently and using different approaches, even though they
share some common points with the technique used in this paper.

Organization of the paper

In Section 2 we provide definitions, notations and we formally define the problem we
investigate in the paper. In Section 3 we prove Theorem 1 by giving an algorithm which
decides whether two sets can be separated by half-spaces. We conclude in Section 4.
▶ Remark 3. Due to space limitations, most proofs are omitted. All of them can found in
the arXiv version of the present contribution [13].

2 Preliminaries

All the objects considered in this paper are finite. Let V be a set. The powerset of V

is denoted 2V . Given X ⊆ V , we write X the complement of X in V , i.e., X = V \ X.
Sometimes, we shall write a set X as the concatenation of its elements, e.g., uv instead of
{u, v}. As a result, X ∪ uv and X ∪ v stands for X ∪ {u, v} and X ∪ {v} respectively.

Graphs

We assume the reader is familiar with standard graph terminology. We consider loopless
undirected graphs. Let G be a graph with vertices V (G) and edge set E(G). A subgraph
of G is any graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). The (open) neighborhood
of a vertex v in G is denoted N(v) and is defined as N(v) = {u ∈ V (G) : uv ∈ E(G)}.
The closed neighborhood of v in G is N [v] = N(v) ∪ v. For X ⊆ V (G), we put similarly
N(X) = {u ∈ V (G)\X : xu ∈ E(G) for some x ∈ X} and N [X] = N(X)∪X. The subgraph
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of G induced by X is G[X] = (X, E(G[X])), where E(G[X]) = {uv ∈ E(G) : u, v ∈ X}.
If this is clear from the context, we identify X with G[X], and we use G − X to denote
G[V (G) − X]. A path in G is a subgraph P of G with V (P ) = {v1, . . . , vk} and such that
vivi+1 ∈ E(P ) for each 1 ≤ i < k. Putting u = v1 and v = vk, P is an uv-path of G. An
induced uv-path or chordless uv-path of G is an induced subgraph of G being an uv-path. A
shortest path is an induced path with the least possible number of vertices. For simplicity
we will identify a path P with the sequence v1, . . . , vk of its vertices. Let A, B ⊆ V (G) be
non-empty. The (inner) frontier of A with respect to B is F (A, B) = A ∩ N [B]. We note
that if A, B are disjoint, we obtain F (A, B) = A ∩ N(B). Remark that for every X ⊆ V (G),
F (X, X) = N(X).

Convexity spaces

We refer the reader to [24] for a thorough introduction to convexity theory. A convexity
space is a pair (V, C), with C ⊆ 2V , such that ∅, V ∈ C and for every C1, C2 ∈ C, C1 ∩ C2 ∈ C.
The sets in C are convex sets. A convexity space (V, C) induces a (convex) hull operator
h : 2V → 2V defined for all X ⊆ V by:

h(X) =
⋂

{C ∈ C : X ⊆ C}

The operator h satisfies, for all X, Y ⊆ V : X ⊆ h(X); h(X) ⊆ h(Y ) if X ⊆ Y ; and
h(h(X)) = h(X). The Carathéodory number of (V, C) is the least integer d such that for every
X ⊆ V and v ∈ V , if v ∈ h(X), there exists a subset Y of X such that v ∈ h(Y ) and |Y | ≤ d.
A half-space of (V, C) is a convex set H whose set complement H is convex, that is, H, H ∈ C.
Let A, B be two subsets of V . We say that A and B are (half-space) separable if there exists
half-spaces H, H satisfying A ⊆ H and B ⊆ H. This is equivalent to h(A) ⊆ H and h(B) ⊆ H.
The shadow of A with respect to B [6, 7] is the set A/B = {v ∈ V : h(B ∪ v) ∩ A ̸= ∅}.
Observe that A ⊆ A/B and B ⊆ B/A.

▶ Remark 4. Usually, A/B is defined for disjoint sets. Here, it is more convenient to extend
this definition to sets that may intersect. If A ∩ B ̸= ∅, then A/B = V vacuously.

Monophonic convexity

We introduce monophonic convexity. We redirect the reader to [24, 20] for further details on
graph and interval convexities. Let G be a graph, and let u, v ∈ V (G). The monophonic closed
interval of u, v is the set of all vertices that lie on a chordless uv-path, denoted by J [u, v]. For
X ⊆ V (G), we put J [X] =

⋃
u,v∈X J [u, v]. A set C is monophonically convex if J [C] = C.

Throughout the paper, if there is no ambiguity, we use the term convex sets as a shortening
for monophonically convex sets. With C = {C ⊆ V (G) : C is monophonically convex}, the
pair (V (G), C) is a convexity space, the monophonic convexity of G. Its convex hull operator
h is defined for all X ⊆ V (G) by:

h(X) =
∞⋃

k=0
Xk

where X0 = X and Xi = J [Xi−1] for i ≥ 1. We now gather existing results regarding
monophonic convexity that will be useful throughout the paper. These statements are
rephrased to match our terminology.

▶ Observation 5 (see also [12]). In a connected graph G, every convex set is connected.
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51:4 Half-Space Separation in Monophonic Convexity

▶ Theorem 6 ([12], Theorem 5.1). The monophonic convexity of a connected graph has
Carathéodory number is 1 if the graph is a clique and 2 otherwise.

▶ Theorem 7 ([10], Theorem 4.1). Let G be a graph and let X ⊆ V (G). Then, h(X) can be
computed in polynomial time in the size of G.

▶ Theorem 8 ([10], Theorem 2.1). Let G be a connected graph and let C ⊆ V . The set C is
convex if and only if for every connected component S of G − C, FG(C, S) is a clique.

▶ Lemma 9 ([17], Lemma 14). Let G be a connected graph, K a clique separator of G, and
X the union of some of the connected components of G − K. Then X ∪ K is convex.

We end these preliminaries by stating the problem we investigate in this paper. It is the
problem of separating two sets of vertices by half-spaces. Its decision version is:

Half-space separation in monophonic convexity
Input: A graph G and two (non-empty and disjoint) subsets A, B of V (G).
Question: Are A and B half-space separable?

Since h can be computed in polynomial time by Theorem 7 and A, B are separable if and
only if h(A), h(B) are separable, we can assume w.l.o.g. that the sets A and B are convex.

3 Half-space separation

In this section, we prove Theorem 1, which we first restate.

▶ Theorem 1. Given a graph G and two subsets A, B of V (G), whether A, B are separated
by monophonic half-spaces can be decided in polynomial time.

Remark that if the input graph is not connected, one just has to solve the problem for
each connected component. Thus, we can consider without loss of generality that the graphs
we consider are connected. Hence, for the section, we fix a connected graph G. Let A, B be
two (disjoint) convex sets of G. To prove Theorem 1, we give a polynomial time algorithm
that decides whether A, B are separable. The algorithm first computes a shortest path
a = v1, . . . , vk = b for some a ∈ A and b ∈ B in polynomial time. We show in Lemma 11 that
A and B are separable if and only if there exists 1 ≤ i < k such that Ai := h(A∪{v1, . . . , vi})
and Bi := h(B ∪ {vi+1, . . . , vk}) are separable. This step is the linkage of A and B. Then,
for each i, the algorithm does the subsequent operations:
(1) It computes the saturation A′

i := S(Ai, Bi), B′
i := S(Bi, Ai) of Ai, Bi (resp.) with

respect to h (see Subsection 3.2). Informally, the saturation step extends Ai and Bi with
vertices that are forced on one of the two sides by the hull operator h. Lemma 13 shows
that Ai, Bi are separable if and only if A′

i, B′
i are separable. Corollary 16 proves that

computing saturation takes polynomial time.
(2) From A′

i and B′
i, it builds an equivalence relation ≡A′

i
B′

i
on A′

i ∪ B′
i and an associated

graph GA′
i
B′

i
. Theorem 31 states that A′

i and B′
i are separable if and only if GA′

i
B′

i

is bipartite and no equivalence class of ≡A′
i
B′

i
contains a so-called forbidden pair of

vertices. Finally, Theorem 32 proves that the conditions of Theorem 31 can be tested in
polynomial time.

The algorithm outputs that A and B are separable if there is an integer i for which step (2)
succeeds. Otherwise, A and B are not separable. The correctness of the algorithm follows
from Lemma 11, Lemma 13 and Theorem 31. The fact that it runs in polynomial time is a
consequence of Corollary 16 and Theorem 32. This proves Theorem 1.

The rest of the section is dedicated to the proof of the aforementioned statements.
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3.1 Linkage along a shortest path
Let A, B be two non-empty disjoint convex subsets of V (G). Assume that A and B are
separable and let H, H be half-spaces separating A and B. Then for each a ∈ A, and each
b ∈ B, all the vertices on the shortests ab-paths are distributed among H and H. We show
that, in fact, for each shortest ab-path, there is a vertex before which all vertices are assigned
one half-space and all vertices after which are assigned the other half-space.

▶ Proposition 10. Let a ∈ A, b ∈ B and let a = v1, . . . , vk = b be a shortest ab-path. For
every half-space separation H, H of A and B with A ⊆ H and B ⊆ H, there exists 1 ≤ i < k

such that {v1, . . . , vi} ⊆ H and {vi+1, . . . , vk} ⊆ H.

b2

a1

v1

a2

v2

v3

b1

A B

H H̄

Figure 1 A graph G with two disjoint convex sets A = {a1, a2} and B = {b1, b2} (circled in green
and blue resp.). A and B are not linked, but they can be linked along the path a1, v1, v3, b1 (in
bold green / bold blue). Namely, A ∪ v1 and B ∪ v3 are linked and convex. Two half-spaces H, H

separating A ∪ v1 and B ∪ v3 (hence A and B) are drawn.

Following Proposition 10, we say that A and B are linked if there exists a ∈ A, b ∈ B

such that ab ∈ E(G). Linked sets and Proposition 10 are illustrated in Figure 1. The next
lemma is a direct consequence of Proposition 10.

▶ Lemma 11. Let G be a connected graph and let A, B be two non-empty disjoint convex
subsets of V (G). Let a ∈ A, b ∈ B and let a = v1, . . . , vk = b be a shortest ab-path. Then, A

and B are separable if and only if there exists 1 ≤ i < k such that h(A ∪ {v1, . . . , vi}) and
h(B ∪ {vi+1, . . . , vk}) are separable.

Given a ∈ A and b ∈ B, finding a shortest ab-path can be done in polynomial time.
Hence, making A and B linked can be done efficiently. Moreover, if A and B are linked, then
for any disjoint A′, B′ ⊆ V such that A ⊆ A′ and B ⊆ B′, A′ and B′ must be linked too. In
what follows, we will thus consider disjoint, convex and linked subsets of V (G).

3.2 Saturation with the hull operator
Let A, B be two disjoint, linked and convex subsets of V (G). In this part, we use the hull
operator h to define two sets S(A, B) and S(B, A) – the saturation of A and B (see below)
– with A ⊆ S(A, B), B ⊆ S(B, A) and such that A, B are separable if and only if their
saturation is separable. Informally, we use h to identify vertices that will appear in the same
half-space as A in any possible half-space separation of A (and similarly with B), if any. We
use two properties built on h:
(1) Shadow-closing. Remind that A/B, the shadow of A with respect to B, is defined by

A/B = {v ∈ V (G) : h(B ∪ v) ∩ A ̸= ∅}. In particular, A ⊆ A/B.
(2) Forbidden sets. Let X ⊆ A ∪ B and assume that h(X) ∩ A ̸= ∅ and h(X) ∩ B ̸= ∅.

Since h(v) = {v} for all v ∈ V , we have |X| ≥ 2. Thus, separating A, B implies to split
the vertices of X. We say that X is a forbidden set of A and B with respect to G. A
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51:6 Half-Space Separation in Monophonic Convexity

set X is forbidden if and only if it includes an inclusion-wise minimal forbidden set as a
subset. Henceforth, in order to use forbidden sets, we need only consider the family of
inclusion-wise minimal forbidden sets, denoted MFS(A, B). Formally,

MFS(A, B) = min
⊆

{X ⊆ A ∪ B : h(X) ∩ A ̸= ∅ and h(X) ∩ B ̸= ∅}.

u3

u4

a1

a2

v1

v2

v3

v4

b

u1

u2

A

B

Figure 2 A graph G in which we seek to separate A and B (in circled green/blue resp.). The
vertex a1 is on a chordless u3b-path (bold blue), so that u3 ∈ A/B. Dually, b is on a chordless
v2a2-path (bold green), i.e., v2 ∈ B/A. Besides, h(v1v3) intersects both A and B (bold red). Thus,
v1, v3 must be separated to separate A and B, and v1v3 ∈ MFS(A, B) holds.

We illustrate shadows and forbidden sets in Figure 2. Now, we use A/B (resp. B/A) and
MFS(A, B) in view of separating A and B. On the one hand, A/B cannot be separated
from A by definition. On the other hand, for each X ∈ MFS(A, B) and every half-spaces
H, H̄ separating A and B with A ⊆ H, there exists at least one x ∈ X such that x ∈ H,
so that,

⋂
x∈X h(A ∪ x) ⊆ H always hold. Based on the previous arguments, we define the

pre-saturation of A with respect to B in G, denoted by σ(A, B), by:

σ(A, B) = h

(
A/B ∪

⋃{⋂
x∈X

h(A ∪ x) : X ∈ MFS(A, B)
})

Observe that if A ∩ B ̸= ∅, then σ(A, B) = σ(B, A) = V (G) as A/B = B/A = V (G). In this
case though, A and B cannot be separated. We prove in the next statement that σ(A, B)
preserves separation. Remark that it holds regardless of the disjointness of A and B.

▶ Lemma 12. Let G be a connected graph, and let A, B be linked and convex subsets of
V (G). Then, A, B are separable if and only if σ(A, B) and σ(B, A) are separable.

Proof. The if part follows from A ⊆ A/B ⊆ σ(A, B) and B ⊆ B/A ⊆ σ(B, A). We show
the only if part. Suppose that A and B are separable and let H, H be half-spaces such that
A ⊆ H, B ⊆ H̄. Let v ∈ A/B. By definition, h(B ∪ v) ∩ A ̸= ∅, hence H ∩ H = ∅ entails
v ∈ H. Now let X ∈ MFS(A, B). By definition of forbidden sets, X ∩ H ̸= ∅ and X ⊈ H.
Thus, there exists x ∈ X such that x ∈ H, which entails h(A ∪ x) ⊆ H as H is convex. Since⋂

x′∈X h(A ∪ x′) ⊆ h(A ∪ x) for each x ∈ X, we deduce

A/B ∪
⋃{⋂

x∈X

h(A ∪ x) : X ∈ MFS(A, B)
}

⊆ H.

As H is convex, we get σ(A, B) ⊆ H. Applying the symmetric reasoning on σ(B, A) yields
σ(B, A) ⊆ H. This concludes the proof. ◀
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u3

u4

a1

a2

v1

v2

v3

v4

b

u1

u2

σ(A,B)

σ(B,A)

Figure 3 Pre-saturation applied to the sets A and B of Figure 2. For σ(B, A), u1, u2 ∈ B/A are
added. For σ(A, B), we have u3, u4 ∈ A/B and v4 ∈ h(A ∪ v1) ∩ h(A ∪ v3) (paths in bold green)
with v1v3 ∈ MFS(A, B).

We illustrate pre-saturation in Figure 3, where the operation is applied to the set A and
B of Figure 2. In this example, once pre-saturation has been applied, no further vertices can
be assigned by applying pre-saturation once more. There are cases however where applying
pre-saturation twice yields new vertices to assign. Figure 4 illustrates this situation.

a1

a2

b1

v1

v2

v3

v4

v5

a1

a2

b1

v1

v2

v3

v4

v5

a1

a2

b1

v1

v2

v3

v4

v5

A σ(A,B) σ(σ(A,B), σ(B,A))

B σ(B,A) σ(σ(B,A), σ(A,B))

Figure 4 An example where pre-saturation can be applied twice. For σ(A, B), v2 is obtained
from the forbidden pair v1v3. Once v2 is added, v4, v5 become part of σ(A, B)/σ(B, A). Observe
that B = σ(B, A) = σ(σ(B, A), σ(A, B)). The remaining vertices v1, v3 can be separated in any way.

This suggests to iteratively apply the pre-saturation operator until no more vertices are
added. For A, B ⊆ V , the saturation of A with respect to B, denoted by S(A, B) is defined
as follows:

S(A, B) =
∞⋃

i=0
σ(Ai, Bi)

where A0 = A, B0 = B and for all 1 ≤ i, Ai = σ(Ai−1, Bi−1) and Bi = σ(Bi−1, Ai−1). Given
A, B ⊆ V (G), we say that A and B are saturated if A = S(A, B) and B = S(B, A). Since σ

is increasing, the procedure for computing S(A, B) terminates after |V (G)| steps at most.
Applying Lemma 12 inductively on 1 ≤ i, we get:

▶ Lemma 13. Let G be a connected graph, and let A, B be two linked and convex subsets of
V (G). Then, A, B are separable if and only if S(A, B), S(B, A) are separable.

▶ Remark 14. If Ai ∩ Bi ̸= ∅ for some i, then S(A, B) = S(B, A) = V (G), and no separation
can distinguish S(A, B) and S(B, A). In particular, A, B are thus not separable.
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51:8 Half-Space Separation in Monophonic Convexity

To conclude this paragraph, we argue that S(A, B) can be computed in polynomial time
in the size of G. Since S is at most |V (G)| applications of σ on subsets of V (G), it is sufficient
to show that σ can be computed in polynomial time. The bottleneck of computing σ lies
in finding MFS(A, B). However, the fact that the Carathéodory number of monophonic
convexity is 2 by Theorem 6 makes the sets in MFS(A, B) of constant size.

▶ Proposition 15. Given A, B ⊆ V (G), σ(A, B) can be computed in polynomial time in the
size of G.

▶ Corollary 16. Given A, B ⊆ V (G), S(A, B) can be computed in polynomial time in the
size of G.

We note that saturation is not sufficient to decide separability, as suggested by Figure 5.
This motivates the last step of the algorithm.

u3

u4

a1

a2

v1

v2

v3

v4

b

u1

u2A B

a

v1 v2

b

v3

A B

H H̄

Figure 5 Two cases where A and B are linked, convex and saturated. On the left (follow-up of
Figure 3), A and B can be separated (two half-spaces are drawn). On the right, any bipartition
of the vertices will contain one of the forbidden pair v1v2, v1v3 or v2v3. Thus, A and B are not
separable.

3.3 Testing bipartiteness
Let A, B be two linked, disjoint and saturated subsets of V (G). By definition of saturation, A

and B are convex. We characterize the separability of A and B using an equivalence relation
≡AB on A ∪ B and a graph GAB defined from ≡AB . More precisely, we prove in Theorem 31
that A and B are separable if and only if GAB is bipartite and no two ≡AB-equivalent
vertices form a forbidden pair of MFS(A, B).

As a preliminary step though, we give properties of G and N(A ∪ B) in terms of A and
B. We start with a statement that holds for every convex set.

▶ Proposition 17. Let C ⊆ V (G) be a convex set, and let u, v be two distinct vertices of
V (G) \ C. Then:
(1) if u, v are not adjacent, then h(uv) ∩ C ≠ ∅ if and only if there exists u′, v′ ∈ N(C) such

that u′v′ /∈ E(G) and u′, v′ ∈ h(uv);
(2) if u, v are adjacent, then F (C, u) \ F (C, v) ̸= ∅ entails u ∈ h(C ∪ v).

Leveraging from the fact that A, B are linked and saturated, we use Proposition 17 to
show that every vertex in N(A ∪ B) is adjacent to both A and B.

▶ Lemma 18. For every v ∈ N(A∪B), F (A, B)∪F (B, A) ⊆ N(v). Therefore, the following
properties hold for A (and symmetrically for B):
(1) N(A) = F (B, A) ∪ N(A ∪ B);
(2) F (A, A) = F (A, N(A ∪ B)) is a clique.
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Proof. Assume for contradiction there exists v ∈ N(A ∪ B) such that F (A, B) ∪ F (B, A) ⊈
N(v). We have two cases:
(1) F (A, B) ⊈ N(v) and F (B, A) ⊈ N(v). Suppose w.l.o.g. that v ∈ N(A). There exists

b ∈ F (B, A) such that b /∈ N(v). Then, we deduce by Proposition 17 that h(bv) ∩ A ̸= ∅
and v ∈ A/B.

(2) F (A, B) ⊆ N(v) and F (B, A) ⊈ N(v) (w.l.o.g.). Since F (A, B) ⊆ N(v), v ∈ N(A) holds.
Thus, v ∈ A/B again follows from Proposition 17.

In both cases, we obtain v ∈ A/B with v /∈ A. This contradicts A being saturated. We
derive F (A, B) ∪ F (B, A) ⊆ N(v). Therefore, every v ∈ N(A) \ B also lies in N(B) \ A

so that N(A) ∩ N(B) = N(A ∪ B) holds along with N(A) = F (B, A) ∪ N(A ∪ B) and
F (A, A) = F (A, N(A ∪ B)). To see that F (A, A) is a clique, observe that B ∪ N(A ∪ B)
is connected since B is convex. We deduce that B ∪ N(A ∪ B) is included in a connected
component of G − A. Since F (A, A) = F (A, N(A ∪ B)) and A is convex as it saturated, we
obtain from Theorem 8 that F (A, A) is a clique. ◀

Proposition 17 and Lemma 18 have two consequences. First, we can characterize
MFS(A, B) as the set of pairs uv the closure of which contains non-adjacent vertices of
N(A ∪ B), or in other words, a forbidden pair within N(A ∪ B).

▶ Lemma 19. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G). The following equality holds:

MFS(A, B) = {uv ⊆ A ∪ B : h(uv) ∩ N(A ∪ B) is not a clique}

In particular, X ⊆ A ∪ B is forbidden if and only if it includes a forbidden pair of MFS(A, B).

As another consequence, we can describe N(A ∪ B) and its interactions with A and B

depending on whether it is a clique or not.

▶ Lemma 20. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G). Then either N(A ∪ B) is a clique or for every u, v ∈ N(A ∪ B), F (A, v) =
F (A, u) and F (B, v) = F (B, u).

Proof. Suppose that N(A ∪ B) is not a clique and let u, v be two non-adjacent vertices
of N(A ∪ B). We first prove that F (A, v) = F (A, u) and F (B, v) = F (B, u). Assume for
contradiction that F (A, v) ̸= F (A, u). We have F (A, v)\F (A, u) ̸= ∅ or F (A, u)\F (A, v) ̸= ∅.
By Proposition 17, we deduce v ∈ h(A ∪ u) or u ∈ h(A ∪ v). Since u, v are not adjacent,
uv ∈ MFS(A, B) by Lemma 19 and we obtain h(A ∪ u) ∩ B ̸= ∅ or h(A ∪ v) ∩ B ̸= ∅.
Thus, either u ∈ A/B or v ∈ A/B. This contradicts A being saturated. We obtain
F (A, v) = F (A, u), and F (B, v) = F (B, u) using the same argument on B.

Now, let w ∈ N(A ∪ B) such that w ̸= u, v. If w is not adjacent to u or v, then
F (A, w) = F (A, u) = F (A, v) and F (B, w) = F (B, u) = F (B, v) readily holds by previous
argument. Therefore, suppose that w is adjacent to both u and v. We prove that: (1)
F (A, w) \ F (A, u) = ∅ and (2) F (A, u) \ F (A, w) = ∅.
(1) Assume for contradiction that F (A, w)\F (A, u) ̸= ∅. Then, w ∈ h(A∪u) by Proposition

17. But since, F (A, u) = F (A, v), we deduce F (A, w)\F (A, v) ̸= ∅ and hence w ∈ h(A∪v).
Because uv ∈ MFS(A, B) and w ∈ h(A ∪ u) ∩ h(A ∪ v), w /∈ A is a contradiction with A

being saturated. We deduce that F (A, w) \ F (A, u) = ∅ must hold.
(2) Again, suppose for contradiction that F (A, u) \ F (A, w) ̸= ∅. By Proposition 5, we

obtain u ∈ h(A ∪ w) and since F (A, u) = F (A, v), v ∈ h(A ∪ w) also holds. Since
uv ∈ MFS(A, B), we obtain w ∈ B/A, a contradiction with B being saturated.

We conclude that F (A, w) = F (A, u) holds, and similarly F (B, w) = F (B, u). This concludes
the proof. ◀
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The two situations obtained from Lemma 20 are illustrated in Figure 6. In the case where

N(A ∪B)

B

connected components of G−N [A ∪B]

A

F (A,B) ∪ F (B,A)

F (A, Ā) F (B, B̄)

clique

a4 a3

a2

a1 b1

b2

b3 b4

u1 uj ui uℓ uk N(A ∪B)

v2

B

connected components of G−N [A ∪B]

A

F (A,B) ∪ F (B,A)

F (A, Ā) F (B, B̄)

a4 a3

a2

a1 b1

b2

b3 b4

u1 uj ui uℓ uk

v1 vi vℓv1 v2 vi vℓ

Figure 6 The two possible situations of Lemma 20. On the left, N(A∪B) is a clique. Each vertex
of N(A ∪ B), is connected to each vertex of F (A, B) ∪ F (B, A) (circled in purple), modelled by ui.
However, it needs not be adjacent to all the vertices of the cliques F (A, Ā) and F (B, B̄) (the dotted
line uia4 indicates a non-edge). On the right, N(A ∪ B) is not a clique (for instance, ui, uj are not
adjacent). Each vertex of N(A ∪ B) is complete to F (A, Ā) ∪ F (B, B̄), including F (A, B) ∪ F (B, A).

N(A ∪ B) is not a clique, Lemma 20 together with Lemma 18 yields the subsequent corollary
that will be useful later on.

▶ Corollary 21. If N(A∪B) is not a clique, then for every clique K ⊆ N(A∪B), F (A, A)∪K

(resp. F (B, B) ∪ K) is a clique.

Thanks to Lemmas 19 and 20, we are in position to relate the separability of A, B with
(co)bipartiteness. We first address the case where all the vertices left to assign lie in N(A∪B),
i.e., when A ∪ B = N(A ∪ B). Although restricted, this case gives some insights for the
general one.

If N(A ∪ B) is a clique, then MFS(A, B) = ∅ by Lemma 19. Hence every bipartition
X, Y of N(A ∪ B) readily satisfies h(A ∪ X) ∩ B = ∅ and h(B ∪ Y ) ∩ A = ∅. Therefore, X

and Y need only satisfy h(A ∪ X) ∩ Y = ∅ and h(B ∪ X) ∩ Y = ∅. The trivial bipartition
X = ∅ and Y = N(A ∪ B) vacuously obeys this requirement.

On the other hand, when N(A ∪ B) is not a clique, the subsequent lemma implies that
for any bipartition X, Y of N(A ∪ B) into cliques, A ∪ X and B ∪ Y are convex.

▶ Lemma 22. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G) such that N(A ∪ B) is not a clique. Then for every clique K ⊆ N(A ∪ B),
both A ∪ K and B ∪ K are convex.

Proof. To check that A ∪ K is convex, we verify that J [u, v] ⊆ A ∪ K for every u, v ∈ A ∪ K.
If u, v ∈ A or u, v ∈ K, then the result holds since A is convex and K is a clique. Consider
instead u ∈ A, v ∈ K. Assume for contradiction J [u, v] ⊈ K ∪ A. There exists a chordless
uv-path u = v1, . . . , vk = v such that vi /∈ K ∪ A for some 1 < i < k. Consider the least
such i. By assumption vi ∈ N(A) and vi−1 ∈ F (A, vi). Morever, since A, B are saturated,
vi ∈ N(A ∪ B) must hold. As N(A ∪ B) is not a clique, we obtain by Lemma 20 that
F (A, vi) = F (A, v), meaning that vi−1 is adjacent to v. This contradicts vi being on a
chordless uv-path. We deduce that J [u, v] ⊆ A ∪ K and A ∪ K is convex. ◀

We finally arrive at the following intermediate claim.



M. Elaroussi, L. Nourine, and S. Vilmin 51:11

▶ Lemma 23. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V (G). If A ∪ B = N(A ∪ B), then A and B are separable if and only if N(A ∪ B)
is cobipartite.

Proof. We start with the only if part. Let H = A ∪ X, H = B ∪ Y be half-spaces separating
A and B. By assumption, X contains no forbidden pair of MFS(A, B). Since X ⊆ N(A ∪ B),
we deduce from Lemma 19 that X is a clique. In the same way, we deduce that Y is a clique.
As X, Y is a bipartition of A ∪ B = N(A ∪ B), we deduce that N(A ∪ B) is cobipartite.

We proceed to the if part. If N(A ∪ B) is cobipartite, we have two cases: either N(A ∪ B)
is a clique or it is not. If N(A ∪ B) is a clique, then (resp. A ∪ N(A ∪ B) and B) are
half-spaces separating A and B. If N(A ∪ B) is not a clique, the fact that A ∪ X and B ∪ Y

are half-spaces for all bipartitions X, Y of N(A ∪ B) into cliques follows from Lemma 22. ◀

Let us consider now that there are vertices outside of N(A ∪ B), i.e., N(A ∪ B) ⊂ A ∪ B.
First, if N(A ∪ B) is a clique, MFS(A, B) = ∅ still holds by Lemma 19. In this case, the
same reasoning as before applies, and A, B ∪ A ∪ B is a half-space separation of A, B.
Suppose on the other hand that N(A ∪ B) is not a clique. If it is not cobipartite, then any
bipartition of N(A ∪ B) will contain a pair of non-adjacent vertices, and hence a forbidden
pair, again due to Lemma 19. In other words, if N(A ∪ B) is not cobipartite, A and B are
not separable. However, there are also cases where N(A ∪ B) is cobipartite, yet A and B

are not separable. This is the case for the graphs of Figure 7, that we will use to illustrate
the steps of the upcoming discussion. This happens because when picking an element v in a

a b

v1

v2

v3 v4

u1

u2

u3

A

B

v5

v6

a b

v1

v2 v3

v4

u1

u2

u3

A

B

Figure 7 Two examples where A and B are linked and saturated, yet not separable despite
N(A ∪ B) being cobipartite. For readability, the edges incident to a and b are clearer. Remark that
since N(A ∪ B) is not a clique, both a and b are complete to N(A ∪ B) in virtue of Lemma 20.

connected component S of G − N [A ∪ B], h(A ∪ v) and h(B ∪ v) will share elements from
N(S), regardless of the structure of N(A ∪ B) (clique or not).

▶ Lemma 24. Let G be a connected graph and let A, B be two linked, disjoint and saturated
subsets of V (G). Let S be a connected component of G − N [A ∪ B]. Then, for every v ∈ S,
N(S) ⊆ h(A ∪ v) ∩ h(B ∪ v) ∩ N(A ∪ B).

Using Lemma 24, we define an equivalence relation on A ∪ B that will help us characterize
the separability of A and B. Every half-space separation H, H of A and B, if any, can be
written as H = A∪X and H = B ∪Y where X, Y is a bipartition of A ∪ B. Since H ∩H̄ = ∅,
we have H ∩ Y = h(A ∪ X) ∩ Y = ∅ and similarly H ∩ X = h(B ∪ Y ) ∩ X = ∅. As a direct
application of Lemma 24, we deduce:
(1) For each connected component S of G − N [A ∪ B], either N [S] ⊆ X or N [S] ⊆ Y ;
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(2) If S1, . . . , Sk is a sequence of (not necessarily distinct) connected components of G −
N [A ∪ B] such that N(Si) ∩ N(Si+1) ̸= ∅ for each 1 ≤ i < k, then

⋃k
i=1 N [Si] must be

included in one of X or Y . We call such a sequence an intersecting sequence of connected
components.

Given an intersecting sequence S1, . . . , Sk of connected components of G − N [A ∪ B], we say
for brevity that u, v belongs to the sequence S1, . . . , Sk if there exists 1 ≤ i, j ≤ k such that
u ∈ N [Si] and v ∈ N [Sj ]. Let us define the equivalence relation ≡AB on A ∪ B such that,
for all u, v ∈ A ∪ B:

u ≡AB v ⇐⇒ u = v or u, v belong to an intersecting sequence of
connected components of G − N [A ∪ B]

▶ Proposition 25. The relation ≡AB is an equivalence relation.

▶ Remark 26. The definition of ≡AB encompasses the vertices that do not belong to the
closed neighborhood of any connected component of G − N [A ∪ B], i.e., those vertices v

in N(A ∪ B) such that N [v] ⊆ N [A ∪ B]. By definition of ≡AB, they are equivalent to
themselves only.

a b

v1

v2 v3

v4

u1

u2

u3

A

B

a b

v1

v2

v3 v4

u1

u2

u3

A

B

v5

v6

[u1]AB [u3]AB

[u2]AB

Figure 8 The equivalence relation ≡AB applied to the graphs of Figure 7. The classes are circled
(purple). On the left, there is a unique equivalence class. Remark that, as a consequence, v1v4 is a
forbidden pair all the while v1 ≡AB v4. On the right, there are three classes, [u1]AB, [u2]AB, and
[u3]AB .

For u ∈ A ∪ B, let [u]AB be the equivalence class of u: [u]AB = {v ∈ A ∪ B : u ≡AB v}.
In Figure 8, we give the equivalence classes induced by ≡AB on the graphs of Figure 7. The
next lemma is a direct yet important consequence of the above discussion and Lemma 24.

▶ Lemma 27. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V (G). For every bipartition X, Y of A ∪ B, we have h(A ∪ X) ∩ Y = ∅ and
h(B ∪ Y ) ∩ X = ∅ only if for each v ∈ A ∪ B, either [v]AB ⊆ X or [v]AB ⊆ Y .

We consider ≡AB together with MFS(A, B). Remind that MFS(A, B) consists in pairs
of vertices only, thanks to Lemma 19. Hence, a forbidden pair uv ∈ MFS(A, B) falls into
exactly one of the following cases regarding equivalence classes:
(1) Either u ≡AB v so that the equivalence class [u]AB prevents separation of A and B on

its own (see Proposition 28 below). This case happens for instance in the graph on the
left of Figure 8: v1 ≡AB v4 yet v1v4 ∈ MFS(A, B).

(2) Or u ̸≡AB v, so that [u]AB and [v]AB cannot be taken together in any separation of
A and B. For example in the graph on the right of Figure 8 we have v1 ̸≡AB v3 and
v1v3 ∈ MFS(A, B), which makes [u1]AB and [u2]AB incompatible for separating A and B.
In this example, all equivalence classes are incompatible, so that A and B not separable.
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As for the first case, we have the direct property:

▶ Proposition 28. If uv ∈ MFS(A, B) and u ≡AB v, then A, B are not separable.

For the second case, we can build a graph GAB on the equivalence classes of ≡AB that
makes adjacent every two distinct equivalence classes sharing a forbidden pair. More formally:

V (GAB) ={[v]AB : v ∈ A ∪ B}
E(GAB) ={[u]AB [v]AB : u ̸≡AB v and uv ∈ MFS(A, B)}.

For the graph on the right of Figure 8, the corresponding graph GAB will be a clique. Figure 9
illustrates the graph GAB on an other example.
▶ Remark 29. In the case where A ∪ B = N(A ∪ B), the equivalence classes [v]AB are
precisely the singletons {v} for all v ∈ N(A ∪ B). Identifying [v]AB with v, GAB turns out
to be precisely the complement of G[N(A ∪ B)].

a b

v5

v4

v3

v2

v1

u2

u1

u3

A B

[v3]AB

[v5]AB

[v4]AB

[v5]AB

[v4]AB

[v3]AB

Figure 9 On the left, a graph with linked A and B where the equivalence class are highlighted.
Again, the edges incident to a and b are clearer for readability. On the right, the corresponding
graph GAB .

Before characterizing the separability of A and B we give a lemma extending Lemma 22.

▶ Lemma 30. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V (G) such that N(A∪B) is not a clique. Then, for every collection X of equivalence
classes of ≡AB, if

⋃
X ∩ N(A ∪ B) is a clique, then both A ∪

⋃
X and B ∪

⋃
X are convex.

Proof. Let X be a collection of equivalences classes such that
⋃

X ∩N(A∪B) is a clique and
let C = A ∪

⋃
X . We show that C is convex. We put K = F (A, Ā) ∪ (N(A ∪ B) ∩ C). Now,

by assumption, N(A ∪ B) ∩ C is a clique, A and B are linked and saturated and N(A ∪ B) is
not a clique. Therefore, K is a clique by Corollary 21. In view of Lemma 9, we show that K

is a clique separator of G and that C \ K is a union of connected components of G − K. First,
since F (A, Ā) ⊆ K and K is a clique, we have that G − K disconnects A \ K from A ∪ B \ K.
Hence K is a clique separator of G and moreover, A \ K is indeed a union of connected
components of G − K since F (A, Ā) ⊆ K. Now we consider C \ (K ∪ A). If C \ (K ∪ A) = ∅,
we deduce C ⊆ A ∪ K and the result holds by Lemma 22. Assume that C \ (K ∪ A) ̸= ∅
and let S1, . . . , Sk be the connected components of G − N [A ∪ B] such that C ∩ Si ≠ ∅ for
each 1 ≤ i ≤ k. We have C \ (A ∪ K) ⊆

⋃k
i=1 Si. We show that

⋃k
i=1 Si ⊆ C \ (A ∪ K). Let

v ∈ Si for some 1 ≤ i ≤ k. By definition of ≡AB, S ⊆ [v]AB and since X is a collection of
equivalence classes, we obtain S ⊆ [v]AB ⊆ C \ (K ∪ A). We deduce C \ (A ∪ K) ⊆

⋃k
i=1 Si

and hence C \ (A ∪ K) =
⋃k

i=1 Si. It remains to show that Si is a connected component of
G − K. Since Si is a connected component of G − N [A ∪ B], it is a connected component of
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G − N(Si). Moreover, N(Si) ⊆ N(A ∪ B) by construction. Finally, again by definition of C

and ≡AB , N(Si) ⊆ C. Henceforth, N(Si) ⊆ N(A ∪ B) ∩ C from which we deduce that Si is
a connected component of G − K. Hence, C = K ∪ (A \ K) ∪ (C \ (K ∪ A)) is the union
of a clique separator K of G and connected components of G − K. Applying Lemma 9, we
deduce that C is convex, which concludes the proof. ◀

We can characterize the separability of A, B by generalizing Lemma 23.

▶ Theorem 31. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V . Then A and B are separable if and only if the next conditions hold:
(1) for every v ∈ A ∪ B, [v]AB contains no forbidden pairs;
(2) GAB is bipartite.

Proof. We start with the only if part. Assume A and B are separable and let H, H̄ be
a half-space separation of A and B with A ⊆ H and B ⊆ H̄. Put X = H \ A and
Y = H \ B. By assumption, H ∩ Y = h(A ∪ X) ∩ Y = ∅. Hence, by Lemma 27, for each
v ∈ A ∪ B, either [v]AB ⊆ X or [v]AB ⊆ Y . Let X = {[v]AB ∈ V (GAB) : [v]AB ⊆ X} and
Y = {[v]AB ∈ V (GAB) : [v]AB ⊆ Y }. Since H, H are half-spaces separating A and B, and
X ⊆ H, Y ⊆ H, we deduce that neither X nor Y contain a forbidden pair of MFS(A, B).
We derive:
(1) for each [v]AB , [v]AB contains no forbidden pair, i.e., item (1) holds;
(2) for each pair of distinct classes [u]AB , [v]AB in X (resp. Y ), [u]AB and [v]AB are not

adjacent in GAB, i.e., that X (resp. Y) is an independent set of GAB. Since X , Y is a
partition of GAB into two independent sets, we conclude that GAB is bipartite, and that
item (2) of the theorem holds.

We move to the if part. Assume both items (1) and item (2) are satisfied. In particular,
if N(A ∪ B) is a clique, MFS(A, B) = ∅ by Lemma 19. Hence, A ∪ N(A ∪ B) and B

(resp. B ∪ N(A ∪ B) and A) are half-spaces separating A and B. Assume N(A ∪ B) is not
a clique and let X , Y be any bipartition of V (GAB) into two independent sets. We show
that

⋃
X contains no forbidden pair. Assume for contradiction there exists a forbidden pair

uv ∈
⋃

X . We have two cases:
(1) u ≡AB v, but this would contradict item (1) of the statement;
(2) u ̸≡AB v, but this would contradict XA being an independent set of GAB by definition

of GAB .
By Lemma 19 we deduce that

⋃
X contains no forbidden pair, and hence that

⋃
X ∩N(A∪B)

is a clique. Applying Lemma 30, A ∪
⋃

X is convex. The same reasoning on B ∪ Y yields
that A ∪

⋃
X and B ∪ Y are half-spaces separating A and B. This concludes the proof. ◀

Figure 10 illustrate the conditions of Theorem 31 on the example of Figure 9. We
finally argue that the conditions of Theorem 31 can be checked in polynomial time. Since
MFS(A, B) consists in pairs only, it can be computed in polynomial time. Then, we identify
the connected components of G − N [A ∪ B] in polynomial time by traversing G − N [A ∪ B].
We then identify the equivalence relation ≡AB and build GAB accordingly. Testing that no
equivalent class contains a forbidden pair can be done in polynomial as well as checking that
GAB is bipartite. We deduce:

▶ Theorem 32. Let G be a connected graph and let A, B be two disjoint, linked and saturated
subsets of V . Whether A, B can be separated by half-spaces can be checked in polynomial
time in the size of G.
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Figure 10 Illustration of Theorem 31 on the graph of Figure 9. A half-space separation of A and
B is drawn. Observe that it corresponds to a bipartition of GAB into independent sets.

4 Conclusion

We proved that half-space separability can be tested in polynomial time for monophonic
convexity. Using Lemma 30, the algorithm we propose can be adapted to generate a pair of
half-spaces separating two sets of vertices, if any. Moreover, we deduce as a corollary that
the 2-partition problem can be solved in polynomial time for monophonic convexity, thus
answering an open problem in [17].

To decide separability, we used the underlying graph together with the fact that the
Carathéodory number is constant for monophonic convexity (Theorem 6, [12]). A natural
question is then to investigate to what extent the Carathéodory number can be used to
decide separability. However, relying on the problem of 2-coloring 3-uniform hypergraphs [19],
we can show that already with Carathéodory number 3, half-space separation in general
convexity spaces is out of reach.

▶ Theorem 33. Half-space separation is NP-complete for convexity spaces (V, C) given by V

and a hull operator h that computes h(X) in polynomial time in the size of V for all X ⊆ V ,
even if (V, C) has Carathéodory number 3.

Theorem 33 together with Theorem 1 motivate the next intriguing open problem.

▶ Open Problem 34. Find a natural (graph) convexity with Carathéodory number 2 (e.g.
triangle-path convexity [5]) where half-space separation is hard, or show that for all such
convexities, half-space separation is tractable.
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Abstract
Temporal graphs provide a useful model for many real-world networks. Unfortunately, the majority
of algorithmic problems we might consider on such graphs are intractable. There has been recent
progress in defining structural parameters which describe tractable cases by simultaneously restricting
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1 Introduction

Temporal graphs, in which the set of active edges changes over time, are a useful formalism
for modelling numerous real-world phenomena, from social networks in which friendships
evolve over time to transport networks in which a particular connection is only available on
particular days and times. This has inspired a large volume of research into the algorithmic
aspects of such graphs in recent years [8, 26, 34], but unfortunately in many cases even
problems which admit polynomial-time algorithms on static graphs become intractable in
the temporal setting.

This has motivated the study of computational problems on restricted classes of temporal
graphs, with mixed success: in a few cases, restricting the structure of the underlying static
graph (e.g. to be a path or a tree) is effective, but numerous natural temporal problems
remain intractable even when the underlying graph is very strongly restricted (e.g. when it
is required to be a path [33] or a star [2]). Recently, several promising new parameters have
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52:2 Structural Parameters for Dense Temporal Graphs

been introduced that simultaneously restrict properties of the static underlying graph and
the times at which edges are active in the graph; these include several analogues of treewidth
for temporal graphs [18, 30], the temporal feedback edge/connection number [23], the timed
vertex feedback number [7] and the (vertex-)interval-membership-width of the temporal
graph [6]. However, all of these new temporal parameters are only small for temporal graphs
that are, in some sense, sparse: none of them can be bounded on a temporal graph which
has a superlinear (in the number of vertices) number of active edges at every timestep.

In this paper, we attempt to fill this gap in the toolbox of parameters for temporal graphs
by introducing three new parameters which can take small values on temporal graphs which
are dense but are sufficiently highly structured. Specifically, we define natural temporal
analogues of cliquewidth, modular-width and neighbourhood diversity, all of which have
proved highly effective in the design of efficient algorithms for static graphs.

Importantly, the neighbourhood diversity of a static graph upper bounds its modular-
width, which upper bounds its cliquewidth. Both cliquewidth (introduced by Courcelle et
al. [13]) and modular-width (introduced by Gajarský et al. [19], using the long-standing notion
of modular decompositions [20]) can be defined in terms of width measures over composition
trees allowing particular operations. Cliquewidth constructions have greater flexibility due
to the fact that we are allowed to use an additional “relabelling” operation; this makes it
possible, for example, to build long induced paths, which cannot exist in graphs of small
modular width. Courcelle et al. [11] show that any graph property expressible in monadic
second order is solvable in linear time on graphs of bounded cliquewidth. Gajarský et al. [19]
provide examples of problems (Hamilton Path and Colouring) that are hard with respect
to cliquewidth but tractable with respect to the more restrictive parameter modular-width.
Neighbourhood diversity is a highly restrictive parameter, introduced by Lampis [28], which
requires that large sets of vertices have identical neighbourhoods. Cordasco [9] demonstrated
that Equitable Colouring is hard with respect to modular-width but tractable with
respect to neighbourhood diversity.

These three static parameters are the inspiration for our temporal parameters. Informally,
our new parameters are defined as follows:

A temporal graph has temporal neighbourhood diversity (TND) at most k if its vertices can
be partitioned into at most k classes such that each class induces either an independent
set or a clique in which all edges are active at exactly the same times, and any two vertices
in the same class have exactly the same neighbours outside the class at each timestep.
Temporal modular-width (TMW) is a generalisation of TND: a temporal graph has TMW
at most k if its vertices can be partitioned into modules such that two vertices in the same
module must have the exactly the same neighbours outside the class at each timestep,
but now each module need only be a temporal graph which itself has TMW at most k,
rather than a clique or independent set.
Like the static version, temporal cliquewidth (TCW) is defined to be the minimum number
of labels needed to construct a temporal graph using four operations (create a vertex
with a new label; take a disjoint union of two graphs; add all edges between vertices of
two specified labels; relabel all occurrences of one label to another); the difference from
the static case is that when adding edges between two sets of vertices these edges must
all be active at exactly the same times.

We note that in every case we will recover the corresponding static parameter if all edges
are active at the same times. It is immediate that the TND of a temporal graph is an upper
bound on its TMW, and it is straightforward to show (see Section 3) that the TMW is an
upper bound on the TCW. Thus, the most general algorithmic result we hope to obtain is to
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show that a problem is tractable when the TCW of the input temporal graph is bounded, but
we expect to be able to show tractability for more problems as we impose stronger restictions
on the input by bounding respectively the TMW and the TND.

StarExp(4)

Temporal cliquewidth

Temporal modular-width

Temporal neighbourhood diversity

Temporal
Graph Burning

Temporal ∆ Clique

Figure 1 A diagram of our parameters and the problems we show to be tractable with respect to
each. A problem is in a rectangle if it is tractable with respect to the parameter it is labelled with.
Assuming P̸=NP, each problem is in the rectangle for the most general of the three parameters for
which it is tractable.

To illustrate the value of considering this hierarchy of parameters, we provide examples of
problems which can be solved efficiently when each of our three new parameters is bounded,
but which (in the case of TND and TMW) remain intractable when we restrict only the next
most restrictive parameter, as illustrated in Figure 1. Specifically, we prove that:

Temporal Clique is solvable in linear time when a temporal cliquewidth decomposition
of constant width is given (see Section 2).
StarExp(4) (the problem of deciding whether there is a closed temporal walk visiting all
vertices in a star when each edge is active at no more than four times) remains NP-hard
on graphs with TCW at most three, but is solvable in polynomial time when the TMW
of the input graph is bounded by a constant; in fact we provide an fpt-algorithm1 with
respect to TMW (see Section 3).
Graph Burning is NP-hard on temporal graphs with constant TMW, but is solvable in
polynomial time when the TND of the input graph is bounded by a constant; again this
is an fpt-algorithm with respect to TND (see Section 4).

We also (in Section 4) provide an fpt-algorithm to solve SingMinReachDelete paramet-
erised by TND (when the number of appearances of each edge is bounded), in order to
illustrate additional techniques that may be used when working with this new temporal
parameter. This problem asks, for a given source vertex, what the cardinality of the smallest
set of time-edges is such that their deletion leaves at most r vertices temporally reachable from
the source. We conjecture that SingMinReachDelete is another example of a problem
that is tractable with respect to TND but intractable when only the TMW is restricted.

The remainder of the paper is organised as follows. We conclude this section by introducing
some key notation and definitions used throughout the paper. The following three sections
are devoted to TCW, TMW and TND respectively, with each section containing the formal
definition of a parameter as well as results about problems which can be solved efficiently
when that parameter is bounded. Many proof details are omitted due to space constraints.
A full version of the paper can be found on arXiv. Statements with proofs omitted are
highlighted with a (⋆).

1 We use fpt (lowercase) as a descriptor of algorithms witnessing the inclusion of a problem in the
parameterised complexity class FPT.
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52:4 Structural Parameters for Dense Temporal Graphs

1.1 Notation and definitions
We use a number of standard notations for temporal graphs and related notions. A temporal
graph G = (G, λ) consists of an underlying static graph G↓ = G, and a time-labeling function
λ : E → 2N, assigning to each edge a set of timesteps at which it is active. We refer to a
pair (e, t) consisting of an edge e ∈ E(G) and time t ∈ λ(e) as a time-edge. The set of all
time-edges of a temporal graph is denoted by ε(G) and the lifetime Λ of a temporal graph
refers to the final time at which any edge is active, i.e. Λ = max{max λ(e) : e ∈ E(G)}. The
snapshot Gt of a temporal graph G at time t is the static graph G = (V, Et) where Et is the
set of edges active at time t.

A temporal path on the temporal graph G = (G, λ) is a sequence of edge, time pairs
(e1, t1), ..., (eℓ, tℓ), such that e1, ..., eℓ is a path on G, and ti ∈ λ(ei) for every i ∈ [ℓ], and
t1, ..., tℓ is a strictly increasing sequence of times. Given a temporal path (e1, t1), ..., (eℓ, tℓ)
we refer to the time t1 as its departure time, and tℓ as its arrival time.

We refer the reader to [15] for standard definitions from the field of parameterised
complexity.

2 Tractability with respect to Temporal Cliquewidth

In this section we give the formal definition of the first of our new parameters, temporal
cliquewidth, and demonstrate that the problem of finding a temporal clique admits an
fpt-algorithm parameterised by temporal cliquewidth. Before defining temporal cliquewidth,
we start by recalling the definition of cliquewidth in the static setting, as introduced by
Courcelle and Olariu [14].

▶ Definition 1 (Cliquewidth). The cliquewidth of a static graph G = (V, E) is the number of
labels required to construct G using only the following operations:
1. Creating a new vertex with label i.
2. Taking the disjoint union of two labeled graphs.
3. Adding edges to join all vertices labeled i to all vertices labeled j, where i ̸= j.
4. Renaming label i to label j.

We refer to an algorithm which constructs a graph G using the above operations as a
cliquewidth construction of G.

Computing the cliquewidth of a graph is NP-hard [17], although there exists a polynomial-time
algorithm to recognise graphs of cliquewidth at most three [10].

Translating this definition into the temporal setting, and preserving the idea that vertices
with the same label should be indistinguishable when we add edges – which imposes additional
restrictions on the times at which new edges are active – we obtain our definition of temporal
cliquewidth.

▶ Definition 2 (Temporal Cliquewidth). The temporal cliquewidth of a temporal graph
G = (G, λ) is the number of labels required to construct G using only the following operations:
1. Creating a new vertex with label i.
2. Taking the disjoint union of two labeled graphs.
3. Adding edges to join all vertices labeled i to all vertices labeled j, where i ̸= j, such that

all the added edges are active at the same set of times T .
4. Renaming label i to label j.

We refer to an algorithm which constructs a temporal graph G using the above operations as
a temporal cliquewidth construction of G.
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We note that, if temporal graph G has bounded temporal cliquewidth k, then the underlying
graph G↓ of G has cliquewidth at most k. The construction of the underlying graph is found
by adding a static edge (if one does not already exist) whenever a time-edge is added in the
construction of the temporal graph. In addition, the snapshot of G at any time t, Gt, also
has cliquewidth at most k. This follows from a similar argument. If we have a temporal
graph where the edges all appear at the same times, the cliquewidth of the underlying graph
is the same as the temporal cliquewidth and the cliquewidth of any snapshots where edges
are active. It follows immediately that it is NP-hard to compute temporal cliquewidth, as
the NP-hard problem of computing the cliquewidth of a static graph is a special case.

The remainder of this section is devoted to proving that the problem Temporal ∆
Clique is in FPT parameterised by the temporal cliquewidth of the input graph. This
problem was introduced by Viard et al. [37] and asks, in any interval of times of size ∆,
whether there is a set of at least h vertices such that there is an appearance of an edge
between every pair of vertices in every sub-interval of ∆ times. Hermelin et al. [25] investigate
the variant of this problem where the interval in question is the entire lifetime of the temporal
graph. More formally, it asks if there exists a set V ′ of cardinality at least h such that for
each pair of distinct vertices u, v ∈ V ′ and each time 0 ≤ i ≤ Λ − ∆ where Λ is the lifetime
of G, there exists a time-edge at time t′ ∈ [i, ∆ + i].

Hermelin et al. note that this is the case if and only if there is a set of vertices of size at
least k such that they form a clique on the static graph consisting of edges that appear in
every interval of ∆ timesteps. They name this static graph a ∆-association graph. It is more
formally defined as G =

(
V,

⋂Λ(G)−∆+1
i=1

⋃i+∆−1
j=i Ej

)
where Ej is the set of edges active at

time j. This reformulates the problem as follows.

Temporal ∆ Clique

Input: A temporal graph G = (V, E, λ) and two integers ∆ and h where ∆ ≤ T (G).
Output: Is there a set V ′ ⊆ V of vertices such that |V ′| ≥ h and V ′ is a clique in the
∆-association graph G of G?

Note that a temporal graph G with integers ∆ and h is a yes-instance of Temporal ∆
Clique if and only if its ∆-association graph G and h are a yes-instance of Clique.

▶ Proposition 1 (⋆). If a temporal graph G has temporal cliquewidth k, then the ∆-association
graph G of G has cliquewidth at most k.

Gurski [22, Theorem 4.4] shows that Clique is solvable in linear time in graphs of
bounded cliquewidth if its construction is given. This gives us the following result.

▶ Theorem 2. Given a cliquewidth construction of the ∆-association graph of a temporal
graph G, Temporal ∆ Clique can be solved in linear time.

3 Tractability with respect to Temporal Modular-width

We now introduce a more restrictive parameter, temporal modular-width, and show (in
Section 3.1) that there exist problems which are efficiently solvable when this parameter is
bounded even though they remain intractable on temporal graphs with constant temporal
cliquewidth.

We begin with the formal definition of the parameter. Again, we start by recalling the
definition of the corresponding static parameter on which our definition is based.
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52:6 Structural Parameters for Dense Temporal Graphs

▶ Definition 3 (Modular-width, Section 2.5 [19]). Suppose a static graph G can be constructed
by the algebraic expression A which uses the following operations:
1. Creating an isolated vertex.
2. Taking the disjoint union of two graphs.
3. Taking the complete join of two graphs. That is, for graphs G1 = (V1, E1) and G2 =

(V2, E2), V (G1 ⊗ G2) = V (G1) ∪ V (G2) and E(G1 ⊗ G2) = E(G1) ∪ E(G2) ∪ {(v, w) :
v ∈ V (G1) and w ∈ V (G2)}.

4. The substitution of graphs G1, . . . , Gn into a graph G′ with vertices v1, . . . , vn. This gives
the graph G′(G1, . . . , Gn) with vertex set

⋃
1≤i≤n V (Gi) and edge set

⋃
1≤i≤n E(Gi) ∪

{(v, w) : v ∈ V (Gi), w ∈ V (Gj), and (vi, vj) ∈ E(G′)}.
The width of an expression A is the maximum number of operands in an occurrence of the
operation 4 in A. The modular-width of G, written MW (G), is this minimum width of an
expression A which constructs G.

We refer to the graphs G1, . . . , Gn which we substitute into G′ as modules. It is known that
for any graph G an algebraic expression of modular-width MW (G) can be found in linear
time [31, 36]. Observe that operations 2 and 3 are special cases of operation 4.

We now define our temporal analogue of this parameter. For simplicity we do not explicitly
include the disjoint union and complete join operations, noting that once again these are
special cases of the substitution operation.

▶ Definition 4 (Temporal Modular-width). Suppose a temporal graph G can be constructed by
the algebraic expression A which uses the following operations:
1. Creating an isolated vertex.
2. Taking the disjoint union of two temporal graphs.
3. Taking the complete join of two temporal graphs at a set of times T . That is, for

graphs G1 = ((V1, E1), λ1) and G2 = ((V2, E2), λ2), V (G1 ⊗ G2) = V (G1) ∪ V (G2) and
ε(G1 ⊗ G2) = ε(G1) ∪ ε(G2) ∪ {(vw, t) : v ∈ V (G1), w ∈ V (G2) and t ∈ T}.

4. The substitution of temporal graphs G1, . . . , Gn into a temporal graph G′ with vertices
v1, . . . , vn. This gives the graph G′(G1, . . . , Gn) with vertex set

⋃
1≤i≤n V (Gi) and time-edge

set
⋃

1≤i≤n ε(Gi) ∪ {(vw, t) : v ∈ V (Gi), w ∈ V (Gj), and (vivj , t) ∈ ε(G′)}.
The width of an expression A is the maximum number of operands in an occurrence of the
operation 4 in A. The temporal modular-width of G is this minimum width of an expression
A which constructs G.

As for temporal cliquewidth, we observe that the temporal modular-width of a temporal
graph is equal to the modular-width of the underlying graph if all edges have the same
temporal assignment. It follows that, as in the static case, the temporal modular-width
bounds the length of the longest induced path in the underlying graph.

We now argue that, as claimed, bounding the temporal modular-width of a temporal
graph is a strictly stronger restriction than bounding the temporal cliquewidth.

▶ Theorem 3 (⋆). For any temporal graph G = (G, λ), the temporal cliquewidth is upper
bounded by the temporal modular-width.

Habib and Paul [24] describe a simple algorithm for finding the modular decomposition
of a static graph. This operates by finding and repeatedly adding splitters to a candidate
module - intuitively, splitters are vertices outside of a module that distinguish between
vertices inside of a candidate module. We can use a similar splitter-closure method to find
the unique maximal temporal modular decomposition:
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▶ Theorem 4 (⋆). We can find the maximal temporal modular decomposition in time O(n4Λ),
where n is the number of vertices in the temporal graph.

3.1 Star Exploration
In this section we consider the following problem, demonstrating that it remains NP-hard
even on temporal graphs with temporal cliquewidth at most three, but that it is solvable
in constant time on graphs with bounded temporal modular-width (provided we are given
the temporal modular-width of the graph). This problem was first introduced by Akrida et
al. [2].

StarExp(τ)

Input: A temporal star (Sn, λ) where |λ(e)| ≤ τ for every edge e in the star Sn.
Output: Is there a strict temporal walk, starting and finishing at the centre of the star,
which visits every vertex of Sn?

We begin with a simple observation about the temporal cliquewidth of temporal graphs
whose underlying graph is a star.

▶ Lemma 5 (⋆). A temporal star Sn has temporal cliquewidth at most 3.

StarExp(τ) is known to be NP-hard even for constant τ [2, 6]. Then, by Lemma 5,
StarExp(τ) is an example of a problem which is NP-hard on graphs of bounded temporal
cliquewidth. We now show that StarExp(τ) is tractable on graphs of bounded temporal
modular-width. We begin with the following lemma.

▶ Lemma 6 (⋆). If a temporal star Sn has temporal modular-width at most k, the leaves of
Sn can be partitioned into k − 1 subsets such that, if u and v are in the same subset and c is
the central vertex in the star, the edges uc and cv are active at the same times.

▶ Lemma 7. If there are strictly more than τ/2 leaves of Sn whose incident edges are active
at the same times, we have a no-instance of StarExp(τ).

Proof. By definition of the problem StarExp(τ), each edge in the star is active at most τ

times. Therefore, if there are ⌊τ/2⌋ + 1 vertices u1, . . . , u⌊τ/2⌋+1 such that λ(u1c) = · · · =
λ(u⌊τ/2⌋+1c) where c is the central vertex in the star, there is no temporal walk which starts
at c and visits all of u1, . . . , u⌊τ/2⌋+1. To see this, note that visiting a leaf and returning
requires the use of two distinct time-edges. Therefore, a walk visiting any ⌊τ/2⌋ + 1 leaves
which departs from and returns to c must consist of at least τ + 1 distinct time-edges.
This is not possible if these vertices have incident edges are active at the same times and
|λ(uc)| ≤ τ . ◀

▶ Theorem 8. StarExp(τ) is solvable in (kτ)!(kτ)O(1) time when the temporal modular-
width of the graph is at most k.

Proof. Given that the temporal modular-width of the graph is at most k, we check whether the
number of leaves is more than (k −1)⌊τ/2⌋. If the number of leaves is at least (k −1)⌊τ/2⌋+1
then, by the pigeon-hole principle and Lemma 6, there must be at least ⌊τ/2⌋ + 1 leaves
whose edges to the central vertex are active at exactly the same times. In this case, by
Lemma 7, we conclude that we have a no-instance of StarExp(τ).

Else, we have at most (k − 1)⌊τ/2⌋ < kτ leaves. Note that, given an ordering of leaves
to visit, we can check whether such a walk is valid in time polynomial in k and τ : we need
only check for each leaf in order whether there are two appearances of its incident edge
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52:8 Structural Parameters for Dense Temporal Graphs

following the time-edges used to visit the previous leaf (and if so, greedily use the first two
such appearances). Since there are fewer than (kτ)! possible orderings of the leaves, we can
check each possibility in turn in time (kτ)!(kτ)O(1). ◀

4 Tractability with respect to Temporal Neighbourhood Diversity

We now turn our attention to our final parameter, temporal neighbourhood diversity, which
is the most restrictive and hence allows for the most problems to be solved efficiently. In
Section 4.1 we demonstrate that Temporal Graph Burning is solvable in polynomial
time when the temporal neighbourhood diversity is bounded by a constant (in fact we give
an fpt-algorithm with respect to this parameterisation), even though the problem remains
NP-hard when restricted to temporal graphs with constant temporal modular-width. To
illustrate further techniques that may be used to design efficient algorithms on graphs of
bounded temporal neighbourhood diversity, in Section 4.2 we also give an fpt-algorithm for
the problem SingMinReachDelete with a single source vertex.

We begin with the formal definition of temporal neighbourhood diversity. Once again,
the definition is modelled on that for static graphs, which was first introduced by Lampis [28]
and adpated by Ganian [21] to describe uncoloured graphs. In a static graph, we define the
neighbourhood N(v) of a vertex v as the set of vertices which share an edge with v.

▶ Definition 5 (Type, Definition 2.2 [21]). Two vertices v, v′ have the same type if and only
if N(v) \ {v′} = N(v′) \ {v}.

▶ Definition 6 (Neighbourhood Diversity, Definition 2 [28]). A graph G = (V, E) has neigh-
bourhood diversity at most k if and only if there exists a partition of V (G) into at most
k sets where all vertices in each set have the same type. We refer to this partition as a
neighbourhood partition.

We note that the neighbourhood diversity of a graph can be computed in linear time [28].
We now define the analogous temporal parameter, where we require that the edges

between sets are all active at the same times.

▶ Definition 7 (Temporal Neighbourhood). The temporal neighbourhood of a vertex v in a
temporal graph (G, λ) is the set TN(v) of vertex time pairs (w, t) where (w, t) ∈ TN(V ) if
and only if vw ∈ E(G) and t ∈ λ(vw).

▶ Definition 8 (Temporal Type). Two vertices u, v have the same temporal type if and only
if {(w, t) ∈ TN(v) : w ̸= v} = {(w, t) ∈ TN(v′) : w ̸= u}.

▶ Definition 9 (Temporal Neighbourhood Diversity). A graph G has temporal neighbourhood
diversity at most k if and only if there exists a partition of V (G) into at most k sets where
all vertices in each set have the same temporal type. We refer to this partition as a temporal
neighbourhood partition.

It is immediate from this definition that, when all edges are assigned the same times, the
temporal neighbourhood diversity of the graph is the same as the neighbourhood diversity
of the underlying graph. We now argue that, as in the static case, the subgraph induced
by any class must form a clique or independent set; moreover, in the temporal setting, this
must be true at every timestep.

▶ Lemma 9 (⋆). At any snapshot Gt of G, the subgraph induced by the vertices in a class X

of a temporal neighbourhood partition of G either forms an independent set or a clique.
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As stated, temporal neighbourhood diversity is the most restrictive parameter in our
hierarchy. Observe that for any temporal graph G the temporal modular-width is upper
bounded by the temporal neighbourhood diversity: each class in the temporal neighbourhood
partition forms a module, and it follows from Lemma 9 that each of these modules can be
constructed by operations 1, 2, and 3 of temporal modular-width construction.

Finally, we argue that we can compute the temporal neighbourhood diversity efficiently.

▶ Proposition 10 (⋆). The temporal neighbourhood diversity of a temporal graph (G, λ) can
be calculated in O(Λn3) time.

4.1 Temporal Graph Burning
In this section we define Temporal Graph Burning, a temporal analogue of the static
Graph Burning problem first proposed by Bonato et al.[5]. Informally, a fire is placed
at a new vertex in each time-step and the fire spreads along incident active edges. The
problem asks if, after h placements of fire, all vertices are burning. Static Graph Burning
is NP-hard on general graphs [4] and was recently shown to be in FPT parameterised by
static modular width [27]. In contrast, we prove that Temporal Graph Burning remains
NP-hard on graphs with constant temporal modular-width. This difference arises from the
fact that, in the static setting, the length of a longest induced path in the graph (which is
upper bounded by the modular-width) gives an upper bound on the time taken to burn the
graph. In the temporal setting, on the other hand, the times assigned to edges mean that
even graphs with small diameter may take many steps to burn. In contrast, we show that
Temporal Graph Burning can be solved in time O(n5Λk!4k) on temporal graphs with n

vertices, lifetime Λ and temporal neighbourhood diversity k.
The Temporal Graph Burning problem asks how quickly a fire can be spread over

the vertices of a temporal graph in the following discrete time process, where a fire is placed
at a vertex of a graph on each timestep.
1. At time t = 0 a fire is placed at a chosen vertex. All other vertices are unburnt.
2. At all times t ≥ 1, the fire spreads, burning all vertices u adjacent to an already burning

vertex v where the edge between u and v is active at time t. Then, another fire is placed
at a chosen vertex.

3. This process ends once all vertices are burning.

We refer to a sequence of vertices at which fires are placed as a strategy.

▶ Definition 10 (Burning Strategy). A burning strategy for a temporal graph (G, λ) is a
sequence of vertices S = s1, s2, ..., sh such that si ∈ V (G) for all i ≤ h, and on each timestep
i a fire is placed at si.

We say that a strategy S = s1, s2, ..., sh has length h. For convenience, we allow for
strategies that place fires at already burning vertices, although it is worth noting that such
moves may be omitted. If every vertex in the graph is burning after a strategy is played, we
say that strategy is successful.

▶ Definition 11 (Successful Burning Strategy). A burning strategy S = s1, s2, ..., sh for a
temporal graph (G, λ) is successful if every vertex in G is burning on timestep h when the
moves from S are played.

The decision problem asks how many timesteps it takes to burn a given temporal graph.
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Temporal Graph Burning

Input: A temporal graph (G, λ) and an integer h.
Output: Does there exist a successful burning strategy for (G, λ) of length less than or
equal to h?

This problem is in NP, with a strategy providing a certificate. Given a strategy it can
be checked in polynomial time if it is successful and of length less than or equal to h by
simulating temporal graph burning on the input graph.

We show that Temporal Graph Burning is NP-hard even on graphs of bounded
temporal modular-width. This is achieved by reducing from (3, 2B)-SAT, an NP-hard
variant of the Boolean satisfiability problem in which each variable appears exactly twice both
positively and negatively [3]. Our reduction produces a graph where each edge is active on
exactly one timestep, and furthermore every connected component has a bounded temporal
neighbourhood diversity, and hence the graph has bounded temporal modular-width by our
earlier observation.

▶ Theorem 11 (⋆). Temporal Graph Burning is NP-hard even when restricted to graphs
with constant temporal modular-width.

We now show that Temporal Graph Burning is solvable efficiently when the temporal
neighbourhood diversity of the input graph is bounded. Throughout we assume that the
lifetime Λ of the input temporal graph is at most the number of vertices n, as it is possible to
burn any temporal graph in n timesteps by placing a fire at every vertex in turn. We begin
by defining notation for the burning set of vertices on a given timestep when a strategy is
played.

▶ Definition 12 (Burning Set). Given a strategy S the burning set Bt(S) at timestep t is the
set of burning vertices immediately after a fire is placed on timestep t when S is played.

We now give a number of results about how successful strategies can be modified to have
certain desirable properties; these results allow us to bound the number of possible strategies
we must check to determine whether there is a successful strategy of the desired length.

▶ Lemma 12 (⋆). Let S be a successful strategy for (G, λ). Suppose that there is some
timestep t1 < |S| and strategy R with |R| = |S| such that Bt1(S) ⊆ Bt1(R) and on every
timestep after t1, R places a fire at the same vertex as S. Then R is also successful.

▶ Lemma 13 (⋆). Let (G, λ) be a temporal graph with temporal neighbourhood partition
(Xi)i∈I . Now let S be a strategy that burns this graph, and let u be a vertex at which S places
a fire on a timestep t1, and Xi be the class to which this vertex belongs. Let S′ be a strategy
which plays as follows until t2, for any timestep t2 > t1:

s′
t =


st if t < t1

st+1 if t1 ≤ t < t2

u if t = t2

Providing there exists a vertex w ∈ Xi which is burning before the end of timestep t1 when
S′ is played, we have that Bt2(S) ⊆ Bt2(S′).

▶ Lemma 14 (⋆). Let (G, λ) be a temporal graph with temporal neighbourhood partition
(Xi)i∈I . Let S and S′ both be strategies with |S′| = |S|, such that on every timestep, S and
S′ both place fires in the same class, that is, for any i ≤ |S| we have that {si, s′

i} ⊆ Xj.
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Furthermore, assume that S′ places a fire at an already burning vertex on a timestep i if and
only if S also places a fire at an already burning vertex on timestep i. Then S is successful if
and only if S′ is.

▶ Definition 13 (Placement Classes). The placement classes for a strategy S denoted C(S)
is the set of classes from the temporal neighbourhood partition in which S places fires.

▶ Lemma 15 (⋆). Given a temporal graph (G, λ), let S be any successful strategy. There is
then a successful strategy S′ with |S′| = |S|, and C(S′) = C(S), such that the first |C(S′)|
burns are in distinct equivalence classes in the temporal neighbourhood partition.

Finally we show that, given a strategy S that places fires only in distinct classes for
the first |C(S)| moves, we can arbitrarily reorder all subsequent moves made after timestep
|C(S)|.

▶ Lemma 16 (⋆). Let (G, λ) be a temporal graph, and S a successful strategy such that the
first |C(S)| fires placed by S are placed in distinct classes from the temporal neighbourhood
partition. Let f : [|C(S)| + 1, |S|] → [|C(S)| + 1, |S|] be any bijection. Then the strategy S′

given by

s′
t =

{
st if t ≤ |C(S)|
sf(t) otherwise

is successful, and burns the graph in the same or less time as S.

We now present an algorithm for Temporal Graph Burning (Algorithm 1), and show
that this algorithm is an fpt-algorithm with respect to temporal neighbourhood diversity.

Algorithm 1 TND Graph Burning Algorithm.

Input: A temporal graph G, and an integer k.
Output: True if and only if there exists a successful burning strategy of length at most h.

1: Compute the temporal neighbourhood partition Θ of (G, λ).
2: for all possible subsets A ⊆ Θ do
3: for all possible orderings of A do
4: for all possible subsets B ⊆ A do
5: Compute a strategy that first places a fire in order in every class from A, and

then places fires at every unburnt vertex in B in any order.
6: if this strategy is successful and consists of k or fewer moves then
7: return true.
8: If no such strategy is found, return false.

▶ Lemma 17 (⋆). The TND Graph Burning Algorithm returns true for a temporal
graph (G, λ) and integer h if and only if there exists a strategy S that burns the graph in h

or fewer timesteps.

This allows us to obtain fixed parameter tractability, as bounding the temporal neigh-
bourhood diversity bounds the number of such strategies that we have to check.

▶ Theorem 18 (⋆). Temporal Graph Burning is solvable in time O(n5Λk!4k), where n

is the size of the input temporal graph G, Λ the lifetime, and k the temporal neighbourhood
diversity. If the temporal neighbourhood partition is given, we obtain a runtime of O(n2Λk!4k).
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4.2 Minimum Reachability Edge Deletion
Here we give another problem which is tractable with respect to temporal neighbourhood
diversity. Given a specified source vertex, we seek a minimum set of edge appearances that
can be deleted to limit the number of vertices reachable from that source.

We say a vertex v is temporally reachable from a vertex u in G if there exists a temporal
path from u to v. We say a vertex v is temporally reachable from a set S if there is a vertex
in S from which v is temporally reachable. The reachability set reach(v) of a vertex v is the
set of vertices temporally reachable from v. We can now give the formal problem definition;
this is a special case of the problem MinReachDelete studied by Molter et al. [35] in
which multiple sources are allowed.

Singleton Minimum Temporal Reachability Edge Deletion (SingMinReachDelete)

Input: A temporal graph G = (G, λ), a vertex vs ∈ V (G) and positive integer r.
Output: What is the cardinality of the smallest set of time-edges E such that the vertex
vs has temporal reachability at most r after their deletion from G?

SingMinReachDelete was shown by Enright et al. [16] to be NP-hard (and W[1]-hard
parameterised by the maximum number of vertices that are allowed to be reached following
deletion) even when the lifetime of the input temporal graph is 2 and every edge is active
at exactly one timestep. In their problem, they ask if there exists a deletion such that no
vertex in the resulting temporal graph reaches more than r vertices. While the result of [16]
is for a version of the problem when the source set S is the entire vertex set, it is clear from
the construction that hardness also holds with a single source vertex.

We show that this problem is in FPT when parameterised by temporal neighbourhood
diversity and the temporality of the input graph τ(G), which was defined by Mertzios et
al. [32] to be the maximum number of times any edge appears. When the temporal graph
in question is clear from context, we just refer to τ . We note that it remains open whether
the problem belongs to FPT parameterised by temporal neighbourhood diversity alone, or
indeed parameterised by temporal modular width or temporal cliquewidth; the techniques
we use here do not extend naturally to these less restrictive settings.

We now give a formal statement of our result.

▶ Theorem 19 (⋆). SingMinReachDelete is solvable in time g(k, τ) logO(1) r+Λn3, where
g is a computable function. If a temporal neighbourhood decomposition is given, we can solve
the problem in time g(k, τ) logO(1) r.

Note that, given two vertices of the same temporal type, their reachability sets must
consist of the same vertices except for the vertices themselves; as a result, the reachability
sets of vertices in a given class all have the same cardinality. Moreover, all vertices of the
same type are first reached from the source at the same time (where we say a vertex is
“first reached” at time t if the final time-edge in an earliest-arriving temporal path from the
source is at time t). Our strategy for solving SingMinReachDelete is then as follows.
We partition each class according to the time at which the vertices are first reached after
the deletion of time-edges, and consider all possibilities for which of these subclasses are
non-empty. Given a function ϕ telling us which subclasses are non-empty, we argue that
we can determine efficiently whether there is indeed a deletion such that precisely these
subclasses are non-empty, and if so compute exactly the pairs of subclasses between which
we must delete time-edges to achieve this. For a fixed ϕ, we then encode the problem as an
instance of Integer Quadratic Programming, where the variables are the sizes of the
subclasses and the objective function seeks to minimise the number of time-edges we must
delete, and use the algorithm of Lokshtanov [29].
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5 Conclusion and Open Questions

We have described three temporal parameters that form a hierarchy mirroring the one formed
by their static analogues, and that can all be small when the temporal graph is dense at
every timestep. We provide examples of problems demonstrating that there is a separation
between the classes of problems admitting efficient algorithms when each of the parameters
is bounded. As is the case for the corresponding static parameters, we expect that there will
be many problems for which these temporal parameters give fixed-parameter tractability,
and suggest exploration of temporal extensions of static problems for which there are known
fpt-algorithms as future work. From a practical perspective, it would also be interesting to
investigate the values of these new parameters on dense real-world temporal networks.

One of the most celebrated results involving static cliquewidth is a metatheorem due
to Courcelle et al. [11] which guarantees the existence of a linear-time algorithm for any
problem expressible in a suitable fragment of logic (MSO1) on graphs of bounded cliquewidth.
It is a natural question whether an analogous metatheorem exists for temporal cliquewidth.
A promising approach might be to encode a temporal graph as an arbitrary relational
structure (as has been done for a temporal version of treewidth [18]). A major challenge
here, however, is that to the best of our knowledge there is no single notion of cliquewidth
for relational structures: several alternatives have been introduced [1, 12], but none has all
of the desirable properties. Moreover, we believe that any encoding of a temporal graph of
bounded temporal cliquewidth as a relational structure that preserves all the information in
the original is unlikely to have bounded width for any cliquewidth-style measure unless we
also bound the lifetime of the temporal graph. Nevertheless, this general direction merits
further investigation, and there is potential for a useful metatheorem even if it is necessary
to further restrict the fragment of logic considered or the structure of the temporal graph.
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Abstract
Families of DFAs (FDFAs) are a computational model recognizing ω-regular languages. They were
introduced in the quest of finding a Myhill-Nerode theorem for ω-regular languages and obtaining
learning algorithms. FDFAs have been shown to have good qualities in terms of the resources required
for computing Boolean operations on them (complementation, union, and intersection) and answering
decision problems (emptiness and equivalence); all can be done in non-deterministic logarithmic
space. In this paper we study FDFAs with a new type of acceptance condition, duo-normalization,
that generalizes the traditional normalization acceptance type. We show that duo-normalized FDFAs
are advantageous to normalized FDFAs in terms of succinctness as they can be exponentially smaller.
Fortunately this added succinctness doesn’t come at the cost of increasing the complexity of Boolean
operations and decision problems — they can still be preformed in NLOGSPACE.

An important measure of the complexity of an ω-regular language is its position in the Wagner
hierarchy (aka the Rabin Index). It is based on the inclusion measure of Muller automata, and for
the common ω-automata there exist algorithms computing their position. We develop a similarly
robust measure for duo-normalized (and normalized) FDFAs, which we term the diameter measure.
We show that the diameter measure corresponds one-to-one to the position in the Wagner hierarchy.
We show that computing it for duo-normalized FDFAs is PSPACE-complete, while it can be done in
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1 Introduction

Regular languages of finite words possess a natural canonical representation — the unique
minimal DFA. The essence of the representation lies in a right congruence relation for a
language L saying that two words x and y are equivalent, denoted x ∼L y, if and only if
xz ∈ L ⇐⇒ yz ∈ L for every finite word z ∈ Σ∗. The famous Myhill-Nerode theorem [20, 21]
relates the equivalence classes of ∼L to the set of words reaching a state of the minimal DFA.

For regular languages of infinite words the situation is more complex. First, there is no
unique minimal automaton for any of the common ω-automata acceptance conditions (Büchi,
Muller, Rabin, Streett and parity). Second, one can indeed define two finite words x and y to
be equivalent with respect to an ω-regular language L, denoted x ∼L y, if xz ∈ L ⇐⇒ yz ∈ L

© Dana Fisman, Emmanuel Goldberg, and Oded Zimerman;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 53; pp. 53:1–53:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dana@cs.bgu.ac.il
https://www.cs.bgu.ac.il/~dana
https://orcid.org/0000-0002-6015-4170
mailto:goldbeem@post.bgu.ac.il
https://orcid.org/0009-0008-6760-1595
mailto:oded.zimerman@gmail.com
https://odedzimerman.github.io
https://orcid.org/0009-0003-4020-2037
https://doi.org/10.4230/LIPIcs.MFCS.2024.53
https://arxiv.org/abs/2310.16022
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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for every infinite word z ∈ Σω. However, there is no one-to-one correspondence between these
equivalence classes and a minimal ω-automaton for L. Consider for instance the language L1
stipulating that aab occurs infinitely often. The right congruence relation ∼L1 has only one
equivalence class, yet clearly an automaton for L1 needs more than one state.

A quest for a characterization of an ω-regular language L, relating equivalence classes of
a semantic definition of L to states of an automaton for L, has led to the development of
families of right concurrences (FORCs) [19] and families of DFAs (FDFAs) [14, 2]. Several
canonical FDFAs were introduced over the years, the periodic FDFA [7], the syntactic
FDFA [19], the recurrent FDFA [2], and the limit FDFA [17]. All these representations have
a one-to-one correspondence between the equivalence classes of semantic right congruence
relations and the states of the respective automata. This is very satisfying in the sense
that they induce a semantic canonical representation, ie one that is agnostic to a particular
automaton; and this is a beneficial property when it comes to learning [2, 18]. FDFAs have
additional good qualities — computing Boolean operations on them (complementation, union,
and intersection) and answering decision problems (emptiness and equivalence) can all be
done cheaply, in non-deterministic logarithmic space [1].

Loosely speaking, an FDFA is composed of a leading automaton Q and a family of progress
DFAs {Pq}, one for each state q of Q. FDFAs consider only ultimately periodic words, ie
words of the form u(v)ω for u ∈ Σ∗ and v ∈ Σ+. Since two ω-regular languages recognize the
same language if and only if they agree on the set of ultimately periodic words [6, 7], this is
not really a limitation. Exact acceptance of an ultimately periodic word (u, v) representing
uvω is determined by checking acceptance of v in the progress DFA corresponding to the
state reached in the leading automaton by reading u. Normalized acceptance is done by first
normalizing the word wrt the leading automaton — this means considering a decomposition
(uvi, vj) of uvω such that vj loops on the state of the leading automaton reached by reading
uvi. This normalization was introduced as it leads to an exponential save in the number of
states [2]. In this paper we consider a new acceptance condition for FDFAs, which we term
duo-normalization, which considers decompositions (uvi, vj) where in addition vj closes a
loop on the state it arrives at in the respective progress DFA. We term FDFAs with this new
type of acceptance duo-normalized FDFAs. The notion of duo-normalization has appeared
in the literature before [27, 9, 1, 5] and was suggested as an acceptance condition for FDFAs
in the future work of [5].

We show that duo-normalized FDFAs also enjoy the good qualities of computing Boolean
operations and answering decision problems in non-deterministic logarithmic space. In terms
of succinctness we show that they can be exponentially smaller than normalized FDFAs.

We are also interested in the problem of finding their position in the Wagner hierarchy,
a hierarchy reflecting the complexity of ω-regular properties, that often correlates to the
complexity of algorithms on ω-regular languages and games [29, 13, 3]. It is noted in [10,
Sec. 5] that while for ω-automata there are algorithms for computing their position in the
Wagner hierarchy, there is no clear way to relate the structure of a particular FDFA to its
Wagner position.

In [26] Wagner defined a complexity measure on Muller automata: the inclusion measure.
Wagner showed that the inclusion measure is robust in the sense that any two Muller
automata for the same language (minimal or not) have the same inclusion measure. This
is thus a semantic property of the language. Since the inclusion measure is unbounded it
induces an infinite hierarchy. The position on the Wagner hierarchy has been shown to be
tightly related to the minimal number of colors required in a parity automaton, and the
minimal number of pairs required in a Rabin/Street automaton. Deterministic Büchi and
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coBüchi (which are less expressive than deterministic Muller/Rabin/Streett/parity automata,
that are capable of recognizing all the ω-regular languages) lie in the bottom levels of the
hierarchy. Given a deterministic ω-automaton (Büchi, coBüch, Muller, Rabin, Streett, or
parity), its position in the Wagner hierarchy can be computed in polynomial time [28, 8, 22].

We develop a syntactic notion of a measure on FDFAs, that we term the diameter measure.
Loosely speaking it relates to chains of prefixes v1 ≺ v2 ≺ . . . ≺ vk such that u(vi)ω ∈ L iff
u(vi+1)ω /∈ L, and moreover, each of the words vi is persistent in the progress DFA of some
u ∈ Σ∗. The precise definition of the term persistent and persistent chains is deferred to § 4.
We show there that this measure is robust in the sense that computing it on two FDFAs for
the same language will give the same result. The proof is by relating it to the position on the
Wagner hierarchy. We show that computing the Wagner position of a duo-normalized FDFA
can be done in PSPACE and it is PSPACE-complete, whereas for normalized FDFAs this
computation can be done in NLOGSPACE. So this is one place where the added succinctness
of duo-normalized FDFAs comes at a price.

The rest of the paper is organized as follows. We give some basic definitions and explain
the Wagner hierarchy in § 2. We introduce duo-normalized FDFAs in § 3 where we show that
it is not more expensive to compute the Boolean operations on them, or to answer emptiness
and equivalence about them. § 4 is devoted to defining the diameter measure and proving
that its computation is PSPACE-complete. § 5 provides several succinctness results relating
duo-normalized FDFAs and normalized FDFAs, including results regarding succinctness of
previously studied canonical FDFAs and the Colorful FDFA, a canonical duo-normalized
FDFA. We conclude with a short discussion in § 6. Due to space limitations, proofs are
deferred to the appendix of the full version [12].

2 Preliminaries

We use [i..j] for the set {i, i + 1, . . . , j}. A (complete deterministic) automaton structure is a
tuple A = (Σ, Q, q0, δ) consisting of an alphabet Σ, a finite set Q of states, an initial state q0,
and a complete transition function δ : Q × Σ → Q. A run of an automaton on a finite word
v = a1a2 · · · an is a sequence of states q0, q1, . . . , qn, starting with the initial state, such that
for each i ≥ 0, qi+1 = δ(qi, ai). A run on an infinite word is defined similarly and results in
an infinite sequence of states. Let A = (Σ, Q, q0, δ) be an automaton structure. We say that
a word w ∈ Σ∗ reaches state q if the run of A on w ends in q, and use A(w) to denote q.

By augmenting an automaton structure with an acceptance condition α, obtaining a
tuple (Σ, Q, q0, δ, α), we get an automaton, a machine that accepts some words and rejects
others. An automaton accepts a word if the run on that word is accepting. For finite words
the acceptance condition is a set F ⊆ Q and a run on a word v is accepting if it ends in an
accepting state, ie a state q ∈ F . For infinite words, there are various acceptance conditions
in the literature. The common ones are Büchi, coBüchi, Muller, Rabin, Streett and parity.
They are all defined with respect to the set of states visited infinitely often during a run. For
a run ρ = q0q1q2 . . . we define inf(ρ) = {q ∈ Q | ∀i∈N. ∃j >i. qj = q}. We focus here on the
most common types — Büchi, coBüchi, Muller and parity.

A Büchi (resp. coBüchi) acceptance condition is a set F ⊆ Q. A run of a Büchi (resp.
coBüchi) automaton is accepting if it visits F infinitely (resp. finitely) often. That is, if
inf(ρ) ∩ F ̸= ∅ (resp. inf(ρ) ∩ F = ∅).
A parity acceptance condition is a mapping κ : Q → {0, 1, . . . , k} of a state to a number
(referred to as a color). For a subset Q′ ⊆ Q, we use κ(Q′) for the set {κ(q) | q ∈ Q′}. A
run ρ of a parity automaton is accepting if the minimal color in κ(inf(ρ)) is even.
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A Muller acceptance condition is a set α = {F1, . . . , Fk} where Fi ⊆ Q for all 1 ≤ i ≤ k.
A run ρ of a Muller automaton is accepting if inf(ρ) ∈ α. That is, if the set of states
visited infinitely often by the run ρ is exactly one of the sets Fi specified in α.

We use DBA, DCA, DPA, and DMA as acronyms for deterministic (complete) Büchi, coBüchi,
parity, and Muller automata, respectively. We use JAK to denote the set of words accepted
by a given automaton A. Two automata A and B are equivalent if JAK=JBK. Let A = (Σ,

Q, q0, δ, F ) be a DFA and q ∈ Q. We use A[q for (Σ, Q, q, δ, F ), namely a DFA for the words
exiting state q of A.

The syntactic right congruence relation for an ω-language L relates two finite words
x and y if there is no infinite suffix z differentiating them, that is, for x, y ∈ Σ∗, x ∼L y

if ∀z ∈ Σω(xz ∈ L ⇐⇒ yz ∈ L). We use [u]∼L (or simply [u]) for the equivalence
class of u induced by ∼L. A right congruence ∼ can be naturally associated with an
automaton structure (Σ, Q, q0, δ) as follows: the set of states Q are the equivalence classes of
∼. The initial state q0 is the equivalence class [ϵ]. The transition function δ is defined by
δ([u], σ) = [uσ]. We use A[∼] to denote the automaton structure induced by ∼.

2.1 The Wagner Hierarchy
Let M = (Σ, Q, q0, δ, α) be a complete deterministic Muller automaton, where all states
are reachable. We use the term strongly connected component (SCC) for a set of states
S ⊆ Q such that there is a non-empty path between every pair of states in S. Thus, if S

is a singleton {q} we require a self-loop on q for S to be an SCC. We use the term MSCC
for a maximal SCC, that is, an SCC S such that no set S′ ⊃ S is an SCC. We say that
an SCC S ⊆ Q is accepting iff S ∈ α. Otherwise we say that S is rejecting. We define the
positive inclusion measure of M, denoted |M|+⊂, to be the maximal length of an inclusion
chain S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sk of SCCs with alternating acceptance where S1 is accepting.
(Therefore for each 1 ≤ i ≤ k if i is odd then Si is accepting, and if it is even then Si is
rejecting.) Likewise, we define the negative inclusion measure of M, denoted |M|−⊂, to be
the maximal length of an inclusion chain where the first SCC is rejecting. Note that for any
M the difference between |M|+⊂ and |M|−⊂ may be at most one, since by omitting the first
element of a chain we remain with a chain shorter by one, and of the opposite sign. We use
L∞aa∧¬∞bb in Ex. 2.2 to illustrate the concepts explained throughout this section.

Wagner [26] showed that this measure is robust in the sense that any two DMAs that
recognize the same language have the same positive and negative inclusion measures.

▶ Theorem 2.1 (Robustness of the inclusion measures [26]). Let M1, M2 be two DMAs where
JM1K = JM2K. For i ∈ {1, 2}, let |Mi|+⊂ = pi and |Mi|−⊂ = ni. Then p1 = p2 and n1 = n2.

Since this measure is robust and since one can construct DMAs with arbitrarily long
inclusion chains, the inclusion measure yields an infinite hierarchy of ω-regular languages.
Formally, the classes of the Wagner hierarchy are defined as follows for a positive integer k:

DM+
k = {L | ∃ DMA M s.t. JMK = L and |M|+⊂ ≤ k and |M|−⊂ < k}

DM−
k = {L | ∃ DMA M s.t. JMK = L and |M|+⊂ < k and |M|−⊂ ≤ k}

DM±
k = {L | ∃ DMA M s.t. JMK = L and |M|+⊂ ≤ k and |M|−⊂ ≤ k}

The hierarchy is depicted in Fig. 3.1 (left). Note that if A is an ω-automaton, for any
of the ω-automata types, then it can be recognized by a Muller automaton on the same
structure. Transforming a Büchi B automaton with accepting states F to a Muller automaton
MB yields an acceptance condition αB = {F ′ | F ′ ∩ F ̸= ∅}. Note that for any F ′ ∈ αB and
F ′′ ⊇ F ′ it holds that F ′′ ∈ αB. Therefore |MB|+⊂ = 1 and |MB|−⊂ = 2 (unless JBK = Σω or
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JBK = ∅). Hence all languages recognized by a DBA are in DM−
2 . Dually, one can see that

all languages recognized by a DCA are in DM+
2 . It can be shown that a parity automaton

for a language in DM−
k can suffice with colors {1, . . . , k} if k is odd and {0, . . . , k−1} if it is

even [22]. Likewise, a DPA for a language in DM+
k can suffice with colors {0, . . . , k−1} if k

is odd and with {1, . . . , k} otherwise. A DPA in DM±
k requires k + 1 colors starting with 0.

▶ Example 2.2. Fig.3.1 (middle) shows a Muller automaton M for the language L∞aa∧¬∞bb.
The inclusion chain {q1, q2} ⊂ {q1, q2, q3} ⊂ {q1, q2, q3, q4} is a negative inclusion chain of
length 3 (since {q1, q2} is rejecting, {q1, q2, q3} is accepting, and {q1, q2, q3, q4} is rejecting).
There are no negative inclusion chains of length 4, and there are no positive inclusion chains
of length 3. (Note that {q3} ⊂ {q2, q3} ⊂ {q1, q2, q3} is not an inclusion chain since {q2, q3} is
not an SCC.) We can thus conclude that L∞aa∧¬∞bb ∈ DM−

3 . Consider the parity automaton
P for L∞aa∧¬∞bb defined on the same structure as M. It uses the three colors {1, 2, 3} in
accordance with our conclusion that L∞aa∧¬∞bb ∈ DM−

3 .

3 FDFAs with duo-normalized acceptance condition

As already mentioned, none of the common ω-automata has a unique minimal automaton,
and the number of states in the minimal automaton may be bigger than the number of
equivalence classes in ∼L. For example, L2 = (Σ∗abc)ω has one equivalence class under ∼L2 ,
since for any finite word x, an infinite extension xw for w ∈ Σω is in the language iff w ∈ L2.

The quest for finding a correspondence between equivalence classes of the language and
an automaton model led to the development of Families of Right Congruences (FORCs) [19]
and Families of DFAs (FDFAs) [2]. These definitions consider only ultimately periodic words
(ie words of the form uvω) building on the well-known result that two ω-regular languages
are equivalent if and only if they agree on the set of ultimately periodic words [6, 7]. We
also consider only such words, and represent them as pairs (u, v) for u ∈ Σ∗ and v ∈ Σ+.

Several canonical FDFAs were introduced over the years, the periodic FDFA [7], the
syntactic FDFA [19], the recurrent FDFA [2], and the limit FDFA [17]. We do not go into
the details of their definition but summarize the succinctness relations among them. It was
shown in [2] that the syntactic and recurrent FDFAs can be exponentially more succinct
than the periodic FDFA, while the translations in the other direction are at most polynomial.
Further, the recurrent FDFA is never bigger, and can be quadratically more succinct, than
the syntactic FDFA [2]. Limit FDFAs are the duals of recurrent FDFAs and similarly can
also be at most quadratically bigger than the syntactic; and there are examples of quadratic
blowups in the transformation from the recurrent to the limit and vice versa [17].

The gain in succinctness in going from the syntactic to the recurrent (or limit) FDFAs
originates from removing the requirement that x ≈u y implies that ux ∼ uy, which comes
from the definition of a FORC.1 The gain in succinctness of the syntactic/recurrent/limit
FDFAs compared to the periodic FDFA is due to the use of a different type of acceptance
condition.

An FDFA is a pair F = (Q, {Pq}q∈Q) consisting of a leading automaton structure Q and
of a progress DFA Pq for each state q of Q. There are a few ways to define acceptance on
FDFAs. They differ on what decompositions (u, v) of an infinite word w are considered. We

1 A FORC is a pair F = (∼, {≈u}) where ∼ is a right congruence, ≈u is a right congruence for every
equivalence class u of ∼, and it satisfies that x ≈u y implies ux ∼ uy. An ω-language L is recognized by
F if it can be written as a union of sets of the form [u]([v]u)ω s.t. uv ∼L u. Every FORC corresponds to
an FDFA, but the other direction many not hold. This is since there is no requirement on the relation
between the progress DFAs and the leading automaton in an FDFA, while there is in a FORC.

MFCS 2024
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Figure 3.1 Left: The Wagner hierarchy. Middle: A DMA M and a DPA D for the language
L∞aa∧¬∞bb. Right: Two FDFAs F s = (Q, {Ps

ϵ}) and FQ = (Q, {PQ
ϵ }) for the language L∞aa∧¬∞bb

where Q is a one-state leading automaton. F s uses normalized acceptance, FQ uses duo-normalized
acceptance.

provide a definition for such decompositions in Def. 3.1. Once an α-decomposition is defined,
an ω-word w is accepted by an FDFA using α-acceptance if there exists an α-decomposition
(u, v) of w which is accepted. That is, the word v is accepted by PQ(u) where PQ(u) is
the progress DFA corresponding to the state Q(u) reached by the leading automaton after
reading u. We henceforth use Pu for PQ(u).

In exact acceptance, that is used in the periodic FDFA, any decomposition of the ω-word
into an ultimately periodic word is considered. In normalized acceptance, used by the other
three canonical FDFAs, only decompositions (u, v) in which the periodic part v loops in the
leading automaton (ie Q(u) = Q(uv)) are considered.

As shown in [2] this acceptance condition, termed normalization, can yield an exponential
save in the number of states. The intuition is that some periods are easier to verify as good
periods if one considers some repetitions of them. For instance, in the language (121 + 212)ω

it is harder to figure out that (ϵ, 12) should be accepted than it is for (ϵ, 121·212) though
both represent the same ω-word.

For similar reasons, one may wonder if considering only decompositions that also close a
loop in the progress automaton might lead to an exponential save as well. In the following
we define FDFAs with such an acceptance condition, which we term duo-normalization. The
notion of duo-normalization has appeared in the literature before. In particular, it resembles
the notion of a linked-pair in ω-semigroups and Wilke-algebras [27, 9], it is used in [1, Proof
of Thm. 5.8] and it is termed idempotent in [5].

▶ Definition 3.1 (ω-words decomposition wrt an FDFA). Let u ∈ Σ∗, v ∈ Σ+ and w ∈ Σω.
Let F = (Q, {Pq}q∈Q) be an FDFA.

(u, v) is a decomposition of w if uvω = w.
A decomposition (u, v) is normalized if Q(u) = Q(uv).
A normalized decomposition is duo-normalized if Pu(v) = Pu(vv).

▶ Definition 3.2 (Exact, Normalized, and Duo-Normalized acceptance). Let F = (Q, {Pq}q∈Q)
be an FDFA, u ∈ Σ∗, v ∈ Σ+. We define three types of acceptance conditions: We say that
(u, v) ∈ JFK using exact acceptance if v ∈ JPuK. We say that (u, v) ∈ JFK using normal-
ized (resp. duo-normalized) acceptance if there exists a normalized (resp. duo-normalized)
decomposition (x, y) of uvω such that y ∈ JPxK.
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An FDFA F is said to be α-saturated if for every ultimately periodic word w, all its
α-decompositions agree on membership in F . Assuming saturation, and an efficient α-
normalization process (as suggested by Claim 3.3) we can alternatively define α-acceptance
as in [2] using the efficient procedure that given any (u, v) returns a particular (x, y) that is
α-normalized and satisfies uvω = xyω. Henceforth, all FDFAs are presumed to be saturated.

▷ Claim 3.3. Let x ∈ Σ∗ and y ∈ Σ+. The word xyω has an α-decomposition of the form
(xyi, yj) for i and j quadratic in the size of F for all α ∈ {exact, normalized, duo-normalized}.

Clearly, if F is saturated using exact acceptance and it recognizes L then it is also
saturated and recognizes L when using normalized acceptance instead. The same is true
when going from normalized acceptance to duo-normalized acceptance.

▶ Corollary 3.4. Duo-normalized FDFAs recognize all ω-regular languages.

▶ Example 3.5. Fig.4.1 (left) shows two FDFAs. The FDFA F1 = (Q, {Pϵ, Pb}) has a leading
automaton with two states [ϵ] and [b], and the corresponding progress automata are Pϵ and
Pb. Consider the ultimately periodic word aω; since (ϵ, a) is a normalized decomposition of
aω and a ∈ JPϵK, the word aω is accepted by F1 using normalized acceptance. The FDFA
F2 = (Q, {P ′

ϵ, Pb}) uses duo-normalization and P ′
ϵ as the progress DFA for [ϵ]. The pair (ϵ, aa)

is a duo-normalized decomposition of aω wrt F2 and it holds that a ∈ JP ′
ϵK thus the word aω

is accepted by F2. Observe that the normalized (rather than duo-normalized) decomposition
(ϵ, a) is not accepted by P ′

ϵ. In this example the FDFA using duo-normalization has more
states. Later on we provide an example where an FDFA using duo-normalization has fewer
states, and even exponentially fewer.

▶ Theorem 3.6. The following holds for saturated FDFAs using duo-normalized acceptance:
complementation can be computed in constant space; intersection, union and membership can
be computed in logarithmic space; emptiness, universality, containment and equivalence can
be computed in non-deterministic logarithmic space.

From now on, unless stated otherwise, we work with duo-normalization. That is, when
we say (u, v) ∈ JFK or w ∈ JFK we mean according to duo-normalized acceptance condition.

As we later show duo-normalized FDFAs can be exponentially more succinct than all
previously defined FDFAs. This is essentially because it considers fewer or more specific
decompositions. One might wonder if considering even more specific decompositions will lead
to more succinct FDFAs, and can this still be done in the same complexity as for normalized
and duo-normalized FDFAs. We come back to this point in the next section, see Prop. 4.3.

4 The Diameter Measure — A Robust Measure on FDFAs

In the following section we define a measure on FDFAs that is tightly related to the inclusion
measure of the Wagner hierarchy. The defined measure is robust among FDFAs in the same
way that the inclusion measure is robust among DMAs. That is, every pair of FDFAs F1
and F2 recognizing the same language agree on this measure.

To devise this measure we would like to understand what the inclusion measure entails
on an FDFA for the language. If a DMA has an inclusion chain S1 ⊂ S2 ⊂ S3 then there
is a state qu in S1 reachable by some word u from which there are words v1, v2, v3 looping
on qu while traversing the states of S1, S2 and S3, respectively (all and only these states).
We term this state a pivot state. Assume S1 is rejecting, then u(v1)ω /∈ L, u(v2)ω ∈ L and

MFCS 2024



53:8 A Robust Measure on FDFAs Following Duo-Normalized Acceptance

u(v3)ω /∈ L. Since they all loop back to qu, we have that u(v1v2)ω also loops in S2 and is
thus accepted and u(v1v2v3)ω also loops in S3 and is thus rejected. Since v1 ≺ v1v2 ≺ v1v2v3
(where ≺ denotes the prefix relation) tracing the run on v1v2v3 in a progress DFA for u we
expect the state reached after v1 to be rejecting, the one after v1v2 to be accepting and the
one after v1v2v3 to be rejecting. To be precise, we should expect this only if the words v1,
v1v2 and v1v2v3 are α-normalized, where α is the normalization used by the FDFA.

Let’s inspect this on our running example L∞aa∧¬∞bb with the DMA in Fig. 3.1 (middle)
and the inclusion chain S1 = {q1, q2}, S2 = {q1, q2, q3}, and S3 = {q1, q2, q3, q4}. We can
choose q1 for the pivot state qu of S1 and the words v1 = ba, v2 = aba and v3 = abba, that
loop respectively in S1, S2 and S3. Fig. 3.1 (right) provides two FDFAs for this language.
The FDFA F s uses normalization and FQ uses duo-normalization. Looking at Ps

ϵ , we see
that v1, v1v2 and v1v2v3 are normalized and the states reached after reading them (qba, qbaa,
qbb) are rejecting or accepting as expected. The same is true for PQ

ϵ .
Should we entail from this discussion and example that the maximal number of alternations

between rejecting and accepting states along any path in an FDFA for a language in DM−
k is

at most k − 1? This is true in the progress DFA PQ
ϵ , but the progress DFA Ps

ϵ clearly refutes
it, since it has strongly connected accepting and rejecting states (eg, qa and qab) and so we
can create paths with an unbounded number of alternations between them.

Take such a path with say k + 1 prefixes z1 ≺ z2 ≺ . . . ≺ zk+1 alternating between
accepting and rejecting states. Are the words zi normalized? They can be. Take for instance
z1 = a, z2 = ab, and so on (zk+1 = zk · b if k is even and zk+1 = zk · a otherwise).

Can they all be duo-normalized? They can be as we show in Fig. 4.1 (right). It shows a
progress DFA Pϵ for an FDFA using duo-normalization and a one-state leading automaton.
The FDFA recognizes the language ∞aa. The words a ≺ ab ≺ abaa are all duo-normalized
and reach alternating accepting/rejecting states though the language is in DM−

2 . To fix this
issue we introduce the notion of a persistent decomposition.

▶ Definition 4.1 (persistent decomposition wrt an FDFA). Let u ∈ Σ∗, v ∈ Σ+. Let F =
(Q, {Pq}q∈Q) be an FDFA. A duo-normalized decomposition (u, v) is persistent if for every
z ∈ Σ∗ there exists i > 1 such that Pu(zv) = Pu(zvi).

As in Claim 3.3 there exist i and j quadratic in the size of F such that (uvi, vj) is persistent.

▷ Claim 4.2. For every x∈Σ∗ and y∈Σ+ the word xyω has a persistent decomposition of
the form (xyi, yj) where i and j are of size quadratic in F .

One might try to define an additional acceptance condition using the persistent decom-
position as was done above, but as stated by the following claim this is futile.

▶ Proposition 4.3. Every FDFA defined with persistent acceptance recognizes the same
language when defined with duo-normalized acceptance instead.

Back to the issue of finding the position on the Wanger hierarchy, we can look for chains
of prefixes with alternating acceptance such that each prefix in the chain is persistent.

▶ Definition 4.4 (Persistent Chain). Let F be an FDFA and u ∈ Σ∗. We say that v1 ≺ v2 ≺
. . . ≺ vk for vi ∈ Σ∗ is a u-persistent chain of length k wrt F if (u, vi) is persistent for
every 1 ≤ i ≤ k and (u, vi+1) ∈ JFK iff (u, vi) /∈ JFK for every 1 ≤ i < k. We say the chain
is positive (resp. negative) if (u, v1) ∈ JFK (resp. (u, v1) /∈ JFK). We use simply persistent
chain when u is clear from the context.

We can now state the measure on FDFAs that relates them to the Wagner hierarchy.
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Figure 4.1 Left: Two FDFAs F1 = (Q, {Pϵ, Pb}) and F2 = (Q, {P ′
ϵ, Pb}) for the language

(Σ∗b)ω ∪ (bb)∗aω using normalized and duo-normalized acceptances, respectively. Right: The
progress DFA Pϵ for an FDFA accepting ∞aa that uses duo-normalization and a one-state leading
automaton.

▶ Definition 4.5 (The Diameter Measure). Let F be an FDFA and u ∈ Σ∗. We define the
positive (resp. negative) diameter measure of the progress DFA Pu, denoted |Pu|+⇝ (resp.
|Pu|−⇝), as the maximal k for which there exists a positive (resp. negative) persistent chain
of length k in Pu. We define |F|+⇝ as max{|Pq|+⇝ : q ∈ Q} and |F|−⇝ as max{|Pq|−⇝ : q ∈ Q}.

We show that the diameter measure is robust among all FDFAs for the language by
relating it to the Wagner hierarchy as formally stated below.

▶ Theorem 4.6 (Correlation to Wagner’s hierarchy). Let F be an FDFA using any of the
acceptance types α ∈ {exact, normalized, duo-normalized}.

JFK ∈ DM±
k iff |F|+⇝ ≤ k and |F|−⇝ ≤ k

JFK ∈ DM+
k iff |F|+⇝ ≤ k and |F|−⇝ < k

JFK ∈ DM−
k iff |F|−⇝ < k and |F|−⇝ ≤ k

In the proof of Thm. 4.6, given a persistent chain v1 ≺ v2 ≺ . . . ≺ vk in Pu in some
FDFA, we would like to find an inclusion chain of length k in some DMA recognizing the
same language. The SCCs visited infinitely often by the words u(v1)ω, . . . , u(vk)ω might not
correspond to an inclusion chain in the DMA. Roughly speaking, to obtain a persistent chain
for which this does hold, we make sure every element of the chain has already reached its
final SCC and traversed it. Using the following lemma we can create such a persistent chain.

▶ Lemma 4.7 (Pumping Persistent Periods). Let A be an automaton and let v ∈ Σ+ be
A-persistent.2 For every n ∈ N there exists l ≥ n such that for every extension z ∈ Σ∗, if vz

is A-persistent then vlz is also A-persistent.
Following [10] a word v ∈ Σ∗ is said to be a suffix-invariant of u ∈ Σ∗ (in short u-

invariant) with respect to L if u ∼L uv. That is, no suffix distinguishes between u and the
word obtained by concatenating v to u.

Proof of Thm. 4.6. We prove the claim regarding the positive measure. The claim regarding
the negative measure is proven symmetrically. We show that
1. |L|+⊂ ≥ k implies |F|+⇝ ≥ k and
2. |F|+⇝ ≥ k implies |L|+⊂ ≥ k.
The two claims together entail that |F|+⇝ = |L|+⊂.

2 We say that v is A-persistent if A(v) = A(vv) and for every z ∈ Σ∗ there exists an i > 1 such that
A(zv) = A(zvi).

MFCS 2024



53:10 A Robust Measure on FDFAs Following Duo-Normalized Acceptance

1. We start by showing that if |L|+⊂ ≥ k then |F|+⇝ ≥ k. Let M be a DMA for L. From
|L|+⊂ ≥ k we know that there exists an MSCC of M subsuming SCCs S1, S2, . . . , Sk such
that S1 ⊊ S2 ⊊ . . . ⊊ Sk and Si is an accepting component if and only if i is odd. Pick
a state s in S1. For 1 ≤ i ≤ k let vi be a word that loops on s while traversing all
the states of Si and no other states. Let u be a word reaching s from the initial state.
Consider the progress DFA of u, Pu. By Claim 4.2 there exists l1 such that y1 = (v1)l1 is
Pu-persistent. Similarly, there exists l2 such that y2 = (y1v2)l2 is Pu-persistent. In the
same way we define yi = (yi−1vi)li for all i ∈ [2..k]. Consider the words wi = u(yi)ω for
i ∈ [1..k]. Since the set of states visited infinitely often when reading wi is exactly Si, it
follows that wi is in L if and only if i is odd. Since all the infixes yi loop back to s it
follows that all the yi’s are u-invariants and thus the (u, yi) are persistent in F . Since
y1 ≺ y2 ≺ . . . ≺ yk we have found a positive alternating persistent chain in Pu of length
k. Hence, |Pu|+⇝ ≥ k, which in turn gives that |F|+⇝ ≥ k.

2. Next we show that if |F|+⇝ ≥ k then |L|+⊂ ≥ k. Let u be such that |Pu|+⇝ ≥ k. Then
there exists a persistent chain v1 ≺ v1v2 ≺ . . . ≺ v1v2 · · · vk of length k in Pu, starting
with an accepting state. For i ∈ [1..k] let qi be the state reached after reading v1v2 · · · vi.
Note that qi is accepting iff i is odd.
Let M be a DMA for L and let n be its number of states. Let l1 ≥ n be the number
promised by Lemma 4.7 for v1. Consider (v1)l1v2. As v1 and v1v2 are both Pu-persistent,
it follows from the lemma that (v1)l1v2 is Pu-persistent as well. Since v1 is Pu-persistent
it loops on q1 and it holds that (v1)l1v2 reaches and loops on q2. Continuing in the same
manner, let y1 = v1 and yi = (yi−1)li−1 · vi for i ∈ [2..k] where li−1 ≥ n is the number
from Lemma 4.7 for yi−1. Then yi is Pu-persistent, reaching and looping on qi. Moreover
u(v1v2 · · · vi)ω ∈ L iff u(yi)ω ∈ L iff x(yi)ω ∈ L for any x ∼L u. Let xi = u ·yn

k ·yn
k−1 · · · yn

i

for i ∈ [1..k]. As the vi’s are u-invariant it holds that the xi’s are ∼L u. For i ∈ [1..k] let
wi = xi(yi)ω. Thus, wi is in L iff i is odd. For every such i, consider the run of M on
wi, and let inf(wi) = Si be the states of the SCC that M eventually traverses in. Since n

bounds the number of states of M it follows that after reading xi the automaton already
traversed the SCC Si and reading yi again, it will stay in Si. Because xi−1 = xi · yn

i−1
and yn

i−1 ≺ yi it holds that S1 ⊆ S2 ⊆ . . . ⊆ Sk.
From the acceptance of the words wi we conclude Si is accepting iff i is odd. Therefore
the inclusions are strict, namely S1 ⊊ S2 ⊊ . . . ⊊ Sk. This proves |L|+⊂ ≥ k. ◀

With Thm. 4.6 in place we conclude the robustness of the diameter measure.

▶ Corollary 4.8. Let F1 and F2 be two FDFAs recognizing the same language. Then
|F1|+⇝ = |F2|+⇝ and |F1|−⇝ = |F2|−⇝.

Next we show that given an FDFA we can compute its diameter measure in polynomial
space. The proof shows that with each progress DFA Pu we can associate a DFA Pu, which
we term the persistent DFA. Broadly speaking, Pu is the product of the leading automaton
and copies of the progress automaton, starting from each of its states. The states of Pu

can be classified into significant and insignificant where significant states are those that are
reached by persistent words and only such words. The classification can easily be done by
inspecting the “state vector”. The persistent DFA need not be built, instead a persistent
chain can be non-deterministically guessed and verified in polynomial space.

▶ Theorem 4.9. The diameter measure of a duo-normalized FDFA can be computed in
PSPACE.

Since normalized and exact FDFAs are also duo-normalized, this upper bound holds for
them as well. However, in Prop. 4.12 we show that for normalized (and exact) FDFAs the
diameter measure can be computed in NLOGSPACE. For the case of duo-normalized FDFAs,
we provide a matching lower bound.
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▶ Theorem 4.10. The problem of determining whether the diameter measure of a duo-
normalized FDFA is at least k is PSPACE-hard.

Proof sketch. The proof uses a reduction from non-emptiness of intersection of DFAs, which
is known to be PSPACE-hard [15]. Let D1, D2, . . . , Dk be k DFAs over Σ. We construct an
FDFA with a one-state leading automaton and a progress DFA P over Σ′ = Σ∪{1, . . . , k}∪{♯}
as depicted in Fig. 5.1 (left), see the full version for a complete description. To see that
the FDFA is saturated, we show in the full version that not only every two duo-normalized
decompositions (u, v) and (u′, v′) of the same ultimately periodic word w agree on acceptance,
but their periods also traverse the same MSCC in P.

We claim that if there is a word v ∈ Σ in the intersection of all Di’s, then ♯v ≺ ♯v1 ≺
♯v12 ≺ ♯v123 ≺ . . . ≺ ♯v12 · · · k ≺ ♯v12 · · · k♯♯ is a persistent chain in P of length k + 2. Let
y0 = ♯v, yi = ♯v12 · · · i for i ∈ [1..k], and yk+1 = yk♯♯. Then yi reaches si

i, and reading yi

from si
i reaches si

i again. Thus yi is duo-normalized and yi is accepted iff i is even. To see
that yi is persistent it remains to show that from any state q reading yi and reading (yi)2

the automaton reaches the same state q′ for some q′. Observe that reading yi from any state
sj

j for j ≤ i will still reach si
i. If yi is read from sj

j for i < j ≤ k + 1 or any other state (as
there are no other outgoing ♯-transitions) it will reach sk+1

k+1 and stay there forever. Thus yi

is persistent for any i. Hence, y0 ≺ y1 ≺ y2 ≺ . . . ≺ yk ≺ yk+1 is a persistent chain in P of
length k + 2.

For the other direction, we claim that if there exists a persistent chain of length k + 2 in
P , then the intersection of all Di’s is non-empty. Let w0 ≺ w2 ≺ . . . ≺ wk+1 be such a chain.
First, we note that from the structure of P, since the MSCCs corresponding to the Di’s are
of alternating acceptance, it follows that w0 reaches s0

0, wk+1 reaches sk+1
k+1 and all other wi

reach some state in the i-th MSCC. Second, if reading wi reaches a state in the i-th MSCC,
then since wi is duo-normalized, reading wi for the second time must loop back to the same
state. For i ∈ [1..k] this can only occur if wi is a rotation of v112 · · · i♯v212 · · · i♯ · · · vm12 · · · i♯

for some v1, . . . , vm ∈ Di. This is since wi must contain the letter 1 and it can only be read
from final states of Di. Note that there can’t be an infix of any wi for 1 ≤ i ≤ k where the
letter ♯ appears after a letter lower than i, as this would lead from the i-th MSCC to sk+1

k+1.
As the wi’s form a chain, w1 is a prefix of all the wi’s for 1 < i ≤ k. It follows that w1 is
exactly of the form ♯v1, and as v is common to all the following wi’s, v is in the intersection
of all the Di’s. ◀

The following proposition shows that there exists FDFAs where the smallest elements of
a persistent chain are inevitably of exponential length. The idea is to take the construction
of the FDFA in the proof of Thm. 4.10 and let the DFA Di count modulo the i-th prime.

▶ Proposition 4.11. There exists a family of languages {Ln} with an FDFA with number of
states polynomial in n where any persistent chain of maximal length must include a word of
length exponential in n.

Computing the Wagner position on normalized (rather than duo-normalized) FDFAs, can
be done more efficiently, specifically in NLOGSPACE.

▶ Proposition 4.12. The position in the Wagner hierarchy of an FDFA using normalized
acceptance can be computed in NLOGSPACE.

For the sake of the proof we define two sub-classes of normalized FDFAs. The smallest
one is a generalization studied in [5] of the syntactic FDFA for a language L [19].
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▶ Definition 4.13 (∼-syntactic FDFA). Let L ⊆ Σω and let ∼ be a right congruence refining
the syntactic right congruence ∼L. The ∼-syntactic FDFA, denoted (Q∼, P∼

u ), is defined as
follows. The leading automaton Q∼ is A[∼], and the progress automaton P∼

u is A[≈u] where
x ≈u y if (a) ux ∼ uy and (b) for every z ∈ Σ∗ it holds that uxz ∼ u implies u(xz)ω ∈ L iff
u(yz)ω ∈ L.3

It is shown in [5, Lemma 21] that if x is duo-normalized wrt ∼ and ≈u then for every
y ≈u x we have that y is also duo-normalized. We can thus refer to a state as being
duo-normalized. It is then showed that two duo-normalized states in the same SCC of
a ∼-syntactic progress DFA agree on acceptance [5, Lemma 23]. These properties allow
defining a polynomial procedure that associates with every state of a ∼-syntactic FDFA a
color that tightly correlates to position on the Wagner hierarchy [5].

It follows that on ∼-syntactic FDFAs the Wagner position can be determined in polynomial
time. The proof can be generalized to any FDFA using normalization in which the right
congruence x ≈u y implies x ∼L y. We call such FDFAs projective FDFAs.

▶ Definition 4.14. An FDFA (A[∼], {A[≈u]}) is termed projective if for every progress
DFA, the respective right congruence ≈u satisfies that x ≈u y implies x ∼L y.

Fig. 5.1 (left) depicts the inclusions among these classes. (In the meantime ignore the text
in blue, and the arrow; we will come back to this in the next section.) Since any FDFA
using normalization can be transformed with a quadratic blowup into a projective FDFA (by
multiplying the progress DFAs by the leading automaton) we have that the Wagner position
on normalized FDFAs can be computed in polynomial time. In the full version of the paper
we show that it can also be computed in NLOGSPACE.

5 Succinctness Results

We turn to provide some succinctness results regarding FDFAs with duo-normalized ac-
ceptance. The results compare duo-normalized FDFAs with normalized FDFAs, as well as
canonical FDFAs using these acceptance conditions. We already mentioned four canonical
FDFAs: the periodic FDFA [7] that uses exact acceptance; and the syntactic [19], recur-
rent [2] and limit FDFAs [17] that use normalized acceptance. A canonical FDFA that uses
duo-normalization can be extracted from notions of [5]. We term it the Colorful FDFA, since
it relies on the notion of natural colors [10].

Loosely speaking, [10] shows that given an ω-regular language L one can associate with
every word w ∈ Σω a natural color. If w is given color k wrt L, then there is no parity
automaton for L that would visit a color lower than k infinitely often when reading w.
Consider again the language L∞aa∧¬∞bb requiring infinitely many aa and finitely many bb

for which a DPA is given in Fig. 3.1 (middle). The colors of (ab)ω, (a)ω, (aab)ω, (aabb)ω

and (b)ω are 3, 2, 2, 1 and 1, resp. The intuition is that the color is 1 if bb occurs infinitely
often, it is 2 if aa occurs infinitely often but bb occurs only finitely often, and it is 3 if neither
aa nor bb occur infinitely often. We use Color(w) for the natural color of w. Note that the
language L is implicit in the notation.

A related definition provided in [5, Def 2.] can be viewed as giving colors for finite words
v wrt to an ω-regular language L and an equivalence class [u]. We use Coloru(v) to denote
the color of the finite word v ∈ Σ+ wrt a finite word u ∈ Σ∗. The definition satisfies that

3 Canonical FORC is the term used in [5] for the FORC underlying the ∼-syntactic FDFA.



D. Fisman, E. Goldberg, and O. Zimerman 53:13

s0
0

s1
1 ι1 D1 f1

s2
2s1

2 ι2 D2 f2

...

sk
k· · ·s2

ks1
k

ιk Dk fk

sk+1
k+1

Σ′ \ {1}

1

2

3

2

k

k+1

3 k2

♯

♯

♯

1

1

1

Σ′

Proper

Exact

∼-syntactic

Projective

Normalized

Duo-normalized

p
s

r
l

c

.

Thm
5.6

syntactic

periodic

recur. limit

colorful

proper-duo

Thm. 5.3

Thm. 5.2

Thm. 5.2

Thm. 5.2

[17]

[2] [17]

[2]

Figure 5.1 Left: The progress DFA P used in the proof of Thm. 4.10. Its alphabet is Σ′ =
Σ ∪ {1, . . . , k, k+1} ∪ {♯} where Σ is the alphabet of the DFAs D1, . . . , Dk. Transitions to the sink
state sk+1

k+1 are omitted. The figure assumes k is odd; for j ∈ [1..k], ιj is initial and fj is accepting.
Middle: The inclusions among these classes of FDFAs (in black), as well as the placement of the
canonical FDFAs in these classes (in blue). The letters p,s,r,l,c abbreviate periodic, syntactic,
recurrent, limit, and colorful, resp. Right: Picture summarizing succinctness results on proper
FDFAs. A double-line (resp. one-line) arrow from c to d indicates that c can be exponentially (resp.
quadratically) more succinct than d.

Coloru(v) returns max{Color(u(vz)ω) | z ∈ Σ∗}. Note that it is possible that u(v′)ω = u(v′′)ω

for some u ∈ Σ∗ and v′, v′′ ∈ Σ+, though Coloru(v′) ̸= Coloru(v′′). Indeed in the example of
L∞aa∧¬∞bb we have (a)ω = (aa)ω, yet Colorϵ(a) = 3 while Colorϵ(aa) = 2.

The reason is that if the period contains a followed by some z the resulting color may be
3 or 2 or 1 while if the period contains aa followed by some z the color can be 2 or 1 but it
cannot be 3 since aa surely occurs infinitely often.

These colors can be used to define equivalence classes ≈Q
u for each word u ∈ Σ∗ by

differentiating between words x and y if there is a word z such that the respective extensions
xz and yz disagree on the color (wrt u).4 The Colorful FDFA uses the automaton for ∼L

for the leading automaton as the other canonical FDFAs do. For the progress DFA for u it
takes a DFA whose automaton structure is derived by the equivalence relation ≈Q

u, and the
accepting states are those with an even color. The acceptance type of the Colorful FDFA is
duo-normalization.

▶ Definition 5.1 (The Colorful FDFA). Let u, x, y ∈ Σ∗. We define x ≈Q
u y if for every z ∈ Σ∗

we have Coloru(xz) = Coloru(yz). The colorful FDFA for a language L, denoted FQ(L),
uses duo-normalized acceptance and consists of (A[∼L], {PQ

u }) where PQ
u is a DFA with the

automaton structure A[≈Q
u] where state qv is accepting if coloru(v) is even.

The Colorful FDFA FQ = (Q, {PQ
ϵ }) for our running example L∞aa∧¬∞bb is given in

Fig. 3.1 (right).
We are now ready to discuss the succinctness results. Recall that the canonical FDFAs

using normalized acceptance have been shown to be exponentially more succinct than the
canonical model using exact acceptance [2]. We first show that using duo-normalization a
similar succinctness gain is achieved, namely that the Colorful FDFA can be exponentially
more succinct than all other canonical representations.

4 These equivalence classes correspond to the precise family of weak priority mappings wrt to ∼L from [5,
Def. 17].
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▶ Theorem 5.2. The Colorful FDFA can be exponentially more succinct than the syn-
tactic/recurrent/limit FDFA.

The proof uses the family of languages {Ln}n∈N over Σ = {a, b, ⟨, ⟩} defined as follows.

Ln =
{

w ∈ {a, b, ⟨, ⟩}ω

∣∣∣∣ w has inf. many occurrences of ⟨akbm⟩ for some k ∈ [1..n]
and m that is divisible by the k-th prime.

}
The idea is that using duo-normalization the Colorful FDFA can look only for prefixes of

the form ⟨akbm⟩, whereas the syntactic/recurrent/limit FDFA must also answer correctly for
prefixes of the form bm⟩⟨ak due to using normalized acceptance. Recognizing prefixes of the
latter form is much harder.

Next we show that the Colorful FDFA is not the most succinct among the duo-normalized
FDFAs. The essence of the proof is that the Colorful FDFA must keep track of all infixes
of interest seen in order to maintain the real color of the word. On the other hand, a
duo-normalized FDFA, similarly to a DBA, can choose an arbitrary order to look for such
infixes. The proof uses the family {L′

n}n∈N over Σ = {a1, . . . , an} defined as follows.5

L′
n = {w ∈ {a1, . . . , an}ω | for all i ∈ [1..n] the letter ai appears inf. often in w }

▶ Theorem 5.3. Duo-normalized FDFAs can be exponentially more succinct than the Colorful
FDFA.

An FDFA in general can use any leading automaton A[∼] for a right congruence ∼ that
refines ∼L. We note that all the canonical models (the periodic, syntactic, recurrent, limit
and colorful) use A[∼L] for the leading automaton, we term such FDFAs, proper.

▶ Definition 5.4 (Proper FDFAs). An FDFA recognizing a language L is termed proper if its
leading automaton is A[∼L].

The FDFA used in the proof of Thm. 5.3 is proper. We can thus strengthen the claim as
follows.

▶ Corollary 5.5. Proper duo-normalized FDFAs can be exponentially more succinct than the
Colorful FDFA.

Surprisingly, Klarlund has shown that non-proper normalized FDFAs may be exponentially
more succinct than proper normalized FDFAs [14]. One may thus wonder if non-proper
normalized FDFAs can be as succinct as duo-normalized FDFAs. That is, if duo-normalization
adds succinctness when considering non-proper FDFAs. The following theorem shows that
duo-normalization does add succinctness even relative to non-proper normalized FDFAs (and
even when limiting duo-normalized FDFAs to proper ones).

▶ Theorem 5.6. (Proper) duo-normalized FDFAs can be exponentially more succinct than
(not necessarily proper) normalized FDFAs.

The proof uses the following family of languages {L′′
n}n∈N over Σ = Σa ∪ Σs where

Σa = {a1, . . . , an} and Σs = {s1, . . . , sn}.

L′′
n =

{
w ∈ (Σ∗Σa)ω

∣∣∣∣ Let m = max{j | aj ∈ Σa ∩ inf(w)}.

Then sm ∈ Σs appears inf. often in w.

}
.

5 This family is used in [4] to show DBAs can be exponentially more succinct than combinations of DFAs.
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The challenge in the language can be observed in periods where sm occurs before am was seen
(for m being the maximal index of an ai letter in the period). The duo-normalized FDFA
has the privilege of looking for duo-normalized decompositions in which sm is observed after
the maximal am is seen. As the normalized FDFA has to consider all prefixes, specifically
prefixes for every subset of Σs, it must grow to an exponential size.

6 Discussion

We have shown that FDFAs with duo-normalized acceptance can be exponentially more
succinct than FDFAs using (standard) normalization. At the same time the common
operations procedures and decision problems on them can still be done in NLOGSPACE.
Fig. 5.1 (right) summarizes the results regarding succinctness among the canonical FDFAs
suggested thus far. It shows that the Colorful FDFA can be exponentially more succinct
than all other canonical models. At the same time, a minimal duo-normalized FDFA can be
exponentially more succinct than the Colorful FDFA.

The figure might raise the question whether a duo-normalized FDFA can be doubly-
exponentially more succinct than the periodic FDFA (the least succinct canonical repres-
entation). However this cannot be since a duo-normalized FDFA can be translated into a
non-deterministic Büchi automaton (NBA) using exactly the same procedure as the one
transforming a normalized FDFA into an NBA [1]. The reason is that the construction
actually looks for a duo-normalized decomposition (which by saturation exists).

▶ Proposition 6.1. If L has a duo-normalized FDFA F then it has an NBA of size polynomial
in the number of states of F .

Since an NBA can be converted into a periodic FDFA in an exponential blowup [7, 16] we
get an overall exponential translation from duo-normalized FDFAs to the periodic FDFA,
showing no doubly-exponential lower bound can be achieved. Since NBAs can be converted to
DPAs with an exponential blow up [24, 23, 25, 11] and DPAs can be polynomially converted
into non-proper FDFAs [1] we can conclude the following.

▶ Corollary 6.2. The periodic FDFA and the minimal (non-proper) normalized FDFAs and
DPAs of a language L are at most exponentially larger than a duo-normalized FDFA for L.

We also answer a question posed by [10] regarding the relation of the structure of an
FDFA to its position in the Wagner hierarchy. Specifically, we have provided a measure on
FDFAs that corresponds to the Wagner hierarchy. We have shown that its computation
is PSPACE-complete for duo-normalized FDFAs, and is in NLOGSPACE for normalized
FDFAs. The measure is based on the notion of a persistent chain. Since the Wagner hierarchy
correlates to the minimal color required by a parity automaton, we can define a notion of
chains that relates to natural colors of [10, 5], and is thus a semantic notion (defined wrt to
the language regardless of a particular acceptor for it). In the full version we show that the
existence of one type of chain implies the existence of the other type of chain, and vice versa.

The notion of duo-normalization decomposition seems to be related to the notion of a
linked-pair in ω-semigroups and Wilke-algebras [27, 9], in which (s, e) is a linked pair if
se = s and e is idempotent. It seems that there are two main differences; the first is that a
linked pair relates to one relation ∼, while a duo-normalized decomposition relates to a pair
of relations (∼, ≈) (one for the leading automaton and one for the respective progress DFA).
The second is that the relation ∼ used in Wilke-algebras is a two-sided congruence, while
the relations used by FDFAs are one-sided. Both differences suggest that duo-normalized
FDFAs would be more succinct, but this deserves further study.

MFCS 2024



53:16 A Robust Measure on FDFAs Following Duo-Normalized Acceptance

References
1 D. Angluin, U. Boker, and D. Fisman. Families of DFAs as acceptors of ω-regular languages.

Log. Methods Comput. Sci., 14(1), 2018.
2 D. Angluin and D. Fisman. Learning regular omega languages. Theor. Comput. Sci., 650:57–72,

2016.
3 R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1)

designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.
4 L. Bohn and C. Löding. Passive learning of deterministic Büchi automata by combinations of

DFAs. In 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, pages 114:1–114:20, 2022.

5 L. Bohn and C. Löding. Constructing deterministic parity automata from positive and negative
examples. arXiv:2302.11043. In print for TheoretiCS, accepted on: 2024-05-11, 2024.

6 Büchi J. R. On a decision method in restricted second order arithmetic. In Int. Congress on
Logic, Method, and Philosophy of Science, pages 1–12. Stanford University Press, 1962.

7 H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational w-languages.
In 9th Inter. Conf. on Mathematical Foundations of Programming Semantics (MFPS), pages
554–566, 1993.

8 O. Carton and R. Maceiras. Computing the Rabin index of a parity automaton. RAIRO
Theor. Informatics Appl., 33(6):495–506, 1999.

9 O. Carton, D. Perrin, and J-E. Pin. Automata and semigroups recognizing infinite words. In
Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], pages 133–168,
2008.

10 R. Ehlers and S. Schewe. Natural colors of infinite words. In 42nd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, pages
36:1–36:17, 2022.

11 D. Fisman and Y. Lustig. A modular approach for Büchi determinization. In 26th International
Conference on Concurrency Theory, CONCUR 2015, pages 368–382, 2015.

12 Dana Fisman, Emmanuel Goldberg, and Oded Zimerman. A robust measure on FDFAs
following duo-normalized acceptance. arXiv, 2023. doi:10.48550/arXiv.2310.16022.

13 M. Jurdzinski. Small progress measures for solving parity games. In STACS 2000, 17th Annual
Symposium on Theoretical Aspects of Computer Science, pages 290–301, 2000.

14 N. Klarlund. A homomorphism concepts for omega-regularity. In Computer Science Logic,
8th International Workshop, CSL, pages 471–485, 1994.

15 D. Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on Foundations
of Computer Science, pages 254–266, 1977.

16 D. Kuperberg, L. Pinault, and D. Pous. Coinductive algorithms for Büchi automata. Fundam.
Informaticae, 180(4):351–373, 2021.

17 Y. Li, S. Schewe, and Q. Tang. A novel family of finite automata for recognizing and learning
ømega-regular languages. In Automated Technology for Verification and Analysis - 21st
International Symposium, ATVA, pages 53–73, 2023.

18 Y. Li, X. Sun, A. Turrini, Y-F. Chen, and J. Xu. ROLL 1.0: ω -regular language learning library.
In Tools and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS, pages 365–371, 2019.

19 O. Maler and L. Staiger. On syntactic congruences for omega-languages. Theor. Comput. Sci.,
183(1):93–112, 1997.

20 J. Myhill. Finite automata and the representation of events. Technical report, Wright Patterson
AFB, Ohio, 1957.

21 A. Nerode. Linear automaton transformations. In Proceedings of the American Mathematical
Society, 9(4), pages 541–544, 1958.

22 D. Perrin and J-E Pin. Infinite words – Automata, semigroups, logic and games, volume 141
of Pure and applied mathematics series. Elsevier Morgan Kaufmann, 2004.

https://arxiv.org/abs/2302.11043
https://doi.org/10.48550/arXiv.2310.16022


D. Fisman, E. Goldberg, and O. Zimerman 53:17

23 N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. In 21th IEEE Symposium on Logic in Computer Science LICS, pages 255–264,
2006.

24 S. Safra. On the complexity of omega-automata. In 29th Annual Symposium on Foundations
of Computer Science, White Plains, pages 319–327, 1988.

25 S. Schewe. Büchi complementation made tight. In 26th International Symposium on Theoretical
Aspects of Computer Science, pages 661–672, 2009.

26 K. W. Wagner. A hierarchy of regular sequence sets. In Mathematical Foundations of Computer
Science 1975, 4th Symposium, MFCS, pages 445–449, 1975.

27 T. Wilke. An Eilenberg theorem for infinity-languages. In Automata, Languages and Program-
ming, 18th International Colloquium, ICALP, pages 588–599, 1991.

28 T. Wilke and H. Yoo. Computing the rabin index of a regular language of infinite words. Inf.
Comput., 130(1):61–70, 1996.

29 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

MFCS 2024





Romeo and Juliet Is EXPTIME-Complete
Harmender Gahlawat # Ñ

G-SCOP, Grenoble-INP, France

Jan Matyáš Křišťan #

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Tomáš Valla #

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Abstract
Romeo and Juliet is a two player Rendezvous game played on graphs where one player controls two
agents, Romeo (R) and Juliet (J ) who aim to meet at a vertex against k adversaries, called dividers,
controlled by the other player. The optimization in this game lies at deciding the minimum number
of dividers sufficient to restrict R and J from meeting in a graph, called the dynamic separation
number. We establish that Romeo and Juliet is EXPTIME-complete, settling a conjecture of
Fomin, Golovach, and Thilikos [Inf. and Comp., 2023] positively. We also consider the game for
directed graphs and establish that although the game is EXPTIME-complete for general directed
graphs, it is PSPACE-complete and co-W[2]-hard for directed acyclic graphs.
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1 Introduction

The study of Rendezvous Games was initiated by Alpern [2] where two agents, that are
randomly placed in some known search region and move at unit speed, aim to meet each other
in least expected time. Since then, several variants of rendezvous games have been considered
on graphs [3, 10, 24]. Fomin, Golovach, and Thilikos [12] introduced the rendezvous game on
graph with adversaries where a team of dividers aim to prevent the meeting of two passionate
lovers, say Romeo and Juliet. We refer to this game as Romeo and Juliet.

Romeo and Juliet is played on finite, connected, and undirected graphs between two
players: facilitator and divider. The facilitator has two agents, Romeo, denoted by R, and
Juliet, denoted by J , that start the game at two designated vertices s and t of G, respectively.
The divider has k agents, D1, . . . Dk, and their starting position is selected by the divider
from vertices in V (G)\{s, t}. Several divider agents can occupy the same vertex. Afterwards,
the divider player and the facilitator player make alternate moves, starting with the facilitator.
In a move, a player, for each of its agents, either moves the agent to an adjacent vertex not
occupied by any agent of the other player or keeps it on the same vertex. A situation where
R and J are on the same vertex is a meet. The facilitator wins if R and J meet, and the
divider wins if it succeeds in preventing the meet of R and J forever. Accordingly, we have
the following decision version of the problem. We define the game formally in Section 2.

Romeo and Juliet
Input: A graph G with two specified vertices s and t, and an integer k ∈ N.
Question: Can the facilitator win on G starting from s and t against the divider with k agents?
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We consider the computational complexity of this game and establish that Romeo and
Juliet is EXPTIME-complete, resolving a conjecture of Fomin, Golovach, and Thilikos [12]
positively. We further define the game for directed graphs and extend our EXPTIME-
completeness result to directed graphs as well. We then establish that the game stays
PSPACE-complete for directed acyclic graphs.

Rules of Romeo and Juliet are very similar to the rule of classical Cops and Robber
game introduced by Nowakowski and Winkler [20], and Quilliot [21]. Cops and Robber
fall in the broad range of Graph Searching, where a a set of agents, called pursuers, plan
to catch one or multiple evaders in a graph under some movement rules. We refer to the
annotated bibliography by Fomin and Thilikos [13] and recent monographs [6, 7] for further
references on this topic.

Observe that if s = t or s and t are adjacent vertices, then the facilitator wins trivially. For
distinct non-adjacent vertices s and t, let s, t-dynamic separation number be the minimum k

such that k dividers have a winning strategy against R and J starting at s and t, respectively.
Since the dividers have a winning strategy by placing a divider on each vertex of a minimum
size s, t-vertex cut (for distinct and non-adjacent vertices), the s, t-dynamic separation number
is a well-defined graph invariant for s, t.

Fomin, Golovach, and Thilikos [12] proved that Romeo and Juliet is PSPACE-hard
for general graphs. They conjectured that the game is, in fact, EXPTIME-complete. We
resolve their conjecture positively by providing the following theorem.

▶ Theorem 1. Romeo and Juliet is EXPTIME-complete for undirected graphs.

Fomin, Golovach, and Thilikos [12] gave a backtracking based nO(k) time algorithm
for Romeo and Juliet, which is also a 2O(n log n) time algorithm. Hence, to prove the
EXPTIME-completeness, we only need to prove EXPTIME-hardness of Romeo and Juliet.
To this end, we provide a non-trivial reduction from GuardUndir (a guarding game on
undirected graphs), which is known to be EXPTIME-complete [22].

Several graph-searching games have a natural generalization to directed graphs and are
well-studied [4, 5, 8, 9, 15, 16, 17]. Romeo and Juliet can also be considered on directed
graphs where the agents can only move along the orientations of the arcs. We begin by
establishing that the Romeo and Juliet game stays EXPTIME-complete on directed
graphs. To this end, we provide a rather easy and straightforward reduction from Guard
(a guarding game on directed graphs), which is known to be EXPTIME-complete [23], to
Romeo and Juliet on directed graphs.

▶ Theorem 2. Romeo and Juliet is EXPTIME-complete for oriented graphs.

Next, we consider Romeo and Juliet on directed acyclic graphs (DAGs). Fomin,
Golovach, and Thilikos [12] also considered a variant of this game, Romeo and Juliet in
Time, where the question is whether R and J can meet in at most τ rounds. They established
that this game is PSPACE-hard and co-W[2]-hard parameterized by k (for undirected graphs).
We provide a general framework to establish computational complexity results for Romeo
and Juliet on DAGs. In particular, we define a relaxation of the game –Relaxed Romeo
and Juliet– where the dividers have an added relaxation that they can move to a vertex
occupied by R or J , but R or J cannot finish a move by occupying the same vertex as a
divider. We present a reduction from Romeo and Juliet in Time on general graphs to
Romeo and Juliet on directed acyclic graphs. This helps us to translate the hardness
results proved for Romeo and Juliet in Time on general graphs to Romeo and Juliet
on DAGs. In particular, this establishes that Romeo and Juliet remains PSPACE-hard
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and co-W[2]-hard parameterized by k even on DAGs. To prove PSPACE-completeness for
DAGs, we also provide a polynomial-space algorithm for Romeo and Juliet on DAGs. We
show the following results.

▶ Theorem 3. Romeo and Juliet is PSPACE-complete when restricted to directed acyclic
graphs.

▶ Theorem 4. Romeo and Juliet is co-W[2]-hard parameterized by k when restricted to
directed acyclic graphs.

Brief Survey. The study of rendezvous games with adversaries was initiated by Fomin,
Golovach, and Thilikos [12] and they conducted an extensive study of the computational
complexity of this problem and established the following results. Romeo and Juliet, as
well as Romeo and Juliet in Time, are PSPACE-hard and co-W[2]-hard parameterized by
k, and both of these problems admit a nO(k) algorithm. This algorithm is optimal in the
sense that, assuming ETH , none of these problems can be solved in no(k) time. Moreover,
Romeo and Juliet in Time is co-NP-complete even for τ = 2, and admit a FPT algorithm
parameterized by τ and the neighbourhood diversity of the graph, combined. Interestingly,
for chordal graphs and P5-free graphs, the s, t-dynamic separation number is same as the
minimum size of a s, t-vertex cut, which establishes that Romeo and Juliet is polynomial
time solvable for these classes.

Misra et al. [18] conducted further analysis of this game from a parameterized complexity
perspective and established the following interesting results. Romeo and Juliet is co-
para-NP-hard parameterized by the treewidth of the input graph. Further, Romeo and
Juliet remains co-W[1]-hard when parameterized by the feedback vertex set number and
the solution size (combined), and when parameterized by the pathwidth and the solution size
(combined). On the positive side, they established that Romeo and Juliet is FPT when
parameterized by the vertex cover number and solution size (combined) by the design of an
exponential kernel, and complemented this result by proving that it is unlikely to obtain
a polynomial kernel by these parameters. Finally, Romeo and Juliet can be solved in
polynomial time for treewidth-2 graphs and grids.

An important part of our result is related to the so-called guarding game, introduced by
Fomin et al. [11], is played on a graph G by two alternating players, the cop-player and the
robber-player, each having their pawns (c cops and one robber, respectively). The vertex set
V (G) is partitioned into a cop region C and a robber region R = V (G) \ C, and the goal of
the cops is to prevent the robber, who starts at some vertex of R, from entering a vertex
of C. The computational complexity of the guarding game depends heavily on the chosen
restrictions on the graph G. In particular, if Robber’s region (R) is only a path, then the
problem can be solved in polynomial time, and when robber moves in a tree (or even in a
star), then the problem is NP-complete, and if Robber is moving in a DAG, the problem
becomes PSPACE-complete [11]. Later Fomin, Golovach and Lokshtanov [14] studied the
reverse guarding game with the same rules as in the guarding game, except that the cop-player
plays first. They proved that the related decision problem is PSPACE-hard on undirected
graphs. Nagamochi [19] has also shown that that the problem is NP-complete even if C

induces a 3-star and that the problem is polynomially solvable if R induces a cycle. Also,
Reddy, Krishna and Rangan [25] proved that if the robber-region is an arbitrary undirected
graph, then the decision problem is PSPACE-hard. Šámal and Valla established that the
guarding game is, in fact, ETIME-complete under log-space reductions for both directed [23]
as well undirected graphs [22].
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Organization. We begin with formal preliminaries and definitions in Section 2. In Section 3
we establish the EXPTIME-completeness of Romeo and Juliet for undirected graphs. In
Section 4, we extend our EXPTIME-completeness result to directed graphs. We conclude in
Section 5. To respect the space restrictions the section concerning Romeo and Juliet on
DAGs has been omitted.

2 Preliminaries

For ℓ ∈ N, let [ℓ] = {1, . . . , ℓ}.

Graph Theory. For a graph G, we denote its vertex set by V (G) and edge set by E(G).
We denote the size of V (G) by n and size of E(G) by m. In this paper, we consider finite,
connected, and simple graphs. Let v be a vertex of a graph G. Then, by N(v) we denote the
open neighbourhood of v, that is, N(v) = {u | uv ∈ E(G)}. By N [v] we denote the closed
neighbourhood of v, that is, N [v] = N(v) ∪ {v}. For X ⊆ V (G), we define NX(v) = N(v) ∩ X

and NX [v] = N [v]∩X. The length of a path or cycle is the number of edges in it. A u, v-path
is a path with endpoints u and v. For u, v ∈ V (G), let d(u, v) denote the length of a shortest
u, v-path. A path is isometric if it is a shortest path between its endpoints.

Computational complexity. The complexity class PSPACE is the set of all decision problems
that can be solved by a Turing machine using a polynomial amount of space. The class
EXPTIME (sometimes denoted EXP) is the set of all decision problems that are solvable by
a deterministic Turing machine in the O(2p(n)) time where p(n) is a polynomial of n.

Romeo and Juliet. Romeo and Juliet is played on a graph G, where the input prescribes
the number of dividers k, and the starting positions s0 and t0 of R and J , respectively. The
game starts with R and J occupying the initial vertices s0, and t0, respectively. Then, the
divider player places its agents D1, . . . , Dk on vertices d1

0, . . . , dk
0 , respectively, such that

{d1
0, . . . , dk

0} ∩ {s0, t0} = ∅. We call this state S0 = (s0, t0, d1
0, . . . , dk

0). For i ≥ 0, let Di

denote the set {d1
i , . . . , dk

i }. Multiple dividers may occupy the same vertex, and |Di| may be
less than k. After this, the game proceed in rounds, where each round consists of a divider
move, followed by a facilitator move. In round i, i ≥ 1, first the facilitator moves R to a
vertex si ∈ N [si−1] \ Di−1 and J to a vertex ti ∈ N [ti−1] \ Di−1. Then, the divider moves
each divider Dp, p ∈ [k], to a vertex dp

i ∈ N [dp
i−1] \ {si, ti}. This gives us a game state

Si = (si, ti, d1
i , . . . , dk

i ). If the facilitator can ensure that for some i ≥ 0, si = ti, we say that
the facilitator has a winning strategy. On the other hand, if the divider player can ensure
that for each i ≥ 0, si ̸= ti, then the divider player has a winning strategy. For directed
graphs, the rules are exactly the same with the only difference that the agents can only
move along the orientations of the arcs. Fomin et al. [12] gave an algorithm for Romeo
and Juliet with running time O(2O(n log n)). It is easy to see that the algorithm works for
directed graphs as well. Hence, we have the following proposition.

▶ Proposition 5 ([12]). Romeo and Juliet is in class EXPTIME on directed as well as
undirected graphs.

We have the following trivial observation that shall be useful to us.

▶ Observation 6. Let Si = (si, ti, d1
i , . . . , dk

i ) be a game state in some graph G, and let
y ∈ V (G). If there is a si, y-path (resp., ti, y-path) P such that (i) P is an isometric path of
length ℓ, (ii) and for each vertex v ∈ V (P ) and u ∈ Di, d(si, v) ≤ d(u, v) (resp., d(ti, v) ≤
d(u, v)), then the facilitator player can ensure that Si+ℓ = (si+ℓ = y, ti+ℓ, d1

i+ℓ, . . . , dk
i+ℓ)

(resp., Si+ℓ = (si+ℓ, ti+ℓ = y, d1
i+ℓ, . . . , dk

i+ℓ)).
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Guarding Game. The GuardUndir game is played on an undirected graph G, where V (G)
is partitioned into two regions: Cop region C ⊂ V (G), and Robber region R = V (G) \ C.
There is a prescribed vertex r0 ∈ R, where the robber starts. The games begins with the
robber occupying the vertex r0. Then, k cops occupy vertices c1

0, . . . , ck
0 such that for each

j ∈ [k], cj
0 ∈ C. More than one cop may occupy the same vertex. This gives us game state

G0 = (r0, c1
0, . . . , ck

0). Let Ci denote the set of vertices {ci
0, . . . , ci

k}. Then, the game proceeds
in rounds. In round i, i > 0, first the robber moves to a vertex ri ∈ N [ri−1] \ Ci−1. Then,
the cop player moves the cop Cj , j ∈ [k], to a vertex cj

i ∈ NC [cj
i−1] \ {ri}. If the robber can

ensure that for some i ≥ 0, ri ∈ C, then the robber has a winning strategy. Otherwise, if the
cops can ensure that for each i ≥ 0, ri /∈ C, then the cop player has a winning strategy.

It is worth noting that the GuardUndir game where the starting position of the robber
is not specified is also studied. But for our purposes, we consider the variant where the
starting position of the robber, i.e., r0 is fixed. Furthermore, we assume that G[C] as well as
G[R] are connected subgraphs of G.

The Guard game is analog of GuardUndir on directed graphs. The rules of the game
are exactly the same as the undirected case with the only change that the agents can only
move along the orientations of the arcs. Šámal and Valla [22, 23] proved the following.

▶ Proposition 7 ([23, 22]). Guard and GuardUndir are EXPTIME-complete.

3 Romeo and Juliet is EXPTIME-complete

In this section, we establish that Romeo and Juliet is EXPTIME-complete for undirected
graphs. To prove this, we provide a non-trivial reduction from GuardUndir to Romeo
and Juliet on undirected graphs. We begin by providing an overview of our reduction.

Overview. First, we make two copies of the cop region C as CR and CJ , and two copies of
the robber region R as RR and RJ such that R starts in RR and J starts in RJ . We will
have 2k dividers. Moreover, we use some gadgets, that we call secret gardens, which ensure
that after each round, if each of CR and CJ does not host at least k dividers each, R and
J will meet in one of the secret gardens after a finite number of rounds. Moreover, given
that both CR and CJ host at least k dividers each, if R and J are able to enter the vertices
of CR and CJ , respectively, then they will be able to meet in the next round. Hence, for
dividers to win, the game is, more or less, similar to restricting R and J to enter CR and
CJ , respectively, where both CR and CJ host exactly k dividers each. Below, we provide
our construction in detail.

Construction. Let (H, k, r) be an instance of the GuardUndir, where r is the starting
position of the robber and V (H) consists of the cop region C and the robber region R =
V (H) \ C. We assume that H[C] as well as H[R] is connected. We will construct an instance
(G, 2k) of Romeo and Juliet in the following manner. Since the construction has several
components, we will define the components of our construction (reduction) individually. Our
graph G will have following components.

1. CR, CJ , RR, and RJ . We begin by constructing two copies of the graph H as GR
and GJ , corresponding to R and J , respectively. See Figure 1 for an illustration. More
specifically, GR (resp., GJ ) contains a copy CR (resp., CJ ) of C and RR (resp., RJ ) of
R. Formally, V (GR) = {uR | u ∈ V (H)} and, V (GJ ) = {uJ | u ∈ V (H)}. Moreover,
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W

RR RJ

CR CJ

GR GJ

Figure 1 The graphs G[RR ∪ CR] (i.e., GR) as well as G[RJ ∪ CJ ] (i.e., GJ ) are isomorphic to
H. Here, we do not display edges in GR and GJ to ease the illustration.

E(GR) = {uRvR | uv ∈ E(H)} and E(GJ ) = {uJ vJ | uv ∈ E(H)}. Finally, the starting
position of R is rR and J is rJ (where r is the starting position of the robber in the
GuardUndir), i.e., s0 = rR and t0 = rJ .

2. Connecting CR to CJ . For each vertex x ∈ CR and each vertex y ∈ CJ , we connect
x and y using a path Pxy = xwxyy of length 2. Let W be the set of vertices that lie in
the middle of these paths, i.e., W = {wxy | x ∈ CR, y ∈ CJ }. Moreover, each vertex of W

has degree exactly 2 in G. See Figure 1 for an illustration. We have the following trivial
observation, which follows from the fact that each vertex in W have degree exactly 2.

▶ Observation 8. Consider a game state Si = {si, ti, d1
i , . . . , d2k

i ), i > 0, such that si ∈ CR
and ti ∈ CJ , and wsiti

/∈ Di−1, then R and J can meet at wsiti
in the next round.

Proof. The proof follows from the fact that if wsiti /∈ Di−1, then wsiti /∈ Di since wsiti is
connected only to si and ti and {si, ti} ∩ Di = ∅. ◀

3. Secret Gardens. Next, we construct 2k + 2 secret gardens S1, . . . , S2k+2, the goal of
which is to ensure that after each round, both CR and CJ must host exactly k dividers each.
See Figure 2 for an illustration. Each Si, i ∈ [2k + 2] , consists of k independent vertices.

4. Bridges. Next, we construct 2k + 2 divider bridges B1, . . . B2k+2, where each Bi (i ∈
[2k + 2]) consists of k independent vertices, and 2k + 2 lover bridges L1, . . . , L2k+2, where
each Li consists of two independent vertices ai and bi. See Figure 2 for an illustration.

5. Connecting bridges and gardens. For each i ∈ [2k + 2], G[Si ∪ Bi] induces a complete
bipartite graphs. Next, for i ∈ [k + 1], we connect each vertex of Si to ai via an edge and
each vertex of bi to Si via a path of length 2. Symmetrically, for k + 2 ≤ i ≤ 2k + 2, we
connect each vertex of Si to ai via a path of length 2 and each vertex of Si to bi via an edge.

6. Connecting bridges to rest of the graph. Let βH , βC , and βR be the diameter of graph
H, graph H[C], and graph H[R], respectively. Then, let α = max(βH , βC , βR). For each
vertex x ∈ CR and each vertex y ∈

⋃
i∈[k+1] Bi, we connect x and y using a path of length

α. Similarly, for each vertex x ∈ CJ and each vertex y ∈
⋃

k+1<i≤2k+2 Bi, we connect x

and y using a path of length α. Next, for i ∈ [k + 1], we connect each vertex x ∈ RR to
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RR RJ

L1 Lk+1 Lk+2
L2k+2

S1
Sk+1 Sk+2 S2k+2

B1

Bk+1

Bk+2 B2k+2

CR CJ

Figure 2 Illustration of secret gardens and bridges. Each black connection signifies an edge, blue,
red, green, and violet connections signify paths of length α + 2, α + 1, α, and 2, respectively. Note
that, due to our choice of α, no shortcuts are created in the original graph.

ai using a path of length α + 1 and each vertex y ∈ RJ to bi using a path of length α + 2.
Symmetrically, for k + 2 ≤ i ≤ 2k + 2, we connect each vertex x ∈ RR to ai using a path of
length α + 2 and each vertex y ∈ RJ to bi using a path of length α + 1. See Figure 2 for an
illustration. This completes our construction of G.

Subgraphs of G. For the ease of exposition, we name some of the induced subgraphs of
G. Consider the induced subgraph G′ = G[V (G) \ (RR ∪ RJ ∪ W )]. Observe that G′ has
two connected components: one containing CR, say G′

R, and the other containing CJ , say
G′

J . Moreover, consider the induced subgraph G′′ = G′[V (G′) \ (CR ∪ CJ )]. Observe that
G′′ contains exactly 2k + 2 connected components, say G1, . . . , G2k+2, and let Gi be the
connected component containing Si (and hence, Bi and Li).

The following observation follows directly from the construction of G

▶ Observation 9. The following statements follow from the construction.
1. For distinct i, j ∈ [2k + 2], for a vertex x ∈ V (Gi) and y ∈ Sj, d(x, y) > α + 1.
2. Let x ∈ Si for i ∈ [k + 1]. For each vertex y ∈ CR, there is a x, y-path of length α + 1,

and for each vertex z ∈ CJ , there is a x, z-path of length α + 3.
3. Let x ∈ Si for k + 2 ≤ i ≤ 2k + 2. For each vertex y ∈ CR, there is a x, y-path of length

α + 3, and for each vertex z ∈ CJ , there is a x, z-path of length α + 1.

The following lemma establishes that if R and J are in RR and RJ , respectively, then
both G′

R and G′
J must host at least k dividers, else R and J meet in at most α + 2 rounds.

▶ Lemma 10. Consider a game state Si = (si, ti, d1
i , . . . , d2k

i ) for i ≥ 0. If si ∈ RR and
ti ∈ RJ , and at least one of G′

R or G′
J hosts less than k dividers, then si+α+3 = ti+α+3.

Proof. Without loss of generality, let us assume that G′
R hosts at most k − 1 dividers at the

end of round i (i.e., Di ∩ V (G′
R) < k). Therefore, at least one of G1, . . . , Gk+1 does not host

any divider (as G1, . . . , Gk+1 are disjoint subgraphs of G′
R). Let Gp, p ∈ [k + 1], be such a

component, i.e., V (Gp) ∩ Di = ∅. To ease the presentation, let x = si and y = ti. Moreover,
let Px be the unique isometric x, ap-path of length α + 1, and let Py be the unique isometric
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y, bp-path of length α + 2. Furthermore, let the vertices of Sp be marked as v1, . . . , vk and
let, for j ∈ [k], the (degree-2) vertex connecting vj and bp be uj . We have the following
crucial claim that proves our lemma.

▷ Claim 11. R and J can move along the paths Px and Py such that si+α+2 ∈ Sp, ti+α+2 = bp.
Moreover, if si+α+2 = vj , where j ∈ [k], then uj /∈ Di+α+2.

Proof of Claim. First, we establish that R can move to the vertex ap in α + 1 rounds. Due
to Observation 6, to show that R can ensure that si+α+1 = ap, it is sufficient to show that
for each vertex v ∈ V (Px), d(x, v) ≤ minu∈Di

(d(u, v)). We distinguish the following cases
depending on where u is in G.
1. u ∈ CR ∪ CJ ∪ W : Observe that for each vertex u ∈ CR ∪ CJ ∪ W and each vertex

v ∈ V (Px), d(u, v) ≥ α + 1 and d(x, v) ≤ α + 1. Hence, d(x, v) ≤ minu∈Di
(d(u, v)).

2. u ∈ RR ∪ RJ : Observe that for each vertex u ∈ RR ∪ RJ and each vertex v ∈ V (Px), any
u, v-path contains either x or ap. In the former case, trivially d(x, v) ≤ d(u, v), and in
the latter case, observe that d(u, v) ≥ α + 1 ≥ d(x, v). Hence, d(x, v) ≤ minu∈Di(d(u, v)).

3. u ∈ Gj , for some j ∈ [2k + 2]: Due to our choice of p, clearly u /∈ V (Gp) (since we
choose Gp such that V (Gp) ∩ Di = ∅). Hence, j ̸= p. Since Gj and Gp are disjoint
components in G[V (G) \ {CR ∪ CJ ∪ RR ∪ RJ }], each u, v-path passes through a vertex
of u′ ∈ CR ∪ CJ ∪ RR ∪ RJ , and hence this case is implied by the previous two cases.

Thus, the facilitator can ensure that si+α+1 = ap. Finally, since G′
R hosts at most k − 1

dividers and for each vertex u ∈ V (G) \ V (G′
R) and v ∈ Sp, d(u, v) > α + 1, at most k − 1

dividers can reach the vertices of Sp in α + 1 moves of dividers. Therefore, |Di+α+1 ∩ Sp| < k.
Hence, there is at least one j ∈ [k] such that vj ∈ Sp \ Di+α+1, and hence R can move to vj

in this round, i.e., si+α+2 = vj ∈ Sp.
The proof that of the claim ti+α+2 = bp is symmetric to the proof that si+α+1 = ap.
Next, we establish that uj /∈ Di+α+2. Recall that vj /∈ Di+α+1 and, due to our choice of p,

V (Gp) ∩ Di = ∅. It follows from our construction that for each vertex w ∈ V (G) \ (Gp ∪ CR),
d(w, uj) > α+2 and for w′ ∈ CR, d(w′, uj) = α+2 and each w′, uj-path of length α+2 passes
through vj . Since Di ∩ V (Gp) = ∅, if a divider, say Dℓ, has to ensure that dℓ

i+α+2 = uj , Dℓ

has to ensure that dℓ
i+α+1 = vj , which is not possible since vj /∈ Di+α+1. Hence, uj /∈ Di+α+2.

This completes the proof of our claim. ◁

Finally, since si+α+2 = vj ∈ Sp (for some j ∈ [k]), ti+α+2 = bp and uj /∈ Di+α+2
(Claim 11), the facilitator can ensure that R and J meet in the next round at uj . ◀

Next, we have the following lemma which establishes that as long as R and J are in RR
and RJ , respectively, both CR and CJ must host exactly k dividers each.

▶ Lemma 12. Consider a game state Si = (si, ti, d1
i , . . . , d2k

i ) for i ≥ 0 such that si ∈ RR
and ti ∈ RJ . If |Di ∩ CR| ≠ k or |Di ∩ CJ | ≠ k, then the facilitator can ensure that
si+α+3 = ti+α+3.

Proof. The proof is similar to the proof of Lemma 10. Due to Lemma 10, we know that
both G′

R and G′
J host exactly k dividers, and thus, |Di ∩ CR| ≤ k and |Di ∩ CJ | ≤ k, else

R and J meet in α + 3 rounds. At this point, let one of CR or CJ hosts less that k dividers.
Without loss of generality, let |Di ∩CR| < k. In this case, similarly to the proof of Lemma 10,
there is at least one Gp, p ∈ [k + 1], such that Gp does not contain any divider . Moreover,
similarly to the proof of Lemma 10, only the dividers on CR can reach Sp in α + 2 rounds
and hence at most k − 1 dividers can reach the vertices of Sp in α + 2 rounds. Therefore,
R and J have a strategy to ensure that si+α+2 = z ∈ Sp and ti+α+2 = bp such that the
unique vertex on the isometric si+α+2, ti+α+2-path does not any divider in this round. Hence,
si+α+3 = ti+α+3. ◀
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Next, we prove the following lemma which implies one side of our reduction.

▶ Lemma 13. If the robber has a winning strategy in H against k cops, then R and J have
a winning strategy in G against 2k dividers.

Proof. The game starts with R and J placed on rR and rJ , respectively. Due to Lemma 12,
we can assume that as long as R and J are in RR and RJ , respectively, both CR and
CJ must host exactly k dividers each, else R and J win. First, we will show that after a
finite number of rounds R can enter CR. Observe that any move of dividers in CR (in G)
corresponds to a valid move of cops in C (in H) and R can make any move in G[CR ∪ RR]
against dividers in G that is accessible to the robber in H against the corresponding position
of the cops. Hence, using the winning strategy of the robber, R can enter CR after a finite
number of rounds (since CR hosts exactly k dividers). Similarly, J can move to CJ in a
finite number of rounds.

But, observe that since the dividers in CR and CJ may be using different strategies,
R and J may not be able to simultaneously move to CR and CJ , respectively. Hence, we
distinguish the following two cases.

1. R and J move simultaneously to x ∈ CR and y ∈ CJ , respectively. Due to Lemma 12,
we may assume that when R and J made this move, both CR and CJ hosted exactly k

dividers each, and hence no vertex of W was occupied by any divider. Hence, R and J

can meet in the next round due to Observation 8.
2. R moves to x ∈ CR while J is on some vertex y ∈ RJ . Similarly to the previous case,

due to Lemma 12, we may assume that when R and J made this move, both CR and CJ
hosted exactly k dividers each. In the next move of the dividers, observe that there will
be at least one Gp, p ∈ [k + 1], such that Gp does not contain any dividers. In the next
α + 2 rounds, J moves towards the vertex bp and R moves first towards a vertex in Sp,
and then to a neighbour of bp. We note that R and J can make these moves following
the same arguments presented in the proof of Lemma 10. Hence, R and J meet in the
next round since they are they are at adjacent vertices.

3. J moves to x ∈ CJ while R is on some vertex y ∈ RR. This case is symmetric to Case 2.
This completes our proof. ◀

To complete our reduction, we need to establish that if k cops have a winning strategy in
H, then 2k dividers have a winning strategy in G. To aid the presentation of the proof of
this lemma, we need the following notion of safe states.

Safe states. Consider the GuardUndir on graph H and consider some game state
Gi = (ri, c1

i , . . . , ck
i ) such that ri ∈ R. We say that Gi is a safe state if the cops have a strategy

to ensure that robber cannot enter C in any round i′ > i. Similarly, consider the game
Romeo and Juliet on graph G and some game state Sj = (sj , tj , d1

j , . . . , d2k
j ). We say that

Sj is R-safe state (resp., J -safe state) if (1) sj ∈ RR (resp., tj ∈ RJ ), (2) {dj
1, . . . , dj

k} ⊆ CR
(resp., {dk+1

j , . . . , d2k
j } ⊆ CJ ), and (3) the dividers D1, . . . , Dk (resp., Dk+1, . . . , D2k) can

ensure that if R (resp., J ) is restricted to GR (resp., GJ ), then R (resp., J ) cannot enter a
vertex of CR (resp., CJ ) in any round j′ > j. We say that a game state Sj is almost-R-safe
state if R is in some Gi, i ∈ [2k + 2], and the dividers D1, . . . , Dk have a strategy that ensures
that if for some j′ > j, sj′ ∈ V (GR) ∪ V (GJ ) (i.e., R enters a vertex in V (GR) ∪ V (GJ )),
then Sj′ is a R-safe state. We define almost-J -safe state analogously. We have the following
easy, but useful, observations.
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▶ Observation 14. Consider a game state Sj = (sj , tj , d1
j , . . . , d2k

j ) of Romeo and Juliet
on G such that sj ∈ RR and {d1

j , . . . , dk
j } ⊆ CR. Now, consider a corresponding game state

Gi = (ri, c1
i , . . . , ck

i ) of GuardUndir on H such that if sj = uR, then ri = u, and if, for
ℓ ∈ [k], dℓ

j = vR, then cℓ
j = v. If Gi is a safe state then Sj is a R-safe state.

Proof. To prove our statement, we need to show that if R is restricted to GR, then the
dividers have a strategy to ensure that, for j′ > j, R cannot enter a vertex of CR. The
dividers D1, . . . , Dk can do so by mimicking the winning strategy of the cops from H in the
following manner. Whenever R moves from a vertex uR to wR in GR, we move the robber in
H from u to w, and then each cop Cℓ, for ℓ ∈ [k], moves as per its winning strategy. Notice
that this gives us a safe state Si+1. Then, each divider Dℓ, for ℓ ∈ [k], copies the move of Ci

such that if Ci moved from v to x, then Di moves from vR to xR. Using this strategy, the
dividers D1, . . . , Dk can ensure that, as long as R is restricted to GR, R can never enter a
vertex of CR. Hence, Sj is a R-safe state. ◀

Analogously, we can have the following observation for J -safe states.

▶ Observation 15. Consider a game state Sj = (sj , tj , d1
j , . . . , d2k

j ) of Romeo and Juliet
on G such that tj ∈ RJ and {dk+1

j , . . . , d2k
j } ⊆ CJ . Now, consider a corresponding game

state Gi = (ri, c1
i , . . . , ck

i ) of GuardUndir on H such that if tj = uJ , then ri = u, and if,
for k + 1 ≤ ℓ ≤ 2k, dℓ

j = vJ , then cℓ−k
j = v. If Gi is a safe state then Sj is a J -safe state.

▶ Observation 16. Let k cops have a winning strategy in H against the robber starting at r.
Then, for each vertex v ∈ R (⊆ V (H)), there exists a set of (not necessarily distinct) vertices
u1, . . . , uk ∈ C such that the game state G = (v, u1, . . . , uk) is a safe state.

Proof. Targeting contradiction, let there be a vertex v ∈ C such that for every u1, . . . , uk ∈ C

(possibly ui = uj for distinct i, j), G = (v, u1, . . . , uk) is a not a safe state. Let d(r, v) = ℓ ≤ α.
Then, the robber have a strategy to reach a game state Gℓ = (rℓ = v, c1

ℓ , . . . , ck
ℓ ), which is

not a safe state (by our contradiction assumption). Hence, the cops do not have any strategy
that can restrict the robber to R for each round ℓ′ > ℓ, a contradiction to the fact that k

cops have a winning strategy in H against the robber starting at r. ◀

Next, we have the following lemma.

▶ Lemma 17. Let k cops have a winning strategy in H against the robber starting at r.
Moreover, let Sj = (sj , tj , d1

j , . . . , d2k
j ) be a game state in G. Then, the following are true.

1. If sj = ap for some p ∈ [k + 1] and each vertex of Sp is occupied by a divider from
D1, . . . , Dk, then Sj is an almost-R-safe state.

2. If sj = ap for some k + 2 ≤ p ≤ 2k + 2, and each vertex of Bp is occupied by some divider
from D1, . . . , Dk, then Sj is an almost-R-safe state.

Proof. First, we will show that if sj = ap for some p ∈ [k + 1] and each vertex of Sp is
occupied by a divider from D1, . . . , Dk, then Sj is an almost-R-safe state. Let the vertices
of Sp be marked v1, . . . , vk, and without loss of generality, let us assume that di

j = vi, for
i ∈ [k]. The dividers will maintain the following invariant for ℓ ≥ j: d(di

ℓ, vi) = d(sℓ, ap).
(We have that d(di

j , vi) = d(sj , ap) = 0.) This invariant will ensure that whenever R is at the
vertex ap, each vertex of Sp is occupied by some divider, and hence, R can never access a
vertex of Sp. Let j′ > j be the smallest integer such that sj′ ∈ V (GR) ∪ V (GC). If no such
j′ exists, then Sj is trivially almost-R-safe state, and hence we assume that j′ exists. To
establish that Sj is an almost-R-safe state, we need to show the following:
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1. sj′ ∈ RR: This is easy to see since Sp ∪RR separates ap from each vertex in RJ ∪CR ∪CJ
and whenever R is at ap, all vertices of Sp are occupied by the dividers.

2. Sj′ is a R-safe state: To ensure this, the dividers implement the following strategy which
maintains the invariant d(di

ℓ, vi) = d(sℓ, ap) (for ℓ ≥ j and i ∈ [k]). Let γ ≥ j be
the least integer such that sγ = ap and sγ+1 ≠ ap. Observe that there is a unique
vertex vR in RR such that d(sγ+1, vR) = α. (For every other vertex wR ∈ RR \ {vR},
α + 1 ≤ d(sγ+1, vR) ≤ α + 2). Since k cops have a winning strategy in H, due to
Observation 16, we know that there exists a safe state G = (v, u1, . . . , uk) in H such
that u1, . . . , uk ∈ C. Moreover, due to Observation 14, we know that, a game state
Sj′′ = (sj′′ = vR, tj′′ , d1

j′′ , . . . , d2k
j′′) such that, for i ∈ [k], di

j′′ = uiR is a R-safe state.
Now, each divider Di chooses chooses a vi, uiR-path, say Pi, of length α + 1 and move
on this path to maintain the invariant d(di

ℓ, vi) = d(sℓ, ap) (for ℓ ≥ j and i ∈ [k]). Now,
we distinguish the following two cases:
a. For γ < γ′ < j′, sγ′ ̸= ap. In this case, observe that sj′ = vR and di

j′ = uiR, for
i ∈ [k], which gives a R-safe state.

b. There is some γ < γ′ < j′, such that sγ′ = ap. Observe that the game state Sγ′

is identical to the state Sj from the perspective of R and D1, . . . , Dk (due to our
invariant). Hence, the dividers D1, . . . , Dk can restart their strategy that they had
starting from Sj .

Second, we will establish that if sj = ap for some k + 2 ≤ p ≤ 2k + 2 and each vertex of Bp is
occupied by a divider from D1, . . . , Dk, then Sj is an almost-R-safe state. It follows directly
from our construction of G that for each vertex y ∈ CR and z ∈ Bp, there is a y, z-path of
length α + 2 (that passes through W and CJ ). Similarly, for each vertex z ∈ RR, there is
a ap, z-path of length α + 2. The proof is similar to the proof of the first case and hence
we will provide the proof in a succinct manner. Let the vertices of Bp be marked v1, . . . , vk,
and without loss of generality let us assume that di

j = vi (for i ∈ [k]). Furthermore, let the
vertices of Sp be marked x1, . . . , xk and let the unique vertex connected ap and xi be yi.
Now, the dividers will use the following strategy for j′ ≥ j while always maintaining the
invariant: d(sj′ , ap) = d(di

j′ , vi) for i ∈ [k].
If sj′ = yq for some q ∈ [k], then for each i ∈ [k], the divider Di moves to the vertex xi,
i.e., di

j′ = xi. Observe that this ensures that R can never reach a vertex of Sp, and hence,
whenever R will enter a vertex of CR ∪ CJ ∪ RR ∪ RJ , it will do so at a vertex of RR.
If sj′−1 = ap and sj′ /∈ {ap} ∪ {y1, . . . , yp}. Then, let v be the unique vertex in
RR such that d(v, sj′) = α + 1. Since k cops have a winning strategy in H, due to
Observation 16, we know that there exists a safe state G = (v, u1, . . . , uk) in H such
that u1, . . . , uk ∈ C. Moreover, due to Observation 14, we know that, a game state
Sj′′ = (sj′′ = vR, tj′′ , d1

j′′ , . . . , d2k
j′′) such that, for i ∈ [k], di

j′′ = uiR is a R-safe state.
Now, each divider Di chooses chooses a vi, uiR-path, say Pi, of length α + 2 and move
on this path to maintain the invariant d(di

ℓ, vi) = d(sℓ, ap) (for ℓ ≥ j and i ∈ [k]). If R

reaches the vertex vR, then observe that we have reached a safe state. Otherwise, if R

reaches to ap in some round γ > j′, then we restart our strategy.
This completes our proof. ◀

Next, we have the following lemma, whose proof is identical to the proof of Lemma 17.

▶ Lemma 18. Let k cops have a winning strategy in H against the robber starting at r.
Moreover, let Sj = (sj , tj , d1

j , . . . , d2k
j ) be a game state in G. Then, the following are true.

1. If tj = ap for some p ∈ [k + 1] and each vertex of Bp is occupied by a divider from
Dk+1, . . . , D2k, then Sj is an almost-J -safe state.

2. If sj = ap for some k + 2 ≤ p ≤ 2k + 2, and each vertex of Sp is occupied by some divider
from Dk+1, . . . , D2k, then Sj is an almost-J -safe state.
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The following observation is directly implied by our construction.

▶ Observation 19. Consider the connected components of the graph G[V (G) \ (CR ∪ CJ ∪
S1 ∪ · · · ∪ S2k)]. The components containing RR and the component containing RJ are
disjoint, and let them be named FR and FJ , respectively.

Due to Observation 19, if we can show that k of the dividers, say D1, . . . , Dk, can restrict
R from entering any vertex of CR ∪ CJ ∪ S1 ∪ · · · ∪ S2k, and the other k dividers, say
Dk+1, . . . , D2k can restrict J from entering any vertex of CR ∪ CJ ∪ S1 ∪ · · · ∪ S2k, then R

and J never be able to meet as they will be restricted to disjoint subgraphs FR and FJ ,
respectively, of G. We use a similar strategy to prove the following lemma, which proves the
other side of our reduction.

▶ Lemma 20. If k cops have a winning strategy in H against the robber starting at r, then
2k dividers have a winning strategy in G against R and J starting at rR and rJ , respectively.

Proof. Since k cops have a winning strategy against the robber starting at r in H, there is a
safe state G0 = (r0 = r, c1

0, . . . , ck
0). Now, we begin Romeo and Juliet on G with the game

state S0 = (s0 = rR, t0 = rJ , d1
0, . . . , d2k

0 ) such that if cℓ
0 = v, for ℓ ∈ [k], then dℓ

0 = vR and
dℓ+k

0 = vJ . It follows from Observations 14 and 15 that S0 is R-safe state as well as J -safe
state. Therefore, as long as R (resp., J ) is restricted to GR (resp., GJ ), they cannot enter a
vertex of CR (resp., CJ ). Hence, unless at least one of R or J leaves GR or GJ , respectively,
to move to some Gi, for i ∈ [2k + 2], they cannot meet. First, we prove the following claim.

▷ Claim 21. Let Sj be a R-safe state such that sj+1 /∈ RR. Then, for j′ > j, the dividers
D1, . . . , Dk have a strategy that can ensure the following:
1. sj′ ∈ FR.
2. If sj′ ∈ RR, then Sj′ is a R-safe state.

Proof of Claim. Let Px be the unique x, ap-path that contains sj+1. For ℓ ∈ [k], let dℓ
j = yℓ

(i.e., in round j, the divider Dℓ occupies the vertex yℓ ∈ CR). We distinguish the following
two cases depending on whether p ≤ k or p > k.

Case 1: p ≤ k. Let the vertices of Sp be marked v1, . . . , vk. It follows from the construction
that d(yℓ, vℓ) = α + 1 and d(x, ap) = α + 1. Each Dℓ chooses a yℓ, vℓ-path of length α + 1, say
Pℓ, and move along it to maintain the following invariant for j′ > j: d(sj′ , ap) = d(dℓ

j′ , vℓ).
Again, we have the following cases depending on the moves of R.
1. R never reaches the vertex ap: In this case observe that when R moves to RR, say in

round j′, it can only move to the vertex x (i.e., sj′ = x). In this case, observe that
dℓ

j′ = yℓ. Since this state is identical to Sj with respect to the placement of R and the
dividers D1, . . . Dk, Sj′ is a R-safe state. Moreover, it is easy to see that R was restricted
to FR for each round j ≤ j′′ ≤ j′.

2. R reaches the vertex ap in some round j′′: In this case, observe that each vertex vℓ of
Sp is occupied by the divider Dℓ (due to our invariant), and hence, R cannot move to a
vertex of Sp in round j′′ + 1. Observe that the game state Sj′′ is an almost-R-safe state
due to Lemma 17. Therefore R is restricted to FR and whenever R reaches a vertex of
RR in some round j′, then Sj′ is a R-safe state due to the definition of almost-R-safe
state.
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Case 2: p > k. The proof of this case is similar to the proof of Case 1. Let the vertices
of Bp be marked v1, . . . , vk. It follows from the construction that d(yℓ, vℓ) = α + 2 and
d(x, ap) = α + 2. Each Dℓ chooses a yℓ, vℓ-path of length α + 2, say Pℓ, and move along it
to maintain the following invariant for j′ > j: d(sj′ , ap) = d(dℓ

j′ , vℓ). If R never reaches the
vertex ap, then our invariant implies that whenever R will enter RR, it will enter at a safe
state. If R reaches the vertex ap, then each vertex of Bp is occupied by a divider (due to our
invariant), which is an almost-R-safe state due to Lemma 17. Hence, if R enters a vertex RR
in some round j′, then Sj′ is a R-safe state. Further, observe that in all these rounds, R is
restricted to FR. This completes the proof of this case. ◁

Next, we have the following claim whose proof is symmetric to the proof of Claim 21.

▷ Claim 22. Let Sj be a J -safe state such that tj+1 /∈ RJ . Then, for j′ > j, the dividers
Dk+1, . . . , D2k have a strategy that can ensure the following:
1. tj′ ∈ FJ .
2. If tj′ ∈ RJ , then Sj′ is a J -safe state.

Finally, our proof follows from the following facts. Since we start from a state that is
R-safe state as well as J -safe state, as long as R (resp., J ) is restricted to GR (resp., GJ ),
they cannot enter a vertex of CR (resp., CJ ). Moreover, even if R (resp., J ) leave GR (resp.,
GJ ), it is restricted to FR (resp. FJ ), and whenever R (resp., J ) return to GR (resp., GJ ),
it returns to a R-safe state (resp., J -safe state), due to Claim 21 (resp., Claim 22). Since
this strategy restricts R and J to two disjoint subgraphs FR and FJ , respectively, of G, R

and J will never be able to meet. Hence, 2k dividers have a winning strategy in G against R

and J starting at rR and rJ , respectively. This completes our proof. ◀

Finally, we haven the following theorem due to our construction of G from H, Proposi-
tions 5 and 7, and Lemmas 13 and 20.

▶ Theorem 1. Romeo and Juliet is EXPTIME-complete for undirected graphs.

4 EXPTIME-Completeness for Directed Graphs

In this section, we establish that Romeo and Juliet is EXPTIME-complete on directed
graphs. Due to Proposition 5, to complete our proofs, we only need to establish that Romeo
and Juliet is EXPTIME-hard. To this end, we will reduce Guard to Romeo and Juliet
on directed graphs. This is a rather straightforward and easy construction.

Construction. Let (−→G, k, r) be an instance of Guard (where r is the starting position of
the robber and V (−→G) consists of the C ∪ R). We construct an instance (−→H, k, s, t) in the
following manner. Let V (−→H ) = V (−→G) ∪ {s, t, d1, . . . , dk}, and let D = {d1, . . . , dk}. Next,
E(−→H ) = E(−→G) ∪ {−→sr,

−→
sd1, . . . ,

−→
sdk,

−→
d1t, . . . ,

−→
dkt}. Moreover, for each di, i ∈ [k], and v ∈ C,

we add an arc
−→
dic. Furthermore, for each vertex u ∈ C, we add an arc −→

ut. See Figure 3 for
an illustration. Finally, the starting position for R is s and for J is t. This completes the
construction. The following observation follows directly from our construction.

▶ Observation 23. The following statements are true.
1. The vertex t is a sink, and hence J cannot move throughout the game.
2. If at any point in the game R is on a vertex in C, then R and J meet in the next step.
3. If there are less than k dividers, then R and J meet in at most 2 rounds.
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C

R

D

d1

s

r
dk

t

Figure 3 Here, we do not show edges of −→
G to ease the presentation.

Proof. The proof of (1) and (2) follows directly from the construction and the game definition.
To see the proof of (3), observe that if there are less than k dividers, there is at least one
vertex in D, say x, that is not occupied by any of the dividers (since |D| = k). Hence, R can
move to x in the first round, and since −→

xt is an edge, R and J meet in the next round. ◀

The following lemma proves the soundness of our reduction.

▶ Lemma 24. In −→
G , k cops have winning strategy against the robber starting at r if and only

if k dividers have a winning strategy in −→
H against R and J starting at s and t, respectively.

Proof. In one direction, let k cops have a strategy to prevent the robber, who starts at r,
from entering C. Then, we prove that k dividers have a winning strategy −→

H against R and J

starting at s and t, respectively. The k dividers begin with occupying each vertex of D. This
restricts R from entering a vertex of D. Recall that J cannot move throughout the game
(due to Observation 23). Now, the only move possible for R is to move to vertex r from s.
Whenever R moves to r, the dividers move to the vertices in C where the cops begin in their
winning strategy in −→

G . Now, observe that R cannot access s or any vertex in D. Hence, the
dividers can restrict R and J from meeting by simply restricting R to ever enter C. Note
that the the dividers can do so following the winning strategy for the cops as the rules of
movement are the same for both of the games. Hence, k dividers have a winning strategy in−→
H against R and J starting at s and t, respectively.

In the other direction, let the robber has a strategy to enter C in G starting from r. In
this case, observe that in the beginning, k dividers have to occupy the vertices of D, else
R and J meet in at most two steps (R moves to a vertex in D and then meet J in the
next round). Now, R moves to r from s. Now, at most k dividers move to C. Since the
dividers can make the same moves as cops and the robber have a winning strategy against
any strategy of k cops to enter C starting from r, R can use the same strategy to enter C.
Hence, R can enter C after a finite number of rounds, and then meet J in the next round at
t (due to Observation 23). ◀

Hence, we have the following theorem as a consequence of our reduction, Propositions 5
and 7, and Lemma 24.

▶ Theorem 2. Romeo and Juliet is EXPTIME-complete for oriented graphs.
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5 Conclusion

In this work, we considered Romeo and Juliet on directed as well as undirected graphs
and established that the game is EXPTIME-complete in both cases, and that the game
remains PSPACE-complete even for directed acyclic graphs. Moreover, we defined a game
Relaxed Romeo and Juliet that provides a framework for extending the hardness results
of Romeo and Juliet in Time on undirected graphs to Romeo and Juliet on DAGs.

It may be an interesting question to figure out if Romeo and Juliet in Time is also
EXPTIME-complete as conjectured by Fomin, Golovach, and Thilikos [12]. Moreover, it is
known that, assuming ETH, Romeo and Juliet cannot be solved in no(k) (i.e., 2o(k log n))
time [12]. It might be interesting to see if this result can be extended to a lower bound of
the form 2o(n). Note that this result will be incomparable to the current known bound as k

can be O(n). Aigner and Fromme [1] established that the cop number for planar graphs is
at most 3 by the use of a guarding lemma that states that 1 cop can guard the vertices of
an isometric path. It is easy to see that the dynamic separation number of planar graphs
is unbounded, for eg., consider K2,n and let s, t be the vertices of the partition with two
vertices. It might be interesting to figure out the computational complexity of Romeo and
Juliet on planar graphs, and more generally, graphs on surfaces.
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Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V (G) to V (H). Note
that if H is the triangle, then H-colorings are equivalent to 3-colorings. In this paper we are
interested in the case that H is the five-vertex cycle C5.

A minimal obstruction to C5-coloring is a graph that does not have a C5-coloring, but every
proper induced subgraph thereof has a C5-coloring. In this paper we are interested in minimal
obstructions to C5-coloring in F -free graphs, i.e., graphs that exclude some fixed graph F as an
induced subgraph. Let Pt denote the path on t vertices, and let Sa,b,c denote the graph obtained
from paths Pa+1, Pb+1, Pc+1 by identifying one of their endvertices.

We show that there is only a finite number of minimal obstructions to C5-coloring among F -free
graphs, where F ∈ {P8, S2,2,1, S3,1,1} and explicitly determine all such obstructions. This extends
the results of Kamiński and Pstrucha [Discr. Appl. Math. 261, 2019] who proved that there is only
a finite number of P7-free minimal obstructions to C5-coloring, and of Dębski et al. [ISAAC 2022
Proc.] who showed that the triangle is the unique S2,1,1-free minimal obstruction to C5-coloring.

We complement our results with a construction of an infinite family of minimal obstructions to
C5-coloring, which are simultaneously P13-free and S2,2,2-free. We also discuss infinite families of
F -free minimal obstructions to H-coloring for other graphs H.
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1 Introduction

Out of a great number of interesting and elegant graph problems, the notion of graph coloring
is, arguably, among the most popular and well-studied ones, not only from combinatorial,
but also from algorithmic point of view. For an integer k ≥ 1, a k-coloring of a graph G is a
function c : V (G) → {1, . . . , k} such that for every edge uv ∈ E(G) it holds that c(u) ̸= c(v).
For a fixed integer k ≥ 1, the k-Coloring problem is a computational problem in which an
instance is a graph G and we ask whether there exists a k-coloring of G.

The k-Coloring problem is known to be polynomial-time solvable if k ≤ 2 and NP-
complete for larger values of k. Still, even if k ≥ 3, it is often possible to obtain polynomial-
time algorithms that solve k-Coloring if we somehow restrict the class of input instances,
for example, to perfect graphs [14, 15], bounded-treewidth graphs [1] or intersection graphs
of geometric objects [11].

Observe that these example classes are hereditary, i.e., closed under deleting vertices.
Such a property is very useful in algorithm design, as it combines well with standard
algorithmic techniques, like branching or divide-&-conquer. Therefore, if we want to study
some computational problem in a restricted graph class G, choosing G to be hereditary
appears to be reasonable. For a fixed graph F , we say that a graph G is F -free if it does
not contain F as an induced subgraph. If F is a family of graphs, we say that a graph G is
F-free if G is F -free for every F ∈ F . Each hereditary class of graphs can be characterized
by a (possibly infinite) family F of forbidden induced subgraphs.

Coloring hereditary graph classes. As a first step towards understanding the complexity of
k-Coloring in hereditary classes it is natural to consider classes defined by a single induced
subgraph F . If F contains a cycle or a vertex of degree at least 3, it follows from the classical
results by Emden-Weinert [9], Holyer [20], and Leven and Galil [25] that for every k ≥ 3,
k-Coloring remains NP-complete when restricted to F -free graphs. Thus we are left with
the case that F is a linear forest, i.e., every component of F is a path.

However, if F is a linear forest, the situation becomes more complicated. For simplicity,
let us focus on the case when F is connected, i.e., F is a path on t vertices, denoted
by Pt. Then, k-Coloring is polynomial-time-solvable in Pt-free graphs if t ≤ 5, or if
(k, t) ∈ {(3, 6), (3, 7), (4, 6)} [21, 30, 2, 18]. On the other hand, for any k ≥ 4, the k-
Coloring problem is NP-complete in Pt-free graphs for all other values of t [21]. The
complexity of the remaining cases, i.e., 3-Coloring of Pt-free graphs where t ≥ 8, remains
unknown: we do not know polynomial-time algorithms nor any hardness proofs. The general
belief is that all these cases are in fact tractable, which is supported by the existence of a
quasipolynomial-time algorithm for 3-Coloring in Pt-free graphs, for every fixed t [29]. For
the summary of the results on the complexity of k-Coloring Pt-free graphs see Figure 1. Let
us remark that there are also some results for disconnected forbidden linear forests [24, 6].
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≥ 5

≤ 4 5 6 7 ≥ 8
the set of Pt-free minimal obstructions to k-coloring is finite

the set of Pt-free minimal obstructions to k-coloring is infinite,
but k-Coloring Pt-free graphs is polynomial-time solvable

k-Coloring Pt-free graphs is quasipolynomial-time solvable

k-Coloring Pt-free graphs is NP-complete

k t

Figure 1 The complexity of k-Coloring Pt-free graphs.

Minimal obstructions to k-coloring. One can look at k-Coloring from another, purely
combinatorial perspective. Instead of asking whether a graph G admits a k-coloring, we can
ask whether it contains a dual object, i.e., some structure that forces the chromatic number
to be at least k + 1. For example, 2-Coloring can be equivalently expressed as a question
whether a graph contains an odd cycle. As another example, k-Coloring restricted to
perfect graphs is equivalent to the question of the existence of a (k + 1)-clique, i.e., the
complete graph on k + 1 vertices, denoted by Kk+1.

In other words, odd cycles are minimal non-2-colorable graphs and (k + 1)-cliques are
minimal non-k-colorable perfect graphs (where minimality is defined with respect to the
induced subgraph relation). Formally, if a graph G is not k-colorable, but every proper
induced subgraph of it is k-colorable, we say that G is vertex-(k + 1)-critical or is a minimal
obstruction to k-coloring. We denote by Obstructions(k) the set of all minimal obstructions
to k-coloring. Note that Obstructions(k) naturally forms a family of dual objects – a graph
is k-colorable if and only if it does not contain any graph from Obstructions(k) as an induced
subgraph.

Suppose that, for some k, there is a polynomial-time algorithm Algk that takes as an
input a graph G and answers whether it contains any graph from Obstructions(k) as an
induced subgraph (i.e., whether G is not Obstructions(k)-free). From the discussion above it
follows that the existence of Algk yields a polynomial-time algorithm for k-Coloring. Thus
it is unlikely that Algk exists for any k ≥ 3. However, it is still possible when we restrict
the input graphs to a certain class G (like perfect graphs in the example above). Recall
that we are interested in the case that G = F -free, where F is a path. Let us denote such a
restriction Algk to F -free graphs by Algk,F .

Note that the existence of Algk,F is trivial if (Obstructions(k) ∩ F -free) is finite; indeed,
brute force works in this case. This line of arguments allows us to further refine cases that
are polynomial-time solvable: into pairs (k, F ), where (Obstructions(k) ∩ F -free) is finite, and
the others. Recall that the algorithm for k-Coloring obtained for the former ones is able
to produce a negative certificate: a small (constant-size) witness that the input graph is not
k-colorable. We refer the reader to the survey of McConnell et al. [27] for more information
about certifying algorithms.

It turns out that we can fully characterize all pairs (k, F ) for which Obstructions(k)∩F -free
is finite. It is well-known that P4-free graphs (also known as cographs) are perfect and thus
the only minimal obstruction to k-coloring is the (k + 1)-clique. Bruce et al. [3] proved that
there is a finite number of minimal obstructions to 3-coloring among P5-free graphs. The
result was later extended by Chudnovsky et al. [4] who showed that the family of P6-free
minimal obstructions to 3-coloring is is also finite, and that this is no longer true among
P7-free graphs (and thus for Pt-free graphs for every t ≥ 7). If the number of colors is larger,
things get more difficult faster: Hoàng et al. [19] showed that for each k ≥ 4 there exists an
infinite family of P5-free minimal obstructions to k-coloring. See also Figure 1.
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H-coloring F -free graphs and minimal obstructions to H-colorings. Graph colorings
can be seen as a special case of graph homomorphisms. For graphs G and H, an H-coloring
of G is a function c : V (G) → V (H) such that for every edge uv ∈ E(G) it holds that
c(u)c(v) ∈ E(H). The graph H is usually called the target graph. It is straightforward to
verify that homomorphisms from G to the k-clique, are in one-to-one correspondence to
k-colorings of G. For this reason one often refers to the vertices of H as colors.

For a fixed graph H, by H-Coloring we denote the computational problem that takes
as an input a graph G and asks whether G admits a homomorphism to H. The complexity
dichotomy for H-Coloring was proven by Hell and Nešetřil [16]: the problem is polynomial-
time solvable if H is bipartite, and NP-complete otherwise.

The complexity landscape of H-Coloring in F -free graphs for non-complete target
graphs is far from being fully understood. Chudnovsky et al. [5] proved that if H is an
odd cycle on at least 5 vertices, then H-Coloring is polynomial-time solvable in P9-free
graphs; they also showed a number of hardness results for more general variants of the
homomorphism problem. Feder and Hell [10] and Dębski et al. [8] studied the case when H

is an odd wheel, i.e., an odd cycle with universal vertex added. The most general algorithmic
results were provided by Okrasa and Rzążewski [28] who showed that
(OR1) if H does not contain C4 as a subgraph, then H-Coloring can be solved in quasi-

polynomial time in Pt-free graphs for any fixed t (note that a better running time
here would also mean progress for 3-Coloring Pt-free graphs),

(OR2) if H is of girth at least 5, then H-Coloring can be solved in subexponential time in
F -free graphs, where F is any fixed subdivided claw, i.e., any graph obtained from
the three-leaf star by subdividing edges.

While these are not polynomial-time algorithms, no NP-hardness proofs for these cases
are known either. To complete the picture, from [28] it also follows that if H is a so-called
projective core that contains C4 as a subgraph, then there exists a t such that H-Coloring is
NP-complete in Pt-free graphs (and thus also in graphs excluding some fixed subdivided claw).
Furthermore, the hardness reductions even exclude any subexponential-time algorithms for
these cases, assuming the Exponential Time Hypothesis (ETH). Let us skip the definition of
a projective core, as it is quite technical and not really relevant for this paper. However, it is
worth pointing out that almost all graphs are projective cores [26, 17].

Since we are interested in a finer classification of polynomial-time-solvable cases, we
should be looking at pairs (H, F ) of graphs such that the H-Coloring problem is not known
to be NP-complete in F -free graphs. From the discussion above it follows that there are two
natural families of such pairs to consider:

(i) when H does not contain C4 as a subgraph and F is a path,
(ii) when H is of girth at least 5 and F is a subdivided claw.

It is straightforward to generalize the notion of minimal obstructions to the setting of
H-colorings. A graph G is called a minimal obstruction to H-coloring if there is no H-coloring
of G, but every proper induced subgraph of G can be H-colored.

The area of minimal obstructions to H-coloring is rather unexplored. In the setting of
(i), Kamiński and Pstrucha [23] showed that for any t ≥ 5, there are finitely many minimal
obstructions to Ct−2-coloring among Pt-free graphs.1 In particular, the family of P7-free

1 While in [23] the authors consider minimality with respect to the subgraph relation, it is not hard to
observe that bounded number of subgraph-minimal obstructions is equivalent to the bounded number
of induced-subgraph-minimal obstructions.
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Figure 2 Graphs Q1, Q2, Q3, and Q4 (left to right).

minimal obstructions to C5-coloring is finite. In the setting of (ii), Dębski et al. [8] showed
that the triangle is the only minimal obstruction to C5-coloring among graphs that exclude
the fork, i.e., the graph obtained from the three-leaf star by subdividing one edge once.

Our contribution. As our first result, we show the following strengthening of the result of
Kamiński and Pstrucha.

▶ Theorem 1. There are 19 minimal obstructions to C5-coloring among P8-free graphs.

Let us sketch the proof of Theorem 1. Note that K3 is a minimal obstruction for C5-
coloring, so from now on we focus on graphs that are {P8, K3}-free. For i ∈ {1, 2, 3, 4}, by
Qi we denote the graph obtained from two copies of C5 by identifying an i-vertex subpath of
one cycle with an i-vertex subpath of the other one, see Figure 2. In the proof we separately
consider minimal obstructions that contain some Qi as an induced subgraph, and those that
are {Q1, Q2, Q3, Q4}-free.

The intuition behind this is as follows. Notice that if G contains an induced 5-vertex cycle,
the vertices of this cycle must be mapped to the vertices of C5 bijectively, respecting the
ordering along the cycle. Consequently, if G contains some Qi, the colorings of the vertices
in Qi are somehow restricted. Combining several Qi’s we might impose some contradictory
constraints and thus build a graph that is not C5-colorable. However, as each Qi already
contains quite long induced paths, we might hope that by combining several Qi we are
either forced to create an induced P8 (if we add only few edges between different Qi’s) or
K3 (if we add too many such edges). Thus the possibilities of building non-C5-colorable
graphs using this approach are somehow limited. It turns out that this intuition is correct:
there are 18 graphs that are {P8, K3}-free and contain Qi, for some i ∈ {1, 2, 3, 4}, as an
induced subgraph. Together with K3, they are shown in Figure 3. This part of the proof is
computer-aided.

For the second step, we assume that our graph does not contain any Qi, i.e., we consider
graphs that are {P8, K3, Q1, Q2, Q3, Q4}-free. We show that such graphs are always C5-
colorable. Consequently, each minimal obstruction to C5-coloring (and, in general, every
graph that is not C5-colorable) was discovered in step 1.

Before we discuss the second result, let us introduce the notation for subdivided claws.
For integers a, b, c ≥ 1, by Sa,b,c we denote the graph obtained from the three-leaf star by
subdividing each edge, respectively, a − 1, b − 1, and c − 1 times. Equivalently, Sa,b,c is
obtained from three paths Pa+1, Pb+1, Pc+1 by identifying one of their endpoints.

As our second result we show the following extension of the result of Dębski et al. [8].

▶ Theorem 2. There are 3 minimal obstructions to C5-coloring among S2,2,1-free graphs,
and 5 minimal obstructions to C5-coloring among S3,1,1-free graphs.

These graphs are shown in Figure 4. The proof is similar to the proof of Theorem 1.
First, we consider minimal obstructions that contain an induced C5 and, using the computer
search, we show that there is only a finite number of them. Then, we show that graphs that
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Figure 3 All P8-free minimal obstructions to C5-coloring. The graphs in the first row are P6-free.
The graphs in the second row are P7-free, but not P6-free. All other graphs are P8-free, but not
P7-free.

Figure 4 All S2,2,1-free and all S3,1,1-free minimal obstructions to C5-coloring. The graphs in
the first row are both S2,2,1-free and S3,1,1-free, whereas the first three graphs in the second row are
S3,1,1-free, but not S2,2,1-free and the last graph in the second row is S2,2,1-free, but not S3,1,1-free.

exclude K3 (as it is a minimal obstruction by itself), C5, and also one of S2,2,1, S3,1,1, are
either bipartite or are “blown-up cycles” – in both cases C5-colorability is straightforward to
show.

We complement these results with a construction of an infinite family of minimal obstruc-
tions to C5-coloring.

▶ Theorem 3. There is an infinite family of minimal obstructions to C5-coloring, which
simultaneously exclude P13, S2,2,2, S5,5,1, S11,1,1, and S8,2,1 as an induced subgraph.

The construction from Theorem 3 is obtained by generalizing the infinite family of P7-free
minimal obstructions to 3-coloring, provided by Chudnovsky et al. [4]. The idea can be
further generalized. Let the odd girth of H be the length of a shortest odd cycle in H (and
keep it undefined for bipartite graphs).
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▶ Theorem 4. Let q ≥ 3 be odd, and let H be a graph of odd girth q that does not contain
C4 as a subgraph. There is an infinite family of minimal obstructions to H-coloring that are
{P3q−1, S2,2,2, S3(q−1)/2,3(q−1)/2,1}-free.

Note that Theorem 4 gives a bound for every graph H that was discussed in (OR1) and
(OR2). An astute reader might notice that applying Theorem 4 for H = C5, i.e., q = 5,
yields a family of obstructions that are in particular P14-free and S6,6,1-free, which does not
match the bounds from Theorem 3. Indeed, obtaining the refined result from Theorem 3
requires some additional work, which again uses a mixture of combinatorial observations and
computer search.

Organization of the paper. In Section 2 we introduce some notation and preliminary
observations. In Section 3 we explain the algorithm that is later used to generate minimal
obstructions. In Sections 4 and 5 we present, respectively, the overview of the proofs of
Theorems 1 and 2 In Section 6 we provide constructions of infinite families of graphs that
are then used to prove Theorems 3 and 4.

We refer the interested reader to the full version of this paper [12] for the proofs that
were omitted due to space limitations (marked by (♠)), and for implementation details of
our algorithms and how they were tested for correctness.

2 Preliminaries

For an integer n ≥ 1 we denote by [n] the set {1, . . . , n}, and by [n]0 the set [n] ∪ {0}. For a
graph G = (V, E) and a vertex set U ⊆ V , the graph G[U ] denotes the subgraph of G induced
by U . The graph G − U denotes G[V (G) \ U ]. The set NG(u) denotes the neighborhood of
vertex u in the graph G. For U ⊆ V (G) we define NG(U) =

⋃
u∈U NG(u) \ U . If the graph

G is clear from the context, we omit the subscript and write N(u) and N(U).
If there exists an H-coloring of G, we denote this fact by G → H. It is straightforward to

verify that if G → H, then odd-girth(G) ≥ odd-girth(H). In particular, K3 has no C5-coloring
and is actually a minimal obstruction to C5-coloring. Consequently, every other minimal
obstruction to C5-coloring is K3-free.

For any two graphs G and H such that G is H-colorable, the graph hull(G, H) denotes the
graph with vertex set V (G) and edge set {uv : u, v ∈ V (G) and for every H-coloring c

of G, we have c(u)c(v) ∈ E(H)}. Note that hull(G, H) is a supergraph of G that is
H-colorable and that for every induced subgraph G′ of G we have E(hull(G′, H)) ⊆
E(hull(G, H)). Note that hull(G, H) might contain some induced subgraphs that do not
appear in G.

3 Generating F -free minimal obstructions to H-coloring

In this section we describe an algorithm that can be used to generate all F -free minimal
obstructions to H-coloring. We emphasize that this approach is robust in the sense that it
does not assume that H = C5 and F is a path or a subdivided claw, as needed for Theorems 1
and 2.

Throughout the section graphs H and F are fixed. We will use the term minimal
obstruction for minimal obstruction to H-coloring. The algorithm takes as an input “the
current candidate graph” I that it tries to extend to a minimal obstruction by adding a
new vertex x and some edges between x and V (I). In particular, the algorithm can be
used to generate all F -free minimal obstructions by choosing I as the single-vertex graph.
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This algorithm is similar to the algorithm for k-Coloring by [13], but we formulate it in a
more general way. In case there are infinitely many minimal obstructions, the generation
algorithm will never terminate. If there are only finitely many minimal obstructions, then
the algorithm might still not terminate, since the prunning rules might not be strong enough.
However, if the algorithm terminates, it is guaranteed that there are only finitely many
minimal obstructions and that the algorithm outputs all of them.

Let us explain the algorithm, see also the pseudocode in Algorithm 1.

Algorithm 1 Expand.

Constants : target graph H, forbidden graph F

Input : current graph I

Output : exhaustive list of F -free minimal obstructions to H-coloring

1 if I is F -free and not generated before then
2 if I is not H-colorable then
3 if I is a minimal obstruction to H-coloring then output I

4 else
5 if I contains comparable vertices (u, v) then
6 foreach graph I ′ obtained from I by adding a new vertex x and edges between

x and vertices in V (I) in all possible ways, such that ux ∈ E(I ′), but
vx /∈ E(hull(I ′ − u, H)) do

7 Expand(I ′)

8 else if I contains comparable edges (uv, u′v′) then
9 foreach graph I ′ obtained from I by adding a new vertex x and edges between

x and vertices in V (I) in all possible ways, such that rx ∈ E(I ′), but
r′x /∈ E(hull(I ′ − {u, v}, H))) for some r ∈ {u, v} do

10 Expand(I ′)

11 else
12 foreach graph I ′ obtained from I by adding a new vertex x and edges between

x and vertices in V (I) in all possible ways do
13 Expand(I ′)

It starts from a graph I and recursively expands this graph by adding a vertex and edges
between this new vertex and existing vertices in each recursive step. The expansion is based
on expansion rules that aim at reducing the search space while ensuring that no minimal
obstructions are lost in this operation. For example, if an expansion leads to a graph I ′ that
is not F -free, the recursion can be stopped, because all further expansions of I ′ will not be
F -free either (note that we do not add any edges inside V (I) and that the class of F -free
graphs is hereditary). Another way to restrict the search space is based on Lemma 5. This
lemma and its proof follow Lemma 5 from [4] concerning k-Coloring, but generalizing it to
H-Coloring required some adjustments.

▶ Lemma 5 (♠). Let G = (V, E) be a minimal obstruction to H-coloring and let U and
W be two non-empty disjoint vertex subsets of G. Let J := hull(G − U, H). If there
exists a homomorphism ϕ from G[U ] to J [W ], then there exists a vertex u ∈ U for which
NG(u) \ U ⊈ NJ(ϕ(u)).
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As isomorphism is a special type of a homomorphism, Lemma 5 immediately yields the
following corollary.

▶ Corollary 6. Let G be an H-colorable graph that is an induced subgraph of a minimal
obstruction G′. Let U, W ⊆ V (G) be two non-empty disjoint vertex subsets and let J :=
hull(G − U, H). If there exists an isomorphism ϕ : G[U ] → J [W ] such that NG(u) \ U ⊆
NJ (ϕ(u)) for all u ∈ U , then there exists a vertex x ∈ V (G′) \ V (G) such that x is adjacent
to some vertex u ∈ U , but x is not adjacent to ϕ(u) in hull(G′ − U, H) (and thus also not
adjacent to ϕ(u) in hull(G′[V (G) ∪ {x} \ U ], H)).

Actually, we will only use the restricted version of Corollary 6. In what follows we use
the notation and assumptions of the Corollary. In case that |U | = |W | = 1, say U = {u}
and W = {w}, we call the pair (u, w) comparable vertices. In case that G[U ] and J [W ] are
both isomorphic to K2 and, say, U = {u, u′} and W = {w, w′}, we call the pair (uu′, ww′)
comparable edges. The algorithm concentrates on finding comparable vertices and edges for
computational reasons.

We refer the interested reader to the full version of this paper [12] for additional details
about the efficient implementation of this algorithm, independent correctness verifications
and sanity checks.

4 Minimal obstructions to C5-coloring with no long paths

In this section we still only discuss C5-colorings, thus we will keep writing minimal obstructions
for minimal obstructions for C5-coloring.

The algorithm from Section 3 was implemented for H = C5 (the source code is made
publicly available at [22]). We used the algorithm, combined with some purely combinatorial
observations, to generate an exhaustive list of Pt-free minimal obstructions, where t ≤ 8; see
also Figure 3. The minimal obstructions can also be obtained from the database of interesting
graphs at the House of Graphs [7] by searching for the keywords “minimal obstruction to
C5-coloring”.

4.1 Pt-free minimal obstructions for t ∈ {6, 7}
As a warm-up, let us reprove the result of Kamiński and Pstrucha [23] (in a slightly stronger
form, as they did not provide the explicit list of minimal obstructions). It will also serve as a
demonstration of the way how the algorithm from 3 is intended to be used.

An exhaustive list for t ≤ 6 can be obtained by running the algorithm from Section 3
with parameters (I = K1, H = C5, F = P6).2 This leads to the following observation.

▶ Observation 7. There are four minimal obstructions for C5-coloring among P6-free graphs.
All of these obstructions, except for the triangle K3, are P6-free and not P5-free.

Unfortunately, the same simple strategy already fails for t = 7. Indeed, the algorithm
as presented in Section 3 does not terminate after running for several hours after calling it
with parameters (I = K1, H = C5, F = P7). However, with relatively small adjustments, the
algorithm is able to produce an exhaustive list of minimal obstructions in a few seconds.

The first adjustment has to do with the order in which the expansion rules are used.
Note that the order in which the algorithm checks whether it can find comparable vertices
and comparable edges does not affect the correctness of the algorithm, but it might affect

2 Let us remark that it is a simple exercise to find this list by hand.
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whether the algorithm terminates or not. For example, it could happen that by expanding
in order to get rid of a pair of comparable vertices, a new pair of comparable vertices is
introduced (and this could continue indefinitely). By applying a different expansion rule
first, this can be avoided sometimes. For F = P7, the algorithm was run by first looking for
comparable vertices and then for comparable edges, except when |V (I)| = 10, in which case
the algorithm first looks for comparable edges and then for comparable vertices.

The second adjustment is based on the following observation.

▶ Observation 8 (♠). Every P7-free minimal obstruction to C5-coloring, except for the graph
K3, contains the cycle C5 or the cycle C7 as an induced subgraph.

By Observation 8, the set of P7-free minimal obstructions can be partitioned into three
subsets:

(i) the triangle K3,
(ii) minimal obstructions that are P7-free but contain C5 as an induced subgraph,
(iii) minimal obstructions that are P7-free but contain C7 as an induced subgraph.
Thus, running the algorithm for (I = C5, H = C5, F = P7) and (I = C7, H = C5, F = P7),
respectively, we can generate the families (ii) and (iii). This yields the following result; recall
that the finiteness of the family of minimal obstructions was already shown by Kamiński and
Pstrucha [23].

▶ Observation 9. There are six P7-free minimal obstructions to C5-coloring. Two of these
obstructions are P7-free, but not P6-free.

4.2 P8-free minimal obstructions

This section is devoted to the proof of Theorem 1, which we restate below (see also Figure 3).

▶ Theorem 1. There are 19 minimal obstructions to C5-coloring among P8-free graphs.

Similarly to the P7-free case, the proof uses the algorithm from Section 3, but this time
it requires a lot more purely combinatorial insights. For i ∈ [4], let Qi be the graph obtained
from two disjoint copies of C5 by identifying i pairs of consecutive corresponding vertices of
the cycles (see Figure 2). Let G be a P8-free minimal obstruction; we aim to understand the
structure of G and show that is must be one of 19 graphs in Figure 3. We split the reasoning
into two cases: first, we assume that G contains Qi, for some i ∈ [4], as an induced subgraph.
Then, in the second case, we assume that G is {Q1, Q2, Q3, Q4}-free.

Case 1: G contains Qi for some i ∈ [4] as an induced subgraph. We deal with this case
using the algorithm from Section 3. The algorithm terminates in a few minutes when it is
called with the parameters (I = Qi, H = C5, F = P8) for all i ∈ [4]. All minimal obstructions
obtained this way are listed in Figure 3.

Case 2: G does not contain Qi for any i ∈ [4]. As K3 is a minimal obstruction, from
now on we can assume that G is {P8, K3, Q1, Q2, Q3, Q4}-free. We aim to show that all such
graphs are C5-colorable, i.e., the list obtained in Case 1, plus the triangle, is exhaustive.

▶ Lemma 10 (♠). Let G be a {P8, K3, Q1, Q2, Q3, Q4}-free graph. Then G is C5-colorable.
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5 Minimal obstructions to C5-coloring with no long subdivided claws

This section is devoted to the proof of Theorem 2.
▶ Theorem 2. There are 3 minimal obstructions to C5-coloring among S2,2,1-free graphs,
and 5 minimal obstructions to C5-coloring among S3,1,1-free graphs.

The minimal obstructions are shown in Figure 4 and can also be obtained from the
database of interesting graphs at the House of Graphs [7] by searching for the keywords
“S221-free minimal obstruction to C5-coloring” and “S311-free minimal obstruction to C5-
coloring”, respectively. As in this section the target graph is always C5, we will keep writing
minimal obstructions for minimal obstructions to C5-coloring. We proceed similarly as in the
proof of Theorem 1. Let G be an S2,2,1-free (respectively, S3,1,1-free) minimal obstruction.
We again consider two cases.

Case 1: G contains C5 as an induced subgraph. This case is solved using the algorithm
from Section 3. The algorithm is called with the parameters (I = C5, H = C5, F = S2,2,1)
and then with parameters (I = C5, H = C5, F = S3,1,1). Both calls terminate, returning a
finite list of minimal obstructions.

Case 2: G does not contain C5 as an induced subgraph. Similarly as in the proof
of Theorem 1, note that K3 is a minimal {F, C5}-free obstruction for F ∈ {S2,2,1, S3,1,1}.
Thus, from now on, we assume that G is K3-free and prove that there are no more minimal
obstructions satisfying this case, i.e., the following result.
▶ Lemma 11 (♠). Let F ∈ {S2,2,1, S3,1,1} and let G be a {F, C5, K3}-free graph. Then G is
C5-colorable.

Combining the cases, we obtain the statement of Theorem 2.

6 An infinite family of minimal obstructions

In this section we construct infinite families of graphs that will be later used to prove
Theorems 3 and 4. The construction is a generalization of the one designed for 3-Coloring [4];
the authors attribute it to Pokrovskiy.

The construction. For every odd q ≥ 3 and every p ≥ 1, let Gq,p be the graph on vertex
set [qp − 3]0 (all arithmetic operations on [qp − 3]0 here are done modulo qp − 2), such that
for every i ∈ [qp − 3]0 it holds that

N(i) = {i − 1, i + 1} ∪ {i + qj − 1 | j ∈ [p − 1]}.

To simplify the arguments, we partition V (Gq,p) into q sets Vs = {i | i = s mod q}, where
s ∈ [q − 1]0. Next observation follows immediately from the definition of E(Gq,p).
▶ Observation 12. Let q ≥ 3 be odd, and let ij ∈ E(Gq,p) be such that i ∈ Vs for some
s ∈ [q − 1]0. If i < j, then j ∈ Vs−1, or j = i + 1, or i = 0 and j = qp − 3. Analogously, if
j > i, then j ∈ Vs+1, or j = i − 1, or i = qp − 3 and j = 0.

We now show that graphs Gq,p are minimal obstructions to H-coloring for a rich family
of graphs H.
▶ Lemma 13 (♠). Let q ≥ 3 be an odd integer, and let H be graph of odd girth q that does
not contain C4 as a subgraph. For every p ≥ 1 the graph Gq,p is a minimal obstruction to
H-coloring.
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Excluded induced subgraphs of Gq,p. Now let us show an auxiliary lemma that will be
helpful in analyzing induced subgraphs that (do not) appear in Gq,p. In particular, it implies
that in order to prove that for each p, the graph Gq,p is F -free for some graph F , it is
sufficient to show that this statement holds for some small values of p.

▶ Lemma 14. Let q be a fixed constant and F be a graph. Let p ≥ |V (F )| + 2. If Gq,p−1 is
F -free, then Gq,p is F -free.

Proof. Assume otherwise, and let U ⊆ V (Gq,p) induce a copy of F in Gq,p, in particular
|V (F )| = |U |. Since |V (F )| < qp−2, we can assume without loss of generality that the vertex
qp − 3 does not belong to U . Since |V (Gq,p)| = qp − 2 > q(|V (F )| + 1), there exist q + 1
consecutive vertices ℓ, . . . , ℓ + q that do not belong to U . Define R = {j ∈ U | j > ℓ + q},
R′ = {j − q | j ∈ R}, and let L = U \ R.

Now consider U ′ = L ∪ R′, and note that ℓ /∈ U ′. It is straightforward to verify that
U ′ ⊆ V (Gq,p−1). We will show that U ′ induces a copy of F in V (Gq,p−1). Since this is a
contradiction with our assumption, we then conclude that Gq,p is F -free.

Let i, j ∈ U ′, let s ∈ [q − 1]0 be such that i ∈ Vs. Assume without loss of generality that
i < j. Note that it is enough to show that

if i, j < ℓ, then ij ∈ E(Gq,p−1) if and only if ij ∈ E(Gq,p),
if i, j > ℓ, then ij ∈ E(Gq,p−1) if and only if (i + q)(j + q) ∈ E(Gq,p),
if i < ℓ < j, then ij ∈ E(Gq,p−1) if and only if i(j + q) ∈ E(Gq,p).

The first item is straightforward.
For the second item, by Observation 12 we have that ij ∈ E(Gq,p−1) if and only if

j = i + 1 or j ∈ Vs−1. The first is equivalent to j + q = (i + q) + 1, the latter is equivalent to
j + q ∈ Vs−1. Hence again using Observation 12 we obtain that ij ∈ E(Gq,p−1) if and only if
(i + q)(j + q) ∈ E(Gq,p).

For the last item, note that i < ℓ < j implies i ∈ L and j ∈ R′. If ij ∈ E(Gq,p−1), then
by Observation 12, either j = i + 1 or vj ∈ Vs−1. Since i < ℓ < j, the first case is not
possible. In the second case, if vj ∈ Vs−1, then j + q ∈ Vs−1, so i(j + q) ∈ E(Gq,p). On the
other hand, if i(j + q) ∈ E(Gq,p), then, since i < ℓ < j, it cannot happen that j + q = i + 1.
If j + q ∈ Vs−1 then j ∈ Vs−1, so we conclude that ij ∈ E(Gq,p−1). That concludes the
proof. ◀

The power of Lemma 14 is that in order to show that Gq,p is F -free for every p, it is
sufficient to prove it for a finite (and small) set of graphs. This is encapsulated in the
following, immediate corollary.

▶ Corollary 15. Let q be a fixed constant and F be a graph. If Gq,p is F -free for every
p ≤ |V (F )| + 1, then Gq,p is F -free for every p.

Consequently, for every fixed q and F , Corollary 15 reduces the problem of showing that
Gq,p is F -free to a constant-size task that can be tackled with a computer.

Proof of Theorem 4 and Theorem 3. Now let us analyze what induced paths and subdivided
claws appear in Gq,p. We start with showing that for every odd q ≥ 3 and every p ≥ 1 the
graph Gq,p is qK2-free, i.e., they exclude an induced matching on q edges. Here, an induced
matching is a set of edges that are not only pairwise disjoint, but also non-adjacent.

▶ Lemma 16 (♠). Let q ≥ 3 be an odd integer. For every p ≥ 1 the graph Gq,p is qK2-free.
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Figure 5 If a graph contains S3(q−1)/2,3(q−1)/2,1 as an induced subgraph, then it also contains qK2.

Let us remark that Lemma 16 is best possible, i.e., if p is large enough, then Gq,p contains
(q − 1)K2 as an induced subgraph. We do not prove it, as later, in Lemma 19, we will show a
stronger result. Let us turn our attention to induced paths and subdivided claws that do not
appear in Gq,p. In particular, using Lemma 16 we can exclude the existence of long paths
and claws (see Figure 5).

▶ Lemma 17 (♠). Let q ≥ 3 be an odd integer. For every p ≥ 1 the graph Gq,p is
{P3q−1, S2,2,2, S3(q−1)/2,3(q−1)/2,1}-free.

Now, as an immediate consequence of Lemma 13 and Lemma 17, we obtain Theorem 4,
which we restate below.

▶ Theorem 4. Let q ≥ 3 be odd, and let H be a graph of odd girth q that does not contain
C4 as a subgraph. There is an infinite family of minimal obstructions to H-coloring that are
{P3q−1, S2,2,2, S3(q−1)/2,3(q−1)/2,1}-free.

Note that for H = C5, i.e., for q = 5, Theorem 4 shows that the constructed graphs are in
particular P14-free and S6,6,1-free. It turns out that they are actually P13-free and S5,5,1-free
(and also exclude some other subdivided claws). Here we will make use of Corollary 15,
combined with computer search.

Let us start with analyzing the length of a longest induced path in G5,p. Thus we are
interested in applying Corollary 15 to the case q = 5 and F = P13. Actually, we can even
exclude F = P10 + P2, i.e., the graph with two components: one isomorphic to P10 and
the other isomorphic to P2. Note that (P10 + P2)-free graphs are in particular P13-free.
Furthermore, the graph G5,p excludes the following subdivided claws: S5,5,1, S11,1,1, and
S8,2,1. These results, together with Lemma 13, give us Theorem 3.

▶ Theorem 3. There is an infinite family of minimal obstructions to C5-coloring, which
simultaneously exclude P13, S2,2,2, S5,5,1, S11,1,1, and S8,2,1 as an induced subgraph.

Longest induced paths in Gq,p. Theorem 3, and the fact that from the result of Chudnovsky
et al. [4] it follows that for every p, the graph G3,p is P7-free (while Lemma 17 only gives P8-
freeness), suggest that the bound on the length of a longest induced path given by Theorem 4
is not optimal also in the other cases. This evidence suggests the following conjecture.

▶ Conjecture 18. Let q ≥ 3 be odd. For every p ≥ 1, the graph Gq,p is P3q−2-free.

We conclude this section by showing that the bound from Conjecture 18, if true, is best
possible.

▶ Lemma 19 (♠). Let q ≥ 3 be odd. If p ≥ 2q + 1, then Gq,p contains P3q−3 as an induced
subgraph.
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Abstract
We are interested in the following validation problem for computational reductions: for algorithmic
problems P and P ⋆, is a given candidate reduction indeed a reduction from P to P ⋆? Unsurprisingly,
this problem is undecidable even for very restricted classes of reductions. This leads to the
question: Is there a natural, expressive class of reductions for which the validation problem can
be attacked algorithmically? We answer this question positively by introducing an easy-to-use
graphical specification mechanism for computational reductions, called cookbook reductions. We
show that cookbook reductions are sufficiently expressive to cover many classical graph reductions and
expressive enough so that SAT remains NP-complete (in the presence of a linear order). Surprisingly,
the validation problem is decidable for natural and expressive subclasses of cookbook reductions.
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1 Introduction

Computational reductions are one of the most powerful concepts in theoretical computer
science. They are used, among others, to establish undecidability in computability theory
and hardness of algorithmic problems in computational complexity theory. In practical
applications, reductions help to harness the power of modern SAT solvers for other problems.

For teaching reductions in introductory courses, instructors often design learning tasks
for (i) understanding the computational problems involved, (ii) exploring existing reductions
via examples, and (iii) designing reductions between computational problems. Technological
teaching support so far is only provided for (i) and (ii), likely because these tasks are typically
easy to illustrate and checking student solutions is algorithmically straightforward.

Providing teaching support for (iii) requires to address the foundational question: Is there
a language for specifying reductions that can express a variety of reductions, but is also
algorithmically accessible? In particular, it should be possible to test whether a candidate
for a reduction provided by a student is indeed a valid reduction, preferably also providing a
counterexample in case a submitted answer is incorrect.
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In this paper, we propose such a specification language for reductions and study variants
of the following algorithmic problem, parameterized by a class R of reductions and complexity
classes C and C∗:

Problem: Reduction?(C, C⋆, R)
Input: Algorithmic problems P ∈ C, P ⋆ ∈ C⋆, and a reduction ρ ∈ R.

Question: Is ρ a reduction from P to P ⋆?

More precisely, our contributions are twofold:
We propose a graphical and modular specification language for reductions, which we
call cookbook reductions (Section 3). Its design is inspired by “building blocks” such as
local replacement of nodes, edges, . . . [6] that are used in the context of many standard
reductions. Cookbook reductions allow these building blocks to be combined in a simple,
stepwise fashion. We compare the expressive power of cookbook reductions with standard
methods of specifying reductions. Specifically, we relate cookbook reductions to quantifier-
free first-order interpretations (Section 4.2) and observe that SAT remains NP-hard under
cookbook reductions, assuming the presence of a linear order (Corollary 3).
We study variants of the decision problem Reduction?, obtained by choosing different
classes of reduction candidates and by either fixing the algorithmic problems P, P ⋆ or by
fixing complexity classes C, C⋆ and letting P ∈ C, P ⋆ ∈ C⋆ be part of the input (Section 5).
Not surprisingly, Reduction? is undecidable for many restricted variants (Theorem 4).
To our surprise, several interesting variants remain decidable: for example, Reduction?
is decidable for an arbitrary fixed problem P and fixed P ⋆ expressible in monadic second-
order logic1, if reduction candidates are from the subclass of cookbook reductions that
allows local replacements of edges by a gadget graph (Theorem 10). Also, for some
concrete choices of problems P, P ⋆, we characterize valid reductions; the characterizations
can be used to generate counterexamples for invalid candidates, which is particularly
relevant in teaching contexts.

Related work. Restricted specification languages have also been used in [3, 9] in the context
of learning reductions algorithmically. Reductions that are similar in spirit to cookbook
reductions due to their stepwise fashion are pp-constructions and gadget reductions in the
realm of (finite) constraint satisfaction problems [1, 5, 2].

2 Preliminaries

We assume familiarity with basic notions from finite model theory [10].
A (purely relational) schema σ = {R1, . . . , Rm} is a set of relation symbols Ri with

associated arities Ar(Ri). A (finite) σ-structure S = (U, RS
1 , . . . , RS

m) consists of a finite
set U , called the universe or the domain of S, and relations RS

i ⊆ UAr(Ri). If clear from the
context, we sometimes omit the superscript S. We also refer to the domain of S as dom(S).
We write FOk for the set of all first-order formulas with quantifier depth at most k. The
FOk-type of a σ-structure S is the set of all FOk formulas over schema σ that S satisfies.
Two structures S1, S2 are FO-similar up to quantifier depth k, written S1 ≡FO

k S2, if they
have the same FOk-type.

An isomorphism type of σ-structures is an equivalence class of the equivalence relation
“is isomorphic to”. We represent an isomorphism type by an arbitrarily fixed σ-structure t

with universe {1, . . . , k}, for the appropriate number k, from that equivalence class. The

1 This logic extends first-order logic with quantification over sets and can express for example the
NP-complete problem 3-Colorability.



J. Grange, F. Vehlken, N. Vortmeier, and T. Zeume 56:3

Problem: Clique
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size k with
(u, v) ∈ E for all u, v ∈ U?

Problem: IndependentSet
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size k with
(u, v) /∈ E for all u, v ∈ U?

Problem: VertexCover
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size at most
k such that u ∈ U or v ∈ U for all
(u, v) ∈ E?

Problem: FeedbackVertexSet
Input: Undirected graph G = (V, E), k ∈ N

Question: Is there a set U ⊆ V of size at most k
such that removing U from G yields
a cycle-free graph?

Problem: HamCycleu

Input: Undirected graph G = (V, E)
Question: Is there an undirected cycle in G that

passes each node exactly once?

Problem: HamCycled

Input: Directed graph G = (V, E)
Question: Is there a directed cycle in G that

passes each node exactly once?

Figure 1 Collection of algorithmic problems considered in the paper.

arity of an isomorphism type is the universe size of its representative. Often, we identify
an isomorphism type with its representative t. Given a structure S and a subset A of its
universe, we write tpS(A) for the isomorphism type of S[A], so, the isomorphism type of the
substructure of S that is induced by A. We write tp(A) if S is clear from the context and
call tp(A) the isomorphism type of A.

An embedding π of a structure S into a structure S⋆ is an injective mapping from the
domain of S into the domain of S⋆ that is an isomorphism between S and the substructure
of S⋆ that is induced by the image of π. So, an embedding π witnesses that S⋆ contains an
isomorphic copy of S as an induced substructure.

An (algorithmic) problem P is an isomorphism-closed set of σ-structures, for some
schema σ. A reduction ρ from a problem P over schema σ to a problem P ⋆ over schema σ⋆

is a mapping from σ-structures to σ⋆-structures such that S ∈ P ⇔ ρ(S) ∈ P ⋆, for every
σ-structure S. A d-dimensional first-order interpretation from σ-structures to σ⋆-structures
is a tuple Ψ = (φU (x̄), φ∼(x̄1, x̄2), (φR(x̄1, . . . , x̄Ar(R)))R∈σ⋆) of first-order formulas over
schema σ, where each tuple x̄ = (x1, . . . , xd), x̄i = (xi,1, . . . , xi,d) consists of d variables.
For a given σ-structure S with universe U , let Ψ̂(S) be the σ⋆-structure with universe
Û = {ā ∈ Ud | S |= φU (ā)} and relations RΨ̂(S) = {(ā1, . . . , āAr(R)) ∈ ÛAr(R) | S |=
φR(ā1, . . . , āAr(R))} for each R ∈ σ⋆. We demand that for every σ-structure S, the binary
relation ∼Ψ̂(S)= {(ā1, ā2) ∈ Û2 | S |= φ∼(ā1, ā2)} is a congruence relation on Ψ̂(S), that is,
an equivalence relation on the universe that is compatible with the relations of the structure.
For a given σ-structure S, the interpretation Ψ defines the σ⋆-structure Ψ(S) that is the
quotient structure of Ψ̂(S) with respect to ∼Ψ̂(S), that is, the structure that results from
Ψ̂(S) by restricting the universe to only one element for every equivalence class of ∼Ψ̂(S).

Most of our examples will be drawn from the algorithmic problems from Figure 1. We
also consider variants of some of these problems where k is a fixed parameter, e.g. k-Clique
asks, given a graph G, whether there is a k-clique in G.

For a natural number n, we sometimes write [n] for the set {1, . . . , n}.

3 Cookbook reductions: A specification language for reductions

When looking for a reduction, one approach by typical experts is to subsequently try building
blocks that they have encountered in the context of other reductions before. For example,
Garey and Johnson [6, Section 3.2] discuss common proof techniques like local replacements

MFCS 2024
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that occur in many standard reductions. An example is the standard reduction from the
problem of finding a directed Hamiltonian cycle to finding an undirected Hamiltonian cycle
that transforms a directed graph into an undirected graph by mapping each node

v
to

a small gadget
vin v vout

. Constructing such node gadgets is one of the typical building
blocks when designing reductions.

Our approach towards constructing a specification language for reductions is to (1) identify
common building blocks used in computational reductions between graph problems, and to
(2) abstract these building blocks into a more general specification language. The resulting
language is reasonably broad and, due to its modular and graphical nature, easy to use.

3.1 Building blocks and recipes

Many computational reductions can be crafted from a small set of common building blocks.
For reductions between graph problems, some such building blocks are the following:

Edge gadgets replace each edge (u, v) of the source instance uniformly by a graph. For
example, in the standard reduction from VertexCover to FeedbackVertexSet,
every edge

u v
in the source instance is replaced by a triangle

u v
.

Node gadgets replace each node of the source instance uniformly by a graph and specify how
these graphs are connected. For example, in the standard reduction from HamCycled

to HamCycleu, every node
v

in the source instance is replaced by a path
vin v vout

and
if there is an edge (u, v) in the source instance, then the paths for u and v are connected
via

uin u uout

vin v vout

.

Global gadgets introduce a (global) graph and specify how each node of this graph is
connected to the nodes of the source instance. For example, in the simple reduction from
3-Clique to 4-Clique, a single node

g
is introduced as global graph and each node v of

the source instance is connected to g via an edge
g v

.

These building blocks have in common that target instances of reductions are obtained
from source instances by following simple, recipe-like steps of the form “for every occurrence
of a substructure t in the source instance, create a copy of the substructure t⋆ in the target
structure”. For example, the recipes for the above reductions are as follows:

Reducing k-VertexCover to k-FeedbackVertexSet: For every node v in the source
instance, create a node v⋆ in the target instance. For every edge (u, v) in the source
instance, create a node w⋆

uv and edges (u⋆, v⋆), (v⋆, w⋆
uv), (w⋆

uv, u⋆) in the target instance.
Reducing HamCycled to HamCycleu: For every node v in the source instance, create
nodes v⋆

in, v⋆, v⋆
out in the target instance and connect them as a path. For every directed

edge (u, v) in the source instance, create the undirected edge (u⋆
out, v⋆

in) in the target
instance.
Reducing 3-Clique to 4-Clique: Create a node g⋆ in the target instance. For every node
v of the source instance, create a node v⋆ in the target instance and add the edge (v⋆, g⋆).
Copy all edges (u, v) of the source instance as edges (u⋆, v⋆) to the target instance.

Other reductions can also be phrased in this form, for instance:
Reducing k-Clique to k-IndependentSet: First, for every node v of the source instance,
create a node v⋆ in the target instance. Then, for every pair u, v of nodes that are not
connected by an edge in the source instance, create an edge (u⋆, v⋆) in the target instance.
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for every create

v v⋆

u

v

u⋆

v⋆

(a) k-Clique to
k-IndependentSet.

for every create

v v⋆

u

v

u⋆

v⋆
w⋆

uv

(b) k-VertexCover to
k-FeedbackVertexSet.

for every create

v v⋆
in v⋆ v⋆

out

u

v v⋆
in v⋆ v⋆

out

u⋆
in u⋆ u⋆

out

(c) HamCycled to
HamCycleu.

for every create

g⋆

v v⋆ g⋆

v

u

v⋆

u⋆

g⋆

(d) 3-Clique to
4-Clique.

Figure 2 Graphical representations of four reductions. The reductions are applied stepwise, from
the top-most step to the bottom-most step. Nodes and edges coloured blue are created in this step,
grey nodes and edges were created in a previous step.

Reductions specified this way capture building blocks such as the ones from [6] and are
usually easy to understand, often much more than their presentation as algorithms or as
logical interpretations. Such reductions can also easily be specified graphically, see Figure 2.

3.2 Cookbook reductions: Formalization

We now formalize cookbook reductions as such recipe-style descriptions of computational
reductions. In general, graphical representations as in Figure 2 can be used to specify a
cookbook reduction. In this section, we discuss the formal syntax and semantics.

Intuitively, a reduction specified in our formalism builds, based on a source structure,
the target structure in a sequence of stages, starting from an empty structure. At first,
independent of the source structure, some global elements and tuples over these elements
may be introduced to the target structure. Then, for every element of the source structure,
a set of elements may be added, together with tuples that may also incorporate the elements
that were introduced in the step before. The added elements and tuples depend on the
(atomic) type of the respective element of the source structure. In further stages, elements
are analogously introduced for every set of two, three, . . . , elements of the source structure,
depending on the type of these sets.

Syntactically, a cookbook reduction ρ from σ-structures to σ⋆-structures is a finite set
ρ = {(t1,S1), . . . , (tm,Sm)} of pairs which we call instructions. The structures ti are σ-
structures with universe {1, . . . , ki}, for some natural number ki ≥ 0, that represent pairwise
distinct isomorphism types of σ-structures. The set {t1, . . . , tm} is the support of ρ. The
arity of ρ is the maximal arity of an isomorphism type in the support of ρ. The structures
Si are over the schema σ⋆. For (ti,Si) ∈ ρ, we also refer to Si as S(ti). Each instruction
(t,S), where t has the universe [k] = {1, . . . , k}, satisfies the following properties:
(P1) The universe dom(S) of S consists of elements (A, j), where A ⊆ [k] and j ≥ 1. If

(A, j) ∈ dom(S) with j > 1, then also (A, 1), . . . , (A, j − 1) are in dom(S).
(P2) For any (A, j) ∈ dom(S) with A ⊊ [k], the isomorphism type t′ = tpt(A) is in the

support of ρ and ({1, . . . , |A|}, j) is in dom(S(t′)).
(P3) For any tuple ((A1, j1), . . . , (Aℓ, jℓ)) in any relation of S with

⋃
i≤ℓ Ai ⊊ [k], the

isomorphism type tpt(
⋃

i≤ℓ Ai) is in the support of ρ.
(P4) For any (t′,S′) ∈ ρ and any A ⊊ [k] with tpt(A) = t′, there is an isomorphism π from

t′ to t[A] such that the injective mapping π̂ with π̂((A′, j′)) = (π(A′), j′), for all (A′, j′)
in dom(S′), is an embedding from S′ into S.
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t S

1 ({1},1)

1

2

({1},1)

({2},1)
({1,2},1)

(a) k-VertexCover to
k-FeedbackVertexSet.

t S

1 ({1},1) ({1},2) ({1},3)

1

2 ({2},1) ({2},2) ({2},3)

({1},1) ({1},2) ({1},3)

(b) HamCycled to HamCycleu.

t S

(∅,1)

1 ({1},1) (∅,1)

2

1

({2},1)

({1},1)
(∅,1)

(c) 3-Clique to 4-Clique.

Figure 3 Three reductions formalized as cookbook reductions. Nodes introduced for type t∅
are coloured green, nodes and edges introduced for type t are coloured grey, and nodes and edges
introduced for types t and t are coloured blue. Compare to Figure 2(b), (c), and (d).

A cookbook reduction has to satisfy a further, semantic property, which we state after
defining the semantics.

See Figure 3 for examples of cookbook reductions.
We give some more explanations for the conditions (P1)–(P4). Intuitively, an instruction

(t,S) ∈ ρ means that for every occurrence of the type t in the source structure, a copy of the
structure S is included in the target structure. The conditions (P1) and (P2) are concerned
with the universe dom(S) of S. If t is an isomorphism type of k elements, the universe
of S partly consists of elements ([k], 1), . . . , ([k], m), for some number m. These elements
are added to the target structure for every occurrence of the type t. We also call these m

elements fresh and write #fresh(t) = m (and #fresh(t) = 0 if no such element exists). The
universe of S also contains further elements of the form (A, j) with A ⊊ [k]. These represent
elements that are added for sets of elements with size k′ < k (in the intuitive explanation: in
previous stages). If such an element (A, j) occurs in the universe of S, there has to be a
corresponding instruction to add this element, that is, the type t′ of the set A in t has to be
in the support of ρ and the element ([k′], j) has to be a fresh element in S(t′).

The conditions (P3) and (P4) concern the relations of S. A tuple ((A1, j1), . . . , (Aℓ, jℓ))
with

⋃
i≤ℓ Ai = [k] in a relation of S says that this tuple is to be added to the target structure

for every set of elements of type t. No further conditions on these tuples are imposed by (P3)
and (P4). If A′ def=

⋃
i≤ℓ Ai is a proper subset of [k], this tuple is added for the subset A′ of

elements (intuitively: in a previous stage). Again, there needs to be another instruction that
adds this tuple, that is, the isomorphism type t′ of A′ needs to be in the support of ρ.

If a subtype t′ of t is in the support of ρ then the corresponding instruction (t′,S′)
needs to be respected: for every occurrence of t′ in t, a copy of the structure S′ needs to
be present in S. Formally, if a set A ⊊ [k] with |A| = k′ has type t′ in t, as witnessed
by some isomorphism π from t′ to t[A], the substructure of S that is induced by the set
{(Ai, ji) | Ai ⊆ π([k′])} is isomorphic to S′.

We now define the semantics of cookbook reductions. A cookbook reduction ρ =
{(t1,S1), . . . , (tm,Sm)} maps a σ-structure S to a set ρ(S) of σ⋆-structures, where σ is the
schema of the isomorphism types ti and σ⋆ is the schema of the structures Si. For some
σ-structure S, the σ⋆-structure S⋆ is in ρ(S) if the following conditions hold:
(S1) The universe dom(S⋆) of S⋆ consists of exactly those elements (A, j) with A ⊆ dom(S)

such that
the isomorphism type t = tpS(A) is in the support of ρ, and
the structure S with (t,S) ∈ ρ has the element ({1, . . . , |A|}, j) in its universe.

(S2) If a tuple ((A1, j1), . . . , (Aℓ, jℓ)) is in some relation RS⋆ of S⋆, for any R ∈ σ⋆, then the
isomorphism type tpS(

⋃
i≤ℓ Ai) is in the support of ρ.
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(S3) For any (t,S) ∈ ρ and any A ⊆ dom(S) with tpS(A) = t, there is an isomorphism π

from t to S[A] such that the injective mapping π̂ with π̂((A′, j′)) = (π(A′), j′), for all
(A′, j′) in the universe of S, is an embedding from S into S⋆.

Intuitively, these conditions state that the elements (S1) and tuples (S3) of S⋆ can be
obtained by transforming occurrences of an isomorphism type t in S into S, for any (t,S) ∈ ρ,
and that no other tuples are present (S2).

A cookbook reduction ρ needs to satisfy the following semantic property2.
(P5) For every σ-structure S, the set ρ(S) is a non-empty set of isomorphic structures.
Abusing notation, we usually write ρ(S) to denote some arbitrary structure S⋆ ∈ ρ(S).

4 The expressive power of cookbook reductions

In this section we study the expressive power of cookbook reductions. First, we explain
how the building blocks from Section 3 are captured by restricted cookbook reductions.
Afterwards, we discuss the expressive power of general cookbook reductions and relate them
to quantifier-free first-order interpretations.

4.1 From building blocks to cookbook reductions
Cookbook reductions are a versatile reduction concept and as we have seen in the examples
depicted in Figure 2 and Figure 3, many reductions have a small and easily understandable
representation as cookbook reductions that have only few isomorphism types in their support.

In fact, the building blocks for graph problems that we discussed as motivation for
cookbook reductions can be recovered as restricted variants of cookbook reductions. For
undirected graphs with only the binary edge relation E and no self-loops, only four isomorph-
ism types of arity at most 2 are relevant: the type t∅ of the graph with 0 nodes, the type t

of a single node, the type t of an undirected edge, and the type t of non-edges.
We obtain the following characterization:
For a global gadget reduction, the inserted global graph S(t∅) is arbitrary. Nodes of the
source instance are copied, so we fix #fresh(t ) = 1, but allow S(t ) to arbitrarily select
nodes from the global graph that are connected to every source node. Edges of the source
are copied, so #fresh(t ) = 0 and S(t ) just adds the edge.
A node gadget reduction replaces every node by some gadget, so S(t ) is arbitrary. The
reduction can define how these gadgets are connected in case there is an edge between
the corresponding nodes in the source instance, resulting in #fresh(t ) = 0 and S(t )
being arbitrary apart from that.
An edge gadget reduction replaces edges by some gadget. As every node from the source
is copied to the target, S(t ) is a single node. We allow any symmetric S(t ).

Only the mentioned isomorphism types are in the support of the cookbook reduction.
A similar characterization holds if the source graph is directed.
Global, node or edge gadget reductions constitute expressive subclasses of cookbook

reductions that are relatively easy to comprehend. More fragments can be defined by, e.g.,
setting an upper bound for #fresh(t ) in a node gadget reduction, or selecting a different set

2 For global and node gadget reductions as introduced in Section 3.1, this property is trivially satisfied, for
edge gadget reductions it is satisfied if the gadget graph is symmetric. In general, the following syntactic
restriction is necessary: For every (t,S) ∈ ρ and any automorphism π of t there is an automorphism π̂
of S with π̂((A, j)) = (π(A), j′), for any (A, j) in the universe of S.
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of isomorphism types t for which S(t) needs to be provided. This modularity of cookbook
reductions helps finding decidable cases of the Reduction? problem. In a teaching context,
instructors can select the degree of freedom students have.

4.2 Relating cookbook reductions to quantifier-free interpretations
Quantifier-free first-order (FO) interpretations constitute a widely-used class of reductions
with very low complexity, see, e.g., [7]. They are still expressive enough to show hardness of
problems: SAT, the satisfiability problem for propositional formulas, is NP-hard even under
quantifier-free FO interpretations [4].

In this section, we show that cookbook reductions can be expressed as quantifier-free
FO interpretations. If we assume a linear order on the input structures, mildly restricted
quantifier-free FO interpretations can be expressed as cookbook reductions. It follows that if
input structures are linearly ordered, SAT is NP-hard under cookbook reductions.

We say that two reductions ρ1 and ρ2 are equivalent for a source structure S over the
appropriate schema, if the target structures ρ1(S) and ρ2(S) are isomorphic.

▶ Theorem 1. For every cookbook reduction ρ there is a d-dimensional quantifier-free first-
order interpretation Ψ, for some number d, such that ρ and Ψ are equivalent for every
structure with at least 2 elements.

Proof idea. Suppose that for a cookbook reduction ρ = {(t1,S1), . . . , (tm,Sm)} the maximal
arity of an isomorphism type ti is k and ℓ is the maximal size of the universe of a structure
Si. The interpretation Ψ intuitively creates for each set of elements of type ti a copy of
the structure Si, so, defines a universe of elements of the form (A, i), where |A| ≤ k and
i ≤ ℓ. Such elements can be encoded by tuples of length d

def= k + ℓ + 1. Quantifier-free
formulas can determine the isomorphism type of a set of elements and, by the properties of a
cookbook reduction, whether a tuple ((A, i1), . . . , (A, ir)) exists in the interpreted structure
only depends on the isomorphism type of A. ◀

We call a first-order interpretation set-respecting if, for the equivalence relation defined
by the formula φ∼(x̄1, x̄2), two tuples ā1, ā2 are only in the same equivalence class if ā1 and
ā2 contain the same set of elements.

▶ Theorem 2. For every set-respecting quantifier-free first-order interpretation Ψ there is
a cookbook reduction ρ such that ρ and Ψ are equivalent for every structure with a linearly
ordered universe.

Proof idea. Let d be the dimension of Ψ. For every isomorphism type t of k ≤ d elements,
the number ℓ of elements ([k], 1), . . . , ([k], ℓ) in the universe of S(t), so, the number of
elements added to the target structure because of a set of elements with isomorphism type
t, is equal to the number of equivalence classes of the congruence defined by φ∼ on the set
of d-tuples that contain exactly the k elements of t and satisfy the formula φU of Ψ. We
identify each of the ℓ elements with a particular d-tuple over the set [k], which is possible as
[k] is linearly ordered. The structure S(t) is then defined as dictated by Ψ. ◀

As SAT is NP-hard under set-respecting quantifier-free FO interpretations [4], we obtain:

▶ Corollary 3. Assuming that input structures are linearly ordered, SAT is NP-hard under
cookbook reductions.



J. Grange, F. Vehlken, N. Vortmeier, and T. Zeume 56:9

Note that in descriptive complexity theory one often studies relational input structures
that are not linearly ordered (although Immerman usually assumes a linear order to be present
[7, Proviso 1.14]). However, when considering Turing machines as models of computation in
complexity theory, inputs are binary string encodings and therefore linearly ordered.

5 Towards automated correctness tests and feedback

We now turn to the problem of checking whether a given reduction candidate is a valid
reduction between two computational problems P and P ⋆. In a first variation of this problem,
a corresponding algorithm gets as input the reduction candidate ρ ∈ R as well as the
two problems P ∈ C and P ⋆ ∈ C⋆, for a fixed class R of reductions and fixed complexity
classes C and C⋆. Formally, this corresponds to solving the following algorithmic problem
Reduction?(C, C⋆, R), parameterized by C, C⋆, and R. Also fixing the problems P and P ⋆

yields the special case Reduction?(P, P ⋆, R).

Problem: Reduction?(C, C⋆, R)
Input: Algorithmic problems P ∈ C,

P ⋆ ∈ C⋆, and a reduction ρ ∈ R.
Question: Is ρ a reduction from P to P ⋆?

Problem: Reduction?(P, P ⋆, R)
Input: A reduction ρ ∈ R.

Question: Is ρ a reduction from P to P ⋆?

We are slightly vague here, as for the moment we leave open how algorithmic problems
and reductions are represented. It will be clear how these are represented for all classes
C, C⋆ and R we will consider. For standard classes of reductions, – including reductions
computable in polynomial time or logarithmic space, as well as first-order definable reductions
– already the second, more restricted problem is clearly undecidable for all non-trivial P

and P ⋆. Already testing whether a quantifier-free interpretation or even an edge gadget
reduction reduces from some problem P to another problem P ⋆ is undecidable, for simple P

and P ⋆. As soon as P or P ⋆ are part of the input, the Reduction? problem is undecidable
in most cases in which one of the classes C or C⋆ is defined by an undecidable fragment of
second-order logic, even for very simple classes of reductions.

▶ Theorem 4.
1. Reduction?(P, P ⋆, R) is undecidable for the following parameters:

a. The class R of first-order interpretations, P = ∅ and arbitrary P ⋆ (or vice versa, i.e.
arbitrary P and P ⋆ = ∅).

b. The class R of edge gadget reductions, P = ∅ and some graph problem P ⋆ definable in
first-order logic with arithmetic.

c. The class R of quantifier-free interpretations, P = ∅ and the graph problem P ⋆ defined
by the first-order formula φ⋆ def= ∀x∃yE(x, y).

2. Reduction?(C, C⋆, R) is undecidable for the following parameters:
a. A class R containing the identity mapping, a class C containing the empty problem,

and a class C⋆ defined by a fragment of second-order logic with undecidable finite
satisfiability problem.

b. A class R containing the identity mapping, a class C defined by a fragment of second-
order logic with undecidable finite satisfiability problem, and a class C⋆ containing the
empty problem.

In the rest of this section, we explore how to overcome the undecidability barriers. That is,
we explore for which parameters one can obtain algorithms for solving Reduction?(P, P ⋆, R)
and Reduction?(C, C⋆, R). Our focus is on (restrictions of) cookbook reductions.
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We start by exhibiting toy examples for algorithms for Reduction?(P, P ⋆, R) for concrete
algorithmic problems P and P ⋆ in Section 5.1. For these examples, counterexamples can be
provided if the input is not a correct reduction. A generalized view is taken in Section 5.2,
where we exhibit algorithm templates for Reduction?(P, P ⋆, R) for algorithmic problems
P and P ⋆ selected from classes of problems. Then, in Section 5.3, we consider algorithmic
problems as part of the input by studying Reduction?(C, C⋆, R).

5.1 Warm-up: Reductions between explicit algorithmic problems
In this section we provide toy examples of how Reduction?(P, P ⋆, R) can be decided for
very restricted classes R: (1) for reducing k-Clique to ℓ-Clique via global gadgets, for
k < ℓ, (2) for reducing k-VertexCover to k-FeedbackVertexSet via edge gadgets, and
(3) for reducing HamCycled to HamCycleu via restricted node gadgets. In all cases, the
decision procedures are obtained by characterizing the class of correct gadgets.

While not deep, these characterizations and the algorithms resulting from them are a
first step towards more general results.

We start by characterizing those global gadgets that reduce k-Clique to ℓ-Clique. For
simplicity, we represent global gadget reductions ρ by a global gadget gρ and a distinguished
subset A of its nodes. When applying ρ to a graph G = (V, E), the gadget gρ is disjointly
added to G and edges (u, v) are introduced for all u ∈ A and all v ∈ V .

▶ Proposition 5. Let ρ be a global gadget reduction with global gadget gρ and a distinguished
subset A of its nodes. Let k, ℓ ∈ N with k < ℓ. Then the following are equivalent:
1. ρ is a reduction from k-Clique to ℓ-Clique
2. gρ and A satisfy the following conditions:

a. gρ has no ℓ-clique
b. gρ has an (ℓ − k)-clique contained in A

c. gρ has no (ℓ − k + 1)-clique contained in A

Furthermore, if ρ is not a reduction from k-Clique to ℓ-Clique, then a counterexample can
be computed efficiently.

We next characterize those edge gadgets that constitute a reduction from k-VertexCover
to k-FeedbackVertexSet. We represent edge gadget reductions ρ by an edge gadget gρ

with two distinguished nodes c and d. When applying ρ to a graph G = (V, E), all edges
(u, v) ∈ E are replaced by disjoint copies of gρ, where u, v are identified with c, d, respectively.

▶ Proposition 6. Let ρ be an edge gadget reduction based on the edge gadget gρ with
distinguished nodes c and d. Then the following are equivalent:
1. ρ is a reduction from k-VertexCover to k-FeedbackVertexSet
2. gρ satisfies the following conditions:

a. {c} and {d} are feedback vertex sets of gρ

b. ∅ is not a feedback vertex set of gρ.
Furthermore, if ρ is not a reduction from k-VertexCover to k-FeedbackVertexSet,
then a counterexample can be computed efficiently.

Lastly, we characterize restricted node gadget reductions from the directed Hamiltonian
cycle problem HamCycled to the undirected variant HamCycleu. For simplicity, we
represent node gadget reductions ρ by node gadgets gρ. A node gadget gρ consists of two
copies of a node graph S(t ) and a set of additional edges between these copies. As an
example, the standard reduction from HamCycled to HamCycleu is represented by the
node gadget consisting of two copies of the node graph with one additional edge
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between them (cf. Figures 2(c) and 3(b)). When applying gρ to a graph G = (V, E), all
nodes in V are replaced by a copy of the node graph and two such copies for nodes u, v are
connected accordingly by the additional set of edges, if (u, v) ∈ E.

As a first step towards characterizing node gadget reductions between HamCycled and
HamCycleu, we characterize all correct node gadget reductions whose node graph has at
most three nodes.

▶ Proposition 7. Let ρ be a node gadget reduction with node gadget gρ whose node graph
has at most three nodes. Then the following are equivalent:
1. ρ is a reduction from HamCycled to HamCycleu

2. gρ is either of the following node gadgets (with the two copies of the node graphs depicted
at top and bottom), up to symmetries:

Furthermore, if ρ is not a reduction from HamCycled to HamCycleu, a counterexample
can be computed efficiently.

5.2 Decidable cases for classes of (fixed) algorithmic problems
In this section, we study the question whether there are classes C and C⋆ of algorithmic
problems as well as classes R of reductions, such that after fixing P ∈ C and P ⋆ ∈ C⋆ there
is an algorithm that tests correctness of inputs ρ ∈ R.

We first give an example that decidability results are possible for non-trivial classes of
reductions and problems. Afterwards, we sketch how the technique employed in the proof
can be generalized.

▶ Theorem 8. Reduction?(P, P ⋆, R) is decidable for the class R of cookbook reductions
with arity bounded by some r > 0, arbitrary P , and P ⋆ definable in first-order logic.

The proof idea is to represent cookbook reductions ρ by “recipe structures” recipe(ρ)
such that ρ(A) can be constructed from the disjoint union A ⊎ recipe(ρ) of A and recipe(ρ)
via an FO-interpretation which depends on the arity and schema of ρ, but is independent
of ρ itself. Then we prove that correctness of reductions in the setting of Theorem 8 only
depends on the FO-similarity type of their recipe.

Intuitively, the recipe of a cookbook reduction ρ is the disjoint union of the structures
S(t) for all relevant isomorphism types t, where additional unary relations indicate the source
structure and an additional binary relation identifies inherited elements (those (A, j) where
A is a strict subset of the domain of t) with their origin. Formally, fix two schemas σ and
σ⋆, an arity r ∈ N, and define T≤r to be the finite set of all isomorphism types t over the
schema σ of arity at most r. The recipe recipe(ρ) of a cookbook reduction ρ of arity at most
r from σ to σ⋆ is a structure over the schema σ⋆ ∪ {≈} ∪ {Ct | t ∈ T≤r}, where ≈ is binary
and all Ct are unary. The restriction of recipe(ρ) to the schema σ⋆ ∪ {Ct | t ∈ T≤r} is the
disjoint union

⊎
t∈T≤r

S(t), where we set S(t) = ρ(t) if t is not in the support of ρ, and each
Ct is interpreted as the universe of S(t). The relation ≈ “identifies” inherited elements and
their original version: for every t, t′ ∈ T≤r such that t is the type of a strict subset of the
elements of t′, if a′ is an element of S(t′) inherited from S(t)’s element a, then a′ ≈ a holds
in recipe(ρ).

The structure recipe(ρ) representing the cookbook reduction ρ from 3-Clique to 4-
Clique given in Figure 3 can be found in Figure 4.

MFCS 2024



56:12 Specification and Automatic Verification of Computational Reductions

C∅

C C

C

Figure 4 The recipe recipe(ρ) for the cookbook reduction of arity 2 from 3-Clique to 4-Clique
from Figure 3. There are four unary relations for the types t∅, t , t , and t of loopless undirected
graphs. The dotted edges represent the binary inheritance relation ≈.

There is an FO-interpretation that applies a recipe recipe(ρ) to a structure A by inter-
preting A ⊎ recipe(ρ).

▶ Lemma 9. Fix r > 0 and two schemas σ, σ⋆. There is an FO-interpretation Ir
σ,σ⋆ such

that ρ(A) and Ir
σ,σ⋆(A ⊎ recipe(ρ)) are isomorphic, for every cookbook reduction ρ from σ to

σ⋆ of arity at most r and for every σ-structure A.

As FO-interpretations preserve FO-similarity, there is a function fr
σ,σ⋆ : N → N such that

for every k ∈ N, A ≡FO
fr

σ,σ⋆ (k) A′ entails Ir
σ,σ⋆(A) ≡FO

k Ir
σ,σ⋆(A′) (see, e.g., [8, Section 3.2]).

We now prove Theorem 8.

Proof of Theorem 8. We show that whether a cookbook reduction ρ is a reduction from P

to P ⋆ solely depends on the FOm-type of recipe(ρ), for some large enough m that depends
only on r, P , and P ⋆. As there are only finitely many such FOm-types and because the type
of recipe(ρ) can be determined, the statement follows.

Let k be the quantifier rank of a formula φ⋆ ∈ FO defining P ⋆. If the recipes of two
reductions ρ and ρ′ of arity at most r are fr

σ,σ⋆-similar, then so are A ⊎ recipe(ρ) and
A ⊎ recipe(ρ′) for all σ-structures A (due to a simple Ehrenfeucht-Fraïsse argument). But
then Ir

σ,σ⋆(A⊎ recipe(ρ)) and Ir
σ,σ⋆(A⊎ recipe(ρ′)) – and therefore also ρ(A) and ρ′(A) –, are

k-similar. In particular, the reductions ρ and ρ′ behave in the same way for all σ-structures
A, that is ρ(A) |= φ⋆ if and only if ρ′(A) |= φ⋆.

We conclude that whether ρ(A) satisfies φ⋆ only depends on the FOfr
σ,σ⋆ (k)-type of

recipe(ρ) for all A. Hence, the recipe of positive instances of Reduction?(P, P ⋆, R) is a
union of equivalence classes for ≡FO

fr
σ,σ⋆ (k). For a reduction ρ it can now be evaluated whether

its recipe satisfies the type of one of these equivalence classes. ◀

In the rest of this section, we explore how the technique used in the proof above can
be generalized to logics beyond FO. Our focus is on monadic-second order logic (MSO),
which extends FO by quantifiers for sets of elements. One of the key ingredients, that
FO-interpretations preserve FO-similarity, does not translate to MSO for interpretations of
dimension greater than one (not even for quantifier-free interpretations). Yet, decidability
is retained for problems P ⋆ ∈ MSO if we restrict ourselves to edge gadget reductions (on
graphs), instead of general cookbook reductions. This generalizes Proposition 6.

▶ Theorem 10. Reduction?(P, P ⋆, R) is decidable for the class R of edge gadget reductions,
arbitrary P , and P ⋆ definable in monadic second-order logic.

The proof exploits compositionality of MSO and can be generalized to other subclasses of
cookbook reductions. A discussion of such subclasses is postponed to the long version of this
paper.
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Proof sketch. An edge gadget reduction ρ is specified as a graph gρ, with two distinguished
nodes. As in the proof of Theorem 8, the idea is to show that there is an integer m such that
whether ρ is a reduction from P to P ⋆ only depends on the MSOm-type of gρ. More precisely,
for all gadget graphs gρ and gρ′ with gρ ≡MSO

m gρ′ , one proves that ρ(G) ≡MSO
k ρ′(G) for all

graphs G, where k is the quantifier rank of an MSO-sentence describing P ⋆.
For proving MSOk-similarity of ρ(G) and ρ′(G), one can use Ehrenfeucht-Fraïssé games

for MSO (see, e.g., [10, Section 7.2]). The graphs ρ(G) and ρ′(G) are a composition of G

with the edge gadgets gρ and gρ′ , respectively. Duplicator has a winning strategy for the
MSO-game played on (G, G) as well as for the MSO-game played on (gρ, gρ′). Her strategy
for the game on ρ(G) and ρ′(G) is to combine these two winning strategies. For instance, if
Spoiler moves on ρ(G) and part of his move is on the edge gadget inserted for an edge (u, v)
of G, then Duplicator’s response for this part of the move is derived from her strategy for
the game on (gρ, gρ′). The partial answers for individual edges are then combined. ◀

For both FO and MSO, the proof uses that the respective classes of reductions can be
finitely partitioned into similarity classes and that all reductions in one class are either correct
or not correct. This provides a basis for characterizations akin to the ones in Section 5.1 for
concrete, arbitrary problems P and concrete P ⋆ definable in FO or MSO.

5.3 Algorithmic problems as input: decidable cases
We now explore decidability when source and/or target problems are part of the input.
We consider classes C and C⋆ captured by logics L and L⋆, respectively, and write, e.g.,
Reduction?(L, L⋆, R) for the algorithmic problem where we ask, given φ ∈ L, φ⋆ ∈ L⋆ and
ρ ∈ R, whether ρ is a reduction from the problem defined by φ to the one defined by φ⋆.

One approach for obtaining decidability for the problem Reduction?(L, L⋆, R) is by
restating it as a satisfiability question for a decidable logic. For a quantifier-free interpretation
I from σ-structures to σ⋆-structures, denote by I−1(φ⋆) the σ-formula obtained from a
σ⋆-formula φ⋆ by replacing atoms in φ⋆ according to their definition in I. Whether a
quantifier-free interpretation I is a reduction from the algorithmic problem defined by φ ∈ L
to the one defined by φ⋆ ∈ L⋆ is equivalent to whether A |= φ if and only if I (A) |= φ⋆, for
all structures A. This in turn is equivalent to checking whether φ ↔ I−1(φ⋆) is a tautology.

These observations yield, for instance, the following decidable variants, some involving
the class QF of quantifier-free first-order interpretations, a class that includes all cookbook
reductions, see Theorem 1. See the full version for the proof.

▶ Theorem 11.
1. Reduction?(∃∗FO, ∃∗FO, QF) is decidable.
2. Reduction?(P, ∃∗FO, QF) is decidable for every fixed algorithmic problem P .
3. Reduction?(∃∗FO, P ⋆, R) is decidable for every fixed algorithmic problem P ⋆ definable

in MSO and the class R of edge gadget reductions.

6 Summary and discussion

We studied variants of the algorithmic problem Reduction? which asks whether a given
mapping is a computational reduction between two algorithmic problems. In addition to
studying this problem for standard classes of reductions, we also proposed a graphical
and compositional language for computational reductions, called cookbook reductions, and
compared their expressive power to quantifier-free first-order interpretations. While Re-
duction? is undecidable in many restricted settings, we identified multiple decidable cases
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involving (restricted) cookbook reductions and quantifier-free first-order interpretations. Due
to its graphical and compositional nature, cookbook reductions are well-suited to be used in
teaching support systems for learning tasks tackling the design of computational reductions.

A prototype3 of our formal framework has been integrated into the teaching support
system Iltis [11]. Recently it has been used in introductory courses Theoretical Computer
Science with > 300 students at Ruhr University Bochum and TU Dortmund in workflows
covering (i) understanding computational problems, (ii) exploring reductions via examples,
and (iii) designing reductions.
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Abstract
Dependency pairs constitute a series of very effective techniques for the termination analysis of
term rewriting systems. In this paper, we adapt the static dependency pair framework to logically
constrained simply-typed term rewriting systems (LCSTRSs), a higher-order formalism with logical
constraints built in. We also propose the concept of universal computability, which enables a form
of open-world termination analysis through the use of static dependency pairs.
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1 Introduction

Logically constrained simply-typed term rewriting systems (LCSTRSs) [12] are a formalism of
higher-order term rewriting with logical constraints (built on its first-order counterpart [19]).
Proposed for program analysis, LCSTRSs offer a flexible representation of programs owing to
– in contrast with traditional TRSs – their support for primitive data types such as (arbitrary-
precision or fixed-width) integers and floating-point numbers. Without compromising the
ability to directly reason about these widely used data types, LCSTRSs bridge the gap
between the abundant techniques based on term rewriting and automatic program analysis.

We consider termination analysis in this paper. The termination of LCSTRSs was first
discussed in [12] through a variant of the higher-order recursive path ordering (HORPO) [14].
This paper furthers that discussion by introducing dependency pairs [1] to LCSTRSs. As
a broad framework for termination, this method was initially proposed for unconstrained
first-order term rewriting, and was later generalized in a variety of higher-order settings (see,
e.g., [31, 23, 30, 2]). Modern termination analyzers rely heavily on dependency pairs.

In higher-order termination analysis, dependency pairs take two forms: the dynamic
[31, 23] and the static [30, 2, 24, 7]. This paper concentrates on static dependency pairs, and
is based on the definitions in [7, 24]. First-order dependency pairs with logical constraints
have been informally defined by the third author [15], from which we also take inspiration.
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For program analysis, the traditional notion of termination can be inefficient, and arguably
insufficient. It assumes that the whole program is known and analyzed, i.e., closed-world
analysis. This way even small programs that happen to import a large standard library need
sophisticated analysis; local changes in a multipart, previously verified program also require
the entire analysis to be redone. As O’Hearn [26] argues (in a different context), studying
open-world analysis opens up many applications. In particular, it is practically desirable to
analyze the termination of standard libraries – or modules of a larger program in general –
without prior knowledge of how the functions they define may be used.

It is tricky to characterize such a property, especially in the presence of higher-order
arguments. For example, map and fold are usually considered “terminating”, even though
passing a non-terminating function to them can surely result in non-termination. Hence,
we need to narrow our focus to certain “reasonable” calls. On the other hand, the function
app (lam f) → f where app : o → o → o and lam : (o → o) → o would generally be considered
“non-terminating”, because if we define w x → app x x, an infinite rewrite sequence starts
from app (lam w) (lam w) – this encodes the famous Ω in the untyped λ-calculus. The
property we are looking for must distinguish map and fold from app.

To capture this property, we propose a new concept, called universal computability. In
light of information hiding, this concept can be further generalized to public computability.
We will see that static dependency pairs are a natural vehicle for analyzing these properties.

Various modular aspects of term rewriting have been studied by the community. Our
scenario roughly corresponds to hierarchical combinations [27, 28, 29, 6], where different parts
of a program are analyzed separately. We follow this terminology so that it will be easier
to compare our work with the literature. However, our setup – higher-order constrained
rewriting – is separate from the first-order and unconstrained setting in which hierarchical
combinations were initially proposed. Furthermore, our approach has a different focus –
namely, the use of static dependency pairs.

Contributions. We recall the formalism of LCSTRSs and the predicate of computability in
Section 2. Then the contributions of this paper follow:

We propose in Section 3 the first definition of dependency pairs for higher-order logically
constrained TRSs. This is also the first DP approach for constrained rewriting as the prior
work on first-order constrained dependency pairs [15] has never been formally published.
We define in Section 4 the constrained DP framework for termination analysis with five
classes of DP processors, which can be used to simplify termination problems.
We extend the notion of a hierarchical combination [27, 28, 29, 6] to LCSTRSs and define
universal and public computability in Section 5. We also fine-tune the DP framework
to support these properties, and provide extra DP processors for public computability.
This allows the DP framework to be used for open-world analysis. We base Section 5 on
LCSTRSs to emphasize those notions in real-world programming, but they are new and
of theoretical interest in higher-order term rewriting even without logical constraints.
We have implemented the DP framework for both termination and public computability
in our open-source analyzer Cora. We describe the experimental evaluation in Section 6.

2 Preliminaries

In this section, we collect the preliminary definitions and results we need from the literature.
First, we recall the definition of an LCSTRS [12]. In this paper, we put a restriction on
rewrite rules: ℓ is always a pattern in ℓ → r [φ]. Next, we recall the definition of computability
(with accessibility) from [7]. This version is particularly tailored for static dependency pairs.
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2.1 Logically Constrained STRSs
Terms Modulo Theories. Given a non-empty set S of sorts (or base types), the set T of
simple types over S is generated by the grammar T ::= S | (T → T ). Right-associativity
is assigned to → so we can omit some parentheses. Given disjoint sets F and V, whose
elements we call function symbols and variables, respectively, the set T of pre-terms over F
and V is generated by the grammar T ::= F | V | (T T). Left-associativity is assigned to the
juxtaposition operation, called application, so t0 t1 t2 stands for ((t0 t1) t2), for example.

We assume every function symbol and variable is assigned a unique type. Typing works
as expected: if pre-terms t0 and t1 have types A → B and A, respectively, t0 t1 has type B.
The set T (F , V) of terms over F and V consists of pre-terms that have a type. We write
t : A if a term t has type A. We assume there are infinitely many variables of each type.

The set Var(t) of variables in t ∈ T (F , V) is defined by Var(f) = ∅ for f ∈ F , Var(x) =
{ x } for x ∈ V and Var(t0 t1) = Var(t0) ∪ Var(t1). A term t is called ground if Var(t) = ∅.

For constrained rewriting, we make further assumptions. First, we assume that there is a
distinguished subset Sϑ of S, called the set of theory sorts. The grammar Tϑ ::= Sϑ | (Sϑ → Tϑ)
generates the set Tϑ of theory types over Sϑ. Note that a theory type is essentially a non-empty
list of theory sorts. Next, we assume that there is a distinguished subset Fϑ of F , called the
set of theory symbols, and that the type of every theory symbol is in Tϑ, which means that
the type of any argument passed to a theory symbol is a theory sort. Theory symbols whose
type is a theory sort are called values. Elements of T (Fϑ, V) are called theory terms.

Theory symbols are interpreted in an underlying theory: given an Sϑ-indexed family of
sets (XA)A∈Sϑ

, we extend it to a Tϑ-indexed family by letting XA→B be the set of mappings
from XA to XB; an interpretation of theory symbols is a Tϑ-indexed family of mappings
([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory symbol of type A an element of XA and is
bijective if A ∈ Sϑ. Given an interpretation of theory symbols ([[·]]A)A∈Tϑ

, we extend each
indexed mapping [[·]]B to one that assigns to each ground theory term of type B an element of
XB by letting [[t0 t1]]B be [[t0]]A→B([[t1]]A). We write just [[·]] when the type can be deduced.

▶ Example 1. Let Sϑ be { int }. Then int → int → int is a theory type over Sϑ while
(int → int) → int is not. Let Fϑ be { − } ∪ Z where − : int → int → int and n : int for all
n ∈ Z. The values are the elements of Z. Let Xint be Z, [[·]]int be the identity mapping and
[[−]] be the mapping λm. λn. m − n. The interpretation of (−) 1 is the mapping λn. 1 − n.

Substitutions, Contexts and Subterms. Type-preserving mappings from V to T (F , V) are
called substitutions. Every substitution σ extends to a type-preserving mapping σ̄ from
T (F , V) to T (F , V). We write tσ for σ̄(t) and define it as follows: fσ = f for f ∈ F ,
xσ = σ(x) for x ∈ V and (t0 t1)σ = (t0σ) (t1σ). Let [x1 := t1, . . . , xn := tn] denote the
substitution σ such that σ(xi) = ti for all i, and σ(y) = y for all y ∈ V \ { x1, . . . , xn }.

A context is a term containing a hole. Let □ be a special terminal symbol and assign to
it a type A; a context C[] is an element of T (F , V ∪ {□ }) such that □ occurs in C[] exactly
once. Given a term t : A, let C[t] denote the term produced by replacing □ in C[] with t.

A term t is called a (maximally applied) subterm of a term s, written as s ⊵ t, if either
s = t, s = s0 s1 where s1 ⊵ t, or s = s0 s1 where s0 ⊵ t and s0 ̸= t; i.e., s = C[t] for C[] that
is not of form C ′[□ t1]. We write s ▷ t and call t a proper subterm of s if s ⊵ t and s ̸= t.

Constrained Rewriting. Constrained rewriting requires the theory sort bool: we henceforth
assume that bool ∈ Sϑ, { f, t } ⊆ Fϑ, Xbool = { 0, 1 }, [[f]]bool = 0 and [[t]]bool = 1. A logical
constraint is a theory term φ such that φ has type bool and the type of each variable in Var(φ)
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is a theory sort. A (constrained) rewrite rule is a triple ℓ → r [φ] where ℓ and r are terms
which have the same type, φ is a logical constraint, the type of each variable in Var(r)\Var(ℓ)
is a theory sort and ℓ is a pattern that takes the form f t1 · · · tn for some function symbol f

and contains at least one function symbol in F \Fϑ. Here a pattern is a term whose subterms
are either f t1 · · · tn for some function symbol f or a variable. A substitution σ is said to
respect ℓ → r [φ] if σ(x) is a value for all x ∈ Var(φ) ∪ (Var(r) \ Var(ℓ)) and [[φσ]] = 1.

A logically constrained simply-typed term rewriting system (LCSTRS) collects the above
data – S, Sϑ, F , Fϑ, V, (XA) and [[·]] – along with a set R of rewrite rules. We usually
let R alone stand for the system. The set R induces the rewrite relation →R over terms:
t →R t′ if and only if there exists a context C[] such that either (1) t = C[ℓσ] and t′ = C[rσ]
for some rewrite rule ℓ → r [φ] ∈ R and some substitution σ which respects ℓ → r [φ], or
(2) t = C[f v1 · · · vn] and t′ = C[v′] for some theory symbol f and some values v1, . . . , vn, v′

with n > 0 and [[f v1 · · · vn]] = [[v′]]. When no ambiguity arises, we may write → for →R.
If t →R t′ due to the second condition above, we also write t →κ t′ and call it a calculation

step. Theory symbols that are not a value are called calculation symbols. Let t ↓κ denote the
(unique) κ-normal form of t, i.e., the term t′ such that t →∗

κ t′ and t′ ̸→κ t′′ for any t′′. For
example, (f (7 ∗ (3 ∗ 2))) ↓κ = f 42 if f is not a calculation symbol, or if f : int → A → B.

A rewrite rule ℓ → r [φ] is said to define a function symbol f if ℓ = f t1 · · · tn. Given an
LCSTRS R, f is called a defined symbol if some rewrite rule in R defines f . Let D denote the
set of defined symbols. Values and function symbols in F \ (Fϑ ∪ D) are called constructors.

▶ Example 2. Below is the factorial function in continuation-passing style as an LCSTRS:

fact n k → k 1 [n ≤ 0] comp g f x → g (f x)
fact n k → fact (n − 1) (comp k ((∗) n)) [n > 0] id x → x

We use infix notation for some binary operators, and omit the logical constraint of a rewrite
rule when it is t. An example rewrite sequence is fact 1 id → fact (1 − 1) (comp id ((∗) 1)) →κ

fact 0 (comp id ((∗) 1)) → comp id ((∗) 1) 1 → id ((∗) 1 1) →κ id 1 → 1.

2.2 Accessibility and Computability
We recall the notion of computability with accessibility – which originates from [3] and is
reformulated in [7] to couple with static dependency pairs – and adapt the notion of accessible
function passing [7] to LCSTRSs.

Accessibility. Assume given a sort ordering – a quasi-ordering ≿ over S whose strict part
≻ = ≿ \ ≾ is well-founded. We inductively define two relations ≿+ and ≻− over S and T :
given a sort A and a type B = B1 → · · · → Bn → C where C is a sort and n ≥ 0, A ≿+ B

if and only if A ≿ C and ∀i. A ≻− Bi, and A ≻− B if and only if A ≻ C and ∀i. A ≿+ Bi.
Given a function symbol f : A1 → · · · → An → B where B is a sort, the set Acc(f) of the

accessible argument positions of f is defined as { 1 ≤ i ≤ n | B ≿+ Ai }. A term t is called an
accessible subterm of a term s, written as s ⊵acc t, if either s = t, or s = f s1 · · · sm for some
f ∈ F and there exists k ∈ Acc(f) such that sk ⊵acc t. An LCSTRS R is called accessible
function passing (AFP) if there exists a sort ordering such that for all f s1 · · · sm → r [φ] ∈ R
and x ∈ Var(f s1 · · · sm) ∩ Var(r) \ Var(φ), there exists k such that sk ⊵acc x.

▶ Example 3. An LCSTRS R is AFP (with ≿ equating all the sorts) if for all f s1 · · · sm →
r [φ] ∈ R and i ∈ { 1, . . . , m }, the type of each proper subterm of si is a sort. Rewrite rules
for common higher-order functions, e.g., map and fold, usually fit this criterion.
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Consider { complst fnil x → x, complst (fcons f l) x → complst l (f x) }, where complst :
funlist → int → int composes a list of functions. This system is AFP with funlist ≻ int.

The system { app (lam f) → f } in Section 1 is not AFP since o ≻ o cannot be true.

Computability. A term is called neutral if it takes the form x t1 · · · tn for some variable x.
A set of reducibility candidates, or an RC-set, for the rewrite relation →R of an LCSTRS R is
an S-indexed family of sets (IA)A∈S (let I denote

⋃
A IA) satisfying the following conditions:

(1) Each element of IA is a terminating (with respect to →R) term of type A.
(2) Given terms s and t such that s →R t, if s is in IA, so is t.
(3) Given a neutral term s, if t is in IA for all t such that s →R t, so is s.
Given an RC-set I for →R, a term t0 is called I-computable if either the type of t0 is a sort
and t0 ∈ I, or the type of t0 is A → B and t0 t1 is I-computable for all I-computable t1 : A.

We are interested in a specific RC-set C, whose existence is guaranteed by Theorem 4.

▶ Theorem 4 (see [7]). Given a sort ordering and an RC-set I for →R, let ⇛I be the relation
over terms such that s ⇛I t if and only if both s and t have a base type, s = f s1 · · · sm for
some function symbol f , t = sk t1 · · · tn for some k ∈ Acc(f) and ti is I-computable for all i.

Given an LCSTRS R with a sort ordering, there exists an RC-set C for →R such that
t ∈ CA if and only if t : A is terminating with respect to →R ∪ ⇛C, and for all t′ such that
t →∗

R t′, if t′ = f t1 · · · tn for some function symbol f , ti is C-computable for all i ∈ Acc(f).

Thus, given a C-computable term f t1 · · · tn, all its reducts and the accessible arguments – ti

for i ∈ Acc(f) – are also C-computable. We consider C-computability throughout this paper.

3 Static Dependency Pairs for LCSTRSs

Originally proposed for unconstrained first-order term rewriting, the dependency pair ap-
proach [1] – a methodology that analyzes the recursive structure of function calls – is at the
heart of most modern automatic termination analyzers for various styles of term rewriting.
There follow multiple higher-order generalizations, among which we adopt here the static
branch [24, 7]. As we shall see in Section 5, this approach extends well to open-world analysis.

In this section, we adapt static dependency pairs to LCSTRSs. We start with a notation:

▶ Definition 5. Given an LCSTRS R, let F ♯ be F ∪{ f ♯ | f ∈ D } where D is the set of defined
symbols in R and f ♯ is a fresh function symbol for all f . Let dp be a fresh sort, and for each
defined symbol f : A1 → · · · → An → B where B ∈ S, we assign f ♯ : A1 → · · · → An → dp.
Given a term t = f t1 · · · tn ∈ T (F , V) where f ∈ D, let t♯ denote f ♯ t1 · · · tn ∈ T (F ♯, V).

In the presence of logical constraints, a dependency pair should be more than a pair.
Two extra components – a logical constraint and a set of variables – keep track of what
substitutions are expected by the dependency pair.

▶ Definition 6. A static dependency pair (SDP) is a quadruple s♯ ⇒ t♯ [φ | L] where s♯ and
t♯ are terms of type dp, φ is a logical constraint and L ⊇ Var(φ) is a set of variables whose
types are theory sorts. Given a rewrite rule ℓ → r [φ], let SDP(ℓ → r [φ]) denote the set of
SDPs of form ℓ♯ x1 · · · xm ⇒ g♯ t1 · · · tq yq+1 · · · yn [φ | Var(φ) ∪ (Var(r) \ Var(ℓ))] such that
(1) ℓ♯ : A1 → · · · → Am → dp while xi : Ai is a fresh variable for all i,
(2) r x1 · · · xm ⊵ g t1 · · · tq for g ∈ D, and
(3) g♯ : B1 → · · · → Bn → dp while yi : Bi is a fresh variable for all i > q.
Let SDP(R) be

⋃
ℓ→r [φ]∈R SDP(ℓ → r [φ]). A substitution σ is said to respect an SDP

s♯ ⇒ t♯ [φ | L] if σ(x) is a ground theory term for all x ∈ L and [[φσ]] = 1.
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The component L is new compared to [15]. We shall see its usefulness in Section 4.4, as
it gives us more freedom to manipulate dependency pairs. We introduce two shorthand
notations for SDPs: s♯ ⇒ t♯ [φ] for s♯ ⇒ t♯ [φ | Var(φ)], and s♯ ⇒ t♯ for s♯ ⇒ t♯ [t | ∅].

▶ Example 7. Consider the system R consisting of the following rewrite rules, in which
gcdlist : intlist → int, fold : (int → int → int) → int → intlist → int and gcd : int → int → int.

gcdlist → fold gcd 0 fold f y nil → y fold f y (cons x l) → f x (fold f y l)
gcd m n → gcd (−m) n [m < 0] gcd m n → gcd m (−n) [n < 0]
gcd m 0 → m [m ≥ 0] gcd m n → gcd n (m mod n) [m ≥ 0 ∧ n > 0]

The set SDP(R) consists of (1) gcdlist♯ l′ ⇒ gcd♯ m′ n′, (2) gcdlist♯ l′ ⇒ fold♯ gcd 0 l′,
(3) fold♯ f y (cons x l) ⇒ fold♯ f y l, (4) gcd♯ m n ⇒ gcd♯ (−m) n [m < 0], (5) gcd♯ m n ⇒
gcd♯ m (−n) [n < 0], and (6) gcd♯ m n ⇒ gcd♯ n (m mod n) [m ≥ 0 ∧ n > 0]. Note that
in (1), m′ and n′ occur on the right-hand side of ⇒ but not on the left while they are not
required to be instantiated to ground theory terms (L = ∅). This is normal for SDPs [7, 24].

Termination analysis via SDPs is based on the notion of a chain:

▶ Definition 8. Given a set P of SDPs and a set R of rewrite rules, a (P, R)-chain is a
(finite or infinite) sequence (s0

♯ ⇒ t0
♯ [φ0 | L0], σ0), (s1

♯ ⇒ t1
♯ [φ1 | L1], σ1), . . . such that

for all i, si
♯ ⇒ ti

♯ [φi | Li] ∈ P, σi is a substitution which respects si
♯ ⇒ ti

♯ [φi | Li],
and ti−1

♯σi−1 →∗
R si

♯σi if i > 0. The above (P, R)-chain is called computable if uσi is
C-computable for all i and u such that ti ▷ u.

▶ Example 9. Following Example 7, (1, [l := nil, m := 42, n := 24]), (6, [m := 42, n :=
24]), (6, [m := 24, n := 18]), (6, [m := 18, n := 6]) is a computable (SDP(R), R)-chain.

The key to establishing termination is the following result:

▶ Theorem 10. An AFP system R is terminating if there exists no infinite computable
(SDP(R), R)-chain.

The proof (see [11, Appendix A.1]) is very similar to that for unconstrained SDPs [24, 7].

4 The Constrained DP Framework

In this section, we present several techniques based on SDPs, each as a class of DP processors;
formally, we call this collection of DP processors the constrained (static) DP framework.
In general, a DP framework [9, 7] constitutes a broad method for termination and non-
termination. The presentation here is not complete – for example, we do not consider
non-termination – and a complete one is beyond the scope of this paper. We rather focus on
the most essential DP processors and those newly designed to handle logical constraints.

For presentation, we fix an LCSTRS R.

▶ Definition 11. A DP problem is a set P of SDPs. A DP problem P is called finite if
there exists no infinite computable (P, R)-chain. A DP processor is a partial mapping which
possibly assigns to a DP problem a set of DP problems. A DP processor ρ is called sound if
a DP problem P is finite whenever ρ(P) consists only of finite DP problems.

Following Theorem 10, in order to establish the termination of an AFP system R, it
suffices to show that SDP(R) is a finite DP problem. Given a collection of sound DP
processors, we have the following procedure: (1) Q := { SDP(R) }; (2) while Q contains a
DP problem P to which some sound DP processor ρ is applicable, Q := (Q \ { P }) ∪ ρ(P).
If this procedure ends with Q = ∅, we can conclude that R is terminating.
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4.1 The DP Graph and Its Approximations
The interconnection of SDPs via chains gives rise to a graph, namely, the DP graph [1],
which models the reachability between dependency pairs. Since this graph is not computable
in general, we follow the usual convention and consider its (over-)approximations:

▶ Definition 12. Given a set P of SDPs, a graph approximation (Gθ, θ) for P consists of a
finite directed graph Gθ and a mapping θ which assigns to each SDP in P a vertex of Gθ

so that there is an edge from θ(p0) to θ(p1) whenever (p0, σ0), (p1, σ1) is a (P, R)-chain for
some substitutions σ0 and σ1.

Here (Gθ, θ) approximates the true DP graph by allowing θ to assign a single vertex to
multiple (possibly, infinitely many) SDPs, and by allowing Gθ to contain an edge from θ(p0)
to θ(p1) even if p0 and p1 are not connected by any (P, R)-chain. In practice, we typically
deal with only a finite set P of SDPs, in which case we usually take a bijection for θ.

This graph structure is useful because we can leverage it to decompose the DP problem.

▶ Definition 13. Given a DP problem P, a graph processor computes a graph approximation
(Gθ, θ) for P and the strongly connected components (SCCs) of Gθ, then returns { { p ∈
P | θ(p) belongs to S } | S is a non-trivial SCC of Gθ }.

▶ Example 14. Following Example 7, a (tight) graph approximation for SDP(R) is in
Figure 1. If a graph processor produces this graph as the graph approximation, it will return
the set of DP problems { { 3 }, { 4, 5 }, { 6 } }.

1 2 3

54 6

Figure 1 A graph approximation for SDP(R) from Example 7.

Implementation. To compute a graph approximation, we adapt the common Cap approach
[10, 33] and take theories into account. Considering theories allows us, for example, not to
have an edge from (6) to (4) in Figure 1.

We assume given a finite set of SDPs and let θ be a bijection. Whether there is an edge
from θ(s0

♯ ⇒ t0
♯ [φ0 | L0]) to θ(s1

♯ ⇒ t1
♯ [φ1 | L1]) – we rename variables if necessary to

avoid name collisions between the two SDPs – is determined by the satisfiability (which we
check by an SMT solver) of φ0 ∧ φ1 ∧ ζ(t0

♯, s1
♯) where ζ(u, v) is defined as follows:

If u = f u1 · · · un where f ∈ F ♯ and no rewrite rule in R takes the form f ℓ1 · · · ℓk → r [φ]
for k ≤ n, we define ζ(u, v) in two cases:

(1) ζ(u, v) = ζ(u1, v1) ∧ · · · ∧ ζ(un, vn) if v = f v1 · · · vn.
(2) ζ(u, v) = f if v = g v1 · · · vm for some function symbol g other than f , and either f is

not a theory symbol or g is not a value.
Suppose ζ(u, v) is not defined above; ζ(u, v) = (u ≡ v) if u ∈ T (Fϑ, L0) has a base type
and v is a theory term in which the type of each variable is a theory sort, and ζ(u, v) = t

otherwise.

MFCS 2024
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See [11, Appendix A.2] for the proof that this approach produces a graph approximation.
Then strongly connected components can be computed by Tarjan’s algorithm [32].

▶ Example 15. In Figure 1, since (m0 ≥ 0∧n0 > 0)∧m1 < 0∧ (n0 ≡ m1 ∧m0 mod n0 ≡ n1)
is unsatisfiable, there is no edge from (6) to (4).

4.2 The Subterm Criterion
The subterm criterion [13, 24] handles structural recursion and allows us to remove decreasing
SDPs without considering rewrite rules in R. We start with defining projections:

▶ Definition 16. Let heads(P) denote the set of function symbols heading either side of an
SDP in P. A projection ν for a set P of SDPs is a mapping from heads(P) to integers such
that 1 ≤ ν(f ♯) ≤ n if f ♯ : A1 → · · · → An → dp. Let ν̄(f ♯ t1 · · · tn) denote tν(f♯).

A projection chooses an argument position for each relevant function symbol so that
arguments at those positions do not increase in a chain.

▶ Definition 17. Given a set P of SDPs, a projection ν is said to ▷-orient a subset P ′ of P
if ν̄(s♯) ▷ ν̄(t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P ′ and ν̄(s♯) = ν̄(t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′.
A subterm criterion processor assigns to a DP problem P the singleton { P \ P ′ } for some
non-empty subset P ′ of P such that there exists a projection for P which ▷-orients P ′.

▶ Example 18. Following Example 14, a subterm criterion processor is applicable to { 3 }.
Let ν(fold♯) be 3 so that ν̄(fold♯ f y (cons x l)) = cons x l ▷ l = ν̄(fold♯ f y l). The processor
returns { ∅ }, and the empty DP problem can (trivially) be removed by a graph processor.

Implementation. The search for a suitable projection can be done through SMT and is
standard: we introduce an integer variable Nf♯ that represents ν(f ♯) for each f ♯ ∈ heads(P),
and a boolean variable strictp for each p ∈ P; then we encode the requirement per SDP.

4.3 Integer Mappings
The subterm criterion deals with recursion over the structure of terms, but not recursion
over, say, integers, which requires us to utilize the information in logical constraints. In
this subsection, we assume that int ∈ Sϑ and Fϑ ⊇ { ≥, >, ∧ }, where ≥ : int → int → bool,
> : int → int → bool and ∧ : bool → bool → bool are interpreted in the standard way.

▶ Definition 19. Given a set P of SDPs, for all f ♯ ∈ heads(P) (see Definition 16) where
f ♯ : A1 → · · · → An → dp, let ι(f ♯) be the subset of { 1, . . . , n } such that i ∈ ι(f ♯) if and
only if Ai ∈ Sϑ and the i-th argument of any occurrence of f ♯ in an SDP s♯ ⇒ t♯ [φ | L] ∈ P
is in T (Fϑ, L). Let X (f ♯) be a set of fresh variables { xf♯,i | i ∈ ι(f ♯) } where xf♯,i : Ai for all
i. An integer mapping J for P is a mapping from heads(P) to theory terms such that for all
f ♯, J (f ♯) : int and Var(J (f ♯)) ⊆ X (f ♯). Let J̄ (f ♯ t1 · · · tn) denote J (f ♯)[xf♯,i := ti]i∈ι(f♯).

With integer mappings, we can handle decreasing integer values.

▶ Definition 20. Given a set P of SDPs, an integer mapping J is said to >-orient a subset
P ′ of P if φ |= J̄ (s♯) ≥ 0∧J̄ (s♯) > J̄ (t♯) for all s♯ ⇒ t♯ [φ | L] ∈ P ′, and φ |= J̄ (s♯) ≥ J̄ (t♯)
for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′, where φ |= φ′ denotes that [[φσ]] = 1 implies [[φ′σ]] = 1 for
each substitution σ which maps variables in Var(φ) ∪ Var(φ′) to values. An integer mapping
processor assigns to a DP problem P the singleton { P \ P ′ } for some non-empty subset P ′

of P such that there exists an integer mapping for P which >-orients P ′.
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▶ Example 21. Following Example 14, an integer mapping processor is applicable to { 6 }.
Let J (gcd♯) be xgcd♯,2 so that J̄ (gcd♯ m n) = n, J̄ (gcd♯ n (m mod n)) = m mod n and
m ≥ 0 ∧ n > 0 |= n ≥ 0 ∧ n > m mod n. The processor returns { ∅ }, and the empty DP
problem can (trivially) be removed by a graph processor.

Implementation. There are several ways to implement integer mapping processors. In
our implementation, we generate a number of “interpretation candidates” and use an SMT
encoding to select for each f ♯ ∈ heads(P) one candidate that satisfies the requirements.
Candidates include forms such as J (f ♯) = xf♯,i and those that are generated from the
SDPs’ logical constraints – e.g., given f♯ x y ⇒ g♯ x (y + 1) [y < x], we generate J (f♯) =
xf♯,1 − xf♯,2 − 1 because y < x implies x − y − 1 ≥ 0.

4.4 Theory Arguments
Integer mapping processors have a clear limitation: what if some key variables do not occur
in the set L? This is observed in the remaining DP problem { 4, 5 } from Example 7. It is
clearly finite but no integer mapping processor is applicable since ι(gcd♯) = ∅.

This restriction exists for a reason. Variables that are not guaranteed to be instanti-
ated to theory terms may be instantiated to non-deterministic terms – e.g., { f♯ x y z ⇒
f♯ x (x + 1) (x − 1) [y < z] } is not a finite DP problem if R ⊇ { c x y → x, c x y → y }.

The problem of { 4, 5 } arises because each SDP focuses on only one argument: for example,
the logical constraint (with the component L) of (5) only concerns n so in principle we cannot
assume anything about m. Yet, if (5) follows (4) in a chain, we can derive that m must be
instantiated to a ground theory term (we call such an argument a theory argument). We
explore a way of propagating this information.

▶ Definition 22. A theory argument (position) mapping τ for a set P of SDPs is a mapping
from heads(P) (see Definition 16) to subsets of Z such that τ(f ♯) ⊆ { 1 ≤ i ≤ m | Ai ∈ Sϑ }
if f ♯ : A1 → · · · → Am → dp, si is a theory term and the type of each variable in Var(si) is
a theory sort for all f ♯ s1 · · · sm ⇒ t♯ [φ | L] ∈ P and i ∈ τ(f ♯), and tj is a theory term and
Var(tj) ⊆ L ∪

⋃
i∈τ(f♯) Var(si) for all f ♯ s1 · · · sm ⇒ g♯ t1 · · · tn [φ | L] ∈ P and j ∈ τ(g♯).

Let τ̄(f ♯ s1 · · · sm ⇒ t♯ [φ | L]) denote f ♯ s1 · · · sm ⇒ t♯ [φ | L ∪
⋃

i∈τ(f♯) Var(si)].

By a theory argument mapping, we choose a subset of the given set of SDPs from which
the theory argument information is propagated.

▶ Definition 23. Given a set P of SDPs, a theory argument mapping τ is said to fix a subset
P ′ of P if

⋃
i∈τ(f♯) Var(ti) ⊆ L for all s♯ ⇒ f ♯ t1 · · · tn [φ | L] ∈ P ′. A theory argument

processor assigns to a DP problem P the pair { { τ̄(p) | p ∈ P }, P \ P ′ } for some non-empty
subset P ′ of P such that there exists a theory argument mapping for P which fixes P ′.

▶ Example 24. Following Example 14, a theory argument processor is applicable to { 4, 5 }.
Let τ(gcd♯) be { 1 } so that τ fixes { 4 }. The processor returns the pair { { 4, (7) gcd♯ m n ⇒
gcd♯ m (−n) [n < 0 | { m, n }] }, { 5 } }. The integer mapping processor with J (gcd♯) =
−xgcd♯,1 removes (4) from { 4, 7 }. Then { 7 } and { 5 } can be removed by graph processors.

Implementation. To find a valid theory argument mapping, we simply start by setting
τ(f ♯) = { 1, . . . , m } for all f ♯, and choose one SDP to fix. Then we iteratively remove
arguments that do not satisfy the condition until no such argument is left.
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4.5 Reduction Pairs
Although it is not needed by the running example, we present a constrained variant of
reduction pair processors, which are at the heart of most unconstrained termination analyzers.

▶ Definition 25. A constrained relation R is a set of quadruples (s, t, φ, L) where s and t are
terms which have the same type, φ is a logical constraint and L ⊇ Var(φ) is a set of variables
whose types are theory sorts. We write s RL

φ t if (s, t, φ, L) ∈ R. A binary relation R′ over
terms is said to cover a constrained relation R if s RL

φ t implies that (sσ) ↓κ R′ (tσ) ↓κ for
each substitution σ such that σ(x) is a ground theory term for all x ∈ L and [[φσ]] = 1.

A constrained reduction pair (⪰, ≻) is a pair of constrained relations such that ⪰ is
covered by some reflexive relation ⊒ which includes →κ and is monotonic (i.e., s ⊒ t implies
C[s] ⊒ C[t]), ≻ is covered by some well-founded relation ⊐, and ⊒ ; ⊐ ⊆ ⊐+.

▶ Definition 26. A reduction pair processor assigns to a DP problem P the singleton { P\P ′ }
for some non-empty subset P ′ of P such that there exists a constrained reduction pair (⪰, ≻)
where (1) s♯ ≻L

φ t♯ for all s♯ ⇒ t♯ [φ | L] ∈ P ′, (2) s♯ ⪰L
φ t♯ for all s♯ ⇒ t♯ [φ | L] ∈ P \ P ′,

and (3) ℓ ⪰Var(φ)∪(Var(r)\Var(ℓ))
φ r for all ℓ → r [φ] ∈ R.

While a variety of reduction pairs have been proposed for unconstrained rewriting, it is
not yet the case in a higher-order and constrained setting: so far the only one is a limited
version of HORPO [12], which is adapted into a weakly monotonic reduction pair [18] and
then implemented in the DP framework. This is still a prototype definition.

We have included reduction pair processors here because their definition allows us to
start designing constrained reduction pairs. In particular, as unconstrained reduction pairs
can be used as the covering pair (⊒,⊐), it is likely that many of them (such as variants of
HORPO and weakly monotonic algebras) can be adapted.

We conclude this section by the following result (see [11, Appendix A.2]):

▶ Theorem 27. All the DP processors defined in Section 4 are sound.

5 Universal Computability

Termination is not a modular property: given terminating systems R0 and R1, we cannot
generally conclude that R0∪R1 is also terminating. As computability is based on termination,
it is not modular either. For example, both { a → b } and { f b → f a } are terminating, and
f : o → o is computable in the second system; yet, combining the two yields f a → f b →
f a → · · ·, which refutes the termination of the combination and the computability of f.

On the other hand, functions like map and fold are prevalently used; the lack of a modular
principle for the termination analysis of higher-order systems involving such functions is
painful. Moreover, if such a system is non-terminating, this is seldom attributed to those
functions, which are generally considered “terminating” regardless of how they may be called.

In this section, we propose universal computability, a concept which corresponds to
the termination of a function in all “reasonable” uses. First, we rephrase the notion of a
hierarchical combination [27, 28, 29, 6] in terms of LCSTRSs:

▶ Definition 28. An LCSTRS R1 is called an extension of a base system R0 if the two
systems’ interpretations of theory symbols coincide over all the theory symbols in common,
and function symbols in R0 are not defined by any rewrite rule in R1. Given a base system
R0 and an extension R1 of R0, the system R0 ∪ R1 is called a hierarchical combination.
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In a hierarchical combination, function symbols in the base system can occur in the extension,
but cannot be (re)defined. This forms the basis of the modular programming scenario we are
interested in: think of the base system as a library containing the definitions of, say, map
and fold. We further define a class of extensions to take information hiding into account:

▶ Definition 29. Given an LCSTRS R0 and a set of function symbols – called hidden
symbols – in R0, an extension R1 of R0 is called a public extension if hidden symbols do
not occur in any rewrite rule in R1.

Now we present the central definitions of this section:

▶ Definition 30. Given an LCSTRS R0 with a sort ordering ≿, a term t is called universally
computable if for each extension R1 of R0 and each extension ≿′ of ≿ to sorts in R0 ∪ R1
(i.e., ≿′ coincides with ≿ over sorts in R0), t is C-computable in R0 ∪ R1 with ≿′; if a set of
hidden symbols in R0 is also given and the above universal quantification of R1 is restricted
to public extensions, such a term t is called publicly computable.

The base system R0 is called universally computable if all its terms are; it is called
publicly computable if all its public terms – terms that contain no hidden symbol – are.

With an empty set of hidden symbols, the two notions – universal computability and public
computability – coincide. Below we state common properties in terms of public computability.

In summary, we consider passing C-computable arguments to a defined symbol in R0
the “reasonable” way of calling the function. To establish the universal computability of
higher-order functions such as map and fold – i.e., to prove that they are C-computable in
all relevant hierarchical combinations – we will use SDPs, which are about C-computability.

▶ Example 31. The system { app (lam f) → f } in Section 1 is not universally computable
due to the extension { w x → app x x }.

5.1 The DP Framework Revisited
To use SDPs for universal – or public – computability, we need a more general version of
Theorem 10. We start with defining public chains:

▶ Definition 32. An SDP f ♯ s1 · · · sm ⇒ t♯ [φ | L] is called public if f is not a hidden
symbol. A (P, R)-chain is called public if its first SDP is public.

Now we state the main result of this section:

▶ Theorem 33. An AFP system R0 with sort ordering ≿ is publicly computable with respect
to a set of hidden symbols in R0 if there exists no infinite computable (SDP(R0), R0 ∪ R1)-
chain that is public for each public extension R1 of R0 and each extension ≿′ of ≿ to sorts
in R0 ∪ R1.

While this result is not surprising and its proof (see [11, Appendix A.3]) is standard, it
is not obvious how it can be used. The key observation which enables us to use the DP
framework for public computability is that among the DP processors in Section 4, only
reduction pair processors rely on the rewrite rules of the underlying system R (depending
on how it computes a graph approximation, a graph processor does not have to know all
the rewrite rules). Henceforth, we fix a base system R0, a set of hidden symbols in R0 and
an arbitrary, unknown public extension R1 of R0. Now R is the hierarchical combination
R0 ∪ R1.

First, we generalize the definition of a DP problem:
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▶ Definition 34. A (universal) DP problem (P, p) consists of a set P of SDPs and a flag
p ∈ { an, pu } (for any or public). A DP problem (P, p) is called finite if either (1) p = an

and there exists no infinite computable (P, R0 ∪ R1)-chain, or (2) p = pu and there exists no
infinite computable (P, R0 ∪ R1)-chain which is public.

DP processors are defined in the same way as before, now for universal DP problems. The
goal is to show that (SDP(R0), pu) is finite, and the procedure for termination in Section 4
also works here if we change the initialization of Q accordingly.

Next, we review the DP processors presented in Section 4. For each ρ of the original graph,
subterm criterion and integer mapping processors, the processor ρ′ such that ρ′(P, p) =
{ (P ′, an) | P ′ ∈ ρ(P) } is sound for universal DP problems. For theory argument processors,
we can do better when the input flag is pu (when it is an, we just handle P in the same way
as we do in Section 4 and the output flags are obviously an): if the subset P ′ of P fixed
by a theory argument mapping τ contains all the public SDPs in P, the processor should
return the singleton { ({ p | p ∈ P is public } ∪ { τ̄(p) | p ∈ P is not public }, pu) }; otherwise,
the pair { ({ τ̄(p) | p ∈ P }, an), (P \ P ′, pu) }. Reduction pair processors require knowledge of
the extension R1 so we do not adapt them.

New Processors. Last, we propose two classes of DP processors that are useful for public
computability. Processors of the first class do not actually simplify DP problems; they rather
alter their input to allow other DP processors to be applied subsequently.

▶ Definition 35. Given sets P1 and P2 of SDPs, P2 is said to cover P1 if for each SDP
s♯ ⇒ t♯ [φ1 | L1] ∈ P1 and each substitution σ1 which respects s♯ ⇒ t♯ [φ1 | L1], there exist
an SDP s♯ ⇒ t♯ [φ2 | L2] ∈ P2 and a substitution σ2 such that σ2 respects s♯ ⇒ t♯ [φ2 | L2],
sσ1 = sσ2 and tσ1 = tσ2. A constraint modification processor assigns to a DP problem
(P, p) the singleton { (P ′, p) } for some P ′ which covers P.

Now combined with the information of hidden symbols, the DP graph allows us to remove
SDPs that are unreachable from any public SDP.

▶ Definition 36. A reachability processor assigns to a DP problem (P, pu) the single-
ton { ({ p ∈ P | θ(p) is reachable from θ(p0) for some public SDP p0 }, pu) }, given a graph
approximation (Gθ, θ) for P.

These two classes of DP processors are often used together: a constraint modification
processor can split an SDP into simpler ones, some of which may be removed by a reachability
processor. In our implementation, a constraint modification processor is particularly used to
break an SDP s♯ ⇒ t♯ [u ̸= v | L] into two SDPs with logical constraints u < v and u > v,
respectively (see Example 37); similarly for s♯ ⇒ t♯ [u ∨ v | L].

▶ Example 37. Consider an alternative implementation of the factorial function from
Example 2, which has SDPs (1) fact♯ n k ⇒ comp♯ k ((∗) n) x′ [n ̸= 0], (2) fact♯ n k ⇒
fact♯ (n − 1) (comp k ((∗) n)) [n ̸= 0], and (3) init♯ k ⇒ fact♯ 42 k. Assume that fact is a hid-
den symbol. Note that ({ 1, 2, 3 }, pu) is not finite without this assumption. A constraint mod-
ification processor can replace (2) with (4) fact♯ n k ⇒ fact♯ (n − 1) (comp k ((∗) n)) [n < 0],
and (5) fact♯ n k ⇒ fact♯ (n − 1) (comp k ((∗) n)) [n > 0]. A reachability processor can
then remove (4). The remaining DP problem ({ 1, 3, 5 }, pu) can easily be handled by a graph
processor and an integer mapping processor.

We conclude this section by the following result (see [11, Appendix A.4]):

▶ Theorem 38. All the DP processors defined in Section 5 are sound.
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6 Experiments and Future Work

All the results in this paper have been implemented in our open-source analyzer Cora [20].
We have evaluated Cora on three groups of experiments, and the results are in Table 1.

Table 1 Cora experiment results.

Custom STRS ITRS
Termination 20/28 72/140 69/117

Computability 20/28 66/140 68/117
Wanda – 105/140 –

AProVE – – 102/117

The first group contains examples in this paper and several other LC(S)TRS benchmarks
we have collected. The second group contains all the λ-free problems from the higher-order
category of TPDB [5]. The third group contains problems from the first-order “integer TRS
innermost” category. The computability tests analyze public computability; since there are
no hidden symbols in TPDB, the main difference from a termination check is that reduction
pair processors are disabled. A full evaluation page is available through the link:

https://www.cs.ru.nl/~cynthiakop/experiments/mfcs2024

Unsurprisingly, Cora is substantially weaker than Wanda [16] on unconstrained higher-
order TRSs, and AProVE [8] on first-order integer TRSs: this work aims to be a starting
point for combining higher-order term analysis and theory reasoning, and cannot yet compete
with dedicated tools that have had years of development. Nevertheless, we believe that these
results show a solid foundation with only a handful of simple techniques.

Future Work. Many of the existing techniques used in the analyses of integer TRSs and
higher-order TRSs are likely to be extensible to our setting, leaving many encouraging
avenues for further development. We highlight the most important few:

Usable rules with respect to an argument filtering [10, 17]. To effectively use reduction
pairs, being able to discard some rewrite rules is essential (especially for universal
computability, if we can discard the unknown ones). Closely related is the adaptation of
more reduction pairs such as weakly monotonic algebras [36, 34], tuple interpretations [22,
35] and more sophisticated path orderings [4], all of which have higher-order formulations.
Transformation techniques, such as narrowing, and chaining dependency pairs together
(as used for instance for integer transition systems [8, Secion 3.1]). This could also be a
step toward using the constrained DP framework for non-termination.
Handling the innermost or call-by-value strategy. Several functional languages adopt call-
by-value evaluation, and applying this restriction may allow for more powerful analyses.
In the first-order DP framework, there is ample work on the innermost strategy to build
on (see, e.g., [9, 10]).
Theory-specific processors for popular theories other than integers, e.g., bit vectors [25].
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Abstract
Vertex integrity is a graph parameter that measures the connectivity of a graph. Informally, its
meaning is that a graph has small vertex integrity if it has a small separator whose removal
disconnects the graph into connected components which are themselves also small. Graphs with low
vertex integrity are very structured; this renders many hard problems tractable and has recently
attracted interest in this notion from the parameterized complexity community. In this paper we
revisit the NP-complete problem of computing the vertex integrity of a given graph from the point
of view of structural parameterizations. We present a number of new results, which also answer
some recently posed open questions from the literature. Specifically, we show that unweighted vertex
integrity is W[1]-hard parameterized by treedepth; we show that the problem remains W[1]-hard
if we parameterize by feedback edge set size (via a reduction from a Bin Packing variant which
may be of independent interest); and complementing this we show that the problem is FPT by
max-leaf number. Furthermore, for weighted vertex integrity, we show that the problem admits a
single-exponential FPT algorithm parameterized by vertex cover or by modular width, the latter
result improving upon a previous algorithm which required weights to be polynomially bounded.
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1 Introduction

The vertex integrity of a graph is a vulnerability measure indicating how easy it is to break
down the graph into small pieces. More precisely, the vertex integrity vi(G) of a graph G

is defined as vi(G) = minS⊆V (G){|S| + maxD∈cc(G−S) |D|}, that is, to calculate the vertex
integrity of a graph we must find a separator that minimizes the size of the separator
itself plus the size of the largest remaining connected component. Intuitively, a graph has
low vertex integrity not only when it contains a small separator, but more strongly when
it contains a small separator such that its removal leaves a collection of small connected
components.

Vertex integrity was first introduced more than thirty years ago by Barefoot et al. [1],
but has recently received particular attention from the parameterized complexity community
since it can be considered as a very natural structural parameter: when a graph has vertex
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integrity k, large classes of NP-hard problems admit FPT1 algorithms with running times
of the form f(k)nO(1) [27]. Note that vertex integrity has a clear relationship with other,
well-known structural parameters (see also Figure 1): it is more restrictive than treedepth,
pathwidth, and treewidth (all these parameters are upper-bounded by vertex integrity) but
more general than vertex cover (a graph of vertex cover k has vertex integrity at most k + 1).
“Price of generality” questions, where one seeks to discover for a given problem the most
general parameter for which an FPT algorithm is possible, are a central topic in structural
parameterized complexity, and vertex integrity therefore plays a role as a natural stepping
stone in the hierarchy of standard parameters [3, 15, 16, 20, 22, 27].

The investigation of the parameterized complexity aspects of vertex integrity is, therefore,
an active field of research, but it is important to remember that a prerequisite for any such
parameter to be useful is that it should be tractable to calculate the parameter itself (before
we try to use it to solve other problems). Since, unsurprisingly, computing the vertex integrity
exactly is NP-complete [6], in this paper we focus on this problem from the point of view of
parameterized complexity. We consider both the unweighted, as well as a natural weighted
variant of the problem. Formally, we want to solve the following:

Instance: A graph G (with binary vertex weights w : V (G) → Z+), an integer k.
Goal: Determine whether vi(G) ≤ k (wvi(G) ≤ k).

Unweighted (Weighted) Vertex Integrity

The point of view we adopt is that of structural parameterized complexity, where vertex
integrity is the target problem we are trying to solve, and not necessarily the parameter.
Instead, we parameterize by standard structural width measures, such as variations of
treewidth. The questions we would like to address are of several forms:
1. For which structural parameters is it FPT to compute the vertex integrity?
2. For which such parameters is it possible to obtain an FPT algorithm with single-

exponential complexity?
3. For which parameters can the weighted version of the problem be handled as well as the

unweighted version?

To put these questions in context, we recall some facts from the state of the art. When
the parameter k is the vertex integrity itself, Fellows and Stueckle show an O(k3kn)-time
algorithm for Unweighted Vertex Integrity [13], and later Drange et al. proposed
an O(kk+1n)-time algorithm even for Weighted Vertex Integrity [9], so this problem
is FPT. More recently, Gima et al. [21] took up the study of vertex integrity in the same
structurally parameterized spirit as the one we adopt here and presented numerous results
which already give some answers to the questions we posed above. In particular, for the first
question they showed that Unweighted Vertex Integrity is W[1]-hard by pathwidth
(and hence by treewidth); for the second question they showed that the problem admits a
single-exponential algorithm for parameter modular-width; and for the third question they
showed that the problem is (weakly) NP-hard on sub-divided stars, which rules out FPT
algorithms for most structural parameters.

1 We assume the reader is familiar with the basics of parameterized complexity, as given e.g. in [7]. We
give precise definitions of all parameters in the next section.
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Figure 1 The parameterized complexity of Unweighted Vertex Integrity, with the underlined
parameters indicating our results. A connection between two parameters implies that the one above
generalizes the one below; that is, the one above is upper-bounded by a function of the one below.
Regarding the presented parameters, vc, vi, td, pw, tw, cw, ml, fes, fvs, ∆, and mw stand for vertex
cover, vertex integrity, treedepth, pathwidth, treewidth, cliquewidth, max-leaf number, feedback
edge set, feedback vertex set, maximum degree, and modular width respectively. All of our FPT
algorithms have single-exponential parametric dependence, while the ones for vc and mw extend to
the weighted case as well.

Our results. Although the results of [21] are rather comprehensive, they leave open several
important questions about the complexity of vertex integrity. In this paper we resolve the
questions explicitly left open by [21] and go on to present several other results that further
clarify the picture for vertex integrity. In particular, our results are as follows (see also
Figure 1):

The first question we tackle is an explicit open problem from [21]: is Unweighted
Vertex Integrity FPT parameterized by treedepth? This is a very natural question,
because treedepth is the most well-known parameter that sits between pathwidth, where
the problem is W[1]-hard by [21], and vertex integrity itself, where the problem is FPT. We
resolve this question via a reduction from Bounded Degree Vertex Deletion, showing
that Unweighted Vertex Integrity is W[1]-hard for treedepth (Theorem 2).

A second question left open by [21] is the complexity of Unweighted Vertex Integrity
for parameter feedback vertex set. Taking a closer look at our reduction from Bounded
Degree Vertex Deletion, which is known to be W[1]-hard for this parameter, we observe
that it also settles this question, showing that Unweighted Vertex Integrity is also
hard. However, in this case we are motivated to dig a little deeper and consider a parameter,
feedback edge set, which is a natural restriction of feedback vertex set and typically makes
most problems FPT. Our second result is to show that Unweighted Vertex Integrity
is in fact W[1]-hard even when parameterized by feedback edge set and the maximum degree
of the input graph (Theorem 7). We achieve this via a reduction from Unary Bin Packing
parameterized by the number of bins, which is W[1]-hard [23]. An aspect of our reduction
which may be of independent interest is that we use a variant of Unary Bin Packing where
we are given a choice of only two possible bins per item (we observe that the reduction of [23]
applies to this variant).

We complement these mostly negative results with a fixed-parameter tractability result
for a more restrictive parameter: we show that Unweighted Vertex Integrity is FPT
by max-leaf number (Theorem 10) indeed by a single-exponential FPT algorithm. Note
that when a graph has bounded max-leaf number, then it has bounded degree and bounded
feedback edge set number, therefore this parameterization is a special case of the one
considered in Theorem 7. Hence, this positive result closely complements the problem’s
hardness in the more general case.

MFCS 2024
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Moving on, we consider the parameterization by modular width, and take a second look
at the 2O(mw)nO(1) algorithm provided by [21], which is able to handle the weighted case of
the problem, but only for polynomially-bounded weights. Resolving another open problem
posed by [21], we show how to extend their algorithm to handle the general case of weights
encoded in binary (Theorem 13).

Finally, we ask the question of whether a single-exponential FPT algorithm is possible for
parameters other than max-leaf and modular width. We answer this affirmatively for vertex
cover, even in the weighted case (Theorem 16), obtaining a faster and simpler algorithm for
the unweighted case (Theorem 14).

Related work. The concept of vertex integrity is natural enough that it has appeared in
many slight variations under different names in the literature. We mention in particular, the
fracture number [10], which is the minimum k such that it is possible to delete k vertices
from a graph so that all remaining components have size at most k, and the starwidth [29],
which is the minumum width of a tree decomposition that is a star. Both of these are
easily seen to be at most a constant factor away from vertex integrity. Similarly, the safe
set number [2, 14] seeks a separator such that every component of the separator is only
connected to smaller components. These concepts are so natural that sometimes they are
used as parameters without an explicit name, for example [4] uses the parameter “size of a
deletion set to a collection of components of bounded size”. As observed by [21], despite these
similarities, sometimes computing these parameters can have different complexity, especially
when weights are allowed. Another closely related computational problem, that we also
use, is the Component Order Connectivity [9] problem, where we are given explicit
distinct bounds on the size of the separator sought and the allowed size of the remaining
components.

2 Preliminaries

Throughout the paper we use standard graph notation [8] and assume familiarity with the
basic notions of parameterized complexity [7]. All graphs considered are undirected without
loops. Given a graph G, ∆ denotes its maximum degree; if we are additionally given S ⊆ V (G),
G[S] denotes the subgraph induced by S, while G − S denotes G[V (G) \ S]. Furthermore,
given a weight function w : V (G) → Z+, w(S) denotes the sum of the weights of the vertices of
S, that is w(S) =

∑
s∈S w(s). For x, y ∈ Z, let [x, y] = {z ∈ Z : x ≤ z ≤ y}, while [x] = [1, x].

For a set of integers S ⊆ Z+, let Σ(S) denote the sum of its elements, i.e. Σ(S) =
∑

s∈S s,
while

(
S
c

)
denotes the set of subsets of S of size c, i.e.

(
S
c

)
= {S′ ⊆ S : |S′| = c}. Proofs of

statements marked with (⋆) are presented in the full version of the paper.

2.1 Vertex Integrity
For a vertex-weighted graph G with w : V (G) → Z+, we define its weighted vertex integrity,
denoted by wvi(G), as

wvi(G) = min
S⊆V (G)

{
w(S) + max

D∈cc(G−S)
w(D)

}
,

where cc(G − S) is the set of connected components of G − S. A set S such that w(S) +
maxD∈cc(G−S) w(D) ≤ k is called a wvi(k)-set. The vertex integrity of an unweighted
graph G, denoted by vi(G), is defined in an analogous way, by setting w(v) = 1 for all
v ∈ V (G). In that case, S ⊆ V (G) is a vi(k)-set if |S| + maxD∈cc(G−S) |D| ≤ k.
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A vertex v ∈ S is called redundant if at most one connected component of G − S contains
neighbors of v. A set S ⊆ V (G) is irredundant if S contains no redundant vertex. Notice
that it suffices to only search for irredundant wvi(k)-sets when solving Vertex Integrity,
since if v ∈ S is redundant and S is a wvi(k)-set, that is the case for set S \ {v} as well.

▶ Proposition 1 ([9, 21]). A graph with a wvi(k)-set has an irredundant wvi(k)-set.

2.2 Graph Parameters
We use several standard graph parameters, so we recall here their definitions and known
relations between them. A graph G has feedback vertex (respectively edge) set k if there
exists a set of k vertices (respectively edges) such that removing them from G destroys
all cycles. We use fvs(G) and fes(G) to denote these parameters. Note that even though
computing fvs(G) is NP-complete [24], in all connected graphs with m edges and n vertices
fes(G) = m − n + 1. The vertex cover of a graph G, denoted by vc(G), is the size of the
smallest set whose removal destroys all edges. The treedepth of a graph G can be defined
recursively as follows: td(K1) = 1; if G is disconnected td(G) is equal to the maximum of
the treedepth of its connected components; otherwise td(G) = minv∈V (G) td(G − v) + 1. The
max-leaf number of a graph G, denoted by ml(G), is the maximum number of leaves of any
spanning tree of G.

A module of a graph G = (V, E) is a set of vertices M ⊆ V such that for all x ∈ V \ M

we have that x is either adjacent to all vertices of M or to none. The modular width of a
graph G = (V, E) ([17, 18]) is the smallest integer k such that, either |V | ≤ k, or V can be
partitioned into at most k′ ≤ k sets V1, . . . , Vk′ , with the following two properties: (i) for all
i ∈ [k′], Vi is a module of G, (ii) for all i ∈ [k′], G[Vi] has modular width at most k.

Let us also briefly explain the relations depicted in Figure 1. Clearly, for all G, we have
fvs(G) ≤ fes(G), because we can remove from the graph one endpoint of each edge of the
feedback edge set. It is known that if a graph has ml(G) = k, then G contains at most
O(k) vertices of degree 3 or more (Lemma 8), and clearly such a graph has maximum degree
at most k. Since vertices of degree at most 2 are irrelevant for fes, we conclude that the
parameterization by ml is more restrictive than that for fes + ∆. It is also not hard to see
that for all G, td(G) ≤ vi(G) ≤ vc(G) + 1. Note also that even though vc can be seen as a
parameter more restrictive than mw, when a graph has vertex cover k, the best we can say is
that its modular width is at most 2k + k [26]. As a result, the algorithm of Theorem 13 does
not imply a single-exponential FPT algorithm for parameter vc (but does suffice to show that
the problem is FPT). We also note that the reductions of Theorem 2 (for td) and Theorem 7
(for fes + ∆) are complementary and cannot be subsumed by a single reduction. The reason
for this is that if in a graph we bound simultaneously the treedepth and the maximum degree,
then we actually bound the size of the graph (rendering all problems FPT).

3 Treedepth

Our main result in this section is the following theorem, resolving a question of [21]. We
obtain it via a parameter-preserving reduction from Bounded Degree Vertex Deletion,
which is known to be W[1]-hard parameterized by treedepth plus feedback vertex set [19].

▶ Theorem 2. Unweighted Vertex Integrity is W[1]-hard parameterized by td + fvs.
Moreover, it cannot be solved in time f(td)no(td) under the ETH.
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Proof. First we define the closely related Component Order Connectivity problem:
given a graph G as well as integers ℓ and p, we want to determine whether there exists
S ⊆ V (G) such that |S| ≤ p and all components of G − S have size at most ℓ. We will
proceed in two steps: we first reduce Bounded Degree Vertex Deletion to Component
Order Connectivity, and then employ the reduction of [21] that reduces the latter to
Unweighted Vertex Integrity. Notice that [21, Lemma 4.4] creates an equivalent
instance of Unweighted Vertex Integrity by solely adding disjoint stars and leaves in
the vertices of the initial graph, therefore it suffices to prove the statement for Component
Order Connectivity instead.

We give a parameterized reduction from Bounded Degree Vertex Deletion, which
is W[1]-hard by treedepth plus feedback vertex set number [19] and cannot be solved in time
f(td)no(td) under the ETH [28]. In Bounded Degree Vertex Deletion we are given a
graph G = (V, E) and two integers k and d, and we are asked to determine whether there
exists S ⊆ V of size |S| ≤ k such that the maximum degree of G − S is at most d. In the
following, let n = |V (G)| and m = |E(G)|.

Given an instance (G, k, d) of Bounded Degree Vertex Deletion, we construct an
equivalent instance (G′, ℓ, p) of Component Order Connectivity. We construct G′ from
G as follows: We subdivide every edge e = {u, v} ∈ E(G) three times, thus replacing it with
a path on vertices u, uv, ye, vu, and v, where Te = {uv, ye, vu}. Next, we attach d − 1 leaves
to ye (see Figure 2). This concludes the construction of G′. Notice that the subdivision of
the edges three times and the attachment of pendant vertices does not change the feedback
vertex set number, while the treedepth is only increased by an additive constant. Thus, it
holds that fvs(G′) = fvs(G) and td(G′) = td(G) + O(1).

𝑢 𝑣 𝑢 𝑣𝑢! 𝑣"𝑦#

𝑒 = {𝑢, 𝑣} ∈ 𝐸(𝐺) ⋯

𝑑 − 1

Figure 2 Edge gadget for edge e = {u, v} ∈ E(G).

In the following, we show that (G, k, d) is a yes-instance of Bounded Degree Vertex
Deletion if and only if (G′, ℓ, p) is a yes-instance of Component Order Connectivity,
where ℓ = d + 1 and p = k + m.

For the forward direction, let S be a set of vertices of size at most k such that the
maximum degree of G−S is at most d. We will construct a set S′ ⊆ V (G′) such that |S′| ≤ p

and every connected component of G′ − S′ has size at most ℓ. Initially set S′ = S. Then,
add one vertex to S′ per edge e = {u, v} ∈ E(G) as follows. If u, v ∈ S or u, v /∈ S, we add
ye to S′. Otherwise, if u ∈ S and v /∈ S, we add vu to S′; symmetrically, if u /∈ S and v ∈ S,
we add uv instead. Notice that |S′| = |S| + m ≤ k + m = p, therefore it suffices to show that
the size of each connected component of G′ − S′ is at most ℓ = d + 1.

Consider a connected component D of G′ − S′. Assume that D does not contain any
vertices of V \S. If D is a leaf it holds that |D| ≤ d+ 1. Alternatively, D is a subgraph of the
graph induced by uv (or vu), ye, and its attached leaves, for some e = {u, v} ∈ E(G), in which
case |D| ≤ d + 1. Now assume that D contains u ∈ V \ S. Notice that u is the only vertex of
V \ S present in D, since S′ ∩ Te ≠ ∅ for all e ∈ E(G). Moreover, let N(u) \ S = {ui : i ∈ [q]}
denote its neighbors in G − S, where q ≤ d since the maximum degree of G − S is at most
d. In that case, it follows that D consists of u, as well as the vertices uui

for all i ∈ [q].
Consequently, |D| = q + 1 ≤ d + 1.
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For the converse direction, assume there exists S′ ⊆ V (G′) such that |S′| ≤ p = k + m

and |D| ≤ ℓ = d + 1, for all connected components D ∈ cc(G′ − S′). Assume that S′ does
not contain any leaves; if it does, substitute them with their single neighbor. Moreover,
S′ ∩ Te ̸= ∅ for all e ∈ E(G), since otherwise G′ − S′ has a component of size at least
d + 2 > ℓ, which is a contradiction. Assume without loss of generality that |S′ ∩ Te| = 1,
for all e = {u, v} ∈ E(G); if that is not the case, there is always a vertex of {uv, vu}, say uv,
such that uv ∈ S′ and S′ ∩ {ye, vu} ̸= ∅, in which case one may consider the deletion set
(S′ ∪ {u}) \ {uv} instead (the argument is symmetric in case vu ∈ S′).

Let S = S′ ∩ V , where |S| ≤ k. We will prove that G − S has maximum degree at most
d. Let Du denote the connected component of G′ − S′ that contains u ∈ V \ S′; in fact this
is the only vertex of V \ S′ present in Du, since S′ ∩ Te ≠ ∅ for all e ∈ E(G). Notice that for
all e = {u, v} ∈ E(G) where u, v /∈ S′, it holds that ye ∈ S′: if that were not the case, then
either Du or Dv contains at least d + 2 > ℓ vertices, due to {u, uv, ye} or {v, vu, ye} and the
leaves of ye respectively. For u ∈ V \ S, let N(u) \ S = {ui : i ∈ [q]}, for some integer q,
denote its neighbors in G − S, where ei = {u, ui} ∈ E(G) for i ∈ [q]. It suffices to show that
q ≤ d. Assume that this is not the case, i.e. q > d. Then, since S′ ∩ Tei = {yei} for i ∈ [q], it
follows that Du contains vertices u and uui

, therefore |Du| ≥ q + 1 > d + 1 = ℓ, which is
a contradiction. Consequently, |N(u) \ S| ≤ d for all u ∈ V \ S, i.e. G − S has maximum
degree d. ◀

4 Feedback Edge Set plus Maximum Degree

In this section we prove that Vertex Integrity is W[1]-hard parameterized by fes + ∆.
Since our reduction is significantly more involved than the one of Theorem 2, we proceed in
several steps. We start from an instance of Unary Bin Packing where the parameter is
the number of bins and consider a variant where we are also supplied in the input, for each
item, a choice of two possible bins to place it. We first observe that the reduction of [23]
shows that this variant is also W[1]-hard. We then reduce this to a semi-weighted version of
Vertex Integrity, where placing a vertex in the separator always costs 1, but vertices
have weights which they contribute to their components if they are not part of the separator,
and where we are prescribed the size of the separator to use (this is called the Component
Order Connectivity problem). Subsequently, we show how to remove the weights and
the prescription on the separator size to obtain hardness for Vertex Integrity.

4.1 Preliminary Tools
Unary Bin Packing. Given a set S = {s1, . . . , sn} of integers in unary (i.e. si = O(nc) for
some constant c), as well as k ∈ Z+, Unary Bin Packing asks whether we can partition
S into k subsets S1, . . . , Sk, such that Σ(Si) = Σ(S)/k, for all i ∈ [k]. This problem is well
known to be W[1]-hard parameterized by the number of bins k [23]. We formally define a
restricted version where every item is allowed to choose between exactly two bins, and by
delving deeper into the proof of [23] we observe that an analogous hardness result follows.

Instance: A set S = {s1, . . . , sn} of integers in unary, k ∈ Z+, as well as a function
f : S →

([k]
2

)
.

Goal: Determine whether we can partition S into k subsets S1, . . . , Sk, such that
for all i ∈ [k] it holds that (i) Σ(Si) = Σ(S)/k, and (ii) ∀s ∈ Si, i ∈ f(s).

Restricted Unary Bin Packing
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▶ Theorem 3 (⋆). Restricted Unary Bin Packing is W[1]-hard parameterized by the
number of bins.

Semi-weighted problems. In this section we study semi-weighted versions of Component
Order Connectivity and Vertex Integrity, which we first formally define. Then, we
prove that the first can be reduced to the latter, while retaining the size of the minimum
feedback edge set and the maximum degree.

Instance: A vertex-weighted graph G = (V, E, w), as well as integers ℓ, p ∈ Z+.
Goal: Determine whether there exists S ⊆ V of size |S| ≤ p, such that w(D) ≤ ℓ

for all D ∈ cc(G − S).

Semi-Weighted Component Order Connectivity

Instance: A vertex-weighted graph G = (V, E, w), as well as an integer ℓ ∈ Z+.
Goal: Determine whether there exists S ⊆ V such that |S| + w(D) ≤ ℓ for all

D ∈ cc(G − S).

Semi-Weighted Vertex Integrity

▶ Theorem 4 (⋆). Semi-Weighted Component Order Connectivity parameterized by
fes + ∆ is fpt-reducible to Semi-Weighted Vertex Integrity parameterized by fes + ∆.

4.2 Hardness Result

Using the results of Section 4.1, we proceed to proving the main theorem of this section.
To this end, we present a reduction from Restricted Unary Bin Packing to Semi-
Weighted Component Order Connectivity such that for the produced graph G it
holds that fes(G) + ∆(G) ≤ f(k), for some function f and k denoting the number of bins of
the Restricted Unary Bin Packing instance.

We first provide a sketch of our reduction. For every bin of the Restricted Unary Bin
Packing instance, we introduce a clique of O(k) heavy vertices, and then connect any pair
of such cliques via two paths. The weights are set in such a way that an optimal solution
will only delete vertices from said paths. In order to construct a path for a pair of bins, we
compute the set of all subset sums of the items that can be placed in these two bins, and
introduce a vertex of medium weight per such subset sum. Moreover, every such vertex
corresponding to subset sum s is preceded by exactly s vertices of weight 1. An optimal
solution will cut the path in such a way that the number of vertices of weight 1 will be
partitioned between the two bins, encoding the subset sum of the elements that are placed on
each bin. The second path that we introduce has balancing purposes, allowing us to exactly
count the number of vertices of medium weight that every connected component will end up
with.

▶ Theorem 5 (⋆). Semi-Weighted Component Order Connectivity is W[1]-hard
parameterized by fes + ∆.

By Theorems 4 and 5, the hardness of Semi-Weighted Vertex Integrity follows.

▶ Theorem 6. Semi-Weighted Vertex Integrity is W[1]-hard parameterized by fes + ∆.
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Moreover, we can easily reduce an instance (G, w, k) of Semi-Weighted Vertex In-
tegrity to an instance (G′, k) of Unweighted Vertex Integrity by attaching a path
on w(v) − 1 vertices to each vertex v (we assume that w(v) ≤ k, otherwise v belongs to the
deletion set). Thus, fes(G′) = fes(G) and ∆(G′) = ∆(G) + 1, and due to Theorem 6 the
main result of this section follows.

▶ Theorem 7. Unweighted Vertex Integrity is W[1]-hard parameterized by fes + ∆.

5 Max-Leaf Number

In this section, we consider Unweighted Vertex Integrity parameterized by the max-leaf
number. For a connected graph G we denote by ml(G) the maximum number of leaves of
any spanning tree of G. This is a well-studied but very restricted parameter [11, 12, 26]. In
particular, it is known that if a graph G has ml(G) ≤ k, then in fact G is a subdivision of a
graph on O(k) vertices [25]. We are motivated to study this parameter because in a sense it
lies close to the intractability boundary established in Section 4. Observe that if a graph is a
sub-division of a graph on k vertices, then it has maximum degree at most k and feedback
edge set at most k2; however, graphs of small feedback edge set and small degree do not
necessarily have small max-leaf number (consider a long path where we attach a leaf to each
vertex). Interestingly, the graphs we construct in Section 4.2 do have small max-leaf number,
if we consider semi-weighted instances. However, adding the necessary simple gadgets in
order to simulate weights increases the max-leaf number of the graphs of our reduction. It is
thus a natural question whether this is necessary. In this section, we show that indeed this is
inevitable, as Vertex Integrity is FPT parameterized by ml.

We start with a high-level overview of our approach. As mentioned, we will rely on the
result of Kleitman and West [25] who showed that if a graph G = (V, E) has ml(G) ≤ k, then
there exists a set X of size |X| = O(k) such that all vertices of V \ X have degree at most
2. Our main tool is a lemma (Lemma 9) which allows us to “rotate” solutions: whenever
we have a cycle in our graph, we can, roughly speaking, exchange every vertex of S in the
cycle with the next vertex, until we reach a point where our solution removes strictly more
vertices of X. We therefore guess the largest intersection of an optimal separator with X,
and can now assume that in every remaining cycle, the separator S is not using any vertices.
This allows us to simplify the graph in a way that removes all cycles and reduces the case to
a tree, which is polynomial-time solvable.

Let us now give more details. We first recall the result of [25].

▶ Lemma 8 (⋆). In any graph G, the set X of vertices of degree at least 3 has size at most
|X| ≤ 12ml(G) + 32.

We will solve Component Order Connectivity: for a given ℓ we want to calculate the
minimum number of vertices p such that there exists a separator S of size at most p with all
components of G−S having size at most ℓ. To obtain an algorithm for Unweighted Vertex
Integrity, we will try all possible values of ℓ and select the solution which minimizes ℓ + p.

Our main lemma is now the following:

▶ Lemma 9 (⋆). Let G = (V, E) be a graph and X be a set of vertices such that all vertices
of V \ X have degree at most 2 in G. For all positive integers ℓ, p, if there exists a separator
S of size at most p such that all components of G − S have size at most ℓ, then there exists
such a separator S that also satisfies the following property: for every cycle C of G with
C ∩ X ̸= ∅ we either have C ∩ S = ∅ or C ∩ X ∩ S ̸= ∅.
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We are now ready to state the main result of this section.

▶ Theorem 10 (⋆). Unweighted Vertex Integrity can be solved in time 2O(ml)nO(1).

6 Modular Width

In this section we revisit an algorithm of [21] establishing that Weighted Vertex Integrity
can be solved in time 2O(mw)nO(1), on graphs of modular width mw, but only if weights are
polynomially bounded in n (or equivalently, if weights are given in unary). It was left as
an explicit open problem in [21] whether this algorithm can be extended to the case where
weights are given in binary and can therefore be exponential in n. We resolve this problem
positively, by showing how the algorithm of [21] can be modified to work also in this case,
without a large increase in its complexity.

The high-level idea of the algorithm of [21] is to perform dynamic programming to solve
the related Weighted Component Order Connectivity problem. In this problem we
are given a target component weight ℓ and a deletion budget p and are asked if it is possible
to delete from the graph a set of vertices with total weight at most p so that the maximum
weight of any remaining component is at most ℓ. Using this algorithm as a black box, we can
then solve Weighted Vertex Integrity by iterating over all possible values of ℓ, between
1 and the target vertex integrity. If vertex weights are polynomially bounded, this requires a
polynomial number of iterations, giving the algorithm of [21]. However, if weights are given
in binary, the target vertex integrity could be exponential in n, so in general, it does not
appear possible to guess the weight of the heaviest component in an optimal solution.

Our contribution to the algorithm of [21] is to observe that for graphs of modular width
mw the weight of the heaviest component may take at most 2O(mw)n distinct possible values.
Hence, for this parameter, guessing the weight of the heaviest component in an optimal
solution can be done in FPT time. We can therefore plug in this result to the algorithm
of [21] to obtain an algorithm for Weighted Vertex Integrity with binary weights
running in time 2O(mw)nO(1).

Our observation is based on the following lemma.

▶ Lemma 11 (⋆). Let G = (V, E) be an instance of Weighted Vertex Integrity. There
exists an optimal solution using a separator S such that for all connected components D of
G − S and modules M of G we have one of the following: (i) M ∩ D = ∅, (ii) M ⊆ D, or
(iii) D ⊆ M .

We also recall the algorithmic result of [21].

▶ Theorem 12 ([21]). There exists an algorithm that takes as input a vertex-weighted graph
G = (V, E) and an integer ℓ and computes the minimum integer p such that there exists a
separator S of G of weight at most p such that each component of G − S has weight at most
ℓ. The algorithm runs in time 2O(mw)nO(1), where n is the size of the input.

Putting Lemma 11 and Theorem 12 together we obtain the main result of this section.

▶ Theorem 13 (⋆). There exists an algorithm that solves Weighted Vertex Integrity
in time 2O(mw)nO(1), where mw is the modular width of the input graph, n is the size of the
input, and weights are allowed to be written in binary.
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7 Vertex Cover Number

In this section, we design single-exponential algorithms for Vertex Integrity parameterized
by vertex cover number. We suppose that a minimum vertex cover C of size vc is given
since it can be computed in time O(1.2738vc + vcn) [5]. We start by presenting an algorithm
for Unweighted Vertex Integrity, before moving on to the weighted version of the
problem.

▶ Theorem 14 (⋆). Unweighted Vertex Integrity can be solved in time 5vcnO(1).

We now move on to the weighted case of the problem. It is clear that Weighted
Vertex Integrity is FPT parameterized by vertex cover, due to Theorem 13 and the
relation between modular-width and vertex cover. However, this gives a double-exponential
dependence on vc, as mw ≤ 2vc + vc and there are some graphs for which this is essentially
tight. We would like to obtain an algorithm that is as efficient as that of Theorem 14. The
algorithm of Theorem 14, however, cannot be applied to the weighted case because the case
of the branching where we place a vertex of the independent set in the separator is not
guaranteed to make much progress (the vertex could have very small weight compared to
our budget).

Before we proceed, it is worth thinking a bit about how this can be avoided. One way
to obtain a faster FPT algorithm would be, rather than guessing only the intersection of
the optimal separator S with the vertex cover C, to also guess how the vertices of C \ S

are partitioned into connected components in the optimal solution. This would immediately
imply the decision for all vertices of the independent set: vertices with neighbors in two
components must clearly belong to S, while the others cannot belong to S if S is irredundant.
This algorithm would give a complexity of vcO(vc)nO(1), however, because the number of
partitions of C is slightly super-exponential.

Let us sketch the high level idea of how we handle this. Our first step is, similarly
to Theorem 13, to calculate the weight wmax of the most expensive connected component of
the optimal solution. For this, there are at most 2vc + n possibilities, because this component
is either a single vertex, or it has a non-empty intersection with C. However, if we fix its
intersection with C, then this fixes its intersection with the independent set: the component
must contain (by irredundancy) exactly those vertices of the independent set all of whose
neighbors in C are contained in the component. Having fixed a value of wmax we simply seek
the best separator so that all components have weight at most wmax. The reason we perform
this guessing step is that this version of this problem is easier to decompose: if we have a
disconnected graph, we simply calculate the best separator in each part and take the sum
(this is not as clear for the initial version of Vertex Integrity).

Suppose then that we have fixed wmax, how do we find the best partition of C into
connected components? We apply a win/win argument: if the optimal partition has a
connected component that contains many (say, more than vc/10) vertices of C, we simply
guess the intersection of the component with C and complete it with vertices from the
independent set, as previously, while placing vertices with neighbors inside and outside the
component in the separator. If the weight of the component is at most wmax, we recurse
in the remaining instance, which has vertex cover at most 9vc/10. The complexity of this
procedure works out as T (vc) ≤ 2vc · T (9vc/10) = 2O(vc).

What if the optimal partition of C only has components with few vertices of C? In that
case we observe that we do not need to compute the full partition (which would take time
vcvc), but it suffices to guess a good bipartition of C into two sets, of roughly the same size
(say, both sets have size at least 2vc/5), such that the two sets are a coarsening of the optimal
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partition. In other words, we compute two subsets of C, of roughly equal size, such that the
intersection of each connected component with C is contained in one of the two sets. This is
always possible in this case, because no connected component has a very large intersection
with C. Now, all vertices of I which have neighbors on both sides of the bipartition of C

must be placed in the separator. But once we do this, we have disconnected the instance
into two independent instances, each of vertex cover at most 3vc/5. The complexity of this
procedure again works out as T (vc) ≤ 2vc · 2 · T (3vc/5) = 2O(vc).

Let us now proceed to the technical details. To solve Weighted Vertex Integrity,
we first define the annotated and optimization version of the problem.

Instance: A vertex-weighted graph G = (V, E, w), a vertex cover C of G, an integer
wmax.

Goal: Find a minimum weight irredundant wvi-set S ⊆ V \ C such that w(D) ≤
wmax for all D ∈ cc(G − S). If there is no such S, report NO.

Annotated Weighted Vertex Integrity with Vertex Cover

Then we give an algorithm that solves Annotated Weighted Vertex Integrity
with Vertex Cover.

▶ Theorem 15 (⋆). Annotated Weighted Vertex Integrity with Vertex Cover
can be solved in time 2O(|C|)nO(1).

▶ Theorem 16 (⋆). Weighted Vertex Integrity can be solved in time 2O(vc)nO(1).

8 Conclusion

We have presented a number of new results on the parameterized complexity of computing ver-
tex integrity. The main question that remains open is whether the slightly super-exponential
kO(k)nO(1) algorithm, where k is the vertex integrity itself, can be improved to single-
exponential. Although we have given such an algorithm for the more restricted parameter
vertex cover, we conjecture that for vertex integrity the answer is negative. Complementing
this question, it would be interesting to consider approximation algorithms for vertex integrity,
whether trying to obtain FPT approximations in cases where the problem is W[1]-hard, or
trying to obtain almost-optimal solutions via algorithms that run with a better parameter de-
pendence. Again, a constant-factor or even (1 + ε)-approximation running in time 2O(k)nO(1)

would be the ideal goal. Do such algorithms exist or can they be ruled out under standard
complexity assumptions?
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The Complexity of (P3, H)-Arrowing and Beyond
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Abstract
Often regarded as the study of how order emerges from randomness, Ramsey theory has played
an important role in mathematics and computer science, giving rise to applications in numerous
domains such as logic, parallel processing, and number theory. The core of graph Ramsey theory is
arrowing: For fixed graphs F and H, the (F, H)-Arrowing problem asks whether a given graph, G,
has a red/blue coloring of the edges of G such that there are no red copies of F and no blue copies
of H. For some cases, the problem has been shown to be coNP-complete, or solvable in polynomial
time. However, a more systematic approach is needed to categorize the complexity of all cases.

We focus on (P3, H)-Arrowing as F = P3 is the simplest meaningful case for which the complexity
question remains open, and the hardness for this case likely extends to general (F, H)-Arrowing
for nontrivial F . In this pursuit, we also gain insight into the complexity of a class of matching
removal problems, since (P3, H)-Arrowing is equivalent to H-free Matching Removal. We show that
(P3, H)-Arrowing is coNP-complete for all 2-connected H except when H = K3, in which case the
problem is in P. We introduce a new graph invariant to help us carefully combine graphs when
constructing the gadgets for our reductions. Moreover, we show how (P3, H)-Arrowing hardness
results can be extended to other (F, H)-Arrowing problems. This allows for more intuitive and
palatable hardness proofs instead of ad-hoc constructions of SAT gadgets, bringing us closer to
categorizing the complexity of all (F, H)-Arrowing problems.
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1 Introduction and related work

At what point, if ever, does a system get large enough so that certain patterns become
unavoidable? This question lies at the heart of Ramsey theory, which, since its inception in
the 1930s, aims to find these thresholds for various combinatorial objects. Ramsey theory
has played an important role in mathematics and computer science, finding applications in
fields such as cryptography, algorithms, game theory, and more [11]. A key operator within
Ramsey theory is the arrowing operator, which is defined for graphs like so: given graphs
F, G, and H, we say that G → (F, H) (read, G arrows F, H) if every red/blue coloring of G’s
edges contains a red F or a blue H. In this work, we analyze the complexity of computing
this operator when F and H are fixed graphs. The general problem is defined as follows.

▶ Problem 1 ((F, H)-Arrowing). For fixed F and H, given a graph G, does G → (F, H)?

The problem is clearly in coNP; a red/blue coloring of G’s edges with no red F and
no blue H forms a certificate that can be verified in polynomial time since F and H are
fixed graphs. Such a coloring is referred to as an (F, H)-good coloring. The computational
complexity of (F, H)-Arrowing has been categorized for several – but not all – pairs (F, H).
For instance, (P2, H)-Arrowing is in P for all H, where P2 is the path graph on 2 vertices.
This is because any coloring of an input graph G that does not contain a red P2 must
be entirely blue, and thereby (P2, H)-Arrowing is equivalent to determining whether G is
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H-free. Burr showed that (F, H)-Arrowing is coNP-complete when F and H are 3-connected
graphs – these are graphs which remain connected after the removal of any two vertices, e.g.,
(K5, K6)-Arrowing [3]. More results of this type are discussed in Section 2.

In this work, we explore the simplest nontrival case for F , F = P3, and provide a
complete classification of the complexity when H is a 2-connected graph – a graph that
remains connected after the removal of any one vertex. In particular, we prove:

▶ Theorem 1. (P3, H)-Arrowing is coNP-complete for all 2-connected H except when
H = K3, in which case the problem is in P.

We do this by reducing an NP-complete SAT variant to (P3, H)-Arrowing’s complement,
(P3, H)-Nonarrowing (for fixed H, does there exist a (P3, H)-good coloring of a given graph?),
and showing how to construct gadgets for any 2-connected H. It is important to note that
combining different copies of H can be troublesome; it is possible to combine graphs in a
way so that we end up with more copies of it than before, e.g., combining two Pn’s by their
endpoints makes several new Pn’s across the vertices of both paths. Results such as Burr’s
which assume 3-connectivity avoid such problems, in that we can combine several copies
of 3-connected graphs without worrying about forming new ones. If G is 3-connected with
vertices u, v ∈ V (G) and we construct a graph F by taking two copies of G and identifying u

across both copies, then identifying v across both copies, no new copies of G are constructed
in this process; if a new G is created then it must be disconnected by the removal of the
two identified vertices, contradicting F ’s 3-connectivity. This makes it easier to construct
gadgets for reductions. To work with 2-connected graphs and show how to combine them
carefully, we present a new measure of intra-graph connectivity called edge pair linkage,
and use it to prove sufficient conditions under which two copies of a 2-connected graph G

can be combined without forming new copies of G.
By targeting the (P3, H) case we gain new insight and tools for the hardness of (F, H)-

Arrowing in the general case since F = P3 is the simplest case for F . We conjecture that if
(P3, H)-Arrowing is hard, then (F, H)-Arrowing is also hard for all nontrivial F , but this
does not at all follow immediately. Towards the goal of categorizing the complexity of all
(F, H)-Arrowing problems, we show how to extend the hardness results of (P3, H)-Arrowing
to other (F, H)-Arrowing problems in Section 5. These extensions are more intuitive and the
resulting reductions are more palatable compared to constructing SAT gadgets. We believe
that techniques similar to the ones shown in this paper can be used to eventually categorize
the complexity of (F, H)-Arrowing for all (F, H) pairs.

The rest of the paper is organized as follows. Related work is discussed in Section 2. We
present preliminaries in Section 3, wherein we also define and analyze edge pair linkage. Our
complexity results for (P3, H)-Arrowing are proven in Section 4. We show how our hardness
results extend to other arrowing problems in Section 5, and we conclude in Section 6. All
proofs omitted in the main text are provided in the appendix.

2 Related work

Complexity of (F, H)-Arrowing. Burr showed that (F, H)-Arrowing is in P when F and
H are both star graphs, or when F is a matching [3]. Hassan et al. showed that (P3, P3)- and
(P3, P4)-Arrowing are also in P [6]. For hardness results, Burr showed that (F, H)-Arrowing
is coNP-complete when F and H are members of Γ3, the family of all 3-connected graphs
and K3. The generalized (F, H)-Arrowing problem, where F and H are also part of the
input, was shown to be Πp

2-complete by Schaefer, who focused on constructions where F is a
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tree and H is a complete graph [13].1 Hassan et al. recently showed that (Pk, Pℓ)-Arrowing
is coNP-complete for all k and ℓ aside from the exceptions listed above [6]. We note that
(P4, P4)-Arrowing was shown to be coNP-complete by Rutenburg much earlier [12].

Matching removal. A matching is a collection of disjoint edges in a graph. Interestingly,
there is an overlap between matching removal problems, defined below, and (P3, H)-Arrowing.

▶ Problem 2 (Π-Matching Removal [9]). Let Π be a fixed graph property. For a given graph
G, does there exist a matching M such that G′ = (V (G), E(G) − M) has property Π?

Let Π be the property that G is H-free for some fixed graph H. Then, this problem is
equivalent to (P3, H)-Nonarrowing; a lack of red P3’s implies that only disjoint edges can
be red, as in a matching, and the remaining (blue) subgraph must be H-free. Lima et al.
showed that the problem is NP-complete when Π is the property that G is acyclic [7], or
that G contains no odd cycles [8, 9].

Ramsey and Folkman numbers. The major research avenue involving arrowing is that of
finding Ramsey and Folkman numbers. Ramsey numbers are concerned with the smallest
complete graphs with arrowing properties, whereas Folkman numbers allow for any graph
with some extra structural constraints. We refer the reader to surveys by Radziszowski [10]
and Bikov [2] for more information on Ramsey and Folkman numbers, respectively.

3 Preliminaries

3.1 Notation and terminology
All graphs discussed in this work are simple and undirected. V (G) and E(G) denote the vertex
and edge set of a graph G, respectively. We denote an edge in E(G) between u, v ∈ V (G) as
(u, v). For two disjoint subsets A, B ⊊ V (G), EG(A, B) refers to the edges with one vertex
in A and one vertex in B. For a subset A ⊆ V (G), G[A] denotes the induced subgraph on A.
The neighborhood of a vertex v ∈ V (G) is denoted as NG(v) = {u | (u, v) ∈ E(G)} and its
degree as dG(v) := |NG(v)|. A connected graph is called k-connected if it has more than k

vertices and remains connected whenever fewer than k vertices are removed.
Vertex identification is the process of replacing two vertices u and v with a new vertex w

such that w is adjacent to all remaining neighbors N(u) ∪ N(v). For edges (u, v) and (p, q),
edge identification is the process of identifying u with p, and v with q.

The path, cycle, and complete graphs on n vertices are denoted as Pn, Cn, and Kn,
respectively. The complete graph on n vertices missing an edge is denoted as Jn. K1,n is the
star graph on n + 1 vertices. For n ≥ 3, we define TKn (tailed Kn) as the graph obtained by
identifying a vertex of a K2 and any vertex in Kn. The vertex of degree one in a TKn is
called the tail vertex of TKn.

We introduce a new notion, defined below, to measure how “connected” a pair of edges in
a graph is, which will be useful when identifying edges between multiple copies of the same
graph. Examples have been shown in Figure 1.

▶ Definition 2. For a pair of edges e, f ∈ E(G), we define its edge pair linkage, eplG(e, f),
as the number of edges adjacent to both e and f . It is infinity if e and f share at least one
vertex. Note that eplG(e, f) ≤ 4 when e and f share no vertices. For a graph G, we define
mepl(G) := mine,f∈E(G) epl(e, f) as the minimum edge pair linkage across all edge pairs.

1 Πp
2 = coNPNP, the class of all problems whose complements are solvable by a nondeterministic

polynomial-time Turing machine having access to an NP oracle.

MFCS 2024
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Figure 1 Graphs with different mepl(G) values. Bold edges have eplG = mepl(G).

Figure 2 Proof for Lemma 3 when |V (H)| = 4. It is easy to see that AH,e for H ∈ {C4, K4}
has exactly two copies of H for arbitrary e. Moreover, constructing AJ4,e introduces a new J4

(highlighted in red) for both nonisomorphic choices of e ∈ E(J4). Identified edges are bolded.

It is easy to see that the only graphs with mepl(G) = ∞ are the star graphs, K1,n, and
K3 since these are the only graphs that do not have disjoint edges. When the context is
clear, the subscript G for eplG(·), dG(·), etc. will be omitted.

An (F, H)-good coloring of a graph G is a red/blue coloring of E(G) where the red
subgraph is F -free, and the blue subgraph is H-free. We say that G is (F, H)-good if it has
at least one (F, H)-good coloring. When the context is clear, we will omit (F, H) and refer
to the coloring as a good coloring.

3.2 Combining graphs
Suppose H is a 3-connected graph. Consider the graph AH,e, obtained by taking two disjoint
copies of H and identifying some arbitrary e ∈ E(H) from each copy. Observe that no new
copy of H – referred to as a rogue copy of H in AH,e – is constructed during this process; if a
new H is created then it must be disconnected by the removal of the two identified vertices,
contradicting H’s 3-connectivity. This is especially useful when proving the existence of good
colorings; to show that a coloring of AH,e has no blue H, we know that only two copies of
H need to be looked at, without worrying about any other rogue H. Unfortunately, this
property does not hold for all 2-connected graphs. Instead, we use minimum edge pair linkage
to explore sufficient conditions that allow us to combine multiple copies of graphs without
concerning ourselves with any potential rogue copies.

▶ Lemma 3. Suppose H is a 2-connected graph such that |V (H)| ≥ 4 and mepl(H) ≥ 2.
Given H and e ∈ E(H), let AH,e be the graph obtained by taking two disjoint copies of H

and identifying e from each copy. For all such H, except J4, there exists e ∈ E(H) such that
AH,e has exactly two copies of H, i.e., no new copy of H is formed after identifying e.

Proof. For |V (H)| = 4, the statement is easily observed as the only cases to consider
are C4, J4, and K4. See Figure 2. Suppose |V (H)| ≥ 5. We will first construct AH,e

using an arbitrary e = (u, v) ∈ E(H) and assume that a new copy of H is constructed
after identifying e. Let X and Y denote the subgraphs of AH,e corresponding to the
two copies of H in AH,e that identify (u, v). It follows that, V (X) ∩ V (Y ) = {u, v} and
V (X) ∪ V (Y ) = V (AH,e). Similarly, E(X) ∩ E(Y ) = {e} and E(X) ∪ E(Y ) = E(AH,e).
Suppose Z is a subgraph corresponding to another copy of H in AH,e, i.e. V (Z) ̸= V (X)
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and V (Z) ̸= V (Y ). Let VZX
= (V (X) − V (Y )) ∩ V (Z) be the vertices of Z only in X, and

EZX
= {(p, q) ∈ E(Z) | p, q ∈ VZX

}. VZY
and EZY

are defined similarly. In the following
claim, we observe the properties of Z and the original graph H with mepl(H) ≥ 2.

▷ Claim 4. If Z exists in AH,e, the following must be true: (1) Both VZX
and VZY

are
nonempty, (2) u ∈ V (Z) and v ∈ V (Z), (3) at least one of EZX

and EZY
is empty, and (4)

there exists w ∈ V (H) with dH(w) = 2.

The proof of Claim 4 is given in Appendix A. Now, let e = (u, v) ∈ E(H) such that
dH(v) = 2. Consider the graph AH,e. Note that since dH(v) = 2, we have dAH,e

(v) =
dH(v) + dH(v) − 1 = 3. Let wX and wY be the neighbors of v in V (X) − V (Y ) and
V (Y ) − V (X), respectively. We know that V (Z) includes u and v from Claim 4(2). We
now show that wX and wY must also belong to V (Z): if neither belong to V (Z), then
dZ(v) = 1, contradicting H’s 2-connectivity (removing u disconnects H). Suppose w.l.o.g.,
that wX ̸∈ V (Z). Since VZX

is nonempty and H is connected, there is at least one vertex
in VZX

connected to u. However, removing u would disconnect Z, again contradicting H’s
2-connectivity. Thus, {u, v, wX , wY } ⊆ V (Z). Using a similar argument, we can also show
that both (v, wX) and (v, wY ) must belong to E(Z).

Let p be a vertex in V (Z) − {u, v, wX , wY }. We know p exists since |V (H)| ≥ 5. W.l.o.g.,
we assume that p ∈ VZX

. Note that p cannot be adjacent to v since NAH,e
(v) = {u, wX , wY }.

We now consider the neighborhood of p in Z. If p has a neighbor q ∈ VZX
− {wX}, then

eplZ ((p, q), (v, wY )) = 0, contradicting our assumption that mepl(H) ≥ 2. Since dZ(p) =
dH(p) ≥ 2 and the only options remaining for p’s neighborhood are u and wX , we must have
that p is connected to both u and wX . In this case, we have that eplZ((p, wX), (v, wY )) ≤ 1,
which is still a contradiction. ◀

4 The complexity of (P3, H)-Arrowing

In this section, we discuss our complexity results stated in Theorem 1. We first show that
(P3, K3)-Arrowing is in P (Theorem 5). The rest of the section is spent setting up our
hardness proofs for all 2-connected H ̸= K3, which we prove formally in Theorems 13 and 14.

▶ Theorem 5. (P3, K3)-Arrowing is in P.

Proof. Let G be the input graph. Let γ : E(G) → Z≥0 be a function that maps each edge to
the number of triangles it belongs to in G. Note that γ can be computed in O(|E(G)|3) time
via brute-force. Let t be the number of triangles in G. Clearly, any (P3, K3)-good coloring
of G corresponds to a matching of total weight ≥ t; otherwise, there would be some K3
in G in the blue subgraph of G. Now, suppose there exists a matching M with weight at
least t that does not correspond to a (P3, K3)-good coloring of G. Then, there must exist a
copy of K3 in G with at least two of its edges in M . However, since K3’s maximal matching
contains only one edge, M must contain a P3, which is a contradiction. Thus, we can solve
(P3, K3)-Arrowing by finding the maximum weight matching of (G, γ), which can be done in
polynomial time [5], and checking if said matching has weight equal t. ◀

To show that (P3, H)-Arrowing is coNP-complete we show that its complement, (P3, H)-
Nonarrowing, is NP-hard. We reduce from the following NP-complete SAT variant:

▶ Problem 3 ((2, 2)-3SAT [1]). Let ϕ be a 3CNF formula where each clause has exactly three
distinct variables, and each variable appears exactly four times: twice unnegated and twice
negated. Does there exist a satisfying assignment for ϕ?

MFCS 2024
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Figure 3 (a) The graph A′ when u and w are adjacent to a red edge. (b) The graph A′ when
either u or w is adjacent to a red edge. (c) The graph B. (d) A zoomed in look at B.

Important definitions and the idea behind our reduction are provided in Section 4.1, while
the formal proofs are presented in Section 4.2.

4.1 Defining special graphs and gadgets for proving hardness
We begin by defining a useful term for specific vertices in a coloring, after which we describe
and prove the existence of some special graphs. We then define the two gadgets necessary
for our reduction and describe how they provide a reduction from (2, 2)-3SAT.

▶ Definition 6. For a graph G and a coloring c, a vertex v ∈ V (G) is called a free vertex
if it is not adjacent to any red edge in c. Otherwise, it is called a nonfree vertex.

Note that in any (P3, H)-good coloring, a vertex can be adjacent to at most one red edge,
otherwise, a red P3 is formed. Intuition suggests that, by exploiting this restrictive property,
we could freely force “any” desired blue subgraph if we can “append red edges” to it. This
brings us to our next definition, borrowed from Schaefer’s work on (F, H)-Arrowing [13]:

▶ Definition 7 ([13]). A graph G is called an (F, H)-enforcer with signal vertex v if it
is (F, H)-good and the graph obtained from G by attaching a new edge to v has the property
that this edge is colored blue in all (F, H)-good colorings.

Throughout our text, when the context is clear, we will use the shorthand append
an enforcer to u ∈ V (G) to mean we will add an (F, H)-enforcer to G and identify
its signal vertex with u. We prove the existence of (F, H)-enforcers when F = P3 below.
This proof provides a good example of the role 2-connectivity plays while constructing our
gadgets, showcasing how we combine graphs while avoiding constructing new copies of H.
The arguments made are used frequently in our other proofs as well.

▶ Lemma 8. (P3, H)-enforcers exist for all 2-connected H.

Proof. We extend an idea presented by Burr [3]. Let A be a “minimally bad” graph such that
A → (P3, H), but removing any edge e from A gives a (P3, H)-good graph. Let e = (u, w)
and A′ = A − e. This graph is illustrated in Figure 3. Observe that in any (P3, H)-good
coloring of A′, at least one edge adjacent to u or w must be red; otherwise, such a coloring
and a red (u, w) gives a good coloring for A, contradicting the fact that A → (P3, H). If
both u and w are adjacent to red edges in all good colorings, then A′ is a (P3, H)-enforcer,
and either u or w can be the signal vertex .

If there exists a coloring where only one of {u, w} is adjacent to a red edge, then we can
construct an enforcer, B, as follows. Let n = |V (H)|. Make 2n copies of A′, where ui and
wi refer to the vertex u and w in the ith copy of A′, called A′

i. Now, identify each wi with
ui+1 for i ∈ {1, 2, . . . , 2n − 1}, and identify w2n with u1 (see Figure 3). Although wi and
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Figure 4 (a) The (P3, H)-signal extender described in Lemma 10, where enforcers are labeled
EN and the copy of H is labeled U . Edges whose colors are fixed in all (P3, H)-good colorings have
been pre-colored. The edge (u1, u3) is dashed to signify it may or may not exist in the construction.
(b) At the top, we show how extenders can be connected sequentially to form arbitrarily large
extenders. The enforcers have been removed from the illustration for clarity. The in- and out-vertices
are marked a and b, respectively. At the bottom, we show how signal extenders will be depicted
in our figures, where ℓ is the number of concatenated constructed extenders. (c) At the top, we
show the coloring of the signal extender when vertex a is a free vertex. At the bottom, we show the
corresponding coloring of our representation of signal extenders.

ui+1 are now the same vertex in B, we will use their original names to make the proof easier
to follow. It is easy to see that when w1 is adjacent to a red edge in A′

1, then u2 cannot be
adjacent to any red edge in A′

2, causing w2 to be adjacent to a red edge in A′
2, and so on. A

similar argument holds when considering the case where u1 is adjacent to a red edge in A′
1.

Since every ui and wi is adjacent to a red edge, any of them can be our desired signal vertex.
Note that B must be (P3, H)-good because each A′

i is (P3, H)-good, and no new H is made
during the construction of the graph; since H is 2-connected, H cannot be formed between
two copies of A′

i’s, otherwise there is a single vertex that can be removed to disconnect such
an H, contradicting 2-connectivity. Thus, any new copy of H must go through all Ai’s,
which is not possible since such an H would have ≥ 2|V (H)| vertices. ◀

Using enforcers, we construct another graph that plays an important role in our reductions.

▶ Definition 9. A graph G is called a (P3, H)-signal extender with in-vertex a and
out-vertex b if it is (P3, H)-good and, in all (P3, H)-good colorings, b is nonfree if a is free.

▶ Lemma 10. (P3, H)-signal extenders exist for all 2-connected H.

Proof. Let n = |V (H)|. Construct a graph G like so. Take a copy of H, and let
u1, u2, . . . , un ∈ U be the vertices of H in G, such that (u1, u2) and (u2, u3) are edges
of H. For each ui for i ∈ {4, 5, . . . , n}, append an enforcer to ui. Observe that no “new” H

is constructed during this process since H is 2-connected. Since each vertex except u1, u2,

and u3 is connected to an enforcer, each edge in G[U ], except (u1, u2), (u2, u3), and (u1, u3)
must be blue. However, not all of them can be blue, otherwise G[U ] is a blue H. Therefore,
in any good coloring, if u1 is a free vertex, (u2, u3) must be red, making u3 a nonfree vertex.
Thus, u1 is our in-vertex, and u3 is our out-vertex. We illustrate G in Figure 4(a). ◀

Observe that multiple copies of these extenders can be used to form larger ones (see
Figure 4). With the enforcer and extender graphs defined, we are ready to construct the
gadgets for our reductions. Below, we define variable and clause gadgets and describe how
they are used in our proofs. Recall that we are reducing from (2, 2)-3SAT. We will explain
how our graphs encode clauses and variables after the definitions.
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Figure 5 On the left, we show the variable gadget constructed using two copies of A as described
in Theorem 13’s proof and signal extenders. The vertices in the square are the vertices of A which
had enforcers appended to them. The edge (b, c) is dashed to signify that it may or may not exist.
Edges have been precolored wherever possible. Note that if (b, c) exists, it must be blue: if (b, c) is
red, the attached signal extenders will force (a′, b′), (b′, c′), and (c′, d′) to be blue, forming a blue H.
By symmetry, (b′, c′) must also be blue. Now, observe that at least one edge in {(a, b), (c, d)} must
be red, otherwise we form a blue H in A. Suppose (a, b) is red: the signal extender forces (a′, b′) to
be blue. To avoid a blue H, (c′, d′) must be red, which forces (c, d) to be blue. In this case, the
vertices marked U are nonfree vertices, and the vertices marked N are free. A similar pattern can
be observed when we color (c, d) red instead, giving us colorings where vertices marked U are free
and vertices marked N are nonfree.

▶ Definition 11. For a fixed H, a clause gadget is a (P3, H)-good graph CG containing
vertices i1, i2, and i3 – referred to as input vertices, such that if vertices outside the gadget,
o1, o2 and o3, are connected to i1, i2, and i3, respectively, then each of the eight possible
combinations of (oj , ij)’s colors should allow a (P3, H)-good coloring for CG, except the
coloring where all (oj , ij)’s are red, which should not allow a good coloring of CG.

▶ Definition 12. For a fixed H, a variable gadget is a (P3, H)-good graph V G containing
four output vertices: two unnegated output vertices, u1 and u2, and two negated
output vertices, n1 and n2, such that:
1. In each (P3, H)-good coloring of V G:

a. If u1 or u2 is a free vertex, then n1 and n2 must be nonfree vertices.
b. If n1 or n2 is a free vertex, then u1 and u2 must be nonfree vertices.

2. There exists at least one (P3, H)-good coloring of V G where u1 and u2 are free vertices.
3. There exists at least one (P3, H)-good coloring of V G where n1 and n2 are free vertices.

Note how clause gadgets and their input vertices correspond to OR gates and their inputs;
the external edges, denoted as (oj , ij)’s in the definition, behave like true or false signals:
blue is true, and red is false. Similarly, output vertices of variable gadgets behave like sources
for these signals. The reduction is now straightforward: for a formula ϕ, construct Gϕ like
so. For each variable and clause, add a corresponding gadget. Then, identify the output
and input vertices according to how they appear in each clause. It is easy to see that any
satisfying assignment of ϕ corresponds to a (P3, H)-good coloring of Gϕ, and vice versa. To
complete the proof we must show that the gadgets described exist and that no new H is
formed while combining the gadgets during the reduction.

Note that it is possible for a variable gadget to have a coloring where both unnegated
and negated output vertices are nonfree. This does not affect the validity of the gadgets. A
necessary restriction is that if variable x appears unnegated in clause L1 and negated in L2,
then x cannot satisfy both clauses. Our gadgets clearly impose that restriction.
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(a) (b) (c) (d)

Figure 6 This figure shows the clause gadget used in the proofs of Theorem 13 and 14. (a) Each
block represents the induced subgraph in a H when: (1) mepl(H) = 2 and H has an induced C4,
(2) mepl(H) = 1, and (3) mepl(H) = 0. (b) Each block represents how a fifth vertex, denoted e

in the proofs of Theorems 13 and 14, may be connected to the induced subgraphs from (a). For
each case, the solid line going from e represents an edge that must exist in E(H) since dH(v) ≥ 2
for all v ∈ H due to 2-connectivity. In the first case, any edge can be chosen w.l.o.g. due to the
symmetry of C4. The dashed edges may or may not exist, but their existence is inconsequential
to the correctness of our gadget. (c) An illustration of the clause gadget, where each vertex of H

attached to an enforcer is in the square. The input vertices have been filled in. (d) We show the
eight possible combinations of inputs that can be given to the gadget. Observe that a (P3, H)-good
coloring is always possible unless the input is three red edges.

4.2 Hardness proofs
Using the ideas and gadgets presented in Section 4.1, we provide our hardness results below.

▶ Theorem 13. (P3, H)-Arrowing is coNP-complete when H is a 2-connected graph on at
least four vertices with mepl(H) ≤ 1.

Proof. We reduce (2, 2)-3SAT to (P3, H)-Nonarrowing as described in the end of Section 4.1;
given a (2, 2)-3SAT formula ϕ, we construct a graph Gϕ such that Gϕ is (P3, H)-good
if and only if ϕ is satisfiable. Since we have mepl(H) ≤ 1, we must have two edges
(a, b), (c, d) ∈ E(H) that have at most one edge adjacent to both. We construct a graph A

like so: take a copy of H and append an enforcer to each vertex of H except a, b, c, and d.
We construct the variable gadget using two copies of A joined by signal extenders, as shown
in Figure 5. The vertices labeled U (resp., N) correspond to unnegated (resp., negated)
output vertices. Note that there are no rogue H’s made during this construction. Recall
that because of 2-connectivity, a copy of H cannot go through a single vertex. Thus, if a
copy of H other than the ones in A and the signal extenders exists, it must go through both
copies of A and the signal extenders. However, this is not possible because by including the
two signal extenders, we would have a copy of H with at least 2|V (H)| vertices.

We now describe our clause gadget. As observed in Section 3.2, there is no 2-connected
graph with mepl(·) ≤ 1 on four vertices so we assume |V (H)| ≥ 5. Let (a, b) and (c, d) be the
edges that achieve this epl(·). Let e be a fifth vertex connected to at least one of {a, b, c, d}.
We construct a clause gadget by taking a copy of H and appending an enforcer to each vertex
except a, b, c, d, and e. In Figure 6 – which also includes a special case for mepl(H) = 2
used in Theorem 14 – we show how e and two vertices from {a, b, c, d} can be used as input
vertices so that a blue H is formed if and only if all three input vertices are connected to red
external edges. Observe that we can make the clause gadget arbitrarily large by attaching
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Figure 7 On the top, we show the variable gadget constructed using two copies of F as described
in Theorem 13’s proof and signal extenders. A and B have been marked. The vertices in the square
(resp., triangle) are the vertices of A (resp., B) which had enforcers appended to them. Dashed edges
signify edges that may or may not exist. Edges have been precolored wherever possible. Observe
that (b, e) must be blue: if (b, e) is red, the attached extenders will force (b′, c′), (b′, e′), and (c′, e′)
to be blue, forming a blue H in the copy of B on the right. We show that (a, b), (a, c), (b, d), and
(c, d) must always be blue. Observe that at least one edge in {(b, c), (c, e)} must be red, otherwise
we form a blue H in B. Note that if (b, c) is red, the edges (a, b), (a, c), (b, d), and (c, d) must be
blue. If (b, c) is blue, (c, e) is red. Thus, (c, d) and (a, c) are blue. Moreover, a red (c, e) forces (c′, e′)
to be blue via the extender. Thus, (b′, c′) must be red to avoid a blue H. The extender on the top
will in turn force edge (a, b) and (b, d) to be blue. Therefore, (a, b), (a, c), (b, d), and (c, d) are blue
in all good colorings. By symmetry, (a′, b′), (a′, c′), (b′, d′), (c′, d′), and (b′, e′) must also be blue in
all good colorings. Observe that when a vertex marked U is nonfree, i.e., (a, d) is blue, (b, c) must
be red. Thus, (b′, c′) is blue, and (a′, d′) must be red, making the vertices marked N nonfree. A
similar pattern can be observed when vertices marked N are free, wherein the vertices marked U
are forced to be nonfree. These colorings are shown at the bottom of the figure.

the out-vertex of a signal extender to each input vertex of a clause gadget. We attach a
signal extender with at least |V (H)| vertices to each input vertex. This ensures that no
copies of H other than the ones in each gadget and extender are present in Gϕ. ◀

▶ Theorem 14. (P3, H)-Arrowing is coNP-complete when H is a 2-connected graph on at
least four vertices with mepl(H) ≥ 2.

Proof. We follow the same argument as in the proof of Theorem 13. We first discuss the
variable gadget. Using Lemma 3 and the fact that mepl(H) ≥ 2, we know that we can
construct a graph F with exactly two copies of H that share a single edge, unless H = J4.
The variable gadget for this exception is shown in Appendix A. For now, we assume H ̸= J4.
Let A and B the copies of H in F and let (b, c) be the edge that was identified. Let e ̸= b

be a vertex in B adjacent to c, and let (a, d) be an edge in A where a, d ̸∈ {b, c}. Note that
if such an (a, d) does not exist in H, then (b, c) must be an edge that shares a vertex with
every other edge in H. However, it is easy to see that in this case two copies of H cannot
be identified on (b, c) without forming new copies of H. Thus, (a, d) must exist. We now
append enforcers to each vertex in A and B except a, b, c, d, and e. Our variable gadget is
constructed using two copies of F joined via signal extenders as shown in Figure 7.
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(a) (b) (c)

Figure 8 This figure shows the clause gadget used in Theorem 14 when H contains a T K3. (a)
Each block represents the induced subgraph in a H when: (1) mepl(H) = 4, (2) mepl(H) = 3, and
(3) mepl(H) = 2 and H has an induced T K3. (b) An illustration of the clause gadget, where each
vertex of H attached to an enforcer is in the square. The input vertices have been filled in. Dashed
edges may or may not exist, but their existence is inconsequential to the correctness of our gadget.
(c) We show the eight possible combinations of inputs that can be given to the gadget. Observe
that a (P3, H)-good coloring is always possible unless the input is three red edges.

We use a clause gadget similar to the one used in Theorem 13, but with some modifications.
Since mepl(H) ≥ 2, we know that H must contain a C4 or a TK3. If H contains a TK3, we
can use the gadget shown in Figure 8. However, if mepl(H) = 2 and we only have induced
C4’s, we can use the gadget shown in Figure 6 when |V (H)| ≥ 5 using the induced C4 and
another vertex e. The only case left is H = C4, which is discussed in Appendix A. ◀

5 Extending the hardness of (P3, H)-Arrowing

In this section, we discuss how hardness results for (P3, H)-Arrowing can be extended to
other (F, H)-Arrowing problems. We believe this provides an easier method for proving
hardness compared to constructing SAT gadgets. We discuss two methods in which our
results can be extended: (1) showing that G → (P3, H) ⇐⇒ G → (P3, H ′) for some pairs
of H and H ′ (Section 5.1), and (2) given a graph G, showing how to construct a graph G′

such that G → (P3, H) ⇐⇒ G′ → (F, H) for some F (Section 5.2).

5.1 P3 versus tailed complete graphs
We first observe that edges not belonging to H can be removed while working on (P3, H)-
Arrowing for a graph G; we can always color said edge blue without forming a blue H.

▶ Observation 15. Let G be a graph and e ∈ E(G). If e does not belong to a copy of H in
G, then G → (P3, H) if an only if G − e → (P3, H).

▶ Theorem 16. For n ≥ 3, G → (P3, TKn) if and only if G → (P3, Kn).

Proof. Clearly if G → (P3, TKn) then G → (P3, Kn) since Kn is a subgraph of TKn. For
the other direction, consider a graph G such that G → (P3, Kn) but is (P3, TKn)-good. By
Observation 15, we can assume that each edge in G belongs to a Kn. We can also assume
that G is connected. Let c be a (P3, TKn)-good coloring of G. Since G → (P3, Kn) there
must exist a blue Kn in c. Let U = {u1, u2, . . . , un} be the vertices of said Kn. Let e = (ui, v)
be an edge going from some ui ∈ U to a vertex v ̸∈ U . We know that such an edge exists
otherwise G is just a Kn, and a Kn is (P3, Kn)-good, so this would contradict our assumption.
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W.l.o.g., let ui = u1. Note that (u1, v) must be red, otherwise, we have a blue TKn. Since
(u1, v) is part of a Kn (Observation 15), at least one vertex w must be connected to both u1
and v. Note that (u1, w) and (v, w) must be blue to avoid a red P3. If w ∈ U , then U and
(v, w) form a blue TKn. If w ∈ V (G) − U , then U and (u1, w) form a blue TKn. ◀

▶ Corollary 17. (P3, TKn)-Arrowing is coNP-complete when n ≥ 4 and in P when n = 3.

With this result, we have categorized the complexity of all (P3, H)-Arrowing problems
for connected H with |V (H)| ≤ 4; the star and path graphs were shown to be in P [4, 6].

5.2 Stars versus 2-connected graphs
Note that P3 = K1,2. Given a graph G, suppose we construct a graph G′ by taking a copy
of G and appending an edge (one for each vertex in G) to each vertex, where each appended
edge is forced to be red in all colorings. It is easy to see that if a coloring of G contains a
red K1,2, then said coloring in G′ contains a red K1,3, using the appended red edge. Thus, if
we can find a (K1,3, H)-good graph F with an edge (u, v) such that, in all good colorings,
(u, v) is red and no other edge adjacent to v is red, we could reduce (K1,2, H)-Arrowing to
(K1,3, H)-Arrowing by appending a copy of F (identifying v) to each vertex of G. Recall
that we do not have to worry about new copies of H due to its 2-connectivity.

Generalizing this argument, if we attach k red edges to each vertex of G, then a coloring
of G with a red K1,ℓ corresponds to a coloring of G′ with a red K1,k+ℓ. In Appendix B, we
show that for all n ≥ 3, there exists some m for which there is a (K1,n, H)-good graph with
a vertex v that is always the center of a K1,m for some 1 ≤ m < n. This allows us to reduce
(K1,n−m, H)-Arrowing to (K1,n, H)-Arrowing. Thus, we can assert the following:

▶ Lemma 18. Suppose H is a 2-connected graph. If (K1,k, H)-Arrowing is coNP-hard for
all 2 ≤ k < n, then (K1,n, H)-Arrowing is also coNP-hard.

Also in Appendix B, we reduce (2, 2)-3SAT to (K1,3, K3)-Nonarrowing and show how
that result can be extended to (K1,n, K3)-Arrowing for n ≥ 4, giving us the following result:

▶ Theorem 19. For all 2-connected H and n ≥ 2, (K1,n, H)-Arrowing is coNP-complete
with the exception of (K1,2, K3)-Arrowing, which is in P.

Finally, recall that (P3, H)-Nonarrowing is equivalent to H-free Matching Removal.
We can assert a similar equivalence between H-free b-Matching Removal and (K1,b+1, H)-
Nonarrowing, giving us the following corollary:

▶ Corollary 20. For all 2-connected H, H-free b-Matching Removal is NP-complete for all
b ≥ 1, except the case where b = 1 and H = K3, which is in P.

6 Conclusion and future work

This paper provided a complete categorization for the complexity of (P3, H)-Arrowing when
H is 2-connected. We provided a polynomial-time algorithm when H = K3, and coNP-
hardness proofs for all other cases. Our gadgets utilized a novel graph invariant, minimum
edge pair linkage, to avoid unwanted copies of H. We showed that our hardness results
can be extended to (P3, TKn)- and (K1,n, H)-Arrowing using easy-to-understand graph
transformations.

Our ultimate goal is to categorize the complexity of all (F, H)-Arrowing problems. Our
first objective is to categorize the complexity of (P3, H)-Arrowing for all H, and to find more
graph transformations to extend hardness proofs between different arrowing problems.



Z. R. Hassan 59:13

References
1 P. Berman, M. Karpiński, and A. Scott. Approximation Hardness of Short Symmetric Instances

of MAX-3SAT. ECCC, 2003.
2 A. Bikov. Computation and Bounding of Folkman Numbers. PhD thesis, Sofia University “St.

Kliment Ohridski”, June 2018.
3 S.A. Burr. On the Computational Complexity of Ramsey-Type Problems. Mathematics of

Ramsey Theory, Algorithms and Combinatorics, 5:46–52, 1990.
4 S.A. Burr, P. Erdős, and L. Lovász. On graphs of Ramsey type. Ars Combinatoria, 1(1):167–190,

1976.
5 J. Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
6 Z.R. Hassan, E. Hemaspaandra, and S. Radziszowski. The Complexity of (Pk, Pℓ)-Arrowing.

In FCT 2023, volume 14292, pages 248–261, 2023.
7 C.V.G.C. Lima, D. Rautenbach, U.S. Souza, and J.L. Szwarcfiter. Decycling with a Matching.

Information Processing Letters, 124:26–29, 2017.
8 C.V.G.C. Lima, D. Rautenbach, U.S. Souza, and J.L. Szwarcfiter. Bipartizing with a Matching.

In COCOA 2018, pages 198–213, 2018.
9 C.V.G.C. Lima, D. Rautenbach, U.S. Souza, and J.L. Szwarcfiter. On the Computational

Complexity of the Bipartizing Matching Problem. Ann. Oper. Res., 316(2):1235–1256, 2022.
10 S. Radziszowski. Small Ramsey Numbers. Electronic Journal of Combinatorics, DS1:1–116,

January 2021. URL: https://www.combinatorics.org/.
11 V. Rosta. Ramsey Theory Applications. Electronic Journal of Combinatorics, DS13:1–43,

December 2004. URL: https://www.combinatorics.org/.
12 V. Rutenburg. Complexity of Generalized Graph Coloring. In MFCS 1986, volume 233 of

Lecture Notes in Computer Science, pages 573–581. Springer, 1986.
13 M. Schaefer. Graph Ramsey Theory and the Polynomial Hierarchy. Journal of Computer and

System Sciences, 62:290–322, 2001.

A Proof of Claim 4 and missing gadgets

▷ Claim 4. If Z exists in AH,e, the following must be true: (1) Both VZX
and VZY

are
nonempty, (2) u ∈ V (Z) and v ∈ V (Z), (3) at least one of EZX

and EZY
is empty, and (4)

there exists w ∈ V (H) with dH(w) = 2.

Proof.
1. This follows from our definition of Z.
2. If at most one vertex in {u, v} were in Z, deleting it would disconnect said copy of H,

contradicting the fact that H is 2-connected.
3. Suppose that both EZX

and EZY
are nonempty. Let f1 ∈ EZX

and f2 ∈ EZY
. We

have eplAH,e
(f1, f2) = 0 since, by construction, EAH,e

(X − Y, Y − X) = ∅. Since both of
these edges belong to Z, which is isomorphic to H, we also have eplH(f1, f2) = 0, which
contradicts our assumption that mepl(H) ≥ 2.

4. Note that k-connected graphs must have minimum degree at least k as a vertex with
fewer neighbors could be disconnected from the rest of the graph with fewer than k

vertex deletions. So, we have dH(w) ≥ 2 for each w ∈ V (H). W.l.o.g., assume that
EZX

= ∅. Then, each vertex in w ∈ ZX can only be connected to u and v. Thus, we have
dH(w) = dZ(w) ≤ 2, and consequently dH(w) = 2. ◁

Missing gadgets for (P3, H)-Nonarrowing. In Figure 9 we show the variable gadget for
(P3, J4)-Nonarrowing. In Figure 10 we show the clause gadget for (P3, C4)-Nonarrowing.
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Figure 9 The variable gadget for (P3, J4)-Nonarrowing is shown on the left. The colorings on the
right show that when vertices marked U (resp., N) are free, those marked N (resp., U) are nonfree.

Figure 10 The clause gadget for (P3, C4)-Nonarrowing is shown on the left. Possible inputs for
the gadget are shown on the right. A good coloring is possible unless the input is three red edges.

B Extending to stars

We first define the following special graph which will be used in our extension proof.

▶ Definition 21. A graph G is called an (F, H)-leaf sender with leaf-signal edge (u, v) if it
is (F, H)-good, (u, v) is red in all good colorings, and there exists a good coloring where (u, v)
is not adjacent to any other red edge.

When the context is clear, we will use the shorthand append a leaf sender to u ∈ V (G)
to mean we will add an (F, H)-leaf sender to G and identify a vertex of its leaf-signal edge
with u. This graph essentially simulates “appending a red edge” as described in Section 5.2.

B.1 Proof of Lemma 18
▶ Lemma 18. Suppose H is a 2-connected graph. If (K1,k, H)-Arrowing is coNP-hard for
all 2 ≤ k < n, then (K1,n, H)-Arrowing is also coNP-hard.

Proof. Suppose we are trying to prove the hardness of (K1,n, H)-Arrowing for 2-connected
H and n ≥ 3. Let A be a “minimally bad” graph such that A → (K1,n, H), but removing
any edge e from A gives a (K1,n, H)-good graph. Let e = (u, w) and A′ = A − e. Let C be
the set of all good colorings of A′. For a coloring c ∈ C and vertex v, let rc(v) be the number
of red edges that v is adjacent to in c. Let rC(v) = minc∈C rc(v). We consider different cases
for rC(u). Since c is a good coloring, we know that rC(u) ≤ n − 1.
1. rC(u) = n − 1. In this case, it is easy to see that A′ is a (K1,n, H)-enforcer with signal

vertex u. Let (p, q) ∈ V (H). Construct a graph B like so. Take a copy of H and append
an enforcer to each vertex of H except p and q. It is easy to see that (p, q) must be red
in all good colorings, i.e., B is a (K1,n, H)-leaf sender with leaf-signal edge (p, q). For
any graph G, we append a leaf-sender to each of G’s vertices to obtain a graph G′ such
that G′ → (K1,n, H) ⇐⇒ G → (K1,n−1, H), as discussed in Section 5.2.

2. rC(u) = 0. Let m = |V (H)|. In this case, we can construct a (K1,n, H)-enforcer, B, by
combining 2m copies of A′ as we did in Lemma 8. Note that in any good coloring c of A′,
we have that rc(u) ≥ n − 1 or rc(w) ≥ n − 1; if not, such a coloring and a red (u, w) gives
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Figure 11 The variable gadget for (K1,3, K3)-Nonarrowing is shown on the left. Edges with the
same color in all good colorings have been pre-colored. Both good colorings are shown on the right.

Figure 12 The clause gadget for (K1,3, K3)-Nonarrowing is shown on top. The eight combinations
of inputs that can be given to the gadget are shown on the bottom. Observe that a (K1,3, K3)-good
coloring is always possible unless the input is three red K1,2’s.

a good coloring for A, contradicting the fact that A → (K1,n, H). Make 2m copies of A′,
where ui (resp., wi) refers to the vertex u (resp., w) in the ith copy of A′, referred to as
A′

i. Now, identify each wi with ui+1 for i ∈ {1, 2, . . . , 2m − 1}, and identify w2m with u1.
Observe that when w1 is adjacent to n − 1 red edges in A′

1, then u2 cannot be adjacent to
any red edge in A′

2, causing w2 to be adjacent to n − 1 red edges in A′
2, and so on. Since

every ui and wi is adjacent to n − 1 red edges, any of them can be our signal vertex v.
We can now proceed as we did in the previous case to reduce from (K1,n−1, H)-Arrowing.

3. rC(u) ∈ {1, 2, . . . , n − 2}. For any graph G, we can attach a copy of A′ to each of
G’s vertices – identifying u ∈ V (A′) with each vertex – to obtain a graph G′ such that
G′ → (K1,n, H) ⇐⇒ G → (K1,n−rC(u), H), as discussed in Section 5.2, thereby providing
a reduction from (K1,n−rC(u), H)-Arrowing. ◀

B.2 Hardness of (K1,n, K3)-Nonarrowing for n ≥ 3
To show that (K1,3, K3)-Arrowing is coNP-complete, we provide gadgets as we did for
(P3, H)-Arrowing. We provide gadgets in Figures 11 and 12 to show that (2, 2)-3SAT can be
reduced to (K1,3, K3)-Nonarowing. Note that the output vertices are either attached to a
single red edge or two red edges. When they are attached to a single red edge, they behave
like true output signals. When adjacent to two red edges, they behave like a false output
signal. The clause gadget behaves like an OR gate, in that it has no good coloring when the
three input vertices all have false inputs.

Recall that in the hardness proofs for (P3, H)-Arrowing, we also had to show that no new
H is constructed while combining gadget graphs to construct Gϕ. It is easy to see that no
new K3 is constructed when our gadgets are combined; since each clause has unique literals,
a cycle formed while constructing Gϕ would have to go through at least two clause gadgets
and at least two variable gadgets, but this cycle has more than three vertices (see Figure 13).

MFCS 2024
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Figure 13 The smallest cycle made when joining (K1,3, K3) variable and clause gadgets is a C6.
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Figure 14 A′
1 and A′

2 are graphs with rC(ui) = n − 2. We show how to construct a new graph
using these in (a). In (b), we show a good coloring where ui’s are now adjacent to n − 1 red edges.
Finally, in (c), we observe that the coloring in (b) is the only good coloring since at most one edge
from outside A′

i that is adjacent to ui can be red.

To show the hardness of (K1,n, K3)-Arrowing for n ≥ 4, we can proceed exactly as we did
in Lemma 18. The only case where the proof fails is when rC(u) = n − 2, because now the
proof says we have to reduce (K1,2, K3)-Arrowing to (K1,n, K3)-Arrowing, which is unhelpful
since (K1,2, K3)-Arrowing is in P. In Figure 14 we show how vertices attached to n − 2 red
edges can be combined to make a (K1,n, K3)-enforcer. Using the enforcer, we can create a
(K1,n, K3)-leaf sender and reduce from (K1,n−1, K3)-Arrowing.
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a) b) c)

Figure 1 a) The communities (blue) and input graph of a Π-NWS instance. b) and c) Optimal
solutions (red) for Unweighted Connectivity NWS, and Unweighted Stars NWS, respectively.

design the task is often to construct a minimum-size or minimum-weight network fulfilling a
given property, the most famous example being Minimum-Weight Spanning Tree.

In many applications the input contains, in addition to a network, a hypergraph on the
same vertex set [17, 24, 32]. The hyperedges of this hypergraph represent, for example,
communities that are formed within the network. In presence of such community data, the
sparsified network should preserve a property not for the whole network but instead for each
community, that is, for each hyperedge of the hypergraph. Gionis et al. [19] called this task
community-aware network sparsification and formalized it as follows.

Π-Network Sparsification (Π-NWS)
Input: A graph G, a collection C of c subsets of V (G), called communities, an
edge-weight function ω : E(G)→ R+, an integer ℓ, and a positive real number b.
Question: Is there a graph G′ = (V (G), E′) with E′ ⊆ E(G), |E′| ≤ ℓ, and total edge
weight at most b such that for each community Ci ∈ C the subgraph of G′ induced
by Ci satisfies Π?

We say that a graph G′ fulfilling the requirements is a solution for the instance I. A
very well-studied property Π, considered by Gionis et al. [19] but also in many previous
works [2, 7, 13, 15, 28] is that every community should induce a connected subgraph. A
graph G that has this property for some hypergraph H, is called a support for H [4, 5, 28]. We
denote the corresponding special case of Π-NWS as Connectivity NWS. Another variant
of Π-NWS, also studied by Gionis et al. [19], is to demand that every community not only
induces a connected subgraph but more strongly that it contains a spanning star. In other
words, in the solution graph G′, every community must be contained in the neighborhood of
at least one of its vertices, called a center vertex. We refer to this variant as Stars NWS.
An example instance and solutions for both problems are given in Figure 1.

Connectivity NWS and Stars NWS are both NP-hard [13, 10, 9, 19]. Motivated by
this, we study both problems in terms of their parameterized and fine-grained complexity.
We also investigate the versions of both problems where each edge has unit weight and refer
to them as Unweighted Connectivity NWS and Unweighted Stars NWS.

Our two main results are as follows:
We show that, based on the Exponential Time Hypothesis (ETH), Connectivity NWS
and Stars NWS do not admit algorithms with running time 2o(n2)+c, even if the input
graph is a clique with unit weights and each community has size at most 4. This bound
is matched by simple brute-force algorithms.
We show that Stars NWS admits an XP-algorithm when parameterized by t, the
feedback edge number of the solution graph. This positively answers the question of
Korach and Stern [30] who asked whether there is a polynomial-time algorithm for finding
an optimal solution for Stars NWS that is a tree. In fact, our algorithm extends the
polynomial-time solvable cases to solutions that are tree-like.
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We obtain several further results, for example a complexity dichotomy for Stars NWS and
Unweighted Stars NWS parameterized by c, the number of communities.

Known results. Already the most basic variant of Connectivity NWS, where the edges
have unit weights and the input graph G is a clique, appears in many applications, ranging
from explanation of protein complexes [32] to combinatorial auctions [10] to the construction
of P2P overlay networks in publish/subscribe systems [8, 24]. Thus, the problem has
been studied intensively under various names [2, 7, 8, 13, 15, 24] from a parameterized
complexity [7, 15, 24] and an approximation algorithms [2, 8, 24] perspective. For example,
the problem is NP-hard even for instances with maximum community size 3 [13], and admits
FPT-algorithms for the number of communities and for the largest community size plus
the feedback edge number t of a solution [7]. A particular restriction of the problem is to
determine whether there is an acyclic solution, called tree support or clustered spanning tree. It
can be determined in polynomial time whether a hypergraph has a tree support and different
polynomial-time algorithms have been described over the years [3, 10, 14, 16, 20, 27, 33, 34].

Unweighted Connectivity NWS with general input graphs G, has applications in the
context of placing green bridges [17, 22]. Unweighted Connectivity NWS is NP-hard
even when the maximum degree of G is 3 [22] and even for seven communities [17]. On the
positive side, one can construct in polynomial time a tree support if one exists [21, 28, 29].

For Connectivity NWS where we may have arbitrary edge-weights, the distinction
whether or not G is restricted to be a clique vanishes: any non-clique input graph G may
be transformed into a clique by adding the missing edges with a prohibitively large edge
weight. The problem of finding a minimum-weight tree support received attention due to its
applications in network visualization [28]. As shown by Korach and Stern [29] and Klemz
et al. [28], one can compute minimum-weight tree supports in polynomial time. Gioinis et
al. [19] provided approximation algorithms for the general problem.

Stars NWS has received less attention than Connectivity NWS. Gionis et al. [19]
showed NP-hardness and provided approximation algorithms. Korach and Stern [30] studied
a variant of Stars NWS where the input graph is a clique and the solution is constrained to
be a tree T where the closed neighborhood of the center vertex of a community Ci is exactly
the community Ci. This implies that two different communities need to have different center
vertices and thus restricts the allowed set of solution graphs strictly compared to Stars
NWS. Korach and Stern [30] showed that this problem is solvable in polynomial time. As
an open question, they ask whether this positive result can be lifted to Stars NWS.

Cohen et al. [9] studied the Minimum F-Overlay problem which can be viewed as the
following special case of Π-NWS: The input graph G is a clique and all edges have unit
weight; F is a family of graphs and the property Π is to have some spanning subgraph which
is contained in F . Unweighted Connectivity NWS and Unweighted Stars NWS
with clique input graphs are special cases of Minimum F-Overlay. Cohen et al. [9] provide
a complexity dichotomy with respect to properties of F . For most cases of F , Minimum
F-Overlay is NP-hard. In particular, Unweighted Stars NWS is NP-hard even when G

is a clique [9]. Gionis et al. [19] also studied Π being that each community needs to induce
a subgraph exceeding some prespecified density. Fluschnik and Kellerhals [17] considered
further properties Π, for example the property of having small diameter.

Our results and organization of the work. To put our main results into context, we first
summarize in Section 2 some complexity results that follow from simple observations or from
previous work. They imply in particular that Stars NWS and Connectivity NWS have
an FPT-algorithm for the parameter solution size ℓ and that they are W[1]-hard with respect
to the dual parameter k := m − ℓ even in the unit weight case when G is a clique. Then,

MFCS 2024
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Table 1 An overview of the parameterized complexity results. A ‡ indicates that this result also
holds in the unweighted case and a † indicates that this result only holds in the unweighted case.

Parameter Stars NWS Connectivity NWS
ℓ FPT (Proposition 2.2, [17]), no polynomial kernel‡ (Proposition 2.4, [17])

k := m − ℓ W[1]-hard‡ (Proposition 2.3)

t XP (Theorem 4.1) P for t = 0 ([28])
NP-h for t = 1‡ (Theorem 4.9)

c

FPT† (Theorem 5.2)
NP-h for c = 7‡ ([17])no polynomial kernel‡ (Theorem 5.3)

W[1]-h (Theorem 5.1)
∆ NP-h for ∆ = 6‡ (Corollary 3.3) NP-h for ∆ = 3‡ ([22])

in Section 3 we show that Unweighted Connectivity NWS and Unweighted Stars
NWS do not admit algorithms with running time 2o(n2+c) even when G is a clique unless
the Exponential Time Hypothesis (ETH) [26] is false.

In Section 4, we consider parameterization by t, the feedback edge number of the solution
graph G′. This is the minimum number of edges that need to be deleted to transform the
solution into a forest.1 The study of t is motivated as follows: The solution size ℓ is essentially
at least as large as n− 1, and thus neither small in practice nor particularly interesting from
an algorithmic point of view. Thus, t can be seen as a parameterization above the lower
bound n − 1. Our first main result is an XP-algorithm for Stars NWS. This positively
answers the question of Korach and Stern [30] who asked whether there is a polynomial-time
algorithm for t = 0 and extends the tractability further to every constant value of t. We then
show that, in contrast, Unweighted Connectivity NWS is NP-hard already if t = 1.
Thus, the polynomial-time algorithms for t = 0 [29, 28] cannot be lifted to larger values of t.

Finally, in Section 5 we study Stars NWS parameterized by the number c of input
communities. We obtain the following complexity classification: Unweighted Stars NWS
is FPT with respect to c and Stars NWS is W[1]-hard in the most restricted case when G

is a clique and all edges have weight 1 or 2 and in XP in the most general case.
For an overview of the parameterized complexity results, refer to Table 1.
Due to lack of space several proofs (marked with (⋆)) are deferred to the full version.

2 Preliminaries and Basic Observations

Preliminaries. For a set X, we denote by
(

X
2
)

the collection of all size-two subsets of X.
Moreover, for positive integers i and j with i ≤ j, we denote by [i, j] := {k ∈ N : i ≤ k ≤ j}.

An undirected graph G = (V, E) consists of a set of vertices V and a set of edges E ⊆
(

V
2
)
.

We denote by V (G) and E(G) the vertex and edge set of G, respectively, and let n =
n(G) := |V (G)| and m := |E(G)|. For a vertex set V ′ ⊆ V , we denote by EG(V ′) :=
{{u, v} ∈ E : u, v ∈ V ′} the edges between the vertices of V ′ in G. If G is clear from
the context, we may omit the subscript. A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). Moreover, G′ is spanning if V (G′) = V (G). For a vertex set V ′, we
denote by G[V ′] := (V ′, EG(V ′)) the subgraph of G induced by V ′. A set S ⊆ V (G) with

1 The parameter t can be computed in polynomial time as discussed in Section 2.
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EG(S) =
(

S
2
)

is called a clique. A graph G is a star of size n − 1 with center z ∈ V (G) if
E(G) = {{z, v} : v ∈ V (G) \ {z}}. A graph G contains a spanning star if some subgraph G′

of G is a star of size n− 1. The center of this star is universal for G.
An edge set E′ ⊆ E(G) is a feedback edge set of G, if the graph G′ := (V (G), E(G) \ E′)

is acyclic. Two vertices u and v are connected in G if G contains a path between u and v.
A graph G is connected if each pair of vertices u, v ∈ V (G) is connected. A set S ⊆ V (G)
is a connected component of G, if G[S] is connected and S is maximal with this property.
Connectivity in hypergraphs is defined similarly: Two vertices u and v are connected if there
exists a sequence C1, C2, . . . , Cp of hyperedges such that u ∈ C1, v ∈ Cp, and consecutive
communities have nonempty intersection. A connected component of a hypergraph is a
maximal set of connected vertices. The number x of connected components of a hypergraph
can be computed in polynomial time, for example by BFS. Note that for a minimal solution G′

for Stars NWS and Connectivity NWS, the connected components of G′ are exactly
the connected components of the community hypergraph. Thus, t = ℓ − n + x and the
parameter t can be computed in polynomial time for a given input instance.

For details about parameterized complexity and the ETH refer to [12, 11].

Basic observations. To put our main results for Connectivity NWS and Stars NWS
into context, we state some results that either follow easily from previous work or from
simple observations.

The naive brute-force approach for each Π-NWS is to perform an exhaustive search over
the O(2m) possibilities to select at most ℓ edges from the input graph G. This leads to the
following general statement for Π-NWS problems.

▶ Proposition 2.1. Let Π be a property which can be decided in poly(n) time. Then, Π-NWS
is solvable in 2m · c · poly(n) time.

For the solution size parameter ℓ, one can obtain the following running time.

▶ Proposition 2.2 (⋆). Connectivity NWS and Stars NWS can be solved in ℓO(ℓ) ·
poly(n + c) time.

The fixed-parameter tractability of Unweighted Connectivity NWS with respect to ℓ

was also shown by Fluschnik and Kellerhals via a kernelization [17].
A further natural parameter that can be considered is k := m− ℓ, a lower-bound on the

number of edges of G that any solution must omit.

▶ Proposition 2.3 (⋆).
Connectivity NWS and Stars NWS are NP-hard for k = 0.
Unweighted Connectivity NWS and Unweighted Stars NWS can be solved
in n2k · poly(n) time and are W[1]-hard with respect to k even if G is a clique and if each
community has size at most 3.

For Unweighted Connectivity NWS, Fluschnik and Kellerhals showed that a poly-
nomial kernel for ℓ and (thus for n) is unlikely, even on planar series-parallel graphs [17].
This result can be also given for the case when the input graph G is a clique.

▶ Proposition 2.4 (⋆). Unweighted Connectivity NWS and Unweighted Stars
NWS do not admit a polynomial kernel for n even if G is a clique, unless NP ⊆ coNP/poly.

One can also show that the simple brute-force algorithm that considers all O(2m) subsets
of E(G) cannot be improved substantially.
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Figure 2 Sketch of the construction of Theorem 3.1. The communities are blue (solid, dashed
and dotted). We only show edges which are contained in at least one community and only some
fixed edges (red). a) Part of the variable gadget for x1 and x2. b) The variable communities for a
clause q = x1 ∨ x2 ∨ x3. c) The assignment gadget for the first literal x1 of the clause q. Here, the
red edges are the fixed edges with one endpoint in the variable gadget and one in the clause gadget.

▶ Proposition 2.5 (⋆). If the ETH is true, then Unweighted Stars NWS and Un-
weighted Connectivity NWS cannot be solved in 2o(n+m+c) · poly(n + c) time, even if
restricted to instances with community size at most 3.

3 A Stronger ETH-Bound

In Proposition 2.5 we observed that algorithms with running time 2o(n+m+c) for Unweighted
Connectivity NWS and Unweighted Stars NWS would violate the ETH. We now
provide a stronger 2Ω(n2+c)-time lower bound for both problems. Notably, this lower bound
also applies to the case when all communities have constant size.

First, we present the lower bound for Unweighted Stars NWS.

▶ Theorem 3.1. If the ETH is true, then Unweighted Stars NWS cannot be solved in
2o(n2+c) time, even if G is a clique and if each community has size at most 4.

Proof. We reduce from 3-SAT to Unweighted Stars NWS such that the resulting instance
has O(

√
|ϕ|) vertices and O(|ϕ|) communities, where ϕ denotes the total formula length.

Then, the existence of an 2o(n2+c)-time algorithm for Unweighted Stars NWS implies
the existence of a 2o(|ϕ|)-time algorithm for 3-SAT violating the ETH [25, 26]. The input
formula ϕ is over the variable set X and each clause q ∈ Γ contains exactly three literals.
For a literal y, we denote by y its complement. A visualization of the construction is given
in Figure 2. In all gadgets, we add several communities of size 2. These communities enforce
that each solution has to contain the edge of this community. In the following we call such
edges fixed.

Variable gadget GX . Recall that GX is a clique. The idea is to create for each variable a
community C of size 3 with one fixed edge. The two remaining edges of C are called selection
edges. The idea is that each solution contains exactly one selection edge of C. One selection
edge represents the positive literal, the other one represents the negative literal. The fixed
edge of the triangle is used to model that one literal must be set to true. The selection
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edges are arranged compactly, to guarantee that |V (GX)| ∈ O(
√
|ϕ|). In the following, we

describe the graph GX together with communities fulfilling the above-described properties.
An example of a variable gadget is shown in part a) of Figure 2.

Let V (GX) = U ∪ P where U := {u1, . . . , unx
}, P = P1 ∪ P2, and Pi := {pi

1, . . . , pi
nx
}

for i ∈ [2] consist of nx = ⌈
√
|X|⌉ vertices each. It remains to describe the communities: For

each variable x ∈ X, we add a community Cx := {uj , p1
s, p2

s} for j, s ∈ [ nx ]. This is possible
since nx · nx ≥ |X|. These communities are called the variable communities CX . Afterwards,
we set θ(x) := {uj , p1

s} and θ(x) := {uj , p2
s} to assign the positive and negative literal of x to

an edge of the variable gadget. Now, we fix the edges of G[P ] = G[P1 ∪ P2]. In other words,
for each edge {pi1

j1
, pi2

j2
} having both endpoints in P1 ∪ P2, we add a community {pi1

j1
, pi2

j2
}.

Observe that the sets of selection edges corresponding to two distinct variables are disjoint:

▷ Claim 1 (⋆). Each selection edge of E(GX) is contained in only one subgraph induced by
a variable community in CX .

Clause gadget. We continue by describing the construction of the clause gadget GΓ. The
idea is that each clause is represented by four vertices of V (GΓ) in which a triangle is fixed.
All three remaining edges of this size-4 clique are referred to as free. Note that these free
edges form a star with three leaves. Each free edge represents one literal of the clause. For
each pair containing two of these three edges, we then create a community containing the
three endpoints of these two edges. As in the vertex gadget, these induced subgraphs are
arranged compactly, to achieve a clause gadget with |V (GΓ)| ∈ O(

√
|Γ|).

Let V (GΓ) = Y ∪ Z where Y = {y1, . . . , ync}, Z = Z1 ∪ Z2 ∪ Z3, and Zi = {z1
1 , . . . , zi

nc
}

for i ∈ [3] consist of nc = ⌈
√
|Γ|⌉ vertices each. In the following, we assign each clause to a

clique of GΓ having vertex set yj , z1
s , z2

s , z3
s for j, s ∈ [nc]. This is possible since nc · nc ≥ |Γ|.

In this clique, we fix the triangle having its endpoints in Z1 ∪ Z2 ∪ Z3. Formally, for each
clause q = {q1, q2, q3} ∈ Γ we add three communities C1

q = {yj , z2
s , z3

s}, C2
q = {yj , z1

s , z3
s} and

C3
q = {yj , z1

s , z2
s}. We refer to these communities as the clause communities CΓ. Afterwards,

we set ν(q, q1) := {yj , z1
s}, ν(q, q2) := {yj , z2

s}, and ν(q, q3) := {yj , z3
s} to assign each literal

in clause q to an edge of the clause gadget. These edges are referred to as free. Second, we
fix the edges of the clique Z1 ∪ Z2 ∪ Z3.

Observe that the sets of free edges corresponding to two distinct clauses are disjoint:

▷ Claim 2 (⋆). Each free edge of E(GΓ) is contained in exactly one subgraph induced by a
clause community in CΓ.

Connecting the gadgets. We complete the construction by connecting the variable and
clause gadget, using new assignment communities. The idea is to add a new community
containing the endpoints of a free edge describing a literal in a clause together with the
endpoints of the selection edge describing the same opposite literal in the variable gadget.
These communities model occurrences of variables in the clauses. Roughly speaking, these
communities are satisfied if the selection edge of the variable gadget or the free edge of the
clause gadget is part of the solution. To enforce this, we fix further edges of G.

We create for each clause q = {q1, q2, q3} ∈ Γ three assignment communities Cq1
q =

ν(q, q1)∪ θ(q1), Cq2
q = ν(q, q2)∪ θ(q2), and Cq3

q = ν(q, q3)∪ θ(q3). We denote the assignment
communities with CX

Γ . To enforce that each solution contains the selection edge or the
free edge of each assignment community, we fix all edges between the vertex sets U and Z,
between the vertex sets P and Y , and between the vertex sets P and Z.

Finally, we set ℓ := |X|+ 2 · |Γ|+
(|P |

2
)

+
(|Z|

2
)

+ |U | · |Z|+ |P | · |Y |+ |P | · |Z|.
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Correctness. The correctness is based on the facts that each solution for I contains a) all
fixed edges, b) exactly |X| selection edges, and c) exactly 2|Γ| free edges. Fact b) ensures
that this models an assignment β of the variables of X and fact c) ensures that each clause
is satisfied by at least one literal of β. The detailed correctness proof is deferred to the full
version. ◀

An adapted construction yields further results for d-Diam NWS [17] (Π is “having
diameter at most d”) and Density NWS [19] (Π is “exceeding some density threshold”).

▶ Corollary 3.2 (⋆). If the ETH is true, then Unweighted Connectivity NWS, d-Diam
NWS for each d ≥ 2, and Density NWS cannot be solved in 2o(n2+c) time even if G is a
clique and each community has size at most 4.

▶ Corollary 3.3 (⋆). Unweighted Stars NWS remains NP-hard and, assuming the ETH,
cannot be solved in 2o(n+m+c) time on graphs with maximum degree six and community size
at most 4.

4 Parameterization by the Feedback Edge Number of a Solution

The parameter ℓ, the number of edges in the solution is in most cases not independent from the
size of the input instance of Stars NWS or Connectivity NWS: if the hypergraph (V, C)
is connected, a solution G′ has at least n−1 edges. In other words, n−1 is a lower bound for ℓ

in this case. In this section, we study Stars NWS and Connectivity NWS parameterized
above this lower bound. Formally, the parameter t is defined as the size of a minimum
feedback edge set of any optimal solution of an instance of Stars NWS or Connectivity
NWS. Thus, the parameter t measures how close the solution is to a forest. Formally, the
definition is t := ℓ − n + x where x denotes the number of connected components of G′.
Recall that t can be computed in polynomial time (see Section 2.).

4.1 An XP-Algorithm for Stars NWS
In this subsection, we show that Stars NWS parameterized by t admits an XP-algorithm.

▶ Theorem 4.1. Stars NWS can be solved in m4t · poly(|I|) time.

Our XP-algorithm exploits the fact that there are two different kinds of cycles in G′: First,
there are global cycles. These are the cycles in the solutions that are directly caused by cycles
in the input hypergraph. No solution may avoid these cycles. Second, there are local cycles.
These are cycles which are entirely contained in the subgraph induced by two communities.
Since in each solution, each community contains a spanning star, local cycles can only have
length 3 or 4. This allows us to bound the number of possible local cycles and thus to
consider all possibilities for the local cycles in XP-time with respect to t. Then, the crux of
our algorithm is that after all local cycles have been fixed, all remaining cycles added by
our algorithm have to be global and are thus unavoidable. Using this fact, we show that in
polynomial time we can compute an optimal solution with feedback edge number at most t

that extends a fixed set of local cycles without introducing any further local cycles. To do
this, for each community C, we store a set of potential centers, that is, vertices of C that
may be the center of a spanning star of C in any solution that does not produce new local
cycles. We define several operations that restrict the potential centers of each community.
We show that after all operations have been applied exhaustively, one can greedily pick the
best remaining center for each community.
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b)a) c)

Figure 3 Examples for solutions with and without local cycles. Red edges indicate the edges of
the solution. Part a) shows an example, where both communities induce a local cycle. Part b) shows
an example, where the two communities do not induce local cycle. Finally, part c) shows an example,
where the solution contains a (global) cycle but no two communities induce a local cycle.

Algorithm-specific notation. Next, we present the formal definition of local cycles; an
example is shown in Figure 3. For a spanning subgraph H of G and a community C ∈ C,
let univH(C) denote the vertices of C that are universal for C in H. Note that univH(C) ⊆
univG(C). In the following, we assume that for each community C ∈ C, univG(C) ̸= ∅, as
otherwise, there is no solution for the instance I of Stars NWS.

For a solution G′, we say that two distinct communities C1 and C2 induce a local cycle if
for each i ∈ {1, 2}, there is a vertex ci ∈ univG′(Ci) such that the graph S1 ∪ S2 contains a
cycle. Here, for each i ∈ {1, 2}, Si is the spanning star of Ci with center ci and S1 ∪S2 is the
union of both these stars defined by S1∪S2 := (C1∪C2, {{ci, wi} : wi ∈ Ci \{ci}, i ∈ {1, 2}}).
Moreover, we say that each cycle of S1 ∪ S2 is a local cycle in G′. Note that each local cycle
has length at most four, and if C1 and C2 induce a local cycle, then |C1 ∩ C2| ≥ 2.

As described above, the first step of the algorithm behind Theorem 4.1 is to test each
possibility for the local cycles of the solution. For a fixed guess, we let E∗ denote the set of
all edges contained in at least one local cycle and in the following we refer to them as local
edges. Moreover, we call a minimum solution G′ fitting for E∗ if each local cycle of G′ uses
only edges of E∗ and each edge of E∗ is contained in G′. Hence, to determine whether the
choice of local edges E∗ can lead to a solution, we only have to check, whether there is a
fitting solution for E∗. In the following, we show that this can be done in polynomial time.

▶ Theorem 4.2. Let I = (G = (V, E), C, ω, ℓ, b) be an instance of Stars NWS, and
let E∗ ⊆ E. In polynomial time, we can

find a solution G′ = (V, E′) for I with E∗ ⊆ E′ or
correctly output that there is no minimum solution that is fitting for E∗.

Based on the definition of fitting solutions, we define for each community C ∈ C a
set fitE∗(C) of possible centers. We initialize fitE∗(C) := univG(C) for each community C ∈ C.
The goal is to reduce fitE∗(C) of each community C as much as possible while preserving the
following property, which trivially holds for the initial fitE∗(C) for each community C ∈ C.

▶ Property 1. For each minimum solution G′ which is fitting for E∗ and each community C ∈
C, we have univG′(C) ⊆ fitE∗(C).

Note that if Property 1 is fulfilled and if fitE∗(C) = ∅ for some C ∈ C, then we can correctly
output that there is no fitting solution for E∗. Next, we define several operations that for
some communities C ∈ C remove vertices from fitE∗(C) which – when taken as a center vertex
for C – would introduce new local cycles, violating the properties of a fitting solution. We
show that these operations preserve Property 1 and that after these operations are applied
exhaustively, the task of Theorem 4.2 can be performed greedily based on fitE∗ . Examples
for each of our operations are shown in Figure 5.
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In the following, we say that a vertex v ∈ V is locally universal for a vertex set A ⊆ V , if
for each vertex w ∈ A \ {v}, the vertex pair {v, w} is a local edge.

▶ Operation 1. Let C ∈ C be a community and let {y, z} ⊆ C be a local edge. Remove each
vertex v from fitE∗(C) which is not locally universal for {y, z}.

The following lemma shows that Operation 1 preserves Property 1.

▶ Lemma 4.3 (⋆). Let G′ be a minimum solution for I, let C be a community of C and
let x ∈ univG′(C) such that x is not locally universal for some local edge {y, z} ⊆ C. Then,
G′ is not fitting for E∗.

Note that after the exhaustive application of Operation 1, for each community C ∈ C
with at least one local edge, the vertices of fitE∗(C) induce a clique with only local edges.

Next, we define a partition C of the communities of C. The idea of this partition is that
in each fitting solution for E∗, all communities of the same part of the partition C have the
same unique center. The definition of the partition C is based on the following lemma.

▶ Lemma 4.4 (⋆). Let C and D be distinct communities of C with |C ∩D| ≥ 3 and where
no vertex v ∈ C ∪D is locally universal for C ∩D. Let G′ be a solution such that there is no
vertex w ∈ C ∩D with univG′(C) = univG′(D) = {w}. Then, C and D induce a local cycle
in G′ that uses at least one edge which is not a local edge.

Consider the auxiliary graph GC with vertex set C and where two distinct communities C

and D are adjacent if and only if a) |C ∩D| ≥ 3 and b) there is no locally universal vertex
for C ∩D in C ∪D. The partition C consists of the connected components of GC and for
a community C ∈ C, we denote by C(C) the collection of communities in the connected
component of C in GC. An example is shown in Figure 4.

By Lemma 4.4 and due to transitivity, we obtain the following.

▶ Corollary 4.5. For each community C ∈ C with |C(C)| ≥ 2 and each fitting solution G′

for E∗, there is a vertex v ∈
⋂

C̃∈C(C) C̃ such that univG′(C̃) = {v} for each C̃ ∈ C(C).

This implies that the following operation preserves Property 1.

▶ Operation 2. Let C ∈ C. Remove each vertex v from fitE∗(C) if v is not contained
in

⋂
Ĉ∈C(C) fitE∗(Ĉ).

Next, we define an operation for each possibility how two communities may intersect.

▶ Operation 3. Let C ∈ C such that C contains no local edge. Moreover, let D ∈ C such
that |C ∩D| ≥ 2. Remove all vertices from fitE∗(C) that are not contained in C ∩D.

▶ Operation 4. Let C ∈ C such that C contains at least one local edge. Moreover, let D ̸∈ C(C)
be a community, such that |C ∩D| = 2 and {x, y} := C ∩D is not a local edge.
1. If fitE∗(C) ∩ {x, y} = ∅, then remove x and y from fitE∗(D) or
2. if fitE∗(C) ∩ {x, y} = {x}, then set fitE∗(C) := {x}.

▶ Operation 5. Let C ∈ C be a community containing at least one local edge. Moreover,
let D ̸∈ C(C) such that |C ∩D| ≥ 3. For each pair of distinct vertices x and y of C ∩D,
where {x, y} is not a local edge, remove x and y from fitE∗(D).

▶ Lemma 4.6 (⋆). Operation 3 preserves Property 1. Moreover, if Operation 1 is exhaustively
applied, then Operation 4 and Operation 5 preserve Property 1.



E. Herrendorf, C. Komusiewicz, N. Morawietz, and F. Sommer 60:11

Y

X

Z

A C

B

Figure 4 Examples for parts of the partition C. Only the local edges are shown. Note that A, C ∈
C(B), since A and C share at least three vertices with B and no vertex of A ∪ B or C ∪ B is locally
universal for A ∩ B or C ∩ B, respectively. Hence, after exhaustive application of Operation 2,
fitE∗ (A) = fitE∗ (B) = fitE∗ (C) = ∅, since A and C share no vertices. Furthermore, Y ∈ C(Z), since
no vertex of Y ∪ Z is locally universal for Y ∩ Z. Note that X /∈ C(Z), since the black vertex of X

is locally universal for X ∩ Y and X ∩ Z. Observe that an exhaustive application of Operation 2
yields fitE∗ (Z) ⊆ Y ∩ Z and an exhaustive application of Operation 5 yields fitE∗ (Z) ∩ (X ∩ Z) =
fitE∗ (Z) ∩ (Y ∩ Z) = ∅, since X contains at least one local edge and X ∩ Z contains no local edge.
Hence, for both shown hypergraphs, there is no fitting solution for the given set of local edges.

Algorithm 1 Algorithm solving the problem described in Theorem 4.2.

Input : I = (G = (V, E), C, ω, ℓ, b), E∗ ⊆ E

Output : A solution G′ = (V, E′) with at most ℓ edges and total weight at most b, or
no, if there is no minimal solution which is fitting for E∗

1 Compute the partition C of C
2 For each C ∈ C, initialize fitE∗(C)← univG(C) and apply Operation 1
3 Apply Operations 1–5 exhaustively
4 if fitE∗(C) = ∅ for some C ∈ C then return no
5 GA ← (V, E∗)
6 forall L ∈ C do
7 C ← some community of L
8 VL ←

⋃
C̃∈L C̃

9 y ← arg minu∈fitE∗ (C) ω({{u, v} : v ∈ VL \ {u}} \ E∗)
10 add all edges of {{y, v} : v ∈ VL \ {y}} to GA

11 if |E(GA)| ≤ ℓ and ω(E(GA)) ≤ b then return GA

12 return no

Based on these operations, we are now able to present the algorithm (see Algorithm 1)
behind Theorem 4.2 working as follows: First, we apply Operations 1–5 exhaustively. Next,
if there is a community C ∈ C with fitE∗(C) = ∅, then we return no. This is correct, since
Operations 1–5 preserve Property 1. Afterwards, we start with an auxiliary graph GA with
vertex set V and edge set E∗ and we iterate over the partition C. Recall that since Operation 2
is exhaustively applied, for each L ∈ C, fitE∗(C) = fitE∗(D) for any two communities C

and D of L. For each L ∈ C, we find a vertex y ∈ fitE∗(C) that minimizes the total weight of
non-local edges required to make y the center of all communities of L, where C is an arbitrary
community of L. Finally, we add all edges between y and each vertex of any community of L
to GA. After the iteration over the partition C is completed, we output GA if it contains at
most ℓ edges and has total weight at most b. Otherwise, we return that there is no fitting
solution for E∗. It remains to show that this greedy choice for the center vertices is correct.

▶ Lemma 4.7. Algorithm 1 is correct.
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Figure 5 Examples of applications of Operations 1–5. The black edges represent the local edges,
the solid (for C) or dashed (for D) red edges show the non-local edges resulting from choosing
the respective center for community C or D. For example in 2), z is the center of community C

and v is the center of community D, and the edges {z, y} and {v, y} are non-local edges in the
solution. For each operation, the violation of the property of being a fitting solution is shown, if
a vertex a is selected as a center of a community A where the application of the corresponding
operation would remove a from fitE∗ (A). In 1), 2), 3), and 4.2), the vertex selected as center
for community C is removed from fitE∗ (C) by the respective operation. For example, in 4.2),
(assuming fitE∗ (C) ∩ {x, y} = {x}) Operation 4 removes v from fitE∗ (C), as otherwise selecting v

as center of C results in the depicted non-fitting solution. In 4.1) and 5), the vertex selected as
center for community D is removed from fitE∗ (D) by the respective operation. For example in 4.1),
(assuming fitE∗ (C) ∩ {x, y} = ∅) Operation 4 removes y from fitE∗ (D), as otherwise selecting y as
center of D results in the depicted non-fitting solution.

Proof. If Algorithm 1 outputs “no” in Line 4, then this is correct, since fitE∗ fulfills Prop-
erty 1. Otherwise, let GA denote the graph constructed by Algorithm 1 and let for each
community C ∈ C, center(C) denote the vertex y chosen to be the center of all communities
of C(C) in Line 9. By construction, GA is a solution since for each community C ∈ C,
center(C) is a vertex of fitE∗(C) ⊆ univG(C). If GA contains at most ℓ edges and has total
weight at most b, then the algorithm correctly outputs the solution GA which is fitting
for E∗.

Thus, in the following we assume that GA contains more than ℓ edges or has weight
more than b. Assume towards a contradiction that there is a fitting solution GF for E∗ such
that Agree(GF ) := {C ∈ C : center(C) ∈ univGF

(C)} is as large as possible.

Case 1. Agree(GF ) = C. By construction, GA contains all edges of E∗ and only the required
edges to achieve that for each community C ∈ C, center(C) ∈ univGA

(C). Consequently, GA

is a subgraph of GF and thus GF contains more than ℓ edges or has weight more than b, a
contradiction.

Case 2. There is a community C ∈ C \ Agree(GF ). In the following, we define a fitting
solution G′

F for E∗ with Agree(G′
F ) ⊋ Agree(GF ). By definition, center(C) = center(C̃) for

each community C̃ ∈ C(C). Let VC :=
⋃

C̃∈C(C) C̃ and let y := center(C). Moreover, let x

be an arbitrary vertex of VC such that x ∈ univGF
(C̃) for each community C̃ ∈ C(C). Due
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to Corollary 4.5 and since GF is fitting for E∗, this vertex exists and is unique if |C(C)| ≥ 2.
Note that C ∈ C \Agree(GF ) implies that x ̸= y. This also implies that C has size at least 3,
and thus, each community of C(C) has size at least 3. We obtain G′

F as follows: First,
initialize G′

F as GF . Second, for each community C̃ ∈ C(C), remove all edges that are not
local edges of GF [C̃] from G′

F . Finally, for each community C̃ ∈ C(C), add the minimum
number of edges to G′

F such that y ∈ univG′
F

(C̃), that is, the edges {{y, v} : v ∈ VC \{y}}\E∗.
First, we show that G′

F contains at most as many edges as GF . To this end, we first
observe the following.

▷ Claim 3 (⋆). For each z ∈ VC \ {x, y}, the edge {x, z} is a local edge if and only if {y, z}
is a local edge.

Recall that each edge which is in G′
F and not in GF is incident with y and some vertex

of VC \ {x, y}. Hence, for each z ∈ VC \ {x, y} where the edge {y, z} was added to obtain G′
F ,

the edge {x, z} was removed to obtain G′
F . Thus, G′

F contains at most as many edges as GF .
This implies that the difference between the total weight of G′

F and the total weight of GF is
at most ρ = ω({{y, z} : z ∈ VC \ {y}} \E∗)−ω({{x, z} : z ∈ VC \ {x}} \E∗). Due to Line 9,
ρ is not positive. Thus, since GF has total weight at most b, G′

F has total weight at most b.
To show that G′

F is a solution, it remains to show that each community C ∈ C has at
least one center in G′

F . For this, it suffices to show that all communities outside of C(C)
have the same centers in GF and G′

F , since y is a center of all communities of C(C).

▷ Claim 4. For each community D ∈ C \ C(C), univGF
(D) = univG′

F
(D).

Proof. Due to symmetry, we only show that univGF
(D) ⊆ univG′

F
(D). Assume towards a

contradiction that there is a vertex z ∈ univGF
(D) \univG′

F
(D). Since z /∈ univG′

F
(D), there

is an edge {z, w} which is contained in GF but not in G′
F . Moreover, {z, w} is not a local edge,

since G′
F contains all local edges. This further implies that there is a community C̃ ∈ C(C)

such that {z, w} ⊆ C̃. Since GF is fitting for E∗, x is one endpoint of {z, w}, as otherwise,
C̃ and D induce a local cycle in GF on the vertices {x, z, w} and the edge {z, w} is not a
local edge. Next, we distinguish the cases whether C̃ contains a local edge.

Case 1. There is no local edge in C̃. Since Operation 3 is exhaustively applied, {x, y} ⊆
fitE∗(C̃) ⊆ C̃ ∩D. Hence, if |C̃ ∩D| = 2, then x = z and y = w, or vice versa. Consequently,
the edge {z, w} is contained in G′

F , a contradiction. Otherwise, assume |C̃ ∩D| ≥ 3. We
show that in this case, there is no fitting solution for E∗. Since D is not in C(C), there is
some vertex of C̃ ∪D which is locally universal for C̃ ∩D. Hence, fitE∗(C̃) ⊆ C̃ ∩D, since C̃

contains no local edge and Operation 3 is exhaustively applied. Moreover, since Operation 5
is exhaustively applied and there is no local edge between any two vertices of C̃ ∩ D,
fitE∗(C̃)∩ (C̃ ∩D) = ∅. We conclude that fitE∗(C̃) = ∅, which implies that there is no fitting
solution for E∗, a contradiction to the fact that GF is a fitting solution for E∗.

Case 2. There is some local edge in C̃. Recall that Operation 4 and Operation 5 are
applied exhaustively with respect to C̃. If x = z and y = w, or vice versa, then the
edge {z, w} is contained in G′

F , a contradiction. Otherwise, let w∗ be the unique vertex
of {z, w} \ {x}. Since {x, w∗} = {z, w} is not a local edge, x ∈ fitE∗(C̃), and Operation 1
is exhaustively applied, no vertex of fitE∗(C̃) is locally universal for w∗ and w∗ /∈ fitE∗(C̃).
Hence, if |C̃ ∩D| = 2, then since Operation 4 is exhaustively applied, fitE∗(C̃) has size at
most one, a contradiction. Otherwise, if |C̃ ∩D| ≥ 3, then since Operation 5 is exhaustively
applied x /∈ fitE∗(D) and w∗ /∈ fitE∗(D). Consequently, z /∈ fitE∗(D), a contradiction. ◁
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Since GF is a solution, for each community D ∈ C \ C(C), Claim 4 implies
that univG′

F
(D) = univGF

(D) is nonempty. Hence, G′
F is a solution. Moreover, since GF is

a minimum solution, Claim 3 implies that G′
F is a minimum solution.

Next, we show that G′
F is fitting for E∗. To show that G′

F is a fitting solution for E∗, it
remains to show that each local cycle of G′

F uses only edges of E∗.

▷ Claim 5 (⋆). Each local cycle of G′
F uses only edges of E∗.

Finally, we show that Agree(G′
F ) is a proper superset of Agree(GF ). By construction,

C(C) ⊆ Agree(G′
F ), and due to Claim 4, for each community D ∈ C \ C(C), univG′

F
(D) =

univGF
(D). Hence, Agree(GF ) ⊆ Agree(G′

F ). Moreover, since C /∈ Agree(G′
F ) \Agree(GF )

we obtain that Agree(G′
F ) is a proper superset of Agree(GF ). Altogether, G′

F is a fitting
solution for E∗ with Agree(G′

F ) ⊋ Agree(GF ). This contradicts our choice of GF .
Hence, if GA contains more than ℓ edges or has weight more than b, then the algorithm

correctly outputs that there is no solution which is fitting for E∗. ◀

Proof of Theorem 4.2. Clearly, the partition C of C and also the initialization of fitE∗ in
Lines 1 and 2 can be computed in polynomial time. Note that Operations 1–5 can be
exhaustively applied in polynomial time by iterating over all local edges and all pairs of
communities, since for each community C ∈ C, fitE∗(C) initially has size at most |C| < n

and each application of any operation may only remove elements from fitE∗(C). Hence,
Lines 3–5 can be performed in polynomial time. Afterwards, Lines 6–10 can be performed
in polynomial time since for each partite set of C we compute the vertex y with minimal
cost such that y serves as the center of all communities in this partite set. Finally, the check
whether the solution has at most ℓ edges and weight at most b can be done in polynomial
time. Thus, Algorithm 1 runs in polynomial time. ◀

Finding the correct edge set E∗. To solve Stars NWS, the main algorithmic difficulty
now lies in finding an edge set E∗ that contains all edges of local cycles of any optimal
solution of I. Hence, to prove Theorem 4.1, it remains to show that such an edge set can be
found in m4t · poly(n + c) time, if it exists.

▶ Lemma 4.8 (⋆). If I is a yes-instance of Stars NWS, then for every optimal solution G′ =
(V, E′), there is an edge set E∗ ⊆ E′ of size at most 4t such that the edge set of each local
cycle of G′ is a subset of E∗.

Proof of Theorem 4.1. The algorithm works as follows: iterate over all possible edge sets E∗

of size at most 4t and apply the algorithm behind Theorem 4.2. If I is a yes-instance, then
for some edge set E∗, Theorem 4.2 yields an optimal solution for I with at most ℓ edges
and weight at most b. Since there are O(m4t) edges sets of size at most 4t, the algorithm
achieves the stated running time. ◀

The concrete algorithm for t = 0. Recall that Theorem 4.1 affirmatively answers the
question by Korach and Stern [30] who asked whether there is a polynomial-time algorithm
for finding an optimal solution for Stars NWS with t = 0. For this case, the concrete
algorithm is much simpler since most of the described operations are never applicable. This
is due to the fact that for t = 0, no local edges exist and Operations 1, 4, and 5 require at
least one local edge to be applicable. In the following, we give an intuitive description of the
concrete much simpler algorithm for t = 0.

First, we set E∗ = ∅ and initialize fitE∗(C) := univG(C) for each community C ∈ C.
Afterwards, we again compute the partition C of the communities of C. Recall that this is
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done by defining an auxiliary graph GC with vertex set C where two distinct communities C

and D are adjacent if and only C and D have an intersection of size at least 3. Note that
in the original definition one had to also check that no vertex is locally optimal for the
intersection. This now always holds since there are no local edges. The partition C then
consists of the connected components of GC.

Second, we exhaustively apply Operations 2 and 3. Operation 2 ensures that all communit-
ies of the same part of C will have the same potential centers according to fitE∗ . Moreover,
Operation 3 ensures that if two communities C and D have an intersection of size at least 2,
then the potential centers of both communities will be within C ∩D according to fitE∗ .

After exhaustive application of these two operations, the remaining lines of Algorithm 1
are executed, that is, if fitE∗(C) = ∅ for at least one community C ∈ C, we correctly output
that the instance under consideration is a no-instance of Stars NWS. Otherwise, we greedily
select for each part L of the partition C a vertex y as center for all communities L, such
that y is a potential center of each community of L and such that the cost of selecting y

as center of all these communities is minimum under all such potential centers. Finally, if
these choices of center vertices result in more than ℓ edges or total weight more than b, we
correctly output that the input instance is a no-instance of Stars NWS. Otherwise, the
chosen center vertices induce a solution with t = 0.

4.2 Connectivity NWS
Korach and Stern presented an O(c4n2)-time algorithm for Connectivity NWS where G

is a clique and t = 0 [29] which was improved by Klemz et al. [28] who provided an
O(m · (c + log(n)))-time algorithm for Connectivity NWS with t = 0. Guttmann-Beck et
al. [21] presented a similar algorithm for Unweighted Connectivity NWS with t = 0.

Next, we show that the positive result for t = 0 cannot be lifted to t = 1; in this
case Connectivity NWS is NP-hard. We obtain our result by reducing from the NP-
hard Hamiltonian Cycle-problem [1, 18], which asks for a given graph G = (V, E) if there
is a Hamiltonian cycle in G, that is, a cycle containing each vertex of G exactly once.

▶ Theorem 4.9 (⋆). Let Π be a graph class on which Hamiltonian Cycle is NP-hard,
then Unweighted Connectivity NWS is NP-complete on Π even if t = 1.

Proof. Let I := (V, E) be an instance of Hamiltonian Cycle containing at least three
vertices. We obtain an equivalent instance I ′ := (G = (V, E), C, ℓ) of Unweighted Con-
nectivity NWS as follows: We start with an empty set C and add for each vertex v ∈ V a
community Cv := V \ {v} to C. Finally, we set ℓ := |V |. Note that t = ℓ− n + x, where x is
the number of connected components of the graph. Thus, t = n− n + 1 = 1.

The detailed correctness proof is deferred to the full version. ◀

▶ Corollary 4.10. Unweighted Connectivity NWS is NP-complete even if t = 1 on
subcubic bipartite planar graphs.

5 Stars NWS Parameterized by the Number of Communities

Unweighted Connectivity NWS is NP-hard even for c = 7 [17, Proposition 3]. In
contrast, Stars NWS admits an XP-algorithm for c with running time nO(c): For each
community C, test each of the at most |C| ≤ n potential center vertices. Then, for each
potential solution check whether it consists of at most ℓ edges of total weight at most b. For
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Stars NWS, we show that it is unlikely that this brute-force algorithm can be improved, by
showing W[1]-hardness. For Unweighted Stars NWS, we obtain an FPT-algorithm for c.

▶ Theorem 5.1 (⋆). Stars NWS is W[1]-hard when parameterized by c even if G is a clique
and each edge weight is 1 or 2.

Proof. We provide a parameter-preserving reduction from the W[1]-hard Regular Multi-
colored Clique problem [11]. The input consists of an r-regular graph G, an integer κ,
and a partition (V1, . . . Vκ) of V (G). The question is whether there exists a clique of size κ

containing exactly one vertex of each partite set Vi.
We construct an equivalent instance (G′, C, ω, ℓ, b) of Stars NWS as follows. The vertex

set of V (G′) consists of a copy of V (G) and κ additional vertex sets Si, i ∈ [κ], each of
size n(G)3. We make G′ a clique by adding all edges between vertices of V (G′). To complete
the construction, we specify the communities and edge weights. First, for each color class i ∈
[1, κ], we add a community Ci := V (G) ∪ Si. Afterwards, we define the edge weights: For
each edge {a, b} ∈ E(G′) such that {a, b} ∈ E(G), we set ω({a, b}) := 2, for each edge {a, b}
with a ∈ Si and b /∈ Vi, we set ω({a, b}) := 2, for each edge {a, b} with a ∈ Si and b ∈ Sj , we
set ω({a, b}) := 2, and for each remaining edge {a, b} ∈ E(G′) we set ω({a, b}) := 1. Finally,
we set ℓ := κ · (n(G)3 + n(G) − 1) −

(
κ
2
)

and b := κ · (n(G)3 + n(G) − 1 + r) − 2
(

κ
2
)
. Note

that c = κ, it thus remains to show the equivalence of the two instances. The detailed
correctness proof is deferred to the full version. ◀

▶ Theorem 5.2 (⋆). Unweighted Stars NWS is solvable in O(4c2 · (n + m) + n2 · c) time.

To complete the parameterized complexity picture, we show that a polynomial kernel
for c is unlikely.

▶ Theorem 5.3 (⋆). Unweighted Stars NWS parameterized by c does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

6 Conclusion

Presumably the most interesting open question is whether Stars NWS parameterized by t

admits an FPT-algorithm. In Theorem 4.2 we showed that Stars NWS can be solved in
polynomial time if for some optimal solution the edge set of all local cycles is known. Thus,
to obtain an FPT-algorithm, it is sufficient to find such an edge set in FPT-time. Also,
it is open whether Unweighted Connectivity NWS can be solved in polynomial time
when t is constant and the input graph is a clique. In other words, it is open whether a
minimum-edge hypergraph support can be found in polynomial time when it has a constant
feedback edge number.

It is also interesting to close the gap between the running time lower bound of 2Ω(c) ·
poly(|I|) (see Proposition 2.5) and the upper bound of 2O(c2) · poly(|I|) (see Theorem 5.2)
for Unweighted Stars NWS. Also, we may ask the following: are there properties Π such
that Π-NWS is NP-hard but can be solved in 2O(n) · poly(n + c) time?
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Abstract
We introduce a novel generalization of the notion of clique-width which aims to bridge the gap
between classical hereditary width measures and the recently introduced graph product structure
theory. Bounding the new H-clique-width, in the special case of H being the class of paths, is
equivalent to admitting a hereditary (i.e., induced) product structure of a path times a graph
of bounded clique-width. Furthermore, every graph admitting the usual (non-induced) product
structure of a path times a graph of bounded tree-width, has bounded H-clique-width and, as a
consequence, it admits the usual product structure in an induced way. We prove further basic
properties of H-clique-width in general.
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1 Introduction

A prominent structural result by Dujmović, Joret, Micek, Morin, Ueckerdt and Wood [11],
known as the Planar product structure theorem, claims that every planar graph can be found
as a subgraph in the strong product (⊠) of a path and a graph of small tree-width. We refer
to Section 2 and Theorem 2.3 for the definitions and details.

The original motivation for this rather recent Product structure theorem was to bound the
queue number of planar graphs, but the theorem has quickly found interesting applications
and follow-up results, among which we may mention [1,9, 10,12,13,23]. Namely, the product
structure theory has been used to study non-repetitive colourings [10], to design short
labelling schemes [1, 9], or to bound the twin-width of planar graphs [4, 16,19].

The basic goal of the product structure theory can be seen in studying graph classes
which admit such product structure, that is, they can be constructed as subgraphs of the
strong product of a path and a graph of small tree-width. Within this setting, there are two
major restrictions; first that the containment (subgraph) relation is not induced, and second
that this kind of a superstructure can exist only for sparse graph classes.

We aim to give a different perspective on the product structure (Definition 2.1) addressing
both mentioned issues, that is, getting graphs which admit the traditional product structure
as induced subgraphs in such strong product, and allowing also dense graphs to occur.

Our alternative view is two-sided and is closely related to another classical structural
notion in graph theory – the clique-width measure. On one hand, any graph admitting
the traditional product structure can be obtained as an induced subgraph of the strong
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product of a path and a suitable graph of bounded clique-width and even bounded tree-width
(Theorem 4.6). On the other hand, a graph G admits the induced product structure with
bounded clique-width (of the relevant factor), if and only if G has bounded H-clique-width
where H is the class of reflexive paths (Theorem 4.1). This dual nature of our view is another
promising enhancement. Moreover, we believe this view can contribute to finding potential
algorithmic applications of product structure theory.

The wide scope of our definition suggests to study H-clique-width for other graph families
H in addition to paths, too. For instance, in relation to the aforementioned product-structure
works, one may consider H to be the class of the graphs Pn ⊠ Kk or of Pn ⊠ Pm.

We study and characterize relations of H-clique-width to ordinary clique-width (The-
orem 3.1), to local clique-width (Theorem 3.4), and in parts to twin-width (Corollary 4.3).
The full potential of this new concept when H is a family of specific graphs other than
paths is yet to be explored, especially in the case of H formed by suitable dense graphs. We
conclude with a number of open questions related to the new concept (Section 5).

2 Preliminaries

We consider finite simple graphs, i.e., graphs without parallel edges or loops, but in one
specific context (Definition 2.1) we allow graphs with optional (self-)loops, thereafter called
loop graphs. Precisely, a loop graph is a multigraph allowing loops (at most one per vertex),
but not allowing parallel edges. In the context of loop graphs, we specially call a graph G

a reflexive (loop) graph if every vertex of G has a loop. We naturally use terms reflexive
path, reflexive clique, and reflexive independent set to denote ordinary paths, cliques, and
independent sets, respectively, with loops added to all vertices. We write G1 ⊆i G2 to say
that G1 is an induced subgraph of G2. Note that if G1 ⊆i G2 for loop graphs, then possible
loops of G2 on vertices of G1 are also inherited.

A graph G is a matching if G is simple and all vertex degrees in G are 1. A graph
G ⊆ Kn,n is an antimatching if G is obtained from Kn,n by removing a matching of n edges.
A graph G is a half-graph if G is a bipartite simple graph with the bipartition {u1, . . . , un}
and {v1, . . . , vn}, such that uivj ∈ E(G) if and only if i ≤ j.

Width measures. As a traditional structural decomposition, a tree decomposition of a graph
G is a tuple (T, X ) where T is a tree, and X = {Xt : t ∈ V (T )} where Xt ⊆ V (G) is a
collection of bags which satisfy the following: (i)

⋃
t∈V (T ) Xt = V (G), (ii) for every vertex

v ∈ V (G), the set of the nodes t ∈ V (T ) such that v ∈ Xt forms a subtree in T , and (iii) for
every edge uv ∈ E(G), there exists t ∈ V (T ) such that {u, v} ⊆ Xt. The tree-width of G is
the minimum of maxt∈V (T ) |Xt| − 1 over all tree decompositions of G.

Our work is closely related to another measure, which is a “dense counterpart” of tree-
width. The clique-width of a graph G is the minimum integer ℓ such that G (irrespective of
labelling) is the value of an algebraic ℓ-expression defined by the following operations:

create a new vertex of label (colour) i for some i ∈ {1, . . . , ℓ};
take the disjoint union of two labelled graphs;
for 1 ≤ i ≠ j ≤ ℓ, add all (missing) edges between a vertex of label i and a vertex of
label j;
for 1 ≤ i ̸= j ≤ ℓ, recolour each vertex of label i to have label j.

In the same direction, let the local clique-width of a graph G be the integer function λ

defined as follows; for an integer distance r ≥ 1, λ(r) is the maximum clique-width of the
r-neighbourhood of a vertex v in G, over all v ∈ V (G). We say that a graph class G is
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of bounded local clique-width if there exists an integer function upper-bounding the local
clique-width of every member of G. For instance, the class of grids is of bounded local
clique-width, but of unbounded clique-width.

The last measure we mention, twin-width, was introduced a few years ago by Bonnet et
al. in [3]. A trigraph is a simple graph G in which some edges are marked as red, and with
respect to the red edges only, we naturally speak about red neighbours and red degree in G.
For a pair of (possibly not adjacent) vertices x1, x2 ∈ V (G), we define a contraction of the
pair x1, x2 as the operation creating a trigraph G′ which is the same as G except that x1, x2
are replaced with a new vertex x0 (said to stem from x1, x2) such that:

the (full) neighbourhood of x0 in G′ (i.e., including the red neighbours), denoted by
NG′(x0), equals the union of the neighbourhoods NG(x1) of x1 and NG(x2) of x2 in G

except x1, x2 themselves, that is, NG′(x0) = (NG(x1) ∪ NG(x2)) \ {x1, x2}, and
the red neighbours of x0, denoted here by Nr

G′(x0), inherit all red neighbours of x1
and of x2 and add those in NG(x1)∆NG(x2), that is, Nr

G′(x0) =
(
Nr

G(x1) ∪ Nr
G(x2) ∪

(NG(x1)∆NG(x2))
)

\ {x1, x2}, where ∆ denotes the symmetric set difference.
A contraction sequence of a trigraph G is a sequence of successive contractions turning G

into a single vertex, and its width d is the maximum red degree of any vertex in any trigraph
of the sequence. The twin-width of a trigraph G is the minimum width over all possible
contraction sequences of G. The twin-width of a multigraph or a loop graph is defined as
the twin-width of its simplification.

Introducing H-clique-width. Our main contribution builds on the following new concept.

▶ Definition 2.1 (H-clique-width). Let H be a family of loop graphs, and ℓ > 0 be an integer.
Consider labels of the form (i, v) where i ∈ {1, . . . , ℓ} and v ∈ V (H) for some (fixed) H ∈ H.
a) For H ∈ H, let an (H, ℓ)-expression be an algebraic expression using the following four

operations on vertex-labelled graphs:
creating a new vertex with single label (i, v) for some i ∈ {1, . . . , ℓ} and v ∈ V (H);
taking the disjoint union of two labelled graphs;
for 1 ≤ i ̸= j ≤ ℓ, adding edges between i and j, which means to add all edges between
the vertices of label (i, v) and the vertices of label (j, w) over all pairs (v, w) ∈ V (H)2

such that vw ∈ E(H) (including the case of a single vertex v = w with a loop, which
will often be assumed to exist for the graphs H); and
for 1 ≤ i ≠ j ≤ ℓ, recolouring i to j, which means to relabel all vertices with label (i, v)
where v ∈V (H) to label (j, v).

b) The H-clique-width H-cw(G) of a simple graph G is defined as the smallest integer ℓ such
that (some labelling of) G is the value of an (H, ℓ)-expression for some H ∈ H. If it is
not possible to build G this way, then let H-cw(G) = ∞.

Given an (H, ℓ)-expression of value (a labelled graph) G, we use the following terminology; the
graph H is the parameter of the expression, and when referring to a label (i, v) of x ∈ V (G),
the integer i is the colour and v the parameter vertex of x.

Observe that, throughout an (H, ℓ)-expression φ valued G, the colours of vertices of G may
arbitrarily change by the recolouring operations, but the parameter vertex of every x ∈ V (G)
stays the same (is uniquely determined for x) in φ.

It is obvious that H-clique-width (similarly to ordinary clique-width) is monotone under
taking induced subgraphs. On the other hand, it is not apriori clear whether H-clique-width
is (at least functionally) closed under taking the complement of a graph; we will address
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this interesting issue in the concluding section. Another remark concerns the family H
which should be generally treated as an infinite class of (finite) loop graphs, due to H-clique-
width being asymptotically the same as ordinary clique-width in the case of finite H – see
Theorem 3.1.

To further briefly illustrate Definition 2.1, we add few more easy observations:

▷ Claim 2.2.
a) If H = {K1}, then H-cw(G) < ∞ if and only if G has no edges. If H = {K◦

1 }, where K◦
1

stands for a single vertex with a loop, then H-cw(G) = cw(G) < ∞.
b) If H contains a loop graph with at least one loop, then H-cw(G) ≤ cw(G).
c) If H = {H}, then H-cw(H1) ≤ 2 holds for every simple graph H1 obtained from an

induced subgraph of H by removing loops.
d) If H = {H} and H is disconnected, then for every connected simple graph G we have

H-cw(G) = {H0}-cw(G) for some connected component H0 of H.
e) If H = {K2} (no loops), then H-cw(G) < ∞ if and only if G is a simple bipartite graph.

More generally, for any H, we have H-cw(G) < ∞ for a simple graph G, if and only if G

has a homomorphism into some H ∈ H.
f) For any k ≥ 3 and H = {Kk}, it is NP-hard to decide whether H-cw(G) < ∞.
g) Let H be a family containing arbitrarily long reflexive paths. If G is any square grid,

then H-cw(G) ≤ 5 (while cw(G) is unbounded in such case).

Proof.
a) There is no edge in K1, and so Definition 2.1 cannot create an edge in G. On the other

hand, (K◦
1 , ℓ)-expressions in Definition 2.1 exactly coincide with traditional ℓ-expressions of

clique-width (replacing every label i with (i, v) where {v} = V (K◦
1 )).

b) We pick v ∈ V (H) for H ∈ H such that v has a loop in H. Then, in an ordinary
cw(G)-expression for G, we replace every label i with (i, v) to get an (H, cw(G))-expression
for G, similarly to part a).

c) We simply make an (H, 2)-expression for H1 as follows; in an arbitrary order V (H1) =
{v1, . . . , vn} of the vertices, for k = 1, . . . , n, we add a new vertex labelled (2, vk), add edges
between 1 and 2, and recolour 2 to 1. This creates exactly the non-loop edges of H1.

d) This follows from the facts that the recolouring operation of Definition 2.1 does not
allow to change the initially assigned parameter vertex of H, and hence every edge of G

created within an (H, ℓ)-expression has a preimage edge in H. So, an expression creating
connected G may only use parameter vertices of a connected component of H.

e) Considering the previous argument turned around, every edge created within an
(H, ℓ)-expression has a unique homomorphic image in H (possibly a loop). In the opposite
direction, for a homomorphism h : G → H ∈ H, we make an (H, |V (G)|)-expression starting
with the disjoint union of vertices labelled (ix, h(x)) for all x ∈ V (G) where ix ≠ iy for x ̸= y,
and then simply add the edges of G one by one using the colours (i.e., ix).

f) By e), we have H-cw(G) < ∞ if and only if G is k-colourable.
g) Let G be an a × b grid, i.e., |V (G)| = ab. We take H ∈ H such that |V (H)| ≥ b,

choose a consecutive subpath on {v1, . . . , vb} ⊆ V (H), and make an (H, 5)-expression valued
G as follows. As in c), we define an (H, 3)-(sub)expression creating a “vertical” copy P1 of
the path on b vertices, but now using three colours such that the resulting labels of P1 are
with alternating colours 2 and 3, precisely as (2, v1), (3, v2), (2, v3), (3, v4), . . .. We likewise
create a copy P2 of the same path with alternating colours in labels (4, v1), (5, v2), (4, v3),
(5, v4), . . .. Then we make a disjoint union and add edges between colours 2, 4 and between
3, 5 – this creates precisely the “horizontal” edges between the labels (2, vi) and (4, vi), and
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between (3, vi+1) and (5, vi+1), for i = 1, 3, . . .. In a subsequent round, we recolour colours
2, 3 to 1 (this concerns only P1), and continue the same process with adding a path P3 with
alternating colours again 2 and 3, and adding the “horizontal” edges. After a − 1 rounds, we
build the desired a × b square grid G. ◁

Product structure theory. The strong product G1 ⊠ G2 of two simple graphs is the graph
G on the vertex set V (G) := V (G1) × V (G2) such that, for any [u, u′], [v, v′] ∈ V (G), we
have {[u, u′], [v, v′]} ∈ E(G) if and only if (uv ∈ E(G1) and u′v′ ∈ E(G2)) or (u = v and
u′v′ ∈ E(G2)) or (uv ∈ E(G1) and u′ = v′).

For an illustration, the strong product P ⊠ Q of two paths P, Q is the square grid with
diagonals. It may be interesting to observe that, in the context of loops graphs, if both G1
and G2 are reflexive, then the definition of the strong product G1 ⊠G2 could be shortened as
“uv ∈ E(G1) and u′v′ ∈ E(G2)”, and the result would be the same except that all vertices
would have loops.

Origins of graph product structure theory go back to the mentioned seminal paper [11]:

▶ Theorem 2.3 ([11], improved in [23]). Every planar graph is a subgraph of the strong
product P ⊠ M where P is a path and M is a planar graph of tree-width at most 6.

There exist alternative refined formulations of Theorem 2.3, such as using the strong
product P ⊠K3 ⊠M where M is now of tree-width at most 3 which is of importance in some
applications (such as in refining the upper bound on the queue number of planar graphs).

Our main goal is to refine, using Definition 2.1, the statement of Theorem 2.3 with
the induced subgraph relation in Theorem 4.6; admittedly, at the cost of worse absolute
constants.

3 Properties of H-Clique-Width

We first characterize the asymptotic difference between the ordinary clique-width and the
H-clique-width for families of loop graphs H.

We recall the concept of neighbourhood diversity by Lampis [20]. Two vertices x, y of a
simple graph G are of the same neighbourhood type if and only if they have the same set of
neighbours in V (G) \ {x, y}. We shall use an adjusted version of this concept, suitable for our
loop graphs; Two vertices x, y of a simple loop graph G are of the same total neighbourhood
type, if and only if they have the same set of neighbours in V (G) when x counts as a neighbour
of x if there is a loop on x (and likewise with y). A loop graph G is of total neighbourhood
diversity at most d if V (G) can be partitioned into d parts such that every pair in the same
part have the same total neighbourhood type.

The slight, but very important in our context, difference of these two notions in presence
of loops can be observed, e.g., on: loopless cliques Kn (neighbourhood diversity 1 and total
neighbourhood diversity n) vs. reflexive cliques K◦

n (total neighbourhood diversity 1), or
loopless stars K1,n (both neighbourhood diversities equal 2) vs. reflexive stars K◦

1,n (total
neighbourhood diversity n).

A loop graph class G is of component-bounded total neighbourhood diversity if there
exists an integer d such that each connected component of every graph of G is of total
neighbourhood diversity at most d.

▶ Theorem 3.1. Let H be a family of loop graphs. There exists a function f such that,
cw(G) ≤ f(H-cw(G)) holds for all simple graphs G, if and only if H is of component-bounded
total neighbourhood diversity.
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Proof. In the “⇐” direction, we may assume G is connected (we will later take the maximum
over connected components). By Claim 2.2 d), H-cw(G) = {H0}-cw(G) = ℓ for a connected
component H0 of some H ∈ H. The total neighbourhood diversity of H0 is at most some
constant d, by the theorem assumption. Then, in an (H0, ℓ)-expression for G, we may
equivalently replace the parameter vertices of H0 by d new colours, giving a dℓ-expression
for G. So, cw(G) ≤ d · H-cw(G).

A proof of the “⇒” direction is based on the following natural technical claim:

▷ Claim 3.2 (Ding et al. [7, Corollary 2.4]). For every k there exists m such that the following
holds. If F is a bipartite connected simple graph with the bipartition V (F ) = A∪B, |A| ≥ m

and the vertices of A have pairwise different neighbourhood types (in B), then F contains
an induced subgraph isomorphic to one of the following graphs on 2k vertices: a matching,
an antimatching, or a half-graph.

Having Claim 3.2 at hand, we continue as follows. Assume that H is not of component-
bounded total neighbourhood diversity. Let H ∈ H (or a component thereof) be a connected
loop graph of total neighbourhood diversity ≥ c1, and C ⊆ V (H) be vertices representing
these c1 total neighbourhood types. By Ramsey theorem, for sufficiently large c1 we find a
subset C1 ⊆ C, |C1| = 2c2 − 1, such that C1 induces a clique or an independent set in G,
and then we can select C2 ⊆ C1, |C2| = c2 such that either all vertices of C2 have loops, or
none has. We have got one of the two possibilities:

C2 is a reflexive independent set or a loopless clique in G.
Or, all vertices of C2 have the same total neighbourhood type in C2 (empty or full C2),
and so they have pairwise different neighbourhood types in D := V (G)\C2. Consequently,
we may apply Claim 3.2 to the bipartite subgraph “between” C2 and D.

Regarding the second point, in more detail, we say that a bipartite graph F1 with a fixed
bipartition V (F1) = A1 ∪ B1 is a bi-induced subgraph of a graph H, if F1 ⊆ H such that
every edge of H with one end in A1 and the other end in B1 belongs to F1. Claim 3.2 hence
implies that one of the three claimed subgraphs is bi-induced in H.

Altogether, for every k and sufficiently large c1 depending on k, we have connected H ∈ H
containing one of the five said substructures; an induced reflexive independent set or an
induced loopless clique on k vertices, or a bi-induced matching, a bi-induced antimatching,
or a bi-induced half-graph on 2k vertices. In each of these five cases, we can construct
a “grid-like” graph of bounded H-clique-width whose ordinary clique-width grows linearly
with k. This is provided by subsequent Lemma 3.3, in which one can easily check that its
assumptions cover all five cases of H ∈ H listed in this proof. ◀

▶ Lemma 3.3. Let k ≥ 3 be an integer, and H1 be a loop graph satisfying the following:
H1 is connected.
There exist sets A, B ⊆ V (H1), |A| = |B| = k, such that either A = B, or A ∩ B = ∅.
We can write A = {u1, . . . , uk} and B = {u′

1, . . . , u′
k} such that, for some of the following

three conditions on integers C(i, j) ∈ {‘ i < j’,‘ i = j’,‘ i ̸= j’} we have; for all (i, j) ∈
{1, . . . , k}2, {ui, u′

j} ∈ E(H1) if and only if C(i, j) is false. (Note that, if A = B, we
assume ui = u′

i and deal also with loops.)
Then, there exists a constant ℓ0 independent of k such that the class of graphs of {H1}-clique-
width at most ℓ0 has ordinary clique-width Ω(k).

Proof. We construct, via an (H1, O(1))-expression, a graph Gk of ordinary clique-width Ω(k)
as follows.
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Similarly as in Claim 2.2 c), we create a loopless copy G′
1 of the graph H1, such that

every vertex x ∈ V (G′
1) which is a copy of a vertex v ∈ B has the label with colour 2 and

parameter vertex v and, if A ̸= B, every vertex x ∈ V (G′
1) which is a copy of w ∈ A has the

label with colour 1 and parameter vertex w. Vertices of V (G′
i) that are not copies of A ∪ B

have labels with colour 0 and the respective parameter vertex from V (H1) \ (A ∪ B).
We set G1 := G′

1, and for a = 2, . . . , k we do:
We, likewise, create a loopless copy G′

a of H1, now with colour 3 in the labels of the copy
of A in V (G′

a) and, if A ̸= B, with colour 4 in the labels of the copy of B in V (G′
a). The

labels of V (G′
a) besides the copies of A ∪ B are again with colour 0.

Then we make a disjoint union Ga := Ga−1 ∪̇ G′
a, and add edges between colours 2 and 3.

If A = B, we recolour 2 to 1 and 3 to 2. If A ̸= B, we recolour 2 and 3 to 1 and 4 to 2.

Altogether, the graph Gk has k · |V (H1)| vertices, k disjoint copies G′
a of H1, and every

copy G′
a has k vertices which are, in a well-defined way – cf. condition C(i, j), adjacent to

corresponding k vertices of the subsequent copy G′
a+1 (if a < k). There are no other edges

in Gk. For clarity (and in resemblance to Theorem 4.1), we imagine the copy G′
a of H1 as

“column a” of Gk, and the set of the copies of ui and u′
i of H1 as “row i” of Gk. Possible

remaining vertices of G′
a (those of colour 0 in their label) are not part of any row, as they do

not participate in inter-column edges of Gk. Observe that, if A ̸= B, the adjacency pattern
occurring between columns a and a + 1 is exactly the same as the edges between B and A in
H1, and so the same as the “mirrored” adjacency pattern between the copies of A and of B

within column a (or a + 1).
Now, assume we have an (ordinary) ℓ-expression φ valued Gk for some integer ℓ. We

apply an argument which is folklore in this area. There must exist a subexpression φ1 of φ

making a subset of vertices X ⊆ V (Gk) (it is irrelevant which of the edges of Gk[X] this φ1
makes), such that 1

3 |V (Gk)| ≤ |X| ≤ 2
3 |V (Gk)|. Let X̄ = V (Gk) \ X.

Consider any 1 ≤ a < k; then the columns a and a + 1 differ with respect to X in at most
3ℓ rows (≤ ℓ if A = B); meaning that in ≤ 3ℓ rows i we have a situation that a vertex of row
i in one of the columns a or a + 1 belongs to X, and a vertex of row i in the other column
belongs to X̄. This follows since we have at most ℓ different colours in φ1 which can be used
to further distinguish different adjacencies, as given by the condition C(i, j) of the lemma,
between the columns a and a + 1, or within each one of the columns a or a + 1 if A ̸= B.

Likewise, at most ℓ columns are such that they intersect both X and X̄. This follows
similarly since every column is a copy of connected H1, and so it needs in φ1 a special colour
for its (at least one) “private” edge from X to X̄. The two latter conditions together are in
a clear contradiction with 1

3 |V (Gk)| ≤ |X| ≤ 2
3 |V (Gk)| if ℓ ∈ o(k). ◀

Secondly, there is an interesting relation to established concepts in the case of parameter
families H of bounded degrees.

▶ Theorem 3.4. Let H be a family of loop graphs of maximum degree ∆. Then the class of
graphs of H-clique-width at most ℓ is of bounded local clique-width in terms of ∆ and ℓ.

Proof. Let H ∈ H and G be a graph that is a value of an (H, ℓ)-expression φ. Choose
x ∈ V (G), and assume a vertex y ∈ V (G) at distance at most r from x in G. Let v, w ∈ V (H)
be the parameter vertices in φ of x and y, respectively. As argued in Claim 2.2 e), there is a
homomorphism G → H taking a path between x and y into a walk between v and w in H,
and so the distance from v to w in H is at most r. Since ∆(H) ≤ ∆, the r-neighbourhood of
v in H has at most (∆+1)r vertices, and hence φ restricted to the r-neighbourhood of x in G

uses only at most (∆ + 1)r parameter vertices which can be replaced in φ by unique colours.
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This way we obtain an (ordinary) ℓ · (∆ + 1)r-expression whose value is the r-neighbourhood
of x in G. We can thus set f(r) := ℓ · (∆ + 1)r (independently of H ∈ H and G) to certify
bounded local clique-width of every G such that H-cw(G) ≤ ℓ. ◀

A similar structural relation of H-clique-width to the parameter twin-width is stated
later in Corollary 4.3, as a consequence of a product-structure-like characterization.

From Theorem 3.4 we, for instance, immediately get tractability of FO model checking,
which is FPT for all classes of bounded local clique-width – this well-known fact follows by a
combination of the ideas of Frick and Grohe [15] and of Dawar, Grohe and Kreutzer [5]:

▶ Corollary 3.5. For every family H of loop graphs, the FO model checking problem of a
graph G is in FPT when parameterized by the formula, the maximum degree of H and the
H-clique-width of G. ◀

Furthermore, it may be interesting to ask to which extent Theorem 3.4 can be reversed.
This cannot be done straightforwardly since there are families H of unbounded degrees,
such that classes of bounded H-clique-width not only have bounded local clique-width, but
even bounded ordinary clique-width. One example is H1 the class of all reflexive cliques
by Theorem 3.1. On the other hand, e.g., for H2 being the class of all reflexive stars, there
are graphs whose H2-clique-width is bounded by a constant, and they contain arbitrarily
large induced grids and a universal vertex adjacent to everything (a construction similar to
Claim 2.2 g) ). Such graph hence have unbounded local clique-width.

4 Approaching Induced Product Structure

In this section we restrict our attention to families H formed by reflexive loop graphs (i.e.,
all vertices have loops in the graphs of H), which makes most natural sense with respect to
the strong-product structure studied.

▶ Theorem 4.1. Let H be a family of reflexive loop graphs, and H′ be the family of simple
graphs obtained from the graphs of H by removing all loops. For every integer ℓ ≥ 2 the
following holds. A simple graph G is of H-clique-width at most ℓ, if and only if G is
isomorphic to an induced subgraph of the strong product H ′ ⊠ M where H ′ ∈ H′ and M is a
simple graph of clique-width at most ℓ.

Proof. In the “⇐” direction, it is enough to show that H-cw(G) ≤ ℓ for G := H ′ ⊠ M . Let
φ be an ℓ-expression of the graph M , and let H◦ be obtained from H ′ by adding loops to
all vertices. We are going to transform φ into an (H◦, ℓ)-expression as follows. First, for
each x ∈ V (M) we independently construct a copy H ′

x of H ′, using only 2 ≤ ℓ colours by
Claim 2.2 c). That is, the parameter vertex of every vx ∈ V (H ′

x) is the preimage v ∈ V (H ′)
of vx. Then, at every moment the expression φ introduces a new vertex y ∈ V (M) of
colour i, we take (substitute) the copy H ′

y and recolour it to i. The remaining operations
(union, recolouring, and adding edges) stay in place in φ, but are now applied according to
Definition 2.1.

We claim that the value G of the resulting transformed (H◦, ℓ)-expression σ is H ′ ⊠ M .
Indeed, the vertex set is V (G) = V (H ′) × V (M), and for each m ∈ V (M) the subgraph
induced on V (H ′) × {m} is a copy of H ′. For any [v1, m1], [v2, m2] ∈ V (G) and m1 ̸= m2; if
{[v1, m1], [v2, m2]} ∈ E(G), then v1v2 ∈ E(H◦) by Definition 2.1, and m1m2 ∈ E(M) by the
definition of σ. Hence {[v1, m1], [v2, m2]} ∈ E(H ′ ⊠ M). Conversely, if {[v1, m1], [v2, m2]} ∈
E(H ′ ⊠ M), then, by the definition of ⊠, v1v2 ∈ E(H ′) or v1 = v2, meaning v1v2 ∈ E(H◦),
and m1m2 ∈ E(M). So, the edge {[v1, m1], [v2, m2]} has been created by σ.
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In the “⇒” direction, let σ be an (H◦, ℓ)-expression valued G, for some H◦ ∈ H. Let
H ′ ∈ H′ be the simple graph of H◦. We are going to construct an ℓ-expression φ valued M

on the vertex V (M) = V (G), such that G ⊆i H ′ ⊠ M . The expression φ simply discards
parameter vertices (cf. Definition 2.1) from the labels in σ. Hence, we clearly get M ⊇ G.
To prove that G ⊆i H ′ ⊠ M , consider any vertices x ̸= y ∈ V (G) labelled (i, v) and (j, w)
by σ (for here, indefinite i and j are irrelevant, and v and w are uniquely determined by σ).
We claim that the vertices x and y as of G can be represented by [v, x] and [w, y] of the
product H ′ ⊠ M . If xy ∈ E(G), then xy ∈ E(M) by previous M ⊇ G, and vw ∈ E(H◦)
by Definition 2.1. Consequently, {[v, x], [w, y]} ∈ E(H ′ ⊠ M) by ⊠. On the other hand, if
{[v, x], [w, y]} ∈ E(H ′ ⊠ M), then vw ∈ E(H ′) or v = w, and so vw ∈ E(H◦). Moreover,
xy ∈ E(M) since x ̸= y, and so xy ∈ E(G) since the (original) (H◦, ℓ)-expression σ creates
the edge xy by Definition 2.1. ◀

Theorem 4.1 can be used also to bound the twin-width of graphs of bounded H-clique-
width. To show this, we first prove the following ad-hoc upper bound.

▶ Proposition 4.2. Let P be a reflexive path and G a simple graph. Then the twin-width
of G is at most 5 · ({P}-cw(G)) − 2. Consequently, denoting by P◦ the class of all reflexive
paths, the twin-width of any simple graph G is at most 5 · (P◦-cw(G)) − 2.

Proof. Let G be the value of a (P, ℓ)-expression φ, where ℓ = {P}-cw(G). When constructing
a contraction sequence for G, we proceed recursively (bottom-up) along the expression tree
of φ; processing only the union and recolouring nodes, and at each node contracting together
all vertices of the same label.

Consider a situation at a node with a subexpression φ0 of φ, where X0 ⊆ V (G) is the
vertex set generated by φ0, and let x0

(i,v) denote the vertex resulting from the contractions
of all vertices of X0 that are of label (i, v) by φ0. The core observation is that every vertex
of V (G) \ X0 has the same adjacency to all vertices forming x0

(i,v) by Definition 2.1, and so
the only possible red neighbours of x0

(i,v) in a contraction of G are those that stem from X0.
The only possible neighbours of x0

(i,v) in the described contraction of the induced subgraph
G[X0] are x0

(j,w) where j ∈ {1, . . . , ℓ} and vw ∈ E(P ) – altogether at most 3ℓ − 1 choices of
potential red neighbours of x0

(i,v) in the contraction of G[X0]. If a recolouring operation i to
j is encountered after the node of φ0, we simply contract each former x0

(i,v) with x0
(j,v) over

all v ∈ X0, not increasing the previous bound on the red degree.
Consider now a union node making X2 := X0∪̇X1, where X1 has been generated by a

sibling subexpression φ1 of φ, and let x1
(i,v) analogously denote the vertices resulting from

contractions of X1. Let the vertices of P be V (P ) = (v1, . . . , va) in the natural order along
the path. For k = 1, . . . , a, and subsequently for i = 1, . . . , ℓ, we make x2

(i,vk) by contracting
x0

(i,vk) with x1
(i,vk). Considering the corresponding successive contractions of the induced

subgraph G[X2], the only possible red neighbours of x2
(i,vk) are the ℓ vertices x2

(i′,vk−1), the up
to 2(ℓ − 1) vertices x2

(j,vk) for j < i, or x0
(j,vk), x1

(j,vk) for j > i, and the 2ℓ vertices x2
(i′′,vk+1),

x2
(i′′,vk+1). The maximum possible encountered red degree is thus ℓ+2(ℓ−1)+2ℓ = 5ℓ−2. ◀

▶ Corollary 4.3. Let H be a family of reflexive loop graphs of maximum degree ∆ and twin-
width at most t. Then the twin-width of any simple graph G is at most O(t + ∆ · H-cw(G)).

Proof. By Theorem 4.1, we have G ⊆i H ′ ⊠ M , where H ′ is of maximum degree at most ∆
and twin-width at most t and M is of clique-width at most ℓ := H-cw(G). Since twin-width
is monotone under taking induced subgraphs, it is enough to bound it for the graph H ′ ⊠ M .
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By Proposition 4.2 applied to P being a single reflexive vertex, and Claim 2.2 a), M is of
twin-width at most k := 5ℓ − 2. Then, by Bonnet et al. [2] (bounding twin-width of a strong
product), H ′ ⊠ M is of twin-width at most max

{
t + ∆, k(∆ + 1) + 2∆

}
= O(t + ∆ℓ). ◀

Notice that, for constant ∆, the bound O(t+∆·H-cw(G)) in Corollary 4.3 is asymptotically
best possible; a linear dependence on t (the maximum twin-width of H) is necessary due to
Claim 2.2 c), and a linear dependence on H-cw(G) is, on the other hand, required already by
the subcase of ordinary clique-width. It is not clear whether the linear dependence on ∆ in
the bound of Corollary 4.3 is really necessary, however, the next construction shows that the
bound has to depend on ∆, the maximum degree of H:

▶ Proposition 4.4. (*) Let Hn denote the half-graph (cf. Section 2) on 2n vertices. Then the
twin-width of the graphs Hn ⊠Hn grows with n. Furthermore, the class {Hn ⊠Hn : n ∈ N+}
is monadically independent.

Since Proposition 4.4 was not part of the reviewed MFCS submission, we leave its proof to
the full preprint [17].

If H is the family of reflexive half-graphs (which is of unbouded maximum degree), then
H-cw(Hn ⊠ Hn) ≤ cw(Hn) ≤ 3 using Theorem 4.1 and a trivial 3-expression for Hn, and
likewise the twin-width of H is constant. So, from Proposition 4.4 we get that the bound in
Corollary 4.3 must grow with n = ∆(Hn), too.

4.1 Relations to the traditional product structure
In regard of the Planar product structure theorem, as introduced in Section 2, we are
especially interested in H-clique-width for H = P◦ where P◦ is the class of reflexive paths.
We get the following as another immediate consequence of Theorem 4.1:

▶ Corollary 4.5. For every integer ℓ ≥ 2 the following holds. A graph G is isomorphic to an
induced subgraph of the strong product P ⊠ M where P is a path and M is a simple graph of
clique-width at most ℓ, if and only if P◦-cw(G) ≤ ℓ. ◀

There is, however, a more direct connection between our concept and the original Planar
product structure theorem, which constitutes the main new contribution of the paper:

▶ Theorem 4.6. Assume that a graph G is a subgraph (not necessarily induced) of the strong
product G ⊆ P ⊠ M where P is a path and M is a simple graph of tree-width at most k.
Then P◦-cw(G) ≤ 6(k + 1) · 8k+1. Moreover, there exists a graph M1 of tree-width at most
6(k +1) ·8k+1 such that G is isomorphic to an induced subgraph of the strong product P ⊠M1.

Proof. We start with proving the first part of the statement, that P◦-cw(G) ≤ 6(k + 1) · 8k+1.
Although, we remark that we could as well jump straight into a proof of the second part, the
product P ⊠ M1, and then refer to Theorem 4.1 to conclude with a bound (albeit weaker)
on P◦-cw(G). We believe that the presented approach to the proof is more accessible for the
readers.

We assume a rooted tree decomposition (T, X ) of width k of the graph M , such that
every node of T has at most two children. For a node t ∈ V (T ), let X+

t ⊆ V (M) denote
the union of Xs where s ranges over t and all descendants of t. Let p(t) denote the parent
node of t in T , and let Yt = X+

t \ Xp(t) denote the vertices of M which occur only in the
bags of t and its descendants. For the root r of T , let specially Yr = X+

r = V (M). Observe
that all neighbours of a vertex m ∈ Yt in V (M) \ Yt must belong to the set Xt \ Yt, by the



P. Hliněný and J. Jedelský 61:11

interpolation property of a tree decomposition. Let q : V (M) → {0, 1, . . . , k} be a function
such that q is injective on each of the bags Xt over t ∈ V (T ) – such q is easily constructed
along the tree T in the root-to-leaves order (in fact, q can be seen as a monotone cop search
strategy on the decomposition of M).

Analogously to the treatment in the proof of Theorem 4.1, we refer to the vertices of
G ⊆ P ⊠ M as to the pairs [p, m] where p ∈ V (P ) and m ∈ V (M) in the natural correspon-
dence. When constructing an expression for the graph G, we follow on a high level the tree T ;
at a node t ∈ V (T ), we will construct precisely the subgraph Gt of G induced on the vertex
set (V (P ) × Yt) ∩ V (G). By the previous, all neighbours of V (Gt) in the rest of G belong
to the set Wt :=

(
V (P ) × (Xt \ Yt)

)
∩ V (G) where |Xt \ Yt| ≤ |Xt| ≤ k + 1. It will thus be

enough to encode in the colour of each x ∈ V (Gt) information about which vertices of Wt

are actual neighbours of x in G and, moreover, the colours used can be “recycled modulo 3”
along the path P . This way we will prove that P◦-cw(G) is bounded in terms of k; more
precisely, that {P ◦}-cw(G) ≤ 6(k + 1) · 8k+1 for P ◦ being the reflexive closure of P .

Let the vertices of P be V (P ) = (p1, . . . , pn) in the natural order along the path, and
let tm ∈ V (T ) for m ∈ V (M) denote the node closest to the root such that m ∈ Xtm

(so, m ∈ Ytm
). In more detail, for each m ∈ V (M) we create, in a trivial way, a subexpression

for the subgraph Gm of G induced by
(
V (P ) × {m}

)
∩ V (G) (which is a copy of a subpath

of P ), such that the labels in Gm are as follows.
For each vertex x ∈ V (Gm) where x = [pi, m], we give x the label (cx, pi) such that the

colour of x is a tuple cx = (0, i mod 3, b0, b1, . . . , bk, d) satisfying the following:
i is the index of pi, and bj ∈ {0, 1}3 and d ∈ {0, . . . , k} are prescribed below;
for every j ∈ {0, 1, . . . , k} \ q(Xtm) we let bj = (0, 0, 0);
for every j = q(m′) where m′ ∈ Xtm (recall that q is injective on each bag, and so m′ is
unique such), we define bj = (b1, b2, b3) where

b1 = 1 if and only if {x, [pi−1, m′]} ∈ E(G),
b2 = 1 if and only if {x, [pi, m′]} ∈ E(G), and
b3 = 1 if and only if {x, [pi+1, m′]} ∈ E(G);

we set d = q(m′′) where m′′ ∈ V (M) is a neighbour of m in M such that all neighbours
of m belong to Ytm′′ (informally, m′′ is any topmost w.r.t. T neighbour of m in M).

For an informal explanation in relation the above “sketch of encoding”, the colour cx in
the label of x covers all desired information about the neighbours of x in the set Wtm in G,
for which adjacencies will created later in the coming expression for G. And again on an
informal level, the purpose of the component d of the colour cx is to encode the moment at
which all edges of m in M are already created going bottom-up along the tree T .

Let Γk := {0, 1} × {0, 1, 2} × {0, 1}3·(k+1) × {0, 1, . . . , k} be our set of colours (where, as
above, we have cx ∈ Γk for every x, and “a half” of the colour space – with the first component
equal to 1, remains unused so far), and let ℓ = |Γk| = 2 · 3 · 23(k+1) · (k + 1) = 6(k + 1) · 8k+1.
We construct a (P ◦, ℓ)-expression φ = φr valued G recursively, making subexpressions φt

valued Gt along the nodes t ∈ V (T ), as follows:
I. For a node t ∈ V (T ) (including leaves), in the leaf-to-root tree order, we start with

an empty expression φ0 and Gt
0 = ∅ if t is a leaf. If t has one child s, then we take

the expression φ0 already constructed at s, and Gt
0 = Gs. If t has two children s, s′,

then we let φ0 be the union operation over the expressions constructed at s and s′,
and Gt

0 = Gs ∪̇ Gs′ . Note that, in the latter case, M has no edges between the sets Ys

and Ys′ by the interpolation property, and so there are no edges between the (disjoint)
subgraphs Gs and Gs′ in G.
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II. Subsequently, for Y ′
t := Yt ∩ Xt (informally, Y ′

t are the vertices of M whose last bag
in T is right at t) we choose an arbitrary order Y ′

t = (m1, . . . , ma), a = |Y ′
t |, of these

vertices – possibly a = 0 if Y ′
t = ∅. For i = 1, . . . , a, we repeat the following:

a) We start the expression φi by making a union of previous φi−1 (if nonempty) and of
the above subexpression constructing Gmi

.
b) Now we add in φi all required edges between Gmi

and
(
Gt

0 ∪ Gm1 ∪ · · · ∪ Gmi−1

)
.

Using information stored in the labels of φi−1 and the labels of vertices of Gmi , this
is a routine task as follows. For simplicity, we write ∗ for an arbitrary value.

Let j = q(mi). For (α, β) ∈ {(0, 2), (1, 0), (2, 1)}, we add edges between each colour
(1, α, ∗, . . . , bj , . . . , ∗, ∗) where bj = (1, ∗, ∗), and each colour (0, β, ∗, . . . , ∗, ∗).
(Note that only vertices of Gmi

may currently hold colours starting with 0.)
Similarly, for (α, β) ∈ {(0, 0), (1, 1), (2, 2)}, we add edges between each colour
(1, α, ∗, . . . , bj , . . . , ∗, ∗) where bj = (∗, 1, ∗), and each colour (0, β, ∗, . . . , ∗, ∗).
And again, for (α, β) ∈ {(0, 1), (1, 2), (2, 0)}, we add edges between each colour
(1, α, ∗, . . . , bj , . . . , ∗, ∗) where bj = (∗, ∗, 1), and each colour (0, β, ∗, . . . , ∗, ∗).

c) Then we recolour every colour c = (0, β, b0, . . . , bk, d) in the previous, where
β ∈ {0, 1, 2} and b0, . . . , bk, d are arbitrary, to colour c′ = (1, β, b0, . . . , bk, d). This
finishes the expression φi constructing a subgraph on V (Gt

0 ∪ Gm1 ∪ · · · ∪ Gmi
).

III. Continuing on the expression φa from the previous point, we for all i ∈ {1, . . . , a}
do the following. We recolour every colour c =

(
1, β, b0, . . . , bk, q(mi)

)
in φa, where

β ∈ {0, 1, 2} and b0, . . . , bk are arbitrary, to colour c′ =
(
1, β, (0, 0, 0)k+1, q(mi)

)
. (The

purpose is to prevent creation of further edges from the recoloured vertices which got
finished.) This finishes the sought expression φt with intended value Gt at the node t.

Now, the constructed (P ◦, ℓ)-expression φ = φr clearly creates (precisely) all vertices and
(at least) all edges of G, and uses at most ℓ = 6(k + 1) · 8k+1 colours. The proof will be
finished once we prove that no other edges than those of G have been created by φ in Gr.

There are three points in verification of the last task.
First, colouring in the process of construction of φ ensures that no additional edges are
created within each of the graphs Gm above, and no edges are ever created between
Gm and Gm′ if mm′ ̸∈ E(M). The only operation adding edges in φ, besides the
subexpressions making each Gm, is as defined in item IIb) above, and so it always adds
only edges from V (Gmi

) to the rest of the current subgraph.
Second, the operations in IIb) indeed add precisely those edges between Gmi and

(
Gt

0 ∪
Gm1 ∪ · · · ∪ Gmi−1

)
which exist in G, thanks to our definition of the colours cx.

And third (which relates to both previous points), the “hash” function q : V (M) →
{0, 1, . . . , k} used in the construction of our colours indeed unambiguously identifies
neighbours we want to make adjacent as in G thanks to assumed injectivity of q on each
bag of (T, X ) and the recolouring performed in item III.

Regarding the second part of the Theorem, the graph M1, we cannot directly employ
Theorem 4.1 since that would give us only a factor (of the strong product) of bounded
clique-width, but containing unbounded bipartite cliques in the worst case. We instead
provide an ad-hoc construction of the desired factor M1 which is closely related to fine details
of the (P ◦, ℓ)-expression φr of G described above.

Let Γ′
k := {0, 1} × {0, 1, 2} × {0, 1}3·(k+1), i.e., we have got Γ′

k × {0, 1, . . . , k} = Γk as
above. Recall also that Y ′

t := Yt ∩ Xt for t ∈ V (T ) denotes the vertices of the graph M

whose last bag in T (going bottom-up) is right at t, and that, when defining the expression
φ of G, we have ordered the members of Y ′

t where a = |Y ′
t | as Y ′

t = (m1, . . . , ma).
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We define the sought graph M1 such that V (M1) := V (M) × Γ′
k, and E(M1) ⊆ F where

F = {{(m, c), (m′, c′)} : m = m′ ∨ mm′ ∈ E(M), c, c′ ∈ Γ′
k}. This setting clearly implies

that tree-width of M1 is going to be at most (k + 1) · |Γ′
k| < 6(k + 1) · 8k+1, regardless of the

detailed definition of its edges. We finish the definition of M1 as follows:
i. For each m ∈ V (M) and ι ∈ {0, 1}, we have {(m, c), (m, c′)} ∈ E(M1) if and only if

c = (ι, ∗, ∗, . . . , ∗) and c′ = (ι, ∗, ∗, . . . , ∗) ̸= c.
ii. For each m ̸= m′ ∈ V (M) such that mm′ ∈ E(M), up to symmetry, we either have m ∈

Y ′
t and m′ ∈ Y ′

u where u is closer to the root of T than t, or m, m′ ∈ Y ′
t and m precedes

m′ in the order Y ′
t = (m1, . . . , ma) mentioned above. We define {(m, c), (m′, c′)} ∈

E(M1) if and only if, for j = q(m′) and some α ∈ {0, 1, 2}, one of the following holds:
c = (∗, α, ∗, . . . , bj , . . . , ∗), c′ = (∗, (α + 2) mod 3, ∗, . . . , ∗) and bj = (1, ∗, ∗), or
c = (∗, α, ∗, . . . , bj , . . . , ∗), c′ = (∗, α, ∗, . . . , ∗) and bj = (∗, 1, ∗), or
c = (∗, α, ∗, . . . , bj , . . . , ∗), c′ = (∗, (α + 1) mod 3, ∗, . . . , ∗) and bj = (∗, ∗, 1).

iii. No other edges exist in M1.

It remains to identify an isomorphism of G ⊆ P ⊠ M to an induced subgraph of the
product P ⊠ M1. To each vertex x ∈ V (G) such that x = [pi, m] in P ⊠ M , we assign
x 7→ [pi, (m, ci)] in P ⊠M1 where ci = (ai, i mod 3, b0, . . . , bk) is determined in the following:

(I) The first component ai of ci is defined inductively by i (for each fixed m) as follows; it
is a1 = 0, and for each i > 1 we let ai = 1 − ai−1 if there is y = [pi−1, m] ∈ V (G) such
that xy ̸∈ E(G), and ai = ai−1 otherwise.

(II) For each j ∈ {0, 1, . . . , k} where j = q(m′) for some m′ ∈ Xtm (and recall that
there is at most one such m′ for j since q is injective on each bag), the component
bj is determined as bj = (b1, b2, b3) where, for k = 1, 2, 3, bk = 1 if and only if
{x, [pi+k−2, m′]} ∈ E(G).

(III) If undetermined by the previous point, bj may be chosen arbitrarily.

Let G′ be the induced subgraph of P ⊠ M1 determined by the previous assignment 7→;
our remaining task is to prove that 7→ is an isomorphism of G to G′. By ⊠ and the
definition of M1, we know that edges of G and of G′ are of the form e = {[pi, m], [pj , m′]}
and e′ = {[pi, (m, ∗)], [pj , (m′, ∗)]}, respectively, where j ∈ {i − 1, i, i + 1} and mm′ ∈ E(M)
or m = m′.

In the case of m = m′, we get e ∈ E(G) ⇐⇒ e′ ∈ E(G′) already by the definition of the
component ai (aj) in the point (I). For mm′ ∈ E(M), we get the same straightforwardly from
the definition of the edge set of M1, precisely the point ii. above, and from the (matching)
point (II) of the definition of 7→. ◀

▶ Remark 4.7. Theorem 4.6 has a natural and straightforward extension to graphs P ∈ H
where H is any graph class of bounded maximum degree (instead of the class of paths). We
skip details due to their additional technical difficulty.

5 Concluding Remarks

The primary focus of our paper is an introduction of a new concept of potential interest, and
as such it naturally brings many questions and open problems, (some of) which we briefly
survey in this last section.

From the TCS perspective, the probably most important question is about the complexity
of computing the H-clique-width. Computing traditional clique-width exactly is NP-hard [14],
and hence the same holds for computing H-clique-width exactly in general. However, a
question is whether for some special classes H one could compute exact H-clique-width
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faster. This is trivially possible, by Claim 2.2 c), when H is the class of all graphs – which is
uninteresting. Is it true that computing H-clique-width exactly is NP-hard for every fixed
family H except in “similarly trivial” cases?

On the other hand, traditional clique-width can be approximated in FPT time with
respect to the solution value [18,21]. A big goal would be to extend this approximation result
to H-clique-width, perhaps with an additional parameter capturing some properties of H. In
particular, with respect to Section 4, we emphasize:

▷ Problem 5.1. Let P◦ denote the class of reflexive paths. Can one, for input graph G,
approximate P◦-cw(G) in FPT time with respect to the solution value?

Next group of questions concerns combinatorial properties proved in this paper. In regard
of Section 3, we bring the following one:

▷ Problem 5.2 (cf. Theorem 3.4). Can we characterize families H of loop graphs such that,
for all graphs, bounded H-clique-width implies bounded local clique-width?
This question may be interesting even when restricted to particular graph classes which are
of unbounded local clique-width.

A more interesting and natural question, however, comes in a direct relation to the
Planar product structure theorem and to Theorem 4.6. We know that graphs of bounded
clique-width that do not contain large Kt,t subgraphs are as well of bounded tree-width. A
natural counterpart of this claim in the context of P◦-clique-width would be:

▷ Problem 5.3 (cf. Theorem 4.1, Theorem 4.6). Assume a fixed integer t and an arbitrary
graph G such that P◦-cw(G) ≤ t and G has no Kt,t subgraph. Is it then true that G ⊆ P ⊠M

where P is a path and M is a suitable graph of tree-width bounded in terms of t?

Another question, already mentioned in Section 2, is whether H-clique-width is (at least
asymptotically) closed under taking graph complement. This is a prominent and desired
property of ordinary clique-width. It would be natural to ask whether, having any simple
graph G and its complement Ḡ, we can bound H-cw(G) in terms of H-cw(Ḡ). However,
classes H of bounded degree have bounded local clique-width (Theorem 3.4) and this property
is not closed under taking complement.

Instead, we ask whether, for every graph H, there is a graph H ′ such that for all graphs G,
the {H ′}-clique-width of the complement Ḡ is bounded by a function of the {H}-clique-width
of G. Although we do not have a simple concrete counterexample at hand, we conjecture
this is not possible with arbitrary H. One can thus, when being closed under complements is
a desirable property, consider only classes H which are closed under complements themselves
(but even that subcase is not trivial), or enrich Definition 2.1 with an operation of adding
edges between labels (i, v) and (j, w) over all pairs (v, w) ∈ V (H)2 such that vw ̸∈ E(H)
(note that the latter is much stronger than simply requiring H to be complement-closed).

We also suggest to study the special case of T ◦-clique-width when H = T ◦ is the family of
(all) reflexive trees. The related question in the context of the traditional product structure –
that is which graph classes (other than, say, planar graphs) can be expressed as subgraphs of
the strong products T ⊠ M where T is an arbitrary tree and M is of bounded tree-width,
does not seem to be explicitly studied yet. We, however, do not have any progress in this
direction so far.

Our last batch of questions concerns possible relations of H-clique-width to the currently
hot trend of studying structural graph properties through the lens of FO logic on graphs and
of FO transductions – transformations of one graph into another defined by FO formulas.
In this we use some logic-oriented terms which are not formally defined here (such as, in
particular, of FO transductions) and we refer for their definitions, e.g., to [6].
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First, one may ask for which families H, classes of bounded H-clique-width are monadically
dependent, i.e., such that one cannot FO-transduce all finite graphs from graphs of bounded
H-clique-width. A partial answer is provided by Theorem 3.4 and Proposition 4.4, but
a full characterization of such classes H is currently out of our reach. As witnessed by
Proposition 4.4, classes of bounded H-clique-width can be monadically independent even if
H itself is monadically dependent.

Second, it is interesting to investigate whether and when, having a graph class G obtained
as an FO transduction of a class of bounded H-clique-width, one can find a class H+

depending on H (e.g., H+ an FO transduction of H), such that the H+-clique-width of G is
bounded. In relation to the Planar product structure, we formulate the following two specific
questions in this direction:

▷ Problem 5.4. Assume that a graph class G is obtained from the class of planar graphs by
an FO transduction τ . Is it true that one can give an FO transduction σ, depending on τ ,
such that the Pσ-clique-width of G is bounded where Pσ is the class of loop graphs obtained
from the class of all paths by σ?

Problem 5.4 seems to be much easier if we, instead of requiring bounded Pσ-clique-width of
every member of G, require only that every graph from G has a bounded perturbation of
bounded Pσ-clique-width. This is possibly extensible to classes H of bounded degree.

▷ Problem 5.5. Let Pσ be the class of loop graphs obtained from the class of all paths by
an FO transduction σ. Assume that G is a graph class of bounded Pσ-clique-width and G is
monadically stable, meaning that one cannot define on graphs of G an arbitrarily long linear
order using FO formulas. Is it then true that there exists an FO transduction τ , such that G
is obtained, by τ , from a graph class that admits the traditional product structure?

Third, Theorem 3.4 and Corollary 3.5 can be read as that if a class H is of bounded
degree, then the FO model checking problem is FPT on all classes of bounded H-clique-width.
Classes of bounded degree are a prime example of those having FO model checking in
FPT [22]. Unfortunately, a bold conjecture claiming that for every class H having complexity
of the FO model checking problem in FPT, the complexity of the FO model checking
problem is again in FPT on every class of bounded H-clique-width (perhaps assuming a given
decomposition), is very likely false due to the construction given in Proposition 4.4 – the
constructed graphs there actually FO transduce all graphs. Hence, it follows from the results
of Dreier, Mählmann, and Toruńczyk [8] that FO model checking on classes of bounded
Hhalf -clique-width, where Hhalf denotes the class of reflexive half-graphs, is AW[⋆]-hard.
However, a weaker version of this conjecture, with a suitable additional restriction on H,
might still be true.
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Abstract
Speedable numbers are real numbers which are algorithmically approximable from below and whose
approximations can be accelerated nonuniformly. We begin this article by answering a question of
Barmpalias by separating a strict subclass that we will refer to as superspeedable from the speedable
numbers; for elements of this subclass, acceleration is possible uniformly and to an even higher
degree. This new type of benign left-approximation of numbers then integrates itself into a hierarchy
of other such notions studied in a growing body of recent work. We add a new perspective to this
study by juxtaposing this hierachy with the well-studied hierachy of algorithmic randomness notions.
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1 Introduction

In theoretical computer science, the concepts of randomness and of computation speed, as
well as their interactions with each other, play an important role. For example, one can study
whether access to sources of random information can enable or simplify the computation of
certain mathematical objects, for example by speeding up computations of difficult problems.
This is a recurring paradigm of theoretical computer science, and there is more than one way
of formalizing it, but the perhaps most well-known instance is the difficult open question in
the field of complexity theory of whether P is equal to BPP.

A recent line of research could be seen as investigating the reverse direction: to what
degree can objects that are random be quickly approximated? Before answering this question,
we need to define what we understand by random. The answer is provided by the research
field of information theory that deals with questions of compressibility of information, where
randomly generated information will be difficult to compress, due to its lack of internal
regularities. The subfield of algorithmic randomness, which set out to unify these and other
topics and to understand what actually makes a mathematical object random, has produced
a wealth of insights into questions about computational properties that random objects must,
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62:2 Randomness Versus Superspeedability

may, or may not possess. The general pattern in this area is that we put at our disposal
algorithmic tools to detect regularities in sequences. Those sequences that are “random
enough” to resist these detection mechanisms are then considered random. Many different
“resistance levels” have been identified that give rise to randomness notions of different
strengths.

For completeness, we define the two central randomness notions featuring in this article,
introduced by Martin-Löf [12] and Schnorr [16] respectively: A randomness test is a sequence
(Un)n∈N of uniformly effectively open subsets of R and we say that it covers an x ∈ R if and
only if x ∈

⋂
n Un. Write µ for the Lebesgue measure on R; if µ(Un) ≤ 2−n for all n ∈ N,

then we call (Un)n∈N a Martin-Löf test, and if an x ∈ R is not covered by any such test,
then we call it Martin-Löf random. If we even require that µ(Un) = 2−n for all n ∈ N, then
we call (Un)n∈N a Schnorr test, and an x ∈ R that is not covered by any such test Schnorr
random. It is well-known that Schnorr randomness is a strictly weaker notion than Martin-Löf
randomness; that is, there exist more Schnorr random numbers than Martin-Löf random
ones. For the rest of the article, we assume that the reader is familiar with these topics; see
Calude [3], Downey and Hirschfeldt [4], Li and Vitányi [10], or Nies [14] for comprehensive
overviews.

With those randomness paradigms in place, we can study the interactions between random-
ness and computation speeds. We will focus on a class of objects that can be approximated
by an algorithm, and will be interested in the possible speeds of these approximations.

▶ Definition 1. Let x be a real number. For a fixed sequence (xn)n of real numbers converging
to it from below, write ρ(n) for the quantity xn+1−xn

x−xn
for each n ∈ N, and call (ρ(n))n the

speed quotients of (xn)n.

▶ Definition 2. If there exists a left-approximation of x, that is, a computable increasing se-
quence of rational numbers converging to x, then we call x left-computable. If there even exists
a left-approximation (xn)n with speed quotients (ρ(n))n such that ρ := lim supn→∞ ρ(n) > 0,
then we call x speedable.

Left-computable numbers can be Martin-Löf random; the standard example is Chaitin’s Ω,
the measure of the domain of an optimally universal prefix-free Turing machine. It is also
known that there exist left-computable Schnorr randoms that are not Martin-Löf random.

The notion of speedability was introduced by Merkle and Titov. They made the interesting
observation that speedability is incompatible with Martin-Löf randomness [13, Theorem 10]
and asked the question whether the converse holds, that is, whether there exist left-computable
numbers which are neither speedable nor Martin-Löf random. A positive answer would
have been an interesting new characterization of Martin-Löf randomness; however, Hölzl
and Janicki [8, Corollary 62] showed that such a characterization does not hold. They also
introduced the term benign approximations when referring to subclasses of the left-computable
numbers that possess special approximations that are in some sense better behaved than
general approximations from below. One example is speedability; another that will play a
role in this article is the following.

▶ Definition 3 (Hertling, Hölzl, Janicki [7]). A real number x is called regainingly approximable
if there exists a computable increasing sequence of rational numbers (xn)n converging to x

with x − xn ≤ 2−n for infinitely many n ∈ N.

Obviously, every regainingly approximable number is left-computable and every computable
number is regainingly approximable, but none of these implications can be reversed by results
of Hertling, Hölzl, Janicki [7].
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Figure 1 The number x1 was constructed by Hölzl and Janicki [8, Corollary 62]; by construction
it is nearly computable, thus weakly 1-generic by a result of Hoyrup [9], thus not Schnorr random
(see, for instance, Downey and Hirschfeldt [4, Proposition 8.11.9]). The number x2 constructed in
Theorem 8 cannot be Schnorr random either, because it is by construction not immune. To see that
x3 exists, consider the example used in the proof of Corollary 16; it is strongly left-computable, thus
not immune, thus not Schnorr random. Finally, x4 is constructed in Theorem 21.
It is an open question whether numbers 1 or 2 exist; see the discussion in Section 6.

Merkle and Titov also showed that the property of being speedable does not depend on
the choice of ρ, that is, if some left-computable number is speedable via some ρ witnessed by
some left-approximation, it is also speedable via any other ρ′ < 1 witnessed by some other left-
approximation. However, their proof is highly nonuniform, which led to Barmpalias [1] asking
whether every such number also has a single left-approximation with lim supn→∞ ρ(n) = 1.

We answer this question negatively in this article by showing that the requirement to
achieve lim supn→∞ ρ(n) = 1 is a strictly stronger condition that defines a strict subset of
the speedable numbers which we will call superspeedable. We then show that the regainingly
approximable numbers are strictly contained in this subset. Thus within the speedable
numbers there is a strict hierarchy of notions of benign approximations, namely computable
implies regainingly approximable implies superspeedable implies speedable.

Wu [18] called finite sums of binary expansions of computably enumerable sets regular
reals. We show that these reals are a strict subset of the superspeedable numbers as well; in
particular every binary expansion of a computably enumerable set is superspeedable. Then
we show that finite sums of left-computable numbers can only be superspeedable if at least
one of their summands is superspeedable.

With this new approximation notion identified and situated in the hierarchy of benign
approximability, it is then natural to wonder how it interacts with randomness. We will show
that unlike the Martin-Löf randoms, which by the result of Merkle and Titov [13] cannot
even be speedable, the Schnorr randoms may even be superspeedable; however they cannot
be regainingly approximable.

MFCS 2024



62:4 Randomness Versus Superspeedability

2 Speedability versus immunity

Merkle and Titov [13] showed that all non-high and all strongly left-computable numbers
are speedable. On the other hand they established that Martin-Löf randoms cannot be
speedable. In this section we show that a left-computable number which is not immune has
to be speedable.

We first observe that, as an alternative to Definition 2 above, speedability could also be
defined using two other forms of speed quotients; this will prove useful in the following.

▶ Proposition 4. Let x ∈ R. For an increasing sequence of rational numbers (xn)n converging
to x with speed quotients (ρ(n))n the following statements are easily seen to be equivalent:
1. lim supn→∞ ρ(n) > 0, that is, (xn)n witnesses the speedability of x;
2. lim supn→∞

xn+1−xn

x−xn+1
> 0;

3. lim infn→∞
x−xn+1

x−xn
< 1. ◀

For any set A ⊆ N, we define the real number xA :=
∑

n∈A 2−(n+1) ∈ [0, 1]. Clearly,
A is computable if and only if xA is computable. If A is only assumed to be computably
enumerable, then xA is a left-computable number; the converse is not true as pointed out
by Jockusch (see Soare [17]). If there does exist a computably enumerable set A ⊆ N with
xA = x, then x ∈ [0, 1] is called strongly left-computable.

Recall that an infinite set A ⊆ N is immune if it does not have an infinite computably
enumerable (or, equivalently, computable) subset. We call it biimmune if both A and its
complement Ā are immune. A real number x ∈ [0, 1] is called immune if there exists an
immune set A ⊆ N with xA = x; analogously for biimmune.

▶ Theorem 5. Every left-computable number that is not immune is speedable.

Before we give the proof we mention that left-computable numbers
whose binary expansion is not biimmune or
whose binary expansion is of the form A ⊕ A

can be shown to be speedable by similar arguments as below.

Proof of Theorem 5. Let x be a left-computable real that is not immune. If it is computable,
the theorem holds trivially, thus assume otherwise. Let A be such that x = xA; then there
exists a computable increasing function h : N → N with h(N) ⊆ A. Let (B[n])n be a
computable sequence of finite sets of natural numbers such that the sequence (xB[n])n is
increasing and converges to xA. Define the function r : N → N recursively via

r(0) := 0, r(n + 1) := min{m > r(n) : {h(0), . . . , h(n)} ⊆ B[m]}.

It is easy to see that r is well-defined, computable and increasing. Let

sn := min{m ∈ N : m ∈ B[r(n + 1)] \ B[r(n)]}

for all n ∈ N. Clearly, the sequence (sn)n is well-defined and tends to infinity. Finally, define
the sequence (C[n])n via

C[0] := ∅, C[n + 1] := B[r(n + 1)] ↾ (sn + 1),

for all n ∈ N. Clearly, (C[n])n is a computable sequence of finite sets of natural numbers,
which converge pointwise to A, and the sequence (xC[n])n is increasing and converges to x.

We claim that there are infinitely many n such that sn < h(n); this is because otherwise,
for almost all n, the sets B[r(n)], B[r(n + 1)], . . . would all mutually agree on their first
h(n)−1 bits, hence their limit A would be computable, contrary to our assumption. Thus, fix
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one of the infinitely many n with sn < h(n) and let n′ ≥ n be maximal such that sn′ < h(n).
Then the sets B[r(n′+1)], B[r(n′+2)], . . . all contain h(n) and, by definition of s and n′, agree
mutually on their first (h(n) − 1) bits; in other words, they even agree on their first h(n) bits.
But by choice of n′, these sets also agree with the sets C[n′ + 1], C[n′ + 2], . . . , respectively,
on their first h(n) bits; thus these latter sets must also contain h(n) and agree mutually on
their first h(n) bits. By definition, the set C[n′] does not contain h(n); thus, in summary, we
have xC[n′+1] − xC[n′] ≥ 2−h(n) and x − xC[n′+1] ≤ 2−h(n), hence xC[n′+1]−xC[n′]

x−xC[n′+1]
≥ 1.

Since there are infinitely many such n and corresponding n′, the left-
approximation (xC[n])n of x witnesses that x is speedable. ◀

3 Superspeedability

We now strengthen the conditions in Proposition 4 to obtain the following new definition.

▶ Definition 6. Let x ∈ R. For an increasing sequence (xn)n converging to x with speed
quotients (ρ(n))n the following statements are easily seen to be equivalent:
1. lim supn→∞ ρ(n) = 1;
2. lim supn→∞

xn+1−xn

x−xn+1
= ∞;

3. lim infn→∞
x−xn+1

x−xn
= 0.

We call x superspeedable if it has a left-approximation (xn)n with these properties.

The following statement, which bears some similarity to Theorem 5, shows that one simple
cause for a left-computable number to be superspeedable is for it to have a left-approximation
which permanently leaves arbitrarily long blocks of bits fixed to 0.

▶ Proposition 7. Fix a sequence (Ii)i∈N of disjoint finite intervals in N with the property
that |Ii| ≥ i for all n. If x ∈ R has a left-approximation (xn)n∈N consisting only of dyadic
rationals and such that for all i ∈ N and n ∈ N we have xn(j) = 0 for all j ∈ Ii, then x is
superspeedable.

Proof. Fix any i and let n be maximal such that xn(j) ̸= x(j) for some j < min Ii; that is,
let n + 1 be the last stage at which a bit left of Ii changes during the approximation of x.
Then, on the one hand, xn+1 − xn ≥ 2− min(Ii). On the other hand, by the maximality of n

and by the assumptions on (xn)n∈N, we must have x − xn+1 ≤ 2− max(Ii). Therefore we have

x − xn+1

x − xn
≤ x − xn+1

xn+1 − xn
≤ 2− max(Ii)

2− min(Ii) ≤ 2−(i−1),

which tends to 0 as i tends to infinity. ◀

Obviously, every superspeedable number is speedable. Barmpalias [1] asked whether the
converse is true as well. We give a negative answer with the following theorem and corollary.

▶ Theorem 8. There is a left-computable number that is neither immune nor superspeedable.

Proof. Let r : N → N be the function defined by r(n) := max{ℓ ∈ N : 2ℓ divides n + 1}, that
is, the characteristic sequence of r is the member of Baire space with the initial segment

010201030102010401020103 . . .

We construct a number α by approximating its binary expansion A. We will slightly abuse
notation and silently identify real numbers with their infinite binary expansions; similarly we
identify finite binary sequences σ with the rational numbers 0.σ.

MFCS 2024



62:6 Randomness Versus Superspeedability

We approximate A in stages where during stage s ∈ N we define a set A[s] such that the
sets A[s] converge pointwise to A. For all s and all n with r(n) = 0, let A[s](n) = 0; and for
all s and all n with r(n) = 1, let A[s](n) = 1. We refer to all remaining bits as the coding
bits. More precisely, we refer to all bits with r(n) = e + 2 as the e-coding bits and we let (ce

i )i

be the sequence of the positions of all e-coding bits in ascending order.
If b = ce

i for some e and i, then we say that position b is threatened at stage s if A[s](b) = 0
and A[s]↾ce

i+1 = Be[s]↾ce
i+1, where (B0[s])s, (B1[s])s, . . . is some fixed uniformly effective

enumeration of all left-computable approximations.

Construction. At every stage s, if there exists a least coding bit b ≤ s that is threatened,
then set A[s + 1](b) = 1 and A[s + 1](c) = 0 for all coding bits c > b. For all other n ∈ N,
leave bit n unchanged, that is, A[s + 1](n) = A[s](n).

Verification. By construction, once a coding bit has been set to 1, it can only be set back
to 0 if a coding bit at an earlier position is set from 0 to 1. From this it follows by an
obvious inductive argument that A[s] converges to some limit A in a left-computable fashion;
that is, interpreted as real numbers, the values A[0], A[1], . . . are nondecreasing. Thus α is
left-computable.

As it contains all numbers n with r(n) = 1, the set A we are constructing is trivially not
immune. All that remains to show is that it is not superspeedable. To that end, fix any e and
assume that that the left-computable approximation (Be[s])s converges to A; as otherwise
there is nothing to prove for e. We will show that this left-computable approximation does
not witness superspeedability of A.

▷ Claim. There are stages s0 < s1 < . . . such that for all i ≥ 0, at stage si, the coding
bit bi = ce

i is threatened for the last time and is the least coding bit that is threatened at
this stage, and such that A has already converged at this stage up to its (bi + 4)-th bit; that
is, for all ℓ ≥ 1 we have A[si]↾(bi + 4) = A[si + ℓ]↾(bi + 4) = A↾(bi + 4).

Proof. Fix some e-coding bit bi = ce
i . By the discussion preceding the claim, there is some

least stage s such that set A has already converged up to its bi-th bit. By construction, it
must hold that A[s](bi) = 0 and since the left-approximation (Be[s])s converges to A, there
must be a stage s′ > s at which bi becomes threatened and is the least threatened coding
bit. Thus, during stage s′, the bit A(bi) is set permanently to 1 and, because the two bits
following bi are no coding bits, A has now converged up to its (bi + 4)-th bit. Therefore,
it suffices to set si = s′ and to observe that we have si < si+1 for all i because e-coding
bit ce

i+1 is set to 0 at stage si, hence is threatened again after stage si. ◁

Let s0, s1, . . . be the stages from the last claim.

▷ Claim. There is an ρe < 1 only depending on e such that for all i and s ∈ {si, . . . , si+1 − 1},

Be[s + 1] − Be[s]
A − Be[s] ≤ ρe.

Proof. Fix some i and some stage s as above. Let b = ce
i and let b′ = ce

i+1. Then A

has already converged up to its b-th bit at stage si and by definition of a threat we must
have Be[si]↾b = A[si]↾b. But the left-approximation (Be[s])s converges to A, hence can
never “overshoot” A and thus at stage si has already converged up to its b-th bit as well.
Consequently, we have Be[s + 1] − Be[s] ≤ 2−(b−1).
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By construction and our assumptions,
at stage si+1, bit b′ is set from 0 to 1,
bit b′ + 1 permanently maintains value 0 and,
by definition of a threat, A[si+1] and Be[si+1] agree on their first b′ + 2 < ce

i+2 many bits.
This implies that

A − Be[s + 1] ≥ A[si+1 + 1] − Be[si+1] ≥ 2−(b′+1) = 2−(b+2e+3+1),

and in summary we have

Be[s + 1] − Be[s]
A − Be[s] = Be[s + 1] − Be[s]

(A − Be[s + 1]) + (Be[s + 1] − Be[s])

≤ 2−(b−1)

2−(b+2e+3+1) + 2−(b−1) ≤ 22+2e+3

1 + 22+2e+3 < 1,

hence there is a constant ρe < 1 as claimed. ◁

Since e was arbitrary such that (Be[s])s converges to A, there cannot be a left-approximation
that witnesses superspeedability of A. ◀

By Theorem 5, the number α constructed in Theorem 8 is speedable.

▶ Corollary 9. There exists a speedable number which is not superspeedable. ◀

Thus, superspeedability is strictly stronger than speedability; we now proceed to identify
interesting classes of numbers that have this property. We begin with the class of regainingly
approximable numbers. It was shown by Hölzl and Janicki [8] that regainingly approxim-
able numbers are speedable. This result can be strengthened; to show that regainingly
approximable numbers are in fact superspeedable, we will use the following characterization.

▶ Proposition 10 (Hertling, Hölzl, Janicki [7]). For a left-computable number x the following
are equivalent:
(1) x is regainingly approximable.
(2) For every computable unbounded function f : N → N there exists a computable increasing

sequence of rational numbers (xn)n converging to x with x − xn ≤ 2−f(n) for infinitely
many n ∈ N.

▶ Theorem 11. Every regainingly approximable number is superspeedable.

Proof. Let x be a regainingly approximable number, and fix a computable increasing sequence
(xn)n of rational numbers that converges to x and satisfies x−xn ≤ 1

(n+1)! for infinitely many
n ∈ N. Define the sequence (yn)n with yn := xn − 1

n! for all n ∈ N. Surely, this sequence
is computable, increasing and converges to x as well. Considering any of the n ∈ N with
x − xn ≤ 1

(n+1)! , we obtain

yn+1 − yn

x − yn
=

(xn+1 − xn) + 1
n! − 1

(n+1)!

(x − xn) + 1
n!

>

1
n! − 1

(n+1)!
1
n! + 1

(n+1)!
=

n
(n+1)!

n+2
(n+1)!

= n

n + 2 .

Thus we have lim supn→∞
yn+1−yn

x−yn
= 1. Therefore, x is superspeedable. ◀

The next class of numbers that we investigate is the following.

▶ Definition 12 (Wu). A real number is called regular if it can be written as a finite sum of
strongly left-computable numbers.

MFCS 2024



62:8 Randomness Versus Superspeedability

Note that this includes in particular all binary expansions of computably enumerable sets.
Using the following helpful definition and propositions, we now show that every regular
number is superspeedable.

▶ Definition 13. Let f : N → N be a function which tends to infinity. Then the function
uf : N → N is defined by uf (n) := |{k ∈ N : f(k) = n}| for all n ∈ N.

If f is computable, then uf possesses a computable approximation from below, namely
uf [0](n) := 0 and, for all n, t ∈ N,

uf [t + 1](n) :=
{

uf [t](n) + 1 if f(t) = n,
uf [t](n) otherwise.

▶ Proposition 14. A real number x is regular if and only if there exists a computable function
f : N → N with

∑∞
k=0 2−f(k) = x, a so-called name of f , such that uf is bounded by some

constant. ◀

▶ Theorem 15. Every regular number is superspeedable; in particular this holds for every
strongly left-computable number.

Proof. Let x be a regular number. Fix some computable name f : N → N for x and some
constant c ∈ N with uf (n) ≤ c for all n ∈ N. We define two sequences of natural numbers
(an)n and (bn)n and a sequence of sets of natural numbers (In)n by

an := n(n + 1)
2 , bn := an + n = an+1 − 1, In := {an, . . . , bn},

for all n ∈ N. It is easy to verify that the set {In : n ∈ N} is a partition of N and that we
also have |In| = n + 1 for all n ∈ N.

We call a stage s ∈ N a true stage if we have f(s) < f(t) for all t > s. Since f tends to
infinity, there are infinitely many true stages. For any n, s ∈ N, we say that the interval In

is incomplete at stage s if there exists some stage t > s with f(t) ∈ In. Otherwise, we say
that In is complete at s. Since f tends to infinity, every interval is complete at some stage.
Therefore, we can define the sequence (θn)n with θn := min{t ∈ N : In is complete at stage t}
for all n ∈ N. In order to show that x is superspeedable, we consider several cases:

If there are infinitely many n ∈ N with f(N) ∩ In = ∅, then x is superspeedable for the
reasons considered in Proposition 7; more explicitly, in this case, consider such an n with
an > mink∈N f(k) and let s ∈ N be the latest true stage with f(s) < an. Then we have∑∞

k=s+1 2−f(k) ≤ c · 2−bn due to f(N) ∩ In = ∅, and we obtain

2−f(s)∑∞
k=s+1 2−f(k) >

2−an

c · 2−bn
= 2−an

c · 2−(an+n) = 2n

c
.

As there exist infinitely many n as above, x is superspeedable.
Otherwise, we can assume w.l.o.g. that f(N) ∩ In ̸= ∅ for all n ∈ N.
Suppose that there are infinitely many n ∈ N with some stage s ∈ N at which In is
incomplete and In+1 is complete. Let t > s be the earliest true stage at which I1, . . . , In

are all complete. On the one hand, we have f(t) < an+1. On the other hand we have∑∞
k=t+1 2−f(k) ≤ c · 2−bn+1 , since, in particular, In+1 is complete at stage t. We obtain

2−f(s)∑∞
k=s+1 2−f(k) >

2−an+1

c · 2−bn+1
= 2−an+1

c · 2−(an+1+n+1) = 2n+1

c
.

As there exist infinitely many n as above, x is superspeedable.
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Otherwise, we can assume w.l.o.g. that (θn)n is an increasing sequence. This also implies
that θn is a true stage for every n ∈ N. Define the sequence (dn)n by dn := bn − f(θn).
Suppose that (dn)n is unbounded; then for every n ∈ N we have

2−f(θn)∑∞
k=θn+1 2−f(k) = 2−f(θn)

c · 2−bn
= 2bn−f(θn)

c
= 2dn

c
.

Therefore, x is superspeedable.
Otherwise, (dn)n is bounded. Fix some natural number D ≥ 1 with dn ≤ D for all n ∈ N.
Define the sequences (Tn)n and (Tn[t])n,t in {0, . . . , c}D as follows:

Tn := (uf (bn − D + 1), . . . , uf (bn)) , Tn[t] := (uf [t](bn − D + 1), . . . , uf [t](bn))

Clearly, we have limt→∞ Tn[t] = Tn for all n ∈ N. Fix some D-tuple T ∈ {0, . . . , c}D

satisfying Tn = T for infinitely many n ∈ N. Assume w.l.o.g. that there are infinitely
many odd numbers n with this property, and recursively define the function s : N → N as
follows: Let s(0) := 0, and define s(m + 1) as the smallest stage t > s(m) such that there
is some odd number n ∈ N with Tn[t] = T and Tn[t] ̸= Tn[s(m)]. Clearly, s is well-defined,
computable and increasing. Finally, define the computable and increasing sequence (xn)n

by xn :=
∑s(n)

k=0 2−f(k) for all n ∈ N; this clearly converges to x. Let n ∈ N be an even
number with Tn+1 = T . By the previous assumption that (θn)n is increasing, there exists
a uniquely determined number m ∈ N with s(m + 1) = θn+1. Similarly, by the definition
of s, we have s(m) < θn. On the one hand, we have xm+1 − xm ≥ 2−bn . On the other
hand, we have x − xm+1 ≤ c · 2−bn+1 . So we finally obtain

xm+1 − xm

x − xm+1
≥ 2−bn

c · 2−bn+1
= 2bn+1−bn

c
= 2an+1−an+1

c
= 2n+2

c
.

As there exist infinitely many n as above, x is superspeedable. ◀

As a corollary of the theorem, we obtain that the converse of Theorem 11 does not hold.

▶ Corollary 16. Not every superspeedable number is regainingly approximable.

Proof. By Theorem 15, every strongly left-computable number is superspeedable. However,
Hertling, Hölzl, and Janicki [7] constructed a strongly left-computable number that is not
regainingly approximable. ◀

Similarly, the converse of Theorem 15 is not true either, as the following observation shows.

▶ Proposition 17. Not every superspeedable number is regular.

Proof. Hertling, Hölzl, and Janicki [7] constructed a regainingly approximable number
α such that for infinitely many n it holds that K(α↾n) > n. By Theorem 11, this α is
superspeedable. However, it cannot be regular, as it is easy to see that the initial segment
Kolmogorov complexities of regular numbers must be logarithmic everywhere. ◀

4 Superspeedability and additivity

In this section we study the behaviour of superspeedability with regards to additivity. The
following technical statement will be useful.
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▶ Lemma 18. Let α and β be left-computable numbers, and let (cn)n be a computable
increasing sequence of rational numbers converging to α + β. Then there exist computable
increasing sequences of rational numbers (an)n and (bn)n converging to α and β, respectively,
with an + bn = cn for all n ∈ N.

Proof. Given two computable increasing sequences of rational numbers (dn)n and (en)n

converging to α and β, respectively, fix N ∈ N with

−N < min{d0, e0} and −2N < c0,

and define a−1 := b−1 := −N and c−1 := −2N . We will inductively define an increasing
function s : N → N as well as the desired sequences (an)n and (bn)n.

For every n ∈ N, define s(n) such that the inequalities

ds(n) > an−1, es(n) > bn−1, ds(n) + es(n) ≥ cn

are satisfied; this is obviously always possible. Assume by induction that an−1 + bn−1 = cn−1.
Note that the quantities ds(n) − an−1 and es(n) − bn−1 and cn − cn−1 are positive rational
numbers. Thus there exist natural numbers pa, pb, q ≥ 1 and pc ≥ 2 with

ds(n) − an−1 = pa

q
, es(n) − bn−1 = pb

q
, cn − cn−1 = pc

q
.

This implies
pa

q
+ pb

q
=

(
ds(n) + es(n)

)
− (an−1 + bn−1) ≥ cn − cn−1 = pc

q
,

hence pa + pb ≥ pc. Let m := min{pa, pc − 1}, and finally define an := an−1 + m
q and

bn := bn−1 + pc−m
q . It is easy to verify that (an)n and (bn)n are both computable and

increasing sequences, converge to α and β, respectively, and satisfy an + bn = cn for
all n ∈ N. ◀

Using the lemma, we can establish the following result.

▶ Theorem 19. Let α and β be left-computable numbers such that α + β is superspeedable.
Then at least one of α or β must be superspeedable.

We point out that it can be shown that the converse does not hold.

Proof. Suppose that neither α nor β are superspeedable. Let γ := α + β, and let (cn)n be a
computable increasing sequence of rational numbers converging to γ. We show that there
is some constant ρ ∈ (0, 1) with cn+1−cn

γ−cn
≤ ρ for all n ∈ N. Due to Lemma 18, there exist

computable increasing sequences of rational numbers (an)n and (bn)n converging to α and β,
respectively, with an + bn = cn for all n ∈ N. Since α and β are both not superspeedable,
there is some constant ρ ∈ (0, 1) satisfying both an+1−an

α−an
≤ ρ and bn+1−bn

β−bn
≤ ρ for all n ∈ N.

Considering some arbitrary n ∈ N, we obtain

cn+1 − cn

γ − cn
= (an+1 − an) + (bn+1 − bn)

(α − an) + (β − bn) =
an+1−an

α−an
· (α − an) + bn+1−bn

β−bn
· (β − bn)

(α − an) + (β − bn)

≤
max

{
an+1−an

α−an
, bn+1−bn

β−bn

}
· ((α − an) + (β − bn))

(α − an) + (β − bn) ≤ ρ.

Thus, γ is not superspeedable either. ◀
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5 Benignness versus randomness

Recall that Merkle and Titov [13, Theorem 10] made the observation that Martin-Löf
randomness is incompatible with speedability. In this section, we study the analogous
question for the weaker randomness notion of Schnorr randomness. We begin with the easy
observation that Schnorr randomness is incompatible with the rather demanding benignness
notion of regaining approximability; the argument is a straight-forward modification of the
result of Merkle and Titov.

▶ Proposition 20. No regainingly approximable number can be Schnorr random.

Proof. Let x be regainingly approximable, witnessed by its left-approximation (xn)n. Then
x is covered by the Solovay test (Sn)n where Sn = (xn − 2−(n−1), xn + 2−(n−1)) for all n ∈ N.
This test is total, that is, the sum of the measures of its components is computable; then, by
a result of Downey and Griffiths [5, Theorem 2.4], x cannot be Schnorr random. ◀

In light of this result, it is natural to ask how far down into the hierarchy of benignness
notions the class of Schnorr randoms reaches. The answer is given by the following theorem.

▶ Theorem 21. There exists a superspeedable number which is Schnorr random.

We point out that the number we construct will have the additional property that it is not
partial computably random.

For an infinite set A ⊆ N we write pA for the unique increasing function from N to N such
that pA(N) = A. Recall, for instance from Odifreddi [15, Section III.3], that a set A is called
dense simple if it is computably enumerable and pĀ dominates every computable function.
While the complement of a dense simple set must be very thin by definition, we claim that
there does exist such a set A whose binary expansion contains arbitrarily long sequences of
zeros. To see this, recall that a set B is called maximal if it is computably enumerable and
coinfinite and for any computably enumerable set C with B ⊆ C, we must have that C is
cofinite or that C \ B is finite; in other words, if B only has trivial computably enumerable
supersets. Such sets exist, for instance see Odifreddi [15, Section III.4]. If we partition the
natural numbers into a sequence (In)n of successive intervals of growing length by letting
I0 := {0}, and In+1 := {max In + 1, . . . , max In + n + 2} for all n ∈ N and fix some maximal
set B, then it is easy to check that we obtain a set A as required by letting

A :=
{

n : ∃k, ℓ

[
(n ∈ Ik ∧ k ∈ B) ∨

(n is the ℓ-th smallest element of Ik ∧ #(B↾k) ≥ ℓ)

]}
.

Proof of Theorem 21. Let A be a set that is dense simple and whose binary expansion
contains arbitrarily long sequences of zeros. Define ΩA bitwise via

ΩA(n) :=
{

Ω(m) if n = pA(m),
0 else;

for all n ∈ N; that is, ΩA contains all bits of Ω, but at those places that are elements of A; all
other bits of ΩA are zeros. Let (A[t])t be a computable enumeration of A and for all n ∈ N
write pA(n)[t] for the n-th smallest element in A[t], if it already exists. Then it is easy to see
that (ΩA[t])t defined bitwise via

ΩA(n)[t] :=
{

Ω(m)[t] if n = pA(m)[t]↓,

0 else,
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for all n ∈ N, is a left-approximation of ΩA; namely, the individual bits of Ω are approximated
in a left-computable fashion, and as more and more bits appear in the computable enumeration
of A, the positions where the bits of Ω get stored in ΩA may move to the left.

We claim that ΩA is as required by the theorem.

That ΩA is superspeedable follows from Proposition 7. Namely, recall that A contains
arbitrarily long blocks of bits that will permanently maintain value 0, that is, for all n in
such a block and all t, we have ΩA(n)[t] = 0. As a consequence, the left-approximation
of ΩA described above witnesses superspeedability at the infinitely many stages where for
the last time a bit left of one of these blocks changes.
Note that the fact that Ā is dense immune implies that for every computable increasing
function f : N → N, there exists a number mf ∈ N with

∣∣Ā↾f(n)
∣∣ ≤ n

4 for all n ≥ mf .
Let α, ω : N → N be defined via

α(n) := min{t ∈ N : A[t]↾(n + 1) = A↾(n + 1)},

ω(n) := min{t ∈ N : Ω[t]↾(n/4) = Ω↾(n/4) }

for all n ∈ N. We claim that there exists a number m1 ∈ N such that for every n ≥ m1
we have α(n) ≤ ω(n). This is clear since the Kolmogorov complexity of computably
enumerable sets grows logarithmically in the length of its initial segments, while that
of Ω grows linearly.
Let θ : N → N be defined via

θ(n) := min{t ∈ N : ΩA[t]↾n = ΩA↾n}

for all n ∈ N. We claim that there exists a number m2 ∈ N such that for every n ≥ m2
we have ω(n) ≤ θ(n). To see this, fix some n ≥ mid and such that ΩA↾n contains at least
one 1; write tn for θ(n).
First, it is easy to see that if we let ℓn denote the maximal ℓ such that (ΩA[tn]↾n)(ℓ) = 1,
then we must already have A[tn]↾ℓn = A↾ℓn. But then, since we chose n ≥ mid, the sets A

and A[tn] contain exactly the same at least ℓn − n/4 elements less than ℓn. Consequently,
we must have Ω[tn]↾(ℓn − n/4) = Ω↾(ℓn − n/4). If we choose m2 ≥ mid such that for
all n ≥ m2 we have ℓn ≥ n/2, we are done. To see that such an m2 exists, we argue as
follows: For a given n ≥ mid, ΩA↾n contains at least the first k ≥ 3/4 · n bits of Ω; and
thus if the last 1 in ΩA↾n occurs before position n/2, then the last k/3 bits of Ω must be 0.
But this can occur only for finitely many k as Ω is Martin-Löf random.
Now we show that ΩA is not partial computably random. We recursively define the
partial martingale d : ⊆Σ∗ → Q≥0 as follows: Let d(λ) := 1, and suppose that d(σ) is
defined for some σ ∈ Σ∗. Let tσ ∈ N be the earliest stage with ΩA[tσ]↾ |σ| = σ, if it exists.
Then define d(σ0) and d(σ1) via

d(σ0) :=
{

3
2 · d(σ) if |σ| /∈ A[tσ],
d(σ) otherwise,

d(σ1) :=
{

1
2 · d(σ) if |σ| /∈ A[tσ],
d(σ) otherwise.

It is clear that d is a partial computable martingale. We claim that d succeeds on ΩA.
To see this, let ℓ ≥ max(mid, m1, m2) and assume that d receives input σ := ΩA↾ℓ.
Let tσ ∈ N be the first stage such that ΩA[tσ]↾ℓ = σ. Then, by choice of ℓ and σ, we
have α(ℓ) ≤ ω(ℓ) ≤ θ(ℓ) = tσ, thus A[tσ]↾(ℓ + 1) = A↾(ℓ + 1). Thus, ℓ ̸∈ A[tσ] if and
only if ℓ ̸∈ A, and by construction, for each of the infinitely many ℓ ̸∈ A, we have
d(ΩA↾(ℓ+ 1)) = 3

2 ·d(σ). On the other hand, for all other ℓ, we have d(ΩA↾(ℓ + 1)) = d(σ).
Thus, limn→∞ d(ΩA↾n) = ∞, and ΩA is not partial computably random.
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It remains to show that ΩA is Schnorr random. For the sake of a contradiction, assume
this is not the case; then, according to a result of Franklin and Stephan [6], there exists a
computable martingale d : Σ∗ → Q≥0 and a computable increasing function f : N → N
with d(ΩA↾f(n)) ≥ 2n for infinitely many n ∈ N. W.l.o.g. we can assume d(λ) = 1.
Let m := max(mf , m1) and define the partial computable martingale d′ : ⊆Σ∗ → Q≥0
recursively as follows: Let d′(σ) := 1 for each σ with |σ| ≤ m. Now suppose that d′(σ)
is defined for some σ ∈ Σ∗, write ℓ := |σ|, and let tσ ∈ N be the earliest stage with
Ω[tσ]↾ℓ = σ, if it exists. To define how d′ bets on the next bit, imitate the betting of d

on the pA[tσ](ℓ + 1)-th bit of ΩA[tσ]. It is clear that d′ is computable.
We claim that d′ succeeds on Ω. To see this, fix any ℓ ≥ m and assume that d′ receives
input σ := Ω↾ℓ. Let tσ ∈ N be the first stage such that Ω[tσ]↾ℓ = σ. By choice of m, this
implies pA[tσ](ℓ + 1) = pA(ℓ + 1). By construction, d′ bets in the same way on Ω↾(ℓ + 1)
as d does on ΩA↾pA(ℓ + 1).
Define the function g : N → N by g(n) := f(n) −

∣∣Ā↾f(n)
∣∣, and pick any of the, by

assumption, infinitely many n with d(ΩA↾f(n)) ≥ 2n. Recall that ΩA↾f(n) contains at
most n/4 bits which belong to Ā and each of them can at most double the starting capital.
This implies that d′, which omits exactly these bets but imitates all the others, must
still at least achieve capital 23/4·n on the initial segment Ω↾g(n). This contradicts the
well-known fact that Ω is partial computably random. ◀

6 Future research

We finish the article by highlighting possible future research directions:
The first two open questions concern the positions marked 1 and 2 in Figure 1; in both

cases it is unknown whether any such numbers can exist. Note that proving the existence
of 1 would give a negative answer to the open question posed by Hölzl and Janicki [8]
whether the left-computable numbers are covered by the union of the Martin-Löf randoms
with the speedable and the nearly computable numbers; in particular, it would provide an
alternative way to obtain a counterexample to the question of Merkle and Titov discussed
in the introduction. Concerning 2, one might be tempted to believe that such a number
could be constructed by an argument similar to that used to prove Theorem 21 but using a
maximal computably enumerable set A; such a set would still be dense simple by a result of
Martin [11], but it would only contain isolated zeros. However, it can be shown that an ΩA

constructed in this way would still end up being superspeedable.
Next, besides Schnorr randomness, there are numerous other randomness notions weaker

than Martin-Löf randomness, such as computable randomness or weak s-randomness (see,
for instance, Downey and Hirschfeldt [4, Definitions 13.5.6 and 13.5.8]). It is natural to ask
which of them are compatible with which of the notions of benign approximability discussed
in this article.

Finally, in this field, many relevant properties of the involved objects are not computable;
one might ask how far from computable they are. One framework in which questions of this
type can be studied is the Weihrauch degrees, a tool to gauge the computational difficulty of
mathematical tasks by thinking of them as black boxes that are given instances of a problem
and that have to find one of its admissible solutions. This model then allows comparing the
“computational power” of such black boxes with each other (for more details see, for instance,
the survey by Brattka, Gherardi, and Pauly [2]). In the context of this article, we could for
example ask for the Weihrauch degrees of the following non-computable tasks, with many
variants imaginable:
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Given an approximation that witnesses speedability of some number as well as a desired
constant, determine infinitely many stages at which the speed quotients of the given
approximation beat the constant.
For a speedable number, given an approximation to it as well as a desired speed constant ρ,
determine another approximation of that number which achieves speed constant ρ in the
limit superior.
For an approximation witnessing regaining approximability of some number, determine
the sequence of n’s at which the approximation “catches up.”
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Abstract
A classical problem in computational geometry and graph algorithms is: given a dynamic set S of
geometric shapes in the plane, efficiently maintain the connectivity of the intersection graph of S.
Previous papers studied the setting where, before the updates, the data structure receives some
parameter P . Then, updates could insert and delete disks as long as at all times the disks have a
diameter that lies in a fixed range [ 1

P
, 1]. As a consequence of that prerequisite, the aspect ratio

ψ (i.e. the ratio between the largest and smallest diameter) of the disks would at all times satisfy
ψ ≤ P . The state-of-the-art for storing disks in a dynamic connectivity data structure is a data
structure that uses O(Pn) space and that has amortized O(P log4 n) expected amortized update
time. Connectivity queries between disks are supported in O(logn/ log logn) time.

In the dynamic setting, one wishes for a more flexible data structure in which disks of any
diameter may arrive and leave, independent of their diameter, changing the aspect ratio freely.
Ideally, the aspect ratio should merely be part of the analysis. We restrict our attention to axis-
aligned squares, and study fully-dynamic square intersection graph connectivity. Our result is
fully-adaptive to the aspect ratio, spending time proportional to the current aspect ratio ψ, as
opposed to some previously given maximum P . Our focus on squares allows us to simplify and
streamline the connectivity pipeline from previous work. When n is the number of squares and ψ is
the aspect ratio after insertion (or before deletion), our data structure answers connectivity queries in
O(logn/ log logn) time. We can update connectivity information in O(ψ log4 n+ log6 n) amortized
time. We also improve space usage from O(P · n logn) to O(n log3 n logψ) – while generalizing to a
fully-adaptive aspect ratio – which yields a space usage that is near-linear in n for any polynomially
bounded ψ.
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1 Introduction

Geometric intersection graphs are one of the most well-studied geometrically-flavoured graph
classes: Their nodes are geometric shapes, and an edge between two such shapes exists if and
only if they intersect. This makes the description complexity of a geometric intersection graph
very compact; it is linear in the number of objects, while the underlying graph potentially
has a quadratic number of edges. In this work, we consider square intersection graphs in the
dynamic setting. Intersection graphs are one of the few examples of dynamic graphs where
fully-dynamic insertion and deletion of vertices is motivated and interesting. Since a vertex
can come or leave with Θ(n) edges, applying any existing edge-updatable dynamic graph
algorithm in a blackbox manner would lead to Ω(n) update time. Yet, the geometric nature
of these graphs often allows for sublinear or even polylogarithmic update times.

A classical problem in dynamic graph algorithms is dynamic connectivity. In this problem,
we want to maintain a data structure under edge or node insertions and deletions that allows
for fast queries that return whether a given pair of vertices is connected. Connectivity was
one of the first problems to be studied in the dynamic setting dating back to the 80s [11, 25],
and has received ample attention ever since. Dynamic connectivity in general graphs has
been studied in many settings; randomised or deterministic, amortised or worst-case [11, 13,
29, 18, 24], and the partially dynamic incremental or decremental settings [26, 27, 28, 1].
Due to its fundamental nature, and its many applications, dynamic connectivity has also
received much attention for simpler graph classes. Examples of such graph classes include
trees [25, 3], planar graphs [10, 21], and graphs of bounded genus [9, 15].

Naturally, the dynamic connectivity problem also drew attention for the class of geometric
intersection graphs. This setting is particularly interesting as a single node insertion can
drastically change the number of connected components, as it can introduce a linear number
of new edges. On the other hand, the geometric structure can be exploited in the data
structures. The first result for geometric connectivity in geometric intersection graphs with
update and query time independent of the object diameters is by Chan et al. [7] who presents
a dynamic (Euclidean) disk intersection data structure with an update time of O(n20/21+ε)
and a query time of O(n1/7+ε). This has recently been improved to O(n7/8) amortized
update time with constant query time [6]. As progress seemed difficult in this setting, the
setting in which the disks in the data structure have restricted diameters was considered.
For a fixed diameter range, where there is some value P given in advance and diameters
have to be contained in an interval [ 1

P , 1], Kaplan et al. [17] showed that there is a data
structure with expected amortized O(P 2 log10 n) update time, query time O(logn/ log logn),
using O(nP logn) space. Recently, Kaplan et al. [16] improved this to O(P log7 n) expected
amortized update time with the same update time and O(nP ) space.

From disks to squares. While the above works are stated for Euclidean disks, we note that
the approach in [16] can be combined with [30] to obtain a data structure that works for
the simpler setting of connectivity between axis-aligned squares. The obtained update time
is amortized O(P log4 n). Disk intersection graphs are often motivated by communication
networks where the disks are interpreted as some sort of transmission diameter. This is an
idealization of a complicated physical process and actual ad-hoc communication networks do
not correspond to perfectly circular disks [20]. Thus, it is reasonable to switch to a different
metric for computational reasons while maintaining the core idea of the underlying problem.
Recently, similar progress was made for computing a single-source shortest path tree in an
intersection graph by assuming square regions instead of disks [19].
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Table 1 Complexities are asymptotic. All update times are amortized. The query time for
all approaches is O(logn/ log logn). λs(n) denotes the maximum length of a Davenport-Schinzel
sequence of order s on n symbols.

Object Aspect ratio Update time Space Ref.

disks fixed [ 1
P
, 1] P · log7 n · λ6(logn) exp. nP [16]

disks fixed [ 1
P
, 1] P · log4 exp. nP [16]+[22]

squares fixed [ 1
P
, 1] P · log4 n nP [16]+[30]

squares adaptive ψ ψ log4 n+ log6 n n log3 n logψ Thm 10

We study the dynamic connectivity problem where the input S is a set of (axis-aligned)
squares, while being fully adaptive to their aspect ratio. We let ψ denote the adaptive aspect
ratio. Formally, if S is the input before an update and S′ is the input after an update
we define ψ = max{ maxσ∈S |σ|

minσ′∈S |σ′| ,
maxσ∈S′ |σ|
minσ′∈S′ |σ′|}. Our date structure maintains connectivity

between squares with O(ψ log4 n+ log6 n) update time, O(logn/ log logn) query time, and
using O(n log3 n logψ) space, see Table 1 for a comparison. our approach only requires
near-linear space while maintaining near-linear update time and polylogarithmic query time.

Implications of adaptivity and our reduced space usage. To understand the implications
of the adaptivity of our new solution, consider the scenario where the set of squares starts
with a square A with diameter 1 and B with diameter 1

n . Now, suppose the sequence of
updates first removes B, then inserts a sequence of n squares of diameter 1, and finally
reinserts B. Previous work [16] would require as input the interval [ 1

n , 1] and the promise
that all updates only insert squares in this interval. The space usage and the total update
time of [16] is quadratic. In our case, since for almost all updates, the aspect ratio is constant.
Moreover, the space usage and total update time is near-linear.

2 Problem statement and technical overview

Let S ⊂ R2 be a set of axis-aligned squares. The intersection graph G[S] is the graph with
vertex set S and with an edge between squares σ, σ′ ∈ S whenever they intersect. We say that
two squares σ, σ′ are connected if there exists a path between their corresponding vertices in
G[S]. The set S is a fully dynamic set subject to (adversarial) insertions and deletions of
squares. We wish to maintain S in a data structure supporting connectivity queries between
squares in S. We denote the diameter of square σ ∈ S by |σ|. We consider three settings
with different restrictions on the square diameters in S:

The fixed diameter range setting. Here, the input specifies some P and each σ ∈ S has a
diameter in [ 1

P , 1] for some fixed P .
The bounded aspect ratio setting. Here, the input specifies some P and at all times, for
all σ, σ′ ∈ S we have |σ|

|σ′| ≤ P .
The adaptive aspect ratio ψ setting in which arbitrary insertions and deletions may occur.
Let S be the set of squares before an update and S′ be the set of squares after an update.
We define ψ = max{ maxσ∈S |σ|

minσ′∈S |σ′| ,
maxσ∈S′ |σ|
minσ′∈S′ |σ′|} the aspect ratio relevant for the update.

We measure the algorithmic complexity in n := |S| and ψ, where n is the present size of the
dynamic set S. At all times, we maintain some minimal axis-aligned square F that contains
S, and the coordinates of F are powers of 2.

MFCS 2024



63:4 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Results. The data structure of Kaplan et al. [16], when adapted to axis-aligned squares
by applying Range Trees [30], can store a dynamic set of axis-aligned squares as follows:
The input specifies some value P and all squares have fixed diameter range with ratio P .
Their solution uses O(nP ) space and supports updates to S in O(P log4 n) amortized time
(Table 1). They answer connectivity queries in O(logn/ log logn) worst-case time.

There are several reasons why [17] uses O(nP ) space and why their update bound cannot
depend on the adaptive ψ instead of P (which we discuss further down). We present an
adaption of their work that relies on the fact that S is a set of axis-aligned squares. Under
this assumption, we adapt their data structure to work for adaptive ψ. We improve the
space usage to near linear in n and logψ. In full generality, we also improve the performance:
allowing for update times proportional to the density around the update σ. More concretely,
we parameterize the runtime by the size of two sets C(σ) and P(σ). Intuitively, these sets
contain squares in σ or squares around σ. These sets have size at most O(min{ψ, n}).

Our result is a technical contribution, that examines and refines the data structure in [16]
in the special case where S is a set of axis-aligned squares. To detail our contribution, we now
present a technical overview, where we reference several concepts whose formal definitions
are presented in their respective sections. The core component is a quadtree that stores S.

The existing pipeline. We can describe the data structure of [16] (adapted to squares) on
a high-level: They construct a quadtree H(S) in which quadtree cells may store squares in
S. For any quadtree cell C, we denote by π(C) the set of squares stored in C. A crucial
definition is the concept of a perimeter. For a square σ, its perimeter P∗(σ, P ) is intuitively
a ring of Θ(P ) quadtree cells of size at least 1

4P that are sufficiently close to the boundary of
σ. Using this concept, their data structure is a pipeline of five components (Fig 1):
1. The set S gets stored in a compressed quadtree H(S), such that for every σ ∈ S, the

quadtree contains P∗(σ, P ).1 This quadtree has Θ(P ·n) cells. For each σ ∈ S, its storing
cell is the maximal quadtree cell contained in σ.

2. They store all (maximal) quadtree cells contained in some σ ∈ S in a special ancestor
data structure. We leave out the details of this structure, as we show that it suffices to
use the well-studied marked-ancestor data structure by Alstrup, and Husfeldt, Rauhe [2].

3. For each square σ ∈ S with storing cell Cσ, for each quadtree cell C2 ∈ P∗(σ, P ), they store
a square intersection data structure (a range tree). This data structure stores the squares
R ⊂ π(Cσ) that have C2 in their perimeter (i.e. R = {γ ∈ π(Cσ) | C2 ∈ P∗(σ, P )}).

4. For each square σ with storing cell Cσ, for each quadtree cell C2 ∈ P∗(σ, P ), they store
a maximal bichromatic matching (MBM) in the graph G[R ∪B] with B = π(C2) with
R = {γ ∈ π(Cσ) | C2 ∈ P∗(σ, P )}.

5. They store a proxy graph over the quadtree in the dynamic connectivity data structure
by Holm, Lichtenberg, and Thorup (HLT ) [14]. This graph contains an edge between
two cells C1, C2 if and only if their maximal bichromatic matching is not empty.

They subsequently support connectivity queries for a query (σ, ρ) as follows. Given σ, obtain
a pointer to its storing cell Cσ. Using their ancestor data structure, they obtain the largest
ancestor Ca that is contained in a square σ∗ ∈ S. Let C∗ be its storing cell. Doing the same
procedure for ρ gives a cell R∗. They show that (σ, ρ) are connected in G[S] if and only if
(C∗, R∗) are connected in the proxy graph; which they test in O(logn/ log logn) time.

1 Whilst originally their approach is a forest of quadtrees, we note that since each root of the forest is
disjoint, the whole solution can be stored as a quadtree.
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Why the space usage is high, and update times are not adaptive. For every σ ∈ S,
this pipeline creates a set of Θ(P ) quadtree cells with sizes in [ 1

4P , 1] which we denote by
P∗(σ, P ). For each quadtree cell C2 ∈ P∗(σ, P ), σ gets stored in a square intersection data
structure, even if the quadtree cell C2 is empty and/or has no other squares nearby. This
approach makes it require a lot of space. Moreover, this approach fails when the aspect ratio
becomes adaptive: suppose that S has n− 1 squares with diameter 1

P and one unit square.
We replace the unit square with a square of diameter 1

P 2 . The aspect ratio remains bounded
by P . However (after rescaling the plane by a factor 1

P ) the quadtree no longer contains for
every σ ∈ S the set P∗(σ, P ) as (after rescaling the plane) it only contains quadtree cells of
size 1. Reconstructing these requires Ω(Pn) time.

Our adaption. We improve this pipeline in several ways based on a few key insights: First,
we revisit the definition of perimeter ; presenting a new definition P(σ) which intuitively
contains only cells in P∗(σ, ψ) that store at least one square. Since we only store data
structures on cells that store at least one square, we save space and allow ψ to become
fully adaptive. This introduces a new challenge, as we need to work with significantly fewer
precomputed inormation. Concretely, we do the following (Figure 2):
1. We define a new type of quadtree T (S) that uses only O(n logψ) quadtree cells.
2. We replace their custom ancestor data structure by the well-studied Marked Ancestor

T ree (MAT), simplifying the data structure.
3. For squares metric we create a new data structure that has deterministic guarantees and

that avoids storing many copies.
4. For each square σ ∈ S with storing cell Cσ, for each quadtree cell C2 in our new perimeter
P(σ), we store a Maximal Bichromatic Matching (MBM∗) in a graph G[R ∪B]. Using
our new definition of perimeter, we define R← {γ ∈ π(Cσ) | C2 ∈ P(σ)} and B ← π(C2).
We present a new algorithm to maintain this Maximal Bichromatic Matching.

5. Finally, we use HLT [14] on a proxy graph with an edge for every non empty MBM∗.

We go through our data structures one by one in the order indicated in Figure 2.

3 Storing disks in quadtrees

Recall that F is a (dynamic) square bounding box of S. By construction, the side length of
F is 2ω for some integer ω. We define the square F to be a quadtree cell and we recursively
define quadtree cells to be any square obtained by splitting a cell into four equally sized
closed squares. A quadtree T on F is any hierarchical decomposition obtained by recursively
splitting cells. This hierarchical decomposition has a natural representation as a tree: the
root is the cell F and every cell has either 0 or 4 children depending on whether it was split.
We denote by F the (infinite) set of cells that are obtained by recursively splitting all cells,
starting from F . We say that a cell C ∈ F is at level ℓ whenever its side length is 2ℓ. We
treat any quadtree T as a set of cells, i.e., T ⊂ F.

1
MBM(C1, C2)

∀C1, ∀C2 ∈ P(π(C1), P ) maintain:store in: ∀ nonempty MBM , insert edge in

Ancestor DS
Special

MBM(C1, C2) HLTS

mark cells in: stores copy of:

2

4

3

5
H(S)

Lower envelope of π(C1)

Figure 1 The five-component pipeline by Kaplan et al. where the arrows indicate dependencies.
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∀C1, ∀C2 ∈ P(π(C1)) maintain: ∀ nonempty MBM∗, insert edge in

MAT

HLTS MBM∗(C1, C2)

mark cells in: stores pointer to:

2 3

4 51

store in:

T (S)

Lower envelope of π(C1)

Figure 2 Our five-component pipeline where the arrows indicate dependencies.

Löffler, Simons, and Strash [23] use quadtrees to store arbitrary squares (or disks). Let F
be fixed and σ be some square with center s. The unique storing cell Cσ ∈ F is a largest cell
in F that contains the center s and that itself is contained in σ (if s lies at the intersection of
multiple largest contained cells, we define the bottom left cell to be Cσ). Löffler, Simons and
Strash subsequently say that Cσ stores σ. For a cell C ∈ F, we denote by π(C) all square of
S stored in C. We will define five different cell sets to define our quadtree storing S.

Quadtree cell sets. We assume that we have some bounding box F (which induces the set
F) and some set of storing cells in F. We subsequently define two types of subsets of F:

definitions that originate from [16] and depend on some P ∈ R (blackboard font),
and new definitions depending on only the storing cells (calligraphic font).

Quadtree cells C,C ′ are neighboring whenever they are not descendants of one another and
intersect in their boundary. For any property, a quadtree cell C in F is maximal if there does
not exist an ancestor of C in F with the same property.
Let σ ∈ S have a storing cell Cσ. We define (Figure 3):
N (σ) ⊂ F as the cells of size |Cσ| neighboring Cσ or a neighbor of Cσ.
C∗(σ, P ) ⊂ F as the maximal cells C ′ ∈ F with C ′ ⊂ σ and |C| ∈ [ 1

4P , 1].
C(σ) ⊂ F as the maximal cells C ′ ∈ F with C ′ ⊂ σ that contain at least one storing cell.
P∗(σ, P ) ⊂ F as the perimeter of σ. These are all C ′ ∈ F contained in a cell in N (σ) with
|C ′| ∈ [ 1

4P , 1] with the additional property that there exists a square ρ ⊂ R2 where C ′

would be the storing cell of ρ if ρ ∈ S, and, ρ intersects the boundary of σ.
P(σ) ⊂ F as all storing cells with diameter at most |σ| that, when scaled around their
center by a factor 5, intersect the boundary σ. Note that these may be contained in σ.

For R ⊆ S, we define N (R) to be the union of all N (σ) with σ ∈ R. All other sets (e.g.,
P(R)) are defined analogously. Let ℓmin (resp. ℓmax) be the smallest (resp. largest) level
that contains any cell in any of the five sets. Per definition, ℓmax − ℓmin ∈ O(logψ).

▶ Lemma 1 (Lemma 4.2 in [16]). For any σ ∈ S, if regions are disks under an Lp metric
with a diameter in [ 1

4P , 1] then: |C∗(σ, P )| ∈ O(P ) and |P∗(σ, P )| ∈ O(P ).

Compressed quadtrees. Denote by X ⊂ F some set of cells. Denote by TX the minimal
quadtree over some bounding box F that contains all cells in X. The size of TX can be
arbitrarily large, even when |X| is constant. To reduce quadtree space complexity, a quadtree
may be compressed [12]. An α-compressed quadtree (for some variable α ≥ 1) is defined as
follows: let C be a quadtree cell in TX and Cα be the smallest descendant of C such that (1)
|C| ≥ 2α|Cα| and (2) all cells in X that are contained in C are also contained in Cα. Then
C has not 4 children, but only Cα as its child. Given some constant α, every quadtree has a
unique maximally compressed equivalent that has size linear in |X| [12]. Given the above
definitions, we want to mention two different quadtrees that store S:

[23] defines L(S) as the compressed quadtree storing N (S).
[16] defines H(S) as the compressed quadtree storing N (S), C∗(S) and P∗(S).
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∈ P(π(C), 4)

Storing cell

C

∈ C(π(C), 4)

̸∈ P(π(C), 4)

∈ P(π(C))

Storing cell

∈ C(π(C))

̸∈ P(π(C))

(a) (b) (c)

C C

Figure 3 (a) We show for a square σ its storing cell in orange. We set P = ψ = 2 and show our
sets. Many cells in C∗(π(C), 8) are also in P∗(π(C), 8). (b) The minimal quadtree that contains a
set of storing cells. (c) Given the quadtree with storing cells, we illustrate our sets. Red cells are
storing cells that occur in neither C(π(C)) nor P(π(C)).

Our quadtree. We define our quadtree T (S) as the compressed quadtree storingN (S), where
cells in C(S) are uncompressed. Note that any quadtree that contains N (S), also contains the
cells in C(S). The key difference between L(S) and T (S) is that we decompress the cells in
C(S), adding them to memory (i.e., we treat these cells as storing cells in the quadtree). Since
these cells are uncompressed, this structure uses more space than the O(n) cells in N (S). If
we view quadtrees as a collection of (uncompressed) cells, then L(S) ⊂ T (S) ⊂ H(S). By
Lemma 1, Kaplan et al. [16] prove that |C∗(S, P )|, |P∗(S, P )| ∈ O(Pn). It would be easy to
show that |C(S)|, |P(S)| ∈ O(nψ). But through clever counting, we prove that storing T (S)
uses only O(n logψ) space instead (Theorem 4).

3.1 Space complexity of the quadtree
We upper bound the size of N (S) and C(S) (and thus the size of T (S)).

▶ Observation 2. There are O(n) cells in N (S).

▶ Lemma 3. Let C be a storing cell. Denote by Z any cell, such that there could exist a σ
stored in Z where an ancestor of C lies in C(σ). There are at most O(logψ) such cells and
we can report them in O(logψ logn) time.

Proof. Let |C| = 2ℓ (i.e., C is at level ℓ). By definition, Z is in a level j ≥ ℓ. Fix a level j.
For any cell Z at level j, C(π(Z)) contains an ancestor of C only if a square in π(Z) intersects
(or contains) Cj (the ancestor of C at level j). As the diameter of squares in π(Z) is at most
a factor 5 larger than the diameter of Z, there are at most O(1) cells at level j that could
store a square ρ that intersects Cj (the neighbors of Cj , their neighbors and possibly their
neighbors). We can find these cells in O(logn) time by doing a point location in each cell for
the level j. The fact that per definition of ψ, all storing cells and all cells in C(S) lie in a
range of O(logψ) levels concludes the proof. ◀

▶ Theorem 4. At all times, the compressed quadtree T (S) uses O(n logψ) space.

Proof. Since T (S) is the quadtree that stores N (S) and C(S), and compressed quadtrees have
linear space in the number of uncompressed cells, Observation 2 and Lemmas 3 immediately
imply the theorem. ◀
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We additionally upper bound the size of two more quadtree cell types:

▶ Lemma 5. Let S be a set of squares with aspect ratio ψ. For all σ ∈ S with storing cell
Cσ there are at most O(ψ) cells in C(σ) and P(σ) and O(ψ2) cells in P(π(Cσ)).

Proof. Consider any set of squares S. We rescale the plane such that the diameter of squares
in S lies in [ 1

ψ , 1]. We apply Lemma 1 to conclude that |C(σ, ψ)|, |P(σ, ψ)| ∈ O(ψ). Note
that the smallest storing cell in T (S) then has size 1

4ψ . Having rescaled, C(σ) ⊆ C∗(σ, ϕ).
Suppose that after rescaling there is a cell C ∈ P(σ) that is not in P∗(σ, ψ). Then C,

scaled by a factor 5, intersects the boundary of σ. Yet if C ̸∈ P∗(σ, ψ) then C cannot store
any square ρ that intersects σ. Denote by C ′ a neighbor of C of size 2|C| that lies closer
to the center of σ. It must be that C ′ ∈ P∗(σ, ψ) (indeed, we can construct a square with
diameter 4|C| stored in C ′ that intersects σ). This way, each cell in P∗(σ, ψ) can get charged
by at most O(1) cells C ′ ∈ P(σ) where C ′ ̸∈ P∗(σ, ψ). Thus, |P(σ)| ∈ O(ψ). The upper
bound on |P(π(Cσ))| follows from the standard packing argument. ◀

▶ Lemma 6. Let C be a storing cell. Denote by Z any cell, such that there could exist a σ
stored in Z with C ∈ P(σ). We can report all O(logψ) such cells in O(logψ logn) time.

Proof. Let |C| = 2ℓ (i.e., C is at level ℓ in the quadtree). By definition, every quadtree cell
Z of the lemma statement is stored at a level j ≥ ℓ. Fix a level j ≥ ℓ and let Cj be the
ancestor of C at level j. If for any cell Z at level j, C ∈ P(π(Z)) then it must be that the
cells Z and Cj (when both are scaled around their center by a factor 5) intersect. There
are at most O(1) such cells Z at level j for which this can be true. We can find these cells
at level j in O(logn) time by performing O(1) point locations in the quadtree (querying a
neighborhood of 25× 25 around Cj). The fact that all cells in P(S) lie in a range of O(logψ)
levels concludes the proof. ◀

4 Maintaining and navigating quadtrees

A compressed quadtree TX that stores a set X of quadtree cells can be dynamically maintained
in O(log |X|) time per insertion and deletion [12]. Moreover, leaf location queries are
supported in O(log |X|) time, which take as input some point q ∈ R2 and output the leaf of
TX that contains q. By Theorem 4, |X| = O(n logψ) in our setting. Since we assume that
ψ ∈ O(nc), see Section 2, we can say that our insertion, deletion and point location operations
in the compressed quadtree take O(logn) time. Compressed quadtrees additionally support
level locations where for any query point q ∈ R2 and level ℓ, the output is the quadtree cell
at level ℓ that contains q; this can be used to dynamically maintain for all σ ∈ S the set
N (σ) in our quadtree in O(logn) time per update in S [5].

We maintain L(S) in O(logn) time per update to S, while supporting point location
queries. We maintain in O(logn) time per update in S the values dmax and dmin that denote
the maximal and minimal diameter in S respectively. We apply 3 more data structures:

Marked Ancestor Trees (MAT). Alstrup, Husfeldt, and Rauhe [2] introduce marked-
ancestor trees. Let T be a dynamic tree. Each node in T is either marked or unmarked.
Given a node v ∈ T , the MAT supports changing the mark of v or updating T in O(log logn)
time. Additionally, given a node v ∈ T , one can find the lowest/highest marked node on the
path from v to the root in O(logn/ log logn) time. We augment our quadtree with a MAT.
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Orthogonal range trees. Willard and Lueker [30] show a data structure to store a set of
n squares using O(n logn) space. Given a query rectangle ρ, it can report an input square
contained in ρ in O(log4 n) time, if such a square exists. Given a query square ρ it can report
the number of squares that contain ρ in O(log4 n) time. We implement the range tree using
general balanced trees [4], so that we can support updates in amortized O(log4 n) time.

Segment trees. Segment trees [8] store a set of n horizontal segments using O(n logn)
space, so that for a vertical query segment Q we obtain all k input segments that intersect Q
in O(log2 n+ k) time. The data structure can again be made dynamic, supporting updates
in O(log2 n) amortized time. For any σ, we store the horizontal sides of Cσ (scaled by a
factor 5) in such an orthogonal intersection data structure. Furthermore, we create a second
such a data structure storing all vertical sides.

▶ Theorem 7. Let S be a set of axis-aligned squares. We augment T (S) with an O(n logn)-
size data structure using O(n logn) space, supporting inserting/deleting a square σ in
O(|C(σ)| · log4 n+ log6 n) time, and

all cells in C(S) are marked in our marked-ancestor tree;
for any query square γ, we can obtain P(γ) in O(log2 n+ |P(γ)|) time.
for any query cell C, we obtain the set Z(C) := {Z | C ∈ P(π(Z))} in O(log5 n) time.

Proof. By Theorem 4, our quadtree requires O(n logψ) space. Using the standard operations
on compressed quadtrees, we can maintain N (S) in O(logn) time per update. What remains
for quadtree maintenance is to identify, decompress and mark all cells in C(S).

Maintaining C(S). Every cell C ∈ F has a counter that counts for how many σ ∈ S,
C ∈ C(σ). Whenever the counter is zero, we do not store it explicitly. Otherwise, C ∈ C(S)
and we need to make sure that C is decompressed and marked. For each update of a square
σ with storing cell Cσ, there are two types of counter updates:
1. updating counters of C ∈ C(σ), and
2. updating the counters of Cσ and its ancestors.
We start with the first case. Instead of increasing counters, we do something slightly stronger
as we can report all of C(σ). By definition, Cσ ∈ C(σ) and we add it to our output. We split
σ into eight rectangles that are bounded by σ and the boundary of Cσ, see Figure 4. We
process each rectangle separately. Consider such a rectangle R. We query our orthogonal
range tree to report a storing cell C1 in R in O(log4 n) time. Given C1, we walk in O(logψ)
time up the quadtree to find its largest ancestor C ′

1 that is still contained in σ. By definition,
C ′

1 ∈ C(σ) and we add it to our output. Subsequently, we partition R into nine rectangles
that are bounded by the boundaries of C ′

1 and recurse. For each cell in C(σ) we perform
eight orthogonal range queries. For each range query, we either conclude that the range
contains no cells in C(σ), or we identify at least one cell in C(σ). As we recurse on rectangles
that are bounded by cell boundaries and we explore all of R, we find all cells of C(σ) in
O(|C(σ)| · log2 n) time. As we find them, we may adjust their counters.

Now onto the second case, where we simply recompute all counters from scratch. There
are at most O(logψ) ancestors Cσ, C1, . . . Ck of Cσ that may be contained in a square in S.
For each of these, we recompute their counters from scratch. Fix an ancestor Ci with parent
Ci+1. By Lemma 3, there are at most O(logψ) cells Z such that Z could store a square γ
with Ci ∈ C(γ). We obtain all such Z in O(logψ logn) time and iterate over each of them.
For a fixed Z, we use the range tree to count how many γ ∈ π(Z) contain Ci in O(log4 n)
time. We then count how many γ ∈ π(Z) contain Ci+1. The difference between these counts
is the number of squares γ∗ ∈ π(Z) for which Ci ∈ C(γ∗). We compute and sum all these
numbers to recompute the count of Ci. It follows from the fact that O(logψ) ⊂ O(logn)
that we can maintain C(S) in O(|C(σ)| · log2 n+ log6 n) time.
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Querying for P(γ). We show how to obtain for any query squares γ the set P(γ) in
O(log2 n+ |P(γ)|) time. For each storing cell C, we consider the cell C∗ that is C scaled by
a factor 5 around its center. We store each of the boundary segments of C∗ in our Segment
Tree. There is exactly one storing cell per square in S, so maintaining the Segment Tree
intersection data structure takes O(log2 n) time per update and uses O(n logn) space. For
any query square γ, we have C ∈ P(γ) if and only if one of the boundary segments of γ
intersects one of the boundary segments of C∗. Thus, we can immediately use the intersection
data structure to compute P(γ) in O(log2 n+ |P(γ)|) time, as each cell in P(γ) is reported
at most a constant number of times.

Querying for Z(C). Denote by Z any cell, such that there could exist a γ stored in Z

with C ∈ P(γ). By Lemma 6, we can report all at O(logψ) such cells in O(logψ logn) time.
For every such Z, we conceptually rotate the plane such that Z lies above C. Let C∗ be the
cell C increased by a factor 5 around its center. Any square ρ in π(Z) intersects C∗ in its
boundary if and only if one of two conditions hold: ρ contains the top left endpoint of C∗ but
not the bottom left endpoint, or ρ contains the top right endpoint of C∗ but not the bottom
right endpoint. We select the top right endpoint of C∗ and we count how many squares in
π(Z) contain the top right endpoint in O(log4 n) time. We do the same for the bottom right
endpoint. If the counts differ, there is at least one square in π(Z) that intersects C∗ in its
boundary and thus C ∈ P(π(Z)). Doing this for all O(logψ) levels takes O(log5 n) time. ◀
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Figure 4 (a) Given a storing cell Cσ, we partition σ into nine rectangles (one being Cσ). (b) For
each rectangle R, we do a range query to find a storing cell C1 (if it exists). For the largest ancestor
C′

1 ⊂ σ of C1, we partition R into nine rectangles once again and recurse.

5 Specific square intersection data structures

In this section we develop a solution for the following data structure problem: Let R be a
set of m squares. Let R1, . . . , Rk, be k subsets of R that we refer to as conflict sets and let
ℓ ≤ k be the maximum number of conflict sets that any square from R appears in. We want
to store R and all the conflict sets R1, . . . , Rk in a data structure that has size near linear in
m and z =

∑
i |Ri|, and support the following operations in the following time:

Insert(ρ), (O(l · log3 m) time): Insert a square ρ into R.
Delete(ρ), (O(l · log3 m) time): Delete a square ρ from R and every Ri that it occurs in.
Insert(ρ,Ri), (O(log3 m) time): Insert a square ρ in the conflict set Ri. If Ri = ∅, create

a new conflict set.
Delete(ρ,Ri), (O(log3 m) time): Delete a square ρ from the conflict set Ri.
Query(σ,Ri, C), (O(log3 m) time): Given a query σ whose center lies below all centers

of all squares in R, and a horizontal line segment C below σ, return (if it exists) a square
ρ ∈ R that intersects σ, but is not in the conflict set Ri, and that does not contain C.
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In Section 6 we solve this problem as follows: we map every square ρ = [ℓρ, rρ]×[bρ, tρ] ∈ R
to a point pρ = (bρ, ℓρ, rρ) in R3, and store these points in a 3D-range tree T augmented for
range counting queries [8]. Hence, every third-level subtree Tν stores the number of points
mν in Tν . Furthermore, for each such subtree, and each conflict set Ri, consider the subset
of points stored in the leaves of Tν for which the corresponding square appears in Ri. If this
set is non-empty then node ν also stores the size mν,i = |{pρ | pρ ∈ Tν ∧ ρ ∈ Ri}| of this set.
Furthermore, we maintain a bipartite graph between the squares in R and the conflict sets
Ri, so that given a square ρ ∈ R we can find the ℓ conflict sets it appears in in O(ℓ) time. We
implement all trees using general balanced trees [4] so that we can perform updates efficiently.
A 3D-range tree uses O(m log2 m) space. Each square in the multiset

⋃
iRi contributes to

O(log3 m) nodes of T , and hence the entire structure uses at most O((m+ z) log3 m) space
(Lemma 8). In Section 7 we use this structure for connectivity queries.

6 Square intersection data structure

Let R be a set of m squares. Let R1, . . . , Rk, be k subsets of R that we refer to as conflict
sets and let ℓ ≤ k be the maximum number of conflict sets that any square from R appears
in. We want to store R and all the conflict sets R1, . . . , Rk in a data structure that has size
near linear in m and z =

∑
i |Ri|, and support the following operations:

Insert(ρ): Insert a square ρ into R.
Delete(ρ): Delete a square ρ from R and every Ri that it occurs in.
Insert(ρ,Ri): Insert a square ρ in the conflict set Ri. If Ri = ∅, create a new conflict set.
Delete(ρ,Ri): Delete a square ρ from the conflict set Ri. If Ri becomes empty, delete Ri.
Query(σ,Ri, C): Given a query square σ whose center lies below all centers of all squares

in R, and a horizontal line segment C below σ, return (if it exists) a square ρ ∈ R that
intersects σ, but is not in the conflict set Ri, and that also does not contain C.

We map every square ρ = [ℓρ, rρ] × [bρ, tρ] ∈ R to a point pρ = (bρ, ℓρ, rρ) in R3, and
store these points in a 3D-range tree T augmented for range counting queries [8]. Hence,
every third-level subtree Tν stores the number of points mν in Tν . Furthermore, for each
such subtree, and each conflict set Ri, consider the subset of points stored in the leaves of
Tν for which the corresponding square appears in Ri. If this set is non-empty then node ν
also stores the size mν,i = |{pρ | pρ ∈ Tν ∧ ρ ∈ Ri}| of this set. Furthermore, we maintain a
bipartite graph between the squares in R and the conflict sets Ri, so that given a square
ρ ∈ R we can find the ℓ conflict sets it appears in in O(ℓ) time. We implement all trees
using general balanced trees [4] so that we can perform updates efficiently. A 3D-range tree
uses O(m log2 m) space. Each square in the multiset

⋃
iRi contributes to O(log3 m) nodes

of T , and hence the entire structure uses at most O((m+ z) log3 m) space. We show how to
answer our queries and how to update the data structure:

▶ Lemma 8. Let R be a set of m squares, let z =
∑
|Ri|, and let there be at most k ≤ m

conflict sets. Let each ρ ∈ R appear in at most l conflict sets. There is a data structure
D∗(R) of size O((m+ z) log3 m) that supports:
Insert(ρ) in O(l · log3 m) amortized deterministic time,
Delete(ρ) in O(l · log3 m) amortized deterministic time,
Insert(ρ,Ri) in O(log3 m) amortized deterministic time,
Delete(ρ,Ri) in O(log3 m) amortized deterministic time, and
Query(σ,Ri, C) in O(log3 m) amortized deterministic time.
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Figure 5 (a) Since the center of ρ lies above the center of σ, we can essentially treat ρ as a
rectangle unbounded from the top, and σ as a rectangle unbounded from the bottom. (b) A square
ρ may intersect σ but is not allowed to contain C. (c) The x-extents of the objects map to points
in R2. Squares (whose x-extent) intersects (the x-extent) of σ lie in the blue region, and are not
allowed to lie in the purple region.

Proof. To insert a square ρ ∈ R we use the standard insertion procedure for (dynamic)
3D-range trees; we insert the point pρ into O(log3 m) subtrees. If, one of our subtrees becomes
too unbalanced, we rebuild it from scratch. Rebuilding a dD-range tree on a set P of n points
can be done in O(n logd−1 n) time. However, we also still have to update the mν,i counts for
each ternary subtree Tν and each conflict list. We can do this in O(ln logd n) time as follows.
For each point pρ ∈ P we obtain the at most l conflict sets Ri it appears in, and for each
leaf corresponding to pρ we simply walk upward updating the mν,i counts appropriately. It
follows that the amortized insertion time is O(l log3 m). Deletions are handled similarly in
O(l log3 m) amortized time.

To insert or delete a square ρ in one of the conflict sets Ri we update the mν,i counts in
the O(log3 m) affected nodes (and we insert or delete the appropriate edge in the bipartite
graph). If one of the mν,i counts reaches zero after a deletion, we stop storing it. Any counts
that we do not store explicitly are considered to be zero.

Consider a query with square σ = [ℓσ, rσ]×[bσ, tσ], horizontal segment C = [ℓC , rC ]×{yC},
and conflict set Ri (see also Figure 5). We will argue that there are O(1) axis parallel boxes
Q1, .., QO(1) such that the subset of squares from R that intersect σ but do not contain C is
the subset of points that lies in

⋃
j Qj . Our range tree allows us to obtain O(log3 m) ternary

subtrees Tν that together represent the points in this region (in O(log3 m) time). For each
such subtree we then consider the counts mν and mν,i: if they are equal all points (squares)
in Tν also appear in Ri, and hence there are no candidate points (squares) to be found in Tν .
Otherwise, we have mν > mν,i, and hence Tν does contain a point pρ for which ρ intersects
σ, does not contain C, and for which ρ ̸∈ Ri. Moreover, one of the two children of ν, say
node µ, must then also have mµ > mµ,i. This way we can find pρ in time proportional to
the height of Tν . It follows that the total query time is O(log3 m). All that remains is to
describe the regions Q1, .., QO(1).

Since the center of σ is guaranteed to lie below all centers of squares in R, and yC ≤ bσ,
we can essentially treat all squares as three-sided rectangles. In particular, a square ρ ∈ R
intersects σ if and only if pρ = (bρ, ℓρ, rρ) lies in the query range Q = (−∞, tσ]× (−∞, rσ]×
[ℓσ,∞) (see Figure 5). Using that yc ≤ bσ ≤ (bρ + tρ)/2, we find that C ⊂ ρ if and only if
pρ lies in the range Q′ = (∞, yC ]× (−∞, ℓC ]× [rC ,∞). Hence, ρ intersects σ, but does not
contain C if and only if pρ ∈ Q \Q′. Since both Q and Q′ are orthogonal boxes this region
can be expressed as the union of O(1) orthogonal ranges. ◀
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7 Maximal Bichromatic Matchings

The Maximal Bichromatic Matching data structure (MBM) in [16] relies upon a square
intersection data structure D. Consider a pair of disjoint quadtree cells C1, C2 and two sets
R ⊆ π(C1) and B ⊆ π(C2). The MBM stores two square intersection data structures: D(R)
and D(B), plus a maximal bichromatic matching MRB of the graph G[R ∪B].

Given two such cells C1, C2, they dynamically maintain the matching as follows: For all
edges in MRB, dynamically remove the endpoints from the square intersection structures
storing D(R\MRB) and D(B\MRB). When a new square σ gets inserted into B, query
D(R\MRB) to find a square in R\MRB that intersects σ. If such a square ρ exists, add the
edge (ρ, σ) to the matching MRB . Subsequently delete ρ from D(R\MRB). With a similar
procedure for deletions, one can dynamically maintain MRB in time proportional to the
update and query time of the intersection data structure D.

Defining the sets R and B. The sets R and B must be carefully chosen if we want to
avoid spending quadratic space in n or ψ. Recall the pipeline of Kaplan et al. [16]. For each
storing cell C1, for each C2 ∈ P∗(π(C1)), they store an MBM between the pair (C1, C2). We
know that there may be Θ(ψ2) cells in the set P∗(π(C1)). Suppose that for each pair C1, C2
they set R ← π(C1) and B ← π(C2). Every square in π(C1) may get stored O(ψ2) times
and the total space usage is O(ψ2n). To improve space and time usage, the authors of [16]
instead set R ← {σ ∈ π(C1) | C2 ∈ P∗(σ)} and B ← π(C2), see Figure 6(a). Since each
square σ ∈ π(C1) has O(ψ) cells in its perimeter P∗(σ), each square σ is stored O(ψ) times
and the total space is O(ψ · |π(C1)|). A charging argument then shows that the total space
required is O(ψn). The data structures can be updated in O(ψ) times: the update time of
the intersection data structures D(R\MRB) and D(B\MRB).

Defining an MBM for adaptive ψ. When the aspect ratio is adaptive (or, even when it is
bounded), the approach by Kaplan et al. [16] requires an update time linear in ψn, since,
after increasing ψ, the perimeter P∗(π(σ)) increases in size by O(ψ) for every storing cell C1.
We could try to avoid this issue by replacing their definition of perimeter with ours. That is,
for every cell C1, we would consider the O(ψ2) cells C2 in P(π(C1)). For the pair C1, C2,
we want to maintain an MBM between sets R← {σ ∈ π(C1) | C2 ∈ P(σ)} and B ← π(C2);
by storing R and B each in their separate data structure for square intersection queries.
However, such a structure can also not be efficiently dynamically maintained, see Figure 6(b).
Thus, we must avoid storing the sets R\MRB and B\MRB explicitly in a data structure.

C1

(a) D(R) D(π(C2))(b)

Figure 6 (a) C1 with a blue C2 ∈ P∗(π(C1)). The elements of the set R = {σ ∈ π(C1) | C2 ∈
P∗(σ)} are the green and yellow squares. (b) If we split C2 to create a cell C′, then the corresponding
R′ would consist only of the orange squares. Since there exists no efficient way to split intersection
data structures, constructing the new data structure on R′ takes linear time.
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Applying our data structure problem. We now apply our previous data structure problem.
Let C1 be a storing cell in our quadtree T (S). We maintain the data structure D∗(π(C1))
(i.e. we set R ← π(C1)). Let there be k cells in the perimeter P(π(C1)). Then by Lemma 5,
we have k ∈ O(ψ2). Let Ci be some storing cell in P(π(C1)), we denote by Mi some maximal
matching in the graph G[R ∪B] for R← {γ ∈ π(C1) | Ci ∈ P(γ)} and B ← π(Ci). Denote
by Ri the squares in π(C1) that are part of Mi; we say that Ri is a conflict set. The result
of this transformation are k conflict sets of π(C1). Moreover, each square ρ in π(C1) may
appear in at most l ∈ O(|P(ρ)|) ⊂ O(ψ) conflict sets. We now apply Lemma 8 four times
(one for each direction). We maintain for all C1 this data structure D∗(π(C1)) and show:

▶ Theorem 9. Let S be a set of n squares with adaptive aspect ratio ψ. We can maintain
for pair of storing cells (C1, C2) a maximal bichromatic matching in G[R ∪ π(C2)] with
R← {γ ∈ π(C1) | C2 ∈ P(γ)}. Our solution uses O(n logψ log3 n) space. Inserting/deleting
a square σ requires O(|P(σ)| · log3 n+ log5 n) amortized time.

Proof. We first analyse our space usage and then show how to maintain each matching.

Upper bounding size. For C1, denote by z1 the sum of all Ci, over all edges in the maximal
matching of G[R ∪ π(Ci)] with R ← {γ ∈ π(C1) | C2 ∈ P∗(γ)}. Lemma 8 presents a data
structure with size O((|π(C1)|+z1) log3 |π(C1)|). Denote byM(S) the set of all edges, across
all maximal bichromatic matchings, for all pairs of storing cells (C1, C2). Let M(S) contain
z∗ elements. It follows that all these data structures use at most O((n+ z∗) · log3 n) total
space. We upper bound the number of edges in z∗ by charging each edge to one of their
endpoints. Intuitively, we charge each matched edge to the squares of the smallest quadtree
cell. Every square σ ∈ S receives at most O(logψ) charges and z∗ is upper bound by n logψ.

More formally, we over-estimate the edges in M(S). Fix for every pair (C1, C2) with
C2 ∈ P(π(C1))) an arbitrary maximal bichromatic matching in the graph G[π(C1) ∪ π(C2)]
(i.e., we ignore the fact that we match between sets R ⊆ π(C1) and B ⊆ π(C2), and fix some
potentially larger matching in the bigger graph G[π(C1)∪π(C2)]). Denote for C1 byM≺(C1)
the set of all matchings between C1 and C2 where |C1| ≺ |C2| for ≺ ∈ {<,=, >}. Any edge
e ∈M(S) is inM=(C1)∪M<(C1) for some storing cell C1. First, we upper bound |M=(C1)|.
There are O(1) cells C2 with |C1| = |C2| and C1 ∈ P(π(C2)) or vice versa. For every such
C2, there can be at most O(|π(C1)|) edges in a MBM in G[π(C1) ∪ π(C2)]. Thus, there are
at most O(|π(C1)|) edges in M=(C1). Second, by Lemma 6, there are at most O(logψ) cells
C2 with C1 ∈ P(π(C2)) and |C1| < |C2|. Again, every matching in G[π(C1) ∪ π(C2)] has at
most O(|π(C1)|) edges, thus M<(C1) contains at most O(|π(C1)| · logψ) edges. Now:

z∗ = |M(S)| ≤
∑

storing cell C1

|M=(C1)|+ |M<(C1)| ≤
∑

storing cell C1

|π(C1)| · logψ ≤ n logψ

It follows we use at most O((n+ z∗) · log3 n) ⊂ O(n logψ log3 n)) space.

Maintaining the MBM. Suppose that we delete a square σ from S (this is the more
difficult case). We can find its storing cell Cσ in O(logn) time using standard quadtree
navigation. We obtain D∗(π(Cσ)) with its k ∈ O(ψ2) conflict sets. Recall that σ appears in
at most l ∈ O(|P(σ)|) conflict sets. By Lemma 8, we may remove σ from the data structure
D∗(π(Cσ)) in O(l log2 n) ⊆ O(|P(σ)| · log2 n) amortized time. What remains is to update
all the matchings. We recall that we maintain a matching between (Cσ, C2) in two cases:
either the cell C2 ∈ P(π(Cσ)) or Cσ ∈ P(π(C2)). There are at most O(|P(π(Cσ))|) cells of
the first case, and O(logψ) cells of the second case. By Theorem 7, we may obtain all such
cells in O(log5 n+ |P(σ)|) time.
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Processing a cell C2. Fix a cell C2 with a corresponding conflict set R2 in D∗(π(Cσ)). We
test if σ was an endpoint of the matching (σ, ρ) by searching over the conflict set R2. If so,
then we delete σ from the conflict set R2. What remains is to try and rematch ρ.

Thus, we want to find a square in R = {γ ∈ π(σ) | C2 ∈ P(γ)}, that is not already in the
conflict set R2 (i.e. not already in the matching between G[R ∪B]). Denote by K the cell
Cσ scaled by a factor 5 around its center and by K the bottom facet of K. We claim that ρ
can be matched to a square in R if and only if Query(ρ,R2,K) from Lemma 8 is not empty.

Indeed, for any γ ∈ π(Cσ) that intersects ρ and contains K, must contain K. By definition,
C2 ̸∈ P(γ) and thus γ ̸∈ R. For any γ ∈ π(Cσ) that intersects ρ where γ ∈ R2, by definition
γ ̸∈ R\MRB . For any γ ∈ π(Cσ) that does not intersect ρ, there is no edge between γ and ρ
in G[R ∪B]. It follows that with one query we may rematch ρ in O(log3 n) amortized time.

Since there are at most O(|P(σ)| + logψ) cells C2 to consider, we can maintain every
MBM in O(|P(σ)| · log3 n+ log5 n) time. ◀

8 Dynamic connectivity in square intersection graphs

Having formally introduced and analysed every component, we can now fully state what our
data structure maintains. For an illustration, we refer back to Figure 2. We store a data
structure that uses at most O(n log3 n logψ) space:
(1) We store S in a quadtree T (S).

This quadtree contains for each cell σ ∈ S the neighborhood N (σ). Additionally, we
maintain all C ∈ C(S) with O(|C(σ)| · log4 n+ log6 n) amortized time (Thm 7).
This quadtree requires O(n logψ) space (Thm 7).

(2) We augment our quadtree with a Marked-Ancestor Tree (MAT).
We mark each cell C ∈ C(S) in the MAT (Thm 7).

(3) For any storing cell C, we define a conflict set Ri for all cells Ci ∈ P(π(C)). We store
π(C) with the conflict sets in our square intersection data structure D∗(π(C)).

Let z∗ =
∑
C

∑
i |Ri|, the total space required is O((n+ z∗) log3 n) (Lem 8).

By the proof of Theorem 9, z∗ ∈ O(n logψ) so we use O(n logψ log3 n) total space.
(4) For each storing cell C1 and each C2 ∈ P(π(C1)), we store a Maximal Bichromatic

Matching (MBM) in G[R ∪B].
We set R as the set of squares in C1 that have C2 in their perimeter (R ← {γ ∈
π(C1) | C2 ∈ P(γ)} and B ← π(C2).
Updates in S require O(|P(σ)| · log3 n+ log5 n) amortized time (Thm 9).

(5) Finally, for any pair (C1, C2), if their MBM is not empty, we store an edge between them.
We maintain the resulting “proxy graph” in the HLT data structure [14].
Inserting or deleting a square σ introduces at most O(|P(σ)|+ logψ) new edges.

We finally show that this data structure implies the following:

▶ Theorem 10. Let S be a set of squares with adaptive aspect ratio ψ. We can store S in
a dynamic data structure of size O(n log3 n logψ) with O((|C(σ)| + |P(σ)|) log4 n + log6 n)
amortized deterministic update time such that for any pair of squares (σ, ρ) we can query for
the connectivity between σ and ρ in O(logn/ log logn) time.

Proof. Our pipeline functions identical to the pipeline of [16]. Given σ, we obtain a pointer to
its storing cell Cσ in O(1) time. We then query the marked-ancestor tree in O(logn/ log logn)
time to find the largest ancestor Cα of Cσ that is marked. The cell Cα is marked by at least
one squares γ that contains Cα in its interior. We obtain a pointer to γ and its storing cell
C∗ in O(1) time. We note that if there is also some squares γ′ that marked Cα, we may
arbitrarily get a pointer to either γ or γ′. Doing the same procedure for ρ gives a cell R∗. We
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test whether C∗ and R∗ are connected in the proxy graph O(logn/ log logn) time. We now
claim that these two cells are connected in the proxy graph if and only if (ρ, σ) are connected.
The key observation to prove this claim is that, if we were to rescale the plane, our graph
contains the proxy graph maintained by Kaplan et al. [16] as a subgraph. Indeed at the time
of a query, ψ is fixed. Thus, we may rescale the plane such that every square has a diameter
in [ 1

ψ , 1]. Let H(S) be the quadtree of [16], then T (S) ⊂ H(S). Kaplan et al. maintain for
every pair (C1, C2) with C2 ∈ P∗(π(C1)) an Maximal Bichromatic Matching in the graph
G[R′ ∪B′] for R′ ← {γ ∈ π(C1) | C2 ∈ P∗(γ)} and B′ ← π(C2). For each nonempty MBM
between a pair (C1, C2), they store an edge in the proxy graph.

Note that if the MBM is nonempty, then both C1 and C2 are storing cells. It follows
that C2 ∈ P(π(C1)); and that R′ = R. Thus, we store for each non-empty MBM a maximal
bichromatic matching in the graph G[R ∪B] = G[R′ ∪B′] as in [16]. This implies that after
rescaling, whenever there exists an edge in the proxy graph of [16], there exists an edge in
our data structure. Thus, we may immediately apply the proof of Theorem 4.3 in [16] to
conclude that (σ, ρ) are connected if and only if (C∗, R∗) are. ◀
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Abstract
Analyzing refutations of the well known pebbling formulas Peb(G) we prove some new strong
connections between pebble games and algebraic proof system, showing that there is a parallelism
between the reversible, black and black-white pebbling games on one side, and the three algebraic
proof systems Nullstellensatz, Monomial Calculus and Polynomial Calculus on the other side. In
particular we prove that for any DAG G with a single sink, if there is a Monomial Calculus refutation
for Peb(G) having simultaneously degree s and size t then there is a black pebbling strategy on G

with space s and time t + s. Also if there is a black pebbling strategy for G with space s and time
t it is possible to extract from it a MC refutation for Peb(G) having simultaneously degree s and
size ts. These results are analogous to those proven in [14] for the case of reversible pebbling and
Nullstellensatz. Using them we prove degree separations between NS, MC and PC, as well as strong
degree-size tradeoffs for MC.

We also notice that for any directed acyclic graph G the space needed in a pebbling strategy
on G, for the three versions of the game, reversible, black and black-white, exactly matches the
variable space complexity of a refutation of the corresponding pebbling formula Peb(G) in each
of the algebraic proof systems NS, MC and PC. Using known pebbling bounds on graphs, this
connection implies separations between the corresponding variable space measures.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Complexity theory and logic; Mathematics of computing → Graph theory

Keywords and phrases Proof Complexity, Algebraic Proof Systems, Pebble Games

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.64

1 Introduction

The use of pebble games in complexity theory goes back many decades. They offer a very
clean tool to analyze certain complexity measures, mainly space and time, in an isolated
way on a graph, which can then be translated to specific computational models. Very good
overviews of these results can be found in [26, 28, 23].

We consider several versions of the game, defined formally in the preliminaries. Intuitively,
the goal of these games is to measure the minimum number of pebbles needed by a single
player in order to place a pebble on the sink of a directed acyclic graph (DAG) following
certain rules (this is called the pebbling price). A black pebble can only be placed on a
vertex if it is a source or if all its direct predecessors already have a pebble on them, but
these pebbles can be removed at any time. A white pebble (modelling non-determinism) can
be placed on any vertex at any time but can only be removed if all its direct predecessors
contain a pebble. In the reversible pebble game, pebbles can only be placed or removed from
a vertex if all the direct predecessors of the vertex contain a pebble. These three games
define a short hierarchy being reversible pebbling weaker than black pebbling and this in
turn weaker than the black-white pebble game.

In proof complexity one tries to understand the resources needed for a proof of a
mathematical statement in a formalized system. Pebbling games have also become one of the
most useful tools for proving results in this area. The reason for this is that one can often
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translate a certain measure for the pebbling game, mainly number of pebbles or pebbling
time, into a suitable complexity measure for a concrete proof system. Very often the bounds
for this measure in a graph translate accurately to bounds in the different proof systems
for a certain kind of contradictory formulas mimicking the game, called pebbling formulas.
These formulas were introduced in [6] and have been extremely useful for proving separations,
upper and lower bounds as well as tradeoff results in basically all studied proof systems. See
e.g. [22].

In the present paper we will concentrate on algebraic proof system. In these systems
formulas are encoded as sets of polynomials over a field and the question of whether a
formula is unsatisfiable is translated to the question of whether the polynomials have a
common root. Powerful algebraic tools like the Gröbner Basis Algorithm can be used for
this purpose. Several algebraic proof systems have been introduced in the literature (defined
formally bellow). Well known are Nullstellensatz (NS) introduced in [3] and the more
powerful Polynomial Calculus (PC) defined in [11]. The first one is usually considered as a
static system in which a “one-shot” proof has to be produced, while in PC there are certain
derivation rules like in a more standard proof system.

The best studied complexity measures for refutations in these systems are the degree
(maximum degree of a polynomial) and size (number of monomials counted with repetitions).
For studying the connections with the pebble games it is very useful to consider also space
measures and the configurational refutations associated with space. We will use the variable
space measure (number of variables that are simultaneously active in a refutation).

In [8] the Monomial Calculus system (MC) was identified. This system is defined by
limiting the multiplication rule in PC to monomials and its power lies between NS and PC.
Building on results from [2] for the Sherali-Adams proof system, the authors proved that for
any pair of non-isomorphic graphs, the MC degree for the refutation of the corresponding
isomorphism formulas exactly corresponds to the Weisfeiler-Leman bound for separating the
graphs, a very important tool in graph theory and descriptive complexity. This equivalence
(as well as the relations to pebbling shown here) motivates the study of Monomial Calculus
as a natural proof system between NC and PC.

As mentioned above, connections between pebbling games and algebraic systems have
been known. Already in [9] it was proved that for any directed acyclic graph (DAG) G

the corresponding pebbling formula Peb(G) can be refuted with constant degree in PC but
in NS it requires degree Ω(s), where s is the black pebbling price of G, Black(G). Using
pebbling results, this automatically proves a strong degree separation between NS and PC.
As a more recent example, the authors in [14] proved a very tight connection between NS
and the reversible pebbling game. They showed that space and time in the game played
on a DAG exactly correspond to the degree and size measures in a NS refutation of the
corresponding pebbling formula. From this connection strong degree-size tradeoffs for NS
follow. This result also improves degree separation from [9] since it is known that there are
graphs for which the reversible pebbling price is a logarithmic factor larger than the black
pebbling price.

We show in this paper that besides these results, there are further parallelisms between
the reversible, black and black-white game hierarchy on one side, and the NS, MC and PC
proof systems on the other side.

1.1 Our Results
In Section 3 we prove that very similar results to those given in [14] for NS and reversible
pebbling are also true for the case of MC and black pebbling. More concretely we show in
Theorem 13 that for any DAG G with a single sink, if there is a MC refutation for Peb(G)
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having simultaneously degree s and size t then there is a black pebbling strategy on G with
space s and time t + s. This is done by proving that any Horn formula has a very especial
kind of MC refutation, which we call input monomial refutation since it is the same concept
as an input refutation in Resolution. Horn formulas constitute an important class with
applications in many areas like program verification or logic programming. It is well known
that input Resolution is complete for Horn formulas.

For the other direction, we show in Theorem 8 that from a black pebbling strategy
for G with space s and time t it is possible to extract a MC refutation for Peb(G) having
simultaneously degree s and size ts. The small loss in the time parameter compared to
the results in [14] comes from the fact that size complexity is measured in slightly different
ways in NS and MC. Using these results we are able to show degree separations between
NS and MC as well as the first strong degree separations between MC and PC. We also use
the simultaneous relation with time and space in the black pebbling game to obtain strong
degree-size tradeoffs for MC in the same spirit as those in [14]. The results also show that
strong degree lower bounds for MC refutations do not imply exponential size lower bounds
as it happens in the PC proof system [19].

The degrees of the refutation for pebbling formulas in NS and MS correspond exactly
to the space in reversible and black games respectively. It would be very nice if the same
could be said about PC degree and space in the black-white game. Unfortunately this is not
the case since as mentioned above, it was proven in [9] that for any DAG the corresponding
pebbling formula can be refuted within constant PC degree. We notice however that if instead
of the degree we consider the complexity measure of variable space, then the connection still
holds. We notice that for for any single sink DAG G the variable space complexity of refuting
Peb(G) in each of the algebraic proof systems NS, MC and PC is exactly the space needed
in a strategy for pebbling G in each of the three versions Reversible, Black and Black-White
of the pebble game. These results allow us to apply known separations between the pebbling
space needed in the different versions of the the game, in order to obtain separations in the
variable space measure between the different proof systems.

2 Preliminaries

2.1 Pebble Games
Black pebbling was first mentioned implicitly in [24], while black-white pebbling was intro-
duced in [12]. Note, that there exist several variants of the (black-white) pebble game in
the literature. For differences between these variants, we refer to [23]. For the following
definitions, let G = (V, E) be a DAG with a unique sink vertex z.

▶ Definition 1 (Black and black-white pebble games). The black-white pebble game on G is
the following one-player game: At any time i of the game, there is a pebble configuration
Pi := (Bi, Wi), where Bi ∩ Wi = ∅ and Bi ⊆ V is the set of black pebbles and Wi ⊆ V is the
set of white pebbles, respectively. A pebble configuration Pi−1 = (Bi−1, Wi−1) can be changed
to Pi = (Bi, Wi) by applying exactly one of the following rules:
Black pebble placement on v: If all direct predecessors of an empty vertex v have pebbles

on them, a black pebble may be placed on v. More formally, letting Bi = Bi−1 ∪ {v} and
Wi = Wi−1 is allowed if v ̸∈ Bi−1 ∪ Wi−1 and predG(v) ⊆ Bi−1 ∪ Wi−1. In particular, a
black pebble can always be placed on an empty source vertex s, since predG(s) = ∅.

Black pebble removal from v: A black pebble may be removed from any vertex at any time.
Formally, if v ∈ Bi−1, then we can set Bi = Bi−1 \ {v} and Wi = Wi−1.

MFCS 2024
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White pebble placement on v: A white pebble may be placed on any empty vertex at any
time. Formally, if v ̸∈ Bi−1 ∪ Wi−1, then we can set Bi = Bi−1 and Wi = Wi−1 ∪ {v}.

White pebble removal from v: If all direct predecessors of a white-pebbled vertex v have
pebbles on them, the white pebble on v may be removed. Formally, letting Bi = Bi−1 and
Wi = Wi−1 \ {v} is allowed if v ∈ Wi−1 and predG(v) ⊆ Bi−1 ∪ Wi−1. In particular, a
white pebble can always be removed from a source vertex.

A black-white pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such
that P0 = Pt = (∅, ∅), for some i ≤ t, z ∈ Bi ∪ Wi, and for all i ∈ [t] it holds that Pi can be
obtained from Pi−1 by applying exactly one of the above-stated rules.

A black pebbling is a pebbling where Wi = ∅ for all i ∈ [t]. Observe that w.l.o.g. we can
always assume that Bt−1 = {z}. For convenience we will also use the dual notion of white
pebbling game. A white (only) pebbling is a pebbling where Bi = ∅ for all i ∈ [t]. Notice
that P = (P0,P1, . . . ,Pt) is a black pebbling of G if and only if P ′ = (P′

t, . . . ,P′
0) is a white

pebbling of G, where each configuration P′
i contains the same set of pebbled vertices as in Pi,

but with white pebbles instead of black pebbles. In a white pebbling we can always suppose
that W1 = {z}.

▶ Definition 2 (Pebbling time, space, and price). The time of a pebbling P = (P0,P1, . . . ,Pt)
is time(P) := t and the space of it is space(P) := maxi∈[t] |Bi ∪ Wi|. The black-white
pebbling price (also known as the pebbling measure or pebbling number) of G, which we
will denote by BW(G), is the minimum space of any black-white pebbling of G. The black
pebbling price of G, denoted by Black(G), is the minimum space of any black pebbling of G.
By the observation above, the white pebbling price White(G) coincides with Black(G)

Finally, we mention the reversible pebble game introduced in [7]. In the reversible pebble
game, the moves performed in reverse order should also constitute a legal black pebbling,
which means that the rules for pebble placements and removals have to become symmetric.
This implies that reversible pebbling is a restricted version of black pebbling. The notions of
reversible pebbling time, space, and price are defined as in the other pebbling variants.

2.2 Formulas and Polynomials
We will only consider propositional formulas in conjunctive normal form (CNF). Such a
formula is a conjunction of clauses and a clause is a disjunction of literals. A literal is a
variable or its negation. For a formula F , Var(F ) denotes the set of its variables.

A Horn formula in a special type of CNF formula in which each clause has at most
one positive literal. For a more detailed treatment of formulas as well as the well known
Resolution proof system we refer the interested reader to some of the introductory texts in
the area like [29]. We will basically only deal with pebbling formulas. These provide the
connection between pebbling games and proof complexity.

▶ Definition 3 (Pebbling formulas). Let G = (V, E) be a DAG with a set of sources S ⊆ V

and a unique sink z. We identify every vertex v ∈ V with a Boolean variable xv. For a
vertex v ∈ V we denote by pred(v) the set of its direct predecessors. In particular, for a
source vertex v, pred(v) = ∅. The pebbling contradiction over G, denoted Peb(G), is the
conjunction of the following clauses:

for all vertices v, the clause
∨

u∈pred(v) x̄u ∨ xv, (pebbling axioms)
for the unique sink z, the unit clause x̄z. (sink axiom)

Observe that every clause in a pebbling formulas has at most one positive literal. These
formulas are therefore Horn formulas.
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A way to prove that a CNF formula is unsatisfiable is by translating it into a set of
polynomials over a field F and then show that these polynomials do not have any common
{0, 1}-valued root. A clause C =

∨
x∈P x ∨

∨
y∈N ȳ can be encoded as the polynomial

p(C) =
∏

x∈P (1 − x)
∏

y∈N y. A set of clauses C1, . . . , Cm is translated as set of polynomials
p(C1), . . . , p(Cm). Adding the polynomials x2

i − xi (as axioms) for each variable xi, there
is no common {0, 1}-valued root for all these polynomials if and only if the original set of
clauses is unsatisfiable. The intuition here is to identify false with 1 and true with 0. A
monomial is falsified by a Boolean assignment if all its variables get value 1, while it is
satisfied if one of its variables gets value 0. In this context we will consider a monomial m as
a set of variables and a polynomial p as a linear combination of monomials. A monomial
with its coefficient in F is called a monomial term.

When encoding the pebbling formulas as polynomials, for a set U ⊆ V , we denote by
mU the monomial

∏
u∈U xu. For U = ∅, mU = 1. For every vertex v ∈ V the axiom∨

u∈pred(v) x̄u ∨ xv becomes the polynomial Av := mpred(v)(1 − xv), and the sink axiom x̄z is
transformed into the polynomial Asink := xz. Observe that every polynomial in the encoding
of a pebbling formula has one or two monomials.

To avoid confusion we will denote the polynomial encoding of a CNF formula F by PF .

2.3 Algebraic Proof Systems
Several proof systems that work with polynomials have been defined in the literature. The
simplest one is Nullstellensatz, NS.

▶ Definition 4. A Nullstellensatz refutation of the set of polynomials p1, . . . , pm in
F[x1, . . . , xn] consists of a set of polynomials g1, ..., gm, h1, . . . , hn such that∑

j=1,...,m

pjgj +
∑

i=1,...,n

hi(x2
i − xi) = 1.

As a consequence of Hilbert’s Nullstellensatz, the NS proof systems is sound and complete
for the set of encodings of unsatisfiable CNF formulas.

A stronger more dynamic algebraic refutational calculus also dealing with polynomials is
the Polynomial Calculus (PC). As in the case of Nullstellensatz, PC is intended to prove the
unsolvability of a set of polynomial equations.

▶ Definition 5. The PC proof system uses the following rules:
1. Linear combination

p q

αp + βq
α, β ∈ F.

2. Multiplication
p

xip
i ∈ [n].

A refutation in PC of an initial unsolvable set of polynomials P is a sequence of polynomials
{q1, . . . , qm} such that each qi is either a polynomial in P, a Boolean axiom x2

i − xi or it is
obtained by previous polynomials in the sequence applying one of the rules of the calculus.

A less known algebraic proof system between NS and PC is Monomial Calculus, MC. This
system was introduced in [8] identifying exactly the complexity of refuting graph isomorphism
formulas. This proof system is defined like PC but the multiplication rule is only allowed to
be applied to a monomial, or to a monomial times an axiom.
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▶ Definition 6. The MC proof system uses the following rules:
1. Linear combination

p q

αp + βq
α, β ∈ F.

2. Multiplication

p

xip
i ∈ [n], p is a monomial or the product of a monomial and an axiom.

As is the case of PC, a refutation in MC of an initial unsolvable set of polynomials P is a
sequence of polynomials {q1, . . . , qm} where each one of them is either in P, an axiom or is
obtained by applying one of the rules of the calculus.

As pointed out in [8], an equivalent definition of the Nullstellensatz system, but a dynamic
one, would be to restrict the multiplication rule in the above definition even more, and
only allow to apply it to polynomials that are a monomial multiplied by an axiom. In this
way, the difference in the definition of the three systems NS, MC and PC is just a variation
on how the multiplication rule can be applied. This alternative view of the definition also
allows to consider configurational proofs in the NS system. In order to analyze and compare
refutations we will consider several complexity measures on them.

▶ Definition 7 (Complexity measures). Let C be one of the mentioned systems C ∈
{NS, MC, PC} Let π = {q1, . . . , qm} be a C refutation. The degree of a polynomial qi, deg(qi)
is the maximum degree of its monomials and the degree of π, degC(π) = maxi=1,...,n(deg(qi)).
The size of π, denoted by SizeC(π) is the total number of monomials in π (counted with
repetitions), when all polynomials pi are fully expanded as linear combinations of monomials1.

For the space measures we need to define configurational proofs. Such a proof π in the
system C is a sequence of configurations π = C0, . . . Ct in which each Ci is a set of polynomials
with C0 = ∅ and Ct = 1. Each configuration Ci represents a set of polynomials that are kept
simultaneously in memory at time i in the refutation, and for each i, 0 < i ≤ t, Ci is either

Ci−1 ∪ {p} for some axiom p (axiom download),
Ci−1 \ {p} (erasure) or
Ci−1 ∪ {p} for some p inferred by the rules of C by some rule of the system (inference).

The variable space of the proof π, VSpaceC(π) is defined as the maximum number of
different variables appearing in any configuration of the proof.

For any of the defined complexity measures Comp and proof systems C, and for every
unsatisfiable set of polynomials PF we denote by CompC(PF ⊢) the minimum over all C
refutations of PF of CompC(π).

It is often convenient to consider a multilinear setting in which the multiplications in
the mentioned algebraic systems are implicitly multilinearized. Clearly the degree and size
measures can only decrease in this setting.

1 Usually the size in the NS proof system is defined in a different way, for simplicity we keep this unifying
definition although in some of the referenced results the size of NS refutations corresponds to the size
definition given in the reference.
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3 Monomial Calculus and pebbling formulas

In [14] it was shown that for any DAG G with a single sink, the reversible pebbling space
and time of G, exactly coincides with the degree and the size of a NS refutation of PebG. We
show that a very similar relation holds for the case of black pebbling and Monomial Calculus.

▶ Theorem 8. Let G be a directed acyclic graph with a single sink z. If there is a black
pebbling strategy of G with time t and space s then there is a MC refutation of PebG with
degree s and size ts. The variable space of this refutation coincides with its degree.

Proof. It is convenient to consider here the equivalent notion of white pebbling. Let
P = (P0, . . . ,Pt) be a white pebbling strategy for G with P1 = {z} and Pt = ∅ using s

pebbles. We show that for each pebbling configuration Pi, i ∈ [t], Pi = {vi1 , . . . , viki
} the

monomial mi =
∏

v∈Pi
xv can be derived from PebG and mi−1 in degree s and size 1 if Pi

adds a pebble, or size 2s − 1 if Pi removes a pebble. This proves the result since in the t steps
of the pebbling strategy half of the steps add a pebble and the other half of the steps remove
a pebble (each added pebble has to be removed). The total number of steps is therefore
t
2 + t

2 (2s − 1) = ts.

Pebble placement. If the configuration at pebbling step i+1 is reached after placing a white
pebble on vertex v and Pi = {ui1 , . . . , uiki

} with ki ≤ s − 1 then Pi+1 = {v, ui1 , . . . , uiki
}.

Multiplying the monomial mi =
∏

u∈Pi
xu by the variable xv we obtain mi+1. We have just

added one more monomial of degree at most s to the proof.

Pebble removal. If the configuration at pebbling step i + 1 is reached after removing a
white pebble from vertex v and Pi = {v, ui1 , . . . , uiki

} with ki ≤ s − 1 then all predecessors
of v are in the set {ui1 , . . . , uiki

}. For the derivation of mi+1 we can multiply the axiom
(1 − xv)

∏
u∈pred(v) xu by the variables in Var(mi) \ (

⋃
u∈pred(v) xu ∪ {xv}), and add this

polynomial to mi obtaining mi+1. Since there are at most s − 1 variables in Var(mi) \
(
⋃

u∈pred(v) xu ∪ {xv}), the number of intermediate monomials added to the proof (counting
also monomial mi+1) is at most 2(s − 1) + 1 = 2s − 1.

Observe that in all the steps in the refutation, at most two different monomials are active
and the number of different variables in these monomials coincides with the largest of their
degrees. This shows that the variable space of the MC refutation is also bounded by s. ◀

▶ Observation 9. The size bound ts in the above proof comes from the way the MC rules
are defined. As is the case of PC, in the multiplication rule only one variable at at time is
multiplied, even when multiplying the axiom polynomials. When an axiom is multiplied by a
monomial with several variables, all the intermediate polynomials contribute to the size of the
MC refutation. This is different from the the usual way to measure the size in the NS case,
where intermediate monomials are not counted. If we would define the MC rules as those in
NS, that is, if a whole monomial could be multiplied by an axiom in one step, the size of the
MC proof would be would avoid the s factor in the monomial size and obtain size 2t instead.

In order to prove a result in the other direction we consider a very restricted kind of
refutation in MC, similar to what is known as an input refutation in Resolution. It this kind
of refutation in every Resolution step one of the parent clauses must be an axiom. Input
Resolution is not complete, but it is complete for Horn formulas. We will show that the
same is true for MC input refutations.

▶ Definition 10. A MC refutation π of a contradictory set of polynomials F is called an
input refutation if there is a sequence of monomials M0, . . . , Mt such that M0 is the product
of a monomial and an axiom, Mt = 1 and for each i Mi is obtained by multiplying Mi−1
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times a variable, or by the linear combination rule from Mi−1 and a monomial multiplied by
an axiom polynomial. We will call the sequence of monomials M0, . . . , Mt the backbone of
the proof.

▶ Lemma 11. Let F be an unsatisfiable Horn formula and let PF be the encoding of F as a
set of polynomials. Let π be any MC refutation of PF . There is an input MC refutation π′

of PF with at most the same size and degree as π.

Proof. Let d and t be the degree and size of π. We can suppose that π is multilinear. We
prove the result by induction on k, the number of times the multiplication rule is applied
to a monomial derived in π. In the base case k = 0, π is just a NS refutation of PF . This
means that there is a linear combination of a set of polynomials S that adds up to 1. Each
of these polynomials has the form of a polynomial axiom multiplied by a monomial and
since F is a Horn formula, each polynomial in S has either one or two monomials. We
will represent such a polynomial p = αmm + αm′m′ by the pair of monomials (m, m′). In
all these polynomials the monomial terms have some coefficients αm and αm′ . Clauses
without positive literals are encoded as single monomials. Some polynomial in S has a single
monomial otherwise the whole set S would have a common root by setting all variables to 1.
Moreover, there has to be a sequence of polynomials p1, . . . , pℓ represented by the monomials
(∅, m1), (m1, m2), (m2, m3) . . . , (mℓ−1, m) 2. This is because the linear combination adds up
to 1 and for this to happen, there has to be a polynomial (∅, m1) in the linear combination
since otherwise all monomials would have variables. Also the monomial m1 in (∅, m1) has
to be cancelled and there has to be some other polynomial of the form (m1, m2) and so
on. It must also hold that some polynomial in the sequence must have the form (mℓ−1, m)
that can cancel with one of the polynomials with a single monomial m in S. We suppose
that p1, . . . , pℓ is a minimal sequence with these properties. Now we can define the input
monomial refutation π starting at M0 = m and applying then ℓ linear combinations with
axioms multiplied by monomials and deriving all the monomials mℓ, . . . , m1 until 1 is derived.
Observe that the monomials M0, . . . Mt are exactly those appearing in p1, . . . , pℓ. By the
minimality of the sequence we also know that the monomials in the backbone are all different.

All the monomials in π′ belong also to π, therefore the degree of the new refutation is not
larger than that in π. In fact all the polynomials in p1, . . . , pℓ are already in π. Besides these
polynomials π′ contains also the ℓ new monomials in the backbone. Since the p1, . . . , pℓ and
m belong to π and in each linear combination of two polynomials at most one monomial
vanishes, there are at least ℓ intermediate polynomials in π until 1 is reached. This means
that the size of π′ is bounded by t.

For the case k > 0 let m′ be the first monomial in the proof that is the result of a
multiplication from a derived monomial m and a variable x, m′ = xm in π. The same
argument as above shows that there is a sequence of polynomials p1, . . . , pℓ, m̂ in π from
which we can extract an input monomial refutation that starts at M0 = m̂ and derives at
some point Mi = m. In the next step the multiplication rule is applied to obtain Mi+1 = m′.

Observe that the set of polynomials m′ ∪ PF still has the Horn property and that there is
sub-proof of π that refutes this set to the monomial 1 applying the multiplication rule at
most k − 1 times. By induction hypothesis we know that there is a sequence of polynomials
p′

1, . . . , p′
ℓ′ in π represented by the monomials (∅, m′

1), (m′
1, m′

2), . . . , (m′
r, m′) from which an

input refutation of PF ∪m′ can be extracted. We can put together both input MC refutations
M0 . . . Mi and Mi+1, . . . , 1. Again we can assume that all the monomials in the backbone

2 Since we are representing monomials by their set of variables, the monomial 1 is represented by ∅
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are different since if Mi = Mj for i < j, we could shorten π′ by connecting Mi with Mj+1.
By the same argument as in the base case the size and degree of the input MC refutation
cannot be larger than that of π. ◀

Since pebbling formulas are Horn formulas we immediately obtain:

▶ Corollary 12. Let G be a directed acyclic graph with a single sink vertex z and let π be a
MC refutation of Peb(G). There is an input MC refutation π′ of Peb(G) with at most the
same size and degree as π.

We consider next a result in the other direction.

▶ Theorem 13. Let G be a directed acyclic graph with a single sink. Let π be a MC refutation
of Peb(G) with degree s and size t. There is a black pebbling strategy with s pebbles and time
t + s.

Proof. Because of Corollary 12 we can suppose that there exits an input MC refutation with
monomials M0, . . . Mt starting with M1 = mxsink for some monomial m and with Mt = 1.
We describe a strategy for a white pebbling of G following π. At each step i only the vertices
corresponding to variables in Mi have a pebble on them. In a multiplication step a new
pebble is added, which is always possible in a white pebbling strategy. We only have to show
that in case variables disappear when going from Mi to Mi+1, this is a correct pebbling
move. But in this case, the step from i to i + 1 is a linear combination of Mi with the axiom
for some vertex v, mpred(v)(1 − xv) multiplied by some monomial m. The only variable that
can disappear in Mi+1 is xv and in this case Mi = mpred(v)xv. Therefore all the vertices
in pred(v) have pebbles on them and the pebble in xv can be removed. At the end of the
refutation, when the 1 monomial is reached there are no pebbles left on G. The number of
pebbles present at any moment is the number of variables in any of the monomials and this
is the degree of π. The number of pebbling steps needed is at most d steps to place a pebble
in each variable of M1 = mxsink and then t more pebbling steps. ◀

▶ Observation 14. For the case of Polynomial Calculus it is known that strong degree lower
bounds imply size lower bounds. If a set of unsatisfiable polynomials PF with n variables and
constant degree requires PC refutations of degree s, then any PC refutation of PF requires
size at least 2Ω( d2

n ) [19]. The previous results show that this does not hold for Monomial
Calculus. This follows from the fact that there are graph families {Gn}∞

n=0 with n vertices
and constant in-degree that require black pebbling space Ω( n

log n ) [25]. Theorem 13 implies
that the pebbling formulas for this graph family needs degree Ω( n

log n ). On the other hand, for
every single-sink DAG with n vertices there is a trivial black pebbling strategy using space n

and pebbling time 2n. By Theorem 8 this implies that the pebbling formulas corresponding
to the graphs in {Gn}∞

n=0 have MC refutations of quadratic size in n. This is a family of
formulas with MC refutation degree Ω( n

log n ) but having quadratic size refutations, a very
different situation from the PC case.

3.1 Degree separations
The given relationships between MC and the black pebbling game allow for the immediate
translation of pebbling results to Monomial Calculus. We start with some degree separations
between MC and PC. The original motivation for introducing MC was the close connection
between the degree complexity of the refutation of the graph isomorphism formulas in
this proof system, and the Weisfeiler-Leman hierarchy [8]. Formulas corresponding to non-
isomorphic graphs pairs that can only be distinguished using a large level of the WL algorithm,
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require a MC refutation with large degree. It was proven later in [1, 15], that the degree of a
PC refutation of the isomorphism formulas cannot be much smaller than in the MC case,
in fact the degrees of a MC and a PC refutation can only be a constant factor apart. We
improve this separation and obtain an almost optimal degree separations by considering the
pebbling formulas. In [9] it was shown that pebbling formulas have constant PC degree and
that for any directed acyclic graph G with black pebbling price B(G), the formula Peb(G)
requires NS refutations with degree Ω(B(G)). Since it is known that there are graph families
{Gn}∞

n=0 with Θ(n) vertices and B(Gn) = Ω( n
log n ) [25], this implies a degree separation of

Ω( n
log n ) between PC and NS. From Theorem 13 follows that this is in fact a degree separation

between MC and PC.

▶ Theorem 15. There is an unsatisfiable family of formulas {Fn}∞
n=0 with Θ(n) variables

each, that have PC refutations of constant degree but require MC refutations of degree Ω( n
log n ).

For the case of NS, from Theorem 8 and the equivalence between reversible pebbling
price and NS degree from [13], [14], follows that a separation between reversible and black
pebbling price for a graph family implies a degree separation between NS and MC for the
corresponding pebbling formulas. For example it is known that a directed path graphs with n

vertices can be black pebbled with 2 pebbles but requires reversible pebbling number ⌈log n⌉
[7]. Translated to pebbling formulas this means:

▶ Theorem 16. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Θ(n) variables

each, that have MC refutations of degree 2 but require NS refutations of degree ⌈log n⌉.

There are other graph families for which a separation between the black and reversible
pebbling prices by a logarithmic factor in the number of vertices is known, [10],[30]. The
separations in pebbling for these graphs is translated into the next result.

▶ Theorem 17. For any function s(n) = O(n1/2−ϵ) for constant 0 < ϵ < 1
2 there is a family

of unsatisfiable formulas {Fn}∞
n=0 with Θ(n) variables each, that have MC refutations of

degree O(s(n)) but require NS refutations of degree Ω(s(n) log n).

The question of whether the separation between reversible and black pebbling space can
be larger than a logarithmic factor in the number of nodes is open. The best known degree
separation between NS and and MC is slightly better. This was obtained in [16] with very
different methods. Using a classic result from descriptive complexity [18], the authors show
that for for every constant c ≥ 1 there are families of formulas Fn with O(n) variables that
have a degree 3 MC refutation but require NS degree at least logc(n). It is also open whether
this degree separation between NS and MC is optimal.

3.2 Size-degree tradeoffs for MC
The close connections between black pebbling space and monomial calculus expressed in
Theorems 8,13 make it possible to translate space-time tradeoffs for pebbling into degree-size
tradeoffs for MC. There is a slight loss of the time parameter that comes from the extra space
factor in the the MC refutation from Theorem 8. We present two such results as examples.
The first one is an extreme tradeoff result that shows how decreasing the degree by one can
make the size increase exponentially.

▶ Theorem 18 ([28]). There is a family of directed graphs {Gn}∞
n=0 having Θ(n2) vertices

each and with Black(Gn) = Θ(n) for which any black pebbling strategy with Black(Gn) pebbles
requires at least 2Ω(n log n) steps while there is a pebbling strategy with Black(Gn) + 1 pebbles
and O(n2) steps.
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▶ Corollary 19. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Fn having O(n2)

variables and dn ∈ O(n) such that Fn has a MC refutation of degree dn but any MC refutation
with this degree requires size 2Ω(n log n). On the other side there is a MC refutation of Fn with
degree dn + 1 and size O(n3).

As a second example we present a robust time-space result from [23].

▶ Theorem 20. There is a family of directed graphs {Gn}∞
n=0 having Θ(n) vertices each

and with Black(Gn) = O(log2 n), with a black pebbling strategy in space O(n/ log n) and time
O(n). There is also a constant c > 0 for which any pebbling strategy using less than cn/ log n

pebbles requires at least nΩ(log log n) steps.

▶ Corollary 21. There is a family of unsatisfiable formulas {Fn}∞
n=0 with Fn having O(n)

variables, and a constant c > 0 such that Fn has a MC refutation of degree O(n/ log n) and
size O(n2/ log n) but for which any MC refutation with degree smaller than cn/ log n requires
size at least nΩ(log log n).

4 Pebble Games and Variable Space

The equality between degree and pebbling price for the cases of Monomial Calculus and black
pebbling from the previous section, as well as for Nullstellensatz and reversible pebbling
from [14] cannot be extended to the case of Polynomial Calculus and black-white pebbling price
since as already mentioned, it was proven in [9] that for any DAG G, degPC(Peb(G)) = O(1).
We show in this section that the correspondence between the three pebbling variations and
the proof systems holds if we consider the variables space measure instead.

It can be seen in the proof of Theorem 8, that not only the minimum degree of a monomial
calculus refutation of Peb(G), but also the minimum variable space is bounded by the black
pebbling price of G. The same can be observed in the proof of Theorem 3.1 in [14] for the
case of Nullstellensatz and reversible pebbling. Considering the trivial fact that variable
space measure is always greater or equal that the degree needed for the refutation of a
formula in all three proof systems NS, MC and PC, and considering Theorems 13 as well as
Theorem 3.4 in [14] this implies:

▶ Observation 22. For every DAG G with a single sink, VSpaceNS(Peb(G) ⊢) = Rev(G)
and VSpaceMC(Peb(G) ⊢) = Black(G).

For the case of black-white pebbling it is known that for the Resolution proof system,
the variable space needed in a refutation of Peb(G) equals BW(G). The inclusion from left
to right is from [5] while the other inclusion appeared in [17]. This results can be extended
to other proof systems using the following result:

▶ Lemma 23 ([4], [27]). Let S be a proof system that can simulate Resolution step by
step without including new variables. For every unsatisfiable formula F , VSpaceS(F ⊢) =
VSpaceRes(F ⊢).

This implies:

▶ Observation 24. For every DAG G with a single sink, VSpacePC(Peb(G) ⊢) = BW(G).

Which together with Observation 22 shows the equivalence between variable space in the
proof systems and the pebbling price in the three variations of the game.
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4.1 Variable Space Separations
These observations allow us to use pebbling results to obtain separation in the variable space
complexity in the algebraic proof systems. The reason why these results do not contradict
Lemma 23, is that MC (or NS) cannot simulate Resolution step by step since the intermediate
polynomials are not necessarily monomials.

For the variable space separations between NS and MC on pebbling formulas, the same
degree separations given in Subsection 3.1 hold, since as we have seen, for this kind of
formulas the variable space and the degree coincide in both proof systems. For the case of
MC versus PC, it is known that for any DAG G, the separation between the black and the
black-white pebbling prices can be at most quadratic [21]. This limits the variable space
gap between MC and PC that can be obtained using pebbling formulas. In [31] a family
of graphs is given that shows an asymptotic separation between the black-white and black
pebbling prices. Translating this to our context we obtain:

▶ Theorem 25. There is a family of unsatisfiable formulas {Fn}∞
n=0 with polynomially many

variables (in n) such that VSpacePC(Fn ⊢) = O(n) and VSpaceMC(Fn ⊢) = Ω( n log n
log log n ).

An optimal quadratic separation between the black-white and black pebbling price was
given in [20] but for a family of graphs having exponentially many vertices respect to their
pebbling price. This implies:

▶ Theorem 26. There is a family of unsatisfiable formulas {Fn}∞
n=0 with exp(Θ(n log n))

many variables such that VSpacePC(Fn ⊢) = O(n) and VSpaceMC(Fn ⊢) = Ω(n2).

5 Conclusions and Open Questions

We have proven a strong connection between the black pebble game and the Monomial
Calculus proof system by showing that the degree and size bounds required simultaneously
in a MC refutation of the pebbling formula for a DAG G closely correspond to the number
of pebbles and the time in a pebbling strategy for G. This improves the known relations
between the complexities of pebble games and algebraic proof systems and implies strong
degree-size tradeoffs for the MC system as well as degree separations between NS, MC and
PC.

We have also shown that the variable space measure for the refutation of pebbling formulas
in the three systems PC, MC and NS exactly corresponds to the number of pebbles in the
black, black-white and reversible games. From this equivalence we obtain variable space
separations between the proof systems.

It is open whether these separations are optimal or can be improved using other techniques.
Finding out what is the optimal degree separation between the NS and MC proof systems is
another interesting open question.
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1 Introduction

Computable structure theory is a vast research program which aims at analyzing the
algorithmic content of algebraic structures through the tools of computability theory (for an
excellent introduction to this field, see [15]). The fundamental concept of when a structure
is computably presented dates back to the seminal work of Mal’cev [14] and Rabin [16]
in the 1960s: A structure with domain the set N of the natural numbers is computable if
its relations and functions are uniformly Turing computable. Then, a countably infinite
structure is computably presentable (or, it has computable copy) if it is isomorphic to some
computable structure.

A classic problem in computable structure theory is to understand, for familiar classes
of structures K, which members of K are computably presentable. Sometimes the answer
is that every member of K has a computable copy: this is the case for, e.g., vector spaces
over Q and algebraically closed fields of a given characteristic. On the other hand, it is an
immediate consequence of Tennebaum’s theorem that, among models of Peano Arithmetic,
only one is computably presentable: the standard model. Yet, in most cases, characterizing
the computable members of K is a delicate task, which often requires to individuate nice
invariants for K (if any) and to determine how hard is to compute such invariants.
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A parallel endeavour is to explore when a computable algebraic structure has a feasible
presentation. The problem can be formalized in a number of different ways leading, e.g., to the
study of algebraic structures presented by finite state automata [13], or to polynomial-time
algebra [7, 1]. Kalimullin, Melnikov, and Ng [12] initiated the systematic study of punctual
presentations, that lies somewhere in the between of computability and complexity theory:

▶ Definition 1. A structure with domain N is punctual (or, fully primitive recursive) if its
relations and functions are uniformly primitive recursive.

Then, clearly, a structure is punctually presentable, if it is isomorphic to some punctual
structure. Intuitively – and by relying on a sort of restricted Church-Turing thesis – a
structure is punctual, if there is algorithmic with no unbounded search which is able to
decide any quantifier-free question about the structure (that is, for any such question, one
knows in advance how much time is needed to compute an answer).

Punctual structure theory rapidly emerged as an intriguing subfield of computable
structure theory [10, 11, 4, 3] and it also serves as a theoretical underpinning for the study
of online algorithms [2] (i.e., algorithms in which the input is received and processed piece
by piece without having access from the start to the complete problem data).

One of notable results is that the index set of computable structures that are punctually
presentable is Σ1

1-complete [5]. However, if we restrict the class of structures is some
natural way, it may be the case that every computable member from that class is punctually
presentable (and thus the corresponding index set is trivial).

▶ Definition 2. We say that a class of structures K is punctually robust, if every computable
member of K admits a punctual presentation.

In [12], it is proven that the following classes of structures are punctually robust: equivalence
structures, linear orders, torsion-free abelian groups, Boolean algebras, and abelian p-groups;
on the other hand, there are computable undirected graphs, computable torsion abelian
groups, and computable Archimedean ordered abelian groups with no punctual copy. In this
work, we contribute to this line of research, exhibiting new examples of both classes that are
punctually robust and classes that are not.

Kalimullin, Melnikov, and Ng [12] showed that there exists a computable undirected
graph with no punctual presentation. However, many natural classes of graphs admit such
presentations. In Section 3, using a technique introduced in [12] for showing that equivalence
structures are punctually presentable, we isolate one such class.

▶ Proposition 3. Every computable digraph with an infinite semi-transversal is punctually
presentable.

For structures with a functional signature, the situation may change drastically. One of
the simplest types of purely functional structures are the so-called injection structures. They
are of the form A = (N, f), where f is 1-1. Injection structures have already been considered
in the computable setting (see, e.g., [6]) and in punctual structure theory with an emphasis
on punctual categoricity in [10]. In Section 4 we prove the following:

▶ Theorem 4. The class of injection structures is not punctually robust.

The structure witnessing that injections structures are not punctually robust will consist
only of cycles. One can observe that the relational counterpart of this structure is punctually
presentable (this follows from Proposition 3). We supplement Theorem 4 by a list of sufficient
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conditions for an injection structure to be punctually presentable, as well as by a list of
conditions equivalent to their punctual presentability. These supplementary results are
omitted due to space constraints and will appear in the extended version.1

A similar contrast emerges for trees. We show that the punctual robustness (or, lack
thereof) of the class of trees depends on how they are presented. More precisely, in Section 5
we consider the notion of a tree represented as a function mapping each child to its parent
and looping back at the root. We then prove the main result of the paper:

▶ Theorem 5. The class of functional trees is not punctually robust.

2 Preliminaries

We denote the set of natural numbers by N. We let [a, b) = {x ∈ N : a ≤ x < b}. We assume
a fixed computable enumeration p0, p1, . . . of all primitive recursive unary functions. We
abbreviate primitive recursive as p.r. By fn be denote the n-fold composition of f with itself.
If F is a partial function or a relation, χF denotes a graph of F . A structure is any tuple
A = (A, (Ri)i∈I , (fj)j∈J , (ck)k∈K), where A ̸= ∅ is the domain of A, in symbols dom(A),
while Ri, fj , ck are relations, functions, constants on A. By A ∼= B we mean that A and
B are isomorphic, and by A ↪→ B that A embeds into B. All structures in this article are
countably infinite, except finite structures that appear in constructions.

▶ Definition 6 (computable structure). A structure is a computable if its domain, as well as
all relations, functions, and constants from its signature are uniformly computable.

Punctual structures were defined in the introduction (Definition 1).
Notice that (N, p0), (N, p1), . . . is a computable enumeration of all punctual structures

with just one unary functional symbol.

▶ Definition 7 (punctual presentability). A structure A is a copy (presentation) of B if A and
B are isomorphic. We say that A is punctually presentable if A has a punctual presentation.

3 Directed graphs

In this section, we individuate a class of computable directed graphs (from now on, digraphs)
which are punctually presentable. For a digraph G = (N, EG), we denote by LG the collection
of G-nodes with loops, i.e., LG := {x : (x, x) ∈ EG}. We denote by G ↾c the restriction of G

to the initial segment {x : 0 ≤ x ≤ c}.

▶ Definition 8 (semi-transversal). Let G = (N, EG) be a computable digraph. The semi-
transversal of G, denoted as τG, is the collection of numbers that are not adjacent to any
smaller number, i.e.,

τG := {x : (∀y < x)({(y, x), (x, y)} ∩ EG = ∅)}.

It is immediate to observe that τG is computable, whenever G is computable. As
aforementioned, the following result elaborates on ideas presented in [12] when dealing with
equivalence structures. The proof may serve as a gentle introduction to the way of thinking
about punctual copies and as a warm-up to the more complex constructions of this paper.

1 Following a suggestion from one of the reviewers, the authors have realized that some results on injection
structures were obtained earlier [8]. Essentially, Theorem 4 should be attributed to Cenzer and Remmel
(see, Lemma 3.12 and Theorem 3.13 in [8]). For completeness of the presentation, we include our proof
of this theorem in the punctual setting.
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▶ Proposition 3. Every computable digraph with an infinite semi-transversal is punctually
presentable.

Proof. Let G = (N, EG) be a computable digraph so that τG is an infinite set. For the sake
of exposition, we assume that both LG ∩ τG and (N \ LG) ∩ τG are infinite (the other cases
are treated similarly and are somehow simpler). We will build by stages a punctual copy PG

of G and a bijection f : N → N witnessing that G ∼= PG.
The underlying idea of the proof is rather straightforward: At any given stage of the

construction, we monitor a finite fragment of G. In particular, we aim at determining
if a given number c belongs to τG. This information is computable but, in general, not
primitive recursive. So to ensure that PG will be punctual, while waiting to know if c ∈ τG,
we let several numbers x to be inactive (meaning that such numbers will belong to the
semi-transversal of PG). If we see that c /∈ τG, we extend the desired isomorphism by letting
f(c) be a fresh number and ensuring that G ↾c embeds into the active part of PG. On the
other hand, if c ∈ τG, we will let f(c) be a suitable inactive number z (which returns active
right after this action). Let us now be formal.

Construction

To record which fragment of G is currently monitored, we use a parameter c that will be
updated as the construction proceeds. Moreover, during the construction some numbers x will
be marked as inactive: specifically, by declaring x to be no loop-inactive (NL-inactive), we let
x be non-adjacent (in PG) to any number ≤ x; by declaring x as loop-inactive (L-inactive),
we let x non-adjacent (in PG) to any number < x but we also let (x, x) ∈ PG. Active numbers
are those that are neither NL-inactive nor L-inactive.

At stage 0, all numbers in N are active; we let c be 0 and we immediately move to the
next stage. At all stages s > 0, we see if the following condition holds:

(∀x ≤ c)(χEG
(x, c) ↓ and χEG

(c, x) ↓ in less than s stages). (⋆)

If (⋆) is not met, we declare 2s to be NL-inactive and 2s + 1 to be L-inactive. Then, we
move to the next stage. Otherwise, if (⋆) is met, we can determine whether c belongs to τG.
Then, we distinguish two cases:

1. If c /∈ τG, we define f(c) = 2s and we mirror an initial segment of the G-neighborhood of
c by forming the PG-edges that are needed to ensure that, for all x ≤ c, the following
equation holds:

(x, c) ∈ EG ⇔ (f(x), f(c)) ∈ EPG
& (c, x) ∈ EG ⇔ (f(c), f(x)) ∈ EPG

. (†)

Finally, we declare 2s + 1 NL-inactive.
2. We distinguish two subcases:

a. If c ∈ LG ∩ τG, we define f(c) = z for the least number z which is L-inactive, and
we mark z as active (if there is no such number, we define f(c) = 2s + 1). Then, we
declare 2s to be NL-inactive.

b. If c ∈ (N \ LG) ∩ τG, the situation is symmetric: We define f(c) = z for the least
number z which is NL-inactive, and we mark z as active (if there is no such number,
we define f(c) = 2s), and we declare 2s + 1 to be L-inactive.

In both cases 1. and 2., we increase c by one and we move to the next stage.
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Verification

From the construction, it follows immediately that PG is punctual: indeed, to decide if
(u, v) ∈ EPG

, for u < v, it suffices to run the construction until stage ⌊v/2⌋ and each stage s

requires at most s steps to be completed. To see that PG is isomorphic to G, we begin by
arguing that f is bijection.

▶ Lemma 9. The function f : N → N is a bijection.

Proof. Say that a stage s is expansionary, if at stage s the condition (⋆) holds. It is not hard
to see that there are infinitely many expansionary stages: indeed, since G is computable, for
any choice of the parameter c, there will a stage at which we are able to entirely compute
G ↾c. Now, observe that the parameter c starts as 0 and is increased by one whenever f(c) is
defined. Thus, f is total.

Next, let u < v be numbers on which f is defined at stages su < sv. By construction,
f(u) ∈ {2su, 2su+1, z}, for some z which is NL-inactive or L-inactive at the beginning of
stage su; on the other hand, f(v) ∈ {2sv, 2sv+1, z′}, for some z′ which is NL-inactive or
L-inactive at stage sv. Observe that z ̸= z′, since z returns active as soon as it enters the
range of f . Thus, f is injective.

To deduce that f is surjective, it suffices to prove that all numbers are eventually active:
indeed, if a number z ∈ {2s, 2s + 1} is active at all stages, then s must an expansionary
stage at which z enters the range of f ; similarly, if at stage s some number z returns active,
after being NL-inactive or L-inactive, then z simultaneously enters the range of f . Towards
a contradiction, suppose there is a least number u which is declared, say, L-inactive and
eventually remains so. Since LG ∩ τG is infinite, then there must be a stage s at which
the condition (⋆) is met and we perform action 2.a, by which z (being the least L-inactive
number) enters the range of f , contradicting our hypothesis. Hence, f is surjective. ◀

Finally, we shall prove that the bijection f yields an isomorphism from G to PG. Suppose
that, for a pair of numbers u < v,

(u, v) ∈ EG ̸⇔ (f(u), f(v)) ∈ EPG
.

Let su and sv be the stages at which f(u) and f(v) are, respectively, defined. By construction,
su < sv, so that f(u) is already defined at stage sv. Moreover, at stage sv, we decide whether
(f(u), f(v)) ∈ EPG

: if v /∈ τG, then condition (†) ensures that (f(u), f(v)) ∈ EPG
if and only

if (u, v) ∈ EG; on the other hand, if v ∈ τG, we have that (u, v) /∈ EG, but f(v) is chosen
from the inactive numbers so that f(u) is non-adjacent to f(v). Similarly, one proves that,
for all u, (u, u) ∈ EG if and only (f(u), f(u)) ∈ EPG

. So f is an isomorphism from G to
EPG

. ◀

As an immediate corollary of Proposition 3, one obtains that the following classes of
algebraic structures K are punctually robust: equivalence structures, strongly locally finite
graphs, and – more generally – graphs with infinitely many components. In fact, Proposition 3
may serve to obtain the punctual robustness of the classes of locally finite graphs and of
graph-theoretic trees (the analog result holds in the setting of feasible presentations, see
Cenzer and Remmel [9]). Let us give a brief informal discussion of these cases.

Recall that a dominating set for a graph G = (VG, EG) is a set D ⊆ VG so that all
vertices of VG ∖ D has a neighbor in D. The domination number γ(G) is the minimum size
of a dominating set for G. It is simple to show that every computably presentable graph
G with γ(G) = ∞ has a computable copy H with an infinite semi-transversal. Hence, by

MFCS 2024
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Proposition 3, all computable graphs with infinite domination numbers admit a punctual
copy. This comprises the class of infinite but locally finite graphs, as is shown by a simple
application of the pigeonhole principle.

We conclude the section by observing that the class of graph-theoretic trees, (i.e., acyclic
graphs) is also punctually robust. Let T be a such tree. If T has infinite domination number,
then T must be punctually presentable. On the other hand, if γ(T ) < ∞, then it must
contain a vertex with infinite neighborhood; a standard construction proves that such T is
punctually presentable (we omit the details for space reasons). In contrast, in Section 5 we
will show that there is a computable functional tree which admits no punctual copy.

4 Injection structures

▶ Definition 10 (injection structure). (A, f) is an injection structure, if f : A → A is
injective.

Let f : A → A. A finite sequence of pairwise distinct elements a1, ..., an ∈ A is an f -cycle of
length n if, for each i = 1, ..., n − 1, f(ai) = ai+1, and also f(an) = a1. If f is clear from the
context, we may refer to a cycle without specifying f .

▶ Definition 11 (cyclic injection structure). f : A → A is cyclic, if f is injective and every
element of A belongs to some f -cycle. A = (N, f) is a cyclic injection structure, if f is cyclic.
Such A is called simple, if A contains at most one cycle of length l, for all l ∈ N.

▶ Definition 12 (N-chain, Z-chain). Let f : A → A. If (an)n∈I is an indexed family of
elements of A such that ai ̸= aj for all i ̸= j ∈ I, and f(an) = an+1 for all n ∈ I, then we
call (an) an N-chain if I = N and there is no such x that f(x) = a0, and a Z-chain if I = Z.

If f : N → N is an injection, then every n ∈ N belongs to a cycle, an N-chain, or a Z-chain.
In the remaining part of this section we prove the following:2

▶ Theorem 4. The class of injection structures is not punctually robust.

We construct by stages a computable simple cyclic injection structure A = (N, f) not
isomorphic to any (N, pi). For each i ∈ N, we have the following requirement:

Ri : if (N, pi) is a simple cyclic injection structure, then there is
n ∈ N so that pi has a cycle of length n but f does not.

Initially, for A = ∅, and all requirement are inactive. At a given stage we have finitely
many active requirements. Active requirements may later be deactivated: deactivating a
requirement Ri will guarantee that Ri is, and will remain, satisfied. Some requirements Ri

may stay eventually active, but we will argue that in that case they are satisfied vacuously
(i.e., the antecedent of Ri is false).

2 As a side remark, Theorem 3.16 from [8] says that any computable injective structure has a polynomial-
time computable copy with the domain equal to Bin(ω), the set of all binary representations of natural
numbers, or to T al(ω), the set of all unary (tally) representations of natural numbers; call such a
copy fully polynomial-time. The statement of Theorem 3.16 [8] turns out to be too general because
the structures constructed in the proofs of our Theorem 3, or Theorem 3.13 [8] for that matter, are
computable injection structures with no punctual presentation, and hence they cannot have fully
polynomial-time copies either (as any fully polynomial-time structure is punctual). However, a slight
weakening of the statement of Theorem 3.16 [8] can be achieved, namely: every computable injection
structure which is not cyclic is punctually presentable. We omit the proof due to space constraints.
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Stage s of the construction. Let Ri1 , . . . , Rik
be the list of active requirements, and

let ci1 , . . . , cik
be the corresponding witnesses. If there is a fresh active requirement in

the list, execute the strategy for the fresh requirement (see below). Then, for each active
non-fresh requirement, execute the corresponding strategy (also see below). If the list of
active requirements is empty or, during stage s, we have not discovered any cycle of length s

while executing strategies for fresh or non-fresh Rij , then we add a fresh (i.e., composed from
distinct least numbers a1, a2, . . . , as /∈ A) cycle of length s to A and add the least inactive
requirement to the list of active requirements and call it fresh.

Strategy for non-fresh Ri,j. Compute cij
, pij

(cij
), p2

ij
(cij

), . . . , ps−1
ij

(cij
). The following

outcomes are possible:
1. elements of the sequence are pairwise different from each other and then we shall call

such a sequence a straight line of length s,
2. there is some l such that 1 ≤ l ≤ s − 1 and pl

ij
(cij ) = cij and then for the least such l, we

shall call cij
, pij

(cij
), p2

ij
(cij

), . . . , pl
ij

(cij
) a cycle of length l,

3. there are some l and l′ such that 1 ≤ l < l′ ≤ s − 1 and pl
ij

(cij
) = pl′

ij
(cij

) and then for
the least such l′ we shall call such sequence a cycle with a tail of length l′ + 1.

If precisely after s − 1-th iteration of function pij on its corresponding witness we close a
cycle or a cycle with a tail, then we deactivate Rij

.
Strategy for fresh Ri,j . We define αp to be the sequence ap, pij (ap), p2

ij
(ap), . . . , ps−1

ij
(ap),

for p = 1, . . . s, where ap is the least number which is currently not in the domain of A and
has not appeared anywhere in calculations of any of the sequences αp.

Now we check if any of the following outcomes occurs and act accordingly:
if some αp is a line of length s, set cij

:= ap as the witness for Rij
and call Rij

non-fresh,
if some αp is a cycle of length s or a cycle with a tail of any length, deactivate Rij ,
if for every αp we obtained a cycle of length smaller than s, deactivate Rij

.

Verification

▶ Lemma 13. A is a computable simple cyclic injection structure.

Proof. Clearly, A is computable. It is a cyclic injection structure since whenever we add
new elements to the structure, they are in a cycle. A cycle of length s can only be added at
stage s and only once. Hence, the structure is simple. ◀

▶ Lemma 14. If a requirement Ri is deactivated during some stage s, then from that moment
it always remains satisfied.

Proof. There are several possible cases of how Ri was deactivated at stage s. Below we
consider all of them:

We discovered a cycle with a tail generated by the function pi starting from its corres-
ponding witness. In this case Ri is satisfied because pi is not a cyclic function,
We discovered a cycle of length s generated by pi during stage s. In this case Ri is
satisfied because we do not have a cycle of such length in A and hence A is not isomorphic
to (N, pi).
We tried s different witnesses a1, . . . , as for Ri and for each potential witness a we
generated a cycle of length shorter than s starting with a. As a consequence of the
pigeon-hole principle it is necessary that there are some witnesses a and b generating
cycles of the same length. Furthermore, whenever we choose a new witness, we take
a number which has not appeared anywhere in earlier calculations. Hence, the cycle
containing a and the cycle containing b are not the same and they are both in (N, pi). We
conclude that this is not a simple cyclic injection structure and hence Ri is satisfied. ◀
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▶ Lemma 15. If a requirement Ri is not deactivated at any stage, then it is satisfied.

Proof. We assume that Ri was activated at some stage s. Then at stage s + 1 it acted as
a fresh requirement and it was deactivated unless we discovered a witness ci such that the
sequence ci, pi(ci), p2

i (ci), . . . , ps
i (ci) is a straight line of length s + 1. In that case, at every

stage t ≥ s + 1, requirement Ri is deactivated if and only if we discover a cycle or a cycle
with a tail of length t starting with ci. If this does not happen at any stage, then the line
starting with ci is becoming longer at every stage and never closes. Hence, (N, pi) contains
an N-chain with an element ci. So this structure is not cyclic and Ri is satisfied. ◀

▶ Lemma 16. The domain of A is N.

Proof. Whenever we add a new element to A, it is the least natural number which is currently
not there. It follows that the domain of A is either all of N or some initial segment of it.

It remains to show that the dom(A) is infinite. Suppose not. Let a be the largest (as a
number) element in A. Suppose that a was added at some stage s and that at the end of stage
s the only active requirements were Ri1 , . . . , Rik

. We consider stages s + 1, . . . , s + ik + 1. We
observe that there are ik + 1 of them and this is more than the number of active requirements.
Since each requirement gets deactivated at most once, it follows that there is some t such
that s + 1 ≤ t ≤ s + ik + 1 such that none of the requirements is deactivated at stage t. This
implies that at stage t we have not discovered any new cycle of length t. Hence at stage t we
add a cycle of length t to A and this cycle consists of new elements larger than a. Hence a is
not the largest natural number in A contrary to our assumption. ◀

▶ Lemma 17. A is not punctually presentable.

Proof. Suppose not. Then A ∼= (N, pi), for some i ∈ N. By Lemma 13, A is a simple cyclic
injection structure. By Lemmas 14 and 15, Ri is satisfied. Since (N, pi) is also a simple cyclic
injection structure, there is some cycle length occurring in pi but not in f . This contradicts
the assumption that (N, f) ∼= (N, pi). Hence, A is not punctually presentable. ◀

5 Functional trees

In this section we prove the main result of the paper:

▶ Theorem 5. The class of functional trees is not punctually robust.

▶ Definition 18 (functional tree). Let A ̸= ∅ be a set and let T : A → A. (A, T ) is a
functional tree, if there is a unique r such that T (r) = r, and for every x ∈ A there exists
i ∈ N such that T i(x) = r. The unique r is called the root, and is denoted by r(A, T ).

Before we start, we need several technical notions.
First, observe that a functional tree (P, T ) may be viewed as a partial order (P, ≤) defined

as follows: x ≤ y ⇔ ∃i ∈ NT i(x) = y. This allows us to use a convenient order-theoretic
notation when speaking about trees. However, we should keep in mind that this is just
a manner of speaking and that in this section we deal with functional trees. Given a
partial order (P, ≤), we define P≤x = {y ∈ P : y ≤ x} and P≥x = {y ∈ P : y ≥ x}. The
corresponding strict partial order is denoted by <. Elements x, y ∈ P are adjacent, Adj(x, y),
if and only if x < y ∧ ¬∃z ∈ P x < z < y. To avoid confusion, we sometimes write ≤T or
AdjT to indicate that the ordering or adjacency relation is induced by T .
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▶ Definition 19 (branching node, branching, binary branching). x ∈ T is a branching node
of T (or x branches in T ) if it has at least two children in T . Such an x induces a unique
subtree of T , called a branching and defined as br(x, T ) = {y ∈ T : Adj(y, x)} ∪ T≥x. If x

is a branching node, we define |br(x, t)|, the length of br(x, t), as the length of T≥x. By a
binary branching we mean a tree with exacly two leaves sharing a parent.

▶ Definition 20 (uniquely branching tree). We say that a tree T is uniquely branching if for
every n ∈ N, there exists at most one branching node x ∈ T such that |T≥x| = n.

▶ Definition 21 (level). We say that a branching node x ∈ T belongs to the level n of T if
the set T>x contains precisely n branching nodes. We denote the level n of T by T [n]. We
sometimes refer to the members of T [n] as n-level nodes.

Keep in mind that we number levels 0, 1, . . . . Therefore, the first level is level 0. Level T [n]
may be empty but if T [n] ̸= ∅ then T [k] ̸= ∅, for k < n.

▶ Definition 22 (i-level subtree). Let T be a tree such that T [i] ̸= ∅. We define T [≤ i] as the
least subtree of T containing all nodes at levels ≤ i together with their children.

Notice that T [≤ i] is the sum of the branchings br(x, T ) for all x ∈ T [j] such that j ≤ i.
Recall that a binary tree is a tree in which every internal node has at most two children.

In a proper binary tree, every internal node has exactly two children.

▶ Lemma 23. Let (T, ≤) be a finite proper binary tree and let F ⊆ T be such that, at every
level of T except the first, at most one node is in F . Then there exists a leaf x ∈ T such that
T≥x ∩ F = ∅.

Proof. By assumption, r(T ) /∈ F . Suppose we have a path xn, xn−1, . . . , x0 = r(T ) such that
xi /∈ F , for i = 0, 1, . . . , n. If xn is a leaf, we are done. If not, xn has two children. These
two children are at the same level and one of them is outside F . Let xn+1 to be a child
outside F . ◁

▶ Definition 24 (attaching a tree to a leaf). Let T, T̂ be disjoint finite trees and let z ∈ T be a
leaf. T ′ is obtained from T by attaching T̂ to z in T if dom(T ′) = dom(T )∪(dom(T̂ )\{r(T̂ )})
and x, y ∈ dom(T ′) satisfy AdjT ′(x, y) iff AdjT (x, y) ∨ AdjT̂ (x, y) ∨ AdjT̂ (x, r(T̂ )) ∧ y = z.

▶ Definition 25 (functional semitree). Let A be a finite set and let T : A → A be a partial
function. We say that (A, T ) is a functional semitree if there is a unique r such that T (r) = r,
and (A, χT \ {(r, r)}) is an acyclic directed graph. The unique r is called the root, and is
denoted by r(A, T ).

The difference between a semitree and a tree is that the former may contain nodes that
are not connected to the root via any path. We will use the letters t and q, possibly with
decorations, to refer to finite trees and to semitrees, respectively.

▶ Definition 26 (rooted part of T ). R(T ) denotes the largest subtree of a semitree T .

At every stage of the construction, the main tree T that we build is approximated by a finite
tree. As we will see, the growth of T is modulated by a set of nodes F .

▶ Definition 27 (closed node, open node). A node y ∈ T is closed at a given stage if
T≥y ∩ F ̸= ∅ at that stage. A node y is open if y is not closed, that is T≥y ∩ F = ∅.
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▶ Definition 28 (leaf extension). Let t be a tree with a distinguished set of nodes F . We
say that t′ is a leaf extension of a tree t (in symbols: t′ ⊒ t) if, for some k > 0, there exist
disjoint (from t and from each other) finite trees t̃1, . . . , t̃k, and pairwise distinct open leaves
x1, . . . , xk ∈ t, such that t′ is obtained from t by simultaneously attaching each t̃i to xi in t.
We say that t′ is a proper leaf extension of t (in symbols: t′ ⊐ t) if t′ ⊒ and t′ ̸= t.

▶ Definition 29 (matching). (h, t′) is a matching of q into t (in symbols: (h, t′) : p ↪→ t), if
t′ ⊒ t and h : R(q) ↪→ t′ is an embedding such that img(h) ⊇ dom(t′) \ dom(t). A matching
(h, t′) of q into t is proper, if t′ ⊐ t. We say that q is (properly) matchable with t if there
exists a (proper) matching (h, t′) of q into t.

▶ Lemma 30. Let P be an infinite tree and let t be a finite tree whose level n is the maximal
one (that is, t[n] ̸= ∅ and t[n + 1] = ∅) and t[≤ n] = t. Let q be a finite subtree of P . If q is
not matchable with t, then P ̸∼= T , for every infinite tree T ⊃ t such that T [≤ n] = t.

Proof. Suppose there is an infinite tree T ⊃ t such that T [≤ n] = t and P ∼= T via h : P → T .
Let h(q) be the isomorphic image of q (hence, a subtree of T ). Let t′ = T ↾ dom(t)∪dom(h(q)).
t′ is a leaf extension of t. Since q is a tree, R(q) = q. We observe that (h ↾ q, t′) is a matching
of q into t. ◀

▶ Definition 31 (outside branching). Suppose q is matchable with t. We say that q branches
outside t at x if x branches in q and |q≥x| is greater than the length of every branching in t.
We say that q branches outside t if it branches outside t for some x.

▶ Definition 32 (inside branching). Suppose q is matchable with t. We say that q branches
inside t at x if x branches in R(q), br(x, q) embeds in t and for every matching (h, t′) : q ↪→ t,
h(q≤x) ∩ t′ \ t ̸= ∅ (i.e., h maps some descendants of x to t′ \ t).

We are ready to start the proof of Theorem 5.
We build an infinite computable functional tree T with domain N such that, for all i ∈ N,

the following requirements Ri are satisfied: T ≁= Pi, where Pi = (N, pi). T will be binary,
uniquely branching and it will grow only through its leaves. T will be approximated by a
sequence of finite trees T0 ⊆ T1 ⊆ . . . , with T =

⋃
s∈N Ts. Occasionally, when it does not

lead to confusion, we take the liberty to use the symbol T to refer to T at a given stage
s, i.e. to Ts. During the construction, we approximate Pi by looking at certain specific
finite approximations of Pi, which we call anticipations. We make this notion precise in
Definition 34. For now, it sufficient to know that an anticipation of Pi simply looks at portions
of Pi that are large compared with the current approximation of T . We simultaneously build
a dynamic set F ⊂ T . We will put elements into F but will never withdraw them.
▶ Remark 33. An approximation Pi,s = (A, pi ↾ A) of a functional tree Pi may actually be a
semi-tree. This is because A may contain nodes which are connected to the root via nodes
from N \ A.

Satisfaction of Ri will be based on two strategies that we describe below. In the description
of these strategies, we mention a tree t. The role of this tree will become clear when we
describe the StrategySelection procedure. When a strategy is called, t is given as one of the
inputs and used t to compute anticipations of Pi. These anticipations depend on the number
of stage s and t, hence their name: (s, t)-anticipations.

Outside-branch Strategy

We say that the outside-branch strategy for pi is ready at stage s for a tree t if the (s, t)-
anticipation q of pi is a functional semitree and q branches outside Ts−1. The strategy is
called only when it is ready in the specified sense. The outside-branch strategy is called with
arguments q, Ts−1, where q is some (s, t)-anticipation of pi that branches outside Ts−1.
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Figure 1 Outside-branch strategy.

The idea of the strategy is as follows (see, also, Figure 1). By the definition of the
outside-branching, q contains a branching b that is longer than every branching in Ts−1
(hence the word “outside-branching”). If we wanted to embed b into T , we would have to
extend Ts−1 to include the branching length of b in the extension of Ts−1. We purposely
extend Ts−1 to a leaf extension t′ ⊐ Ts−1 that omits the branching length of b. Recall that
the construction is arranged in such a way that T grows only through its leaves and whenever
we add new branchings into T , their length is greater than any branching that was in T

so far. Hence, once we omit a given branching length in T , T will not have any branching
of this length at all. Therefore, if we set Ts = t′, we would kill the potential isomorphism
T ∼= Pi permanently.

More precisely, we produce t′ in the following way. Let d = max{|q≥x| : x branches in q}.
Let {l1, . . . , ln} be the set of all open leaves of Ts−1. We make binary branchings b1, . . . , bn

such that for all i, j, |(Ts−1)≥li
| + |bi| > d and i ̸= j ⇒ |(Ts−1)≥li

| + |bi| ≠ |(Ts−1)≥lj
| + |bj |.

The strategy outputs t′ obtained from Ts−1 by simultaneous attachment of each bi to li. We
make sure t′ is extended by the least fresh numbers not occurring in Ts−1.

The outside-branch strategy is illustrated in Figure 1. Ts−1 is shown on the left in black.
The tree R(q) (or rather a leaf extension of Ts−1 into which R(q) embeds) is shown explicitly
only in part using gray subtrees on the left. The output of the outside-branch strategy is t′

shown on the right which has very long branchings attached to l1, . . . , ln, the open leaves of
Ts−1, so that t′ omits some branching lengths of R(q). The horizontal dotted line indicates
that the lengths of the branchings below it are greater than the lengths of all the branchings
in the tree on the left.

Inside-branch Strategy

We say that the inside-branch strategy for pi is ready at stage s for a tree t if the (s, t)-
anticipation q of pi and Ts−1 satisfy the following conditions:

q is a functional semitree, (1)
Ts−1 and R(q) have level i + 1, (2)
R(q)[≤ i + 1] ∼= T [≤ i + 1], (3)
q branches inside Ts−1. (4)

The strategy is called only when it is ready in the specified sense. We call it with
arguments q, Ts−1, where q is some (s, t)-anticipation of pi that branches inside Ts−1.
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The idea of the inside-branch strategy is as follows. By the definition of the inside-
branching, q contains a branching node x such that br(x, q) embeds into Ts−1 (hence the
word “inside-branching”). Since Ts−1 is uniquely branching, there is only one way of
embedding this branching to Ts−1. Suppose this unique embedding maps x to y ∈ Ts−1. By
the definition of the inside-branching, there is no way of embedding the subtree q≤x into
the subtree (Ts−1)≤y without prolonging some paths in the subtree (Ts−1)≤y. Hence, if we
decide to put y (or some of its ancestors) into F , we would stop growing (Ts−1)≤y, that is, we
would have (in the limit) T≤y = (Ts−1)≤y, thus killing the isomorphism T ∼= Pi permanently.

The details of the strategy follow. Suppose that the inside-branch strategy for pi is ready
and thus (1)-(4) hold. The strategy will stop the growth of T from exactly one node at level
i + 1 of T . Since q branches inside Ts−1, let x be a node of Ts−1 at which q branches inside
Ts−1. If x belongs to level j > i + 1, then the path connecting x to the root must intersect
level i + 1 and the point of intersection is the branching node that we put into F ; note that
this point is unique because T is uniquely branching and (2) and (3) hold. If x belongs to
level i + 1, we simply put x to F ; again, this x is unique by the same reasoning. If x belongs
to level ≤ i but not to level i + 1, it means that Ts−1 did not have chance to grow up to
level i + 1 from x (and will not have such a chance anymore, because we never withdraw
elements from F ) and therefore we do not have to take any action.

Construction

The construction is arranged in stages s = 0, 1, . . . . For s = 0, we set T0(0) = 0 with domain
{0} and F = ∅. No Ri is satisfied at stage 0. At each subsequent stage s > 0, we start with a
finite tree Ts−1. We make a call to StrategySelection(s, Ts−1) and after it finishes working,
we go to the next stage. This ends the construction.

StrategySelection is a recursive procedure that selects which strategy to perform and
with which arguments. It uses a specific way of growing our approximations.

▶ Definition 34 (anticipation). Let p : N → N, s ∈ N and let T be a finite tree. Let
C = [0, s) ∪ [0, |T | + 1) and D =

⋃H(T )+s
l=0 pl(C). We say that p ↾ D is the (s, T )-anticipation

of p.

We say that pi is ready at stage s for a tree t if either the outside-branch or the
inside-branch strategy for pi is ready at stage s for t.

StrategySelection(n, t). Check whether there exists an unsatisfied Ri with i < n such
that pi is ready at stage s for t. If there is no such i, return from the current call to
StrategySelection with permission. Otherwise, let k < n be the least such i.

If the (s, t)-anticipation of pk branches inside Ts−1, perform the inside-branch strategy
with the (s, t)-anticipation of pk, Ts−1 as arguments (we say that pk triggers the inside-branch
strategy). Declare Ri as satisfied and return from the current call to StrategySelection

without permission.
If it is not the case that the (s, t)-anticipation of pk branches inside Ts−1, then the

(s, t)-anticipation of pk branches outside Ts−1. In that case we let t′ be the output of the
outside-branch strategy with the (s, t)-anticipation of pk and Ts−1 as arguments, and we
call StrategySelection(k, t′) (we say that pk asks for permission). If the call returns with
permission, we set Ts = t′ (we say that pk triggers the outside-branch strategy), declare that
Rk is satisfied, and we return without permission.
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Verification

It is clear that T is computable and that if it is infinite then its domain is equal to N.

▶ Lemma 35. T is infinite and has infinitely many branchings of distinct length.

Proof. We show by induction on the number of levels that T has infinitely many levels.
Suppose the current T has no levels at all, i.e. the domain of T is {0}. 0 is not a

branching node of T and therefore it cannot trigger the inside-branch strategy. So 0 /∈ F

forever. However, at some stage u ≥ s, we will see pi, with i < u, such that the anticipation
of pi will branch outside T and since 0 will be an open leaf of T at that stage, it will trigger
the outside-branch strategy and add level 0 to T . If T has only one level, i.e., level 0, the
unique branching node in T will never be put into F (because the inside-branch strategy
may affect only levels ≥ 1). As above, we can show that T will grow up to level 1.

Now, let us suppose that T has exactly n levels, where n > 1 (that is, levels 0, 1, . . . , n−1).
The construction may put into F at most one node from each of the levels 1, 2, . . . , n − 1.
Once it does, it never withdraws them from F . Suppose we are at a stage s0 after which the
construction do not add any new nodes from levels 1, 2, . . . , n − 1 into F . This means that it
will never be the case that, for some 0 ≤ i ≤ n − 2, Ri is unsatisfied and the inside-branch
strategy for pi is ready (if we later encountered such an i, the inside-branch strategy would
put some element from levels 1, 2, . . . , n − 1 into F , contradicting our choice of s0). If T

has grown by the time we reached stage s0, we are done. So suppose otherwise. Clearly, at
some later stage s, some pj , j < s, with unsatisfied Rj will show us an anticipation q such
that q is a functional semitree and q branches outside T . Choose the least such j at stage
s. Clearly, the outside-branch strategy for pj is ready at stage s (and Rj is unsatisfied).
Moreover, no outside-branch strategy for pk with k < j is ready because of the choice of j.
As for the inside-branch strategy for pk with k < j, either Rk is satisfied or the inside-branch
strategy for pk not ready – this follows from the choice of s0. Therefore, pk will be granted
permission. By the arrangement of the inside-branch strategy and by Lemma 23, T has open
leaves. Therefore, the outside-branch strategy for pk will extend T by another level.

We have already shown that the outside-branch strategy acts infinitely often. Since it
always adds new branchings, there must be infinitely many branchings in T . Clearly, the
strategy also guarantees that any two different branchings do not have the same length. ◀

▶ Lemma 36. For every i ∈ N, if Pi is a functional tree, then Ri is eventually satisfied.

Proof. Fix a punctual structure Pi and assume that there exists a stage s0 after which for
every j < i, either Ri is satisfied or pj is not ready (this holds vacuously for i = 0). Suppose
that Pi is a uniquely branching functional tree (if not, T ̸∼= Pi). We will show that Ri will
be eventually satisfied.

Choose a stage s0 as above and assume that i < s0. Suppose that at the beginning of
s0 the requirement Ri has not yet been declared as satisfied (that is, neither of the two
strategies has been triggered before s0).

If at some stage u ≥ s0, we see that an anticipation q of pi is not matchable with Tu−1,
then Ri is satisfied by Lemma 30. In the lemma, we take P = pi, t = Tu−1 and q. Let n

be the maximal level of t. By the construction t[≤ n] = t. The infinite tree T that we are
building will be such that T ⊃ Tu−1 = t and T [≤ n] = t. Hence, the premises of the lemma
are satisfied. It means that T ≁= Pi and thus Ri is satisfied. We can therefore assume that,
for u ≥ s0, any considered anticipation of pi is matchable with Tu−1.

Now, if at some stage u ≥ s0 the requirement Ri is still not satisfied but pi is ready at
stage u for Tu−1, i will be the least j with that property. So, according to StrategySelection,
either it will trigger an inside-branch strategy, or it will ask for permission and receive it, thus
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triggering an outside-branch strategy. Now, it may happen that pi becomes ready because
the outside-branch strategy for pi is ready but the inside-branch strategy is not. In that
case, according to the StrategySelection, pi will receive permission and thus Ri will become
satisfied.

So assume pi never becomes ready for this reason after stage s0. Observe that if
anticipations of pi and Ts always fail to satisfy (1), (2) or (3), then T ̸∼= Pi. So assume that
after stage s0 these conditions are always satisfied. Therefore, it remains to prove that at
some stage u ≥ s0, the inside-branch strategy is triggered.

It is important to note that once the level i + 1 of T is done, T does not change up to
level i + 1 at any later stage (it may only add some nodes from levels ≤ i + 1 to F but this
will not change the structure of T up to level i + 1).

Consider stage u ≥ s0. The construction calls StrategySelection(u, Tu−1). Let q be the
initial anticipation of pi at stage u, namely the (u, Tu−1)-anticipation of pi. By the definition
of anticipation, q contains more nodes than Tu−1. Therefore, the situation in which R(q) = q

and R(q) ↪→ Tu−1 is not possible. So we have two remaining cases:
(a) R(q) ↪→ Tu−1 and R(q) ̸= q. In this case, there are nodes z ∈ q \ R(q) that are

disconnected from the root. Moreover, by the definition of anticipation, if z ∈ q \ R(q)
and z does not have children in q, then z gives rise to a chain of length H(Tu−1) + u in q.

(b) R(q) ̸↪→ Tu−1. In this case, q must be properly matchable with Tu−1. To see why, recall
that q is matchable with Tu−1. So R(q) embeds in a leaf extension T ′ of Tu−1. But any
such leaf extension must be proper – otherwise R(q) ↪→ Tu−1. From this it follows that
q branches inside Tu−1. For take a proper matching of q into Tu−1 that embeds q into
T ′ ⊐ Tu−1. Take the least z ∈ T ′ \ Tu−1. This z is connected to the root of Tu−1 via
a path that overlaps with initial i + 1 levels of Tu−1. But every such path (the one in
Tu−1 or its preimage in q) contains branching nodes because q contains a copy of initial
i + 1 levels of Tu−1. Therefore, q branches inside Tu−1, and thus q is ready at stage u

for Tu−1. Hence the inside branch strategy will handle Ri.

Assume that (b) holds. Therefore, the inside-branch strategy for pi is ready at stage u

for Tu−1. Hence, Ri becomes satisfied immediately after StrategySelection is called.
Assume that we are in case (a). Then pi is not ready at stage u for Tu−1. But other pj ,

with j > i will become ready later on, say at stage v. If such pj triggers an inside-branch
strategy to satisfy Rj , our tree does not grow and we therefore do not miss an opportunity
to satisfy Ri. However, if pj , with j > i wants to trigger an outside-branch strategy (which
must happen eventually), it will produce T ′ ⊃ Tu−1 and ask for permission. So before pj is
allowed to act by extending the current tree from Tu−1 to T ′ ⊃ Tu−1, we first check whether
pi is ready at stage v for the (bigger) tree T ′ that we would grow if we allowed pj to act first.
If it is not ready, it means that we can permit pj to trigger an outside-branch strategy and
set Tv = T ′. For it means that all the long disconnected chains that we had in q remain
disconnected, even after prolonging them up to length H(T ′) + v in the (v, T ′)-anticipation
of pi. Notice that if we did not insist on asking for permission, we would set Tv := T ′ ⊃ Tu−1
and it could happen that prolonging a bit the disconnected chains in q would change q into
a tree that embeds into Tv and we would miss the opportunity to satisfy Ri. Asking for
permission prevents this.

Finally, it suffices to observe that, since pi is a tree, at some point these disconnected
chains will connect to the root, either at the beginning of StrategySelection or after being
asked for permission by some other pj , with j > i. Since these chains are kept very long
(longer than any path in the current T ), once they become connected, they necessarily stick
out of T and thus branch inside it. At this point the inside-branch strategy is triggered and
Ri is satisfied. ◀
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Abstract
Twin-width is a width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS’20,
JACM’22], which has many structural and algorithmic applications. Hliněný and Jedelský [ICALP’23]
showed that every planar graph has twin-width at most 8. We prove that the twin-width of every
graph embeddable in a surface of Euler genus g is at most 18

√
47g + O(1), which is asymptotically

best possible as it asymptotically differs from the lower bound by a constant multiplicative factor.
Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To
prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger
version of the Product Structure Theorem for graphs of Euler genus g that asserts that every such
graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all
bags of size at most eight with a single exceptional bag of size max{6, 32g − 37}.
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1 Introduction

Twin-width is a graph parameter, which has recently been introduced by Bonnet, Kim,
Thomassé and Watrigant [16, 17]. It has quickly become one of the most intensively studied
graph width parameters due to its many connections to algorithmic and structural questions
in both computer science and mathematics. In particular, classes of graphs with bounded
twin-width (we refer to Section 2 for the definition of the parameter) include at the same
time well-structured classes of sparse graphs and well-structured classes of dense graphs.
Particular examples are classes of graphs with bounded tree-width, with bounded rank-width
(or equivalently with bounded clique-width), and classes excluding a fixed graph as a minor.
As the first order model checking is fixed parameter tractable for classes of graphs with
bounded twin-width [16,17], the notion led to a unified view of various earlier results on fixed
parameter tractability of first order model checking of graph properties [21, 22, 30–33, 49],
and more generally first order model checking properties of other combinatorial structures
such as matrices, permutations and posets [4, 12,19,20].
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The foundation of the theory concerning twin-width has been laid by Bonnet, Kim,
Thomassé and their collaborators in a series of papers [8–14,16,17], also see [51]. The amount
of literature on twin-width is rapidly growing and includes exploring algorithmic aspects of
twin-width [6,10,12,15,48], its combinatorial properties [2,4,7,10,14,24,47], and connections
to logic and model theory [12,16,17,19,20,34]. While many important graph classes have
bounded twin-width, good bounds are known only in a small number of specific cases. One
of the examples is the class of graphs of bounded tree-width where an asymptotically optimal
bound, exponential in tree-width, was proven by Jacob and Pilipczuk [40]. Another example
is the class of planar graphs. The first explicit bound of 583 by Bonnet, Kwon and Wood [18]
was gradually improved [5,35,40] culminating with a bound of 8 obtained by Hliněný and
Jedelský [38]; also see [36, 37] for a simpler proof and [41] for a promising approach of
obtaining the upper bound of 7, which would be tight since Lamaison and the first author [42]
constructed a planar graph with twin-width 7. In this paper, we extend this list by providing
an asymptotically optimal upper bound on the twin-width of graphs embeddable in surfaces
of higher genera. We prove the following two results (the latter is used to prove the former):

We show that the twin-width of a graph embeddable in a surface of Euler genus g is
at most 18

√
47g + O(1), which is asymptotically best possible; our proof also yields a

quadratic time algorithm to find a witnessing sequence of vertex contractions.
We provide a strengthening of the Product Structure Theorem for graphs embeddable in
a surface of Euler genus g by showing that such graphs are subgraphs of a strong product
of a path and a graph that almost has a bounded tree-width.

We next present the two results in more detail while also presenting the related existing
results. While we prove both results in purely structural way, their proofs are algorithmic
and yield a quadratic time algorithm (when the genus g > 0 is fixed) that given a graph G

embeddable in a surface of genus g, constructs a sequence of contractions witnessing that
the twin-width of G is at most 18

√
47g + O(1). Further details are discussed in Section 5.

1.1 Twin-width of graphs embeddable in surfaces
Graphs that can be embedded in surfaces of higher genera, such as the projective plane,
the torus and the Klein bottle, form important minor-closed classes of graphs with many
applications and connections [45]. While the general theory concerning minor-closed classes
of graphs yields that graphs embeddable in a fixed surface have bounded twin-width, the
bounds are quite enormous: the results from [14, Section 4] on d-contractible graphs (graphs
embeddable in a surface of Euler genus g are O(g)-contractible [39]) yields a bound double
exponential in g, and the Product Structure Theorem for graphs embeddable in surfaces [26,28]
together with results on the twin-width of graphs with bounded tree-width [40], of the strong
product of graphs [46] and their subgraph closure [9] yields an exponential bound.

Bonnet, Kwon and Wood [18] showed that every graph embeddable in a surface of Euler
genus g has twin-width at most 205g + 583. Our main result asserts that twin-width of every
graph embeddable in a surface of Euler genus g is at most 18

√
47g + O(1) ≈ 123.4√

g + O(1).
This bound is asymptotically optimal as any graph with

√
6g−O(1) vertices can be embedded

in a surface of Euler genus g and the n-vertex Erdős-Rényi random graph Gn,1/2 has twin-
width at least n/2−O(

√
n log n) [1], i.e., there exists a graph with twin-width

√
3g/2−o(√g)

embeddable in a surface of Euler genus g. In particular, our upper bound asymptotically
differs from the lower bound by a multiplicative factor 6

√
282 ≈ 100.76. While several parts

of our argument can be refined to decrease the multiplicative constant (to around 20), we
have decided not to do so due to the technical nature of such refinements and the absence of
additional structural insights gained by doing so.
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1.2 Product Structure Theorem
On the way to our main result, we prove a modification of the Product Structure Theorem
that applies to graphs embeddable in surfaces. The Product Structure Theorem is a recent
significant structural result obtained by Dujmović, Joret, Micek, Morin, Ueckerdt and
Wood [26, 28], which brought new substantial insights into the structure of planar graphs
and led to breakthroughs on several long standing open problems concerning planar graphs,
see, e.g. [25]. We also refer to the survey by Dvořák et al. [29] on the topic. The statement of
the Product Structure Theorem originally proven by Dujmović et al. [26, 28] reads as follows
(we remark that the statement in [26,28] does not include the condition on planarity of the
graph of bounded tree-width, however, an easy inspection of the proof yields this).

▶ Theorem 1. Every planar graph is a subgraph of the strong product of a path and a planar
graph with tree-width at most 8.

Ueckerdt et al. [52] improved this as follows (we state a corollary of their main result to
avoid defining the notion of simple tree-width, which is not needed in our further presentation).

▶ Theorem 2. Every planar graph is a subgraph of the strong product of a path and a planar
graph with tree-width at most 6.

Dujmović et al. [26, 28] also proved two extensions of the Product Structure Theorem to
graphs embeddable in surfaces.

▶ Theorem 3. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of
the strong product of a path, the complete graph K2g and a planar graph with tree-width at
most 9.

▶ Theorem 4. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of the
strong product of a path, the complete graph Kmax{2g,3} and a planar graph with tree-width
at most 4.

A stronger version was proven by Distel at el. [23]; the discussion of the even stronger
statement implied by the proof of the next theorem given in [23] can be found after Theorem 6.

▶ Theorem 5. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of the
strong product of a path, the complete graph Kmax{2g,3} and a planar graph with tree-width
at most 3.

We remark that it is not possible to replace K2g in the statement of Theorems 3, 4
and 5 with a complete graph with o(g) vertices as long as the bound on the tree-width stays
constant since the layered tree-width of graphs embeddable in a surface of Euler genus g is
linear in g [27] (the definition of layered tree-width is given in Section 2). To prove our upper
bound on the twin-width of graphs embeddable in surfaces, we strengthen the statement of
the Product Structure Theorem for graphs embeddable in surfaces as follows. Theorems 3, 4
and 5 imply that every graph embeddable in a surface of Euler genus g > 0 is a subgraph of
the strong product of a path and a graph with tree-width at most 20g − 1, max{10g − 1, 14}
and max{8g − 1, 11}, respectively. The next theorem, which we prove in Section 3, asserts
that it is possible to assume that the tree-width of the graph in the product is almost at
most 7 in the sense that all bags except possibly for a single bag have size at most 8.

▶ Theorem 6. Every graph embeddable in a surface of Euler genus g > 0 is a subgraph of
the strong product of a path and a graph H that has a rooted tree-decomposition such that

the root bag has size at most max{6, 32g − 37}, and
every bag except the root bag has size at most 8.

MFCS 2024
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Similarly as it is not possible to replace K2g with a complete graph with o(g) vertices in
Theorem 3, it is necessary to permit at least one of the bags to have a size linear in g in
Theorem 6. Hence, the statement of Theorem 6 is the best possible asymptotically.

We remark that the proof of Theorem 5 given in [23] implies that every graph embeddable
in a surface of Euler genus g > 0 is a subgraph of the strong product of a path and a graph
that can be obtained from a planar graph with tree-width at most 3 by replacing one vertex
of this planar graph with K2g and the remaining vertices with K3 (and replacing each edge of
the planar graph with a complete bipartite graph between the corresponding sets of vertices).
However, the vertex of the planar graph that is replaced with K2g can be contained in many
bags of the tree-decomposition and so the proof given in [23] does not yield a statement
similar to that of Theorem 6 since the number of bags in the tree-decomposition with size
linear in g can be arbitrary (although each such bag contains the same 2g vertices of K2g in
addition to 9 other vertices). The main new component in the proof of Theorem 6 (compared
to the proofs given in [23,26,28]) is Lemma 12 given in Section 3, which is crucial so that we
are able to restrict the sizes of all but one bag in a tree-decomposition to a constant size.

We also note the following corollary of Theorem 6 for projective planar graphs.

▶ Corollary 7. Every graph embeddable in the projective plane is a subgraph of the strong
product of a path and a graph with tree-width at most 7.

2 Preliminaries

In this section, we introduce notation used throughout the paper. We use [n] to denote the
set of the first n positive integers, i.e., {1, . . . , n}. All graphs considered in this paper are
simple and have no parallel edges unless stated otherwise; if G is a graph, we use V (G) to
denote the vertex set of G. A triangulation of the plane or a surface of Euler genus g > 0 is
a graph embedded in such a surface such that every face is a 2-cell, i.e., homeomorphic to a
disk, and bounded by a triangle. A near-triangulation is a 2-connected graph G embedded
in the plane such that each inner face of G is bounded by a triangle.

We next give a formal definition of twin-width. A trigraph is a graph with some of its
edges being red; the red degree of a vertex v is the number of red edges incident with v. If
G is a trigraph and v and v′ form a pair of its (not necessarily adjacent) vertices, then the
trigraph obtained from G by contracting the vertices v and v′ is the trigraph obtained from
G by removing the vertices v and v′ and introducing a new vertex w such that w is adjacent
to every vertex u that is adjacent to at least one of the vertices v and v′ in G and the edge
wu is red if u is not adjacent to both v and v′ or at least one of the edges vu and v′u is red.
The twin-width of a graph G is the smallest integer k such that there exists a sequence of
contractions that reduces the graph G, i.e., the trigraph with the same vertices and edges
as G and no red edges, to a single vertex, and none of the intermediate graphs contains a
vertex of red degree more than k.

A rooted tree-decomposition T of a graph G is a rooted tree such that each vertex of T is
a subset of V (G), which we refer to as a bag, and that satisfies the following:

for every vertex v of G, there exists a bag containing v,
for every vertex v of G, the bags containing v form a connected subgraph (subtree) of T ,
and
for every edge e of G, there exists a bag containing both end vertices of e.

If the choice of the root is not important, we just speak about a tree-decomposition of a
graph G. The width of a tree-decomposition T is the maximum size of a bag of T decreased
by one, and the tree-width of a graph G is the minimum width of a tree-decomposition of G.
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A k-tree is defined recursively as follows: the complete graph Kk is a k-tree and if G is a
k-tree, then any graph obtained from G by introducing a new vertex and making it adjacent
to any k vertices of G that form a complete subgraph in G is also a k-tree. Note that a
graph G is a 1-tree if and only if G is a tree. More generally, a graph G has tree-width at
most k if and only if G is a subgraph of a k-tree, and if G has at least k vertices, then G is a
spanning subgraph of a k-tree. Note that k-trees have a tree-like structure given by their
recursive definition, which also gives a rooted tree-decomposition of G with width k: the
rooted tree-decomposition of Kk consists of a single bag containing all k vertices, and the
rooted tree-decomposition of the graph obtained from a k-tree G by introducing a vertex
w can be obtained from the rooted tree-decomposition TG of G by introducing a new bag
containing w and its k neighbors and making this bag adjacent to the bag of TG that contains
all k neighbors of w (such a bag exists since the subtrees of a tree have the Helly property).

A BFS spanning tree T of a (connected) graph G is a rooted spanning tree such that
the path from the root to any vertex v in T is the shortest path from the root to v in G; in
particular, a BFS spanning tree can be obtained by the breadth-first search (BFS). A layering
is a partition of a vertex set of a graph G into sets V1, . . . , Vk, which are called layers, such
that every edge of G connects two vertices of the same or adjacent layers. i.e., layers whose
indices differ by one. If T is a BFS spanning tree of G, then the partition of V (G) into sets
based on the distance from the root of T is a layering. A BFS spanning forest F of a (not
necessarily connected) graph G is a rooted spanning forest, i.e., a forest consisting of rooted
trees, such that there exists a layering V1, . . . , Vk compatible with F , i.e., for every tree of F ,
there exists d such that the vertices at distance ℓ from the root are contained in Vd+ℓ. Note
that if G is a graph and T a BFS spanning tree of G, then removing the same vertices in G

and T results in a graph G′ and a BFS spanning forest of G′. Finally, the layered tree-width
of a graph G is the minimum k for which there exists a tree-decomposition T of G and a
layering such that every bag of T contains at most k vertices from the same layer.

Consider a graph G and a BFS spanning tree T of G. A vertical path is a path contained
in T with no two vertices from the same layer, i.e., a subpath of a path from a leaf to the
root of T . The vertex of a vertical path closest to the root is its top vertex and the vertex
farthest is its bottom vertex. Vertical paths with respect to a BFS spanning forest are defined
analogously. If P is a partition of the vertex set of G to vertical paths, the graph G/P is
the graph obtained by contracting each of the paths contained in P to a single vertex; note
that the vertices of G/P can be viewed as the vertical paths contained in P and two vertical
paths P and P ′ are adjacent in G/P if the graph G has an edge between V (P ) and V (P ′).

3 Product Structure Theorem for graphs on surfaces

In this section, we provide the version of the Product Structure Theorem for graphs on
surfaces, which we need to prove our upper bound on the twin-width. We start with recalling
the following lemma proven by Dujmović et al. [26, 28]; note that the fundamental cycles
determined by the edges a1b1, . . . , agbg generate the fundamental group of the surface Σ.

▶ Lemma 8. Let G be a triangulation of a surface Σ of Euler genus g > 0 and let T be a
BFS spanning tree of G. There exist edges a1b1, . . . , agbg not contained in the tree T with the
following property. Let F0 be the subset of edges of G comprised of the g edges a1b1, . . . , agbg

and the edges of the 2g paths in T from the root of T to the vertices a1, . . . , ag and b1, . . . , bg.
The surface Σ after the removal of the edges contained in F0 is homeomorphic to a disk and
its boundary is formed by a closed walk comprised of the edges contained in F0.

MFCS 2024
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a1

b1

a2 b2

Figure 1 A rooted tree T0 and edges a1b1 and a2b2, which are drawn dashed, bounding a part
of the torus that is homeomorphic to a disk as in Lemma 9. Possible additional edges of the BFS
spanning tree T are drawn dotted.

Using Lemma 8, one can prove the following; we refer to Figure 1 for the illustration
of the notation in the case of the torus. The proof of the lemma is omitted due to space
constraints.

▶ Lemma 9. Let G be a triangulation of a surface of Euler genus g > 0 and let T be a BFS
spanning tree of G. There exist a closed walk W in G, a subtree T0 of T that contains the
root of T , and k vertex-disjoint vertical paths P1, . . . , Pk, k ≤ 2g, such that

the closed walk W bounds a part of the surface homeomorphic to a disk,
the sets V (P1), . . . , V (Pk) form a partition of V (T0), i.e., V (T0) = V (P1) ∪ · · · ∪ V (Pk),
and
the sequence of vertices given by traversing the closed walk W can be split into at most
6g − 1 segments such that all vertices of each segment belong to the same vertical path.

Lemma 9 is one of two key ingredients for the proof of Theorem 13. The second, which
is Lemma 12, relates to partitioning disk regions bounded by vertical paths. Similarly
to [26,28,52], we make use of Sperner’s Lemma, see e.g. [3, 50].

▶ Lemma 10. Let G be a near-triangulation. Suppose that the vertices of G are colored with
three colors in such a way that the vertices of each of the three colors on the outer face are
consecutive, i.e., they form a non-empty path. There exists an inner face that contains one
vertex of each of the three colors.

The proof of the next lemma follows the lines of the proof of [52, Lemma 8] and is omitted
due to space constraints. We say that a cycle is covered by paths P1, . . . , Pk if each path is a
subpath of the cycle and each vertex of the cycle belongs to one of the paths P1, . . . , Pk.

▶ Lemma 11. Let G be a near-triangulation and let T be a BFS rooted spanning forest
such that all roots of T are on the outer face. If the boundary cycle of the outer face can be
covered by at most 6 vertex-disjoint vertical paths, say P1, . . . , Pk, k ≤ 6, then there exists a
collection P of vertex-disjoint vertical paths such that

the collection P contains the paths P1, . . . , Pk,
every vertex of G is contained in one of the paths in P, and
G/P has a rooted tree-decomposition of width at most seven such that the root bag contains
the k vertices corresponding to the paths P1, . . . , Pk.
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To state the next lemma, which is the second ingredient to prove the main result of this
section, we need the following definition: if G′ is a subgraph of a graph G embedded in a
surface, a face of G′ is a region if its interior contains a vertex or an edge of G; an inner
region is an inner face that is a region. The proof of the lemma is omitted due to space
constraints.

▶ Lemma 12. Let G be a near-triangulation and let T be a BFS rooted spanning forest such
that all roots of T are on the outer face. If the boundary cycle of the outer face can be covered
by k ≥ 6 vertex-disjoint vertical paths P1, . . . , Pk, then there exist a 2-connected subgraph G′

of G and a collection P of vertex-disjoint vertical paths such that
P contains the vertical paths P1, . . . , Pk,
P contains at most max{6, 6k − 32} vertical paths,
the vertex set of G′ is the union of the vertex sets of the vertical paths contained in P,
the graph G′ contains the boundary of the outer face,
the graph G′ has at most max{1, 3k − 18} inner regions, and
the boundary cycle of each inner region of G′ can be covered by at most six paths such
that each is a subpath of a path from P.

We can now prove the main result of this section. Since a triangulation G in Theorem 13
is a subgraph of the strong product of a path and the graph G/P , Theorem 13 readily implies
Theorem 6. We remind that a tree-decomposition of G/P is a tree whose vertices are bags
containing paths from the set P (the vertices of G/P can be viewed as these paths).

▶ Theorem 13. Let G be a triangulation of a surface of Euler genus g > 0 and let T be a
BFS spanning tree of G. There exists a collection P of vertical paths that partition the vertex
set of G and the graph G/P has a rooted tree-decomposition such that

the root bag has size at most max{6, 32g − 37},
the root bag has at most 6 · max{1, 18g − 21} children, and
every bag except the root bag has size at most 8.

Moreover, every subtree T ′ of the tree-decomposition formed by a child of the root and all its
descendants satisfies the following:

the bags of T ′ contain at most six paths that are contained in the root bag, and
if P1, . . . , Pk are all paths from P that are contained in the bags of T ′ but not in the root
bag, the subgraph induced by V (P1) ∪ · · · ∪ V (Pk) has a component joined by an edge to
each of the paths that are contained both in the root bag and in T ′.

Proof. Fix a triangulation G of a surface of Euler genus g > 0 and a BFS spanning tree T

of G. We apply Lemma 9 to obtain a closed walk W , a subtree T0 of T and k vertex-disjoint
vertical paths P1, . . . , Pk, k ≤ 2g, with the properties given in Lemma 9. Let ℓ ≤ 6g − 1 be
the number of segments that cover the closed walk W as in the statement of the lemma.

We first deal with the general case ℓ ≥ 7 (note that if ℓ ≥ 7, then g ≥ 2). We apply
Lemma 12 to the near-triangulation obtained by cutting along the closed walk W , the BFS
spanning forest obtained from T0 by duplicating the vertices contained in W as needed,
and the ℓ vertical paths that corresponds to the segments that cover the closed walk W .
We obtain a collection P0 of vertex-disjoint vertical paths that contains at most 5ℓ − 32
additional vertical paths and a 2-connected subgraph G′ such that the boundary of each
inner region of G′ can be covered by at most six paths contained in P0. In addition, the
number of inner regions of G′, further denoted by f , is at most 3ℓ − 18. Since ℓ ≤ 6g − 1, we
obtain that P0 contains at most 30g − 37 additional vertical paths and that f ≤ 18g − 21.
We now identify the duplicated vertices of T0, i.e., G′ has been modified to a subgraph of G,
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and we replace in the collection P0 the ℓ paths that cover the closed walk W with the paths
P1, . . . , Pk. Hence, the size of the collection P0 is at most 32g − 37 (note that k ≤ 2g) and
the boundary of each region of G′ is still covered by at most six paths such that each is a
subpath of the vertical paths contained in P0 (two different paths can be subpaths of the
same vertical path).

If ℓ ≤ 6 (and so k ≤ 6), we set P0 to be the collection {P1, . . . , Pk} and G′ the graph
consisting of the vertices and the edges of the closed walk W ; note that the only face of G′

bounds a near-triangulation in G and f = 1.
We now proceed jointly for all values of ℓ. Suppose there is a region of G′ such that the

subgraph of G induced by the vertices of G inside this region does not have a component
joined by an edge to each of the (at most six) paths that cover the boundary of the region
and that are subpaths of paths from P0. Then, because G is a triangulation, there are two
vertices on the boundary of this region joined by an edge not contained in G′ and we add
this edge to G′. We proceed as long as such a region exists and eventually obtain a graph
G′′ with f ′ ≤ 6f regions such that the boundary of each region can be covered by at most
six paths, each subpath of a path contained in P0, and each region contains a component
that is joined by an edge to each of the (at most six) paths that cover its boundary. We now
apply Lemma 11 to each of the f ′ near-triangulations bounded by the regions of G′′ and
obtain rooted tree-decompositions T1, . . . , Tf ′ with width at most seven of each them. Let P
be the collection of vertical paths obtained from P0 by including all additional vertical paths
obtained by these f ′ applications of Lemma 11.

We now construct a rooted tree-decomposition of G/P . The root bag contains the vertices
corresponding to the paths in P0 and the subtrees rooted at its children are T1, . . . , Tf ′ . So,
the root bag has size |P0| ≤ max{6, 32g − 37}, it has f ′ ≤ 6f ≤ 6 max{1, 18g − 21} children,
and all bags except the root bag has size at most 8. Consider now a subtree Ti, i ∈ [f ′]. The
only paths from P0 contained in the bags of Ti are the at most six paths whose subpaths
cover the boundary of the corresponding region of G′′ and the vertices contained in the paths
of the bags of Ti but not in the paths of P0 are exactly the vertices of G contained inside the
region. Hence, the subgraph of G induced by such vertices has a component joined by an
edge to each of the paths from P0 contained in the root bag of Ti. We conclude that the
obtained rooted tree-decomposition of G/P has the properties given in the statement. ◀

4 Bound on twin-width

We now present the asymptotically optimal upper bound on the twin-width of graphs
embeddable in surfaces.

▶ Theorem 14. The twin-width of every graph G of Euler genus g ≥ 1 is at most

6 · max
{

3
√

47g + 1, 224
}

= 18
√

47g + O(1).

Proof. Fix a graph G of Euler genus g > 0 and let G0 be any triangulation of the surface
with Euler genus g that G is a spanning subgraph of G0, i.e., V (G0) = V (G) (to avoid
unnecessary technical issues related to adding new vertices, G0 may contain parallel edges).

We apply Theorem 13 to G0 and an arbitrary BFS spanning tree T0; let P be a collection
of vertical paths and T a rooted tree-decomposition as in Theorem 13. Let P1, . . . , Pk be
the vertical paths contained in the root bag and let T1, . . . , Tℓ be the subtrees rooted at the
children of the root bag (note that k ≤ 32g and ℓ ≤ 108g). Further, let Vi, i ∈ [ℓ], be the
vertices contained in the vertical paths in the bags of Ti that are not contained in the root
bag. Note that for every i = 1, . . . , ℓ, the subgraph induced by a set Vi has a component that
is joined by an edge to each path Pj , j ∈ [k], that is contained in a bag of the subtree Ti.
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Let H0 be the graph obtained from G0 by contracting each of the k+ℓ sets V (P1), . . . , V (Pk)
and V1, . . . , Vℓ to a single vertex. Let a1, . . . , ak and b1, . . . , bℓ be the resulting vertices.
Observe that H0 can be obtained from G0 by contracting edges and deleting vertices. Indeed,
the vertices a1, . . . , ak are obtained by contracting paths P1, . . . , Pk and each vertex bi,
i = 1, . . . , ℓ, can be obtained as follows: first contract the component of the subgraph induced
by the set Vi that is joined by an edge to each of the paths P1, . . . , Pk contained in the subtree
Ti to a single vertex, and then delete all the vertices of Vi not contained in this component.
Since H0 can be obtained from G0 by contracting edges and deleting vertices, the graph H0
can be embedded in the same surface as G0. Hence, the number of the edges of H0 is at
most 3(k + ℓ) − 6 + 3g ≤ 3(k + ℓ + g); the latter bound applies even if k + ℓ = 2. Since each
subtree Ti contains at most six of the paths P1, . . . , Pk, each of the vertices b1, . . . , bℓ has
degree at most six and all its (at most six) neighbors are among the vertices a1, . . . , ak.

Let s = 3
√

47g; note that s ≥ 6. We next split the vertices a1, . . . , ak into sets A1, . . . , Ak′

and the vertices b1, . . . , bℓ into sets B1, . . . , Bℓ′ as follows; a similar argument has also been
used in [2]. Keep adding the vertices b1, . . . , bℓ to the set B1 until the sum of their degrees
just exceeds s, then keep adding the remaining vertices to the set B2 until the sum of their
degrees just exceeds s, etc. Observe that the sum of the degrees of the vertices in each
of the sets B1, . . . , Bℓ′ is at most s + 6 ≤ 2s and the sum of the degrees of the vertices in
each of the sets B1, . . . , Bℓ′−1 is at least s. Each of the vertices a1, . . . , ak with degree larger
than s forms a set of size one, and the remaining vertices are split in the same way as the
vertices b1, . . . , bk. Each of the sets A1, . . . , Ak′ has either size one or the sum of the degrees
of its vertices is at most 2s, and the sum of the degrees of the vertices in each of the sets
A1, . . . , Ak′−1 is at least s. Let H ′

0 be the graph obtained from H0 by contracting the vertices
in each of the sets A1, . . . , Ak′ and each of the sets B1, . . . , Bℓ′ to a single vertex; note that
the graph H ′

0 does not need to be embeddable in the same surface as H0. Since the sum of
the degrees of the vertices a1, . . . , ak and b1, . . . , bℓ is at most 6(k + ℓ + g) ≤ 846g (as H0 has
at most 3(k + ℓ + g) edges), we obtain that k′ + ℓ′ ≤ 846g

s + 2 = 2s + 2, i.e., H ′
0 has at most

2s + 2 vertices.
We now describe the order in which we contract the vertices of G, and we analyze the

described order later. In what follows, when we say a layer, we always refer to the layers
given by the BFS spanning tree T0 from the application of Theorem 13. In particular, each
vertex of G is adjacent only to the vertices in its own layer and the two neighboring layers.
To make the presentation clearer, we split contracting vertices into three phases.

Phase I. This phase consists of ℓ subphases. In the i-th subphase, i ∈ [ℓ], we contract all
the vertices of the set Vi that are contained in the same layer to a single vertex in the way
that we now describe. Then, we possibly contract them to some of the vertices created in
the preceding subphases, i.e., those obtained by contracting vertices in V1 ∪ · · · ∪ Vi−1. In
this phase, we never contract two vertices contained in different layers and no contraction
involves any vertex from V (P1) ∪ · · · ∪ V (Pk).

Subphase. Fix i ∈ [ℓ]. Let Gi be the subgraph of G0/P induced by the vertices contained
in the bags of the subtree Ti and let n′ be the number of the paths P1, . . . , Pk that are
contained in the bags of the subtree Ti; note that n′ ≤ 6. If the graph Gi has less than 8
vertices, we proceed directly to the conclusion of the subphase, which is described below. If
the graph Gi has at least 8 vertices, Gi is a subgraph of a spanning subgraph of a 7-tree G′

i

such that the n′ vertices corresponding to the paths from the set {P1, . . . , Pk} are contained
in the initial complete graph of G′

i.
Fix any order Q1, . . . , Qn of the vertical paths corresponding to the vertices of G′

i such
that the neighbors of Qj , j ∈ [n], among Q1, . . . , Qj−1 form a complete graph of order at
most 7 in G′

i and the n′ paths from the set {P1, . . . , Pk} are the paths Q1, . . . , Qn′ . Let Cj be
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the complete subgraph of Gi formed by Qj and its (at most 7) neighbors among Q1, . . . , Qj−1.
Note that the neighbors in G of each vertex of a path Qj , j ∈ [n], are contained in at most
seven of the paths Q1, . . . , Qj−1, which are exactly the paths forming the complete graph
Cj . We define the j-shadow of a vertex v ∈ Vi to be the set of its neighbors contained in
the paths Q1, . . . , Qj−1. Since every vertex of Qj has at most 21 neighbors on the paths
Q1, . . . , Qj−1 (as its neighbors must be in the same or adjacent layers), the j-shadow of a
vertex contained in the path Qj has at most 21 vertices.

We now use the tree-like structure of the 7-tree G′
i to define the order of contractions

of the vertices contained in Vi; this part of our argument is analogous to that used in [40]
in relation to twin-width of graphs with bounded tree-width. We proceed iteratively for
j = n − 1, . . . , n′. Before we describe the order of contractions, we present the properties
satifised at the end of the iterations. At the end of the iteration for j = n − 1, . . . , n′ + 1, all
vertices of Vi that

are contained in paths of the same component of G′
i \ {Q1, . . . , Qj−1},

have the same j-shadow, and
are in the same layer

will have been contracted to a single vertex. At the end of the iteration for j = n′, all vertices
of Vi with the same (n′ + 1)-shadow that are contained in the same layer will have been
contracted to a single vertex. In particular, at the end of the iteration for j = n′, all vertices
of Vi contained in the same layer will have been contracted to at most 23n′ vertices (a vertex
can have at most three neighbors on each path Qj , j ∈ [n′], which are the vertex on the
same layer and the two vertices on the adjacent layers, and the (n′ + 1)-shadow is a subset
of these 3n′ vertices).

For j ∈ {n − 1, . . . , n′}, we now describe the order of contractions of the vertices in the
iteration for j. Let m be the number of components of G′

i \ {Q1, . . . , Qj} that are included in
the component of G′

i \ {Q1, . . . , Qj−1} that contains Qj , and let W1, . . . , Wm be the sets of
vertices obtained by contracting (in the previous iterations) vertices on the paths of these m

components; note that the vertices in W1, . . . , Wm are obtained by contracting some vertices
contained in V (Qj+1) ∪ · · · ∪ V (Qn) ⊆ Vi. Observe that each of the sets W1, . . . , Wm has
at most 221 vertices in each layer (as the (j + 1)-shadow of vertices on the same layer are
subsets of the same set of 3 · 7 = 21 vertices). We first contract each vertex of W2 to the
vertex W1 with the same (j + 1)-shadow on the same layer if such vertex exists. Next, we
contract each vertices of W3 to the vertex of W1 ∪ W2 with the same (j + 1)-shadow on the
same layer if such vertex exists, etc. At the end of this process, all vertices of W1 ∪ · · · ∪ Wm

with the same (j + 1)-shadow that are on the same layer have been contracted to a single
vertex (note that there are at most 224 such vertices in each layer as the (j + 1)-shadows are
subsets of the same set of 3 · 8 = 24 vertices). If j > n′, we contract all resulting vertices
with the same j-shadow that are on the same layer to a single vertex, and subsequently, we
contract the vertex contained on the path Qj to the vertex with the same j-shadow on the
same layer (if such vertex exists). The description of the iteration for j is now finished.

Conclusion of subphase. The i-th subphase concludes by contracting all the vertices of Vi

in the same layer to a single vertex, and if the vertex bi is not the vertex with the smallest
index in the set Bi′ such that bi ∈ Bi′ , i.e., bi−1 ∈ Bi′ , then we contract each resulting vertex
w to the vertex obtained in the (i′ − 1)-th subphase that is in the same layer as w (if such
vertex exists).

Phase II. The graph obtained after Phase I has at most k + ℓ′ vertices in each layer: k

correspond to the vertices a1, . . . , ak of the graph H0, i.e., they are contained on the paths
P1, . . . , Pk, and the remaining ℓ′ to the sets B1, . . . , Bℓ′ (see Figure 2). For every i = 1, . . . , k′,
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P1

P2

P3

P4

P5

B1 B2 B3

Figure 2 An example of a graph obtained after Phase I in the proof of Theorem 14 (k = 5 and
ℓ′ = 3). The edges of vertical paths are drawn in bold. Note that there are no edges between paths
corresponding to the set B1, B2 and B3.

we contract all the vertices on the paths of Ai that are in the same layer to a single vertex as
follows. Let Pi1 , . . . , Pin be the paths corresponding to the vertices of Ai. We first contract
the vertices of Pi1 and Pi2 that are in the same layer, proceeding from top to bottom (starting
with the layer that contains both such vertices). We then contract the vertices of Pi3 to
the vertices created previously, again in each layer proceeding from top to bottom, then the
vertices of Pi4 , etc. At the end of this phase, we obtain a graph that is a subgraph of the
strong product of a path and the graph H ′

0. Since H ′
0 has k′ + ℓ′ ≤ 2s + 2 vertices, each layer

now contains at most 2s + 2 vertices.

Phase III. We now contract all the vertices contained in the top layer to a single vertex,
then all the vertices of the next layer to a single vertex, etc. Finally, we contract the vertices
one after another to eventually obtain a single vertex, starting with the two vertices of the
top two layers, then contracting the vertex in the third layer, etc.

Analysis of red degrees. We now establish an upper bound on the maximum possible
red degree of the vertices of the graphs obtained throughout the described sequence of
contractions. We start with Phase I. During the i-th subphase and the iteration for j, the
only new red edges ever created are among the vertices of W1, . . . , Wm and the path Qj .
Since the vertices of W1 ∪ · · · ∪ Wm have at most 224 different (j + 1)-shadows (the neighbors
in their shadows are only on the paths contained in Cj), each vertex has neighbors in its
and the two neighboring layers, and we first contract all vertices of W1 ∪ W2 with the same
(j + 1)-shadow, then all vertices of W1 ∪ W2 ∪ W3, etc., the red degree of any vertex does not
exceed 2 · 3 · 224 = 3 · 225. We eventually arrive at having at most 224 vertices in each layer
and so their red degrees do not exceed 3 · 224. Then, the vertices with the same j-shadow
that are on the same layer are contracted, which can result in the vertices of Qj (temporarily)
having the red degree up to 3 · 224. At the end of iteration for j > n′, there are at most 221

vertices in each layer that have been obtained from W1 ∪ · · · ∪ Wm and so the red degree of
each of them is at most 3 · 221. Also note that there is no red edge between the vertices on
the paths Q1, . . . , Qj−1 and the remaining vertices of Vi.

At the beginning of the conclusion of the subphase, each layer has at most 218 vertices
obtained from contracting the vertices of Vi (note that this bound also holds when Gi has
less than eight vertices, i.e., when we proceeded directly to the conclusion of the subphase).
The conclusion of the subphase starts with contracting these vertices to a single vertex per
layer: this can increase the red degree of vertices on at most six paths P1, . . . , Pk and the
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red degree of each vertex on these paths can increase by at most three. When the subphase
finishes, each of the vertices contained in the paths P1, . . . , Pk has at most 3ℓ′ red neighbors
(although during the subphase it can have upto three additional red neighbors), and each of
the vertices obtained by contracting the vertices of V1, . . . , Vi has red degree at most 6s (since
the sum of the degrees of the vertices in each set B1, . . . , Bℓ′ is at most 2s). In particular,
the red degree of each vertex on the paths P1, . . . , Pk never exceeds 3(ℓ′ + 1). We conclude
that the red degree of none of the vertices exceeds the largest of the following three bounds:
3 · 225, 3(ℓ′ + 1) and 6s. Moreover, the red degree of no vertex exceeds max{3ℓ′, 6s} ≤ 6s + 3
(recall that ℓ′ ≤ 2s + 1) at the end of each subphase (and so also at the end of Phase I).

During Phase II, each vertex has at most max{k′ + ℓ′, 2s} red neighbors in its layer and
in each of the neighboring layers. Indeed, the vertices obtained from those on the paths
P1, . . . , Pk have at most k′ + ℓ′ red neighbors in each layer (at most k′ neighbors among
vertices obtained from contracting vertices on the paths P1, . . . , Pk, and there are at most ℓ′

vertices in each layer obtained by contracting vertices not on the paths P1, . . . , Pk) and the
vertices obtained from those not on the paths P1, . . . , Pk have at most 2s red neighbors in
each layer as this is simply the upper bound on the number of their neighbors on the paths
P1, . . . , Pk. Hence, during the entire Phase II, the red degree of any vertex never exceeds

3 max{k′ + ℓ′, 2s} ≤ 3 max{2(s + 1), 2s} = 6(s + 1).

Finally, since the number of vertices contained in each layer at the end of Phase II is at most
k′ + ℓ′, during the entire Phase III, the red degree of no vertex exceeds 3(k′ + ℓ′) − 1.

Hence, we have established that the red degree of no vertex exceeds max
{

6(s + 1), 3 · 225}
during the whole process, which implies the bound claimed in the statement. ◀

5 Algorithmic aspects

We now overview the main steps of the algorithm based on the proof of Theorem 14 that
computes a witnessing sequence of vertex contractions of a graph embeddable in a fixed
surface. We remark that we measure the time complexity in terms of the number of vertices,
and we recall the number of edges of an n-vertex graph embeddable in a surface of Euler
genus g is at most 3n + 3g − 6, i.e., linear in the number of vertices when g is fixed.

Since it is possible to find an embedding of a graph in a fixed surface in linear time [43,44],
we can assume that the input graph G is given together with its embedding in the surface.
When the embedding of G in the surface is fixed, we complete it to a triangulation G′ (we
permit adding parallel edges if needed). We next choose an arbitrary BFS spanning tree T of
G′ and identify g edges a1b1, . . . , agbg as described in Lemma 8, which was proven in [26,28].
The proof of Lemma 8 in [26, 28] proceeds by constructing a spanning tree in the dual graph
that avoids the edges of T and choosing the edges contained in neither T nor the spanning
tree of the dual graph as the edges a1b1, . . . , agbg; this can be implemented in linear time.
When the edges a1b1, . . . , agbg are fixed, the construction of the walk W and the vertical
paths described in Lemma 9 requires linear time.

We next compute the vertical paths described in Lemma 12 such that the boundary
of each region of the graph G′ obtained from the near-triangulation bounded by W can
be covered by subpaths of at most six vertical paths. This requires processing the near-
triangulation repeatedly following the steps of the inductive proof of Lemma 12: each step
can be implemented in linear time and the number of steps is also at most linear. We then
apply the recursive procedure described in the proof of Lemma 11 to each graph contained in
one of the regions of G′; again, the number of steps in the recursive procedure is linear and
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each can be implemented in linear time. In this way, we obtain the collection P of vertical
paths and the tree-decomposition T of G′/P described in Theorem 13. Note that the paths
P and the tree-decomposition T fully determine the order of the contraction of the vertices
and the order can be easily determined in linear time following the proof of Theorem 14.

We conclude that there is a quadratic time algorithm that constructs a sequence of
contractions such that the red degree of trigraphs obtained during contractions does not
exceed the bound given in Theorem 14. We remark that we have not attempted to optimize
the running time of the algorithm, which would particularly require to implement the recursive
steps of the proofs of Lemmas 11 and 12 more efficiently.
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Abstract
A normal sequence over {0, 1} is an infinite sequence for which every word of length k appears
with frequency 2−k. Agafonov’s eponymous theorem states that selection by a finite state selector
preserves normality, i.e. if α is a normal sequence and A is a finite state selector, then the subsequence
A(α) is either finite or a normal sequence.

In this work, we address the following question: does this result hold when considering probabil-
istic selectors? We provide a partial positive answer, in the case where the probabilities involved
are rational. More formally, we prove that given a normal sequence α and a rational probabilistic
selector P , the selected subsequence P (α) will be a normal sequence with probability 1.
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1 Introduction

Let α = x1x2 · · · be an infinite sequence over {0, 1}; α is said to be normal if every finite string
of length n over Σ occurs with limiting frequency 2−n in α [5]. By standard reasoning, almost
all infinite sequences are normal when the set {0, 1}ω of infinite sequences is equipped with
the usual Borel measure. Concrete examples of normal sequences include Champernowne’s
binary sequence 0100011011000001 · · · [11], and many more examples exist [7].

A finite-state selector is a deterministic finite automaton (DFA) that selects the nth symbol
from α if the length n − 1 prefix of α is accepted by the DFA. Agafonov’s Theorem [15, 1]
is the celebrated result that a sequence α is normal iff any DFA that selects an infinite
sequence from α, selects a normal sequence. While alternative proofs, generalizations [20] –
and counter-examples to generalizations [13] – abound, all results in the literature consider
deterministic or non-deterministic DFAs, but none consider probabilistic computation.

The extension to probabilistic selection is quite natural – not only are the underlying
notions probabilistic in nature (i.e., normality of the transformed sequence), but the machinery
of finite automata and similar computational devices itself has a 60-year history [18] of being
extended to probabilistic devices.

In the present paper we study finite-state selectors equipped with probabilistic transitions
from each state. As finite-state selectors can be viewed as devices sequentially processing
successively larger prefixes of infinite sequences, we eschew the machinery of stochastic
languages (where the initial state is a probability distribution on the states, and a string
is accepted according to thresholding rules) – instead initial and accepting states are kept
“as usual” in finite-state selectors. Probabilistic selection entails that normality may not be
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67:2 Agafonov’s Theorem for Probabilistic Selectors

preserved in all runs of an automaton: For example, consider an automaton with two states
S1 and S2, only one of which is accepting, and transitions on 0 and 1 from Si to Si (i ∈ {1, 2})
with probability 1/2 and from Si to Si+1 mod 2 with probability 1/2; then for any normal
sequence α, there is a run of the automaton on α that will select the sequence 0ω = 000 · · · .
The main result of the present paper is to show that the probability of having such runs is
zero – in fact that for any probabilistic finite-state selector A with rational probabilities and
any normal sequence α, the probability that a run of A on α will select a normal sequence
is 1. The proof progresses by treating the relatively tame case of dyadic probabilities (i.e.,
of the form a/2k with a and k non-negative integers) first, and subsequently “simulating”
finite-state selectors with arbitrary rational probabilities by “determinized” selectors with
dyadic probabilities.

Figure 1 shows a probabilistic finite-state selector (Figure 1a) with two probabilistic
transitions: one involves dyadic probabilities, the second one involves rational but non-dyadic
probabilities. On the right-hand side (Figure 1b) is the determinization of this selector1.
All unlabelled edges correspond to transitions valid for both 0 and 1. Determinizing the
selector is done by introducing gadgets (shown in red) that simulate the probabilistic choices
by drawing bits from a random advice sequence.
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(b) Determinization.

Figure 1 A probabilistic finite state selector and its determinization.
Unlabelled edges correspond to blind transitions, i.e. transitions valid for both 0 and 1.

1 In fact, the determinisation as defined below would impose that all transition are represented as rationals
of denominator 6 to ensure some regularity (this is discussed in Remark 20). For pedagogical purposes
we however decided to show both a gadget for a dyadic transition and one for a rational but non-dyadic
one.
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Contributions. We prove that (the pertinent analogue of) Agafonov’s Theorem holds in
the setting of probabilistic selection, namely that a probabilistic finite state selector with
rational probabilities preserves normality with probability 1. An added contribution is that
the proof methods involved are novel, and may be of independent interest. As in Agafonov’s
original paper, and to keep complexity simple, all results are stated for binary alphabets.
We fully expect all results to hold for arbitrary finite alphabets, mutatis mutandis.

Related work. Agafonov’s Theorem has been generalized in multiple ways beyond finite
automata (see, e.g.,[3, 2, 4, 10, 12, 20]). Conversely, it is known that when adding trifling
computational expressivity to finite-state selectors, counterexamples to Agafonov’s Theorem
for the resulting selectors can be constructed [13]. While some existing work considers
preservation of more general measures by finite automata, or similar selectors [9], and
substantial work exists relating equidistribution to various types of automata [19, 4] no
extant work considers stochastic selection. Agafonov’s Theorem itself has been proved by a
multitude of different techniques, e.g. [6, 8, 4]; it is conceivable that some of these can be
adapted to alternative proofs, or extensions, of the results reported in the present paper.

2 Preliminaries and notation

Elements of {0, 1}ω are denoted by α, β, etc. Finite sequences (elements of {0, 1}∗), or words
are denoted by u, v, w, etc.

If v, w ∈ {0, 1}∗, v · w denotes the concatenation of v and w; the definition extends to
v · α for α ∈ {0, 1}ω mutatis mutandis.

The non-negative integers are denoted by N, and the positive integers by N>0. If N ∈ N
and α = a1a2 · · · ∈ {0, 1}ω, we denote by α|≤N the finite sequence a1a2 · · · an.

Given a set S we write Dist(S) the space of probability distributions on S. Given a
probability distribution δ ∈ Dist(S), we say that δ is dyadic (resp. rational) when for all
s ∈ S, δ(s) is a dyadic number (resp. a rational number), that is a number of the form p

2k

for integers p, k.
We consider the standard probability measure Probρ∈{0,1}ω on {0, 1}ω equipped with the

least Σ-algebra induced by the cylinder sets Cw = {α | ∃α′ ∈ {0, 1}ω, α = w · α′} and such
that Probρ∈{0,1}ω Cw = 2−|w| for w ∈ {0, 1}∗. Elements of {0, 1}ω drawn according to this
measure are called fair random infinite sequence.

▶ Definition 1. Let a = a1 · · · am and b = b1 · · · bn be finite sequences such that n < m. An
occurrence of b in a is an integer i with 1 ≤ i ≤ m such that ai = b1, ai+1 = b2, . . . ai+n−1 =
bn. If α = a1a2 · · · is an infinite sequence and w = w1 · · · wn is a word, we denote by
♯N {w}(α) the number of occurrences of w in a1a2 · · · aN .

A sequence α ∈ {0, 1}ω is said to be normal if, for any m ∈ N and any w = w1 · · · wm ∈
{0, 1}m, the limit limN→∞ ♯N {w}(α)/N exists and equals 2−m.

▶ Definition 2. Let α = a1a2 · · · be an infinite sequence, and i and n be positive integers.
The ith block of size n in α, denoted Bi

n(α), is the finite sequence a(i−1)n+1a(i−1)n+2 · · · ain.
If w is a finite sequence of length k with k = jn + r for appropriate j and r < n, the ith
block of size n in a finite sequence of length k ≥ n is defined mutatis mutandis for any i ≤ j.

Given a word w ∈ {0, 1}n, we write ♯
(n)
N {w}(α) for the number of blocks of size n that

are equal to w in the prefix of size N × n:

♯
(n)
N {w}(α) = Card{i ∈ [0, N − 1] | Bi

n(α) = w},

MFCS 2024
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for k ∈ N and w ∈ {0, 1}k. We define freq(α, w) as the following limit, when it exists:

freq(α, w) = lim
N→∞

♯
(n)
N {w}(α)

N
.

Let k ∈ N, the sequence is length-k-normal if for all words w ∈ Σk, freq(α, w) is well
defined and equal to 2−k.

The sequence α is said to be block normal if it is length-k-normal for all k.

By standard results, an infinite sequence α is normal iff it is block-normal [14, 16, 17].
We now define the crucial notion of probabilistic finite state selector. The usual notion of

deterministic finite state selectors is a special case of this definition.

▶ Definition 3. A probabilistic finite state selector S is a tuple (Q, t, ι, A) where Q is a
finite set of states, ι ∈ Q is the initial state, A ⊂ Q is the subset of accepting states, and
t : Q × {0, 1} → Dist(Q) is a probabilistic transition function.

A rational (resp. dyadic, resp. deterministic) finite selector is a probabilistic finite state
selector in which all distributions t(q, a) (for q ∈ Q and a ∈ {0, 1}) are rational (resp. dyadic,
resp. deterministic).

Given a probabilistic selector S and a sequence α ∈ {0, 1}ω, one can define a probability
distribution over {0, 1}ω defined through selection of elements of α by S.

Observe that if S is deterministic, the induced probability distribution assigns probability
1 to the unique selected subsequence S(α) of α considered in the standard Agafonov theorem,
i.e. the sequence of bits αi in α such that S reaches an accepting state when given the prefix
α0 . . . αi−1.

▶ Definition 4. Given a probabilistic finite state selector S and an infinite sequence α, the
selection random variable S(α) is the random variable over {0, 1}ω defined as follows on
cylindrical sets Cw:

S(α)(Cw) =
∑

i1<···<i|w|∈N,αi1 αi2 ...αi|w| =w

Prob(S, i1 < · · · < i|w|)

where Prob(S, i1 < · · · < i|w|) denotes the probability that the first |w| times the selector S
reaches an accepting state on input α correspond to the indices i1 − 1, i2 − 1, . . . , i|w| − 1.

We finally recall the standard Agafonov theorem.

▶ Theorem 5. Let α ∈ {0, 1}ω be a sequence, and S a deterministic finite selector. Then α

is normal if and only if for all deterministic finite selector S, the subsequence S(α) is either
finite or normal.

2.1 Technical lemmas about normality
We will establish a few results on normal sequences that will be useful in later proofs. We
first define notions that will be used in the proofs.

▶ Definition 6. Let α ∈ {0, 1}ω be a sequence, and w ∈ {0, 1}∗ a word. We say that α is
w-normal if limN→∞

♯N {w}(α)
N = 2−|w|.

Given ϵ ∈ R, we say that α is w-normal up to ϵ if ∃N0, ∀N > N0,
∣∣∣ ♯N {w}(α)

N − 2−|w|
∣∣∣ < ϵ.
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We now restate a weaker property for sequences than normality: being normal for words
of a fixed length k. The main lemma associated to that notion will be that if a sequence is
normal for words of length mk for a fixed integer k and all integers m, then it is normal (i.e.
normal for words of arbitrary length).

▶ Definition 7. Let k ∈ N, the sequence is length-k-normal if for all words w ∈ {0, 1}k,
freq(α, w) is well defined and equal to 2−k.

▶ Lemma 8. Let α be a sequence in {0, 1}ω. The following are equivalent:
α is normal
there exists m ∈ N>0 such that α is length-km normal for all k ∈ N.

Proof. Consider a sequence α which is length-km normal for all k ∈ N, and fix a word
w ∈ {0, 1}n. We will use the length-mn normality of α. For this, we note that we can write:

♯
(n)
N {w}(α) =

∑
w1,...,wm∈{0,1}n

Card{i ∈ {1, . . . , m} | wi = w}.♯
(mn)
N/m{w1 · · · · · wm}(α)

=
∑

w1,...,wm−1∈{0,1}n

m∑
j=1

♯
(mn)
N/m{w1 · · · · · wj−1 · w · wj · wm−1}(α)

=
∑

w1,...,wm−1∈{0,1}n

m♯
(mn)
N/m{w · w1 · · · · · wm−1}(α)

As a consequence:

freq(α, w) = lim
N→∞

♯
(n)
N {w}(α)

N

= lim
N→∞

∑
w1,...,wm∈{0,1}n

Card{i ∈ {1, . . . , m} | wi = w}.♯
(mn)
N/m {w1 · · · · · wm}(α)

N

= lim
N→∞

∑
w1,...,wm−1∈{0,1}n

m.♯
(mn)
N/m

{w · w1 · · · · · wm−1}(α)
N

=
∑

w1,...,wm−1∈{0,1}n

lim
N→∞

♯
(mn)
N/m

{w · w1 · · · · · wm−1}(α)
N/m

=
∑

w1,...,wm−1∈{0,1}n

freq(α, w · w1 · · · · · wm−1)

=
∑

w1,...,wm−1∈{0,1}n

2−mn = 2n(m−1)2−mn = 2−n ◀

Now the following lemma states that the proportion of blocks equal to a fixed word w in
a prefix of size N of a normal sequence asymptotically behaves as a linear function. The
proof is quite straightforward.

▶ Lemma 9. Let α be a normal sequence and w ∈ {0, 1}n. Then ♯
(n)
N {w}(α) = 2−nN +o(N).

Proof. If it were not true, we would have that there exists some ϵ > 0 and a sequence
(Ni)i∈N such that

∣∣∣♯(n)
Ni

{w}(α) − 2−nNi

∣∣∣ > ϵNi for all i ∈ N. In other words,∣∣∣∣∣ ♯
(n)
Ni

{w}(α)
Ni

− 2−n

∣∣∣∣∣ > ϵ.

This contradicts the normality of α since it implies that limi→∞

∣∣∣∣ ♯
(n)
Ni

{w}(α)
Ni

− 2−n

∣∣∣∣ = 0. ◀
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We will now define a partition of the set of blocks (Bj
K(α))j∈N into groups (Ei)i∈N such

that each r ∈ {0, 1}K appears exactly once in each Ei. Those will be defined from a partition
(V K

i (α))i∈N of N such that the set V K
i (α) contains the indices of the blocks of size K of α

contained in Ei.

▶ Definition 10. Let α ∈ {0, 1}ω be a normal sequence, and K ∈ N. We define θi(α) :
{0, 1}K → N as mapping a word w to the value j such that Bj

K(α) is exactly the i-th block
of size K of α equal to w. (i.e. there are exactly i − 1 indices j1 < j2 < j3 < . . . < ji−1 < j

such that ∀k, Bjk

K (α) = w ∧ Bj
K(α) = w)

The sets of indices (V K
i (α))i∈N ⊂ N are then defined as the image Im(θi(α)).

The next lemma gives useful bounds on the V K
i .

▶ Lemma 11. Let α be a normal sequence, K ∈ N. Consider the sets V K
i (α) from

Definition 10. We have that maxN
i=1 max V K

i (α) = N2K +o(N), and |[N ]\
⋃N/2K

i=1 Vi| = o(N).

Proof. This comes from the fact that for any w ∈ {0, 1}n, ♯
(n)
N {w}(α) = 2−|w|N + o(N). ◀

The following probabilistic lemma is needed for the proof of Lemma 30.

▶ Lemma 12. Let Ω1 and Ω2 be two sample spaces. Let (Xi)i∈N be an iid family of r.v.
which take value in ΩN

1 , (Yi)i∈N another iid family of r.v. which take value in ΩN
2 . Let

f(X, Y ) be a function in Ω1 × Ω2 7→ R. Suppose ∀x ∈ Ω1, ∀y ∈ Ω2, f(X0, y) and f(x, Y0)
have finite expected value and variance then

PYi

(∑
x

[
P(X = x)

N∑
i=1

f(x, Yi)
]

= N × EX0,Y0(f(X0, Y0)) + o(N)
)

= 1.

Proof. This is a direct application of the law of large numbers . ◀

3 Dyadic case

We first restrict to dyadic selectors. Given a dyadic selector S = (Q, t, ι, A), we define its
dyadicity degree as the smallest integer D such that for all states q, q′ ∈ Q and element
a ∈ {0, 1}, the probability t(q, a)(q′) can be written as m

2D .
We first define the determinisation of a dyadic selector.

▶ Definition 13. Given a dyadic selector S = (Q, t, ι, A) of dyadicity degree D, we define a
determinisation Det(S) of S as the deterministic selector (Q′, t′, ι′, A′) where:

Q′ = Q ∪ Q × {0, 1} × {0, 1}≤D−1;
ι′ = ι and A′ = A;
the transition function t is defined as follows:

for all q ∈ Q, t′(q, a) = (q, a, ϵ) where ϵ is the empty word;
for all ((q, b, w) with w ∈ {0, 1}≤D−2, t′((q, b, w), a) = (q, b, w · a);
for all (q, b, w) with w ∈ {0, 1}D−1, t′((q, b, w), a) = q′ where q′ = ϕ(w · a) for a chosen
ϕq,b : 2D → Q such that the preimage of any s ∈ Q has cardinality ms where ms is
defined by t(q, b)(s) = ms

2D .

Now, the principle is that the behaviour of a dyadic selector S on the sequence α can be
simulated by the behaviour of a determinisation DetD(S) computing on an interleaving of α

and a random advice string ρ.



U. Léchine, T. Seiller, and J. G. Simonsen 67:7

▶ Definition 14. Let α, ρ be sequences in {0, 1}ω, and D ∈ N. The interwoven sequence
ID(α, ρ) is defined as the sequence:

α0ρ0 . . . ρD−1α1ρD . . . ρ2D−1 . . . .

Note that the interweaving of two normal sequences can be a non-normal sequence, e.g.
the interweaving of α with itself I1(α, α) is not normal.

▶ Lemma 15. Let S be a dyadic selector of dyadicity degree D. Then for all sequences
α ∈ {0, 1}ω the random variables S(α) and Det(S)(ID(α, ρ)) where ρ is drawn uniformly at
random in {0, 1}ω have the same distribution.

Proof. This is a special case of Lemma 23. ◀

Consider given a normal sequence α. We now prove that for almost all random advice
sequence ρ ∈ {0, 1}ω, the interwoven sequence ID(α, ρ) is normal. This is the key lemma in
the proof of Theorem 17.

▶ Lemma 16. Let α ∈ {0, 1}ω be a normal sequence. Then for all D ∈ N,

Probρ∈{0,1}ω [ID(α, ρ)is normal] = 1.

Proof. In case D = 0, the interwoven sequence ID(α, ρ) is equal to α. As a consequence,
Probρ∈{0,1}ω [ID(α, ρ) is normal] is equal to 1.

We now suppose that D ̸= 0. Given m ∈ N>0, we will show that ID(α, ρ) is length-
(D +1)m normal with probability 1. This implies that for almost all ρ ∈ {0, 1}ω, the sequence
ID(α, ρ) is length-(D + 1)m normal for every m ∈ N>0. By Lemma 8, this implies that for
almost all ρ ∈ {0, 1}ω, the sequence ID(α, ρ) is normal.

We now fix m ∈ N>0, and w ∈ {0, 1}(D+1)m. We will consider the block decomposition
of ID(α, ρ) into blocks of size (D + 1)m and prove that:

Probρ∈{0,1}ω

(
lim

N→∞

♯
((D+1)m)
N {w}(ID(α, ρ))

N
= 2−(D+1)m

)
= 1.

We note that blocks of size (D + 1)m follow the pattern:

αirj . . . rj+Dαi+1rj+D . . . rj+2D . . . αi+m−1rj+(m−1)D . . . rj+mD.

We will consider ⌊w⌋D = w0wD+1w2(D+1) . . . w(m−1)(D+1) the subword of w corresponding
to the positions of bits from α in this pattern.

We will consider the block decomposition of α into blocks of size m. Let idx(i) = j where
j is the i-th block such that Bm

j (α) = ⌊w⌋D. Note that this function is well defined because
α is a normal sequence. Note that if a given block B

(D+1)m
i (ID(α, ρ)) is equal to w, then

⌊B
(D+1)m
i (ID(α, ρ))⌋D should be equal to ⌊w⌋D. We write Ñ = ♯

(m)
N {⌊w⌋D}(α), note that it

is the maximal i such that idx(i) < N . We also define w̄ as the complementary subsequence
of w:

w̄ = w1 . . . wDwD+2 . . . w2(D+1)−1w2(D+1)+1 . . . wm(D+1)−1.

We introduce a new notation: we will write ♯
((D+1)m)
Im(idx)<N {w}(ID(α, ρ)) to denote the number

of blocks of size (D + 1)m equal to w within the blocks indexed by some j < N in Im(idx).
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P = Probρ∈{0,1}ω

(
lim

N→∞

♯
((D+1)m)
N {w}(ID(α, ρ))

N
= 2−(D+1)m

)

= Probρ∈{0,1}ω

 lim
N→∞

♯
((D+1)m)
Im(idx)<N {w}(ID(α, ρ))

N
= 2−(D+1)m


Now by Lemma 9 we have that limN→∞ Ñ = N.2−m. Hence:

P = Probρ∈{0,1}ω

 lim
Ñ→∞

♯
((D+1)m)
Im(idx)<N {w}(ID(α, ρ))

Ñ .2−m
= 2−(D+1)m


= Probρ∈{0,1}ω

 lim
Ñ→∞

♯
((D+1)m)
Im(idx)<N {w}(ID(α, ρ))

Ñ
= 2−Dm


= Probρ∈{0,1}ω

 lim
Ñ→∞

♯
(Dm)
Im(idx)<N {w̄}(ρ)

Ñ
= 2−Dm


By the law of large numbers, we have that

Probρ∈{0,1}ω

 lim
Ñ→∞

♯
(Dm)
Im(idx)<N {w̄}(ρ)

Ñ
= 2−Dm

 = 1,

which concludes the proof. ◀

This lemma then leads to the following theorem.

▶ Theorem 17. Let α ∈ {0, 1}ω be a sequence. Then α is normal if and only if for all dyadic
finite selector S the probability that S(α) is either finite or normal is equal to 1.

Proof. The right to left implication is simply a consequence of Agafonov’s theorem (The-
orem 5) since if for all dyadic finite selector S the probability that S(α) is either finite or
normal is equal to 1, then for all deterministic finite selector S the selected subsequence S(α)
is either finite or normal.

Now, suppose that the above implication from left to right is false. Then by Lemma 15
there exists a subset R ⊂ {0, 1}ω of strictly positive measure such that Det(S)(ID(α, ρ)) is
infinite and not normal for all ρ ∈ R. Since almost for almost all ρ ∈ {0, 1}ω the interwoven
sequence ID(α, ρ) is normal, this implies that there exists a ρ such that ID(α, ρ) is normal
and Det(S)(ID(α, ρ)) is infinite and not normal. But this contradict Agafonov’s theorem
(Theorem 5). ◀

We will now consider the case of rational selectors. The difficulty in adapting the proof
lies in the fact that the interwoven sequence has a less regular structure. In the above
proof, each block of size (D + 1)m followed the same pattern. But in the case of rational
selectors, the presence of feedback loops renders those pattern random, this makes the proof
significantly harder. Indeed in the dyadic case the value of a block of size (D + 1)m was
independent of the value of other blocks of size (D + 1)m, in the rational case this is no
longer true, thus we cannot apply the law of large numbers. Informally to make our proof
work we divide S(α) into non adjacent blocks whose values are independent, some bits are
not contained in any blocks but we argue they are few of them and thus they don’t prevent
S(α) from being normal.
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4 Rational selector

4.1 Determinisation
The first step in extending the results to the rational case is to define the determinization.
This will follow the same principle as for the dyadic case, but the parts of the determinized
automaton that simulates probabilistic choices will contain feedback loops. Nonetheless,
incorporating feedback loops is enough to represent any rational distribution, as shown in
the next lemma.

▶ Definition 18. A (k, f)-gadget is a regular binary tree of depth k, extended with blind
transitions from the last F leaves to the root.

·

·

·

·

·

·

·

·
·
·
·
·
·
·
·

0

1

0

1

0

1

0

1
0

1
0

1
0

1

_

_

_

▶ Lemma 19. Any rational distribution Dist(S) is simulated by a gadget.

Proof. Let p1, . . . , pk be rationals with
∑

i pi = 1, and suppose pi ≤ pi+1 for all i. Consider
M the smallest common multiple of all denominators of the elements pi, and write pi = p̃i

M .
We will denote by qi =

∑i
j=1 p̃i. Note that q0 = 0 and qk =

∑
i p̃i = M . Now consider P

the smallest natural number such that 2P ≥ M . We build the regular automaton of depth P

with feedback loops on 2P − M leaves. We will show that the probability p of reaching a leaf
within [qi + 1, qi+1] is equal to pi. One only need to compute:

p = p̃i

2P

∑
m≥0

(
2P − M

2P

)m

= p̃i

2P

1
1 − 2P −M

2P

= p̃i

2P

2P

2P − (2P − M) = p̃i

2P

2P

M
= p̃i

M
= pi ◀

We will now define the determinisation of a rational selector in a similar way as for the
dyadic case. First, since the selector is finite, one can write all rational numbers involved
with a common denominator, say k. Given a rational selector S, we will call k the rationality
degree of S. Then each transition will be simulated by a gadget as defined above.

▶ Remark 20. Note that since all rational distribution are represented with the same
denominator, then all gadgets will have the same size. Indeed, let us define the dyadicity
degree D of a rational selector S as the smallest integer such that 2D ≥ k, where k is
its rationality degree. Then the feedback edges of all gadgets corresponding to rational
transitions correspond to the 2D − k last edges in the gadget, and this does not depend on
the specific transition considered.

The determinisation therefore has a quite regular structure which will be mirrored in the
corresponding interwoven sequences.
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▶ Definition 21. Let S = (Q, ι, t, A) be a rational selector of rationality degree k and dyadicity
degree D. We define its determinisation Det(S) as the deterministic selector (Q′, ι, t, A)
where:

Q′ = Q ∪ Q × {0, 1} ×
(
{0, 1}≤k−1 ∪ {return}

)
;

ι′ = ι and A′ = A;
the transition function t is defined as follows:

for all q ∈ Q, t′(q, a) = (q, a, ϵ) where ϵ is the empty list;
for all ((q, b, w) with w ∈ {0, 1}≤k−2, t′((q, b, w), a) = (q, b, w · a);
for all (q, b, w) with w ∈ {0, 1}k−1 and a ∈ {0, 1}:
∗ if w · a belongs to the 2D − k last leaves (i.e. the 2D − k largest elements of {0, 1}D

for the natural order), then t′((q, b, w), a) = (q, b, return);
∗ otherwise, t′((q, b, w), a) = q′ where q′ = ϕ(w ·a) for a chosen ϕq,b : k → Q such that

the preimage of any s ∈ Q has cardinality ms where ms is defined by t(q, b)(s) = ms

k ;
for all (q, b, return) and any a ∈ {0, 1}, t′(q, b, return) = (q, b, ϵ).

▶ Definition 22. Let S be a rational selector of rationality degree k and dyadicity degree D,
α ∈ {0, 1}ω an input sequence, and ρ ∈ {0, 1}ω an advice sequence. We define the interwoven
sequence ID

k (α, ρ) as:

α1ρ1 . . . ρi1α2ρi1+1 . . . ρi2α3 . . . ,

where i1 < i2 < . . . is the sequence of indices ij such that ρij+1 . . . ρij+1 is equal to
w1r1w2r2 . . . rmwm+1 where:

w1, w2, . . . , wm are among the 2D − k greatest elements in {0, 1}D (considered with the
natural alphabetical order);
wm+1 belongs to the k smallest elements in {0, 1}D;
ri are bits in {0, 1} which we will call return bits, corresponding to feedback loops.

We note that this is a direct generalisation of the dyadic case, i.e. if the considered
selector is dyadic, then the interwoven sequence ID

2D just defined coincides with the definition
from the previous section. Similarly, the determinisation of a dyadic selector is a special case
of the determinisation of a rational selector. We can see here the difficulty in adapting the
proof to the rational case arising: instead of interweaving one block of ρ of size D between
each bit of α, we interweave a block of bits from ρ of variable length.

Note however that we carefully defined the determinisation so that the size of these blocks
does not depend on the values αi. Moreover, feedback loops introduce random return bits,
allowing us to write the interwoven sequence as a sequence of blocks of the form ar1 . . . rD

where a is either a bit from α or a return bit from ρ and r1 . . . rD are bits from ρ.
First, we check that the determinisation simulates the rational selector when given random

advice strings.

▶ Lemma 23. Let S be a rational selector of rationality degree k and dyadicity degree D.
Then for all sequence α ∈ {0, 1}ω the random variables S(α) and Det(S)(ID

k (α, ρ)) where ρ

is an infinite fair random sequence, have the same distribution.

Proof. Let ρ be an infinite fair random sequence. By construction of Det(S)(ID
k (α, ρ)), for

a any two state q and q′ the probability of going from q to q′ in Det(S)(ID
k (α, ρ)) (ignoring

the gadget states in between) is equal to the probability of going from q to q’ in S(α). ◀



U. Léchine, T. Seiller, and J. G. Simonsen 67:11

4.2 Rational selectors preserve normality
In the following, α will be a infinite sequence, not considered normal unless explicitly stated.
We will write w to denote a finite word. We denote by ρ and τ fair infinite random sequences,
and by r a finite random sequence. Lastly, q will be the probability to loop back at the end
of a gadget, equal to 1 − k

2D . We will denote by A(N) N−→ B(N)(1 ± ϵ) the fact that

∃N0, ∀N > N0, B(N)(1 − ϵ) < A(N) < B(N)(1 + ϵ).

To prove that rational selectors preserve normality, we will prove in this section that
Pρ(ID

k (α, ρ)is normal) = 1, that is the generalised version of Lemma 16. As in the dyadic
case, this is the crux of the problem, and the proof of the main theorem will easily follow. In
order to prove this technical lemma, we analyze a process we call F which takes a sequence
α and inserts in between every bit of α a random amount of random bits. We will then show
that if α is normal the sequence F(α) obtained in this way is normal. Finally we will argue
that normality of ID

k (α, ρ) amounts to the normality of F(α).

▶ Definition 24 (Random process Fq). Suppose given K ∈ N, w ∈ {0, 1}K , q ∈ [0; 1[, and
τ ∈ {0, 1}ω. We define Fq(w, τ) ∈ {0, 1}∗ as the random variable described in Figure 2 where
we consume a bit of w when we get to state W and a bit of τ when we get to state T . The
process stops when the state W is reached and there are no more bits of w to be consumed.
The output is all the consumed bit in timely order.

We denote by Fq(w) the random variable Fq(w, τ) where τ is a fair random infinite
sequence.

In the following, we may not specify q and just write F(w, τ) when the context is clear.

▶ Remark 25. Note that τ needs to be infinite because we have no bound on how many bits
of it we may consume.

W T

1 − q
q

1 − q

q Example: if w = 0110, τ = 10010..., then

F(w) = 010110010,

with the sequence of states

W T T W W T W T T W .

Figure 2 The random process F .

For now F has only been defined on finite strings. We extend it to infinite strings in an
intuitive way.

▶ Definition 26. Suppose given α ∈ {0, 1}ω, K ∈ N, and q ∈ R. Let (Fi)i∈N be an iid
family of random variables of law F . The random variable Fq(α) is the infinite sequence
distributed as the concatenation of the Fi applied to the blocks Bi

K(α):

F0(B0
K(α))F1(B1

K(α))F2(B2
K(α)) . . . .

Note that the value of K does not change the distribution of the random variable F(α),
hence the definition is unambiguous.

In the next lemma we analyze the length of F(w).
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▶ Lemma 27. Let q ∈ [0; 1[ and (Fi) be an iid family of random variables of law Fq. Then
for all K ∈ N and for any family (wi)i∈N ∈ ({0, 1}K)N,

P

∑
i≤N

|Fi(wi)| = NKq−1 + o(NKq)

 = 1.

Proof. By standard Markov chain analysis, the expected value of |Fi(wi)| is Kq−1 and its
variance is finite, furthermore the Fi(wi) are independent the strong law of large number
therefore applies and we get the desired result. ◀

In the next lemma we show that for any w we can approximate the number of w

in F(α) = F0(B0
K(α))F1(B1

K(α))F2(B2
K(α)) . . . by adding up the number of w in each

Fi(Bi
K(α)) separately. The larger K the more precise the approximation. What we gain

from this separation is that the random variable ♯si−|w|{w}(Fi(Bi
K(α))) are independent

and we can apply the law of large numbers. In contrast in F(α) where we concatenate the
Fi(Bi

K(α)) we do not have independence because knowing that w appears at the end of
F1(B1

K(α)) may influence that it appears at the beginning of F2(B2
K(α)).

▶ Lemma 28. Let α ∈ {0, 1}ω be a normal sequence, w ∈ {0, 1}M be a word, and
(Fi)i∈N be an iid family of random variables of law F . For all K ∈ N, we write β =
F0(B0

K(α))F1(B1
K(α))F2(B2

K(α)) . . . and for all i we define si = |Fi(Bi
K(α))| and SN =∑N

i=0 si. Then we have that[
N∑

i=0
♯si−|w|{w}(Fi(Bi

K(α)))
]

− ♯SN
{w}(β) < MN.

Proof. First note that we count indices up to si − |w| in ♯si−|w|{w}(Fi(Bi
K(α))) because

if w appears in Fi(Bi
K(α)) it must appear before the last |w| bits. For this reason we also

mention that ♯si−|w|{w}(Fi(Bi
K(α))) = ♯|w|{w}(Fi(Bi

K(α))).
Then note that ♯SN

{w}(β) ≥
[∑N

i=0 ♯si−|w|{w}(Fi(Bi
K(α)))

]
indeed if w appears some-

where in one of the Fi(Bi
K(α)) then it also appears in β.

Therefore every w is counted in ♯SN
{w}(β) and not in

[∑N
i=0 ♯si−|w|{w}(Fi(Bi

K(α)))
]

appears at an index in the |w| last bits of an Fi(Bi
K(α)). There are at most |w| × N = MN

of those. ◀

We have that
∑N

i=0 |Fi(Bi
K(α))| tends to NKq−1, thus by taking large values of K the

discrepancy MN of the number of w noticed in the previous theorem can be made negligible
when compared to the size of the string.

In the next theorem we just prove that for a random ρ the proportion of w in Fi(Bi
K(ρ))

is approximately 2−|w||Fi(Bi
K(ρ))| on average.

▶ Lemma 29. Suppose given ρ ∈ {0, 1}ω a fair random infinite sequence, q ∈ [0; 1[, and
w ∈ {0, 1}M . Let (Fi)i∈N be an iid family of random variables of law Fq. For all i, we write
si = |Fi(Bi

K(ρ))| and for all N , SN =
∑N

i=0 si. Then for any ϵ > 0, there exists K ∈ N
such that:∣∣∣E(♯si−|w|{K}(Fi(Bi

w(ρ)))) − 2−|w|Kq−1
∣∣∣ < ϵ.

Proof. This result can be shown by standard analysis of fair random sequences of size Kq−1.
Indeed for a random ρ, Fi(Bi

K(ρ)) is just a random sequence of expected size Kq−1. Let
ϵ ∈ R. If K is large enough, there exists some ϵ′ ∈ R such that a random sequence of size
Kq−1 contains on average 2−|w|Kq−1 + ϵ′ occurrences of w where |ϵ′| < ϵ. ◀
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▶ Lemma 30. Let α be a normal sequence, for any w ∈ {0, 1}∗ and q ∈ [0, 1[, Fq(α) is
w-normal with probability 1.

Proof of Lemma 30. Let (Fi)i∈N be random independent processes F . Let α be a normal
sequence. Let w ∈ {0, 1}∗, ϵ′ ∈ R, and q ∈ [0; 1[. Then

P (Fq(α)is w-normal up to ϵ′) = 1 ⇔ P

(
lim
N

♯N {w}(Fq(α))
N

= 2−|w| ± ϵ

)
= 1.

Using Lemma 28 by introducing independent random variables Fi of law Fq, and writing
si = |Fi(Bi

K(α))|, the above result is implied by:

∀ϵ, ∃K,P

∑
i≤N

♯si−|w|{w}(Fi(Bi
K(α))) N−→ 2−|w|KNq−1(1 ± ϵ)

 = 1.

Take Vi(α) as defined in definition 10. Call BN = {i ∈ [1; N
2K ] | max(Vi(α)) < N}. We group

the indices of blocks Bj
K(α) into sets Vi of size 2K and such that |Vi| = 2K . We may also

change sj − |w| to sj as explained in the proof of Lemma 28. Then the above is equivalent to

∀ϵ, ∃K,P
(

S1 + S2
N−→ 2−|w|KNq−1(1 ± ϵ)

)
= 1,

where

S1 =
∑

i∈BN

∑
j∈Vi(α)

♯sj
{w}(Fj(Bj

K(α))), S2 =
∑

j∈[N ]\
⋃

i∈BN
Vi

♯sj
{w}(Fj(Bj

K(α))).

By Lemma 11, we have that |BN | = N
2K + g(N), where g(N) = o(N). The equation can thus

be further rewritten as:

P
(

T1 + T2 + T3
N−→ 2−|w|KNq(1 ± ϵ)

)
= 1,

where:

T1 =
∑

i∈[N/2K ]

∑
j∈Vi(α)

♯sj
{w}(Fj(Bj

K(α))),

T2 =

N

2K +g(N)∑
i=1+N/2K

∑
j∈Vi(α)

♯sj {w}(Fj(Bj
K(α))),

T3 =
∑

j∈[N ]\
⋃

i∈BN
Vi

♯sj {w}(Fj(Bj
K(α))).

We now consider each term separately.

The term T1. By construction of the Vi, as j ranges across all values in Vi, Bj
K(α) takes

all values in {0, 1}K . By creating an appropriate bijection between j and (i, r), we can write∑
i∈[ N

2K ]

∑
j∈Vi(α)

♯sj
{w}(Fj(Bj

K(α))) =
∑

i∈[ N

2K ]

∑
r∈{0,1}K

♯si,r
{w}(Fi,r(r)).

We recognize a sum over expectations as in Lemma 12. By Lemma 29, we can take K big
enough such that the expected value of ♯si,r {w}(Fi,r(r)) is Kq−12−|w|(1 ± ϵ). Thus:

∀ϵ, ∃K,P

 ∑
i∈[ N

2K ]

∑
j∈Vi(α)

♯sj
{w}(Fj(Bj

K(α))) N−→ 2−|w|KNq−1(1 ± ϵ)

 = 1.
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The term T2. We have that

∀ϵ, ∀K,P

 N

2K +g(N)∑
i=1+N/2K

∑
j∈Vi(α)

♯sj
{w}(Fj(Bj

K(α)))

 = o(N)

 = 1,

because g(N) = o(N) and the random variable ♯sj
{w}(Fj(Bj

K(α))) has finite expected value
and variance (in particular constant in N).

The term T3. We have that

P

 ∑
j∈[N ]\

⋃
i∈BN

Vi

♯sj {w}(Fj(Bj
K(α))) = o(n)

 = 1.

The sum is over o(N) terms by Lemma 11 and the random variable ♯sj
{w}(Fj(Bj

K(α))) is
of finite expected value and variance.
By combining the three results we can get that

∀ϵ′ ∈ R,P(F(α)is w-normal up to ϵ′) = 1.

We define the sequence (ϵn)n∈N ∈ RN as ϵn = 1/(n + 1). We have that

P(∀n, F(α)is w-normal up to ϵn) = 1

as an intersection of countably many events of probability 1. We then get, using the fact
that all Cauchy sequences converge on R, that P(F(α)is w-normal) = 1. ◀

▶ Lemma 31. Let α be a normal number then F(α) is normal with probability 1.

Proof. By lemma 30 ∀w ∈ {0, 1}∗, F(α) is w-normal with probability 1. P(F(α)is normal) =
P(∀w ∈ {0, 1}∗, F(α)is w-normal), since this is an intersection of countably many event of
probability 1, we have that F(α) is normal with probability 1. ◀

▶ Lemma 32. For any positive integer D, any k ∈ [2D−1; 2D]

Pρ(ID
k (α, ρ)is normal) = 1.

Proof. Let D be a positive integer, k ∈ [2D−1; 2D]. There are 3 kinds of bits in ID
k (α, ρ):

bits from α, bits from ρ appearing inside the gadgets (we call this sequence γ) and bits from
ρ corresponding to return bits (we call this infinite sequence of bits τ). Note that γ and τ

are both independent fair random infinite sequences.
Note that in ID

k (α, ρ), we find every bit from α and τ at indices multiple of D + 1. We
define the infinite sequence y as such: ∀i ∈ N, yi = ID

k (α, ρ)i(D+1).
Notice that ID

k (α, ρ) = ID(y, γ) (where the second I is from defintion 14). Since γ is a
fair infinite random sequence then by using theorem 16 if y is normal then so is ID

k (α, ρ)
with probability 1 over γ.

Thus now we only need to show that y is normal with probability 1. Notice that the
distribution of y is the same as Fq(α) with q = 1 − k

2D . Therefore by theorem 31 y is normal
with probability 1. ◀

This gives the main theorem. The proof follows the proof of Theorem 17, using Lemma 32
and and Lemma 23.
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▶ Theorem 33. Let α ∈ {0, 1}ω be a sequence. Then α is normal if and only if for all
rational selector S the probability that S(α) is either finite or normal is equal to 1.

While we think the equivalent statement to hold for general probabilistic selectors, we
believe that establishing such a result would require a different proof method.
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Abstract
Given a set P of n points and a set S of m disks in the plane, the disk hitting set problem asks
for a smallest subset of P such that every disk of S contains at least one point in the subset. The
problem is NP-hard. This paper considers a line-constrained version in which all disks have their
centers on a line. We present an O(m log2 n + (n + m) log(n + m)) time algorithm for the problem.
This improves the previous result of O(m2 log m + (n + m) log(n + m)) time for the weighted case
of the problem where every point of P has a weight and the objective is to minimize the total
weight of the hitting set. Our algorithm also solves a more general line-separable problem with a
single intersection property: The points of P and the disk centers are separated by a line ℓ and the
boundary of every two disks intersect at most once on the side of ℓ containing P .
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1 Introduction

Let P be a set of n points and S a set of m disks in the plane. The hitting set problem is to
compute a smallest subset of P such that every disk in S contains at least one point in the
subset (i.e., every disk is hit by a point in the subset, and the subset is called a hitting set).
The problem is NP-hard, even if all disks have the same radius [18, 25]. Polynomial-time
approximation algorithms are known for the problem, e.g., [3, 15,16,21,24,25].

In this paper, we consider the line-constrained version of the problem, where centers of
all disks are on a line while the points of P can be anywhere in the plane. The weighted
case of the problem was studied by Liu and Wang [22], where each point of P has a weight
and the objective is to minimize the total weight of the hitting set. Their algorithm runs in
O((m + n) log(m + n) + κ log m) time, where κ is the number of pairs of disks that intersect
and κ = O(m2) in the worst case. They reduced the runtime to O((m + n) log(m + n)) for
the unit-disk case, where all disks have the same radius [22]. Our problem in this paper is
for the unweighted case. To the best of our knowledge, we are not aware of any previous
work that particularly studied the unweighted hitting set problem for line-constrained disks.
We propose an algorithm of O(m log2 n + (n + m) log(n + m)) time, which improves the
weighted case algorithm of O(m2 log m + (n + m) log(n + m)) worst-case time [22]. Perhaps
theoretically more interesting is that the worst-case runtime of our algorithm is near linear.
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1.1 Related work

A closely related problem is the disk coverage problem, which is to compute a smallest subset
of S that together cover all the points of P . This problem is also NP-hard because it is
dual to the hitting set problem in the unit-disk case (i.e., all disks have the same radius).
Polynomial-time algorithms are known for certain special cases, e.g., [1,4,9,10]. In particular,
the line-constrained problem (in which all disks are centered on a line) was studied by
Pedersen and Wang [26]. Their algorithm runs in O((m + n) log(m + n) + κ log m) time,
where κ is the number of pairs of disks that intersect and κ = O(m2) in the worst case;
they also solved the unit-disk case in O((m + n) log(m + n)) time. As noted above, in the
unit-disk case, the coverage and hitting set problems are dual to each other and therefore
the two problems can essentially be solved by the same algorithm. However, this is not the
case if the radii of the disks are different.1

In addition, the O((m+n) log(m+n)+κ log m) time algorithm of Pedersen and Wang [26]
also works for the weighted line-separable unit-disk version, where all disks have the same
radius and the disk centers are separated from the points of P by a line.

All the above results are for the weighted case. The unweighted disk coverage case was
also particularly studied before. Liu and Wang [23]2 considered the line-constrained problem
and gave an O(m log n log m + (n + m) log(n + m)) time algorithm. For the line-separable
unit-disk case, Ambühl et al. [1] derived an algorithm of O(m2n) time, which was used as a
subroutine in their algorithm for the general coverage problem in the plane (without any
constraints). An improved O(nm + n log n) time algorithm is presented in [8]. Liu and
Wang’s approach [23] solves this case in O((n + m) log(n + m)) time.

If disks of S are half-planes, the problem becomes the half-plane coverage problem. For
the weighted case, Chan and Grant [4] proposed an algorithm for the lower-only case where
all half-planes are lower ones; their algorithm runs in O(n4) time when m = n. With the
observation that a half-plane may be considered as a unit disk of infinite radius, the lower-
only half-plane coverage problem is essentially a special case of the line-separable unit-disk
coverage problem [26]. Consequently, applying the algorithm of [26] can solve the weighted
lower-only case in O(n2 log n) time (when m = n) and applying the algorithm of [23] can
solve the unweighted lower-only case in O(n log n) time. Wang and Xue [28] derived another
O(n log n) time algorithm for the unweighted lower-only case with a different approach and
also proved an Ω(n log n) lower bound under the algebraic decision tree model by a reduction
from the set equality problem [2] (note that this leads to the same lower bound for the
line-separable unit-disk coverage problem). For the general case where both upper and lower
half-planes are present, Har-Peled and Lee [17] solved the weighted problem in O(n5) time.
Pedersen and Wang [26] showed that the problem can be reduced to O(n2) instances of the
lower-only case problem. Consequently, applying the algorithms of [26] and [23] can solve
the weighted and unweighted cases in O(n4 log n) and O(n3 log n) time, respectively. Wang
and Xue [28] gave a more efficient algorithm of O(n4/3 log5/3 n logO(1) log n) time for the
unweighted case.

1 Note that [12] provides a method to reduce certain coverage problems to instances of the hitting set
problem; however, the reduction algorithm, which takes more than O(n5) time, is not efficient.

2 See the arXiv version of [23], which improves the result in the original conference paper. The algorithms
follow the same idea, but the arXiv version provides more efficient implementations.
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Figure 1 Illustrating the line-separable single-intersection case: Centers of all disks are below ℓ.

1.2 Our result
Instead of solving the line-constrained problem directly, we tackle a more general problem in
which the points of P and the centers of the disks of S are separated by a line ℓ such that the
boundaries of every two disks intersect at most once on the side of ℓ containing P (see Fig. 1).
We refer to it as the line-separable single-intersection hitting set problem (we will explain
it later why this problem is more general than the line-constrained problem). We present
an algorithm of O(m log2 n + (n + m) log(n + m)) time for the problem. To this end, we
find that some points in P are “useless” and thus can be pruned from P . More importantly,
the remaining points have certain properties so that the problem can be reduced to the 1D
hitting set problem, which can then be easily solved. The algorithm itself is relatively simple
and quite elegant. However, one challenge is to show its correctness, and specifically, to prove
why the “useless” points are indeed useless. The proof is lengthy and fairly technical, which
is one of our main contributions.

The line-constrained problem. To solve the line-constrained problem, where all disks of S

are centered on a line ℓ, the problem can be reduced to the line-separable single-intersection
case. Indeed, without loss of generality, we assume that ℓ is the x-axis. For each point p

of P below ℓ, we replace p by its symmetric point with respect to ℓ. As such, we obtain
a set of points that are all above ℓ. Since all disks are centered on ℓ, it is not difficult to
see that an optimal solution using this new set of points corresponds to an optimal solution
using P . Furthermore, since disks are centered on ℓ, although their radii may not be equal,
the boundaries of any two disks intersect at most once above ℓ. Therefore, the problem
becomes an instance of the line-separable single-intersection case. As such, applying the
algorithm for line-separable single-intersection problem solves the line-constrained problem
in O(m log2 n + (n + m) log(n + m)) time. Therefore, in the rest of the paper, we will focus
on solving the line-separable single-intersection problem.

The unit-disk case. As mentioned earlier, the unit-disk case problem where all disks have
the same radius can be reduced to the coverage problem (and vice versa). More specifically,
if we consider the set of unit disks centered at the points of P as a set of “dual disks” and
consider the centers of the disks of S a set of “dual points”, then the hitting set problem
is equivalent to finding a smallest subset of dual disks whose union covers all dual points.
Consequently, applying the line-separable unit-disk coverage algorithm in [23] solves the
hitting set problem in O((n + m) log(n + m)) time. Nevertheless, we show that our technique
can directly solve the hitting set problem in this case in the same time complexity.

The half-plane hitting set problem. As in the coverage problem discussed above, if disks of
S are half-planes, the problem becomes the half-plane hitting set problem. For the weighted
case, the approach of Chan and Grant [4] solves the lower-only case in O(n4) time when
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m = n. Again, with the observation that a half-plane may be viewed as a unit disk of infinite
radius, the lower-only half-plane hitting set problem is a special case of the line-separable
unit-disk hitting set problem. As such, applying the algorithm of [22] can solve the weighted
lower-only case in O(n2 log n) time (when m = n) and applying the unit-disk case algorithm
discussed above can solve the unweighted lower-only case in O(n log n) time. For the general
case where both upper and lower half-planes are present, Har-Peled and Lee [17] solved the
weighted problem in O(n6) time. Liu and Wang [22] showed that the problem (for both the
weighted and unweighted cases) can be reduced to O(n2) instances of the lower-only case
problem. Consequently, applying the above algorithms for the weighted and unweighted
lower-only case problems can solve the weighted and unweighted general case problems in
O(n4 log n) and O(n3 log n) time, respectively.

Lower bound. As discussed above, the Ω(n log n) lower bound in [28] for the lower-only
half-plane coverage problem leads to the Ω(n log n) lower bound for the line-separable unit-
disk coverage problem when m = n. As the unit-disk hitting set problem is dual to the
unit-disk coverage problem, it also has Ω(n log n) as a lower bound. Since the unit-disk hitting
set problem is a special case of the line-separable single-intersection hitting set problem,
Ω(n log n) is also a lower bound of the latter problem. Similarly, since the lower-only half-
plane hitting set is dual to the lower-only half-plane coverage, Ω(n log n) is also a lower
bound of the former problem.

An algorithm in the algebraic decision tree model. In the algebraic decision tree model,
where the time complexity is measured only by the number of comparisons, our method,
combining with a technique recently developed by Chan and Zheng [6], shows that the
line-separable single-intersection problem (and thus the line-constrained problem) can be
solved using O((n + m) log(n + m)) comparisons, matching the above lower bound. To ensure
clarity in the following discussion, unless otherwise stated, all time complexities are based on
the standard real RAM model.

Outline. The rest of the paper is organized as follows. After introducing the notation in
Section 2, we describe our algorithm in Section 3. The algorithm correctness is proved in
Section 4. We show how to implement the algorithm efficiently in Section 5. The algebraic
decision tree algorithm and the unit-disk case algorithm are also discussed in Section 5.

2 Preliminaries

This section introduces some notation and concepts that will be used throughout the paper.
As discussed above, we focus on the line-separable single-intersection case. Let P be a

set of n points and S a set of m disks in the plane such that the points of P and the centers
of the disks of S are separated by a line ℓ and the boundaries of every two disks intersect at
most once on the side of ℓ which contains P . Note that the points of P and the disk centers
may be on ℓ. Without loss of generality, we assume that ℓ is the x-axis and the points of
P are above (or on) ℓ while the disk centers are below (or on) ℓ (see Fig. 1). As such, the
boundaries of every two disks intersect at most once above ℓ. Our goal is to compute a
smallest subset of P such that each disk of S is hit by at least one point in the subset.

Under this setting, for each disk s ∈ S, only its portion above ℓ matters for our problem.
Hence, unless otherwise stated, a disk s refers only to its portion above (and on) ℓ. As such,
the boundary of s consists of an upper arc, i.e., the boundary arc of the original disk above
ℓ, and a lower segment, i.e., the intersection of s with ℓ. Note that s has a single leftmost
(resp., rightmost) point, which is the left (resp., right) endpoint of the lower segment of s.
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If P ′ is a subset of P that form a hitting set for S, we call P ′ a feasible solution. If P ′ is
a feasible solution of minimum size, then P ′ is an optimal solution.

We assume that each disk of S is hit by at least one point of P since otherwise there
would be no feasible solution. Our algorithm is able to check whether the assumption is met.

We make a general position assumption that no two points of A have the same x-
coordinate, where A is the union of P and the set of the leftmost and rightmost points
of the upper arcs of all disks. Degenerate cases can be handled by standard perturbation
techniques, e.g., [14].

For any point p in the plane, we denote its x-coordinate by x(p). We sort all points
in P in ascending order of their x-coordinates, resulting in a sorted list {p1, p2, · · · , pn}.
We use P [i, j] to denote the subset {pi, pi+1, · · · , pj}, for any 1 ≤ i ≤ j ≤ n. We sort all
disks in ascending order of the x-coordinates of the leftmost points of their upper arcs; let
{s1, s2, · · · , sm} be the sorted list. We use S[i, j] to denote the subset {si, si+1, · · · , sj}, for
1 ≤ i ≤ j ≤ m. For convenience, let P [i, j] = ∅ and S[i, j] = ∅ if i > j. For each disk si, let
li and ri denote the leftmost and rightmost points of its upper arc, respectively.

For any disk s ∈ S, we use Sl(s) (resp., Sr(s)) to denote the subset of disks S whose
leftmost points are to the left (resp., right) of that of s, that is, if the index of s is i, then
Sl(s) = S[1, i − 1] and Sr(s) = S[i + 1, m]. For any disk s′ ∈ Sl(s), we also say that s′ is to
the left of s; similarly, if s′ ∈ Sr(s), then s′ is to the right of s. For convenience, if s′ is to the
left of s, we use s′ ≺ s to denote it.

For a point pi ∈ P and a disk sk ∈ S, we say that pi is vertically above sk (or sk is
vertically below pi) if pi is outside sk and x(lk) < x(pi) < x(rk).

The non-containment property. If a disk si contains another disk sj completely, then si is
redundant for our problem since any point hitting sj also hits si. It is easy to find those
redundant disks in O(m log m) time (indeed, this is a 1D problem since si contains sj if and
only if the lower segment of si contains that of sj). Therefore, to solve our problem, we first
remove such redundant disks from S and then work on the remaining disks. For simplicity,
from now on we assume that no disk of S contains another. Therefore, S has the following
non-containment property, which is critical to our algorithm.

▶ Observation 1. (Non-Containment Property) For any two disks si, sj ∈ S, x(li) < x(lj)
if and only if x(ri) < x(rj).

3 The algorithm description

In this section, we describe our algorithm. We follow the notation defined in Section 2.
We begin with the following definition, which is critical for our algorithm.

▶ Definition 2. For each disk si ∈ S, among all the points of P covered by si, define a(i) as
the smallest index of these points and b(i) the largest index of them.

Since each disk si contains at least one point of P , both a(i) and b(i) are well defined.

▶ Definition 3. For any point pk ∈ P , we say that pk is prunable if there is a disk si ∈ S

such that pk ̸∈ si and a(i) < k < b(i).

We now describe our algorithm. Although the description seems simple, establishing its
correctness is by no means an easy task. We devote Section 4 to the correctness proof. The
implementation of the algorithm, which is also not straightforward, is presented in Section 5.
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Algorithm description. The algorithm has three main steps.

1. Compute a(i) and b(i) for all disks si ∈ S. We will show in Section 5 that this can be
done in O(m log2 n + (n + m) log(n + m)) time.

2. Find all prunable points; let Q be the set of all prunable points. We will show in Section 5
that Q can be computed in O((n + m) log(n + m)) time.
Let P ∗ = P \ Q. We will prove in Section 4 that P ∗ contains an optimal solution to the
hitting problem on P and S. This means that it suffices to work on P ∗ and S.

3. Reduce the hitting set problem on P ∗ and S to a 1D hitting set problem, as follows.
For each point of P ∗, we project it perpendicularly onto ℓ. Let P̃ be the set of all
projected points. For each disk si ∈ S, we create a segment on ℓ whose left endpoint
has x-coordinate equal to x(pa(i)) and whose right endpoint has x-coordinate equal to
x(pb(i)). Let S̃ be the set of all segments thus created.
We solve the following 1D hitting set problem: Find a smallest subset of points of P̃ such
that every segment of S̃ is hit by a point of the subset. This 1D problem can be easily
solved in O((|S̃| + |P̃ |) log(|S̃| + |P̃ |)) time [22],3 which is O((m + n) log(m + n)) since
|P̃ | ≤ n and |S̃| = m.
Suppose that P̃opt is any optimal solution for the 1D problem. We create a subset P ∗

opt of
P ∗ as follows. For each point of P̃opt, suppose that it is the projection of a point pi ∈ P ∗;
then we add pi to P ∗

opt. We will prove in Section 4 that P ∗
opt is an optimal solution to

the hitting set problem on P ∗ and S.

We summarize the result in the following theorem.

▶ Theorem 4. Given a set P of n points and a set S of m disks in the plane such that the
disk centers are separated from the points of P by a line and the single-intersection condition
is satisfied, the hitting set problem is solvable in O(m log2 n + (n + m) log(n + m)) time.

4 Algorithm correctness

In this section, we prove the correctness of our algorithm. More specifically, we will argue
the correctness of the second and the third main steps of the algorithm. We start with the
third main step, as it is relatively straightforward. In fact, arguing the correctness of the
second main step is quite challenging and is a main contribution of our paper.

Correctness of the third main step. For each disk si ∈ S, let s′
i refer to the segment of S̃

created from si. For each point pj ∈ P , let p′
j refer to the point of P̃ which is the projection

of pj . Lemma 5 justifies the correctness of the third main step of the algorithm.

▶ Lemma 5. A point pj ∈ P ∗ hits a disk si ∈ S if and only if p′
j hits s′

i.

Proof. Suppose pj hits si. Then, pj ∈ si. By definition, we have a(i) ≤ j ≤ b(i). Hence,
x(pa(i)) ≤ x(pj) ≤ x(pb(i)), and thus p′

j hits s′
i by the definitions of p′

j and s′
i.

On the other hand, suppose that p′
j hits s′

i. Then, according to the definitions of p′
j and

s′
i, x(pa(i)) ≤ x(pj) ≤ x(pb(i)) holds. If j = a(i) or j = b(i), then pj must hit si following the

definitions of a(i) and b(i). Otherwise, we have a(i) < j < b(i). Observe that pj must be
inside si since otherwise pj would be a prunable point and therefore could not be in P ∗. As
such, pj must hit si. ◀

3 The algorithm in [22], which uses dynamic programming, is for the weighted case where each point
has a weight. Our problem is simpler because it is the unweighted case. We can use a simple greedy
algorithm to solve it.
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Figure 2 Illustrating the proof of Observation 6.

4.1 Correctness of the second main step
In what follows, we focus on the correctness of the second main step.

For any disk s, let P (s) denote the subset of points of P inside s. For any point p, let
S(p) denote the subset of disks of S hit by p. For any subset P ′ ⊆ P , by slightly abusing
notation, let S(P ′) denote the subset of disks of S hit by at least one point of P ′, i.e.,
S(P ′) =

⋃
p∈P ′ S(p).

The following observation follows directly from the definition of prunable points.

▶ Observation 6. Suppose a point p is a prunable point in P . Then, there is a disk s ∈ S

vertically below p such that the following are true.
1. P (s) has both a point left of p and a point right of p.
2. For any two points pl, pr ∈ P (s) with one left of p and the other right of p, we have

S(p) ⊆ S(pl) ∪ S(pr).

Proof. The first statement directly follows the definition of prunable points. For the second
statement, without loss of generality, assume that pl is left of p while pr is right of p (see
Fig. 2). Consider any disk si ∈ S(p). By definition, p ∈ si. As p ̸∈ s, si ̸= s. Hence, si is
either in Sl(s) or in Sr(s). If si ∈ Sl(s), then due to the non-containment property, si must
contain the area of s to the left of p and therefore must contain pl, which implies si ∈ S(pl).
Similarly, if si ∈ Sr(s), then si must be in S(pr). ◀

The following lemma establishes the correctness of the second main step of the algorithm.

▶ Lemma 7. P ∗ contains an optimal solution for the hitting set problem on S and P .

Proof. Let Popt be an optimal solution for S and P . Let Q be the set of all prunable points.
Recall that P ∗ = P \ Q. If Popt ∩ Q = ∅, then Popt ⊆ P ∗ and thus the lemma is vacuously
true. In what follows, we assume that |Popt ∩ Q| ≥ 1.

Pick an arbitrary point from Popt ∩ Q, denoted by p̂1. Below, we give a process that can
find a point p∗ from P ∗ to replace p̂1 in Popt such that the new set P 1

opt = {p∗} ∪ Popt \ {p̂1}
is a feasible solution, implying that P 1

opt is still an optimal solution since |P 1
opt| = |Popt|. As

p∗ ∈ P ∗, we have |P 1
opt ∩ Q| = |Popt ∩ Q| − 1. Therefore, if P 1

opt ∩ Q is still nonempty, then
we can repeat the process for other points in P 1

opt ∩ Q until we obtain an optimal solution
P ∗

opt with P ∗
opt ∩ Q = ∅, which will prove the lemma. The process involves induction. To

help the reader understand it better, we first provide the details for the first two iterations
of the process (we will introduce some notation that appears unnecessary for the first two
iterations, but these will be needed for explaining the inductive hypothesis later).

The first iteration. Let P ′
opt = Popt \ {p̂1}. Since p̂1 ∈ Q, by Observation 6, S has a disk

ŝ1 vertically below p̂1 such that P (ŝ1) contains both a point left of p̂1, denoted by p̂l
1, and

a point right of p̂1, denoted by p̂r
1. Furthermore, S(p̂1) ⊆ S(p̂l

1) ∪ S(p̂r
1). Since p̂1 ̸∈ ŝ1 and

Popt = P ′
opt ∪ {p̂1} forms a hitting set of P , P ′

opt must have a point p that hits ŝ1. Clearly, p
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is left or right of p̂1. Without loss of generality, we assume that p is right of p̂1. Since p̂r
1

refers to an arbitrary point to the right of p̂1 that hits ŝ1 and p is also a point to right of p̂1
that hits ŝ1, for notational convenience, we let p̂r

1 refer to p. As such, p̂r
1 is in P ′

opt.
Consider the point p̂l

1. Since S(p̂1) ⊆ S(p̂l
1) ∪ S(p̂r

1) and p̂r
1 is in P ′

opt, it is not difficult to
see that S(Popt) ⊆ S(P ′

opt) ∪ S(p̂l
1) and thus P ′

opt ∪ {p̂l
1} is a feasible solution. As such, if

p̂l
1 ̸∈ Q, then we can use p̂l

1 as our target point p∗ and our process (to find p∗) is performed.
In what follows, we assume p̂l

1 ∈ Q.
We let p̂2 = p̂l

1. Define A1 = {p̂r
1}. According to the above discussion, A1 ⊆ P ′

opt,
S(p̂1) ⊆ S(A1) ∪ S(p̂2), P ′

opt ∪ {p̂2} is a feasible solution, p̂1 is vertically above ŝ1, and
p̂2 ∈ ŝ1.

The second iteration. We are now entering the second iteration of our process. First,
notice that p̂2 cannot be p̂1 since p̂2 = p̂l

1, which cannot be p̂1. Our goal in this iteration is
to find a candidate point p′ to replace p̂2 so that P ′

opt ∪ {p′} also forms a hitting set of S.
Consequently, if p′ ̸∈ Q, then we can use p′ as our target p∗; otherwise, we need to guarantee
p′ ̸= p̂1 so that our process will not enter a loop. The discussion here is more involved than
in the first iteration.

Since p̂2 ∈ Q, by Observation 6, S has a disk ŝ2 vertically below p̂2 such that P (ŝ2)
contains both a point left of p̂2, denoted by p̂l

2, and a point right of p̂2, denoted by p̂r
2.

Further, S(p̂2) ⊆ S(p̂l
2) ∪ S(p̂r

2). Depending on whether ŝ2 is in S(A1), there are two cases.

If ŝ2 ̸∈ S(A1), since p̂2 does not hit ŝ2 and S(p̂1) ⊆ S(A1) ∪ S(p̂2), we obtain ŝ2 ̸∈ S(p̂1).
Now we can basically repeat our argument from the first iteration. Since p̂2 does not hit
ŝ2 and P ′

opt ∪ {p̂2} is a feasible solution, P ′
opt must have a point p that hits ŝ2. Clearly, p

is either left or right of p̂2.
We first assume that p is right of p̂2. Since p̂r

2 refers to an arbitrary point to the right of
p̂2 that hits ŝ2 and p is also a point to right of p̂2 that hits ŝ2, for notational convenience,
we let p̂r

2 refer to p. As such, p̂r
2 is in P ′

opt.
We let p̂l

2 be our candidate point, which satisfies our need as discussed above for p′.
Indeed, since P ′

opt ∪ {p̂2} is an optimal solution, S(p̂2) ⊆ S(p̂l
2) ∪ S(p̂r

2), and p̂r
2 ∈ P ′

opt,
we obtain that P ′

opt ∪ {p̂l
2} also forms a hitting set of S. Furthermore, since p̂l

2 hits ŝ2
while p̂1 does not, we know that p̂l

2 ̸= p̂1. Therefore, if p̂l
2 ̸∈ Q, then we can use p̂l

2 as our
target p∗ and we are done with the process. Otherwise, we let p̂3 = p̂l

2 and then enter the
third iteration. In this case, we let A2 = A1 ∪ {p̂r

2}. According to our above discussion,
A2 ⊆ P ′

opt, S(p̂2) ⊆ S(A2) ∪ S(p̂3), {p̂3} ∪ P ′
opt is a feasible solution, p̂2 is vertically above

ŝ2, and p̂3 ∈ ŝ2.
The above discussed the case where p is right of p̂2. If p is left of p̂2, then the analysis is
symmetric.4
If ŝ2 ∈ S(A1), we let p̂l

2 be our candidate point. We show below that it satisfies our need
as discussed above for p′, i.e., {p̂l

2} ∪ P ′
opt forms a hitting set of S and p̂l

2 ̸= p̂1.
Indeed, since A1 = {p̂r

1} and ŝ2 ∈ S(A1), ŝ2 is hit by p̂r
1. Since p̂r

1 is to the right of p̂1,
and p̂2, which is p̂l

1, is to the left of p̂1, we obtain that p̂r
1 is to the right of p̂2. Since p̂l

2
hits ŝ2, p̂l

2 is to the left of p̂2, p̂r
1 hits ŝ2, and p̂r

1 is to the right of p̂2, by Observation 6,
S(p̂2) ⊆ S(p̂l

2) ∪ S(p̂r
1), i.e., S(p̂2) ⊆ S(p̂l

2) ∪ S(A1). Since P ′
opt ∪ {p̂2} is a feasible solution

and A1 ⊆ P ′
opt, it follows that {p̂l

2} ∪ P ′
opt is also a feasible solution. On the other hand,

since p̂l
2 is to the left of p̂2 while p̂2 (which is p̂l

1) is to the left of p̂1, we know that p̂l
2 is

to the left of p̂1 and thus p̂l
2 ̸= p̂1.

4 More specifically, if p̂r
2 ̸∈ Q, then we can use p̂r

2 as our target p∗ and the process is complete. Otherwise,
we let p̂3 = p̂r

2 and enter the third iteration; in this case, we let A2 = A1 ∪ {p̂l
2}.
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As such, if p̂l
2 ̸∈ Q, we can use p̂l

2 as our target p∗ and we are done with the process.
Otherwise, we let p̂3 = p̂l

2 and continue with the third iteration. In this case, we
let A2 = A1. According to our above discussion, A2 ⊆ P ′

opt, S(p̂2) ⊆ S(A2) ∪ S(p̂3),
P ′

opt ∪ {p̂3} is a feasible solution, p̂2 is vertically above ŝ2, and p̂3 ∈ ŝ2.

This finishes the second iteration of the process.

Inductive step. In general, suppose that we are entering the i-th iteration of the process
with the point p̂i ∈ Q, i ≥ 2. We make the following inductive hypothesis for i.

1. We have points p̂k ∈ Q for all k = 1, 2, . . . , i − 1 in the previous i − 1 iterations such that
p̂i ̸= p̂k for any 1 ≤ k ≤ i − 1

2. We have subsets Ak for all k = 1, 2, . . . , i − 1 such that A1 ⊆ A2 ⊆ · · · ⊆ Ai−1 ⊆ P ′
opt,

and S(p̂k) ⊆ S(Ak) ∪ S(p̂k+1) holds for each 1 ≤ k ≤ i − 1.
3. For any 1 ≤ k ≤ i, {p̂k} ∪ P ′

opt is a feasible solution.
4. We have disks ŝk ∈ S for k = 1, 2, . . . , i − 1 such that ŝk is vertically below p̂k and

p̂k+1 ∈ ŝk.

Our previous discussion already established the hypothesis for i = 2 and i = 3. Next, we
proceed with the i-th iteration argument for any general i ≥ 4. Our goal is to find a candidate
point p̂i+1 such that P ′

opt ∪ {p̂i+1} is a feasible solution and the inductive hypothesis still
holds for i + 1.

Since p̂i ∈ Q, by Observation 6, there is a disk ŝi vertically below p̂i such that P (ŝi)
has a point left of p̂i, denoted by p̂l

i, and a point right of p̂i, denoted by p̂r
i . Furthermore,

S(p̂i) ⊆ S(p̂l
i) ∪ S(p̂r

i ). Depending on whether ŝi is in S(Ai−1), there are two cases.

1. If ŝi ̸∈ S(Ai−1), then since ŝi does not contain p̂i and P ′
opt ∪ {p̂i} is a feasible solution,

P ′
opt must have a point p that hits ŝi. Clearly, p is to the left or right of p̂i. Without

loss of generality, we assume that p is to the right of p̂i. Since p̂r
i refers to an arbitrary

point to the right of p̂i that hits ŝi and p is also a point to the right of p̂i that hits p̂i, for
notational convenience, we let p̂r

i refer to p. As such, p̂r
i is in P ′

opt.
We let p̂i+1 be p̂l

i and define Ai = Ai−1 ∪ {p̂r
i }. In the following, we argue that the

inductive hypothesis holds.
First of all, by definition, p̂i is vertically above ŝi and p̂i+1 ∈ ŝi. Hence, the fourth
statement of the hypothesis holds.
Since {p̂i} ∪ P ′

opt is a feasible solution, S(p̂i) ⊆ S(p̂l
i) ∪ S(p̂r

i ), p̂r
i ∈ P ′

opt, and p̂i+1 = p̂l
i,

we obtain that {p̂i+1} ∪ P ′
opt is a feasible solution. This proves the third statement of

the hypothesis.
Since Ai = Ai−1 ∪{p̂r

i }, Ai−1 ⊆ P ′
opt by inductive hypothesis, and p̂r

i ∈ P ′
opt, we obtain

Ai ⊆ P ′
opt. Furthermore, since S(p̂i) ⊆ S(p̂l

i) ∪ S(p̂r
i ), p̂r

i ∈ Ai, and p̂i+1 = p̂l
i, we have

S(p̂i) ⊆ S(Ai) ∪ S(p̂i+1). This proves the second statement of the hypothesis.
For any point p̂k with 1 ≤ k ≤ i − 1, to prove the first statement of the hypothesis, we
need to show that p̂k ̸= p̂i+1. To this end, since ŝi is hit by p̂i+1, it suffices to show
that ŝi is not hit by p̂k. Indeed, by the inductive hypothesis, S(p̂k) ⊆ S(Ak) ∪ S(p̂k+1)
and S(p̂k+1) ⊆ S(Ak+1) ∪ S(p̂k+2). Hence, S(p̂k) ⊆ S(Ak) ∪ S(Ak+1) ∪ S(p̂k+2).
As S(Ak) ⊆ S(Ak+1), we obtain S(p̂k) ⊆ S(Ak+1) ∪ S(p̂k+2). Following the same
argument, we can derive S(p̂k) ⊆ S(Ai−1) ∪ S(p̂i). Now that ŝi ̸∈ S(Ai−1) and ŝi is
not hit by p̂i, we obtain that ŝi is not hit by p̂k.
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2. If ŝi ∈ S(Ai−1), then ŝi is hit by a point of Ai−1, say p. As p̂i ̸∈ ŝi, p is left or right of p̂i.
Without loss of generality, we assume that p is to the right of p̂i.
We let p̂i+1 be p̂l

i and define Ai = Ai−1. We show in the following that the inductive
hypothesis holds.

By definition, p̂i is vertically above ŝi and p̂i+1 ∈ ŝi. Hence, the fourth statement of
the hypothesis holds.
Since ŝi is hit by both p and p̂l

i, p̂l
i is to the left of p̂i, and p is to the right of p̂i, by

Observation 6, S(p̂i) ⊆ S(p̂l
i) ∪ S(p). Further, since {p̂i} ∪ P ′

opt is a feasible solution,
p ∈ Ai−1 ⊆ P ′

opt, and p̂i+1 = p̂l
i, we obtain that {p̂i+1} ∪ P ′

opt is also a feasible solution.
This proves the third statement of the hypothesis.
Since Ai−1 ⊆ P ′

opt by the inductive hypothesis and Ai = Ai−1, we have Ai ⊆ P ′
opt. As

discussed above, S(p̂i) ⊆ S(p̂l
i) ∪ S(p). Since p ∈ Ai−1 = Ai and p̂i+1 = p̂l

i, we obtain
S(p̂i) ⊆ S(Ai) ∪ S(p̂i+1). This proves the second statement of the hypothesis.
For any point p̂k with 1 ≤ k ≤ i − 1, to prove the first statement of the hypothesis,
we need to show that p̂k ≠ p̂i+1. Depending on whether x(p̂i) < x(p̂k), there are two
cases (note that p̂i ̸= p̂k by our hypothesis and thus x(p̂i) ̸= x(p̂k) due to our general
position assumption).

If x(p̂i) < x(p̂k), then since p̂i+1 = p̂l
i, we have x(p̂i+1) < x(p̂i) < x(p̂k). Hence,

p̂k ̸= p̂i+1.
If x(p̂k) < x(p̂i), then we can prove p̂k /∈ ŝi. This implies that p̂k ̸= p̂i+1 as p̂i+1 ∈ ŝi.
The proof of p̂k /∈ ŝi, which is quite technical and lengthy, is omitted due to the
space limit.

This proves the first statement of the hypothesis.

This proves that the inductive hypothesis still holds for i + 1.

According to the inductive hypothesis, each iteration of the process finds a new candidate
point p̂i such that P ′

opt ∪ {p̂i} is a feasible solution. If p̂i ̸∈ Q, then we can use p̂i as our
target point p∗ and we are done with the process. Otherwise, we continue with the next
iteration. Since each iteration finds a new candidate point (that was never used before) and
|Q| is finite, eventually we will find a candidate point p̂i that is not in Q.

This completes the proof of the lemma. ◀

5 Algorithm implementation

In this section, we present the implementation of our algorithm. In particular, we describe
how to implement the first two steps of the algorithm: (1) Compute a(i) and b(i) for all
disks si ∈ S; (2) find the subset Q of all prunable points from P .

The following lemma gives the implementation for the first step of the algorithm.

▶ Lemma 8. Computing a(i) and b(i) for all disks si ∈ S can be done in O(m log2 n + (m +
n) log(m + n)) time.

Proof. We only discuss how to compute a(i) since computing b(i) can be done analogously.
Recall that points of P are indexed in ascending order of their x-coordinates as p1, . . . , pn.

Let T be a complete binary search tree whose leaves from left to right correspond to points of
P in their index order. Since n = |P |, the height of T is O(log n). For each node v ∈ T , let
Pv denote the subset of points of P in the leaves of the subtree rooted at v. Our algorithm
is based on the following observation: a disk si ∈ S contains a point of Pv if and only if si

contains the closest point of Pv to ci, where ci is the center of si. In light of this observation,
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we construct the Voronoi diagram for Pv, denoted by VDv, and build a point location data
structure on VDv so that each point location query can be answered in O(log n) time [13,20].
For time analysis, after VDv is computed, building the point location data structure on
VDv takes O(|Pv|) time [13, 20]. To compute VDv, if we do so from scratch, then it takes
O(|Pv| log |Pv|) time. However, using Kirkpatrick’s algorithm [19], we can compute VDv in
O(|Pv|) time by merging the Voronoi diagrams VDu and VDw for the two children u and w

of v, since Pv = Pu ∪ Pw. As such, if we construct the Voronoi diagrams for all nodes of T in
a bottom-up manner, the total time is linear in

∑
v∈T |Pv|, which is O(n log n).

For each disk si ∈ S, we can compute a(i) using T , as follows. Starting from the root
of T , for each node v, we do the following. Let u and w be the left and right children of v,
respectively. First, we determine whether si contains a point of Pu. To this end, using a
point location query on VDu, we find the point p of Pv closest to ci. As discussed above, si

contains a point of Pu if and only if p ∈ si. If p ∈ si, then we proceed with v = u; otherwise,
we proceed with v = w. In this way, a(i) can be computed after searching a root-to-leaf path
of T , which has O(log n) nodes as the height of T is O(log n). Because we spend O(log n)
time on each node, the total time to compute a(i) is O(log2 n). The time for computing a(i)
for all disks si ∈ S is thus O(m log2 n).

In summary, the overall time to compute a(i) for all disks si ∈ S is bounded by O(m log2 n+
(n + m) log(n + m)). ◀

With a(i) and b(i) computed in Lemma 8, Lemma 10 finds all prunable points of P . The
algorithm of Lemma 10 relies on the following observation.

▶ Observation 9. For any point pk ∈ P , pk is prunable if and only if there is a disk si ∈ S

such that pk ̸∈ si and a(i) ≤ k ≤ b(i).

Proof. If pk is prunable, then by definition there is a disk si ∈ S such that pk ̸∈ si and
a(i) < k < b(i).

On the other hand, suppose that there is a disk si ∈ S such that pk ̸∈ si and a(i) ≤ k ≤ b(i).
By the definition of ai, si contains the point pa(i). Since pk ̸∈ si, we obtain k ̸= a(i). By
a similar argument, we have k ̸= b(i). As such, since a(i) ≤ k ≤ b(i), we can derive
a(i) < k < b(i). Therefore, pk is prunable. ◀

▶ Lemma 10. All prunable points of P can be found in O((n + m) log(n + m)) time.

Proof. Recall that ℓ denotes the x-axis. We define T as the standard segment tree [11,
Section 10.3] on the n points of ℓ whose x-coordinates are equal to 1, 2, . . . , n, respectively.
The height of T is O(log n). For each disk si ∈ S, let Ii denote the interval [a(i), b(i)] of
ℓ. Following the definition of the standard segment tree [11, Section 10.3], we store Ii in
O(log n) nodes of T . For each node v ∈ T , let Sv denote the subset of disks si of S whose
interval Ii is stored at v. As such,

∑
v∈T |Sv| = O(m log n).

Consider a point pk ∈ P . The tree T has a leaf corresponding to a point of ℓ whose
x-coordinate is equal to k, called leaf-k. Let πk denote the path of T from the root to
leaf-k. Following the definition of the segment tree, we have the following observation:⋃

v∈πk
Sv = {si | si ∈ S, a(i) ≤ k ≤ b(i)}. By Observation 9, to determine whether pk is

prunable, it suffices to determine whether there is a node v ∈ πk such that Sv has a disk
si that does not contain pk. Recall that all points of P are above ℓ while the centers of
all disks of S are below ℓ. Let Cv denote the common intersection of all disks of Sv in the
halfplane above ℓ. Observe that Sv has a disk si that does not contain pk if and only if pk is
outside Cv. Based on this observation, for each node v ∈ T , we compute Cv and store it at v.
Due to the single-intersection property that the upper arcs of every two disks of S intersect

MFCS 2024



68:12 Geometric Hitting Set for Line-Constrained Disks

at most once, Cv has O(|Sv|) vertices; in addition, by adapting Graham’s scan, Cv can be
computed in O(|Sv|) time if the centers of all the disks of Sv are sorted by x-coordinate
(due to the non-containment property, this is also the order of the disks sorted by the left
or right endpoints of their upper arcs). Assuming that the sorted lists of Sv as above are
available for all nodes v ∈ T , the total time for constructing Cv for all nodes v ∈ T is linear
in

∑
v∈T |Sv|, which is O(m log n). We show that the sorted lists of Sv for all nodes v ∈ T

can be computed in O(m log m + m log n) time, as follows. At the start of the algorithm, we
sort all disks of S by the x-coordinates of their centers in O(m log m) time. Then, for each
disk si of S following this sorted order, we find the nodes v of T where the interval Ii should
be stored, and add si to Sv, which can be done in O(log n) time [11, Section 7.4]. In this
way, after all disks of S are processed as above, Sv for every node v ∈ T is automatically
sorted. As such, all processing work on T together takes O((m + n) log(m + n)) time.

For each point pk ∈ P , to determine whether pk is prunable, following the above discussion,
we determine whether pk is outside Cv for each node v ∈ πk. Deciding whether pk is outside
Cv can be done in O(log m) time. Indeed, since the centers of all disks are below ℓ, the
boundary of Cv consists of a segment on ℓ bounding Cv from below and an x-monotone curve
bounding Cv from above. The projections of the vertices of Cv onto ℓ partition ℓ into a set
Iv of O(|Sv|) intervals. If we know the interval of Iv that contains x(pk), the x-coordinate of
pk, then whether pk is outside Cv can be determined in O(1) time. Clearly, we can find the
interval of Iv that contains x(pk) in O(log m) time by binary search. In this way, whether
pk is prunable can be determined in O(log m log n) time as πk has O(log n) nodes. The time
can be improved to O(log m + log n) using fractional cascading [7], as follows.

We construct a fractional cascading data structure on the intervals of Iv of all nodes
v ∈ T , which takes O(m log n) time [7] since the total number of such intervals is O(m log n).
With the fractional cascading data structure, for each point pk ∈ P , we only need to do
binary search on the set of the intervals stored at the root of T to find the interval containing
x(pk), which takes O(log(m log n)) time. Subsequently, following the path πk in a top-down
manner, the interval of Iv containing x(pk) for each node v ∈ πk can be determined in O(1)
time [7]. As such, whether pk is prunable can be determined in O(log n + log m) time. Hence,
the total time for checking all the points pk ∈ P is O(n log(m + n)).

In summary, the time complexity of the overall algorithm for finding all prunable disks of
S is bounded by O((n + m) log(n + m)). ◀

With Lemmas 8 and 10, Theorem 4 is proved.

An algebraic decision tree algorithm. In the algebraic decision tree model, where only
comparisons are counted towards time complexities, the problem can be solved in O((n +
m) log(n + m)) time, i.e., using O((n + m) log(n + m)) comparisons. To this end, observe
that the entire algorithm, with the exception of Lemma 8, takes O((n + m) log(n + m)) time.
As such, we only need to show that Lemma 8 can be solved using O((n + m) log(n + m))
comparisons. For this, notice that the factor O(m log2 n) in the algorithm of Lemma 8
is caused by the point location queries on the Voronoi diagrams VDv. The number of
point location queries is O(m log n). The total combinatorial complexity of the Voronoi
diagrams VDv of all nodes v ∈ T is O(n log n). To answer these point location queries, we
employ a method recently introduced by Chan and Zheng [6]. In particular, by applying [6,
Theorem 7.2], all point location queries can be solved using O((n+m) log(n+m)) comparisons
(specifically, following the notation in [6, Theorem 7.2], we have t = O(n), L = O(n log n),
M = O(m log n), and N = O(n + m) in our problem; according to the theorem, all
point location queries can be answered using O(L + M + N log N) comparisons, which is
O((n + m) log(n + m))).
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The unit-disk case. If all disks of S have the same radius (and the points of P are separated
from the centers of all disks of S by the x-axis ℓ), then as discussed in Section 1 this problem
can be solved in O((n + m) log(n + m)) time by reducing it to a line-separable unit-disk
coverage problem and then applying the algorithm in [23]. Here, we show that our approach
can provide an alternative algorithm with the same runtime.

We apply the same algorithm as above. Observe that the algorithm, except for Lemma 8,
runs in O((n + m) log(n + m)) time. Hence, it suffices to show that Lemma 8 can be
implemented in O((n + m) log(n + m)) time for the unit-disk case, which is done in the
following lemma.

▶ Lemma 11. If all disks of S have the same radius, then a(i) and b(i) for all disks si ∈ S

can be computed in O((n + m) log(n + m)) time.

Proof. We only discuss how to compute a(i) since the algorithm for b(i) is similar. We
modify the algorithm in the proof of Lemma 8 and follow the notation there.

For any disk si ∈ S, to compute a(i), recall that a key subproblem is to determine
whether si contains a point of Pv for a node v ∈ T . To solve the subproblem, the algorithm
of Lemma 8 uses Voronoi diagrams. Here, we use a different approach by exploring the
property that all disks of S have the same radius, say r. For any point p ∈ P , let Dp denote
the disk of radius r and centered at p. Define Dv = {Dp | p ∈ Pv}. For each point p ∈ P ,
since p is above the axis ℓ, the portion of the boundary of Dp below ℓ is an arc on the lower
half circle of the boundary of Dp, and we call it the lower arc of Dp. Let Lv denote the lower
envelope of ℓ and the lower arcs of all disks of Dv. Our method is based on the observation
that si contains a point of Pv if and only if ci is above Lv, where ci is the center of si.

In light of the above discussion, we construct Lv for every node v ∈ T . Since all disks of
Dv have the same radius and all their centers are above ℓ, the lower arcs of every two disks of
Dv intersect at most once. Due to this single-intersection property, Lv has at most O(|Pv|)
vertices. To see this, we can view the lower envelope of each lower arc of Dv and ℓ as an
extended arc. Every two such extended arcs still cross each other at most once and therefore
their lower envelope has O(|Pv|) vertices following the standard Davenport-Schinzel sequence
argument [27] (see also [5, Lemma 3] for a similar problem). Notice that Lv is exactly the
lower envelope of these extended arcs and thus Lv has O(|Pv|) vertices. Note also that Lv is
x-monotone. In addition, given Lu and Lw, where u and w are the two children of v, Lv

can be computed in O(|Pv|) time by a straightforward line sweeping algorithm. As such,
if we compute Lv for all nodes v ∈ T in a bottom-up manner, the total time is linear in∑

v∈T |Pv|, which is O(n log n).
For each disk si ∈ S, we now compute a(i) using T , as follows. Starting from the root

of T , for each node v, we do the following. Let u and w be the left and right children of v,
respectively. We first determine whether ci is above Lu; since |Pu| ≤ n, this can be done in
O(log n) time by binary search. More specifically, the projections of the vertices of Lu onto
ℓ partition ℓ into a set Iu of O(Pu) intervals. If we know the interval of Iu that contains
x(ci), the x-coordinate of ci, then whether ci is above Lu can be determined in O(1) time.
Clearly, finding the interval of Iu containing x(ci) can be done by binary search in O(log n)
time. If ci is above Lu, then si must contain a point of Pu; in this case, we proceed with
v = u. Otherwise, we proceed with v = w. In this way, a(i) can be computed after searching
a root-to-leaf path of T , which has O(log n) nodes as the height of T is O(log n). Because
we spend O(log n) time on each node, the total time for computing a(i) is O(log2 n). As in
Lemma 10, the time can be improved to O(log n) using fractional cascading [7], as follows.

We construct a fractional cascading data structure on the intervals of Iv of all nodes
v ∈ T , which takes O(n log n) time [7] since the total number of such intervals is O(n log n).
With the fractional cascading data structure, for each disk si ∈ S, we only need to do binary
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search on the set of the intervals stored at the root of T to find the interval containing x(ci),
which takes O(log n) time. After that, the interval of Iu containing x(ci) for each node u in
the algorithm as discussed above can be determined in O(1) time [7]. As such, a(i) can be
computed in O(log n) time. Hence, computing a(i) for all disks si ∈ S takes O(m log n) time.

In summary, the total time to compute a(i) for all disks si ∈ S is bounded by O((n +
m) log(n + m)) time. ◀
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Abstract
This work examines a strongly NP-hard routing problem on trees, in which multiple servers need to
serve a given set of requests (on vertices), where the routes of the servers start from a common source
and end at their respective terminals. Each server can travel free of cost on its source-to-terminal
path but has to pay for travel on other edges. The objective is to minimize the maximum cost over
all servers. As the servers may pay different costs for traveling through a common edge, balancing
the loads of the servers can be difficult. We propose a polynomial-time 4-approximation algorithm
that applies the parametric pruning framework but consists of two phases. The first phase of the
algorithm partitions the requests into packets, and the second phase of the algorithm assigns the
packets to the servers. Unlike the standard parametric pruning techniques, the challenge of our
algorithm design and analysis is to harmoniously relate the quality of the partition in the first phase,
the balances of the servers’ loads in the second phase, and the hypothetical optimal values of the
framework. For the problem in general graphs, we show that there is no algorithm better than
2-approximate unless P = NP . The problem is a generalization of unrelated machine scheduling and
other classic scheduling problems. It also models scheduling problems where the job processing times
depend on the machine serving the job and the other jobs served by that machine. This modeling
provides a framework that physicalizes scheduling problems through the graph’s point of view.
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1 Introduction

We propose a generalization of the makespan minimization problem that concerns jobs with
locality and machines with preferences. Consider two jobs sharing some common preprocessing
subroutines. The time for serving these jobs is reduced if they are assigned to the same
machine since the outcome of the preprocessing can be shared (instead of executing the
preprocessing step from scratch again). Jobs are considered to be “close” to each other
if they share more preprocessing. In other words, the locality of jobs indicates how much
acceleration a schedule can achieve when these jobs are assigned to one machine.

On the other hand, the machines have preferences on jobs. That is, a machine may be
better at serving some of the jobs. If the jobs have common preprocessing routines, the
machine that has a preference for the routine can further accelerate the total processing time
of the batch of jobs.

For example, consider assigning teaching tasks to faculty members in a department. The
teaching tasks can be classified systematically as a rooted tree structure. For instance, an
internal node representing Algorithm Design And Analysis course may have two children,
Approximation Algorithms and Randomized Algorithms courses. Every faculty member has
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their own research area and prefers teaching the courses that match their expertise, where
each expertise is a path in the tree starting from the root. A course in an area further away
from a teacher’s research direction takes this teacher more time to prepare and also makes
them less happy. The department’s goal is to balance the workload people take to prepare
for courses. That is, the objective of the assignment is to make the most unhappy colleague
as happy as possible.

In a typical routing problem, there are servers that are able to move along paths on
a given graph. A server may be required to stop at a terminal, which is a vertex that is
associated with the server. Additionally, a server may also need to travel to some vertices to
serve some requests or collect some packets located at the vertices.

To model the job localities and the machine preferences, we propose the scheduling with
locality problem (Scheduling-with-Locality) and describe it as a routing problem on a
graph with server-sensitive edge weights. Given a weighted graph, the jobs are represented
by requests located at (some of) the vertices, and the distance between requests indicates
how close the corresponding jobs are. The machines are represented by servers initially
at a source vertex and aim to travel to their terminals. Serving a request by a server is
analogous to assigning the corresponding job (of the request) to the corresponding machine
(of the server). The traveling distance for a server to serve a request is analogous to the
time for processing the corresponding job on the corresponding machine. A server may have
some discount on the weights of some particular edges. That is, it pays a smaller traveling
cost when traveling through these edges. The discount of servers on those edges indicates
the preference of the corresponding machines serving particular types of jobs. The goal is
to compute a schedule for all servers, which is a set of walks (where vertices/edges may
repeat), each for one server. A walk corresponding to a server starts from the common
source vertex and ends at the terminal of the server. To feasibly serve all requests, the walks
should cover all of them. The traveling cost of a server on its walk is the total load (that
is, the total processing time) of the corresponding machine. To minimize the makespan of
a schedule, we want to find the walks where the maximum traveling cost (with regard to
the corresponding server) is minimized. The modeling aims to provide a framework that is
capable of transforming scheduling problems into a routing problem that has the potential
to capture more properties of the scheduling problems from the graph’s point of view.

Formal problem definition. An instance of Scheduling-with-Locality is given by an
undirected graph G = (V, E), a set of servers S, a set of requests R ⊆ V , and a source ρ ∈ V .
Each server s ∈ S is associated with its terminal τ(s) ∈ V . Each edge e ∈ E is associated
with server-sensitive weights weight(e, s) ≥ 0 for s ∈ S, where weight(e, s) is the cost for
server s traveling through edge e. In a feasible schedule, each server s ∈ S is assigned a
walk1 that starts from ρ and ends at τ(s), and the walks of all servers in S all together visit
all requests R. Let Zs be the walk assigned to server s by schedule Z, the cost of a server s

in this schedule, cost(Zs, s), is
∑

e∈Zs
weight(e, s) by definition. The cost of a schedule Z is

defined as the maximum cost of servers on their corresponding walk, maxs∈S{cost(Zs, s)}.
The objective is to find a schedule that minimizes the cost, i.e., the maximum traveling cost
of server walks.

We consider a special case Multi-server Routing with Free-paths (MRF) problem,
where the given graph is a weighted tree T = (V, E) rooted at the source vertex ρ. There is
an integral weight function on edges weight : E → N. We call the path from ρ to τ(s) the

1 A walk is defined by a sequence of vertices W = {v0, v1, v2, · · · , vℓ} where vi−1 and vi are adjacent for
any 1 ≤ i ≤ ℓ. It is possible that a vertex or an edge appears multiple times in a walk.
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home path of server s, denoted as PH(s). A server can travel on the edges of its home path
free of cost. Formally, weight(e, s) = 0 if e ∈ PH(s) and weight(e, s) = weight(e) otherwise.
We will generalize the edge weights from integers to real numbers later in the paper.

Scheduling-with-Locality can model many scheduling problems, such as Unrelated
machine scheduling [21], Machine scheduling with setup times [22], etc. (see the full version
for details). On the other hand, although the preferences of servers are limited in the MRF
problem, the problem captures the locality-aware properties of scheduling problems, i.e., the
cost of a server serving a set of requests depends on the locality of the requests and the
server. The problem still preserves servers’ preferences for serving batches of requests and
accommodates complicated inter-request localities by the tree structure. On the other hand,
the routing is tricky due to different edge costs for different servers. In fact, one can show
that without wisely partitioning the requests, any algorithm is at least r-approximate, where
r is the number of requests.

Our results
For positive results, We propose a two-phase Partition-and-Balancing (PnB) algorithm
that first partitions the requests into packets properly and then assigns the packets to the
servers while balancing the serving costs of servers. More specifically, we apply the classic
parametric pruning framework that has been exploited to solve the k-center problem [23].
Intuitively, the framework keeps guessing the optimal value. Given a parameter ϑ as the
guessed optimal value, if an algorithm ALG guarantees to return a solution with a cost
of α · ϑ as long as ϑ is a correct guess of the optimal cost, then ALG is α-approximate.
Afterward, the framework concentrates on finding a correct guess.

In the two-phase PnB algorithm, we use the parameter ϑ as a hypothesized value of the
optimal cost. In the first phase, we partition the requests into packets according to the value
of ϑ. The partition ensures that for each packet, the cost of traveling to the packet and
the cost of traveling within the packet (to serve the requests) are balanced for any server.
Eventually, the cost of serving each packet falls between ϑ and 2ϑ, with a bounded number
of packets with serving costs less than ϑ (Lemma 3). The second phase delicately assigns the
packets, consulting the value of ϑ and the topology of the server terminals. In the end, with a
large enough ϑ, the algorithm guarantees that a server only reaches packets within a distance
bounded by a constant factor of ϑ, and the cost of any server is at most 4ϑ (Theorem 5). To
make sure that if the algorithm fails to generate an assignment with the cost at most 4ϑ, then
the value ϑ must be strictly smaller than the optimal cost, the algorithm is designed such
that the information of the instance (that will be used in the second phase) when packing
the requests into packets in the first phase is preserved (Theorem 8). Finally, the algorithm
is adjusted to solve the problem with real number edge weights via runtime trade-off.

For negative results, we provide the 2-inapproximability for the general scheduling with
locality problem (Scheduling-with-Locality) to complete the study (Theorem 15).

Related work
Makespan minimization has been studied in various settings where machines have different
speeds with respect to different jobs [7, 12, 13, 15, 17, 20, 21], machines with status and
setup costs [1, 10, 18], machines with reconfiguration overheads [19, 25], etc. On the other
hand, the scheduling of jobs with locality has raised attention recently [14, 16, 25]. That
is, reusing configurations among different jobs increases warm-starts and reduces cold-start
overheads.
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Jobs scheduling and load balancing. The closest related problem is the jobs scheduling
problem with the objective of minimizing the makespan. Lenstra et al. proposed a classic LP-
based polynomial time 2-approximation algorithm [21]. In contrast, Gairing et al. provided a
combinatorial 2-approximation algorithm [15]. Later, Arad et al. used a parametric pruning
style technique [2]. They showed that given values L and T , either there exists no schedule
of mean machine completion time L and makespan T , or a schedule of makespan at most
T + L/h < 2T can be found in polynomial time, where h ∈ (0, 1] is the feasibility factor
of a given instance. An important special case of job scheduling problem is the restricted
assignment problem, where processing times are of the form pi,j ∈ {pj , ∞}. The best known
result of the problem to date is a ( 33

17 + ε)-approximation by Svensson [26].

Multiple traveling salespeople problem. Another related problem is the multiple traveling
salespeople problem [24]. Given a set C of n cities, k salespeople, and a depot d ∈ C, the
multiple TSP problem aims to find k tours that start and end at the depot such that all of
the cities in C must be visited by at least one salesperson. The objective is to minimize the
maximum tour length over the k tours. In Euclidean metric, Monroe and Mount [24] showed
that there exists a randomized algorithm for the multiple TSP problem that runs in the
expected time O(n(( 1

ε ) log( n
ε ))O(1/ε)), where ε > 0 is an approximation parameter. For the

multiple distinct depots case, Xu and Rodrigues proposed a 3
2 -approximation algorithm [27].

For more approximation algorithms for a variety of vehicle routing problems within graphs,
please see [3]. Note that the MRF problem should not be confused with the k-delivery
traveling salesman problem [4, 6], which is a routing problem of limited-capacity vehicles
with pickup and delivery locations.

Note that in these previous works, the number of servers is considered to be constant,
while in the MRF problem, the number of servers is part of the input since each server has
its own terminal. Moreover, in the MRF problem, the servers are allowed to travel through
one edge multiple times. To decrease the overall cost, an optimal solution may send multiple
servers through one edge. If the metric space in the multiple TSP problem is a tree, and the
servers are allowed to travel through an edge more than once, the multiple TSP problem can
be seen as a special case of our problem.

Other related work. MRF is similar to the school bus problem with regret minimization [8],
in which an algorithm is additionally able to determine the locations of terminals. Bock
et al. [8] provide a 13.5-approximation algorithm for the school bus problem. For more
similar problems in vehicle routing, readers may refer to the survey [9]. On the other
hand, the min-max objective considered in this paper also has a significant impact on other
combinatorial optimization problems in vehicle routing [5] and efficiency of allocations [11].

Paper organization. In Section 2, we propose our algorithm PnB. In Section 3, we analyze
the correctness and approximation ratio of the PnB algorithm. Finally, in Section 4, we
provide complexity results of the Scheduling-with-Locality problem. Due to the page
limit, we skip most of the proofs. The complete version with proofs and pseudocodes is
attached in the appendix.

2 Partition-and-Balancing Algorithm

We propose the Partition-and-Balancing (PnB) algorithm for the MRF problem, where the
input graph is a weighted tree T rooted at the source vertex ρ, and weight(e, s) = 0 if the edge
e ∈ PH(s) (that is, e is on the home path of s, from ρ to τ(s)) and weight(e, s) = weight(e)
otherwise. We first specify the terminologies that will be used in the algorithm and analysis.
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The input tree T can be partitioned into two components, skeleton (denoted by Ts) and
request forest (denoted by FR) according to the servers’ terminals and the set of requests R.
The skeleton is the union of the home paths of all servers, and the request forest is defined
by E(T ) \ Ts. Each connected component in FR is a tree rooted at some vertex on the
skeleton. We call the trees request trees In other words, the request forest is a set of request
trees (see Figure 1). We say that a server s is based at a (sub)tree T if τ(s) ∈ T . We also
say that an edge e is a detour of server s if e ∈ PH(s′) \ PH(s), where s′ ≠ s. Conceptually,
a detour of server s is an edge that s travels at a non-free cost while there is another server
that can travel through it free of cost. Note that the edges in request forest are not detours
of any server, as all servers have to pay for travel in request forest.

Given an edge-weighted graph, a walk is a sequence of vertices W = {v0, v1, v2, · · · , vℓ}
such that vi−1 and vi are adjacent for any 1 ≤ i ≤ ℓ. The walk W is called a closed walk if v0 =
vℓ. The cost of walk W is the total weight of the edges and formally

∑ℓ
i=1 weight((vi−1, vi)).

Note that in a walk, the vertices or edges may be repeated, and a repeated edge contributes
its weight multiple times in the cost of the walk. Given a weighted rooted tree T = (V, E)
with weight function weight : E → N, we denote the subtree rooted on vertex v ∈ V by Tv.
In T , the unique path between a pair of vertices u and v is called (u, v)-path and denoted by
Pu,v. We further denote the distance between two vertices u and v by dist(u, v), which is the
sum of weights of the edges on Pu,v. For any connected component C ⊆ E, which can be a
walk, a path, or even a subtree, we denote weight(C) as the total weight of the edges in C.

For convenience, we define two operations, Walk(P ) and Merge(C, W ). The Walk(P ) oper-
ation makes the path P into a walk by going back and forth on the path. Formally, given that
P = [v1, v2, · · · , vℓ], Walk(P ) returns a walk W = {v1, v2, · · · , vℓ−1, vℓ, vℓ−1, vℓ−2, · · · , v2, v1}.
The function Merge(C, W ) is to merge the closed walk W to the component C, which can be
a path or a walk, by concatenating the two components properly. Note that the Merge(C, W )
function is feasible only when W is a closed walk, and there is at least a vertex that is in
W and in C at the same time. More formally, assume that C = {v1, v2, · · · , vℓ} is a walk
and W = {u1, u2, · · · , uk, u1}, where vx = uy for some x and y, Merge(C, W ) returns a
walk {v1, v2, · · · , vx = uy, uy+1, · · · , uk, u1, · · · , uy = vx, vx+1, · · · , vℓ}. If there are multiple
vertices that are in both C and W , we break ties arbitrarily.

Instance transformation. We first transform any input tree into a special form, where
all requests are at the leaves, and the PnB algorithm works on the transformed instance.
Formally, given the input tree T , we first remove all vertices v such that there are no terminals
or requests in Tv. Then, we remove the requests on any internal node of the resulting tree.
(See Figure 1.)

One can prove by contradiction that in an optimal schedule, no server travels to any of the
removed vertices. Moreover, since we only remove requests at the vertices with descendants
that also contain requests or terminals, an optimal solution on the original input tree is
a feasible schedule of the modified input tree. By a similar reasoning, we can argue that
PnB(T ′′) is a feasible schedule of T , where T ′′ is the modified input tree. Therefore, we
have the following lemma, and it is legal to restrict our discussion to the instance where all
requests are at the leaves:

▶ Lemma 1. If the PnB algorithm is α-approximate on the modified input T ′′, PnB algorithm
is α-approximate on input T .
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69:6 Scheduling with Locality by Routing

(a) Original instance. (b) Instance after transformation.

Figure 1 Instance transformation. The squares are terminals, and the gray circles are requests.
The thick edges indicate the skeleton Ts. The vertices labeled by v and requests at the vertices
labeled by r in 1a are removed in 1b. In 1b, each of the green triangles indicates a request tree.

2.1 PnB algorithm
The PnB algorithm follows the parametric pruning framework and has two phases: Partition
and Assignment. Taking parameter ϑ = 1, 2, 3, · · · , the algorithm PnB(T , ϑ) first calls
Partition(T , ϑ). If Partition(T , ϑ) does not fail, it returns an updated tree T ′ that only
consists of the skeleton while each request tree Tw rooted at w is packed into packets stored
at the vertex w. Next, the algorithm calls Assignment(T ′, ϑ). If Assignment(T ′, ϑ) does
not fail, it returns a set of |S| walks, which is an assignment of the packets to the servers.
Whenever a phase fails, we terminate the process of PnB(T , ϑ) and move on to the next ϑ

value.

2.1.1 Partition: Packing requests (Phase 1)
Given a value of ϑ, Partition deals with the request trees one by one and returns fail if
there is a request tree with a depth (that is, the length of the longest path from w) larger
than ϑ/2. In a request tree Tw, the procedure keeps formulating packets of requests in a
bottom-up manner, removing the walk that travels through the packed requests from the
request tree, and finally, storing the formulated packets at the root of the request tree. After
the Partition procedure, if it does not return fail, the updated tree T ′ has a special form,
where the vertices in the request trees except the root are all deleted, and the vertices that
were the roots of request trees now store packets. Moreover, each leaf is a terminal of some
server in the updated tree T ′.

Checking the vertices in the request tree from bottom-top. For each request tree Tw

rooted at w, the Partition procedure checks the vertices v1, v2, · · · , vk in Tw in post order.
If the subtree Tvi

has a weight of less than ϑ−dist(w,vi)
2 , we finish checking vi and move on

to the next vertex vi+1 in Tw in the post order. Otherwise, Tvi is “heavy” enough, and we
proceed to the next step for partitioning the requests in Tvi

.

Partition the requests in a heavy-enough subtree Tvi of request tree Tw. We
travel Tvi

in the depth-first-search traversal, which is a walk Wvi
= {vi, u1, u2, · · · ,

uk1 , vi, uk1+1, uk1+2, · · · , uk2 , vi, · · · , vi}. Let βvi
= ϑ − 2 · dist(w, vi). We partition Wvi

into sub-walks, B1, B2, · · · , Bm, such that each Bj starts and ends at vi and is the walk
with smallest total weight such that weight(Bj) ≥ βvi/2. Then, each sub-walk Bj is merged
to the walk Walk(Pw,vi

) and forms a packet. The involved vertices in Bj are then trimmed



A.-H.-H. Liu and F.-H. Liu 69:7

(a) Illustration of DFS packing. (1) (b) Illustration of DFS packing. (2)

(c) Illustration of DFS packing. (3) (d) Illustration of DFS packing. (4)

(e) Illustration of DFS packing. (5) (f) The five corresponding packets stored at vertex w.

Figure 2 An illustration of Partition(ϑ) on Tw. In 2a–2e, the blue trajectories show the walks
paid by the “budget” β· = ϑ − 2 · dist(w, ·) (where · is the vertex the corresponding DFS starts at),
and the red trajectories show the remaining walks back to the vertex ·. Figure 2f shows the five
corresponding packets stored at the vertex w. The green trajectories are the walks Walk(Pw,·).

from Tw (except vi, which is trimmed only when all requests in Tvi
are packed, and w, which

is never trimmed). Note that the last partition of Wvi
may have a weight of less than βvi

/2.
In this case, this sub-walk will be pended and dealt with again when the next vertex vi+1
in Tw (in the post-order) is checked. Finally, if at the end of packing on Tw, there are still
vertices left in the (trimmed) Tw, these left-over vertices are packed into one packet and
stored at w. (See Figure 2.)

2.1.2 Assignment: Assigning packets (Phase 2)
After the procedure Partition in Section 2.1.1, the modified input tree T ′ is exactly the
skeleton Ts with each request tree Tw rooted at the vertex w ∈ Ts packed into packets and
stored at w. Moreover, every leaf in T ′ is a terminal of some server. Let B denote the set
of all packets returned by Partition, and Bw denotes the set of packets stored at vertex
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w (Bv is empty if there is no request tree rooted at v). By the process of Partition, the
packets in Bw cover all requests in the request tree Tw. In the second phase of our algorithm,
Assignment, we visit the vertices in T ′ in a post-order. When a vertex v is visited, we assign
the packets stored in the subtree Tv but “far” enough from v to a server, which has its
terminal nearby, and balance the load among the servers. The algorithm returns fail if it
fails to balance the load of the servers.

Initial assignment. In the round of visiting v, we check its children c1, c2, · · · , ck one by one.
When the child ci is checked, for any vertex w that is in the subtree Tci

and dist(w, v) > ϑ
2 , we

release the packets in Bw and assign the packets to a server s based at w (that is, τ(s) ∈ Tw)2.
Ties are broken arbitrarily. Note that some servers may have already been assigned packets
in previous rounds as we visit the vertices in T ′ in a post-order.

To describe how to reassign the packets among servers, we first define the terminologies.
We call the total weight of the packets assigned to server s the work of s. A server is heavy,
light, or normal if its work is strictly greater than 3ϑ, strictly smaller than ϑ, or otherwise,
respectively. If a server s′ is assigned to serve packets that are initially assigned to another
server s, s′ is called helping for s. Otherwise, a server that helps no other servers is free.

Re-assignment for load-balancing. After the initial assignment when checking a child ci

of v, the servers with terminals in Tci
may be light, normal, or heavy. For a server s that

becomes heavy in this round, we find some light servers based at Tci
to help it with some

of the packets as follows. We first check if there is a light server s′ that is based at Tci

and already helped s with some packets. If so, we re-assign some packets released in this
round to s′. The re-assignment stops once s or s′ becomes normal. If at this moment, s is
still heavy, then we search for another light helping server for s based at Tci

and repeat the
re-assignment. If there is no light server that helped s before, we find a light free server with
its terminal in Tci

that has not helped any other server. If all light servers based at Tci
are

helping other servers, and s is still heavy, the procedure Assignment returns fail.

Wrap the packets into walks. Finally, let Ws ⊆ V (T ′) be the set of vertices that store
packets assigned to server s and Ls be the set of vertices on the (ρ, τ(s))-path. The packets
assigned to s can be wrapped up into a walk from ρ to τ(s) by traversing the subtree induced
by Ws ∪ Ls.

Figure 3 is an example of the released packets when checking c and the servers’ status
after the initial assignment. The pseudocode of Assignment can be found in the full version.

3 Analysis of PnB algorithm

Throughout the analysis, we use OPT to denote the optimal schedule. We also use OPT to
denote the value of the optimal schedule when the context is clear.

Sizes of the packets successfully returned by Partition are bounded
Recall that the PnB algorithm is run on a modified input tree T , where each leaf is a terminal
of some server. With parameter ϑ, the procedure Partition either returns fail or modifies
the input tree T into T ′ that contains the same vertices as T ′, and the packets are stored at

2 Note that all these vertices on the path from v to ci to w are all in T ′.
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(a) The requests are released. (b) After initial assignment.

(c) After re-assignment.

Figure 3 Illustration of Assignment(ϑ) when v is visited and in the round of checking c. Each
bean-shaped object is a packet from Partition(ϑ). The solid bean-shaped green objects are released
when c is checked, as they are outside the range of ϑ

2 from v. The hollow and dashed-lined ones are
packets released in previous rounds, and the hollow and solid-lined ones have not been released. The
squares indicate the servers’ terminals. The square is white/black/gray if its corresponding server is
light/heavy/normal. When a terminal is a double-layered square, its corresponding server is helping.
The gray arrows from τ(s′) to τ(s) indicate that s′ is helping s with some packets. Note that in this
example, after checking c, Assignment(ϑ) must return fail as the servers with the terminals at u1,
u2 and u3 are heavy, but there are no free light servers in Tc.

some of these vertices. Consider any request tree Tw rooted at w ∈ T ′. By construction, the
procedure Partition packed each request in Tw into exactly one packet that is stored at the
vertex w, as long as Partition(ϑ) does not return fail.

Partition fails when there is a path Pw,ℓ, where w ∈ T ′ and ℓ is a leaf in Tw, such
that dist(w, ℓ) > ϑ

2 . Since we work on the modified input tree, the only vertex that can
be a terminal in Tw is 2. Thus, any server that serves the request on ℓ has cost at least
2 · dist(w, ℓ). Therefore, we have the following lemma:

▶ Lemma 2. If Partition(ϑ) returns fail, then OPT > ϑ.

On the other hand, if Partition returns a partition regarding ϑ, each packet B stored
at vertex w ∈ T ′ is a closed walk containing w. For any packet B packed when vi ∈ Tw is
visited, it was packed using a budget of ϑ − 2 · dist(w, vi). Since we only pack heavy enough
request trees, and the vertices in the request tree are packed from the bottom up, the trip
back to vi after the budget is off is bounded by a function of ϑ and the distance between w

and vi. By careful calculations, we have the following lemma:

▶ Lemma 3. If Partition(ϑ) does not return fail, for any packet B, weight(B) ≤ 2ϑ.
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Assignment feasibly returns a schedule with a cost of 4ϑ

After Assignment(ϑ), if it does not return fail, each server is assigned a set of packets,
where each packet is a closed walk by the construction. Recall that a packet B ∈ Bw is
assigned to a server s′ either because B is assigned to s initially or s′ is helping another
server s with B. In the prior case, w is on PH(s′) = Pρ,τ(s′) and can be merged with PH(s′)
without incurring any detour edges. In the latter case, w is on PH(s) = Pρ,τ(s), and B was
released when the algorithm visited some vertex c ∈ Pρ,w, which is a common ancestor of
τ(s′) and τ(s). Thus, B can be merged with the walk Walk(Pa,τ(s)), and the merged walk
can be merged with the path PH(s′). Therefore, the packets assigned to server s′ can be
merged with PH(s′) into a walk from the root to τ(s′), and we have the following feasibility
of the PnB algorithm (see the full version for a complete proof):

▶ Theorem 4. Given instance T , the transformed instance T ′, and a parameter of value
ϑ, if Assignment(T ′, ϑ) does not return fail, PnB(T , ϑ) is feasible. Moreover, the cost of
PnB(T , ϑ) equals to the cost of PnB(T ′, ϑ).

To bound the cost of any server, we first bound the cost spent on the server’s detours.
By the selection of helping servers, any server s′ that helps another server s with packet
B ∈ Bw is taking detours with a total distance of at most 2 · dist(w, a), where a is the lowest
common ancestor of τ(s′) and τ(s). Since in each round, we only release “far-away” packets
in terms of ϑ, 2 · dist(w, a) ≤ ϑ. Hence, the total detour length of s′ is at most ϑ. Therefore,
we have the following theorem:

▶ Theorem 5. Given that Assignment(ϑ) does not return fail, the cost of any server on
serving all packets assigned to it is at most 4ϑ.

The lower bound of the optimal cost
There are two occasions that PnB returns fail; one is in the procedure Partition, and
another one is in the procedure Assignment. In Lemma 2, we have shown that if Partition
returns fail, the optimal cost must be larger than ϑ. Next, we consider the case when
Partition successfully returns a partition of requests while Assignment returns fail.

We first argue that the partition returned by Partition(ϑ) is sufficiently cost-efficient.
More specifically, if Partition(ϑ) does not return fail, and the optimal cost is at most ϑ,
then total cost the optimal schedule has to pay is comparable to the total work of all packets.

▶ Lemma 6. Given that Partition(ϑ) does not return fail, if OPT ≤ ϑ, then the sum
of the cost of servers in the optimal schedule is at least

∑
packets B weight(B). That is,∑

s∈S costOPT(s) ≥
∑

B∈B weight(B).

Proof (Sketch). We denote n∗
e as the number of servers OPT sends over the edge e, and be

as the number of packets constructed by Partition(ϑ, T ) that contain e. It is equivalent to
prove that if OPT ≤ ϑ, n∗

e ≥ be for any edge e ∈ FR. We prove this claim by induction on
the edges with depths from the bottom up. Consider an edge e = (u, v) in a request tree
Tw, where u is v’s parent. Denote weightTv (B) the total weight of edges in packet B that
are also in Tv. The total cost of servers in the optimal solution spent in the subtree Tv is∑

e′∈Tv
n∗

e′ ·weight(e′) ≥
∑

e′∈Tv
be′ ·weight(e′) by the inductive hypothesis. By construction,

any packet that contains e′ ∈ Tv must contain the edge e = (u, v). Therefore, the total
weight

∑
e′∈Tv

be′ · weight(e′) =
∑

B:e∈B weightTv
(B).

Next, we bound
∑

B:e∈B weightTv (B). By case distinction, any packet B containing
the edge e that was packed when v or some descendent of v is visited has weightTv

(B) ≥
ϑ − 2 · dist(w, v). Moreover, there is at most another packet containing the edge e that was
packed when some ancestor of v is visited. Therefore, the total weight of the packets that
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contain e is at least m · (ϑ − 2 · dist(w, v)) + weight(B̂), where m is the total number of
packets formed by visiting v or some descendent of v, and B̂ is the packets packed when an
ancestor of v is visited. Meanwhile, be = m + 1[there is at least one packet in B̂]3.

Finally, since OPT ≤ ϑ, and v is in the request tree Tw, any server that travels to v

has to finish its route in Tv with a cost of at most ϑ − 2 · dist(w, v). Therefore, an optimal

solution has to send at least
∑

B:e∈B
weightTv (B)

ϑ−2·dist(w,v) servers over the edge e to serve all requests
in Tv. Hence, n∗

e ≥ m + 1[there is at least one packet in B̂] = be, since n∗
e is integral. ◀

Next, we show that if Assignment(ϑ) returns fail, the average cost of the servers in the
(failed) Assignment(ϑ) assignment on serving the packets must be strictly larger than ϑ.

▶ Lemma 7. Given that Assignment(ϑ) returns fail, on average, each server in the PnB
assignment is assigned by packets with total work strictly larger than ϑ.

Proof (Sketch). Assume that Assignment(ϑ) returns fail when visiting v and checking
the child c. Consider the set S ′ of servers that an optimal solution uses to serve the requests
in Tc. There are two cases of the optimal solution: 1) there exists at least one server in S ′

who has its terminal outside Tc, or 2) all servers in S ′ have their terminals in Tc. It is easy
to see in case 1, the optimal cost is at least ϑ due to any packets inside Tc are at least ϑ/2
away from c.

For Case 2, we use a helping forest argument described below. Consider the servers’
packets with their terminals in Tc at the moment when Assignment(ϑ) returns fail. We
construct helping trees, which are rooted trees, where each node corresponds to a server by
making s′ a child of s if s′ helps s with some packets.4 In each helping tree, the root and the
internal nodes are normal (or heavy if it is the server that triggers Assignment(ϑ) to return
fail). Consider any internal node s and its children, which are sorted by the order that
they help s. The servers s and all its children but the last one must be all normal. On the
other hand, the last child can be normal or light. Furthermore, if the last child is light, it is
a leaf, as it needs no one to help it. Hence, any internal node has at most one light leaf. The
total work of an internal node s and its light leaf sℓ is at least 3ϑ, since work(s) > 3ϑ right
before sℓ helps s. Therefore, the theorem is proven by the fact that the average work of the
servers with terminals in Tc is strictly greater than n·ϑ+ℓ·3ϑ

n+2ℓ > ϑ, where ℓ is the number of
internal node-light leaf pairs, and n is the number of other nodes in the helping forest. ◀

Now, we are ready to prove our main theorem.

▶ Theorem 8. Given that PnB(T , ϑ) returns fail, OPT > ϑ.

Proof. By the construction, Partition(ϑ) returns fail, the optimal cost must be strictly
larger than ϑ. When Assignment(ϑ) returns fail, there are two cases of the optimal cost:
1) OPT > ϑ, and 2) OPT ≤ ϑ. Suppose on contrary that Assignment(ϑ) returns fail and

OPT ≤ ϑ. Then, OPT ≥ average cost of all servers =
∑

s∈S
costOPT(s)
|S| ≥

∑
B∈B

weight(B)
|S| ,

where the inequality is by Lemma 6. By Lemma 7,
∑

B∈B
weight(B)
|S| > ϑ. In result, OPT > ϑ,

which contradicts to the assumption that OPT ≤ ϑ. ◀

By Theorem 5, Theorem 8, and the parametric pruning framework, we get the approxim-
ation ratio:

▶ Theorem 9. PnB is a 4-approximation.

3 The function 1[X] is 1 if statement X is true and is 0 otherwise.
4 By the construction, a server s helped by another server will not help other servers, while a helping

server s′ may be helped by other servers later.
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4 Runtime and complexity

4.1 Runtime

Based on the pseudocode, the runtime of PnB depends on a polynomial function of the
number of vertices, the number of requests, the number of servers and the value of the
optimal schedule. We can slightly improve it as follows. Previously, we search for ϑ∗ through
a linear scan of ϑ starting from 1, 2, and so on. The scan can be accelerated by binary search.

More specifically, we make ϑ starting from 1, double its value until PnB outputs a feasible
schedule, and then binary search within the range up to the ϑ of the feasible schedule.
Therefore, for the part of the value of optimal schedule, the runtime reduces to a logarithmic
function of the value.

▶ Theorem 10. PnB runs in O(|V |3 log OPT(T )) time where |V | is the number of vertices
in the input tree T .

▶ Corollary 11. PnB runs in polynomial time.

By the binary search method, we can generalize the edge weights from integers to real
numbers.

▶ Theorem 12. For real number edge weights, PnB is (4 + ϵ)-approximation with runtime
O(|V |3(4/ϵ − 1 + log⌈OPT(T )⌉)) where |V | is the number of vertices in the input tree T .

4.2 Complexity results

First, by reducing from 3-Partition, we have the following theorem for MRF:

▶ Theorem 13. MRF is strongly NP-hard even if the input is a star.

Then, we move on to the complexity of Scheduling-with-Locality. We show that the
unrelated machine scheduling problem can be reduced to a special case of the scheduling with
locality problem. Thus, the problem is more general than the unrelated machine scheduling
problem in the sense of approximation ratios.

▶ Theorem 14. For α < 1.5, there does not exist a polynomial-time α-approximation al-
gorithm for Scheduling-with-Locality even if we restrict that a server only gets discounts
on the edges of the path from the source vertex to its terminal, unless P = NP .

For the rest of the section, we show the following theorem by a reduction from 3-
dimensional matching.

▶ Theorem 15. For α < 2, there does not exist a polynomial-time α-approximation algorithm
for Scheduling-with-Locality even if the edge weights consist of only 0 and 1, unless
P = NP .

3-Dimensional matching. In the problem, there are disjoint vertex sets A, B and C with
|A| = |B| = |C| = n. There is also a set of triples T . Each t ∈ T is (at, bt, ct) for some
at ∈ A, bt ∈ B and ct ∈ C. There is a matching if we can find n triples that cover A ∪ B ∪ C.
It is known that 3-dimensional matching is NP-hard.
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Construction of the reduction. If |T | < n, we construct a trivial no-instance. Thus in
the following, we assume |T | ≥ n. For ease of the description, there is no discounts on any
edge for each server by default. For each vertex x ∈ A ∪ B ∪ C, there is a corresponding
request vertex rx. There are additionally |T | − n dummy request vertices D. For each triple
t = (a, b, c) ∈ T , there are four vertices vt, xt, yt and zt. Each triple has a corresponding
server. Let s be the corresponding server of t. Vertex vt is the terminal of s. There are edges
(vt, xt), (xt, yt) and (yt, zt). The weights of the three edges is 1 and the discounts of (xt, yt)
and (yt, zt) for server s are 0. There are additionally edges (xt, ra), (yt, rb) and (zt, rc) all
with weight 0. In addition, vt is adjacent to all the dummy requests D, and these edges all
have weight 1. Finally, vt is also adjacent to the source vertex. The edge has weight 1, but
the corresponding server s has a discount 0.

The construction has the following properties.

▶ Observation 16. Consider two different servers s and s′, and their corresponding triples
t = (a, b, c) ∈ T and t′ = (a′, b′, c′) ∈ T respectively. Any walk starting from the terminal of s

and ending at x′
t incurs a cost of at least 2 for server s if a ̸= a′. The reversed walk (from x′

t

to the terminal of s) also incurs a cost of at least 2 for server s if a ̸= a′. Both statements
are also true if we replace the vertices (a, a′, x′

t) by (b, b′, y′
t) or replace (a, a′, x′

t) by (c, c′,
z′

t).

▶ Lemma 17. For Scheduling-with-Locality, the question of deciding if there exists a
feasible schedule with makespan at most 2 is NP-hard.

Proof of Theorem 15. By the construction and Observation 16, it is easy to see that any
feasible schedule with a makespan strictly larger than 2 has a makespan larger than 4. Thus,
the theorem follows. ◀
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Abstract
Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem
is to compute a subset of disks of smallest total weight such that the union of the disks in the
subset covers all points of P . The problem is NP-hard. In this paper, we consider a line-separable
unit-disk version of the problem where all disks have the same radius and their centers are separated
from the points of P by a line ℓ. We present an O(n3/2 log2 n) time algorithm for the problem.
This improves the previously best work of O(n2 log n) time. Our result leads to an algorithm of
O(n7/2 log2 n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover
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1 Introduction

Let P be a set of points, and S a set of disks in the plane such that each disk has a positive
weight. The disk coverage problem asks for a subset of disks whose union covers all points
and the total weight of the disks in the subset is minimized. The problem is NP-hard, even
if all disks have the same radius and all disks have the same weight [12,20]. Polynomial-time
approximation algorithms have been proposed for the problem and many of its variants,
e.g., [1, 7–9,13,17].

In this paper, we consider a line-separable unit-disk version of the problem where all
disks have the same radius and their centers are separated from the points of P by a line
ℓ (see Fig. 1). This version of the problem has been studied before. For the unweighted
case, that is, all disks have the same weight, Ambühl, Erlebach, Mihalák, and Nunkesser [3]
first solved the problem in O(m2n) time, where n = |P | and m = |S|. An improved
O(nm + n log n) time algorithm was later given in [11]. Liu and Wang [19] recently presented
an O((n + m) log(n + m)) time algorithm.1 For the weighted case, Pederson and Wang [22]
derived an algorithm of O(nm log(m + n)) time or O((m + n) log(m + n) + κ log m) time,

1 The runtime of the algorithm in the conference paper of [19] was m2/3n2/32O(log∗(m+n)) + O((n +
m) log(n + m)), which has been improved to O((n + m) log(n + m)) time in the latest arXiv version.
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`

Figure 1 Illustrating the line-separable unit-disk case: All points of P are above ℓ while the
centers of all disks are below ℓ.

where κ is the number of pairs of disks that intersect and κ = O(m2) in the worst case. In
this paper, we propose an algorithm of O(n

√
m log2 m + (m + n) log(m + n)) time for the

weighted case. In addition to the improvement over the previous work, perhaps theoretically
more interesting is that the runtime of our algorithm is subquadratic.

The halfplane coverage problem. If every disk of S is a halfplane, then the problem
becomes the halfplane coverage problem. To solve the problem, Pedersen and Wang [22]
showed that the problem can be reduced to O(n2) instances of the lower-only halfplane
coverage problem in which all halfplanes are lower halfplanes; this reduction works for both
the unweighted and the weighted cases. Consequently, if the lower-only problem can be
solved in O(T ) time, then the general problem (i.e., S has both lower and upper halfplanes)
is solvable in O(n2 · T ) time.

For the weighted lower-only problem, Chan and Grant [8] first gave an algorithm that
runs in O((m + n)4) time. As observed in [22], the lower-only halfplane coverage problem is
actually a special case of the line-separable unit-disk coverage problem. Indeed, let ℓ be a
horizontal line below all the points of P . Then, since each halfplane of S is a lower halfplane,
it can be considered a disk of infinite radius with center below ℓ. In this way, the lower-only
halfplane coverage problem becomes an instance of the line-separable unit-disk coverage
problem. As such, with their algorithm for the weighted line-separable unit-disk coverage
problem, Pederson and Wang [22] solved the weighted lower-only halfplane coverage problem
in O(nm + n log n) time or O((m + n) log(m + n) + m2 log m) time. Using our new algorithm
for the weighted line-separable unit-disk coverage problem, the weighted lower-only halfplane
coverage problem can now be solved in O(n

√
m log2 m + (m + n) log(m + n)) time.

The unweighted lower-only halfplane coverage problem can be solved faster. Indeed, since
the problem is a special case of the unweighted line-separable unit-disk coverage problem,
with the O((n + m) log(n + m)) time algorithm of Liu and Wang [19] for the latter problem,
the unweighted lower-only halfplane coverage problem is solvable in O((n + m) log(n + m))
time. Wang and Xue [24] derived another O((n + m) log(n + m)) time algorithm for the
unweighted lower-only halfplane coverage problem with a different approach (which does
not work for the unit-disk problem); they also solved the general unweighted halfplane
coverage problem in O(n4/3 log5/3 n logO(1) log n) time. In addition, by a reduction from the
set equality problem [4], a lower bound of Ω((n + m) log(n + m)) is proved in [24] for the
lower-only halfplane coverage problem under the algebraic decision tree model.

The hitting set problem. A related problem is the hitting set problem in which each point
of P has a positive weight and we seek to find a subset of points with minimum total weight
so that each disk of S contains at least one point of the subset. Since the disks of S have the
same radius, the problem is actually “dual” to the disk coverage problem. More specifically,
if we consider the set of unit disks centered at the points of P as a set of “dual disks” and
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consider the centers of the disks of S as a set of “dual points”, then the hitting set problem
on P and S is equivalent to finding a minimum weight subset of dual disks whose union
covers all dual points. Consequently, applying our new weighted case line-separable unit-disk
coverage algorithm in this paper solves the weighted line-separable unit-disk hitting set
problem in O(m

√
n log2 n + (m + n) log(m + n)) time; applying the O((m + n) log(m + n))

time algorithm in [19] for the unweighted line-separable unit-disk coverage algorithm solves
the unweighted line-separable unit-disk hitting set problem in O((m + n) log(m + n)) time.

If every disk of S is a halfplane, then the problem becomes the halfplane hitting set
problem. Har-Peled and Lee [14] first solved the weighted problem in O((m + n)6) time. Liu
and Wang [18] showed that the problem can be reduced to O(n2) instances of the lower-only
halfplane hitting set problem in which all halfplanes are lower halfplanes; this reduction works
for both the unweighted and the weighted cases. Consequently, if the lower-only problem
can be solved in O(T ) time, then the general problem can be solved in O(n2 · T ) time. For
the lower-only problem, as in the coverage problem, it is a special case of the line-separable
unit-disk hitting set problem; consequently, the weighted and unweighted cases can be solved
in O(m

√
n log2 n + (m + n) log(m + n)) time using our new algorithm in this paper and

O((m + n) log(m + n)) time using the algorithm in [19], respectively.

Other related work. Pedersen and Wang [22] actually considered a line-constrained disk
coverage problem, where disk centers are on the x -axis while the points of P can be
anywhere in the plane, but the disks may have different radii. They solved the weighted case
in O(nm + n log n) time or O((m + n) log(m + n) + κ log m) time, where κ is the number of
pairs of disks that intersect. For the unweighted case, Liu and Wang [19] gave an algorithm
of O((n + m) log(m + n) + m log m log n) time. The line-constrained disk hitting set problem
was also studied by Liu and Wang [18], where an O((m + n) log(m + n) + κ log m) time
algorithm was derived for the weighted case, matching the time complexity of the above
line-constrained disk coverage problem. Other types of line-constrained problems have also
been considered in the literature, e.g., [2, 5, 6, 15,16,21,25].

Our approach. Our algorithm for the weighted line-separable unit-disk coverage problem
is essentially a dynamic program. The algorithm description is quite simple and elegant.
However, it is not straightforward to prove its correctness. To this end, we show that our
algorithm is consistent with the algorithm in [22] for the same problem; one may view our
algorithm as a different implementation of the algorithm in [22]. Another challenge of our
approach lies in its implementation. More specifically, our algorithm has two key operations,
and the efficiency of the algorithm hinges on how to perform these operations efficiently.
For this, we construct a data structure based on building a cutting on the disks of S [10].
Although we do not have a good upper bound on the runtime of each individual operation
of the algorithm, we manage to bound the total time of all operations in the algorithm by
O(n
√

m log2 m + (m + n) log(m + n)).

Outlines. The rest of the paper is structured as follows. After introducing some nota-
tion in Section 2, we describe our algorithm and prove its correctness in Section 3. The
implementation of the algorithm is presented in Section 4.
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2 Preliminaries

We follow the notation defined in Section 1, e.g., P , S, m, n, ℓ. All disks of S have the same
radius, which we call unit disks. Without loss of generality, we assume that ℓ is the x-axis
and all points of P are above ℓ while all centers of disks of S are below ℓ. Note that when
we say that a point is above (or below) ℓ, we allow the case where the point is on ℓ.

We assume that each point of P is covered by at least one disk since otherwise there
would be no solution. Our algorithm can check whether this assumption is met. For ease of
discussion, we make a general position assumption that no point of P lies on the boundary
of a disk and no two points of P have the same x-coordinate.

We call a subset S′ of S a feasible subset if the union of all disks of S′ covers all points of
P . If S′ is a feasible subset of minimum total weight, then S′ is called an optimal subset.
Let δopt denote the total weight of all disks in an optimal subset; we call δopt the optimal
objective value.

For any point q in the plane, let Sq ⊆ S denote the subset of disks containing q; define
Sq = S \ Sq. For each disk s ∈ S, let w(s) denote its weight.

3 Algorithm description and correctness

We now present our algorithm. As mentioned above, the algorithm description is quite
simple. The challenging part is to prove its correctness and implement it efficiently. In the
following, we first describe the algorithm in Section 3.1, and then establish its correctness in
Section 3.2. The algorithm implementation will be elaborated in Section 4.

3.1 Algorithm description
We first sort the points of P from left to right as p1, p2, . . . , pn. Our algorithm then processes
the points of P in this order. For each point pi ∈ P , the algorithm computes a value δi. The
algorithm also maintains a value cost(s) for each disk s ∈ S, which is initialized to its weight
w(s). The pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1 The primal algorithm.

Input: The points of P are sorted from left to right as p1, p2, . . . , pn

Output: The optimal objective value δopt

1 cost(s)← w(s), for all disks s ∈ S;
2 for i← 1 to n do
3 δi ← mins∈Spi

cost(s); // FindMinCost Operation
4 cost(s)← w(s) + δi for all disks s ∈ Spi

; // ResetCost Operation
5 end
6 return δn;

The algorithm is essentially a dynamic program. We prove in Section 3.2 that the value
δn returned by the algorithm is equal to δopt, the optimal objective value. To find an optimal
subset, one could slightly modify the algorithm following the standard dynamic programming
backtracking technique. More specifically, if δn is equal to cost(s) for some disk s ∈ Spn ,
then s should be reported as a disk in the optimal subset. Suppose that cost(s) is equal to
w(s) + δi for some point pi. Then δi is equal to cost(s′) for some disk s′ ∈ Spi and s′ should
be reported as a disk in the optimal subset. We continue this backtracking process until
a disk whose cost is equal to its own weight is reported (in which case all points of P are
covered by the reported disks).
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For reference purposes, we use FindMinCost to refer to the operation in Line 3 and use
ResetCost to refer to the operation in Line 4 of Algorithm 1. The efficiency of the algorithm
hinges on how to implement these two key operations, which will be discussed in Section 4.

3.2 Correctness of Algorithm 1
We prove that Algorithm 1 is correct, i.e., prove δn = δopt. To this end, we show that our
algorithm is consistent with the algorithm of Pederson and Wang [22] for the same problem,
or alternatively, our algorithm provides a different implementation of their algorithm. Their
algorithm first reduces the problem to a 1D interval coverage problem and then solves
the interval coverage problem by a dynamic programming algorithm. In the following,
we first review their problem reduction in Section 3.2.1 and then explain their dynamic
programming algorithm in Section 3.2.2. Finally, we show that our algorithm is essentially
an implementation of their dynamic programming algorithm in Section 3.2.3.

3.2.1 Reducing the problem to an interval coverage problem
For convenience, let p0 (resp., pn+1) be a point to the left (resp., right) all the points of P

and is not contained in any disk of S.
Consider a disk s ∈ S. We say that a subsequence P [i, j] of P with 1 ≤ i ≤ j ≤ n is a

maximal subsequence covered by s if all points of P [i, j] are covered by s but neither pi−1
nor pj+1 is (it is well defined due to p0 and pn+1). Define F (s) as the set of all maximal
subsequences covered by s. It is easy to see that the subsequences of F (s) are pairwise
disjoint.

For each point pi of P , we vertically project it on the x-axis ℓ; let p∗
i denote the projection

point. Let P ∗ denote the set of all such projection points. Due to our general position
assumption that no two points of P have the same x-coordinate, all points of P ∗ are distinct.
For any 1 ≤ i ≤ j ≤ n, we use P ∗[i, j] to denote the subsequence p∗

i , p∗
i+1, . . . , p∗

j .
Next, we define a set S∗ of line segments on ℓ as follows. For each disk s ∈ S and each

subsequence P [i, j] ∈ F (s), we create a segment for S∗, denoted by s∗[i, j], with the left
endpoint at p∗

i and the right endpoint at p∗
j . As such, s∗[i, j] covers all points of P ∗[i, j] and

does not cover any point of P ∗ \ P ∗[i, j]. We let the weight of s∗[i, j] be equal to w(s). We
say that s∗[i, j] is defined by the disk s.

Consider the following interval coverage problem (i.e., each segment of S∗ can also be
considered an interval of ℓ): Find a subset of segments of S∗ of minimum total weight such
that the union of the segments in the subset covers all points of P ∗. Pederson and Wang [22]
proved that an optimal solution to this interval coverage problem corresponds to an optimal
solution to the original disk coverage problem on P and S. More specifically, suppose that
S∗

opt is an optimal subset of the interval coverage problem. Then, we can obtain an optimal
subset Sopt for the disk coverage problem as follows: For each segment s∗[i, j] ∈ S∗

opt, we add
the disk that defines s∗[i, j] to Sopt. It is proved in [22] that Sopt thus obtained is an optimal
subset of the disk coverage problem. Note that since a disk of S may define multiple segments
of S∗, a potential issue with Sopt is that a disk may be included in Sopt multiple times (i.e.,
if multiple segments defined by the disk are in S∗

opt); but this is proved impossible [22].

3.2.2 Solving the interval coverage problem
We now explain the dynamic programming algorithm in [22] for the interval coverage problem.

Let p∗
0 be the vertical projection of p0 on ℓ. Note that p∗

0, p∗
1, . . . , p∗

n are sorted on ℓ from
left to right. For each segment s∗ ∈ S∗, let w(s∗) denote the weight of s∗.

MFCS 2024
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For each segment s∗ ∈ S∗, define fs∗ as the index of the rightmost point of P ∗ ∪ {p∗
0}

strictly to the left of the left endpoint of s∗. Note that fs∗ is well defined due to p∗
0.

For each i ∈ [1, n], define δ∗
i as the minimum total weight of a subset of segments of S∗

whose union covers all points of P ∗[1, i]. The goal of the interval coverage problem is to
compute δ∗

n, which is equal to δopt [22]. For convenience, we let δ∗
0 = 0. For each segment

s∗ ∈ S∗, define cost(s∗) = w(s∗) + δ∗
fs∗ . One can verify that δ∗

i = mins∗∈S∗
p∗

i

cost(s∗), where
S∗

p∗
i
⊆ S∗ is the subset of segments that cover p∗

i . This is the recursive relation of the dynamic
programming algorithm.

Assuming that the indices fs∗ for all disks s∗ ∈ S∗ have been computed, the algorithm
works as follows. We sweep a point q on ℓ from left to right. Initially, q is at p∗

0. During
the sweeping, we maintain the subset S∗

q ⊆ S∗ of segments that cover q. The algorithm
maintains the invariant that the cost of each segment of S∗

q is already known and the values
δ∗

i for all points p∗
i ∈ P ∗ to the left of q have been computed. An event happens when q

encounters an endpoint of a segment of S∗ or a point of P ∗. If q encounters a point p∗
i ∈ P ∗,

then we find the segment of S∗
q with the minimum cost and assign the cost value to δ∗

i . If q

encounters the left endpoint of a segment s∗, we set cost(s∗) = w(s∗) + δ∗
fs∗ and then insert

s∗ into S∗
q . If q encounters the right endpoint of a segment, we remove the segment from S∗

q .
The algorithm finishes once q meets p∗

n, at which event δ∗
n is computed.

Remark. It was shown in [22] that the above dynamic programming algorithm for the
interval coverage problem can be implemented in O((|P ∗|+ |S∗|) log(|P ∗|+ |S∗|)). While
|P ∗| = n, |S∗| may be relatively large. A straightforward upper bound for |S∗| is O(nm).
Pederson and Wang [22] proved another bound |S∗| = O(n + m + κ), where κ is the number
of pairs of disks that intersect. This leads to their algorithm of O(nm log(m + n) + n log n)
time or O((m + n) log(m + n) + κ log m) time for the original disk coverage problem on P

and S.

3.2.3 Correctness of our algorithm
Next, we argue that δn = δ∗

n, which will establish the correctness of Algorithm 1 since
δ∗

n = δopt. In fact, we will show that δi = δ∗
i for all 1 ≤ i ≤ n. We prove it by induction.

As the base case, we first argue δ1 = δ∗
1 . To see this, by definition, δ1 = mins∈Sp1

w(s)
because cost(s) = w(s) initially for all disks s ∈ S. For δ∗

1 , notice that fs∗ = 0 for every
segment s∗ ∈ S∗

p∗
1
. Since δ∗

0 = 0, we have δ∗
1 = mins∗∈S∗

p∗
1

w(s∗). By definition, a segment
s∗ ∈ S∗ covers p∗

1 only if the disk of S defining s∗ covers p1, and the segment has the same
weight as the disk. Therefore, s∗ is in S∗

p∗
1

only if the disk of S defining s∗ is in Sp1 . On the
other hand, if a disk s covers p1, then s must define exactly one segment in S∗ covering p∗

1.
Hence, for each disk s ∈ Sp1 , it defines exactly one segment in S∗

p∗
1

with the same weight. This
implies that δ∗

1 is equal to the minimum weight of all disks of S covering p1, and therefore,
δ∗

1 = δ1 must hold.
Consider any i with 2 ≤ i ≤ n. Assuming that δj = δ∗

j for all 1 ≤ j < i, we now prove
δi = δ∗

i . Recall that δi = mins∈Spi
cost(s) and δ∗

i = mins∗∈S∗
p∗

i

cost(s∗). As argued above,
each disk s ∈ Spi

defines a segment in S∗
p∗

i
with the same weight and each segment s∗ ∈ S∗

p∗
i

is defined by a disk in Spi
with the same weight. Let s∗ be the segment of S∗

p∗
i

defined by a
disk s ∈ Spi

. To prove δi = δ∗
i , it suffices to show that cost(s) of s is equal to cost(s∗) of

s∗. To see this, first note that w(s) = w(s∗). By definition, cost(s∗) = w(s∗) + δ∗
fs∗ . For

notational convenience, let j = fs∗ . By definition, all points of P ∗[j + 1, i] are covered by
the segment s∗ but the point p∗

j is not. Therefore, all points of P [j + 1, i] are covered by the
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disk s but pj is not. As such, during the ResetCost operation of the j-th iteration of the for
loop in Algorithm 1, cost(s) will be set to w(s) + δj ; furthermore, cost(s) will not be reset
again during the i′-th iteration for all j + 1 ≤ i′ ≤ i. Therefore, we have cost(s) = w(s) + δj

at the beginning of the i-th iteration of the algorithm. Since δj = δ∗
j holds by induction

hypothesis and w(s) = w(s∗), we obtain cost(s) = cost(s∗). This proves δi = δ∗
i .

The correctness of Algorithm 1 is thus established.

Remark. The above proof for δn = δopt also implies that δi = δi
opt for all 1 ≤ i ≤ n − 1,

where δi
opt is the minimum total weight of a subset of disks whose union covers all points of

P [1, i]. Indeed, we can apply the same proof to the points of P [1, i] only. Observe that δi

will never change after the i-th iteration of Algorithm 1.

4 Algorithm implementation

In this section, we discuss the implementation of Algorithm 1. Specifically, we describe
how to implement the two key operations FindMinCost and ResetCost. A straightforward
method can implement each operation in O(m) time, resulting in a total O(mn + n log n)
time of the algorithm. Note that this is already a logarithmic factor improvement over the
previous work of Pederson and Wang [22]. In the following, we present a faster approach of
O(n
√

m log2 m + (m + n) log(m + n)) time.

Duality. Recall that the points of P are sorted from left to right as p1, p2, . . . , pn. In fact,
we consider the problem in the “dual” setting. For each point pi ∈ P , let di denote the unit
disk centered at pi, and we call di the dual disk of pi. For each disk s ∈ S, let qs denote the
center of s, and we call qs the dual point of s. We define the weight of qs to be equal to w(s).
We use D to denote the set of all dual disks and Q the set of all dual points. For each dual
point q ∈ Q, let w(q) denote its weight. Because all disks of S are unit disks, we have the
following observation.

▶ Observation 1. A disk s ∈ S covers a point pi ∈ P if and only if the dual point qs is
covered by the dual disk di.

For any disk di ∈ D, let Qdi
denote the subset of dual points of Q that are covered by di,

i.e., Qdi
= Q∩ di. Define Qdi

= Q \Qdi
. In light of Observation 1, Algorithm 1 is equivalent

to the following Algorithm 2.

Algorithm 2 An algorithm “dual” to Algorithm 1.

1 cost(q)← w(q), for all dual points q ∈ Q;
2 for i← 1 to n do
3 δi ← minq∈Qdi

cost(q); // FindMinCost Operation
4 cost(q)← w(q) + δi for all dual points q ∈ Qdi ; // ResetCost Operation
5 end
6 return δn;

In the following, we will present an implementation for Algorithm 2, and in particular,
for the two operations FindMinCost and ResetCost.

For each disk di ∈ D, since its center is above the x-axis ℓ and all points of Q are below
ℓ, only the portion of di below ℓ matters to Algorithm 2. We call the boundary portion of di

below ℓ the lower arc of di. Let H denote the set of the lower arcs of all disks of D.

MFCS 2024
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Figure 2 Illustrating a pseudo-trapezoid.

Cuttings. Our algorithm will need to construct a cutting on the arcs of H [10]. We explain
this concept first. Note that |H| = n. For a parameter r with 1 ≤ r ≤ n, a (1/r)-cutting Ξ
of size O(r2) for H is a collection of O(r2) constant-complexity cells whose union covers the
entire plane and whose interiors are pairwise disjoint such that the interior of each cell σ ∈ Ξ
is crossed by at most n/r arcs of H, i.e., |Hσ| ≤ n/r, where Hσ is the subset of arcs of H

that cross the interior of σ (Hσ is often called the conflict list in the literature). Let Dσ be
the subset of disks of D whose lower arcs are in Hσ. Hence, we also have |Dσ| ≤ n/r.

We actually need to construct a hierarchical cutting for H [10]. We say that a cutting
Ξ′ c-refines another cutting Ξ if each cell of Ξ′ is completely inside a single cell of Ξ and
each cell of Ξ contains at most c cells of Ξ′. Let Ξ0 denote the cutting with a single cell
that is the entire plane. We define cuttings {Ξ0, Ξ1, ..., Ξk}, in which each Ξi, 1 ≤ i ≤ k,
is a (1/ρi)-cutting of size O(ρ2i) that c-refines Ξi−1, for two constants ρ and c. By setting
k = ⌈logρ r⌉, the last cutting Ξk is a (1/r)-cutting. The sequence {Ξ0, Ξ1, ..., Ξk} is called a
hierarchical (1/r)-cutting for H. If a cell σ′ of Ξi−1, 1 ≤ i ≤ k, contains cell σ of Ξi, we say
that σ′ is the parent of σ and σ is a child of σ′. We can also define ancestors and descendants
correspondingly. As such, the hierarchical (1/r)-cutting can be viewed as a tree structure
with the single cell of Ξ0 as the root. We often use Ξ to denote the set of all cells in all
cuttings Ξi, 0 ≤ i ≤ k. The total number of cells of Ξ is O(r2) [10].

A hierarchical (1/r)-cutting of H can be computed in O(nr) time, e.g., by the algorithm
in [23], which adapts Chazelle’s algorithm [10] for hyperplanes. The algorithm also produces
the conflict lists Hσ (and thus Dσ) for all cells σ ∈ Ξ, implying that the total size of these
conflict lists is bounded by O(nr). In particular, each cell of the cutting produced by the
algorithm of [23] is a (possibly unbounded) pseudo-trapezoid that typically has two vertical
line segments as left and right sides, a sub-arc of an arc of H as a top side (resp., bottom
side) (see Fig. 2).

In what follows, we first discuss a preprocessing step in Section 4.1. The algorithms for
handling the two key operations are described in the subsequent two subsections, respectively.
Section 4.4 finally summarizes everything.

4.1 Preprocessing
In order to handle the two key operations, we first perform some preprocessing work before
we run Algorithm 2. As discussed above, we first sort all points of P from left to right. In the
following, we describe a data structure which will be used to support the two key operations.

We start by computing a hierarchical (1/r)-cutting {Ξ0, Ξ1, ..., Ξk} for H in O(nr)
time [10,23], for a parameter 1 ≤ r ≤ n to be determined later. We follow the above notation,
e.g., σ, Hσ, Dσ, Ξ. As discussed above, the cutting algorithm also produces the conflict lists
Hσ (and thus Dσ) for all cells σ ∈ Ξ. Using the conflict lists, we compute a list L(di) for
each disk di ∈ D, where L(di) comprises all cells σ ∈ Ξ such that di ∈ Dσ. Computing L(di)
for all disks di ∈ D can be done in O(

∑
σ∈Ξ |Hσ|) time by simply traversing the conflict lists

Hσ of all cells σ ∈ Ξ, which takes O(nr) time as
∑

σ∈Ξ |Hσ| = O(nr). Note that this also
implies

∑
di∈D |L(di)| = O(nr).
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For any region R in the plane, let Q(R) denote the subset of points of Q that are inside
R, i.e., Q(R) = Q ∩R.

For simplicity, we assume that no point of Q is on the boundary of any cell of Ξ. This
implies that each point of Q is in the interior of a single cell of Ξi, for all 0 ≤ i ≤ k. We
compute the subset Q(σ) of all cells σ in the last cutting Ξk. This can be done by a point
location procedure as follows. For each point q ∈ Q, starting from the only cell of Ξ0, we find
the cell σi of Ξi containing q, for each 0 ≤ i ≤ k. More precisely, suppose that σi is known.
To find σi+1, we simply check all O(1) children of σi and find the one that contains q, which
takes O(1) time. As such, processing all points of Q takes O(m log r) time as k = O(log r),
after which Q(σ) for all cells σ ∈ Ξk are computed. We explicitly store Q(σ) for all cells
σ ∈ Ξk. Note that the subsets Q(σ) for all cells σ ∈ Ξk form a partition of Q. Therefore, we
have the following observation.

▶ Observation 2.
∑

σ∈Ξk
|Q(σ)| = m.

Note that a cell σ ∈ Ξ is the ancestor of another cell σ′ ∈ Ξ (alternatively, σ′ is a
descendant of σ) if and only if σ fully contains σ′. For convenience, we consider σ an ancestor
of itself but not a descendant of itself. Let A(σ) denote the set of all ancestors of σ and B(σ)
the set of all descendants of σ. Hence, σ is in A(σ) but not in B(σ). Let C(σ) denote the
set of all children of σ Clealy, |A(σ)| = O(log r) and |C(σ)| = O(1).

Variables and algorithm invariants. For each point q ∈ Q, we associate with it a variable
λ(q). For each cell σ ∈ Ξ, we associate with it two variables: minCost(σ) and λ(σ). If
|Q(σ)| = ∅, then minCost(σ) = ∞ and λ(σ) = 0 always hold during the algorithm. Our
algorithm for handling the two key operations will maintain the following two invariants.

▶ Algorithm Invariant 1. For any point q ∈ Q, cost(q) = w(q) + λ(q) +
∑

σ′∈A(σ) λ(σ′),
where σ is the cell of Ξk that contains q.

▶ Algorithm Invariant 2. For each cell σ ∈ Ξ with Q(σ) ̸= ∅, if σ is a cell of Ξk, then
minCost(σ) = minq∈Q(σ)(w(q)+λ(q)); otherwise, minCost(σ) = minσ′∈C(σ)(minCost(σ′)+
λ(σ′)).

The above algorithm invariants further imply the following observation.

▶ Observation 3. For each cell σ ∈ Ξ with Q(σ) ̸= ∅, minq∈Q(σ) cost(q) = minCost(σ) +∑
σ′∈A(σ) λ(σ′).

Proof. We prove the observation by induction. For the base case, consider a cell σ of the
last cutting Ξk. By the two algorithm invariants, we have

min
q∈Q(σ)

cost(q) = min
q∈Q(σ)

(
w(q) + λ(q) +

∑
σ′∈A(σ)

λ(σ′)
)

by Algorithm Invariant 1

= min
q∈Q(σ)

(
w(q) + λ(q)

)
+

∑
σ′∈A(σ)

λ(σ′)

= minCost(σ) +
∑

σ′∈A(σ)

λ(σ′). by Algorithm Invariant 2

This proves the observation for σ.
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Now consider a cell σ ∈ Ξ \ Ξk. We assume that the observation holds for all children σ′

of σ, i.e., minq∈Q(σ′) cost(q) = minCost(σ′) +
∑

σ′′∈A(σ′) λ(σ′′). Then, we have

min
q∈Q(σ)

cost(q) = min
σ′∈C(σ)

min
q∈Q(σ′)

cost(q)

= min
σ′∈C(σ)

(
minCost(σ′) +

∑
σ′′∈A(σ′)

λ(σ′′)
)

by induction hypothesis

= min
σ′∈C(σ)

(
minCost(σ′) + λ(σ′)

)
+

∑
σ′′∈A(σ)

λ(σ′′)

= minCost(σ) +
∑

σ′′∈A(σ)

λ(σ′′). by Algorithm Invariant 2

This proves the observation. ◀

For each cell σ ∈ Ξ, we also maintain L(σ), a list comprising all descendant cells σ′ of
σ whose values λ(σ′) are not zero and all points q ∈ Q(σ) whose values λ(q) are not zero.
As L(σ) has both cells of B(σ) and points of Q(σ), for convenience, we use an “element”
to refer to either a cell or a point of L(σ). As such, for any element e ∈ B(σ) ∪Q(σ) with
e ̸∈ L(σ), λ(e) = 0 must hold. As will be seen later, whenever the algorithm sets λ(σ) to
a nonzero value for a cell σ ∈ Ξ, σ will be added to L(σ′) for every ancestor σ′ of σ with
σ′ ̸= σ. Similarly, whenever the algorithm sets λ(q) to a nonzero value for a point q, then q

will be added to L(σ′) for every cell σ′ ∈ A(σ), where σ is the cell of Ξk containing q.

Initialization. The above describes the data structure. We now initialize the data structure,
and in particular, initialize the variables L(·), λ(·), minCost(·) so that the algorithm invariants
hold.

First of all, for each cell σ ∈ Ξ, we set L(σ) = ∅ and λ(σ) = 0. For each point q ∈ Q, we
set λ(q) = 0. Since cost(q) = w(q) initially, it is not difficult to see that Algorithm Invariant
1 holds.

We next set minCost(σ) for all cells of σ ∈ Ξ in a bottom-up manner following the tree
structure of Ξ. Specifically, for each cell σ in the last cutting Ξk, we set minCost(σ) =
minq∈Q(σ) w(q) by simply checking every point of Q(σ). If Q(σ) = ∅, we set minCost(σ) =∞.
This establishes the second algorithm invariant for all cells σ ∈ Ξk. Then, we set minCost(σ)
for all cells of σ ∈ Ξk−1 with minCost(σ) = minσ′∈C(σ)(minCost(σ′) + λ(σ′)), after which
the second algorithm invariant holds for all cells σ ∈ Ξk−1. We continue this process to set
minCost(σ) for cells in Ξk−2, Ξk−3, . . . , Ξ0. After that, the second algorithm invariant is
established for all cells σ ∈ Ξ.

In addition, for each cell σ in the last cutting Ξk, in order to efficiently update minCost(σ)
once λ(q) changes for a point q ∈ Q(σ), we construct a min-heap H(σ) on all points q of Q(σ)
with the values w(q) + λ(q) as “keys”. Using the heap, if λ(q) changes for a point q ∈ Q(σ),
minCost(σ) can be updated in O(log m) time as |Q(σ)| ≤ m.

This finishes our preprocessing step for Algorithm 2. The following lemma analyzes the
time complexity of the preprocessing.

▶ Lemma 4. The preprocessing takes O(n log n + nr + m log r) time.

Proof. First of all, sorting P takes O(n log n) time. Constructing the hierarchical cutting
Ξ takes O(nr) time. Computing the lists L(di) for all disks di ∈ D also takes O(nr) time.
The point location procedure for computing the subsets Q(σ) for all cells σ ∈ Ξk runs in
O(m log r) time. For the initialization step, setting L(Q) = ∅ and λ(σ) = 0 for all cells σ ∈ Ξ
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takes O(r2) time as |Ξ| = O(r2). Since Ξk has O(r2) cells, computing minCost(σ) for all
cells σ ∈ Ξk can be done in O(r2 +

∑
σ∈Ξk

|Q(σ)|) time, which is O(r2 +m) by Observation 2.
Initializing minCost(σ) for all other cells σ ∈ Ξ\Ξk takes O(r2) time since each cell has O(1)
children (and thus computing minCost(σ) for each such cell σ takes O(1) time). Finally,
constructing a heap H(σ) for all cells σ ∈ Ξk takes O(

∑
σ∈Ξk

|Q(σ)|) time, which is O(m)
by Observation 2. Since r ≤ n, r2 ≤ nr. Therefore, the total time of the preprocessing is
O(n log n + nr + m log r). ◀

4.2 The FindMinCost operation
We now discuss how to perform the FindMinCost operation.

Consider a disk di in FindMinCost operation of the i-th iteration of Algorithm 2. The
goal is to compute minq∈Qdi

cost(q), i.e., the minimum cost of all points of Q inside the
disk di.

Recall that L(di) is the list of all cells σ ∈ Ξ such that di ∈ Dσ. Define L1(di) to be the
set of all cells of L(di) that are from Ξk and let L2(di) = L(di) \ L1(di). Define L3(di) as
the set of cells σ ∈ Ξ such that σ’s parent is in L2(di) and σ is completely contained in di.
We first have the following observation following the definition of the hierarchical cutting.

▶ Observation 5. Qdi is the union of
⋃

σ∈L1(di)(Q(σ) ∩ di) and
⋃

σ∈L3(di) Q(σ).

Proof. Consider a point q ∈
⋃

σ∈L1(di)(Q(σ) ∩ di). Suppose that q is in Q(σ) ∩ di for some
cell σ ∈ L1(di). Then, since q ∈ di, it is obvious true that q ∈ Qdi

.
Consider a point q ∈

⋃
σ∈L3(di) Q(σ). Suppose that q ∈ Q(σ) for some cell σ ∈ L3(di).

By the definition of L3(d), σ is fully contained in di. Therefore, q ∈ di holds. Hence, q ∈ Qdi
.

On the other hand, consider a point q ∈ Qdi . By definition, di contains q. Let σ be
the cell of Ξk containing q. Since both di and σ contain q, di ∩ σ ̸= ∅. Therefore, either
σ ⊆ di or the boundary of di crosses σ. In the latter case, we have σ ∈ L1(di) and thus
q ∈

⋃
σ∈L1(di)(Q(σ) ∩ di). In the former case, σ must have two ancestors σ1 and σ2 such

that (1) σ1 is the parent of σ2; (2) σ2 is fully contained in di; (3) the boundary of di crosses
σ1. This is true because σ is fully contained in di while the boundary of di crosses the only
cell of Ξ0, which is the entire plane and is an ancestor of σ. As such, σ1 must be in L2(di)
and σ2 must be in L3(di). Therefore, q must be in

⋃
σ∈L3(di) Q(σ).

This proves the observation. ◀

With Observation 5, we now describe our algorithm for FindMinCost. Let α be a variable,
which is initialized to ∞. At the end of the algorithm, we will have α = minq∈Qdi

cost(q).
For each cell σ in the list L(di), if it is from σ ∈ Ξk, i.e., σ ∈ L1(di), then we process
σ as follows. For each point q ∈ Q(σ), by Algorithm Invariant 1, we have cost(q) =
w(q) + λ(q) +

∑
σ′∈A(σ) λ(σ′). If q ∈ di, we compute cost(q) by visiting all cells of A(σ),

which takes O(log r) time, and then we update α = min{α, cost(q)}.
If σ ∈ L2(di), then we process it as follows. For each child σ′ of σ that is fully contained

in di (i.e., σ ∈ L3(di)), we compute ασ′ = minCost(σ′) +
∑

σ′′∈A(σ′) λ(σ′′) by visiting all
cells of A(σ′), which takes O(log r) time. By Observation 3, we have ασ′ = minq∈Q(σ) cost(q).
Then we update α = min{α, ασ′}. After processing every cell σ ∈ L(di) as above, we
return α, which is equal to minq∈Qdi

cost(q) according to our algorithm invariants as well as
Observation 5. This finishes the FindMinCost operation. The following lemma analyzes the
runtime of the operation.

▶ Lemma 6. The total time of the FindMinCost operations in the entire Algorithm 2 is
bounded by O((nr + mn/r) log r).
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Proof. Recall that in each operation we processes cells of L1(di) and cells of L2(di) in
different ways. The total time of the operation is the sum of the time for processing L1(di)
and the time for processing L2(di).

For the time for processing L1(di), for each cell σ ∈ L1(di), for each point q ∈ Q(σ)∩di, we
spend O(log r) time computing cost(q). Hence, the time for processing cells of L1(di) for each
di is bounded by O(

∑
σ∈L1(di) |Q(σ)| log r). The total time of processing L1(di) in the entire

algorithm is on the order of
∑n

i=1
∑

σ∈L1(di) |Q(σ)|·log r =
∑

σ∈Ξk
(|Dσ|·|Q(σ)|)·log r. Recall

that |Dσ| ≤ n/r for each cell σ ∈ Ξk. Hence,
∑

σ∈Ξk
(|Dσ| · |Q(σ)|) ≤ n/r ·

∑
σ∈Ξk

|Q(σ)|,
which is O(mn/r) by Observation 2. Therefore, the total time for processing cells of L1(di)
in the entire Algorithm 2 is O(mn/r · log r).

For the time for processing L2(di), for each cell σ ∈ L2(di), for each child σ′ of σ, it takes
O(log r) time to compute ασ′ . Since σ has O(1) cells, the total time for processing all cells
of L2(di) is O(|L2(di)| · log r). The total time of processing L2(di) in the entire algorithm
is on the order of

∑n
i=1 |L2(di)| · log r. Note that

∑n
i=1 |L2(di)| ≤

∑n
i=1 |L(di)| = O(nr).

Therefore, the total time for processing cells of L2(di) in the entire Algorithm 2 is O(nr log r).
Summing up the time for processing L1(di) and L2(di) leads to the lemma. ◀

4.3 The ResetCost operation
We now discuss the ResetCost operation. Consider the ResetCost operation in the i-th
iteration of Algorithm 2. The goal is to reset cost(q) = w(q) + δi for all points q ∈ Q that
are outside the disk di. To this end, we will update our data structure, and more specifically,
update the λ(·) and minCost(·) values for certain cells of Ξ and points of Q so that the
algorithm invariants still hold.

Define L4(di) as the set of cells σ ∈ Ξ such that σ’s parent is in L2(di) and σ is completely
outside di. Let di denote the region of the plane outside the disk di. We have the following
observation, which is analogous to Observation 5.

▶ Observation 7. Qdi is the union of
⋃

σ∈L1(di)(Q(σ) ∩ di) and
⋃

σ∈L4(di) Q(σ).

Proof. The proof is the same as that of Observation 5 except that we use di to replace di

and use L4(di) to replace L3(di). We omit the details. ◀

Our algorithm for ResetCost works as follows. Consider a cell σ ∈ L(di). As for the
FindMinCost operation, depending on whether σ is from L1(di) or L2(di), we process it in
different ways.

If σ is from L1(di), we process σ as follows. For each point q ∈ Q(σ), if q ∈ dj , then
we are supposed to reset cost(q) to w(q) + δi. To achieve the effect and also maintain
the algorithm invariants, we do the following. First, we set λ(q) = δi −

∑
σ′∈A(σ) λ(σ′),

which can be done in O(log r) time by visiting the ancestors of σ. As such, we have
w(q) + λ(q) +

∑
σ′∈A(σ) λ(σ′) = w(q) + δi, which establishes the first algorithm invariant

for q. For the second algorithm invariant, we first update minCost(σ) using the heap H(σ),
i.e., by updating the key of q to the new value w(q) + λ(q). The heap operation takes
O(log m) time. Next, we update minCost(σ′) for all ancestors σ′ of σ in a bottom-up
manner using the formula minCost(σ′) = minσ′′∈C(σ′)(minCost(σ′′) + λ(σ′′)). Since each
cell has O(1) children, updating all ancestors of σ takes O(log r) time. This establishes the
second algorithm invariant. Finally, since λ(q) has just been changed, if λ(q) ̸= 0, then we
add q to the list L(σ′) for all cells σ′ ∈ A(σ). Note that for each such L(σ′) it is possible
that q was already in the list before; but we do not check this and simply add q to the end
of the list (and thus the list may contain multiple copies of q). This finishes the processing
of q, which takes O(log r + log m) time. Processing all points of q ∈ Q(σ) as above takes
O(|Q(σ)| · (log r + log m)) time.
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If σ is from L2(di), then we process σ as follows. For each child σ′ of σ, if σ′ is completely
outside di, then we process σ′ as follows. We are supposed to reset cost(q) to w(q) + δi for
all points q ∈ Q(σ′). In other words, the first algorithm invariant does not hold any more
and we need to update our data structure to restore it. Note that the second algorithm
invariant still holds. To achieve the effect and also maintain the algorithm invariants, we do
the following. For each element e in the list L(σ′) (recall that e is either a cell of B(σ′) or
a point of Q(σ′)), we process e as follows. First, we remove e from L(σ′). Then we reset
λ(e) = 0. If e is a point of Q(σ′), then let σe be the cell of Ξk that contains e; otherwise, e is
a cell of B(σ′) and let σe be the parent of e. Since λ(e) is changed, we update minCost(σ′′)
for all cells σ′′ ∈ A(σe) in the same way as above in the first case for processing L1(di), which
takes O(log r + log m) time. This finishes processing e, after which the second algorithm
invariant still holds. After all elements of L(σ′) are processed as above, L(σ′) becomes ∅
and we reset λ(σ′) = δi −

∑
σ′′∈A(σ′)\{σ′} λ(σ′′). Since λ(σ′) has been changed, we update

minCost(σ′′) for all cells σ′′ ∈ A(σ) in the same way as before (which takes O(log r) time),
after which the second algorithm invariant still holds. In addition, if λ(σ′) ̸= 0, then we add
σ′ to the list L(σ′′) for all cells σ′′ ∈ A(σ), which again takes O(log r) time. This finishes
processing σ′, which takes O(|L(σ′)| · (log r + log m)) time. It remains to restore the first
algorithm invariant, for which we have the following observation.

▶ Observation 8. After σ′ is processed, the first algorithm invariant is established for all
points q ∈ Q(σ′).

Proof. Consider a point q ∈ Q(σ′). It suffices to show w(q) + δi = w(q) + λ(q) +∑
σ′′∈A(σq) λ(σ′′), where σq is the cell of Ξk that contains q. After the elements of the list

L(σ′) are processed as above, we have λ(q) = 0 for all points q ∈ Q(σ′) and λ(σ′′) = 0 for all
descendants σ′′ of σ′. Therefore, w(q)+λ(q)+

∑
σ′′∈A(σ1) λ(σ1) = w(q)+

∑
σ′′∈A(σ′) λ(σ′′) =

w(q) + λ(σ′) +
∑

σ′′∈A(σ′)\{σ′} λ(σ′′). Recall that λ(σ′) = δi −
∑

σ′′∈A(σ′)\{σ′} λ(σ′′). We
thus obtain w(q) + λ(q) +

∑
σ′′∈A(σq) λ(σ′′) = w(q) + δi. ◀

This finishes the ResetCost operation. According to Observation 7, cost(q) has been reset
for all points q ∈ Q that are outside di. The following lemma analyzes the runtime of the
operation.

▶ Lemma 9. The total time of the ResetCost operations in the entire Algorithm 2 is bounded
by O((nr + mn/r) · log r · (log r + log m)).

Proof. Recall that we processes cells of L1(di) and cells of L2(di) in different ways. The
total time of the operation is the sum of the time for processing L1(di) and the time for
processing L2(di).

For the time for processing L1(di), for each cell σ ∈ L1(di), recall that processing all points
of Q(σ) takes O(|Q(σ)| · (log r + log m)) time. Hence, the total time for processing cells of
L1(di) is on the order of

∑
σ∈L1(di) |Q(σ)|·(log r+log m). The total time for processing cells of

L1(di) in the entire Algorithm 2 is thus on the order of
∑n

i=1
∑

σ∈L1(di) |Q(σ)| ·(log r+log m).
As analyzed in the proof of Lemma 6,

∑n
i=1

∑
σ∈L1(di) |Q(σ)| = O(mn/r). Therefore, the

total time for processing cells of L1(di) in the entire Algorithm 2 is O(mn/r · (log r + log m)).
For the time for processing L2(di), for each cell σ ∈ L2(di), for each child σ′ of σ,

processing σ′ takes O(|L(σ′)| · (log r + log m)) time. Next, we give an upper bound for |L(σ′)|
for all such cells σ′ in the entire algorithm. Recall that each element e of L(σ′) is either a
point q ∈ Q(σ′) or a descendant cell σ′′ ∈ B(σ′). Let L1(σ′) denote the subset of elements of
L(σ′) in the former case and L2(σ′) the subset of elements in the latter case. In the following
we provide an upper bound for each subset.
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1. For L1(σ′), notice that a point q is in the list only if σq is crossed by the lower arc of
a disk di, where σq is the cell of Ξk containing q. If q is outside di, then a copy of q

will be added to L(σ′′) for all O(log r) cells σ′′ of A(σq). As |Dσq
| ≤ n/r, the number of

elements in L1(σ′) contributed by the points of Q(σq) for all such cells σ′ in the entire
algorithm is bounded by O(|Q(σq)| · n/r · log r). In light of Observation 2, the total size
of L1(σ′) of all such cells σ′ in the entire Algorithm 2 is O(mn/r · log r).

2. For L2(σ′), observe that a cell σ1 is in the list only if σ2 is crossed by the lower arc of a disk
di, where σ2 is the parent of σ1. If σ1 is completely outside di, then a copy of σ1 is added
to L(σ′′) for all O(log r) cells σ′′ of A(σ2). As such, the number of elements in L2(σ′) for
all such cells σ′ in the entire algorithm contributed by each cell σ1 ∈ Ξ is bounded by
O(|Dσ2 | · log r). Since every cell of Ξ has O(1) children and

∑
σ2∈Ξ |Dσ2 | = O(nr), the

total size of L2(σ′) of all such cells σ′ in the entire Algorithm 2 is O(nr · log r).

Therefore, the total time for processing cells of L2(di) in the entire Algorithm 2 is
O((nr + mn/r) · log r · (log r + log m)).

Summing up the time for processing L1(di) and L2(di) leads to the lemma. ◀

4.4 Putting it all together
We summarize the time complexity of the overall algorithm. By Lemma 4, the preprocessing
step takes O(n log n + nr + m log r) time. By Lemma 6, the total time for performing the
FindMinCost operations in the entire algorithm is O((nr + mn/r) · log r). By Lemma 9,
the total time for performing the ResetCost operations in the entire algorithm is O((nr +
mn/r) · log r · (log m + log r)). Therefore, the total time of the overall algorithm is O(n log n +
m log r +(nr +mn/r) · log r · (log m+log r)). Recall that 1 ≤ r ≤ n. Setting r = min{

√
m, n}

gives the upper bound O(n
√

m log2 m + (n + m) log(n + m)) for the time complexity of the
overall algorithm.

Note that we have assumed that each point of P is covered by at least one disk of S.
In this is not the case, then no feasible subset exists (alternatively, one may consider the
optimal objective value ∞); if we run our algorithm in this case, then one can check that the
value δn returned by our algorithm is ∞. Hence, our algorithm can automatically determine
whether a feasible subset exists.2

▶ Theorem 10. Given a set of n points and a set of m weighted unit disks in the plane such
that the points and the disk centers are separated by a line, there is an O(n

√
m log2 m + (n +

m) log(n + m)) time algorithm to compute a subset of disks of minimum total weight whose
union covers all points.
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Abstract
We investigate the streaming space complexity of word problems for groups. Using so-called
distinguishers, we prove a transfer theorem for graph products of groups. Moreover, we use
distinguishers to obtain a logspace streaming algorithm for the membership problem in a finitely
generated subgroup of a free group.
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1 Introduction

The word problem for a fixed finitely generated (f.g. for short) group G is the following
computational problem: Fix a finite set of generators Σ for G, which means that every
element of G can be written as a finite product of elements from Σ. The input for the word
problem is a finite word a1a2 · · · an over the alphabet Σ and the question is whether this
word evaluates to the group identity of G. The word problem was introduced by Dehn in
1911 [5]. It is arguably the most important computational problem in group theory and has
been studied by group theorists as well as computer scientists. In general, the word problem
is undecidable [4, 20], but for many classes of groups (e.g. linear groups, metabelian groups,
hyperbolic groups) efficient algorithms exist; see e.g. [15] for an overview.

In [16, 17] we started to investigate streaming algorithms for the word problem of a
group G. The input stream is a word w ∈ Σ∗ over the generators and the algorithm has to
decide whether w = 1 holds in the group G. This can be viewed as a streaming algorithm
for the formal language {w ∈ Σ∗ : w = 1 in G}. Streaming algorithms for formal languages
(mainly subclasses of context-free languages) have been studied in [1, 2, 7, 18]. In [16, 17]
we consider the space complexity of streaming algorithms. For deterministic streaming
algorithms it turnes out that the space complexity of the word problem for a f.g. group G is
tightly related to the growth of G: if γ(n) is the growth function of G (which is the number
of different group elements that can be represented by words of length at most n over the
generating set), then the space complexity of the best deterministic streaming algorithm
for the word problem of G is roughly log γ(n/2). This result basically reduces the study
of deterministic streaming algorithms for word problems to the study of growth in groups,
which is an important research area in geometric group theory with many deep results.

In [16, 17] we therefore mainly focus on randomized streaming algorithms for word
problems. For this it turns out to be useful to consider so called distinguishers for groups.
Roughly speaking, a distinguisher for a f.g. group G with finite generating set Σ is a
randomized streaming algorithm A such that for all words u, v ∈ Σ∗ of length at most n we
have that: (i) if u and v evaluate to the same element of G then with high probability, u and
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v lead to the same memory state of A, and (ii) if u and v evaluate to different elements of G

then with high probability, u and v lead to different memory states of A; see Section 4. It is
easy to obtain from a distinguisher R for the group G a randomized streaming algorithm S
for the word problem of G (with low error probability). Moreover, the space complexity of S
is only twice the space complexity of R; see Lemma 3.

We showed in [16, 17] that for many important f.g. groups G there exist logspace
distinguishers with error probability 1/nc for any constant c > 1, where n is the input length.
This is in particular the case for f.g. linear groups (matrix groups). In general, the growth
of a linear group can be 2Θ(n) (take for instance a free group of rank 2), and therefore its
deterministic streaming space complexity can be Θ(n), which is the worst case (the streaming
algorithms can always store the whole prefix of the input stream). We proved in [17] also the
following transfer theorem for wreath products: If G is a f.g. group having a distinguisher
with space complexity s(n) and error probability ϵ(n) and A is a f.g. abelian group then
there is a distinguisher for the wreath product A ≀ G having space complexity O(s(n) + log n)
and error probability roughly n2ϵ(n). Interestingly, if H is any non-abelian group then any
randomized streaming algorithm with error at most 1/2 − ϵ for the word problem of H ≀ G

must have the worst-case space complexity Θ(n); see [16, Theorem 21].
The first main result of the paper states a similar transfer theorem for graph products.

This is an important construction in group theory that generalizes the direct product as well
as the free product. It can be seen as a partially commutative version of the free product,
where some of the factors Gi in a free product G1 ∗ G2 ∗ · · · ∗ Gk are allowed to commute.
Which of Gi commute is specified by a graph on the index set {1, . . . , k}. We show that
if every group Gi (1 ≤ i ≤ k) has a distinguisher with space complexity at most s(n) and
error probability ϵ(n), then every graph product of the groups Gi has a distinguisher with
space complexity O(s(n) + log n) and error probability roughly n2ϵ(n) (Theorem 9). As a
corollary we obtain for instance a randomized streaming algorithm with logarithmic space
complexity for the word problem of a graph product of linear groups. Theorem 9 is similar
to the following result from [6]: If the word problem for every group Gi can be solved in
deterministic logspace on a Turing machine then the same is true for every graph product of
the Gi. Kausch in his thesis [13] strengthened this result by showing that the word problem
of the graph product is AC0-Turing-reducible to the word problems of the Gi (1 ≤ i ≤ k)
and the free group of rank two.

Our second main contribution deals with randomized streaming algorithms for subgroup
membership problems. In a subgroup membership problem one has a subgroup H of a
f.g. group G. For an input word w ∈ Σ∗ (Σ is again a finite set of generators for G) one has to
determine whether w represents an element of H. The word problem is the special case where
H = 1. We present a randomized streaming algorithm with logarithmic space complexity for
the case where G is a f.g. free group and H is a f.g. subgroup of G (Theorem 14). Moreover,
we show that this result extends neither to the case where H is not finitely generated
(Theorem 15) nor the case where H is a finitely generated subgroup of a direct product of
two free groups of rank two (Theorem 16).

2 Preliminaries

For integers a < b let [a, b] be the integer interval {a, a + 1, . . . , b}. We write [0, 1]R for the
set {r ∈ R : 0 ≤ r ≤ 1} of all probabilities.

Let Σ be a finite alphabet. As usual we write Σ∗ for the set of all finite words over the
alphabet w. The empty word is denoted with ε. For a word w = a1a2 · · · an (a1, a2, . . . , an ∈
Σ) let |w| = n be its length and w[i] = ai (for 1 ≤ i ≤ n) the symbol at position i.
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A prefix of a word w is a word u such that w = uv for some word v. We denote with
P(w) the set of all prefixes of w. Let Σ+ = Σ∗ \ {ε} be the set of non-empty words and
Σ≤n = {w ∈ Σ∗ : |w| ≤ n} be the set of all words of length at most n. For a subalphabet
Θ ⊆ Σ we denote with πΘ : Σ∗ → Θ∗ the projection homomorphism that deletes all symbols
from Σ \ Θ in a word: πΘ(a) = a for a ∈ Θ and πΘ(a) = ε for a ∈ Σ \ Θ.

2.1 Sequential transducer
In Section 5 we make use of (left-)sequential transducers, see e.g. [3] for more details. A
sequential transducer is a tuple T = (Q, Σ, Γ, q0, δ), where Q is a finite set of states, Σ is the
input alphabet, Γ is the output alphabet, q0 ∈ Q is the initial state, and δ : Q × Σ → Q × Γ∗

is the transition function. The meaning of δ(q, a) = (p, u) is that if T is in state q and the
next input symbol is a then it moves to state p and outputs the word u. We extend δ to a
mapping δ : Q × Σ∗ → Q × Γ∗ as follows, where q ∈ Q, a ∈ Σ and w ∈ Σ∗:

δ(q, ε) = (q, ε) for all q ∈ Q, and
if δ(q, a) = (p, u) and δ(p, w) = (r, v) then δ(q, aw) = (r, uv).

We define the function fT : Σ∗ → Γ∗ computed by T by fT (w) = x if and only if δ(q0, w) =
(q, x) for some q ∈ Q. Intuitively, in order compute fT (w), T reads the word w starting in
the initial state q0 and thereby concatenates all the outputs produced in the transitions.

2.2 Probabilistic finite automata
In the following we introduce probabilistic finite automata [21, 22] as a model for randomized
streaming algorithms. A probabilistic finite automaton (PFA) A = (Q, Σ, ι, ρ, F ) consists
of a finite set of states Q, a finite alphabet Σ, an initial state distribution ι : Q → [0, 1]R, a
transition probability function ρ : Q × Σ × Q → [0, 1]R and a set of final states F ⊆ Q such
that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ. If ρ is required to map into

{0, 1}, then A is a semi-probabilitistic finite automaton (semiPFA). This means that after
choosing the initial state according to the distribution ι, A proceeds deterministically.

Let A = (Q, Σ, ι, ρ, F ) be a PFA. For a random variable X with values from Q and a ∈ Σ
we define the random variable X · a (which also takes values from Q) by

Prob[X · a = q] =
∑
p∈Q

Prob[X = p] · ρ(p, a, q).

For a word w ∈ Σ∗ we define a random variable A(w) with values from Q inductively as
follows: the random variable A(ε) is defined such that Prob[A(ε) = q] = ι(q) for all q ∈ Q.
Moreover, A(wa) = A(w) · a for all w ∈ Σ∗ and a ∈ Σ. Thus, Prob[A(w) = q] is the
probability that A is in state q after reading w. For a language L ⊆ Σ∗, the error probability
of A on w ∈ Σ∗ for L is

ϵ(A, w, L) =
{

Prob[A(w) /∈ F ] if w ∈ L,

Prob[A(w) ∈ F ] if w /∈ L.

If A is a semiPFA then we can identify ρ with a mapping ρ : Q × Σ → Q, where ρ(p, a) is the
unique state q with ρ(p, a, q) = 1. This mapping ρ is extended to a mapping ρ : Q × Σ∗ → Q

in the usual way: ρ(p, ε) = p and ρ(p, aw) = ρ(ρ(p, a), w). We then obtain

Prob[A(w) = q] =
∑

{ι(p) : p ∈ Q, ρ(p, w) = q}.

For a semiPFA A = (Q, Σ, ι, ρ, F ) and a boolean condition E : Q → {0, 1} we define the
probability Probq∈Q[E(q)] =

∑
{ι(q) : q ∈ Q, E(q) = 1}. SemiPFAs are needed in Section 4

for the notion of a distinguisher.
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2.3 Randomized streaming algorithms

In this section we define our model of randomized streaming algorithms. It is a non-uniform
model in the sense that for every input length n we have a separate algorithm that handles
inputs of length at most n. Formally, a (non-uniform) randomized streaming algorithm is a
sequence R = (An)n≥0 of PFA An over the same alphabet Σ. If every An is a semiPFA, we
speak of a semi-randomized streaming algorithm.

Let ϵ0, ϵ1 : N → [0, 1]R be monotonically decreasing functions. A randomized streaming
algorithm R = (An)n≥0 is (ϵ0, ϵ1)-correct for a language L ⊆ Σ∗ if for every large enough
n ≥ 0 and every word w ∈ Σ≤n we have the following:

if w ∈ L then ϵ(An, w, L) ≤ ϵ1(n), and
if w /∈ L then ϵ(An, w, L) ≤ ϵ0(n).

If ϵ0 = ϵ1 =: ϵ then we also say that R is ϵ-correct for L. We say that R is a randomized
streaming algorithm for L if it is 1/3-correct for L. The choice of 1/3 for the error probability
is not important. Using a standard application of the Chernoff bound, one can make the
error probability an arbitrarily small constant; see [17, Theorem 4.1].

The space complexity of the randomized streaming algorithm R = (An)n≥0 is the function
s(R, n) = ⌈log2 |Qn|⌉, where Qn is the state set of An. The motivation for this definition is
that states of Qn can be encoded by bit strings of length at most ⌈log2 |Qn|⌉. The randomized
streaming space complexity of the language L is the smallest possible function s(R, n), where
R is a randomized streaming algorithm for L. It is always bounded by O(n) since even a
deterministic streaming algorithm can store the whole input word w ∈ Σ≤n using O(n) bits.

As remarked before, our model of randomized streaming algorithms is non-uniform in the
sense that for every input length n we have a separate streaming algorithm An. This makes
lower bounds of course stronger. On the other hand, the randomized streaming algorithms
that we construct for concrete groups will be mostly uniform in the sense that there is an
efficient algorithm that constructs from a given n the PFA An. An exception is the following
theorem (see [17, Theorem 4.3]), which uses non-uniformity in a crucial way.

▶ Theorem 1. Let R be a randomized streaming algorithm such that s(R, n) ≥ Ω(log n) and
R is ϵ-correct for a language L. Then there exists a semi-randomized streaming algorithm S
such that s(S, n) = Θ(s(R, n)) and S is 2ϵ-correct for the language L.

3 Groups and word problems

Let G be a group. The identity element will be always denoted with 1. For a subset Σ ⊆ G,
we denote with ⟨Σ⟩ the subgroup of G generated by Σ. It is the set of all products of elements
from Σ ∪ Σ−1. It can be also defined as the smallest (w.r.t. inclusion) subgroup of G that
contains Σ. Similarly, the normal closure N(Σ) of Σ is smallest normal subgroup of G that
contains Σ. In this case, one gets the quotient group G/N(Σ).

We only consider finitely generated (f.g.) groups G, for which there is a finite set Σ ⊆ G

with G = ⟨Σ⟩; such a set Σ is called a finite generating set for G. If Σ = Σ−1 then we say
that Σ is a finite symmetric generating set for G. In the following we assume that all finite
generating sets are symmetric. Every word w ∈ Σ∗ evaluates to a group element πG(w)
in the natural way; here πG : Σ∗ → G is the canonical morphism from the free monoid
Σ∗ to G that is the identity on Σ. Instead of πG(u) = πG(v) we also write u ≡G v. Let
WP(G, Σ) = {w ∈ Σ∗ | πG(w) = 1} be the word problem for G with respect to the generating
set Σ.
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We are interested in streaming algorithms for words problems WP(G, Σ). By the following
lemma (see [17, Lemma 5.1]) the randomized streaming space complexity for a word problem
only changes by a constant when the generating set is changed.

▶ Lemma 2. Let Σ1 and Σ2 be finite symmetric generating sets for the group G and let si(n)
be the randomized streaming space complexity of WP(G, Σi). Then there exists a constant c

that depends on G, Σ1 and Σ2 such that s1(n) ≤ s2(c · n).

4 Distinguishers for groups

Let G be a f.g. group G with the finite generating set Σ. Moreover, let ϵ0, ϵ1 : N → [0, 1]R be
monotonically decreasing functions. A semi-randomized streaming algorithm (An)n≥0 with
An = (Qn, Σ, ιn, ρn, Fn) is called an (ϵ0, ϵ1)-distinguisher for G (with respect to Σ), if the
following properties hold for all large enough n ≥ 0 and all words u, v ∈ Σ≤n:

If u ≡G v then Probq∈Qn [ρn(q, u) = ρn(q, v)] ≥ 1 − ϵ1(n). In other words: for a randomly
chosen initial state, the semiPFA An arrives with probability at least 1 − ϵ1(n) in the
same state after reading u and v.
If u ̸≡G v then Probq∈Qn

[ρn(q, u) ̸= ρn(q, v)] ≥ 1 − ϵ0(n). In other words: for a randomly
chosen initial state, the semiPFA An arrives with probability at least 1− ϵ0(n) in different
states after reading u and v.

Note that the set Fn of final states of An is not important for a distinguisher and we will just
write An = (Qn, Σ, ιn, ρn) in the following if we talk about an (ϵ0, ϵ1)-distinguisher (An)n≥0.
The following result is shown in [17].

▶ Lemma 3. Let R be an (ϵ0, ϵ1)-distinguisher for G with respect to Σ. Then WP(G, Σ) has
an (ϵ0, ϵ1)-correct semi-randomized streaming algorithm with space complexity 2 · s(R, n).

Due to Lemma 3, our goal in the rest of the paper will be the construction of space efficient
(ϵ0, ϵ1)-distinguishers for groups. In the next section we will need some further observations
on (ϵ0, ϵ1)-distinguishers that we introduce in the rest of this section.

For equivalence relations ≡1 and ≡2 on a set A and a subset S ⊆ A we say that:
≡1 refines ≡2 on S if for all a, b ∈ S we have: if a ≡1 b then a ≡2 b;
≡1 equals ≡2 on S if for all a, b ∈ S we have: a ≡1 b if and only if a ≡2 b.

For a semiPFA A = (Q, Σ, ι, ρ) and a state q ∈ Q we define the equivalence relation ≡A,q on
Σ∗ as follows: u ≡A,q v if and only if ρ(q, u) = ρ(q, v). Whenever A is clear from the context,
we just write ≡q instead of ≡A,q. The statements from the following lemma can be shown
by straightforward applications of the union bound; see [17].

▶ Lemma 4. Let (An)n≥0 be an (ϵ0, ϵ1)-distinguisher for the f.g. group G with respect to
the generating set Σ. Let An = (Qn, Σ, ι, ρ). Consider a set S ⊆ Σ≤n. Then, the following
statements hold, where ≡q refers to An:

Probq∈Qn
[≡G equals ≡q on S] ≥ 1 − max{ϵ0(n), ϵ1(n)}

(|S|
2

)
,

Probq∈Qn
[≡G refines ≡q on S] ≥ 1 − ϵ1(n)

(|S|
2

)
,

Probq∈Qn [≡q refines ≡G on S] ≥ 1 − ϵ0(n)
(|S|

2
)
.

The following two simple lemmas are needed in Section 5; their proofs can be found in [17].
Recall that for a word w we write P(w) for the set of all prefixes of w.

▶ Lemma 5. Let G be a f.g. group with the finite generating set Σ and let A = (Q, Σ, ι, ρ)
be a semiPFA with q ∈ Q. Consider u, v ∈ Σ∗ such that ≡G refines ≡q on P(u) ∪ P(v) and
let u = xyz with y ≡G 1. Then ≡G refines ≡q on P(xz) ∪ P(v).
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▶ Lemma 6. Let G, A, and q be as in Lemma 5. Consider u, v ∈ Σ∗ such that ≡q refines ≡G

on P(u)∪P(v) and let u = xyz with ρ(q, x) = ρ(q, xy). Then ≡q refines ≡G on P(xz)∪P(v).

Finally we state the following result from [17, Theorem 9.1]. Recall that a linear group is a
group of matrices over some field.

▶ Theorem 7. For every f.g. linear group G and every c > 0 there exists a (1/nc, 0)-
distinguisher with space complexity O(log n).

Theorem 7 can serve as a basis for the construction of further distinguishers. Note that in
the positive case (where u ≡G v) the error probability is zero.

5 Randomized streaming algorithms for graph products

In this section we investigate a common generalization of the free product and direct product,
which is known as the graph product of groups.

Let us first define the free product of two groups G and H. Let A = G\{1} and B = H\{1}.
W.l.o.g. we assume that A∩B = ∅. The free product G∗H consists of all alternating sequences
a1a2 · · · an where n ≥ 0, ai ∈ A∪B for all i ∈ [1, n] and ai ∈ A ⇔ ai+1 ∈ B for all i ∈ [1, n−1].
The identity element is of course the empty sequence ε. The product u · v of two elements
u, v ∈ G∗H is obtained by concatenating u and v and then making the obvious simplifications
according to the multiplication tables of G and H. More precisely, let u = anan−1 · · · a1
and v = b1b2 · · · bm. If n = 0 then u · v = v and if m = 0 then u · v = u. Now assume that
n > 0 and m > 0. If a1 ∈ A ⇔ b1 ∈ B then u · v = anan−1 · · · a1b1b2 · · · bm. Otherwise
choose k ≥ 0 maximal such that ai = b−1

i (in either G or H) holds for all i ∈ [1, k]. If k = n

then u · v = bk+1 · · · bm and if k = m then u · v = an · · · ak+1. Finally, if k < n and k < m

then u · v = an · · · ak+2(ak+1 · bk+1)bk+2 · · · bm. Note that ak+1 · bk+1 is a nontrivial element
(either in G or H) by the choice of k. The free product of several groups G1, . . . , Gc can be
simply defined as ∗i∈[1,c] Gi = (· · · ((G1 ∗ G2) ∗ G3) ∗ · · · ∗ Gc).

A graph product is specified by a list of groups G1, . . . , Gc and a symmetric and irreflexive
relation I ⊆ [1, c] × [1, c]. The corresponding graph product G = GP(G1, . . . , Gc, I) is the
quotient (∗i∈[1,c] Gi)/N of the free product ∗i∈[1,c] Gi modulo the normal closure N of all
commutators aba−1b−1, where a ∈ Gi, b ∈ Gj and (i, j) ∈ I. In other words, we take the free
product ∗i∈[1,c] Gi but allow elements from groups Gi and Gj with (i, j) ∈ I to commute.
Graph products interpolate in a natural way between free products (I = ∅) and direct
products (I = {(i, j) : i, j ∈ [1, c], i ̸= j}). Graph products were introduced by Green in her
thesis [8]. Graph products GP(G1, . . . , Gc, I), where every Gi is isomorphic to Z, are also
known as graph groups (or right-angled Artin groups). We will make use of the fact that
every graph group is linear [11].

Let Σi be a finite symmetric generating set for Gi, where w.l.o.g. 1 /∈ Σi and Σi ∩ Σj = ∅
for i ̸= j. Then, Σ =

⋃c
i=1 Σi generates G. For a word u ∈ Σ∗, the block factorization of

u is the unique factorization u = u1u2 · · · ul such that l ≥ 0, u1, . . . , ul ∈
⋃

i∈[1,c] Σ+
i and

ujuj+1 ̸∈
⋃

i∈[1,c] Σ+
i for all j ∈ [1, l − 1]. The factors u1, u2, . . . , ul are called the blocks of u.

We define several rewrite relations on words from Σ∗ as follows: take u, v ∈ Σ∗ and let
u = u1u2 · · · ul be the block factorization of u.

We write u ↔s v (s for swap) if there is i ∈ [1, l − 1] and (j, k) ∈ I such that ui ∈ Σ+
j ,

ui+1 ∈ Σ+
k and v = u1u2 · · · ui−1ui+1uiui+2 · · · ul. In other words, we swap consecutive

commuting blocks. Note that ↔s is a symmetric relation.
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We write u →d v (d for delete) if there is i ∈ [1, l] and j ∈ [1, c] such that ui ∈ Σ+
j ,

ui ≡Gj
1 and v = u1u2 · · · ui−1ui+1ui+2 · · · ul. In other words, we delete a block that is

trivial in its group.
We write u ↔r v (r for replace) if there is i ∈ [1, l] and j ∈ [1, c] such that ui, u′

i ∈ Σ+
j ,

ui ≡Gj
u′

i and v = u1u2 · · · ui−1u′
iui+1ui+2 · · · ul. In other words, we replace a block by

an equivalent non-empty word. Note that ↔r is a symmetric relation.
Clearly, in all three cases we have u ≡G v. If u →d v, then the number of blocks of v is
smaller than the number of blocks of u and if u ↔s v then the number of blocks of v can be
smaller than the number of blocks of u (since two blocks can be merged into a single block).
We write u ↔sr v if u ↔s v or u ↔r v and we write u →sd v if u ↔s v or u →d v.

Let us say that a word u ∈ Σ∗ with l blocks is reduced, if there is no v ∈ Σ∗ such that
u →∗

sd v and v has at most l − 1 blocks. Clearly, for every word u ∈ Σ∗ there is a reduced
word u′ ∈ Σ∗ such that u →∗

sd u′. The following result can be found in [8, Theorem 3.9]
and [10] in slightly different notations.

▶ Lemma 8. Let G be a graph product as above and u, v ∈ Σ∗. The following are equivalent:
u ≡G v

There are reduced words u′, v′ such that u →∗
sd u′, v →∗

sd v′, and u′ ↔∗
r v′.

Consider a word u ∈ Σ∗ and its block factorization u = u1u2 . . . ul. A pure prefix of u is a
word uk1uk2 · · · ukm

such that for some i ∈ [1, c] we have
1 ≤ k1 < k2 < · · · < km ≤ l,
uk1 , uk2 , . . . , ukm

∈ Σ+
i and

if kj < p < kj+1 for some j ∈ [1, m − 1] or 1 ≤ p < k1 then up /∈ Σ+
i .

▶ Theorem 9. Let G = GP(G1, . . . , Gc, I) be a graph product as above and let Ri = (Ai,n)n≥0
be an (ϵ0, ϵ1)-distinguisher for Gi. Let d ≥ 1 and define ζ0(n) = 2ϵ0(n)cn2 + 1/nd and
ζ1(n) = 2ϵ1(n)cn2. Then, there exists a (ζ0, ζ1)-distinguisher for G with space complexity
O(

∑c
i=1 s(Ri, n) + log n).

Proof. Let us fix an input length n and let Ai,n = (Qi,n, Σi, ιi,n, ρi,n), where w.l.o.g. Qi,n =
[0, |Qi,n| − 1]. To simplify the notation, we will omit the second subscript n in the following,
i.e., we write Ai = (Qi, Σi, ιi, ρi) with Qi = [0, |Qi| − 1] for the semiPFA Ai,n. For a state
q ∈ Qi, we will use the equivalence relation ≡q = ≡Ai,q defined in Section 4. For a word
w ∈ Σ∗, we write πi(w) for the projection πΣi

(w).
For every i ∈ [1, c] we choose a new symbol ai and consider the infinite cyclic group ⟨ai⟩ ∼=

Z. Let Γ = {a1, a−1
1 , . . . , ac, a−1

c } and consider the graph group H = GP(⟨a1⟩, . . . , ⟨ac⟩, I).
Since every graph group is linear, there is a (1/md, 0)-distinguisher (Bm)m≥0 with space
complexity O(log m) for H by Theorem 7. Let Bm = (Rm, Γ, λm, σm).

We build from the semiPFA Ai and a state q ∈ Qi a sequential transducer Ti,q =
(Qi, Σi, {ai, a−1

i }, q, δi), where for all a ∈ Σi and p ∈ Qi we define (recall that Qi ⊆ N):

δi(p, a) = (ρi(p, a), a−p
i a

ρi(p,a)
i ).

Let fi,q := fTi,q
: Σ∗

i → {ai, a−1
i }∗ be the function computed by Ti,q. For a tuple q̄ =

(q1, . . . , qc) ∈
∏

i∈[1,c] Qi of states from the semiPFAs Ai we define the sequential transducer
Tq̄ by taking the direct product of the Ti,qi

(i ∈ [1, c]). Formally, it is defined as follows:

Tq̄ = (
∏

i∈[1,c]

Qi, Σ, Γ, q̄, δ)
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Algorithm 1 (ζ0, ζ1)-distinguisher for GP(G1, . . . , Gc, I).

global variables: qi ∈ Qi for all i ∈ [1, c], r ∈ Rm

initialization:
1 guess qi ∈ Qi = [0, |Qi| − 1] according to the input distribution ιi of Ai ;
2 guess r ∈ Rm according to the input distribution λm of Bm ;

next input letter: a ∈ Σ
3 let i ∈ [1, c] such that a ∈ Σi ;
4 r := σm(r, a−qi

i a
ρi(qi,a)
i ) ; qi := ρi(qi, a) ;

where for every i ∈ [1, c], a ∈ Σi, and (p1, . . . , pc) ∈
∏

i∈[1,c] Qi we have

δ((p1, . . . , pc), a) =
(
(p1, . . . , pi−1, ρi(pi, a), pi+1, . . . , pc), a−pi

i a
ρi(pi,a)
i

)
.

Let fq̄ := fTq̄
: Σ∗ → Γ∗ be the function computed by Tq̄. Moreover, define

m = 2 · n · max{|Qi| : i ∈ [1, c]} ≤ n · 21+max{s(Ri,n) : i∈[1,c]}.

Note that |fq̄(w)| ≤ m if |w| ≤ n.
Our randomized streaming algorithm for G and input length n uses the semiPFA Bm.

States of Bm can be stored with O(log m) ≤ O(max{s(Ri, n) : i ∈ [1, c]} + log n) bits.
Basically, for an input word w ∈ Σ≤n the algorithm simulates Ai (i ∈ [1, c]) on the projections
wi = πi(w) and feeds the word fq̄(w) into the semiPFA Bm. Here, the state tuple q̄ is randomly
guessed in the beginning according to the distributions ιi. The complete streaming algorithm
is Algorithm 1. It stores at most

∑c
i=1 s(Ri, n) + O(max{s(Ri, n) : i ∈ [1, c]} + log n) bits.

Before we analyze the error probability of the algorithm we need some preparations.
For i ∈ [1, c] and a word w ∈ Σ∗ let Pi(w) = P(πi(w)) be the set of all prefixes of the
projection πi(w). Assume that y ∈ Σ+

i is a block of w and write w = xyz. We then have
fq̄ = fq̄(x)fr̄(y)fs̄(z), where δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). The word fr̄(y) is
also a block of fq̄ (for this it is important that the transducers Tj,q translate non-empty words
into non-empty words). Since y ∈ Σ+

i we have rj = sj for all j ∈ [1, c]\{i} and fr̄(y) = fi,ri(y).
In addition, the definition of the transducer Ti,ri

implies that fr̄(y) ≡⟨ai⟩ a−ri
i asi

i .
Consider now two input words u, v ∈ Σ≤n and let Si = Pi(u) ∪ Pi(v) for i ∈ [1, c], so that

|Si| ≤ 2n. By Lemma 4 we have for all i ∈ [1, c]:
Probq∈Qi

[≡q refines ≡Gi
on Si] ≥ 1 − ϵ0(n)

(|Si|
2

)
≥ 1 − 2ϵ0(n)n2,

Probq∈Qi
[≡Gi

refines ≡q on Si] ≥ 1 − ϵ1(n)
(|Si|

2
)

≥ 1 − 2ϵ1(n)n2.
Our error analysis of Algorithm 1 is based on the following two claims.

▷ Claim 10. Assume that q̄ = (q1, . . . , qc) is such that ≡Gi refines ≡qi on Si for every
i ∈ [1, c]. If u →∗

sd u′ and v →∗
sd v′, then fq̄(u) →∗

sd fq̄(u′), fq̄(v) →∗
sd fq̄(v′) and ≡Gi

refines
≡qi

on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].

Proof. It suffices to show the following: If u →sd u′ holds, then fq̄(u) →sd fq̄(u′) and ≡Gi

refines ≡qi
on Pi(u′) ∪ Pi(v) for every i ∈ [1, c]. From this (and the symmetric statement

where v →sd v′ and u = u′) we obtain the general statement by induction on the number of
→sd-steps. We distinguish two cases.
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Case 1. u ↔s u′. We must have u = xy1y2z and u′ = xy2y1z for blocks y1, y2 such that
y1 ∈ Σ+

i , y2 ∈ Σ+
j and (i, j) ∈ I (in particular i ̸= j). We obtain

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z) and
fq̄(u′) = fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z),

where δ(q̄, x) = (p̄, fq̄(x)), δ(p̄, y1) = (r̄, fp̄(y1)), δ(r̄, y2) = (s̄, fr̄(y2)), δ(p̄, y2) = (r̄′, fp̄(y2)),
and δ(r̄′, y1) = (s̄, fr̄′(y1)). If we write p̄ = (p1, . . . , pc), then there are states ri ∈ Qi and
rj ∈ Qj such that

r̄ = (p1, . . . , pi−1, ri, pi+1, . . . , pc), (1)
r̄′ = (p1, . . . , pj−1, rj , pj+1, . . . , pc), and (2)
s̄ = (p1, . . . , pi−1, ri, pi+1, . . . , pj−1, rj , pj+1, . . . , pc) (3)

(we assume w.l.o.g. that i < j). Moreover, fp̄(y1) = fi,pi(y1) = fr̄′(y1) ∈ {ai, a−1
i }+ and

fr̄(y2) = fj,pj
(y2) = fp̄(y2) ∈ {aj , a−1

j }+. Thus, we have

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z)
= fq̄(x)fi,pi

(y1)fj,pj
(y2)fs̄(z)

↔s fq̄(x)fj,pj
(y2)fi,pi

(y1)fs̄(z)
= fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z)
= fq̄(u′).

Moreover, since Pi(u′) = Pi(u) and ≡Gi
refines ≡qi

on Si for all i ∈ [1, c], it follows that
≡Gi

refines ≡qi
on Pi(u′) ∪ Pi(v) for all i ∈ [1, c].

Case 2. u →d u′. Then we obtain a factorization u = xyz, where y ∈ Σ+
i is a block,

y ≡Gi
1, and u′ = xz. We obtain a factorization

fq̄(u) = fq̄(x)fr̄(y)fs̄(z),

where δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). The word fr̄(y) is a block of fq̄(u).
For the projection πi(u) we have πi(u) = πi(x)yπi(z). Since ≡Gi

refines ≡qi
on Si and

πi(x) ≡Gi
πi(x)y, we obtain πi(x) ≡qi

πi(x)y. Since ri (resp., si) is the state reached from qi

by the automaton Ai after reading πi(x) (resp., πi(x)y), we obtain ri = si and hence r̄ = s̄.
This implies

fr̄(y) ≡⟨ai⟩ a−ri
i asi

i ≡⟨ai⟩ 1.

Moreover, we have

fq̄(u′) = fq̄(xz) = fq̄(x)fr̄(z) = fq̄(x)fs̄(z).

We therefore get fq̄(u) →d fq̄(u′).
It remains to show that ≡Gj

refines ≡qj
on Pj(u′) ∪ Pj(v) for every j ∈ [1, c]. For

j ̸= i this is clear since Pj(u′) ∪ Pj(v) = Sj . For j = i we can use Lemma 5 for the words
πi(u) = πi(x)yπi(z) and πi(v). ◁

▷ Claim 11. Assume that q̄ = (q1, . . . , qc) is such that ≡qi
refines ≡Gi

on Si for every
i ∈ [1, c]. If fq̄(u) →∗

sd ũ and fq̄(v) →∗
sd ṽ, then there are u′, v′ ∈ Σ∗ such that u →∗

sd u′,
v →∗

sd v′, fq̄(u′) = ũ, fq̄(v′) = ṽ and ≡qi
refines ≡Gi

on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].

Proof. The proof is very similar to the above proof of Claim 10. As in the above proof of
Claim 10, it suffices to consider the case where fq̄(u) →sd ũ and ṽ = fq̄(v).
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Case 1. fq̄(u) ↔s ũ. Since the blocks of u are translated into the blocks of fq̄(u) by the
transducer Tq̄, we obtain a factorization u = xy1y2z for blocks y1 ∈ Σ+

i , y2 ∈ Σ+
j of u such

that (i, j) ∈ I (in particular i ̸= j) and

fq̄(u) = fq̄(x)fp̄(y1)fr̄(y2)fs̄(z),
ũ = fq̄(x)fr̄(y2)fp̄(y1)fs̄(z).

Here, the state tuples p̄ = (p1, . . . , pc), r̄, and s̄ are as in the above proof of Claim 10, see in
particular (1) and (3). We can then define the tuple r̄′ as in (2) and get fp̄(y1) = fi,pi(y1) =
fr̄′(y1) ∈ {ai, a−1

i }+ and fr̄(y2) = fj,pj
(y2) = fp̄(y2) ∈ {aj , a−1

j }+. We thus have

ũ = fq̄(x)fr̄(y2)fp̄(y1)fs̄(z) = fq̄(x)fp̄(y2)fr̄′(y1)fs̄(z) = fq̄(xy2y1z).

Clearly, we also have u = xy1y2z →s xy2y1z. So, we can set u′ = xy2y1z. Since Pi(u′) = Pi(u)
for all i ∈ [1, c], it follows that ≡qi

refines ≡Gi
on Pi(u′) ∪ Pi(v) for all i ∈ [1, c].

Case 2. fq̄(u) →d ũ. Then we obtain a factorization u = xyz, where y ∈ Σ+
i is a block of u,

fq̄(u) = fq̄(x)fr̄(y)fs̄(z), and
ũ = fq̄(x)fs̄(z).

The state tuples r̄ and s̄ are such that δ(q̄, x) = (r̄, fq̄(x)) and δ(r̄, y) = (s̄, fr̄(y)). Moreover,
the word fr̄(y) is a block of fq̄(u) with

a−ri
i asi

i ≡⟨ai⟩ fr̄(y) ≡⟨ai⟩ 1.

This implies that ri = si and hence r̄ = s̄. We therefore have

ρi(qi, πi(x)) = ri = si = ρi(qi, πi(x)y).

Since ≡qi
refines ≡Gi

on Si and πi(x), πi(x)y ∈ Si, we get πi(x) ≡Gi
πi(x)y, i.e., y ≡Gi

1. If
we set u′ = xz we get u →d u′ and

ũ = fq̄(x)fs̄(z) = fq̄(x)fr̄(z) = fq̄(xz) = fq̄(u′).

It remains to show that ≡qj
refines ≡Gj

on Pj(u′) ∪ Pj(v) for every j ∈ [1, c]. For j ̸= i

this is clear since Pj(u′) ∪ Pj(v) = Sj . For j = i we can use Lemma 6 for the words
πi(u) = πi(x)yπi(z) and πi(v). ◁

We now estimate the error for the input words u and v. There are two cases to consider:
Case 1. u ≡G v. We will show that Algorithm 1 reaches with probability at least 1 −
2ϵ1(n)cn2 the same state when running on u and v, respectively. For this, assume that the
randomly selected initial states qi ∈ Qi are such that ≡Gi refines ≡qi on Si for all i ∈ [1, c].
This happens with probability at least 1 − 2ϵ1(n)cn2.

First note that u ≡G v implies πi(u) ≡Gi
πi(v) for all i ∈ [1, c]. Since ≡Gi

refines ≡qi
on

Si, we obtain ρi(qi, πi(u)) = ρi(qi, πi(v)). It remains to show that after reading u and v, also
the states of Bm are the same. For this we show that fq̄(u) ≡H fq̄(v) in the graph group H.

From Lemma 8 it follows that there are reduced words u′, v′ ∈ Σ∗ such that u →∗
sd u′,

v →∗
sd v′, and u′ ↔∗

r v′. Claim 10 implies fq̄(u) →∗
sd fq̄(u′), fq̄(v) →∗

sd fq̄(v′), and ≡Gi

refines ≡qi
on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c]. Since u′ ↔∗

r v′ we can write the block
factorizations of u′ and v′ as u′ = u1u2 · · · ul and v′ = v1v2 · · · vl with ui, vi ∈ Σ+

ji
for some

ji ∈ [1, c] and ui ≡Gji
vi for all i ∈ [1, l]. The block factorizations of fq̄(u′) and fq̄(v′) can be

written as fq̄(u′) = ũ1ũ2 · · · ũl and fq̄(v′) = ṽ1ṽ2 · · · ṽl with ũi, ṽi ∈ {aji
, a−1

ji
}+.
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We claim that ũi ≡⟨aji
⟩ ṽi for all i ∈ [1, l], which implies fq̄(u′) ≡H fq̄(v′). Since

ui ≡Gji
vi for all i ∈ [1, l], we get the following: if u′′ = uk1uk2 · · · uke

∈ Σ∗
j is a pure

prefix of u′ for some j ∈ [1, c] then v′′ = vk1vk2 · · · vke
∈ Σ∗

j is a pure prefix of v′ such that
u′′ ≡Gj v′′. Since ≡Gj refines ≡qj on Pj(u′) ∪ Pj(v′) and u′′, v′′ ∈ Pj(u′) ∪ Pj(v′), we obtain
ρj(qj , u′′) = ρj(qj , v′′). This implies ũi ≡⟨aji

⟩ ṽi for all i ∈ [1, l] and hence fq̄(u′) ≡H fq̄(v′).
From this, we finally get fq̄(u) ≡H fq̄(u′) ≡H fq̄(v′) ≡H fq̄(v).

Recall that fq̄(u) (resp., fq̄(v) is the word fed into the semiPFA Bm on input u (resp., v).
Since (Bn)n≥0 is a (1/nd, 0)-distinguisher for H, it follows that fq̄(u) and fq̄(v) lead in Bm

with probability one to the same state. Hence, Algorithm 1 reaches with probability at least
1 − 2ϵ1(n)cn2 the same state when running on u and v, respectively.

Case 2. u ̸≡G v. We will show that Algorithm 1 reaches with probability at least 1 −
(2ϵ0(n)cn2 + 1/nd) different states when running on u and v, respectively. To show this,
assume that the randomly selected initial states qi ∈ Qi are such that ≡qi refines ≡Gi on Si

for all i ∈ [1, c]. This happens with probability at least 1 − 2ϵ0(n)cn2.
We claim that fq̄(u) ̸≡H fq̄(v). In order to get a contradiction, assume that fq̄(u) ≡H

fq̄(v). From Lemma 8 it follows that there are reduced words ũ, ṽ ∈ Γ∗ such that fq̄(u) →∗
sd ũ,

fq̄(v) →sd ṽ and ũ ↔∗
r ṽ. By Claim 11 there are u′, v′ ∈ Σ∗ such that u →∗

sd u′, v →∗
sd v′,

fq̄(u′) = ũ, fq̄(v′) = ṽ and ≡qi
refines ≡Gi

on Pi(u′) ∪ Pi(v′) for every i ∈ [1, c].
Since fq̄(u′) ↔∗

r fq̄(v′) we can write the block factorizations of fq̄(u′) and fq̄(v′) as
fq̄(u′) = ũ1ũ2 · · · ũl and fq̄(v′) = ṽ1ṽ2 · · · ṽl with ũi, ṽi ∈ {aji

, a−1
ji

}+ for some ji ∈ [1, c] and
ũi ≡⟨aji

⟩ ṽi for all i ∈ [1, l]. Clearly, the block factorizations of u′ and v′ can then be written
as u′ = u1u2 · · · ul and v′ = v1v2 · · · vl, where the block ui ∈ Σ+

ji
(resp., vi ∈ Σ+

ji
) is translated

into the block ũi (resp., ṽi) by the sequential transducer Tq.
We claim that ui ≡Gji

vi for all i ∈ [1, l]. Since ũi ≡⟨aji
⟩ ṽi for all i ∈ [1, l] we

have the following: if ũ′′ = ũk1 ũk2 · · · ũke
∈ {aj , a−1

j }∗ is a pure prefix of fq̄(u′) for some
j ∈ [1, c] then ṽ′′ = ṽk1 ṽk2 · · · ṽke ∈ {aj , a−1

j }∗ is a pure prefix of fq̄(v′) and ũ′′ ≡⟨aj⟩ ṽ′′. Let
pj = ρj(qj , uk1uk2 · · · uke

) and rj = ρj(qj , vk1vk2 · · · vke
). We therefore have

a
−qj

j a
pj

j ≡⟨aj⟩ ũ′′ ≡⟨aj⟩ ṽ′′ ≡⟨aj⟩ a
−qj

j a
rj

j ,

i.e., pj = rj . Since ≡qj
refines ≡Gj

on Pj(u′)∪Pj(v′) and uk1uk2 · · · uke
as well as vk1vk2 · · · vke

belong to Pj(u′) ∪ Pj(v′), we obtain uk1uk2 · · · uke
≡Gj

vk1vk2 · · · vke
. This holds for all pure

prefixes of u′. We therefore have ui ≡Gji
vi for all i ∈ [1, l], which implies u′ ≡G v′. Finally,

we get u ≡G u′ ≡G v′ ≡G v, which is a contradiction. Hence, we must have fq̄(u) ̸≡H fq̄(v).
Since the algorithm feeds fq̄(u) (resp., fq̄(v)) into the semiPFA Bm, the latter reaches

different states with probability at least 1 − 1/md ≥ 1 − 1/nd (under the assumption
that ≡qi

refines ≡Gi
on Si for all i ∈ [1, c]). Hence, the probability that Algorithm 1

reaches different states when running on u and v is at least (1 − 2ϵ0(n)cn2)(1 − 1/nd) ≥
1 − (2ϵ0(n)cn2 + 1/nd). ◀

Theorem 9 only makes sense if ϵ0(n), ϵ1(n) < 1/2cn2. Most of the distinguishers from [17]
have an error probability of 1/nc for any chosen c > 0; see Theorem 7 for the case of f.g. linear
groups. Moreover, notice that if ϵ1 = 0 then also ζ1 = 0 in Theorem 9. Combined with
Theorem 7, Lemma 3, and the transfer theorems from [17] mentioned in Section 1, we get a
logspace randomized streaming algorithm with a one-sided error (no error if w ≡G 1) for
the word problem of any f.g. group G that can be constructed from f.g. linear groups using
finite extensions, wreath products with a f.g. abelian left factor, and graph products. These
groups are in general not linear; see the characterization of linear wreath products in [23].
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6 Randomized streaming algorithms for subgroup membership

Let G be a f.g. group with a finite symmetric generating set Σ and let H be a subgroup
of G. As before, πG : Σ∗ → G is the morphism that maps a word w ∈ Σ∗ to the group
element represented by w. We define the language GWP(G, H, Σ) = {w ∈ Σ∗ : πG(w) ∈ H}.
GWP stands for generalized word problem which is another common name for the subgroup
membership problem. Note that GWP(G, 1, Σ) = WP(G, Σ). In the following we are
interested in randomized streaming algorithms for GWP(G, H, Σ). One can easily show a
statement for GWP(G, H, Σ) analogously to Lemma 2, which allows us to skip the generating
set Σ in combination with the O-notation and just write GWP(G, H) in the following.

For this section we fix a finite alphabet Σ and take a copy Σ−1 = {a−1 : a ∈ Σ} of formal
inverses. Let Γ = Σ ∪ Σ−1. We extend the mapping a 7→ a−1 (a ∈ Σ) to the whole alphabet
Γ by setting (a−1)−1 = a. Moreover, for a word w = a1a2 · · · an with ai ∈ Γ we define
w−1 = a−1

n · · · a−1
2 a−1

1 . A word w ∈ Γ∗ is called reduced if it contains no factor of the form
aa−1 for a ∈ Γ. Let Red(Γ) ⊆ Γ∗ be the set of reduced words. It is convenient to identify
the free group F (Σ) with the set Red(Γ) of reduced words and the following multiplication
operation: Let u, v ∈ Red(Γ). Then one can uniquely write u and v as u = xy and v = y−1z

such that xz ∈ Red(Γ) and define the product of u and v in the free group F (Σ) as xz. For
every word w ∈ Γ∗ we can define a unique reduced word red(w) as follows: if w ∈ Red(Γ)
then red(w) = w and if w = uaa−1v for u, v ∈ Γ∗ and a ∈ Γ then red(w) = red(uv). It is
important that this definition does not depend on which factor aa−1 is deleted in w. The
reduction relation uaa−1v → uv for all u, v ∈ Γ∗ and a ∈ Γ is a so-called confluent relation.
The reduction mapping w 7→ red(w) then becomes the canonical morphism mapping a word
w ∈ Γ∗ to the element of the free group represented by w.

In the following we have to deal with a special class of finite automata over the alphabet Γ.
A partial deterministic finite automaton (partial DFA) is defined as an ordinary DFA except
that the transition function δ : Q × Γ → Q is only partially defined. As for (total) DFAs we
extend the partial transition function δ : Q × Γ → Q to a partial function δ : Q × Γ∗ → Q.
For q ∈ Q and w ∈ Γ∗ we write δ(q, w) = ⊥ if δ(q, w) is undefined, which means that one
cannot read the word w into the automaton A starting from state q. A partial inverse
automaton A = (Q, Γ, q0, δ, qf ) over the alphabet Γ is a partial DFA with a single final state
qf and such that for all p, q ∈ Q and a ∈ Γ, δ(p, a) = q implies δ(q, a−1) = p.

The main technique to deal with f.g. subgroups of a free group is Stallings folding [12].
For our purpose it suffices to know that for every f.g. subgroup G ≤ F (Σ) there exists a
partial inverse automaton AG over the alphabet Γ such that for every w ∈ Red(Γ), w ∈ G if
and only if w ∈ L(AG). We call AG the Stallings automaton for G. It has the additional
property that the unique final state is the initial state. The Stallings automaton for G can
be constructed quite efficiently from a given set of generators for G, but we do not need
this fact since G will be fixed and not considered to be part of the input in our main result,
Theorem 14 below.

Let G be a fixed f.g. subgroup of F (Σ) and let AG = (Q, Γ, q0, δ, q0) be its Stallings
automaton in the following. An important property of AG is the following: If q, q′ ∈ Q and
u ∈ Γ∗ (u is not necessarily reduced) are such that δ(q, u) = q′ then also δ(q, red(u)) = q′.
This follows from the fact that δ(q, aa−1) = q for every q ∈ Q and a ∈ Γ. In particular, if
δ(q0, u) ̸= ⊥, then u ∈ L(AG) if and only if red(u) ∈ L(AG) if and only if red(u) ∈ G.

▶ Definition 12. For a word w ∈ Γ∗ we define the AG-factorization of w uniquely as either
(i) w = w0a1u1 w1a2u2 · · · wk−1akuk wk or
(ii) w = w0a1u1 w1a2u2 · · · wk−1akuk wkak+1v
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AGq0
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q5

w0

w1

w2

w3
w4

a1 a2

a3

a4

u1 u2
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Figure 1 An AG-factorization of type (i) for k = 4. The red-blue loops outside of AG are loops
in the Cayley-graph of the free group F (Σ).

AGq0

q1 q2

q3

q4q5

w0

w1

w2

w3

w4

a1 a2

a3

a4a5

u1 u2

u3

u4v

Figure 2 An AG-factorization of type (ii) for k = 4. The red-blue loops outside of AG are loops
in the Cayley-graph of the free group F (Σ).

such that the following properties hold, where ℓ = k in case (i) and ℓ = k + 1 in case (ii):
w0, . . . , wk, u1, . . . , uk, v ∈ Γ∗, a1, . . . , aℓ ∈ Γ,
there are states q1, . . . , qk+1 ∈ Q such that δ(qi, wi) = qi+1 for all i ∈ [0, k] (recall that q0
is the initial state of AG),
δ(qi, ai) = ⊥ for all i ∈ [1, ℓ],
for all i ∈ [1, k], red(aiui) = ε but there is no prefix u ̸= ui of ui with red(aiu) = ε, and
in case (ii), v has no prefix x with red(ak+1x) = ε.

Depending on which of the two cases (i) and (ii) in Definition 12 holds, we say that w has an
AG-factorization of type (i) or type (ii).

Let us explain the intuition of the AG-factorization of w; see also Figures 1 and 2. We
start reading the word w into the automaton AG, beginning at q0, as long as possible. If it
turns out that δ(q0, w) is defined, then the AG-factorization of w consists of the single factor
w0 = w and we obtain type (i). Otherwise, there is a shortest prefix w0 of w (the first factor
of the AG-factorization) such that after reading w0 we reach the state δ(q0, w0) = q1 of AG

and δ(q1, a1) = ⊥, where a1 is the symbol following w0 in w. In other words, when trying
to read a1, we escape the automaton AG for the first time. At this point let w = w0a1x.
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Algorithm 2 1/nc-correct randomized streaming algorithm for GWP(F (Σ), G).

global variables: q ∈ Q, p, r ∈ Rn, β ∈ {0, 1}

initialization:
1 q := q0 ; β := 1 ;
2 guess r ∈ Rn according to the initial state distribution λn of Bn ;

next input letter: a ∈ Γ
3 if β = 1 and δ(q, a) = ⊥ then
4 β := 0 ; p := r

5 end
6 if β = 1 and δ(q, a) ̸= ⊥ then
7 q := δ(q, a)
8 end
9 r := σn(r, a) ;

10 if β = 0 and r = p then
11 β := 1
12 end
13 accept if β = 1 and q = q0

We then take the shortest prefix u1 of x such that a1u1 = 1 in F (Σ) (if such a prefix does
not exist, we terminate in case (ii)). This yields a new factorization w = w0a1u1y. We then
repeat this process with the word y starting from the state q1 as long as possible. There
are two possible terminations of the process: starting from state qk we can read the whole
remaining suffix into AG (and arrive in state qk+1). This suffix then yields the last factor wk

and we obtain (i). In the other case, we leave the automaton AG with the symbol ak+1 from
state qk+1 (δ(qk+1, ak+1) = ⊥) and the remaining suffix has no prefix x such that ak+1x

evaluates to the identity in F (Σ). The remaining suffix then yields the last factor v and we
obtain (ii). The following lemma is shown in [17].

▶ Lemma 13. Let w ∈ Γ∗ and assume that the AG-factorization of w and the states
q1, . . . , qk+1 are as in Definition 12.

If the AG-factorization of w is of type (i) then red(w) ∈ G if and only if qk+1 = q0.
If the AG-factorization of w is of type (ii) then red(w) /∈ G.

▶ Theorem 14. Let G a fixed f.g. subgroup of F (Σ). For every c > 0 there is a 1/nc-correct
randomized streaming algorithm for GWP(F (Σ), G) with space complexity O(log n).

Proof. We would like to use the Stallings automaton AG = (Q, Γ, q0, δ, q0) as a streaming
algorithm for GWP(F (Σ), G) (note that |Q| is a constant since G is fixed). The problem is
that the input word is not necessarily reduced. We solve this problem by using a (1/nc+2, 0)-
distinguisher (Bn)n≥0 for F (Σ) with space complexity O(log n). It exists by Theorem 7 since
f.g. free groups are linear. Fix an input length n and let Bn = (Rn, Γ, λn, σn). Consider an
input word w ∈ Γ≤n. Our randomized streaming algorithm for GWP(F (Σ), G) is Algorithm 2.

The space needed by Algorithm 2 is O(log n): The variables q and β need constant
space and p and r both need O(log n) bits. Let us now show that the error probability of
Algorithm 2 is bounded by 1/nc. For this let S = P(w) be the set of all prefixes of w. For
the initially guessed state r0 ∈ Rn (line 3) we have by Lemma 4:

Prob
r0∈Rn

[≡F (Σ) equals ≡r0 on S] ≥ 1 − 1/nc+2
(

|S|
2

)
≥ 1 − 1/nc.
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Assume for the further consideration that the guessed state r0 is such that ≡F (Σ) and ≡r0

are equal on S. We claim that under this assumption, Algorithm 2 accepts in line 13 after
reading w if and only if red(w) ∈ G. For this, assume that the AG-factorization of w and
the states q1, . . . , qk+1 ∈ Q are as in Definition 12. By Lemma 13 it suffices to show the
following:
(a) If the AG-factorization of w is of type (i) then after reading w we have β = 1 and

q = qk+1 in Algorithm 2.
(b) If the AG-factorization of w is of type (ii) then β = 0 after reading w in Algorithm 2.
To see this, observe that Algorithm 2 simulates Bn on w starting from r0 (line 9). Moreover,
initially we have β = 1 (line 1). This implies that Algorithm 2 simulates the Stallings
automaton AG on w as long as possible (line 7). If this possible for the whole input w (i.e.,
δ(q0, w) ̸= ⊥) then w has an AG-factorization of type (i) consisting of the single factor w

(i.e., k = 0). Moreover, after processing w by Algorithm 2, we have β = 1 and the program
variable q holds δ(q0, w) = q1 = qk+1. We obtain the above case (a).

Assume now that k > 0. The AG-factorization of w starts with w0a1, where δ(q0, w0) = q1
and δ(q1, a1) = ⊥. After processing w0 by Algorithm 2 we have q = q1 and r = σn(r0, w0).
While processing the next letter a1, Algorithm 2 sets β to 0 and saves the current state
r = σn(r0, w0) of Bn in the variable p (line 4). Let us write w = w0a1v. Since the flag β was
set to 0, Algorithm 2 only continues the simulation of Bn on input a1v starting from state
σn(r0, w0) = p. Our assumption that ≡F (Σ) and ≡r0 are equal on the set S implies that for
every prefix x of v we have: red(a1x) = ε if and only if p = σn(r0, w0) = σn(r0, w0a1x). In
line 10, the algorithm checks the latter equality in each step (as long as β = 0). If there is
no prefix x of v with red(a1x) = ε then the AG-factorization of w is of type (ii) (it is w0a1v)
and the flag β is 0 after reading w. We then obtain the above case (b). Otherwise, u1 is the
shortest prefix of v with red(a1u1) = ε. Moreover, after processing u1, the if-condition in
line 10 is true for the first time. The algorithm then sets the flag β back to 1 (line 11) and
resumes the simulation of the automaton AG in state q1 (which is still stored in the program
variable q). This process now repeats and we see that the algorithm correctly locates the
factors of the AG-factorization of w. This shows the above points (a) and (b). ◀

It is not possible to generalize Theorem 14 to subgroups of F (Σ) that are not finitely
generated. The proof of the following theorem (see [17]) uses the fact there is a finitely
presented group whose word problem has randomized streaming space complexity Ω(n). A
concrete example is Thompson’s group F ; see [16, Corollary 22].

▶ Theorem 15. The free group F2 of rank two has a normal subgroup N such that the
randomized streaming space complexity of the language GWP(F2, N) is in Θ(n).

Applying Mihăılova’s construction [19] to the normal subgroup N from Theorem 15 yields:

▶ Theorem 16. There is a f.g. subgroup G of F2 × F2 such that the randomized streaming
space complexity of GWP(F2 × F2, G) is in Θ(n).

7 Open problems

A very important class of groups in geometric group theory is the class of hyperbolic groups;
see [9] for background. Free groups are the simplest hyperbolic groups. Hyperbolic groups
have some good algorithmic properties. For instance, their word problems can be decided in
linear time by Dehn’s algorithm. It would be interesting to know whether every hyperbolic
group has an ϵ-distinguisher (say for ϵ = 1/3) with space complexity O(log n), which would
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imply that every hyperbolic group has randomized streaming space complexity O(log n). One
should remark that it is also open whether the word problem for a hyperbolic group belongs
to randomized logspace (RL). The best known space upper bound for the word problem of a
hyperbolic group is DPSPACE(log2 n). This follows from the fact that the word problem of a
hyperbolic group belongs to LogCFL [14].

It would be also interesting to see whether a transfer theorem similar to Theorem 9 can
be shown for certain fundamental groups of graphs of groups, e.g. when all edge groups are
finite.
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We characterize the algorithmic dimensions (i.e., the lower and upper asymptotic densities of
information) of infinite binary sequences in terms of the inability of learning functions having an
algorithmic constraint to detect patterns in them. Our pattern detection criterion is a quantitative
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1 Introduction

Algorithmic dimension was first formulated as a Σ0
1 effectivization of classical Hausdorff

dimension [12, 14].1 The algorithmic dimension adim(Γ) of a set Γ of infinite binary
sequences is, in fact, an upper bound of the Hausdorff dimension dimH(Γ) of this set.
Since algorithmic dimension has the absolute stability property that adim(Γ) is always the
supremum of all adim({X}) for X ∈ Γ, it was natural to define dim(X) = adim({X}) for all
infinite binary sequences X and to investigate algorithmic dimension entirely in terms of the
dimensions dim(X) of individual sequences X. Mayordomo [23] proved that the dimension
dim(X), originally defined in terms of algorithmic betting strategies called gales, can also be
characterized as the lower asymptotic density of the algorithmic information content of X.
The more recent point-to-set principle [15] uses relativization to give the characterization

dimH(Γ) = min
A⊆N

sup
X∈Γ

dimA(X)

of classical Hausdorff dimension. This principle has enabled several recent uses of computab-
ility theory to prove new classical theorems about Hausdorff dimension[21, 19, 20, 27, 18, 4,
5, 16, 17].2

Algorithmic dimension has the same Σ0
1 “level of effectivization” as algorithmic random-

ness (also called “Martin-Löf randomness” [22] or, simply, “randomness”). In fact, every
algorithmically random sequence X satisfies dim(X) = 1, although the converse does not
hold [14].

1 Algorithmic dimension has also been called “constructive dimension”, “effective Hausdorff dimension”,
and “effective dimension” by various authors.

2 A theorem is “classical” here if its statement does not involve computability or related aspects of
mathematical logic. Hence “new classical theorem” is not an oxymoron.
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Computable learning theory, as initiated by Gold in 1967 [7, 25, 10], has been used to
shed new light on randomness notions. Specifically, in 2008, Osherson and Weinstein [24]
characterized two randomness notions, called weak 1-randomness and weak 2-randomness,
for sequences X in terms of the inability of computable learning functions to detect patterns
in X. Even more compellingly, Zaffora Blando [32] recently formulated a clever variant of
Osherson and Weinstein’s pattern detection criteria, called uniform weak detection, and used
this to give an exact characterization of algorithmic (i.e., Martin-Löf) randomness.3

In this paper we introduce a quantitative version of Zaffora Blando’s uniform weak
detection criterion, called s-learnability, and we use this to characterize algorithmic dimension
in terms of learning functions. Our main theorem says that, for every infinite binary sequence
X, dim(X) is the infimum of all nonnegative real numbers s for which some learning function
s-learns X. Our proof of this result uses methods of Osherson, Weinstein, and Zaffora Blando,
together with martingale and Kolmogorov complexity techniques of Mayordomo [23]. We
also characterize both the classical packing dimension dimP [29, 30] and the algorithmic
strong dimension Dim(X) [1] of a sequence in terms of learning functions. Along the way, we
show that algorithmic randomness can also be characterized by specifically polynomial-time
computable learning functions.

2 Preliminaries

Let N represent the natural numbers {0, 1, 2, ...}, Q the rationals, and R the reals. We will
often use the extended naturals N ∪ {∞} and the extended reals R ∪ {∞}. More often, we
will refer to the respectively half open and closed intervals, [0, ∞) and [0, ∞].

We denote by {0, 1}∗ the set of all (finite) binary strings, and by {0, 1}∞ the set of all
infinite binary sequences, which we call the Cantor space C. We denote the length in bits of
a string or sequence w by |w|. The empty string is the unique string λ with |λ| = 0. If Z is
an element of {0, 1}∞ or of {0, 1}∗, we write Z ↾ n for the first n bits of Z if |Z| ≥ n, and
the value is undefined otherwise . Note that for all n ∈ N, and all Z ∈ {0, 1}∞, |Z ↾ n| = n.
We write w ⊑ Z if w is a prefix of Z, i.e., if w = Z ↾ |w|. We write w ⊏ Z if w is a proper
prefix of Z, i.e., if w is a prefix of Z and w ̸= Z.

For any string w ∈ {0, 1}∗, the cylinder at w is

Cw = {Z ∈ C | w ⊑ Z}.

If A is a set of strings, we denote the union of cylinders at those strings by JAK = ∪w∈ACw.
A (Borel) probability measure on C is a function µ : {0, 1}∗ → [0, 1] such that µ(λ) = 1 and
µ(w) = µ(w0) + µ(w1) for all w ∈ {0, 1}∗. Intuitively, µ(w) is the probability that Z ∈ Cw

when Z ∈ C is “chosen according to µ”. In this sense, µ(w) is an abbreviation for µ(Cw).
Standard methods [2] extend µ from cylinders to a σ-algebra F on C, so that (C, F , µ) is a
probability space in the classical sense.

Most of our attention is on the uniform (Lebesgue) probability measure λ on C defined
by λ(w) = 2−|w| for all w ∈ {0, 1}∗. We rely on context to distinguish Lebesgue measure
from the empty string.

3 Zaffora Blando’s paper also characterized Schnorr randomness in terms of “computably uniform weak
detection”, but this is not germane to our work here.
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▶ Definition. A function f : {0, 1}∗ → [0, ∞) is lower semicomputable if there exists a
computable function g : {0, 1}∗ × N → Q ∩ [0, ∞) such that for all w ∈ {0, 1}∗, t ∈ N,

g(w, t) ≤ g(w, t + 1) ≤ f(w)

and

lim
t→∞

g(w, t) = f(w).

We will say that a set S of real numbers is uniformly left computably enumerable (uniformly
left c.e.) if there exists a lower-semicomputable function whose range is S.

3 Algorithmic randomness via learning functions

The algorithmic randomness of a sequence was originally defined in [22] in terms of algorithmic
measure theory. In this view, an algorithmically random sequence is one which belongs to
every algorithmically definable measure one set. Martin-Löf shows that all algorithmically
nonrandom sequences belong to one universal algorithmically measure-zero set.

▶ Definition ([22]). If µ is a probability measure on C, then we say a set X has algorithmic
µ-measure zero if there exists a computable function g : N × N → {0, 1}∗ such that: for every
k ∈ N,

X ⊆
∞⋃

n=0
Cg(k,n)

and
∞∑

n=0
µ(Cg(k,n)) ≤ 2−k.

▶ Definition ([22]). We say a sequence S is Martin-Löf µ-nonrandom if {S} has algorithmic
µ-measure zero, and Martin-Löf µ-random otherwise.

When the probability measure µ is the Lebesgue measure λ defined in section 2, we
omit it from the terminology in the preceding two definitions. Randomness can also be
characterized using gambling strategies called gales.

▶ Definition ([14]). For s ∈ [0, ∞), a µ-s-gale is a function d : {0, 1}∗ → [0, ∞) that satisfies
the condition that

d(w)µ(w)s = d(w0)µ(w0)s + d(w1)µ(w1)s,

for every w ∈ {0, 1}∗.

Sometimes, when the probability distribution µ is clear from context, we will refer simply
to s-gales. A martingale is a 1-gale. If not stated explicitly otherwise, we assume that the
initial capital of a gale is d(λ) = 1.

▶ Definition. A µ-s-gale d succeeds on a set Γ of sequences if

lim sup
n→∞

d(X ↾ n) = ∞

for every sequence X ∈ Γ.

MFCS 2024
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Ville shows the following:

▶ Theorem 1 ([31]). Let λ(E) denote the Lebesgue measure of a set E ⊆ {0, 1}∞. The
following are equivalent:
(1) λ(E) = 0
(2) There exists a martingale d : {0, 1}∗ → [0, ∞) that succeeds on E.

Schnorr effectivizes Ville’s theorem as follows:

▶ Theorem 2 ([26]). A set of sequences Γ is Martin-Löf random if and only if there exists
no lower-semicomputable martingale that succeeds on Γ.

We will revisit gales in a later section, when we discuss dimension.

▶ Definition ([25]). A function l : {0, 1}∗ → {YES, NO} is called a learning function.

YES and NO are simply aliases for 1 and 0, respectively.
One can impose resource bounds on learning functions or on properties of these functions

such as their average answers “along” a string w. l may be computable (in which case we call
it a computable learning function or CLF), or l may have lower-semicomputable averages at
all points in {0, 1}∗, or any number of other resource restrictions.

▶ Definition ([32]). A learning function l is said to uniformly weakly detect that a sequence
X ∈ {0, 1}∞ is patterned if and only if
1. l(X ↾ m) = YES for infinitely many m ∈ N, and
2. λ({Y ∈ {0, 1}∞ | #{m ∈ N | l(Y ↾ m) = YES} ≥ n}) ≤ 2−n

for all n ∈ N.

Zaffora Blando shows that computable learning functions and uniform weak detectability
characterise Martin-Löf randomness:

▶ Theorem 3 ([32]). A sequence X ∈ {0, 1}∞ is Martin-Löf random if and only if there is
no computable learning function that uniformly weakly detects that X is patterned.

▶ Theorem 4. The following are equivalent:
1. There exists a computable learning function that uniformly weakly detects that X is

patterned.
2. There exists a polynomial-time computable learning function that uniformly weakly detects

that X is patterned.

Proof. (2) =⇒ (1) is immediate.
To see that (1) =⇒ (2):
Let l be a computable learning function which uniformly weakly detects that X is

patterned. Let Ml(w) be a TM which computes l(w). Algorithm 1 specifies a learning
function with the following properties:

l̂ = YES if there exist w′ ⊏ w and tw′ ∈ N such that all of the following hold:
1. |w| = |w′| + tw′

2. l(w′) = YES
3. tw′ = min{t | Ml(w′) = YES after t steps},
and l̂ = NO otherwise.

If l says YES infinitely often on X, then there are infinitely many w′, tw′ where Ml(w′) =
YES after exactly tw′ time steps. Thus there are infinitely many w with |w| = |w′| + tw′

where l̂ says YES. Thus, l̂ says YES infinitely often on X.
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For all Y ∈ {0, 1}∞, the number of YES given by l̂ along Y remains the same as the
number given by l, all such answers being “delayed” until later. Thus, the measure condition
is satisfied. Thus, l̂ is a learning function which uniformly weakly detects that X is patterned.

Algorithm 1 Ml̂.

1: Input w:
2: for all w′ ⊏ w do
3: Run Ml(w′) for exactly |w| − |w′| steps.
4: if Ml(w′) prints YES for the first time after exactly |w| − |w′| steps then
5: return YES
6: else
7: Continue
8: end if
9: end for

10: return NO

Ml̂ always halts and terminates in time polynomial in |w|. Thus, l̂ is polynomial-time
computable. ◀

As a result, one can characterize algorithmic randomness in terms of polynomial-time
computable learning functions:

▶ Corollary 5. A sequence X ∈ {0, 1}∞ is Martin-Löf random if and only if there is
no polynomial-time computable learning function that uniformly weakly detects that X is
patterned.

We also note a useful fact about uniform weak detectability:

▶ Observation 6. If l1 uniformly weakly detects that Γ1 is patterned, and l2 uniformly weakly
detects that Γ2 is patterned, then there exists a learning function l3 which uniformly weakly
detects that Γ1 ∪ Γ2 is patterned. This transformation preserves computability.

Proof. Define l3 by:
l3(v) = YES if either l1(v) = YES or l2(v) = YES, unless for all v′ ⊏ v l1(v) = NO or for

all v′ ⊏ v l2(v) = NO.
That is, l3 says YES whenever either l1 or l2 would say YES, except for the first time for

each.
It is easy to verify that l3 says YES infinitely often on every X ∈ Γ1 ∪ Γ2 and that the

measure property is satisfied. It is also easy to show that if l1 and l2 are computable, then l3
is as well. ◀

As a result, uniform weak detectability by computable learning functions is closed under
finite unions.

4 Classical and algorithmic dimensions

Next, we review the definitions of classical and algorithmic dimensions.
We say a set A covers a set of sequences Γ if for every X ∈ Γ there is some w ∈ A, w ⊑ X.

Let k ∈ N, and let Ak = {A | A is a prefix set and ∀x ∈ A, |x| ≥ k}. Let

Ak(Γ) = {A ∈ Ak | A covers Γ},

MFCS 2024
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and let

Hs
k(Γ) = inf

A∈Ak(Γ)

∑
w∈A

2−s|w|.

Note that this infimum is taken only over sets of cylinders, not over all possible covers. For
that reason, the following function is a proxy for - and is within a constant multiplicative
factor of - what is know as the s-dimensional Hausdorff outer measure, in which all covers
are considered.

▶ Definition ([8]). Hs(Γ) = limk→∞ Hs
k(Γ).

For any set Γ, there exists some s ∈ [0, ∞) such that for every a < s < b,
1. Ha(Γ) = ∞, and
2. Hb(Γ) = 0.

The real number s is the Hausdorff dimension of Γ:

▶ Definition ([8]). The Hausdorff dimension of a set Γ ⊆ {0, 1}∞ is

dimH(Γ) = inf{s ∈ [0, ∞) | Hs(Γ) = 0}.

Hausdorff dimension can be characterized in terms of gales:

▶ Theorem 7 ([13]).

dimH(Γ) = inf{s ∈ [0, ∞)| there exists an s-gale that succeeds on Γ}.

Lutz also showed that by effectivizing gales4 at various levels, one can obtain various
effective dimension notions, including the algorithmic dimension:

▶ Definition ([14]). The algorithmic dimension of a set Γ ⊆ {0, 1}∞ is

adim(Γ) = inf{s ∈ [0, ∞)| there exists

a lower semicomputable s-gale that succeeds on Γ}.

We also note the following theorem:

▶ Theorem 8 ([14]). Let µ be a probability measure on {0, 1}∞, let s, s′ ∈ [0, ∞), and let
d, d′ : {0, 1}∗ → [0, ∞). Assume that

d(w)µ(w)s = d′(w)µ(w)s′

for all w ∈ {0, 1}∗. Then, d is a µ-s-gale if and only if d′ is a µ-s′-gale.

A corollary of this theorem, which we will make use of in the main proof of the next
section, is the following:

▶ Proposition 9. If d is an s-gale that succeeds on X then there exists a martingale d′ that
succeeds on X against order h(w) = 2(1−s)|w|. That is,

lim sup
n→∞

d(X ↾ n)
h(n) = ∞.

4 In Lutz’ original proof, supergales are used. These satisfy the gale definition with ≤ in place of equality.
[9] shows that gales suffice for the characterization of algorithmic dimension.
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Another important classical dimension notion is the packing dimension [30, 29]. As with
the Hausdorff dimension, it is easier to define it in terms of gales than in terms of its original
conception via coverings. First we define a notion of strong success for gales:

▶ Definition ([1]). A µ-s-gale d succeeds strongly on a set Γ of sequences if

lim inf
n→∞

d(X ↾ n) = ∞

for every sequence X ∈ Γ.

▶ Definition ([1]). The packing dimension of a set Γ ⊆ {0, 1}∞ is

dimP (Γ) = inf{s ∈ [0, ∞)| there exists an s-gale that succeeds strongly on Γ}.

The packing dimension can be effectivized as follows:

▶ Definition ([1]). The algorithmic packing dimension or algorithmic strong dimension of a
set Γ ⊆ {0, 1}∞ is

aDim(Γ) = inf{s ∈ [0, ∞)| there exists a lower semi-computable s-gale

that succeeds strongly on Γ}.

We use the above notations adim and aDim when describing the algorithmic dimensions
of sets in order to distinguish these from their classical counterparts. When applied to
individual sequences, we often use dim and Dim, respectively, as there is no ambiguity.

5 Hausdorff dimension via learning functions

Learning functions can be used to characterize the classical (Hausdorff) dimension. Once
such a characterization is in place, one can impose further restrictions on the computability
of learning functions and thereby use the notion of learning to characterize dimension notions
at various levels of effectivity.

We refine the definition of uniform weak detectability, by adding a requirement on the
frequency of YES answers, in order to characterize dimension. Recall that we identify YES
with 1 and NO with 0, thus the sum in the following definition is well-defined.

▶ Definition. If l is a learning function, the path average of l up to w is denoted

AVGl(w) =
∑i=|w|

i=0 l(w ↾ i)
|w|

.

Let ∆ be a computability restriction such as “lower semi-computable”, “computable”, or
“all” (the absence of a restriction).

▶ Definition. A sequence X is (∆)-s-learnable if and only if there exists a function l :
{0, 1}∗ → {YES, NO} such that the following three conditions are satisfied.
1. For every w ∈ {0, 1}∗, the path averages AVGl(w) are uniformly ∆-computable (in w).
2. For all n ∈ N,

λ({Y ∈ {0, 1}∞ | #{i | l(Y ↾ i) = YES} ≥ n)}) ≤ 2−n.

3. lim sup
n→∞

AVGl(X ↾ n) ≥ 1 − s.
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We say that a sequence X is strongly (∆)-s-learnable if it satisfies (1) and (2) above, and
satisfies condition (3) with a lim inf rather than a lim sup.

Specifically, we will say that algorithmic s-learnability corresponds to ∆ = Σ0
1, computable

s-learnability corresponds to ∆ = ∆0
1 and s-learnability as such corresponds to no resource

restriction (in other words, any learning functions at all can be used). Note that the restriction
on computability is not applied to the learning function itself, but to its path averages on
the elements of {0, 1}∗.

We often refer to a learning function which satisfies these properties as an s-learner, and
we say it s-learns a sequence or set of sequences.

This definition is in the spirit of [28], emphasizing learnability criteria based on frequencies
of YES answers, rather than restrictions on the measure conditions.

A function l : {0, 1}∗ → {NO, YES} is associated to a transformation l̂ : {0, 1}∞ →
{NO, YES}∞ defined by l̂(Y ) = X, where X[n] = l(Y ↾ n). In this sense, each sequence x is
transformed into a sequence consisting of YES and NO “bits”. For any set S, and function
f : {0, 1}∞ → {0, 1}∞, f−1[S] is the set of all X with f(X) ∈ S. Define functions l̂ on finite
strings analogously.

▶ Observation 10. For every learner l and every Y ∈ {0, 1}∞, either l s-learns every
X ∈ l̂−1[Y ] or none of them.

This is immediate from the success criterion. s-learning a sequence is purely a matter of
the asymptotic frequency with which some learner says YES on prefixes of that sequence,
assuming the measure condition is satisfied by l.

Closure under finite unions also holds for s-learnability:

▶ Observation 11. If l1 s-learns Γ1 and l2 s-learns Γ2, then there exists a learning function
l3 which s-learns Γ1 ∪ Γ2.

Proof. The idea is the same as in Observation 6. Define l3 by:
l3(v) = YES if either l1(v) = YES or l2(v) = YES, unless it’s the first time that either l1

or l2 has said YES on any v′ ⊑ v.
Note that lim supn→∞

∑n
l(X↾i)
n ≥ (1−s) implies that lim supn→∞

∑n
l(X↾i)
n − k

n ≥ (1−s)
for any fixed k. ◀

We will now show that s-learning characterizes Hausdorff dimension.
Let G (Γ) = {s ∈ (0, ∞) | there exists a learning function l which s-learns every X ∈ Γ}.

The following theorem is a characterization of Hausdorff dimension in terms of learning
functions.

▶ Theorem 12. For all Γ ⊆ {0, 1}∞,

dimH(X) = inf G (Γ).

Proof. Assume dimH(Γ) ≤ s. Then for all s′ > s there exists an s′-gale which succeeds on
Γ, and by Proposition 9 there exists a martingale d which, for every X ∈ Γ succeeds on X

against order h(w) = 2(1−s′)|w|. That is, d doubles its money asymptotically 1 − s′ share of
the time. Let

γd(w) =


YES if there exists w′ ⊑ w such that d(w) ≥ 2 · d(w′) and

∀ŵ satisfying w′ ⊏ ŵ ⊏ w, γd(ŵ) = NO
NO otherwise

(5.1)
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γd says YES every time d doubles its money (attains a new 2k value). The set of sequences
on which γd says YES infinitely often is the same as the set of sequences on which d wins
unbounded money against h, thus it has measure zero. Thus for any X ∈ Γ there must be
infinitely many X ↾ n such that γd(X ↾ n) has YES density at least (1 − s′) at X ↾ n.

Let n ∈ N and let Bn = {w | d(w) ≥ 2n and ∀v ⊑ w, d(v) < 2n}. Bn is the (prefix-)set of
all w at which d has accumulated 2n value for “the first time”. By the Kolmogorov inequality
([31]), λ(∪w∈BnCw) ≤ 2−n. For all n,

Aγd
n = {Y | #{m | γd(Y ↾ m) = YES} ≥ n}

⊆ {Y | ∃k d(Y ↾ k) ≥ 2n}
= ∪w∈Bn

Cw,

Thus, for all n, λ(Aγd
n ) ≤ λ(∪w∈Bn

Cw) ≤ 2−n. Thus γd s′-learns every X ∈ Γ.
In the other direction, suppose that for all s′ > s there is a learning function which

s′-learns every X ∈ Γ. Let l be such a learning function. We show dimH(Γ) ≤ s. Let k, r be
any integers. Let

Âk = {w | # YES(w) ≥ r + (1 − s′)|w| and ∀v ⊏ w, v /∈ Âk}.

Âk ∈ Ak(Γ) because for all w ∈ Âk, |w| > k, and Âk is a prefix set.
For every n,

λ({Y | # YES(Y ) ≥ r + (1 − s′)n}) ≤ 2−r−(1−s′)n.

Thus, the number of strings of length exactly k which can have at least r + (1 − s′)k YES
answers is at most

2−r−(1−s′)k

2−k
= 2−r+s′k.

Hs′

k (Γ) ≤
∑

w∈Âk

2−s′|w| ≤
∞∑

n=k

|Â=n
k |2−s′n ≤ 2−r+s′k2−s′k = 2−r,

where the third inequality is due to the Kraft inequality [11, 3], because Âk is a prefix set.
Thus

Hs′
(Γ) = lim

k→∞
inf

A∈Ak(Γ)

∑
w∈A

2−s|w|

≤ lim
k→∞

∑
w∈Âk

2−s|w|

= 0.

Thus dimH(Γ) ≤ s. ◀

6 Algorithmic dimension via learning functions

In this section, we show that algorithmic s-learning characterizes algorithmic dimension.
Recall that a learning function algorithmically s-learns a set Γ ⊆ {0, 1}∞ if it satisfies

the definition of s-learning with ∆ = Σ0
1. In other words, we require that the path-averages

of l on all strings w are uniformly lower semicomputable real numbers.
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Before we discuss the proof that algorithmic s-learnability characterizes algorithmic
dimension, we note why it is at least seemingly difficult to directly lower semi-compute
the learning function described in Theorem 12. For one, a suitable notion of lower semi-
computability is hard to establish for functions mapping to {0, 1}. Secondly, the learning
function γd in the proof of Theorem 12 relies on being able to place a YES answer every
time the “underlying” martingale doubles its money for the first time. That is, every time it
achieves a new value 2k for the first time along some sequence. Though checking whether
this happens eventually is lower semicomputable, checking whether it has happened at a
particular w for the first time is not. Instead, we can simply require that path-averages be
lower semicomputable. Thus, the conditions of algorithmic s-learnability coincide with the
existence of lower semi-computable martingales succeeding against exponential orders.

For a given martingale d, we define the learning function γd as in Theorem 12. Note
that if d is lower semi-computable with computable witness d̂, then the path averages of
γd are lower semi-computable uniformly in w via the computable witness below (Algorithm 2).

Algorithm 2 AVGl.

1: Input w, k:
2: Compute all the values d̂(λ, k), . . . , d̂(w, k).
3: Compute mw,k = maxw′⊑w

{
log2

(
d̂(w′, k)

)}
4: return mw,k

|w|

As a result, the set

T = {w | AVGγd
(w) ≥ 1 − s}

is computably enumerable, and so are all of the slices

Tm = {w | AVGγd
(w) ≥ 1 − s and |w| = m}.

Let Galg(Γ) = {s ∈ [0, ∞) | there exists a learning function l which algorithmically s-learns
every X ∈ Γ}.

We now prove our main theorem.

▶ Theorem 13. For all Γ ⊆ {0, 1}∞,

adim(Γ) = inf Galg(Γ).

Proof. Let s = inf Galg(Γ). We will show dim(Γ) ≤ s.
Let s′ > s and let l be a learning function that algorithmically s′-learns every X ∈ Γ.
[6] Theorem 13.3.4 ([23], Theorem 3.1) states that dim(X) = lim infn

C(X↾n)
n where C is

the plain Kolmogorov complexity.
Let T = ∪Tn where Tn = {w | |w| = n and AVGl(w) ≥ 1 − s}. T is computably

enumerable due to the first condition of s′-learnability.
For each n, λ(∪w∈Tn

Cw) ≤ 2−(1−s′)n as a result of the measure condition of s′-learnability,
since every sequence Y with at least n(1−s) YES answers at length n is in the set of sequences
which have at least n(1 − s) YES answers total, and the measure of the latter set is at most
2−(1−s′)n. Thus, since each w ∈ Tn has measure 2−n and all are disjoint, we have |Tn| ≤ 2s′n.
As a result, in plain Kolmogorov complexity terms, we only need to supply at most s′n bits
to identify an element of T living in Tn (we get n “for free” as long as we supply exactly s′n

bits, and use them to identify the slice Tn of T ).
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This means that for all w ∈ T , C(w) ≤ s′|w|. Note that for every X ∈ Γ, there are
infinitely many n so that X ↾ n ∈ T .

It follows, then, that for every X ∈ Γ,

dim(X) = lim inf
n

C(X ↾ n)
n

≤ s′n

n
= s′,

and thus - since s′ > s was arbitrary - dim(Γ) ≤ s.
In the other direction, we show that if dim(Γ) ≤ s, then for every s′ > s, Γ is algorith-

mically s′-learnable.
Again, let s′ > s and let d be a martingale which succeeds against order 2(1−s′)n on every

X ∈ Γ. Define the learning function γd, as in Theorem 12 ( Eq. 5.1), to say YES every time
d doubles its money (attains a new 2k value) for the first time along each path.

We have established that the values AVGγd
(w) are uniformly lower-semicomputable when

d is lower-semicomputable. We also know from the proof of Theorem 12 that γd satisfies the
measure condition and that lim supn→∞ AVG(l, X ↾ n) ≥ 1 − s′, for every X ∈ Γ. ◀

7 Strong algorithmic dimension via learning functions

In this section, we characterize the packing dimension as well as the strong algorithmic
dimension of a set of binary sequences in terms of strong s-learning and strong algorithmic
s-learning, respectively.

For any Γ ⊆ {0, 1}∞, let Γ ↾ n = {w | |w| = n and w is a prefix of some v ∈ Γ}.

▶ Definition ([6]). For any Γ ⊆ {0, 1}∞, let the upper box-counting dimension of Γ be

dimB(Γ) = lim sup
n

log |Γ ↾ n|
n

.

▶ Theorem 14 ([1]). For every X ∈ {0, 1}∞,

Dim(X) = lim sup
n

C(X ↾ n)
n

.

Let Gstr(Γ) = {s ∈ [0, ∞) | there exists a learning function f which strongly s-learns
every X ∈ Γ}.

▶ Theorem 15. Let Γ ⊆ {0, 1}∞. Then,

dimP (Γ) = inf Gstr(Γ).

Proof. First, we show that if, for arbitrary s′ > s, l is a learning function that strongly
s′-succeeds on Γ, then dimP (Γ) ≤ s.

The proof is much the same as [1] and [4] Theorem 13.11.9, except we start with a learning
function instead of a gale. Assume the hypothesis. Let ŝ > s′ be arbitrary.

Let

Tn = {w | AVGl(w) ≥ 1 − ŝ and |w| = n}

be the set of strings of length n on which l achieves the requisite density. Then, for all X ∈ Γ,

and for all but finitely many n ∈ N, X ∈ ∪w∈Tn
Cw, i.e.

Γ ⊆ ∪i ∩j≥i JTjK.

MFCS 2024
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Let Zn = ∩m≥nJTmK. Then, X ∈ Zn means that after the nth prefix, all remaining
prefixes of X have density at least 1 − ŝ.

It suffices - by the countable stability of dimP and the fact that dimP ≤ dimB (see [6]
13.11.3) - to show that dimB(Zn) ≤ ŝ, for all n. While the original proof uses Kolmogorov’s
inequality, we are not dealing with a gale. We have shown in the proof of Theorem 13 that if
l is an ŝ-learner, then the set Tn satisfies |Tn| ≤ 2ŝn.

Then,

dimB(Zi) = lim sup
n

log |Zi ↾ n|
n

≤ lim sup
n

log |Tn|
n

≤ ŝ.

Since ŝ > s′ > s are arbitrary, dimP (Γ) ≤ dimB(Γ) = dimB(∪Zi) ≤ s.

In the other direction, simply note that if dimP (Γ) ≤ s then for every s′ > s there exists
a martingale ds′ which strongly s′-succeeds against order 2(1−s′)n on every X ∈ Γ, and
the frequency with which the martingale doubles its money is always eventually bounded
below. Thus, a learner defined as in Eq. 5.1 will have the desired YES density on the same
sequences. ◀

Let G str
alg (Γ) = {s ∈ [0, ∞) | there exists a learning function l which strongly algorithmically

s-learns every X ∈ Γ}.

▶ Theorem 16. Let Γ ⊆ {0, 1}∞. Then,

aDim(Γ) = inf G str
alg (Γ).

Proof. Much like the gale characterization of aDim resembles the gale characterization of
adim with minor changes (see [1] and [6], Corollary 13.11.12), this proof closely resembles
the proof of Theorem 13.

We replace the lim inf with a lim sup in order to apply Theorem 14, and we replace the
observation that infinitely many n satisfy X ↾ n ∈ T with “all but finitely many.”

In the other direction, we assume there exists a lower semi-computable martingale ds′

which succeeds strongly against order 2(1−s′)n on every X ∈ Γ. A learning function defined
in the same way as before (Eq. 5.1) will have the requisite density of YES answers, and will
also have uniformly lower-semicomputable averages at each w ∈ {0, 1}∗, as established in
Section 6. ◀
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Abstract
We show that the conditional independence (CI) implication problem with bounded cardinalities,
which asks whether a given CI implication holds for all discrete random variables with given
cardinalities, is co-NEXPTIME-hard. The problem remains co-NEXPTIME-hard if all variables are
binary. The reduction goes from a variant of the tiling problem and is based on a prior construction
used by Cheuk Ting Li to show the undecidability of a related problem where the cardinality of some
variables remains unbounded. The CI implication problem with bounded cardinalities is known to
be in EXPSPACE, as its negation can be stated as an existential first-order logic formula over the
reals of size exponential with regard to the size of the input.
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1 Introduction

The implication problem for conditional independence statements is one of the major decision
problems arising in multivariate statistical modeling and other applications [2]. The problem
asks whether a list of conditional independence statements implies another such statement
(see the exact formulation below). The problem is a special case of the conditional entropic
inequality problem, as the statement X and Y are independent, given Z (sometimes denoted
X ⊥ Y | Z) is equivalent to the equation I(X; Y |Z) = 0 in information theory. Here the
random variables in consideration are of the form (Xi1 , . . . , Xiℓ

), abbreviated by XZ with
Z = {i1, . . . , iℓ}, selected from a fixed n-tuple of variables X1, . . . , Xn considered with a joint
distribution. As with the general problem, this can be considered over continuous, infinite
discrete or finite discrete random variables. Furthermore, the CI implication problem can be
refined by imposing certain requirements on the sets A, B, C in XA ⊥ XB | XC , e.g., they
must be pairwise disjoint for disjoint CI, and for saturated CI they must additionally satisfy
A ∪ B ∪ C = {1, . . . , n}. We will focus on discrete random variables with a finite domain
and without constraints on the sets, addressing disjoint CI in the full version.

If the domain size is bounded, this problem is decidable since the conditional independence
can be expressed as an arithmetic formula in terms of elementary events’ probabilities.
Considering all possible domain sizes yields a semi-algorithm for finding a counter-example
to the implication, showing that the unbounded problem is co-recursively enumerable (as
noted by Khamis et al [5]). The decidability of the general CI implication problem was
unknown for a long time, with only special cases resolved. Finally, Cheuk Ting Li published
two papers [8, 9] proving the problem to be undecidable. This was also shown independently
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by Kühne and Yashfe [6]. Still unknown is the complexity of the bounded problem – the
method of constructing an existential formula of Tarski’s arithmetic yields an upper bound
of EXPSPACE (cf. [1]), while the other published algorithms appear to be mostly heuristics.
Hannula et al [4] conjectured that the problem can be actually easier, especially in the case
where all variables are binary, as the arithmetic formula in question is of a very special form.

In this paper we show that the problem is in general co-NEXPTIME-hard, and the
hardness result continues to hold if all variables are binary. Our reduction is an adaptation
of the construction presented by Li [8] to show that the problem is undecidable if the
cardinalities of some variables are bounded. While there is still a gap between the lower and
upper bound, this shows that the complexity of the CI implication problem is harder than it
might have been expected.

2 Problem statement

Denote by card(X) the cardinality of a random variable X. Formally, the following problem
will be considered:

Bounded CI Implication
Input: Integers m, n, given in unary. A list of m + 1 triples (Ai, Bi, Ci) of subsets

of {1, . . . , n}. A list of n integers Kj , given in binary.
Question: Determine whether the implication∧

i∈{1,...,m}

(I(XAi
; XBi

|XCi
) = 0) ⇒ I(XAm+1 ; XBm+1 |XCm+1) = 0

holds for all jointly distributed random variables (X1, . . . , Xn) with
card(Xj) ≤ Kj for all j ∈ {1, . . . , n}.

We define Constant-bounded CI Implication as a variant of the above problem in
which all Ki are fixed to be equal to 2 rather than given as input. We show the following:

▶ Theorem 1. Bounded CI Implication and Constant-bounded CI Implication are
co-NEXPTIME-hard. This also holds in the disjoint CI case, i. e. when for each i the sets
Ai, Bi, Ci are pairwise disjoint.

We focus on the first part of the theorem – the proof of the second part differs little from
that given by Li [8] and is given in the full version.

In order to state the tiling-based problems utilized in the reduction, we introduce some
definitions based on those in [7]. We define a tiling system as a triple D = (D, H, V ), where D

is a finite set of tiles and H, V ⊆ D2 are the horizontal and vertical constraints, accordingly,
which give the pairs of tiles that may be neighbors. This is a generalization of Wang tiles,
where a set of colors C is given and tiles (formally quadruples from the set C4) are represented
by squares with colored edges with the requirement that only edges of the same color may
touch. As stated in [12], Wang tiles correspond exactly to those tiling systems for which the
implication (a R b ∧ a R c ∧ d R b) ⇒ d R c holds for all a, b, c, d ∈ D and both R ∈ {H, V }.

We define a k × l tiling by D as a function f : {0, . . . , k − 1} × {0, . . . , l − 1} → D such
that:

(f(m, n), f(m + 1, n)) ∈ H for all m < k − 1, n < l,
(f(m, n), f(m, n + 1)) ∈ V for all m < k, n < l − 1.

A periodic tiling is one that also has (f(k − 1, n), f(0, n)) ∈ H and (f(m, l − 1), f(m, 0)) ∈ V

for all m < k, n < l. For a (non-periodic) k × l tiling f , the starting tile and final tile are the
values of f(0, 0) and f(k − 1, l − 1), respectively.
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We will show a polynomial-time many-one reduction from the following problem, which
is known to be NEXPTIME-complete [7, exercise 7.2.2.]:

Binary Bounded Tiling
Input: A tiling system D, a starting tile d0 ∈ D, an integer k given in binary.
Question: Determine whether there exists a k×k tiling f by D such that f(0, 0) = d0.

The reduction consists of two parts, the first being a purely tiling-based reduction from the
above to the following intermediate problem:

Periodic Bounded Tiling
Input: A tiling system D, a designated tile t, integers m, n given in binary.
Question: Determine whether there exists a periodic tiling by D of size at most

m × n which uses tile t.

The second part is a reduction from Periodic Bounded Tiling to the complement of
Bounded CI Implication, based on a construction by Li [8].

3 First part of the reduction

We first show a polynomial-time many-one reduction from Binary Bounded Tiling to
Periodic Bounded Tiling. This means that given a tiling system D, starting tile d0 and
integer k, we will construct in polynomial time a tiling system D′′, designated tile t and
integers m, n such that Binary Bounded Tiling gives a positive answer for input (D, d0, k)
iff Periodic Bounded Tiling gives a positive answer for input (D′′, t, m, n). This consists
of two steps:
1. Modify D into system D′ such that valid tilings by D of size k × k correspond to valid

tilings by D′ with certain corner constraints.
2. Modify D′ into system D′′ and tile t such that valid tilings by D′ with the above corner

constraints correspond to periodic tilings by D′′ of size (k + 1) × (k + 1) that use tile t.
This is a fairly typical reduction between tilings, similar to problems considered for instance
in [3].

Limiting tiling size

For the first step, we create a tiling system C (of polynomial size with regard to the length
of k), along with starting tile c0 and final tile c1, implementing a binary counter that counts
down from an appropriately chosen k′ ≤ k (close to k) and whose position shifts by 1 with
each decrement. The tile c1 occurs when the counter reaches 0. Similar constructions have
been shown [11], our example is given in Figure 1. Thus, any tiling by C with c0 in the
top-right corner and c1 in the bottom-left must be of size exactly k × k.

Consider a “layering” of D and C into system D × C = (D × C, HD×C , VD×C), where
the relations are defined as RD×C = {((d, c), (d′, c′)) : (d, d′) ∈ RD ∧ (c, c′) ∈ RC} for both
R ∈ {H, V }. This way, any tiling by D × C corresponds to a pair of tilings by D and C.
We let D′ = D × C and define the corner constraints mentioned in point 2 by restricting
the possible starting and final tiles to S = {(d0, c0)}, F = {(d, c1) : d ∈ D} respectively. This
yields tilings by D′ which consist of a tiling by D with starting tile d0 and a tiling by C with
starting tile c0 and final tile c1.
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Periodic tilings
The second step realizes the above constraint while also converting between periodic and
non-periodic tilings. It consists of adding 5 new tiles to D′ – , , , , – yielding
D′′. The added constraints are shown in Figure 2 and an example tiling in Figure 3. The
distinguished tile t is – the idea is that its usage forces a “border” of and tiles.
Within each of these borders (there can be multiple if is used more than once) there is a
valid tiling by the system D′ additionally satisfying the starting and final constraints S, F .

Final conversion
Combining the above steps, a tiling by D of size k×k is represented by a periodic (k+1)×(k+1)
tiling by D′′ and thus we let m = n = k + 1. The designated tile is set to , completing the
reduction from Binary Bounded Tiling to Periodic Bounded Tiling.

Variant with only powers of two
Consider the following variant of the tiling problem:

Power-of-two Periodic Bounded Tiling
Input: Integers m, n given in unary, a tiling system D, a designated tile t.
Question: Determine whether there exists a periodic tiling by D of size at most

2m × 2n which uses tile t.

Note that this is the same as taking the input in binary while restricting it only to powers
of two. This variant is also NEXPTIME-hard because in the above reduction, the only
possible sizes of tiling by the constructed tiling system are multiples of k + 1, both in width
and height. Letting m = n = ⌈log2(k + 1)⌉, we have k + 1 ≤ 2m < 2(k + 1) and the same
for 2n. Therefore, the possible tilings are the same for size bound (k + 1) × (k + 1) and
2⌈log2(k+1)⌉ × 2⌈log2(k+1)⌉.

4 Second part of the reduction

Given a tiling system D, a designated tile t and integers m, n given in binary, we will construct
(in polynomial time) a CI implication with bounded cardinalities which does not hold iff
Periodic Bounded Tiling has a solution for input (D, t, m, n). This is based on the
construction of Li [8]. Proofs which differ from the original only by specifying cardinality
bounds are deferred to the full version. The main changes to Li’s construction are as follows:

provide bounds for the random variables used in the construction – this is done as the
implication is being constructed;
reduce the size of the implication from exponential to polynomial with regard to the input
– only one part (the predicate COL) needs to be replaced by a polynomial-size equivalent;
modify the representation of tiles to better suit bounded size and non-Wang tiles;
add the requirement of the usage of a given tile – this is done by modifying the consequent
of the implication.

4.1 Preliminaries
We denote by Unif(S) a uniform distribution over set S and by Bern(p) a Bernoulli distribution
with parameter p. We use the shorthand Xk to represent a tuple of random variables
(X1, . . . , Xk), which is in itself also a random variable.
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1 10 01 1
1 10 00 0

0 01 1∗
1 1∗

0 01 10 0
0 00 01 1∗

0 00 00 0
⋆ 1∗

1 1∗
1 1∗

Figure 1 A tiling implementation of a binary counter which shifts its position on every decrement,
with the starting and final tile in the top-right and bottom-left corners respectively. This example
counts down from 5 (101 in binary). Every tile except for the final ⋆ is of the form ac

b, where a is the
bit value (possibly blank), b is the value of the bit directly to the right (or blank if there is none),
and c is optionally ∗ if a borrow operation is required. The shaded tiles of the top row function in
the same manner, but they are “memorized” within the tiling system such that the placement of the
top-right tile forces the top row to write out the binary initial value. The tiles in the lower rows are
chosen deterministically based on their right and top neighbor. Finally, the ⋆ tile only occurs when
the tile above is blank and the one to the right requires a borrow, which indicates that the counter
has just gone below zero. In order to be unable to further count down, we disallow any tiles being
below or to the left of tile ⋆. The size of the tiling is (k′ + b + 2) × (k′ + 2), where b is the number of
bits and k′ is the initial value; however, this could be modified such that the final tiling has size
(k′ + b + 2) × (k′ + b + 2) by padding with b dummy rows at the top. For sufficiently large k, we can
always efficiently find b, k′ such that k′ + b + 2 = k.

Right
*

Left

•
• •

•
•

•
* •

Top
s f *

Bottom

•
• • •

• •
•
• • •

s • •
f • • •
* • •

Figure 2 Modified adjacency relation for the system D′′ – only adjacencies marked by • are
permitted, as well as all adjacencies from the original tiling system. The asterisk denotes any tiles
from the system D′, while s, f represent any tile from the initial and final subset of tiles, respectively
(S and F defined above).

f f

s

f f

Figure 3 An example “border” created by the above tiling, with tiles from the original set
not shown and s, f representing tiles from S, F respectively. The dashed rectangle represents the
actual rectangle being tiled, while the tiles outside are periodic copies added to better illustrate the
construction.
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The entropy of a finite discrete random variable X with domain X is defined as

H(X) = −
∑
x∈X

P(X = x) log P(X = x).

The entropy of X conditioned on Y , with X, Y finite discrete random variables with domains
X , Y respectively, is defined as

H(X|Y ) = −
∑

x∈X ,y∈Y
P(X = x ∧ Y = y) log P(X = x ∧ Y = y)

P(X = x) .

Finally, the conditional mutual information of X and Y given Z can be defined as

I(X; Y |Z) = H(X|Z) − H(X|Y, Z).

Similarly, the mutual information of X and Y is defined as

I(X; Y ) = H(X) − H(X|Y ).

Note that the conditional independence (CI) statement I(X; Y |Z) = 0 is equivalent to
the fact that X and Y are independent given Z, and thus can be expressed without the
usage of logarithms as

P(X = x ∧ Y = y ∧ Z = z)P(Z = z) = P(X = x ∧ Z = z)P(Y = y ∧ Z = z)

for all x ∈ X , y ∈ Y, z ∈ Z. Further, the functional dependence statement H(X|Y ) = 0, which
states that for any y ∈ Y, there exists exactly one x ∈ X such that P(X = x ∧ Y = y) ̸= 0
can be expressed equivalently as a (non-disjoint) CI statement I(X; X|Y ) = 0.

We will follow Li’s construction [8], providing cardinality bounds and modifications where
necessary. While the final goal is a CI implication, we will mostly construct affine existential
information predicates (AEIP) [8], converting to a CI implication at the end. We will only
consider a special form of AEIP which consists of an existentially quantified conjunction of
CI statements. This family of predicates is closed under conjunction, in particular we can
use a predicate within the definition of another predicate (implicitly renaming variables in
the case of a naming conflict).

Since our goal is to construct a bounded CI implication, every quantified variable will
be given a cardinality bound – the maximum allowed size of its domain. We denote the
existential quantification of a variable X with card(X) ≤ k by the shorter notation ∃X ≤ k,
similarly for tuple variables ∃X2 ≤ k represents the existence of variables X1, X2 with
card(X1), card(X2) ≤ k. Whenever a predicate takes arguments, their cardinalities are
already bounded since they have been quantified. We may need to refer to these bounds
when quantifying new variables, denoting by KX the bound already given to variable X.
Finally, whenever ≤ is replaced by ≤i, this indicates an “implicit” bound, that is one which
does not change the meaning of the predicate because it is already satisfied by any such
quantified variable even without the explicit bound. An example of this is that whenever
H(X|Y ) = 0, X is functionally dependent on Y and so X ≤i KY .

The first defined predicate is TRIPLE:

TRIPLE(Y1, Y2, Y3) : H(Y1|Y2, Y3) = H(Y2|Y1, Y3) = H(Y3|Y1, Y2) = 0
∧ I(Y1; Y2) = I(Y1; Y3) = I(Y2; Y3) = 0.

By definition, predicate TRIPLE of three variables Y1, Y2, Y3 is satisfied iff Y1, Y2, Y3 are
pairwise independent and each variable is functionally dependent on the other two. Functional
dependency is a special case of conditional independence, since H(X|Y ) = I(X; X|Y ). The
following is shown in [13]:
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▶ Lemma 1. If TRIPLE(X, Y, Z) is satisfied, then X, Y, Z are all uniformly distributed and
have the same cardinality.

This is used in the next predicate, UNIF:

UNIF(X) : ∃U1 ≤i KX , U2 ≤i KX : TRIPLE(X, U1, U2).

By definition, predicate UNIF of one variable X is satisfied iff there exist discrete random
variables U1, U2 jointly distributed with X such that TRIPLE(X, U1, U2) holds, which in
turn is equivalent to X being uniformly distributed over its support. Lemma 1 immediately
shows that the implicit cardinality bounds for U1, U2 are correct.

For any constant k, predicate UNIFk(X) is defined to imply X being uniformly distributed
over a domain of size k:

UNIFk(X) : UNIF(X) ∧ αk ≤ H(X) ≤ αk+1,

where αk ∈ Q is some rational with log(k −1) < αk < log k (because the entropy of a uniform
variable is the logarithm of the cardinality of its support). While this is still a valid AEIP, it
is not a conjunction of CI statements. However, in the bounded cardinality setting UNIFk

can be restated in this form [8, 10]. Note that this predicate imposes an exact domain size
constraint, while the cardinality bounds given as input provide only an upper bound. Finally,
note that the predicates UNIF, UNIFk are satisfiable – for any k > 0, there exists a variable
X which satisfies UNIFk(X) and so UNIF(X).

Define the characteristic bipartite graph of random variables X1, X2 with (disjoint)
supports X1, X2 as the undirected graph with set of vertices V = X1 ∪ X2 and set of edges
E = {(x1, x2) : x1 ∈ X1, x2 ∈ X2, P(X1 = x1 ∧ X2 = x2) > 0}.

Li constructs the predicate

CYCS(X1, X2) : ∃U ≤i 2 : UNIF(X1) ∧ UNIF(X2) ∧ UNIF2(U)
∧ I(X1; U) = I(X2; U) = 0
∧ H(X1|X2, U) = H(X2|X1, U) = 0
∧ H(U |X1, X2) = 0

and shows the following (without cardinality bounds):

▶ Lemma 2. CYCS(X1, X2) is satisfied iff X1, X2 are uniform and the characteristic bipartite
graph of X1, X2 consists only of vertex-disjoint simple cycles.

Furthermore, this predicate is satisfiable – for any finite collection of even-length cycles, we
can clearly find X1, X2 such that their characteristic bipartite graph consists exactly of this
collection of cycles.

4.2 Overview of the construction
We now give an overview of the following steps of the construction. Section 4.3 defines
the predicate TORI′(X2, Y 2, Z), which enforces that the characteristic bipartite graph of
X1 and X2 is a collection of cycles, similarly for Y1 and Y2. Finally, we require that Z be
distributed uniformly over two values and that the three variables X2, Y 2, Z be independent.
The distribution of (X2, Y 2) then represents a collection of tori, with each quadruple of
values of (X1, X2, Y1, Y2) representing a vertex in some torus. The addition of variable Z

effectively creates a corresponding copy of this collection.
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With the goal of creating meaningful labels to be applied to the vertices of the afore-
mentioned graph, which are represented by k-tuple of binary variables W k, Section 4.4
defines the predicates SW′(W k, V k, V̄ k, F ) and COL′(W k, V k, V̄ k, F ). The former ensures
that Vi = (1 − Wi)F, V̄i = WiF (up to relabeling) with the side-effect of requiring each
Wi ∼ Bern( 1

2 ). The latter predicate restricts W k such that the only values that are possible
have either Wk = 1 and exactly one Wi = 0, or Wk = 0 and exactly one Wi = 1, for some
i ∈ {1, . . . , k − 1}.

Section 4.5 combines the prior predicates in predicate CTORI′(X2, Y 2, Z, W k, V k, V̄ k, F )
in such a way that each vertex is assigned exactly one label, i. e. W k depends functionally on
(X2, Y 2, Z). This is extended in predicate OTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ), which assigns
four possible groups to vertex labels and enforces a structure as shown in Figure 4.

Finally, the predicate TTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ) defined in Section 4.7 restricts
the possible labels of vertices connected by edges so as to enforce the given vertical and
horizontal constraints of the given tile system.

4.3 Grid
A collection of tori is constructed by Li using the following predicate (where X2 represents a
pair of variables (X1, X2), similarly for Y 2):

TORI(X2, Y 2) : CYCS(X2) ∧ CYCS(Y 2) ∧ I(X2; Y 2) = 0,

When the above holds, fixing any three of the variables X1, X2, Y1, Y2 leaves two possible
values of the fourth. Similarly, fixing one variable from X1, X2 and one from Y1, Y2 gives
the remaining two variables a distribution over four values. This is visualized by a graph
similar in idea to the bipartite characteristic graph: its vertices are quadruples of values
(x1, x2, y1, y2) which satisfy P(X1 = x1 ∧ X2 = x2 ∧ Y1 = y1 ∧ Y2 = y2) > 0, with edges
connecting any two quadruples which differ in exactly one out of these four values. When
arranged in a grid with possible pairs (X1, X2) on one axis and (Y1, Y2) on the other, as in
Figure 4, the torus structure becomes apparent. Again, this predicate is satisfiable in the
sense that any collection of tori which is a product of two collections of even-length cycles
has a representation by random variables X2, Y 2.

Our construction departs slightly from the construction of Li, adding another coordinate
Z, corresponding to taking two copies of the collection of tori, with the edges and faces
described above preserved when Z is fixed. Additionally, fixing X2 and Y 2 but not Z
“connects” two corresponding vertices in the two copies. The predicate for this is as follows:

TORI′(X2, Y 2, Z) : CYCS(X2) ∧ CYCS(Y 2) ∧ UNIF2(Z)
∧ I(X2, Y 2; Z) = 0 ∧ I(X2, Z; Y 2) = 0 ∧ I(Y 2, Z; X2) = 0.

4.4 Vertex labels
The basis for constructing labels which will later on be assigned to vertices is the following
predicate defined by Li:

FLIP(F, G1, G2) : ∃U ≤i 4, Z2 ≤i 3 : UNIF4(U) ∧ UNIF2(F )
∧ H(F, G1, G2|U) = I(G1; G2|F ) = 0
∧ UNIF3(Z1) ∧ I(Z1; G1) = H(U |G1, Z1) = 0
∧ UNIF3(Z2) ∧ I(Z2; G2) = H(U |G2, Z2) = 0.
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y1, ỹ1

y2, ỹ1

y2, ỹ2

y1, ỹ2

x1, x̃1 x2, x̃1 x2, x̃2 x3, x̃2 x3, x̃3 x3, x̃1 x4, x̃4 x5, x̃4 x5, x̃5 x5, x̃4

22

21

22

12

11

12

22

21

22

2

1

2

1

3

0

3

0

2

1

2

1

3

0

3

0

fix all but Y1

fix all but Y2

fix all but X2 fix all but X1

fix (Z, X1, Y2)

Figure 4 Visualization of the tori which are a product of the cycles created by (X1, X2) and
(Y1, Y2), with each vertex corresponding to a quadruple of the values of (X1, X2, Y1, Y2). The axes
show these cycles – a quadruple’s (X1, X2) (resp. (Y1, Y2)) values are determined by projecting
onto the horizontal (resp. vertical) axis. Additionally, the left torus shows highlighted edges which
arise when all but one variable (of X1, X2, Y1, Y2, Z) are fixed as well as an example face which
arises when Z and two other variables are fixed. The right torus has each face labeled with its type
and each vertex labeled with its group – these are used in Section 4.6 in order to restrict allowed
labelings of the vertices. The second “corresponding” torus and the Z axis are omitted for clarity.

Recalling that Unif(S) denotes a uniform distribution over set S, the following is shown:

▶ Lemma 3. FLIP(F, G1, G2) is satisfied iff, up to relabeling, (F, G1, G2) has the distribution
Unif({(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)}).

For any k ≥ 4, Li defines the predicate SW which allows us to represent strings of k bits.
Here, W k represents a tuple of variables (W1, . . . , Wk), same for V k, V̄ k: Intuitively, the
value of Wi determines whether F is copied into Vi or V̄i, hence the name SW for switch.

SW(W k, V k, V̄ k, F ) : ∃G ≤i 2 : I(W k; F, G) = 0

∧
∧

i∈{1,...,k}

(
UNIF2(Wi) ∧ H(Vi, V̄i|Wi, F ) = I(Vi; V̄i|Wi) = 0

∧ FLIP(F, G, Vi) ∧ FLIP(F, G, V̄i)
)

▶ Lemma 4. If SW(W k, V k, V̄ k, F ) is satisfied, then we have (without loss of generality)
Vi = (1 − Wi)F , V̄i = WiF for all i.

The predicate SW is satisfiable: we let (F, G) take each of the values (0, 0), (0, 1) with
probability 1

4 , in which case we let Vi = V̄i = 0, and the value (1, 0) with probability 1
2 , in

which case Vi = 1 − Wi, V̄i = Wi. As long as each Wi ∼ Bern( 1
2 ) (recall that Bern(p) denotes

a Bernoulli distribution with parameter p), we can satisfy the predicate for any distribution
of W k. This predicate additionally has the following property:

▶ Lemma 5. If SW(W k, V k, V̄ k, F ) is satisfied, then for any S, S̄ ⊆ {1, . . . , k} we have

H(F |VS , V̄S̄ , W k) = P(sat(W k, S, S̄) = 1),

where

sat(wk, S, S̄) =
( ∏

i∈S

wi

)( ∏
i∈S̄

(1 − wi)
)

,

i.e. if wi = 1 for all i ∈ S and wi = 0 for i ∈ S̄ then sat(wk, S, S̄) equals 1 and otherwise it
equals 0.

MFCS 2024



73:10 On the Complexity of the CI Implication Problem with Bounded Cardinalities

This immediately yields the following:

▶ Lemma 6. The equality H(F |V{i∈{1,...,k} : wi=1}, V̄{i∈{1,...,k} : wi=0}, W k) = P(W k = wk)
holds for any wk ∈ {0, 1}k. ⌟

Using these properties, we can disallow certain values of W k from occurring using a CI
statement. This is used by Li to limit the possible values of W k to the set Tk ⊆ {0, 1}k,
which consists of 2(k − 1) labels (referred to as colors by Li), each one with a value and sign.
The set consists of strings in which exactly one bit differs from the last bit, that is for any
wk ∈ Tk we have wj ̸= wk for exactly one j ̸= k. The sign of the label is determined by
wk – negative when wk = 1, positive when wk = 0 – and j is the value of the label. For
example, the elements of T4 = {0111, 1011, 1101, 1000, 0100, 0010} correspond in order to
labels {−1, −2, −3, +1, +2, +3}.

Li’s predicate for enforcing this is simple:

COL(W k, V k, V̄ k, F ) : SW(W k, V k, V̄ k, F )

∧
∧

wk∈{0,1}k\Tk

(
H(F |V{i:wi=1}, V̄{i:wi=0}, W k) = 0

)
,

This predicate simply disallows the occurrence of any wk ̸∈ Tk, hence we have

▶ Lemma 7. If COL(W k, V k, V̄ k, F ) is satisfied, then P(W k ̸∈ Tk) = 0. ⌟

While sufficient for showing undecidability, this predicate cannot be used in a polynomial-
time reduction due to its size being exponential with regard to k. However, an equivalent
polynomial-size predicate can be easily constructed: with∧

i,j∈{1,...,k−1},
i<j

(H(F |V{i,j}, V̄{k}, W k) = 0),

we disallow all wk such that wk = 0 and wi = wj = 1 for some 1 ≤ i < j < k. Similarly,∧
i,j∈{1,...,k−1},

i<j

(H(F |V{k}, V̄{i,j}, W k) = 0)

disallows all wk such that wk = 1 and wi = wj = 0 for some 1 ≤ i < j < k. The only
remaining wk have either wk = 0 and at most one 1 in {1, . . . , k−1} or have wk = 1 and at most
one 0 in {1, . . . , k − 1}. The strings 0k and 1k are disallowed by H(F |V{1,...,k}, V̄∅, W k) = 0
and H(F |V∅, V̄{1,...,k}, W k) = 0. Combined, these yield the polynomial-size predicate

COL′(W k, V k, V̄ k, F ) : SW(W k, V k, V̄ k, F )

∧
∧

i,j∈{1,...,k−1},
i<j

(H(F |V{i,j}, V̄{k}, W k) = 0)

∧
∧

i,j∈{1,...,k−1},
i<j

(H(F |V{k}, V̄{i,j}, W k) = 0)

∧ H(F |V{1,...,k}, V̄∅, W k) = 0
∧ H(F |V∅, V̄{1,...,k}, W k) = 0

equivalent to the exponential-size COL.
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4.5 Edge constraints
The next predicate is the following, with COL used in place of COL′ in Li’s original
construction:

COLD(X, W k, V k, V̄ k, F ) : COL′(W k, V k, V̄ k, F )
∧ H(W k|X) = I(V k, V̄ k, F ; X|W k) = 0.

This predicate will represent the labeling of vertices, with X representing the coordinate and
W k (which depends functionally on X) representing its label. For any x ∈ X , denote by
wk(x) the unique value of wk which satisfies P(W k = wk|X = x) > 0.

Suppose that COLD(X, W k, V k, V̄ k, F ) is satisfied and let E be any random variable
which splits X into sets of (a constant) size l – we say this is the case when H(E|X) = 0
and X|E = e is uniform over l values for all e ∈ E . This is not verified by a predicate; rather,
we will only choose E which have this property by definition. Fixing subsets of indices
S, S̄ ⊆ {1, . . . , k}, we define for any e ∈ E the value ae:

ae = |{x : P(X = x|E = e) > 0 ∧ sat(wk(x), S, S̄) = 1}|

In order to impose restrictions on the possible values of ae, Li defines the following predicates:

SAT̸=1/2,S,S̄(E, W k, V k, V̄ k, F ) : ∃U ≤i 2 : UNIF2(U) ∧ I(U ; E, VS , V̄S̄) = 0

∧ H(F |VS , V̄S̄ , E, U) = 0,

SAT≤1/2,S,S̄(E, W k, V k, V̄ k, F ) :∃U ≤i 3 : UNIF3(U) ∧ I(U ; E, VS , V̄S̄) = 0

∧ H(F |VS , V̄S̄ , E, U) = 0,

SAT≤3/4,S,S̄(E, W k, V k, V̄ k, F ) :∃U ≤i 105 : UNIF105(U) ∧ I(U ; E, VS , V̄S̄) = 0

∧ H(F |VS , V̄S̄ , E, U) = 0.

The predicates satisfy the following properties.

▶ Lemma 8. If COLD(X, W k, V k, V̄ k, F ) is satisfied and E splits X into sets of size 2, then
SAT̸=1/2,S,S̄(E, W k, V k, V̄ k, F ) is satisfied iff ae ̸= 1 for all e ∈ E.

▶ Lemma 9. If COLD(X, W k, V k, V̄ k, F ) is satisfied and E splits X into sets of size 2, then
SAT≤1/2,S,S̄(E, W k, V k, V̄ k, F ) is satisfied iff ae ≤ 1 for all e ∈ E.

▶ Lemma 10. If COLD(X, W k, V k, V̄ k, F ) is satisfied and E splits X into sets of size 4,
then SAT≤3/4,S,S̄(E, W k, V k, V̄ k, F ) is satisfied iff ae ≤ 3 for all e ∈ E.

The next defined predicate is the following:

CTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ) : TORI′(X2, Y 2, Z)
∧ COLD((X2, Y 2, Z), W k, V k, V̄ k, F ),

which simply implies applying labels (without any constraints) to the vertices of the tori. In
the original predicate, which uses TORI instead of TORI′, there is no coordinate Z. Clearly,
this predicate is satisfiable in the sense that any collection of pairs of tori of even size which
is labeled in a manner that satisfies the requirement Wi ∼ Bern( 1

2 ) has a corresponding
representation by X2, Y 2, Z, W k, V k, V̄ k, F . In particular, this Wi requirement is satisfied
by any labeling in which any pair of corresponding vertices (those which differ only in the Z
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coordinate) has labels of the same value but opposite sign. This is because negating the sign
of a label corresponds to negating all of its bits. For a set of labels L = {0, . . . , l − 1}, we
now label the vertices with labels from the set {0, . . . , 4l − 1} and so we set k = 4l + 1. For
any i ∈ {0, . . . , l}, j ∈ {0, . . . , 3}, we identify all four labels 4i + j with the original label i,
referring to any vertex whose label is 4i + j as a group j vertex. The group of a vertex is
used to orient it relative to its neighbors – this is achieved by the following predicate:

OTORI′(X2, Y 2, Z, W k, V k, V̄ k, F ) :
CTORI′(X2, Y 2, Z, W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X1, X2, Y1, Z), W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X1, X2, Y2, Z), W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X1, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT̸=1/2,{k},∅((X2, Y1, Y2, Z), W k, V k, V̄ k, F )
∧

∧
j1,j2∈J1

(
SAT≤1/2,∅,{1,...,k}\{j1,j2}((X1, X2, Y1, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,∅,{1,...,k}\{j1,j2}((X1, X2, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X1, X2, Y1, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X1, X2, Y2, Z), W k, V k, V̄ k, F )

)
∧

∧
j1,j2∈J2

(
SAT≤1/2,∅,{1,...,k}\{j1,j2}((X1, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,∅,{1,...,k}\{j1,j2}((X2, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X1, Y1, Y2, Z), W k, V k, V̄ k, F )
∧ SAT≤1/2,{1,...,k}\{j1,j2},∅((X2, Y1, Y2, Z), W k, V k, V̄ k, F )

)
∧ SAT≤1/2,{k},∅((X1, X2, Y1, Y2), W k, V k, V̄ k, F )
∧ SAT≤1/2,∅,{k}((X1, X2, Y1, Y2), W k, V k, V̄ k, F ),

where

J1 = {(j1, j2) ∈ {1, . . . , k − 1} : {j1 mod 4, j2 mod 4} /∈ {{0, 1}, {2, 3}}},

J2 = {(j1, j2) ∈ {1, . . . , k − 1} : {j1 mod 4, j2 mod 4} /∈ {{1, 2}, {0, 3}}}.

The only difference between OTORI′ and Li’s original OTORI is the added variable Z and
the final two SAT≤1/2 predicates. We have the following fact:

▶ Lemma 11. If OTORI ′(X2, Y 2, Z, W k, V k, V̄ k, F ) is satisfied, then the following state-
ments hold:
1. within each torus, all vertices’ labels have the same sign;
2. any two vertices differing only in the Z coordinate have opposite sign;
3. any pair of vertices connected by a vertical edge either has groups 1 and 0 or 2 and 3;
4. any pair of vertices connected by a horizontal edge either has groups 1 and 2 or 3 and 0.

Proof. Recall that fixing the variable Z along with any three of the variables X1, X2, Y1, Y2
leaves two possible values for the remaining variable. These correspond to two vertices of an
edge, as illustrated in Figure 4. Therefore, the first four SAT̸=1/2,{k},∅ predicates state that
for any edge (u, v), the value of wk for u and v cannot differ, which implies exactly Point 1
above. Point 2 follows directly from the last two SAT≤1/2 predicates – of the two vertices
which differ only in the Z coordinate, at most one can have wk = 0 and at most one can
have wk = 1.
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Figure 5 Left: Li’s representation of a 4 × 4 torus coloring and the 4 × 4 tiling that it yields.
The conversion from 16 vertices to 32 gives the tiling an additional diagonal periodicity. Combined
with the fact that this does not work for non-square n × m tilings (without arranging them into a
lcm(n, m) × lcm(n, m) square), this proves problematic for restricting the size of a periodic tiling.
Right: the corresponding 8 × 8 torus labeling in our representation. Each tile has 4 labels, one for
each corner of the tile (indicated by the arrow in this case). The tiles do not need to be Wang tiles.

For the next two points, note that for j1, j2 ̸= k, we have sat(wk, {1, . . . , k}\{j1, j2},∅) =
1 iff wk represents one of the labels {−j1, −j2} – for positive labels, we have wk = 0 and
for negative labels other than −j1, −j2, we have wi = 0 for some i /∈ {j1, j2}. Analogously,
sat(wk,∅, {1, . . . , k} \ {j1, j2}) = 1 iff wk represents one of {+j1, +j2}. Thus, the four
SAT≤1/2,∅,{1,...,k}\{j1,j2} predicates within the conjunction over j1, j2 ∈ J1 imply exactly
Point 3, with the conjunction over j1, j2 ∈ J2 implying Point 4 analogously. Clearly, OTORI′

is satisfiable – an example torus (with coordinate Z omitted) is shown in Figure 4. ◀

4.6 Tiles

Li denotes the set of four possible vertices when (Z, Xi, Yj) is fixed as a type ij face for any
i, j ∈ {1, 2} – e. g. fixing (Z, X1, Y2) yields a type 12 face. The relation between face types
and vertex groups is illustrated in Figure 4.

Li’s construction utilizes the fact that the four corner-neighbors of any type 11 face are
type 22 faces and vice versa. Because the original construction makes use of a Wang tiling
system, these connecting corner vertices can represent the edge colors of the touching tiles.
An example is shown in Figure 5. The diagonal nature of this tiling proves problematic
when we wish to restrict its size, thus we simply use faces (of type 11) to directly represent
tiles, which also allows us to use the general form of tiling systems. Figure 5 illustrates a
torus labeling in our representation. For given tiling system D = (D, H, V ), we define the
following sets:

D11 = {(4t + 1, 4t + 2, 4t + 3, 4t) : t ∈ D},

D12 = {(4v, 4v + 3, 4u + 2, 4u + 1) : (u, v) ∈ V },

D21 = {(4u + 2, 4u + 1, 4v, 4v + 3) : (u, v) ∈ H},

and for each i ∈ {11, 12, 21},

Ii = {j1, . . . , j4 ∈ {1, . . . , k − 1} : ji mod 4 distinct, {j1, . . . , j4} /∈ Di}.
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The final predicate to enforce that the coloring represents a valid tiling (of size at most
m × n) is defined as follows:

TTORI′
D : ∃X2 ≤ m, Y 2 ≤ n, Z ≤i 2, W k ≤i 2, V k ≤i 2, V̄ k ≤i 2, F ≤i 2 :

OTORI′(X2, Y 2, Z, W k, V k, V̄ k, F )
∧

∧
j1,...,j4∈I11

(
SAT≤3/4,∅,{1,...,k}\{j1,...,j4}((X1, Y1, Z), W k, V k, V̄ k, F )

∧ SAT≤3/4,{1,...,k}\{j1,...,j4},∅((X1, Y1, Z), W k, V k, V̄ k, F )
)

∧
∧

j1,...,j4∈I12

(
SAT≤3/4,∅,{1,...,k}\{j1,...,j4}((X1, Y2, Z), W k, V k, V̄ k, F )

∧ SAT≤3/4,{1,...,k}\{j1,...,j4},∅((X1, Y2, Z), W k, V k, V̄ k, F )
)

∧
∧

j1,...,j4∈I21

(
SAT≤3/4,∅,{1,...,k}\{j1,...,j4}((X2, Y1, Z), W k, V k, V̄ k, F )

∧ SAT≤3/4,{1,...,k}\{j1,...,j4},∅((X2, Y1, Z), W k, V k, V̄ k, F )
)
.

▶ Lemma 12. TTORI′
D is satisfied iff D admits a periodic tiling of size at most m × n.

Proof. All implicit bounds follow from previously defined predicates used within TTORI′
D:

TORI′ for Z, SW for W k, and FLIP for V k, V̄ k, F . The bounds of m, n for X2, Y 2 imply
that the tori can take any even size up to 2m × 2n.

For the “only if” direction, note that the three conjunctions, similarly as in the predicate
OTORI, forbid faces of type 11, 12, 21 from being not of the form in D11, D12, D21, respectively.
Clearly, the set D11 consists of exactly those tiles (represented as type 11 faces) which are
in D. Similarly, D12, D21 consist of all those “glue” type 12 and 21 faces which are allowed
by H, V respectively. Therefore, in a distribution satisfying TTORI′

D, the type 11 faces
represent tiles and neighboring tiles respect the constraints H and V . Therefore, each torus
corresponds to a periodic tiling by D. Since the tori are of size at most 2m × 2n, the tiling is
of size at most m × n.

For the “if” direction, for any given tiling by D of size at most m × n, we create a pair of
corresponding tori, labeled such that one represents the positive version of this tiling and
the other the negative version. The satisfiability arguments show that this can be done for
any given tiling. ◀

4.7 Final construction
Once fully expanded, the TTORI′

D predicate is of the form (omitting the bounds for clarity)

∃B, X2, Y 2, W k, V k, V̄ k, F, . . . :
(

B ∼ Bern(1/2) ∧
∧

i
(I(Ai; Bi|Ci) = 0)

)
,

where Ai, Bi, Ci are tuples of the quantified variables. Its negation can be equivalently
rewritten:

¬∃B, . . . :
(
B ∼ Bern(1/2) ∧

∧
i
(I(Ai; Bi|Ci) = 0)

)
⇔ ∀B, . . . :

(
B ̸∼ Bern(1/2) ∨ ¬

∧
i
(I(Ai; Bi|Ci) = 0)

)
⇔ ∀B, . . . :

(( ∧
i
(I(Ai; Bi|Ci) = 0)

)
⇒ B ̸∼ Bern(1/2)

)
⇔ ∀B, . . . :

((
UNIF(B) ∧ |B| ≤ 2 ∧

∧
i
(I(Ai; Bi|Ci) = 0)

)
⇒ H(B) = 0

)
.

The last equivalence holds because a variable B with |B| ≤ 2 and UNIF(B) can either be
uniform over one value and have entropy 0 or uniform over two values and have entropy 1.
This final form is a valid CI implication with (partial) cardinality bounds. In the bounded
case, the established cardinality bounds are preserved.
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Enforcing the usage of a designated tile
We extend Li’s above construction to enforce that a given tile t be used in the tiling. Recall
from Lemma 6 that for any wk ∈ {0, 1}k,

H(F |V{i:wi=1}, V̄{i:wi=0}, W k) = P(W k = wk).

Furthermore, variable F is constrained by the predicate UNIF2(F ). It can be equivalently
restated as UNIF=(F, B), where UNIF= is defined by Li as follows:

UNIF=(Y, Z) : ∃U3 ≤i KY : TRIPLE(Y, U1, U2) ∧ TRIPLE(Z, U1, U3).

Clearly, UNIF=(F, B) holds iff F and B are both uniform with the same cardinality and
hence UNIF2(F ) can be replaced by UNIF=(F, B). Therefore, if the (conditional) entropy of
F is nonzero, then the entropy of B must also be nonzero and so we must have B ∼ Bern( 1

2 ).
Given a designated tile t, let wk ∈ Tk be the value of W k corresponding to label t (without

loss of generality, of vertex group 0 and positive sign) and S = {i : wi = 1}, S̄ = {i : wi = 0}.
The modified implication is as follows:

∀B, . . . :
((

UNIF(B) ∧ |B| ≤ 2 ∧
∧

i
(I(Ai; Bi|Ci) = 0)

)
⇒ H(F |VS , V̄S̄ , W k) = 0

)
.

The counterexamples of this implication are exactly those labelings which use the tile t.
Altogether, this chapter has shown the following theorem:

▶ Theorem 2. For any given tiling system D along with tile t and natural numbers m, n,
there exists a bounded CI implication which holds iff D does not admit a periodic tiling of
size at most m × n which makes use of tile t. Moreover, the implication can be computed in
time polynomial with regard to the size of the tiling system, while the bounds can be computed
in time polynomial w.r.t. to the size of m, n.

Theorem 2 gives exactly a polynomial-time many-one reduction from Periodic Bounded
Tiling to the complement of Bounded CI Implication, in particular because m, n and
K are encoded in the same manner. In the case of Constant-bounded CI Implication,
the above argument does not work since we have constant bounds larger than 2 as well as
bounds whose value depends on the input. However, any variable X with cardinality bound
2j can be replaced by the tuple (X1, . . . , Xj), where Xi has cardinality bound 2 for each
i ∈ {1, . . . , j}. These are clearly equivalent, since each Xi can correspond to the i-th bit of X.
More generally, a variable with cardinality bound l can be replaced by (X1, . . . , X⌈log l⌉), with
each Xi’s cardinality bounded by 2 and the additional requirement UNIF′

k((X1, . . . , X⌈log l⌉)).
Here UNIF′

k(Y ) is a modification of the UNIFk predicate such that it enforces Y being
uniform with |Y | ≤ k. The construction of both of these follows closely that of Li and is
given in detail in the full version. Note that the resulting predicate can be large, but this is
only important when the bound is not constant – in our case these are only the two bounds
X2 ≤ m, Y 2 ≤ n. To avoid this issue, we reduce from Power-of-two Periodic Bounded
Tiling – then Xi, Yi (for i ∈ {1, 2}) have bounds 2m, 2n respectively, while the remaining
variables have constant bounds. Replacing X1, X2, Y1, Y2 by tuples of binary variables as
shown above, we obtain a CI implication of size N · O(m + n), where N is the size of the
original implication. The number of random variables grows similarly. The newly created
bounds are all constant, and the reduction takes time polynomial with regard to the input
size. The values of the remaining constant bounds are known and therefore each such variable
can be converted in constant time. Together, these two results yield Theorem 1.
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Abstract
Weighted Timed Games (WTGs for short) are widely used to describe real-time controller synthesis
problems, but they rely on an unrealistic perfect measure of time elapse. In order to produce
strategies tolerant to timing imprecisions, we consider a notion of robustness, expressed as a
parametric semantics, first introduced for timed automata. WTGs are two-player zero-sum games
played in a weighted timed automaton in which one of the players, that we call Min, wants to reach
a target location while minimising the cumulated weight. The opponent player, in addition to
controlling some of the locations, can perturb delays chosen by Min. The robust value problem asks,
given some threshold, whether there exists a positive perturbation and a strategy for Min ensuring
to reach the target, with an accumulated weight below the threshold, whatever the opponent does.

We provide in this article the first decidability result for this robust value problem. More
precisely, we show that we can compute the robust value function, in a parametric way, for the class
of divergent WTGs (this class has been introduced previously to obtain decidability of the (classical)
value problem in WTGs without bounding the number of clocks). To this end, we show that the
robust value is the fixpoint of some operators, as is classically done for value iteration algorithms.
We then combine in a very careful way two representations: piecewise affine functions introduced
in [1] to analyse WTGs, and shrunk Difference Bound Matrices (shrunk DBMs for short) considered
in [29] to analyse robustness in timed automata. The crux of our result consists in showing that
using this representation, the operator of value iteration can be computed for infinitesimally small
perturbations. Last, we also study qualitative decision problems and close an open problem on
robust reachability, showing it is EXPTIME-complete for general WTGs.
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1 Introduction

The design and synthesis of real-time systems have long been paramount challenges, given the
critical need for dependable and efficient systems in a variety of applications. In particular, the
pursuit of robustness and reliability in these systems has led researchers to explore innovative
methods and formalisms to address the complexities inherent in real-time environments. In
this work, we focus on game-based models, and more precisely on the game extension of timed
automata [2], a.k.a. timed games, which provide an elegant framework for capturing the
interplay between system components, environment dynamics, and strategic decision-making.
More precisely, in this model, locations of a timed automaton are split amongst the two
players, which play in turn in the infinite-state space of the automaton.
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Regarding robustness, prior studies have primarily focused on areas such as fault tolerance,
adaptive control, and formal methods. In this work, we follow a series of works based on
game theory. The objective is to fill the gap between mathematical models such as timed
automata, often used for model-checking purposes, and implementation constraints, in which
clocks only have finite precision, and actions are not instantaneous. To that end, a parametric
semantics has been considered in [27], which consists in allowing the delays to be perturbed
by some limited amount. The uncertainty of the system, i.e. the perturbation of the delays,
is modelled by an adversarial environment. Two kinds of problems can then be considered:
first, the analysis may be done for a fixed perturbation bound (we call it a fixed-perturbation
robustness problem); second, in order to abstract the precise settings of the implementation,
and as the exact value of the perturbation bound may be unknown, one can try to determine
whether there exists a perturbation bound under which the system is reliable (we call it an
existential robustness problem). By monotonicity of the semantics w.r.t. the perturbation
bound, if one manages to prove the reliability against some perturbation bound, then it still
holds for smaller perturbations. Initially introduced for model-checking purposes [20, 8],
this approach has been lifted to automatic synthesis, yielding the so-called conservative
semantics, studied for instance in [30, 26, 19]. In these works, a player named Controller
aims at satisfying a liveness objective while its opponent may perturb the delays.

In the present work, we aim to go beyond qualitative objectives, and tackle quantitative
aspects. In real-time systems and critical applications, quantitative aspects such as resource
utilization and performance metrics hold important significance. This has led to the model
of weighted timed games (WTG for short), which has been widely studied during the last
two decades. When considering a reachability objective, Controller (a.k.a. player Min) aims
at reaching a set of target locations while minimizing the accumulated weight. One is then
interested in the value problem, which consists in deciding, given some threshold, whether a
strategy for Min exists to reach some target location while keeping the accumulated cost below
this threshold. While this problem is undecidable in general [11, 5, 14], several subclasses
have been identified that allow one to regain decidability. Amongst recent works, we can
cite the class of divergent WTGs [18] which generalize to arbitrary costs the class of strictly
non-Zeno costs introduced in [6], or the class of one-clock WTGs [24].

The core objective of this research is to explore the synthesis of real-time systems that not
only meet timing constraints but also optimize performance with respect to specified weight
objectives and are robust against timing imprecisions. To that end, we aim to study the
setting of timed games extended with both robustness issues and quantitative aspects. We
focus on the conservative semantics and on reachability objectives. In this setting, under a
fixed perturbation, the player Min aims at reaching a set of target locations while minimizing
the accumulated weight, and resisting delay perturbations. This leads to a notion of robust
value under a fixed perturbation: this is simply the best value Min can achieve. The associated
fixed perturbation robust value problem aims at comparing this value with a given threshold.
When turning to the existential robustness decision problem, one considers the notion of
robust value, defined as the limit of robust values for arbitrarily small perturbation values.
We prove that this limit exists, and study the associated decision problem, which we simply
call robust value problem, and which can be defined as follows: given a threshold, determine
whether there exists a positive perturbation, and a winning strategy for Min ensuring that
the accumulated weight until the target is below the threshold.

This problem is highly challenging as it combines difficulties coming from the introduction
of weights, with those due to the analysis of an existential problem for the parametric
semantics of robustness. Unsurprisingly, it has been shown to be undecidable [28]. To
highlight the challenges we face, already in the qualitative setting (w/o weights), the setting
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of two-player has not been addressed yet for the conservative semantics, hence the existential
robust reachability problem was left open in [28]. Indeed, in [19, 30], only the one-player case
is handled (a partial extension is considered in [26]) and the existential robustness reachability
problem for the two-player setting has only been solved for the excessive semantics (an
alternative to the conservative semantics) in [10]. Regarding the quantitative setting, very
few works have addressed robustness issues. The fixed-perturbation robust value problem is
shown to be decidable for one-clock weighted timed games in [21], with non-negative weights
only, and for the excessive semantics. In [9], the authors consider the one-player case and
prove that the robust value problem is PSPACE-complete.

Our contributions are as follows: first, regarding the qualitative setting, we close the case
of existential robust reachability in two-player timed games for the conservative semantics,
and show that this problem is EXPTIME-complete. To do so, we introduce a construction
which allows us to reduce the problem to the excessive semantics solved in [10]. As a corollary,
we deduce an upper bound on the length of paths to the target.

Then, we turn to the quantitative setting and show that for the class of divergent WTGs
(one of the largest classes of WTGs for which the decidability of the value problem is known),
the robust value problem is decidable. We proceed as follows:
1. We characterize the robust value for a fixed perturbation as the fixpoint of some operator.
2. We show that for acyclic WTGs, this fixpoint can be obtained as a finite iteration of this

operator, which we decompose using four simpler operators.
3. We introduce a symbolic parametric approach for the computation of this operator,

for arbitrarily small values of the perturbation. This requires carefully combining the
representation of value functions using piecewise affine functions introduced in [1] with
the notion of shrunk DBMs, used in [29] to analyse robustness issues in timed automata.
This yields the decidability of the robust value problem for the class of acyclic WTGs.

4. By combining this with the upper bound deduced from the qualitative analysis, we show
the decidability of the robust value problem for the whole class of divergent WTGs.

In Section 2, we introduce WTGs, under the prism of robustness. We describe in Section 3
the robustness problems we consider, present our contributions for qualitative ones, and state
that we can solve the quantitative one for acyclic WTGs. Sections 4 and 5 detail how to
prove this result, following steps 1.-3. described above. Last, Section 6 extends this positive
result to the class of divergent WTGs. Omitted proofs can be found in a long version of this
article [25].

2 Robustness in weighted timed games

We let X be a finite set of variables called clocks. A valuation is a mapping ν : X → R≥0.
For a valuation ν, a delay t ∈ R≥0 and a subset Y ⊆ X of clocks, we define the valuation
ν + t as (ν + t)(x) = ν(x) + t, for all x ∈ X , and the valuation ν[Y := 0] as (ν[Y := 0])(x) = 0
if x ∈ Y , and (ν[Y := 0])(x) = ν(x) otherwise. A (non-diagonal) guard on clocks of X is a
conjunction of atomic constraints of the form x ▷◁ c, where ▷◁ ∈ {≤, <, =, >, ≥} and c ∈ N.
A valuation ν : X → R≥0 satisfies an atomic constraint x ▷◁ c if ν(x) ▷◁ c. The satisfaction
relation is extended to all guards g naturally, and denoted by ν |= g. We let Guards(X )
denote the set of guards over X .

▶ Definition 1. A weighted timed game (WTG) is a tuple G = ⟨LMin, LMax, LT , X , ∆, wt⟩
where LMin, LMax, LT are finite disjoint subsets of Min locations, Max locations, and target
locations, respectively (we let L = LMin ⊎ LMax ⊎ LT ), X is a finite set of clocks, ∆ ⊆
L×Guards(X )×2X ×L is a finite set of transitions, and wt : ∆⊎L → Z is the weight function.
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Figure 1 An acyclic WTG with two clocks.

The usual semantics, called exact semantics, of a WTG G is defined in terms of a game
played on an infinite transition system whose vertices are configurations of the WTG denoted
by Conf = ConfMin ⊎ ConfMax ⊎ ConfT . A configuration is a pair (ℓ, ν) with a location and a
valuation of the clocks. A configuration is final (resp. belongs to Min, or Max), and belongs
to ConfT (resp. to ConfMin, or ConfMax) if its location is a target location of LT (resp. of LMin,
or LMax). The alphabet of the transition system is given by ∆ × R≥0: a pair (δ, t) encodes
the delay t that a player wants to spend in the current location, before firing transition δ.
An example of WTG is depicted in Figure 1.

In this article, we consider an alternative semantics to model the robustness, traditionnally
called the conservative semantics. It is defined in a WTG G according to a fixed parameter
p > 0. This semantics allows Max to slightly perturb the delays chosen by Min with an
amplitude bounded by p. From the modelling perspective, the perturbations model the small
errors of physical systems on the real value of clocks. Conservative means that the delays
proposed by Min must remain feasible after applying all possible perturbations. In particular,
the conservative semantics does not add new edges with respect to the exact one.

▶ Definition 2. Let G = ⟨LMin, LMax, LT , X , ∆, wt⟩ be a WTG. For p ≥ 0, we let JGKp =
⟨S, E, wt⟩ with S = SMin ⊎ SMax ⊎ ST the set of states with SMin = ConfMin, ST = ConfT and
SMax = ConfMax ∪ (ConfMin × R≥0 × ∆); E = EMin ⊎ EMax ⊎ Erob the set of edges with

EMax =
{(

(ℓ, ν) δ,t−→ (ℓ′, ν′)
)

| ℓ ∈ LMax, ν + t |= g and ν′ = (ν + t)[Y := 0]
}

EMin =
{(

(ℓ, ν) δ,t−→ (ℓ, ν, δ, t)
)

| ℓ ∈ LMin, ν + t |= g and ν + t + 2p |= g
}

Erob =
{(

(ℓ, ν, δ, t) δ,ε−−→ (ℓ′, ν′)
)

| ε ∈ [0, 2p] and ν′ = (ν + t + ε)[Y := 0]
}

where δ = (ℓ, g, Y, ℓ′) ∈ ∆; and wt : S ∪ E → Z the weight function such that for all states
s ∈ S with s = (ℓ, ν) or s = (ℓ, ν, δ, t), wt(s) = wt(ℓ), and all edges e ∈ E, wt(e) = wt(δ) if
e = (s δ,t−→ s′) with s ∈ Conf, or wt(e) = 0 otherwise.

When p = 0, the infinite transition system JGK0 describes the exact semantics of the
game, the usual semantics where each step of the player Min is cut into the true step,
followed by a useless edge (ℓ, ν, δ, t) δ,0−−→ (ℓ′, ν′) where Max has no choice. When p > 0,
the infinite transition system JGKp describes the conservative semantics of the game: states
(ℓ, ν, δ, t) ∈ ConfMin ×R≥0 × ∆ where Max must choose the perturbation in the interval [0, 2p]
are called perturbed states.

Let s be a state of JGKp, we denote by E(s) the set of possible outgoing edges of JGKp

from s. We extend this notation to locations to denote the set of outgoing transitions in G. A
state (resp. location) s is a deadlock when E(s) = ∅. We note that the conservative semantics
may introduce deadlock in configurations of Min (even if an outgoing edge exists in the exact
semantics). Thus, unlike in the literature [1, 18], we allow state and location deadlocks.
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A finite play of G w.r.t. the conservative semantics with parameter p is a sequence of edges
in the transition system JGKp starting in a configuration of G. We denote by |ρ| the number
of edges of ρ, and by last(ρ) its last state. The concatenation of two finite plays ρ1 and ρ2,
such that ρ1 ends in the same state as ρ2 starts, is denoted by ρ1ρ2. Moreover, for modelling
reasons, we only consider finite plays (starting and) ending in a configuration of G. Since
a finite play is always defined regarding a parameter p for the conservative semantics, we
denote by FPlaysp this set of finite plays. Moreover, we denote by FPlaysp

Min (resp. FPlaysp
Max)

the subset of these finite plays ending in a state of Min (resp. Max). A maximal play is then
a maximal sequence of consecutive edges: it is either a finite play reaching a deadlock (not
necessary in LT ), or an infinite sequence such that all its prefixes are finite plays.

The objective of Min is to reach a target configuration, while minimising the cumulated
weight up to the target. Hence, we associate to every finite play ρ = s0

δ0,t0−−−→ s1
δ1,t1−−−→ · · · sk

(some edges are in Erob, others are not) its cumulated weight, taking into account both
discrete and continuous costs: wtΣ(ρ) =

∑k−1
i=0 [ti × wt(si) + wt(δi)]. Then, the weight of a

maximal play ρ, denoted by wt(ρ), is defined by +∞ if ρ does not reach LT (because it is
infinite or reaches another deadlock), and wtΣ(ρ) if it ends in (ℓ, ν) with ℓ ∈ LT .

A strategy for Min (resp. Max) is a mapping from finite plays ending in a state of Min
(resp. Max) to a decision in (δ, t) labelling an edge of JGKp from the last state of the play.
Since plays could reach a deadlock state of Min, we consider strategies of Min to be partial
mappings. For instance, in the WTG depicted in Figure 1 and a perturbation p, a strategy
for Min in all plays ending in (ℓ2, ν) can be defined only when ν(x2) ≤ 2 − 2p since, otherwise,
there are no outgoing edges in JGKp from this state. Symmetrically, we ask for Max to always
propose a move if we are not in a deadlock state. More formally, a strategy for Min, denoted
χ, is a (possibly partial) mapping χ : FPlaysp

Min → E such that χ(ρ) ∈ E(last(ρ)). A strategy
for Max, denoted ζ, is a (possibly partial) mapping ζ : FPlaysp

Max → E such that for all ρ,
if E(last(ρ)) ̸= ∅, then χ(ρ) is defined, and in this case belongs to E(last(ρ)). The set of
strategies of Min (resp. Max) with the perturbation p is denoted by Stratp

Min (resp. Stratp
Max).

A play or finite play ρ = s0
δ0,t0−−−→ s1

δ1,t1−−−→ · · · conforms to a strategy χ of Min (resp. Max)
if for all k such that sk belongs to Min (resp. Max), we have that (δk, tk) = χ(s0

δ0,t0−−−→ · · · sk).
For all strategies χ and ζ of players Min and Max, respectively, and for all configura-
tions (ℓ0, ν0), we let Play((ℓ0, ν0), χ, ζ) be the outcome of χ and ζ, defined as the unique
maximal play conforming to χ and ζ and starting in (ℓ0, ν0).

The semantics JGKp is monotonic with respect to the perturbation p in the sense that
Min has more strategies when p decreases, while Max can obtain, against a fixed strategy of
Min, a smaller weight when p decreases. Formally, we have:

▶ Lemma 3. Let G be a WTG, and p > p′ ≥ 0 be two perturbations. Then
1. Stratp

Min ⊆ Stratp′

Min;
2. for all χ ∈ Stratp

Min, supζ∈Stratp
Max

wt(Play((ℓ, ν), χ, ζ)) ≥ sup
ζ∈Stratp′

Max
wt(Play((ℓ, ν), χ, ζ)).

3 Deciding the robustness in weighted timed games

We aim to study what Min can guarantee, qualitatively and then quantitatively, in the
conservative semantics of weighted timed games whatever Max does.

Qualitative robustness problems. Formally, given a WTG G and a perturbation p, we say
a strategy χ of Min is winning in JGKp from configuration (ℓ, ν) if for all strategies ζ of Max,
Play((ℓ, ν), χ, ζ) is a finite play ending in a location of LT .
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Figure 2 Gadget used to encode the conservative semantics into the excessive one. Each transition
δ = (ℓ, g, Y, ℓ′) with ℓ ∈ LMin is replaced by the gadget. Symbols w, w0, w1 denote weights from G.
The new location ℓδ of Max uses a fresh clock xe to test the guard after the perturbation (as in the
conservative semantics). The new location / is a deadlock (thus winning for Max).

There are two possible questions, whether the perturbation p is fixed, or if we should
consider it to be infinitesimally small:

fixed-perturbation robust reachability problem: given a WTG G, a configuration (ℓ, ν) and
a perturbation p > 0, decide whether Min has a winning strategy χ from (ℓ, ν) in JGKp;
existential robust reachability problem: given a WTG G and a configuration (ℓ, ν), decide
whether there exists p > 0 such that Min has a winning strategy χ from (ℓ, ν) in JGKp.
Notice that by Lemma 3, if Min has a winning strategy χ from (ℓ, ν) in JGKp, then he has
one in JGKp′ for all p′ ≤ p.

When the perturbation p is fixed, we can encode in a WTG the conservative semantics
described in JGKp, by adding new locations for Max to choose a perturbation, and by
modifying the guards that will now use the perturbation p. Solving the fixed-perturbation
robust reachability problem then amounts to solving a reachability problem in the modified
WTG1 which can be performed in EXPTIME [3] (here weights are useless). Since the
reachability problem in timed games is already EXPTIME-complete [22], we obtain:

▶ Proposition 4. The fixed-perturbation robust reachability problem is EXPTIME-complete.

We now turn our attention to the existential robust reachability problem. This problem
was left open for the conservative semantics (see [28], Table 1.2 page 17), while it has been
solved in [10] for an alternative semantics of robustness, known as the excessive semantics.
Intuitively, while the conservative semantics requires that the delay, after perturbation,
satisfies the guard, the excessive semantics only requires that the delay, without perturbation,
satisfies the guard. We present a reduction from the conservative semantics to the excessive
one, allowing us to solve the existential robust reachability problem for the conservative
semantics. Intuitively, the construction (depicted on Figure 2) adds a new location (for Max)
for each transitions of Min to test the delay chosen by Min after the perturbation:

▶ Proposition 5. The existential robust reachability problem is EXPTIME-complete.

Quantitative fixed-perturbation robustness problem. We are also interested in the min-
imal weight that Min can guarantee while reaching the target whatever Max does: to do
that we define robust values. First, we define the fixed-perturbation robust value: for all
configurations (ℓ, ν) of G (and not for all states of the semantics), we let rValp(ℓ, ν) =
infχ∈Stratp

Min
supζ∈Stratp

Max
wt(Play((ℓ, ν), χ, ζ)).

1 By transforming the WTG, its guards use rational instead of natural numbers (due to p). To fit the
classical definition of WTG, we can apply a scaling factor (i.e. 1/p) to all constants appearing in this
WTG. We note that this operation preserves the set of winning strategies for the reachability objective
(here weights are irrelevant) by applying the scaling operations on strategies too.
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Since a fixed-perturbation conservative semantics defines a quantitative reachability
game2, where configurations of Max also contain the robust states, we obtain that the fixed-
perturbation robust value is determined, by applying [13, Theorem 2.2], i.e. that rValp(ℓ, ν) =
supζ∈Stratp

Max
infχ∈Stratp

Min
wt(Play((ℓ, ν), χ, ζ)). We therefore denote rValp this value.

▶ Remark 6. In [9, 10, 21], the set of possible perturbations for Max is [−p, p]. For technical
reasons, we use a (equivalent) perturbation with a shift of the delay proposed by Min by p.

When p = 0, rVal0 defines the (exact) value that is used to study the value problem in
WTGs. By Lemma 3, we can deduce that the fixed-perturbation robust value is monotonic
with respect to the perturbation p and is always an upper-bound for the (exact) value.

▶ Lemma 7. Let G be a WTG, and p > p′ ≥ 0 be two perturbations. Then, for all
configurations (ℓ, ν), rValp(ℓ, ν) ≥ rValp

′
(ℓ, ν).

As in the qualitative case, when the perturbation p is fixed, we can encode in polynomial
time in a WTG the conservative semantics described in JGKp. Unfortunately, the value of
WTGs is not always computable since the associated decision problems (in particular the
value problem that requires to decide if the value of a given configuration is below a given
threshold) are undecidable [11, 4, 14]. However, in subclasses of WTGs where the value
function can be computed, like acyclic WTGs (where every path in the graph of the WTGs
is acyclic, decidable in 2-EXPTIME [15]) or divergent WTGs (that we recall in Section 6, in
3-EXPTIME [6, 16]), the fixed-perturbation robust value is also computable (if the modified
game falls in the subclass). In particular, we obtain:

▶ Proposition 8. We can compute the fixed-perturbation robust value of a WTG that is
acyclic (in 2-EXPTIME) or divergent (in 3-EXPTIME), for all possible initial configurations.

On top of computing the robust values, the previous works also allow one to synthesize
almost-optimal (i.e. arbitrarily close from the value) strategies for both players.

Quantitative robustness problem. Now, we consider the existential version of this problem
by considering an infinitesimal perturbation. We thus want to know what Min can guarantee
as a value if Max plays infinitesimally small perturbations. To define properly the problem,
we introduce a new value: given a WTG G, the robust value is defined, for all configurations
(ℓ, ν) of G, by rVal(ℓ, ν) = limp→0,p>0 rValp(ℓ, ν). This value is defined as a limit of functions
(the fixed-perturbation robust values), which can be proved to always exist as the limit of
a non-increasing sequence of functions (see Lemma 7). The decision problem associated
to this robust value is: given a WTG G, an initial configuration (ℓ, ν), and a threshold
λ ∈ Q ∪ {−∞, +∞}, decide if rVal(ℓ, ν) ≤ λ. We call it the robust value problem.

Unsurprisingly, this problem is undecidable [9, Theorem 4]. We will thus consider some
restrictions over WTGs. In particular, we consider classes of WTGs where the (non robust)
value problem is known as decidable for the exact semantics: acyclic WTGs [1], and divergent
WTGs [6, 16]. Our first main contribution concerns the acyclic case:

▶ Theorem 9. The robust value problem is decidable over the subclass of acyclic WTGs.

The next two sections sketch the proof of this theorem via an adaptation of the value
iteration algorithm [1] used to compute the value function in (non-robust) acyclic WTGs: it
consists in computing iteratively the best thing that both players can guarantee in a bounded

2 A quantitative reachability game introduced in [12] is an abstract model to formally define the semantics
of quantitative (infinite) games.
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number of steps, that increases step by step. It is best described by a mapping F that
explains how a value function gets modified by allowing one more step for the players to
play. The adaptation we propose consists in taking the robustness into account by using
shrunk DBM techniques introduced in [29]: instead of inequalities on the difference of two
clock values of the form x − y ≤ c involving rational constants c, the constants c will now
be of the form a − bp, with a a rational and b a positive integer, p being an infinitesimal
perturbation. This will allow us to compute a description of the fixed-perturbation values
for all initial configurations, for all perturbations p smaller than an upperbound that we
will compute. The robust value will then be obtained by taking the limit of this parametric
representation of the fixed-perturbation values when p tends to 0. Our algorithm will also
compute an upperbound on the biggest allowed perturbation p. As in previous works, once
the value is computed, we can also synthesize almost-optimal strategies.

Section 4 will describe the mapping Fp, with a known perturbation p: the iteration of this
operator will be shown to converge towards the fixed-perturbation value rValp. The robust
value functions will be shown to always be piecewise affine functions with polytope pieces.
Section 5 describes the parametric representation of these functions, where the perturbation
is no longer fixed but is a formal parameter p. We then explain how the mapping Fp can be
computed for all small enough values of p at once, allowing us to conclude.

4 Operator Fp to compute the fixed-perturbation value

The first step of the proof is the definition of the new operator adapted from the operator F
of [1]. We thus fix a perturbation p > 0, and we define an operator Fp taking as input a
mapping X : L × RX

≥0 → R∞, computing a mapping Fp(X) : L × RX
≥0 → R∞ defined for all

configurations (ℓ, ν) by Fp(X)(ℓ, ν) equal to

0 if ℓ ∈ LT

+∞ if ℓ ∈ LMax and E(ℓ, ν) = ∅ (if Max reaches a deadlock, he wins)
sup

(ℓ,ν)
δ,t−→(ℓ′,ν′)∈JGKp

[
t wt(ℓ) + wt(δ) + X(ℓ′, ν′)

]
if ℓ ∈ LMax and E(ℓ, ν) ̸= ∅

inf
(ℓ,ν)

δ,t−→(ℓ,ν,δ,t)∈JGKp
sup

(ℓ,ν,δ,t)
δ,ε−−→(ℓ,ν′)∈JGKp

[
(t+ε) wt(ℓ)+wt(δ)+X(ℓ′, ν′)

]
if ℓ ∈ LMin

In the following, we let V0 be the mapping L × RX
≥0 → R∞ defined by V0(ℓ, ν) = 0 if ℓ ∈ LT

and V0(ℓ, ν) = +∞ otherwise. By adapting the proof of the non-robust setting, we show:

▶ Lemma 10. Let G be an acyclic WTG, p > 0, D is the depth of G, i.e. the length of a
longest path in G. Then, rValp is a fixpoint of Fp, and rValp = FD

p (V0).

We can thus compute the fixed-perturbation robust value of an acyclic WTG by repeatedly
computing Fp. We will see in the next section that this computation can be made for all
small enough p by using a parametric representation of the mappings. It will be easier to
split the computation of Fp in several steps (as done in the non robust case [1, 18]). Each of
the four operators takes as input a mapping V : RX

≥0 → R∞ (where the location ℓ has been
fixed, with respect to mappings L ×RX

≥0 → R∞), and computes a mapping of the same type.
The operator UnresetY , with Y ⊆ X a subset of clocks, is such that for all ν ∈ RX

≥0,
UnresetY (V )(ν) = V (ν[Y := 0]).
The operator Guardδ, with δ = (ℓ, g, Y, ℓ′) a transition of ∆, is such that for all ν ∈ RX

≥0,
if ν |= g, then Guardδ(V )(ν) = V (ν); otherwise, Guardδ(V )(ν) is equal to −∞ if ℓ ∈ LMax,
and +∞ if ℓ ∈ LMin.
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The operator Preℓ, with ℓ ∈ L, is such that for all ν ∈ RX
≥0, Preℓ(V )(ν) is equal to

supt≥0[t wt(ℓ) + V (ν + t)] if ℓ ∈ LMax, and inft≥0[t wt(ℓ) + V (ν + t)] if ℓ ∈ LMin.
The operator Perturbp

ℓ , with perturbation p > 0 and ℓ ∈ LMin, is such that for all ν ∈ RX
≥0,

Perturbp
ℓ (V )(ν) = supε∈[0,2p][ε wt(ℓ) + V (ν + ε)].

Though the situation is not symmetrical for Min and Max in Fp, in particular for the
choice of delay t, the definition of Preℓ does not differentiate the two players with respect
to their choice of delay. However, the correctness of the decomposition comes from the
combination of this operator with Guardδ (that clearly penalises Min if he chooses a delay
such that the translated valuation does not satisfy the guard) and Perturbp

ℓ that allows Max
to select a legal perturbation not satisfying the guard, leading to a value +∞ afterwards.

For a mapping V : L × RX
≥0 → R∞ and a location ℓ, we can extract the submapping for

the location ℓ, that we denote by Vℓ : RX
≥0 → R∞, defined for all ν ∈ RX

≥0 by Vℓ(ν) = V(ℓ, ν).
Mappings RX

≥0 → R∞ can be compared, by using a pointwise comparison: in particular the
maximum or minimum of two such mappings is defined pointwisely. The previous operators
indeed allow us to split the computation of Fp. We also rely on the classical notion of regions,
as introduced in the seminal work on timed automata [2]. Indeed, for a given location ℓ, the
set of deadlock valuations ν where E(ℓ, ν) = ∅ is a union of regions that we denote Rℓ in the
following, and that can easily be computed.

▶ Lemma 11. For all V : L × RX
≥0 → R∞, ℓ ∈ L, and p > 0, Fp(V)(ℓ) equals

ν 7→ 0 if ℓ ∈ LTν 7→

+∞ if ν ∈ Rℓ(
max

δ=(ℓ,g,Y,ℓ′)∈∆

[
wt(δ) + Preℓ(Guardδ(UnresetY (Vℓ′)))

])
(ν) if ν /∈ Rℓ

 if ℓ ∈ LMax

min
δ=(ℓ,g,Y,ℓ′)∈∆

[
wt(δ) + Preℓ(Perturbp

ℓ (Guardδ(UnresetY (Vℓ′))))
]

if ℓ ∈ LMin

5 Encoding parametric piecewise affine functions

We now explain how to encode the mappings that the operators defined in the previous
section take as input, to compute Fp for all perturbation bounds p > 0 at once. We adapt
the formalism used in [1, 18] to incorporate the perturbation p. This formalism relies on the
remark that V0 is a piecewise affine function, and that if V is piecewise affine, so is Fp(V):
thus we only have to manipulate such piecewise affine functions.

To model the robustness, that depends on the perturbation bound p, and maintain a
parametric description of all the value functions for infinitesimally small values of p, we
consider piecewise affine functions that depend on a formal parameter p describing the
perturbation. The pieces over which the function is affine, that we call cells in the following,
are polytopes described by a conjunction of affine equalities and inequalities involving p.
Some of our computations will only hold for small enough values of the parameter p and we
will thus also maintain an upperbound for this parameter.

▶ Definition 12. We call parametric affine expression an expression E of the form
∑

x∈X αx x

+ β + γp with αx ∈ Q for all x ∈ X , β ∈ Q∪ {−∞, +∞}, and γ ∈ Q. The semantics of such
an expression is given for a particular perturbation p as a mapping JEKp : RX

≥0 → R∞ defined
for all ν ∈ RX

≥0 by JEKp(ν) =
∑

x∈X αx ν(x) + β + γp.

A partition of RX
≥0 into cells is described by a set E = {E1, . . . , Em} of parametric affine

expressions. Every expression can be turned into an equation or inequation by comparing
it to 0 with the symbol =, < or >. The partition of RX

≥0 is obtained by considering all
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Figure 3 On the left, we depict the partition defined from E = {x2 − 2p, 2x1 + x2 − 2 + p, 2x1 −
x2 + 1/2}, for a small enough value of p. On the right, we depict the atomic partition induced by E ,
and draw in red the added parametric affine expressions.

the combinations of equations and inequations for each 1 ≤ i ≤ m: such a combination is
described by a tuple (▷◁i)1≤i≤m of symbols in {=, <, >}. For a given perturbation p, we let
JE , (▷◁i)1≤i≤mKp be the set of valuations ν such that for all i ∈ {1, . . . , m}, JEiKp ▷◁i 0.

We call cell every such combination such that for p that tends to 0, while being positive,
the set JE , (▷◁i)1≤i≤mKp is non empty. We let C(E) be the set of cells of E . Notice that
it can be decided (in at most exponential time) if a combination (▷◁i)1≤i≤m is a cell, by
encoding the semantics in the first order theory of the reals, and deciding if there exists an
upperbound η > 0 such that for all 0 < p ≤ η, JE , (▷◁i)1≤i≤mKp is non empty. Moreover, we
can compute the biggest such upperbound η if it exists. The upperbound of the partition
E = {E1, . . . , Em} is then defined as the minimum such upperbound over all cells (there are
at most 3m cells), and denoted by η(E) in the following. On the left of Figure 3, we depict
the partition of RX

≥0 defined from E = {x2 − 2p, 2x1 + x2 − 2 + p, 2x1 − x2 + 1/2}, with a
fixed value of the perturbation. In blue, we color the cell defined by (>, <, >). We note that
this cell is non-empty when p ≤ 1/2. By considering other cells, we obtain that η(E) = 1/2.

In the following, we may need to record a smaller upperbound than η(E), in order to
keep the tightest constraint seen so far in the computation. We thus call parametric partition
a pair ⟨E , η⟩ given by a set of equations and a perturbation η > 0 that is at most η(E).

For a cell c ∈ C(E), an expression E of E is said to be on the border of c if the removal
of E from the set E of expressions forbids one to obtain the set of valuations JcKp with the
resulting cells for all small enough values of p > 0: more precisely, we require that no cell
c′ ∈ C(E \ {E}) is such that for some p ≤ η(E), JcKp = Jc′Kp. Because of the definition of
η(E), this definition does not depend on the actual value of p that we consider (and we could
thus replace “for some” by “for all” above). On the left of Figure 3, all expressions are on
the border for the blue cell, but only two of them are on the border of the orange cell.

The proofs that follow (in particular time delaying that requires to move along diagonal
lines) requires to adapt the notion of atomicity of a parametric partition, originally introduced
in the non-robust setting [1, 18]. A parametric affine expression E =

∑
x∈X αx x + β + γp

is said to be diagonal if
∑

x∈X αx = 0: indeed, for all p > 0, JEKp(ν) = JEKp(ν + t) for all
t ∈ R. A parametric partition is said to be atomic if for all cells c ∈ C(E), there are at most
two non-diagonal parametric affine expressions on the border of c: intuitively, one border
is reachable from every valuation by letting time elapse, and the other border is such that
by letting time elapse from it we can reach all valuations of the cell. An atomic partition
decomposes the space into tubes whose borders are only diagonal, each tube being then sliced
by using only non-diagonal expressions. In particular, each cell c of an atomic partition has
a finite set of cells that it can reach by time elapsing (and dually a set of cells that can reach
c by time elapsing), and this set does not depend on the value of the parameter p, nor the
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starting valuation in JcKp. On the right of Figure 3, we depict the atomic partition associated
with the same set of expressions used on the left. The diagonal expressions are depicted in
red. We note that the cell colored in blue on the left is split into five cells that are non-empty
when p ≤ 3/7. We can describe the new parametric partition as ({x2 − 2p, 2x1 + x2 − 2 +
p, 2x1 − x2 + 1/2, x1 − x2 − 1 + 7p/2, x1 − x2 + 2p, x1 − x2 + 1/2, x1 − x2 + 7/8 − p/4}, 3/7).
As we will see below, a parametric partition can always be made atomic, by adding some
diagonal parametric affine expressions.

A parametric value function (PVF for short) is a tuple F = ⟨E , η, (fc)c∈C(E)⟩ where
⟨E , η⟩ is a partition and, for all cells c ∈ C(E), fc is a parametric affine expression. For a
perturbation 0 < p ≤ η, the semantics JF Kp of this tuple is a mapping RX

≥0 → R∞ defined
for all valuations ν by JF Kp(ν) = JfcKp(ν) where c is the unique cell such that ν ∈ JcKp. A
PVF is said to be atomic if its parametric partition is atomic. As announced above, we can
always refine a PVF so that it becomes atomic.

▶ Lemma 13. If F = ⟨E , η, (fc)c∈C(E)⟩ is a PVF, we can compute an atomic PVF F ′ =
⟨E ′, η′, (f ′

c)c∈C(E′)⟩ such that η′ ≤ η, and JF Kp = JF ′Kp for all p ≤ η′.

To conclude the proof of Theorem 9, we need to compute one application of Fp over
a mapping X : L × RX

≥0 → R∞ that is stored by a PVF for each location. Moreover, our
computations must be done for all small enough values of p simultaneously.

▶ Proposition 14. Let F = ⟨E , η, (fc)c∈C(E)⟩ be a PVF. We can compute a PVF F ′ =
⟨E ′, η′, (f ′

c)c∈C(E′)⟩ with η′ ≤ η, and JF ′Kp = Fp(JF Kp) for all p ≤ η′.

Sketch of the proof. By using Lemma 11, it suffices to perform the proof independently for
the four operators, as well as maximum or minimum operations. Proofs from [1, 18] can be
adapted for the maximum/minimum operations as well as the operators Guardδ and UnresetY

that exist also in the non-robust setting. In the case of Max, the two cases depend only on
the regions and we thus only apply the various operators for starting valuations not in Rℓ.

For the operator Preℓ (and similarly Perturbp
ℓ ), the adaptation is more subtle. The key

ingredient, for instance to compute it over an atomic partition for a location ℓ of Max, is to
transform the computation of (JF Kp)(ν) = supt≥0[t wt(ℓ)+JF Kp(ν + t)] involving a supremum
(for a fixed valuation ν, and a fixed perturbation p ≤ η), by using a maximum over a finite
set of interesting delays. First, we remark that for every delay t > 0, the valuation ν + t

belongs to the open diagonal half-line from ν, which crosses some of the semantics Jc′Kp for
certain cells c′. Moreover, this finite (since there are anyway only a finite number of cells in
the partition) subset of crossing cells neither depends on the choice of ν in a given starting
cell c, nor on the perturbation p as long as it is at most η (by atomicity of the partition).
Since the function JF Kp is affine in each cell, the above supremum over the possible delays is
obtained for a value t that is either 0, or tending to +∞, or on one of the two non-diagonal
borders of the previous crossing cells, and we thus only have to consider those borders (that
do not depend on the choice of ν in a given starting cell c, nor on the perturbation p). ◀

6 Divergent weighted timed games

From our algorithm to solve acyclic WTGs, we naturally want to extend the computation of
the robust value to other classes of WTGs by using an unfolding of the WTG. In particular,
we consider the natural extension of divergent WTGs (like in [16, 18]) that define a large
class of decidable WTGs for the exact semantics, with no limitations on the number of clocks.

MFCS 2024
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As usual in related work [1, 6, 7, 18], we now assume that all clocks are bounded by a
constant M ∈ N, i.e. every transition of the WTG is equipped with a guard g such that ν |= g

implies ν(x) ≤ M for all clocks x ∈ X . We denote by Wloc (resp. Wtr, We) the maximal weight
in absolute values of locations (resp. of transitions, edges) of G, i.e. Wloc = maxℓ∈L |wt(ℓ)|
(resp. Wtr = maxδ∈∆ |wt(δ)|, We = MWloc + Wtr).

We use the exact semantics to define the divergence property by relying once again on the
regions [2]. We let Reg(X , M) be the set of regions when clocks are bounded by M. A game
G (w.r.t. the exact semantics) can be populated with the region information as described
formally in [18]: we obtain the region game R(G). We call region path a finite or infinite
sequence of transitions in this game, and we denote by π such paths. A play ρ in G can be
projected on a region path π: we say that ρ follows the region path π. It is important to
notice that, even if π is a cycle (i.e. starts and ends in the same location of the region game),
there may exist plays following it in G that are not cycles, due to the fact that regions are
sets of valuations.

Divergent WTGs are obtained by enforcing a semantical property of divergence (originally
called strictly non-Zeno cost when only dealing with non-negative weights [6]): it asks that
every play (w.r.t. the exact semantics) following a cyclic region path has weight far from
0. Formally, a cyclic region path π of R(G) is said to be a positive (resp. negative) if every
finite play ρ following π satisfies wtΣ(ρ) ≥ 1 (resp. wtΣ(ρ) ≤ −1).

▶ Definition 15. A WTG is divergent if every cyclic region path is positive or negative.

Finally, with loss of generality, we only consider divergent WTGs containing no con-
figurations with a value equal to −∞. Intuitively, guaranteeing a value −∞ resembles a
Büchi condition for Min, since this means that Max cannot avoid the iteration of negative
cycles with his delays. In the robust settings, testing Büchi condition for automata is already
non-trivial [19], thus we remove this behaviour in our games in this article. Since the value is
a lower bound of the robust value (by Lemma 7), we obtain that all locations have a robust
value distinct from −∞. Moreover, testing if such a location exists in a divergent WTG can
be done in EXPTIME [18]. Our second contribution is to extend the symbolic algorithm used
in the case of acyclic WTGs to compute the robust value in this subclass of divergent WTGs.

▶ Theorem 16. The robust value problem is decidable over the subclass of divergent WTGs
without configurations of value −∞.

Sketch of the proof. We compute the robust value by using an adaptation of the algorithm
of [18] used to compute the (exact) value function in divergent WTGs. In particular, its
termination is guaranteed by the use of an equivalent definition of divergent WTG requiring
that for all strongly connected components (SCC) S of the graph of the region game, either
every cyclic region path π inside S is positive (we say that the SCC is positive) or every
cyclic region path π inside S is negative (we say that the SCC is negative).

We adapt this argument in the case of the computation of the robust value of a divergent
WTG (without configurations with a value equal to −∞). In particular, we observe that
if a cyclic region path is positive (resp. negative) w.r.t. the exact semantics, then it is also
positive (resp. negative) w.r.t. the conservative semantics, as the latter only filters some plays.
Thus, the finite convergence of the value iteration algorithm (defined by Fp as for acyclic
WTG, i.e. initialised by the function V0 defined such that V0(ℓ) = 0 for all target locations,
and V0(ℓ) = +∞ otherwise) is guaranteed by its finite convergence in finite time in each
positive (resp. negative) SCC. Intuitively, in a positive (resp. negative) SCC, the interest of
Min (resp. Max) is to quickly reach a target location of G to minimise the number of positive
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(resp. negative) cyclic region paths followed along the play that allow us to upperbound the
number of iterations needed to obtain the robust value of all locations. Thus, the number of
iterations needed to compute the robust value in a divergent WTG is defined by the sum of
the number of iterations for each SCC along the longest path of the SCC decomposition. ◀

On top of computing the value, the modified algorithm allows one to synthesize almost-
optimal strategies (we can adapt recent works [23] showing that those strategies can be taken
among switching strategies for Min and memoryless strategies for Max).

7 Conclusion

This article allows one to compute (finite) robust values of weighted timed games in classes
of games (acyclic and divergent) where the non-robust values are indeed computable.

As future works, we would like to carefully explore the exact complexity of our algorithms.
Intuitively, each operator used to describe Fp can be computed in exponential time with
respect to the set of cells and the size of η. By [18], the number of cells exponentially grows
at each application of Fp (so it is doubly exponential for the whole computation) and the
constants in affine expressions polynomially grow, in the non-robust setting. We hope that
such upperbounds remain in the robust setting. This would imply that, for divergent WTGs,
our algorithm requires a triply-exponential time, since the unfolding is exponential in the
size of G.

We also suggest to extend the setting to incorporate divergent WTGs that contain location
with a value equal to −∞. However, fixing it for all divergent WTGs seems to be difficult
since, intuitively, the condition to guarantee −∞ looks like a Büchi condition where Max
can avoid the iteration of cycles with his delays. Moreover, we would like to study almost-
divergent weighted timed games (studied in [17, 18]), a class of games undecidable, but with
approximable value functions. We wonder if the robust values could also be approximated
by similar techniques. Another direction of research would be to consider the fragment of
one-clock weighted timed games, another class of games where the value function is known
to be computable (for a long time in the non-negative case [5], very recently in the general
case [24]). The difficulty here would be that encoding the conservative semantics in an exact
semantics, even with fixed-perturbation, requires the addition of a clock, thus exiting the
decidable fragment. The question thus becomes a possible adaptation of techniques used
previously to solve non robust one-clock WTGs to incorporate directly the robustness.
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1 Introduction

Dictionary compression is a scheme of lossless data compression that is very effective, especially
for highly repetitive text collections. Recently, various studies on dictionary compressors and
repetitiveness measures have attracted much attention in the field of stringology (see [25, 26]
for a detailed survey).

The sensitivity [1] of a string compressor/repetitiveness measure c is defined as the
maximum difference in the sizes of c for a text T and for a single-character edited string T ′,
which can represent the robustness of the compressor/measure w.r.t. small changes/errors of
the input string. Akagi et al. [1] gave upper and lower bounds on the worst-case multiplicative
sensitivity of various compressors and measures including the Lempel–Ziv parse family [29, 30],
the run-length encoded Burrows-Wheeler transform (RLBWT) [4], and the smallest string
attractors [17].
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On the other hand, some structures built on strings, including the output of text
compressors, can also depend on the order of the alphabet, meaning that a different alphabet
ordering can result in a different structure for the same string. Optimization problems of
these kinds of structures have recently been studied, e.g., for the RLBWT [2], the RLBWT
based on general orderings [12], or the Lyndon factorization [13]. Due to their hardness,
efficient exact algorithms/heuristics for minimization have been considered [5, 7, 8, 22, 23].

This paper is devoted to the analysis of the sensitivity of lex-parse. Lex-parse [27] is a
greedy left-to-right partitioning of an input text T into phrases, where each phrase starting
at position i is T [i..i + max{1, ℓ}) and ℓ is the longest common prefix between T [i..n] and
its lexicographic predecessor T [i′..n] in the set of suffixes of T . Each phrase can be encoded
by a pair (0, T [i]) if ℓ = 0, or (ℓ, i′) otherwise. By using the lex-parse of size v of a string, we
can represent the string with v derivation rules.1 Lex-parse was proposed as a new variant in
a family of ordered parsings that is considered as a generalization of the Lempel–Ziv parsing
and a subset of bidirectional macro schemes [28]. We stress that lex-parse can have much
fewer factors than the Lempel–Ziv parsing; for instance the number of Lempel–Ziv factors of
the k-th Fibonacci word is k while we have only four factors for lex-parse regardless of k

(assuming that k is large enough) [27]. Besides having potential for lossless data compression,
it helped to gain new insights into string repetitiveness: For instance, a direct relation
v ∈ O(r) between v and the size r of the RLBWT, one of the most important dictionary
compressors, holds [27]. Hence, combinatorial studies on lex-parse can lead us to further
understanding in string repetitiveness measures and compressors.

The contribution of this paper is twofold. We first consider the sensitivity of lex-parse
w.r.t. edit operations, and give tight upper and lower bounds which are logarithmic in the
length of the input text. Interestingly, lex-parse is the third measure with super-constant
bounds out of (about) 20 measures [1]. Second, we consider a new variant of sensitivity, the
alphabet ordering sensitivity (AO-sensitivity) of lex-parse, defined as the maximum difference
in the number of phrases of lex-parse between any two alphabet orderings, and give tight
upper and lower bounds. For both lower bounds, we use the Fibonacci word. Moreover, we
also use properties of the Lyndon factorization [6] for the edit sensitivity to characterize
the structure of lex-parse. These insights may be of independent interest. Properties of the
Fibonacci word can contribute to the analysis of algorithm complexity. In fact, there are
several results regarding lower bounds based on the Fibonacci word (i.e., [9, 14, 16, 27]).

Related work. Inspired by the results of Lagarde and Perifel [19], Akagi et al. [1] pioneered
the systematic study of compression sensitivity of various measures w.r.t. edit operations.
Giuliani et al. [14] showed an improved lower bound for the additive sensitivity of the
run-length BWT. They also use the family of Fibonacci words to obtain their lower bound.
Fujimaru et al. [11] presented tight upper and lower bounds for the additive and multiplicative
sensitivity of the size of the compact directed acyclic word graph (CDAWG) [3, 10], when
edit operations are restricted to the beginning of the text.

2 Preliminaries

Strings
Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string w is
denoted by |w|. The empty string ε is the string of length 0. Let Σ+ be the set of non-empty
strings, i.e., Σ+ = Σ∗ \ {ε}. For any strings x and y, let x · y (or sometimes xy) denote

1 We stick to the convention to denote the size of lex-parse by v as done in literature such as [27, 26].
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the concatenation of the two strings. For a string w = xyz, x, y and z are called a prefix,
substring, and suffix of w, respectively. They are called a proper prefix, a proper substring,
and a proper suffix of w if x ̸= w, y ̸= w, and z ̸= w, respectively. A proper substring that
is both a prefix and a suffix of w is also called a border of w. The i-th symbol of a string
w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|,
let w[i..j] denote the substring of w that begins at position i and ends at position j. For
convenience, let w[i..j] = ε when i > j. Also, let w[..i] = w[1..i] and w[i..] = w[i..|w|]. For a
string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2. A string w is said to be
primitive if w cannot be written as xk for any x ∈ Σ+ and integer k ≥ 2. The following
property is well known.

▶ Lemma 1 ([20]). w is primitive if and only if w occurs exactly twice in w2.

For a string w, let w′ = w[1..|w|−1], w′′ = w[1..|w|−2]. A sequence of k strings w1, . . . , wk

is called a parsing or a factorization of a string w if w = w1 · · · wk. For a binary string w, w

denotes the bitwise reversed string of w (e.g., aab = baa over {a, b}). Let ≺ denote a (strict)
total order on an alphabet Σ. A total order ≺ on the alphabet induces a total order on the set
of strings called the lexicographic order w.r.t. ≺, also denoted as ≺, i.e., for any two strings
x, y ∈ Σ∗, x ≺ y if and only if x is a proper prefix of y, or, there exists 1 ≤ i ≤ min{|x|, |y|}
s.t. x[1..i − 1] = y[1..i − 1] and x[i] ≺ y[i]. For a string w, let SAw denote the suffix array of
w, where the i-th entry SAw[i] stores the index j of the lexicographically i-th suffix w[j..]
of w.

Lex-parse

The lex-parse of a string w is a parsing w = w1, . . . , wv, such that each phrase wj starting
at position i = 1 +

∑
k<j |wk| is w[i..i + max{1, ℓ}), where ℓ is the length of the longest

common prefix between w[i..] and its lexicographic predecessor w[i′..] in the set of suffixes
of w. Each phrase can be encoded by a pair (0, w[i]) if ℓ = 0 (called an explicit phrase), or
(ℓ, i′) otherwise. We will call w[i′..] the previous suffix of w[i..]. The size (the number of
phrases) of the lex-parse of a string w will be denoted by v(w). Note that a phrase starting
at position i is explicit if and only if w[i..] is the lexicographically smallest suffix starting
with w[i] and thus there are |Σ| of them. Let w = ababbaaba. The lex-parse of w is aba, b,
ba, a, b, a. Since the previous suffix of w[1..] is w[7..] and the longest common prefix between
them is aba, the first phrase is aba. In this example, the last two phrases are explicit phrases.

Lyndon factorizations

A string w is a Lyndon word [21] w.r.t. a lexicographic order ≺, if and only if w ≺ w[i..] for
all 1 < i ≤ |w|, i.e., w is lexicographically smaller than all its proper suffixes with respect
to ≺. The Lyndon factorization [6] of a string w, denoted LF(w), is a unique factorization
λp1

1 , . . . , λpm
m of w, such that each λi ∈ Σ+ is a Lyndon word, pi ≥ 1, and λi ≻ λi+1 for all

1 ≤ i < m. A suffix x of w is said to be significant if there exists an integer i such that
x = λpi

i · · · λpm
m and, for every j satisfying i ≤ j < m, λ

pj+1
j+1 · · · λpm

m is a prefix of λ
pj

j (cf. [15]).
Let w = bbabbaabaabbaabaabbaabaa. The Lyndon factorization of w is b2, abb, (aabaabb)2,
aab, a2. The suffix a2 that is the last Lyndon factor is always significant. Since a2 is a prefix
of (aab)a2, (aab)a2 is also significant. Since a2 and (aab)a2 is a prefix of (aabaabb)2(aab)a2,
(aabaabb)2(aab)a2 is also significant.

MFCS 2024
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Table 1 Fibonacci words Fk up to k = 8.

k Fk k Fk

1 b 2 a

3 ab 4 aba

5 abaab 6 abaababa

7 abaababaabaab 8 abaababaabaababaababa

Fibonacci words

The k-th (finite) Fibonacci word Fk over a binary alphabet {a, b} is defined as follows: F1 = b,
F2 = a, Fk = Fk−1 · Fk−2 for any k ≥ 3 (see also an example in Table 1). Let fk be the
length of the k-th Fibonacci word (i.e., fk = |Fk|).

We also use the infinite Fibonacci word F = limk→∞ Fk over an alphabet {a, b}. We also
use Gk = Fk−2Fk−1 which will be useful for representing relations between even and odd
Fibonacci words.

▶ Lemma 2 (Useful properties of Fibonacci words (cf. [27])). The following properties hold
for every Fibonacci word Fk.
1. The length of the longest border of Fk is fk−2.
2. Fk has exactly three occurrences of Fk−2 at position 1, fk−2 + 1, and fk−1 + 1 (suffix)

for every k ≥ 6.
3. Fk = Gk[1..fk − 2] · Gk[fk − 1..fk].
4. Gk = Fk[1..fk − 2] · Fk[fk − 1..fk].
5. For every k, aaa and bb do not occur as substrings in Fk [27, Lemma 36].
6. Fk is primitive for every k (we can easily obtain the fact from Property 1).

The next lemma is also useful for our proof which can be obtained from the above
properties.

▶ Lemma 3. For any k ≥ 8, Fk−4 occurs exactly eight times in Fk.

Proof. From property 2 of Lemma 2, Fk has at least eight occurrences of Fk−4 (since the
suffix occurrence of Fk−4 in the second Fk−2 and the prefix occurrence of Fk−4 in the third
Fk−2 are the same position). Suppose to the contrary that there exists an occurrence of
Fk−4 in Fk that is different from the eight occurrences. From property 2 of Lemma 2, the
occurrence crosses the boundary of the first and the second Fk−2. Since Fk−4 is both a prefix
and a suffix of Fk−2, the occurrence implies that F 2

k−4 has Fk−4 as a substring that is neither
a prefix nor a suffix. This contradicts Lemma 1. ◀

Sensitivity of lex-parse

In this paper, we consider two compression sensitivity variants of lex-parse. The first variant
is the sensitivity by (single character) edit operations (cf. [1]). For any two strings w1 and w2,
let ed(w1, w2) denote the edit distance between w1 and w2. The worst-case multiplicative
sensitivity of lex-parse w.r.t. a substitution is defined as follows:

MSsub(v, n) = max
w1∈Σn

MSsub(v, w1),
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where MSsub(v, w1) = max{v(w2)/v(w1) | w2 ∈ Σn, ed(w1, w2) = 1}. MSins(v, n) (resp.
MSdel(v, n)) is defined by replacing the condition w2 ∈ Σn with w2 ∈ Σn+1 (resp. w2 ∈
Σn−1). The second variant is the sensitivity by alphabet orderings. For any string w and a
lexicographic order ≺, let v(w, ≺) be the size of the lex-parse of w under ≺. We define the
alphabet-ordering sensitivity of lex-parse as follows:

AOS(v, n) = max
w∈Σn

AOS(v, w),

where AOS(v, w) = max≺1,≺2∈A{v(w, ≺2)/v(w, ≺1)} and A is the set of orderings over Σ.

3 Upper bounds

We first give upper bounds for both operations. We can obtain the following result by using
known connections regarding the bidirectional macro scheme and lex-parse.

▶ Theorem 4. MSsub(v, n), MSins(v, n), MSdel(v, n), AOS(v, n) ∈ O(log n).

Proof. For any string w, let b(w) be the size of the smallest bidirectional macro scheme [28].
Then, v(w) ≥ b(w) holds [27, Lemma 25]. For any two strings w1 and w2 with ed(w1, w2) = 1,
v(w2) ∈ O(b(w2) log(n/b(w2))) [27, Theorem 26] and b(w2) ≤ 2b(w1) [1, Theorem 11] hold.
Hence, for |w2| ∈ Θ(n),

v(w2)
v(w1) ≤ v(w2)

b(w1) ∈ O

(
b(w2) log(n/b(w2))

b(w1)

)
⊆ O

(
b(w1) log(n/b(w1))

b(w1)

)
= O(log(n/b(w1))).

For any alphabet order ≺ on Σ, v(w, ≺) ∈ O(b(w) log(n/b(w))) and v(w, ≺) ≥ b(w) holds.
Hence, for any two alphabet orders ≺1 and ≺2,

v(w, ≺2)
v(w, ≺1) ≤ v(w, ≺2)

b(w) ∈ O

(
b(w) log(n/b(w))

b(w)

)
= O(log(n/b(w))).

These facts imply this theorem. ◀

4 Lower bounds for edit operations

In this section, we give tight lower bounds for edit operations with the family of Fibonacci
words.

▶ Theorem 5. MSsub(v, n), MSins(v, n), MSdel(v, n) ∈ Ω(log n).

We devote this section to show MSsub(v, n) ∈ Ω(log n) since a similar argument can obtain
the others. We obtain the claimed lower bound by combining the result of [27] (also in
Lemma 20 in Section 5) stating that v(F2k) = 4, and the following Theorem 6.

▶ Theorem 6. For every integer k ≥ 6, there exists a string w of length f2k such that
ed(F2k, w) = 1 and v(w) = 2k − 2.

Let T2k denote the string obtained from F2k by substituting the rightmost b of F2k with a,
i.e., T2k = F ′′

2k · aa. We show that the lex-parse of T2k has 2k − 2 phrases. More specifically,
we show that the lengths of the phrases are

f2k−1 − 1, f2k−4 − 1, f2k−5 + 1, ..., f4 − 1, f3 + 1, 1, 2, 1.

MFCS 2024
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There are three types of phrases as follows: (1) first phrase, (2) inductive phrases, (3) last
three short phrases. Phrases of Type (1) or Type (3) can be obtained by simple properties
of Fibonacci words. However, phrases of Type (2) need a more complicated discussion. We
use the Lyndon factorizations of the strings to characterize the inductive phrases. Intuitively,
we show that every suffix of T2k that has an odd inductive phrase as a prefix can be written
as the concatenation of the odd inductive phrase and a significant suffix.

(1) First phrase and (3) Short phrases
We start from Type (1). From the third property of Lemma 2 and the edit operation, T2k[1..]
and T2k[f2k−2 + 1..] have a (longest) common prefix x = F ′

2k−1 of length f2k−1 − 1 and
T2k[1..] ≻ T2k[f2k−2 + 1..] holds. T2k[f2k−2 + 1..] can be written as T2k[f2k−2 + 1..] = x · a.
We show that the previous suffix of T2k[1..] is T2k[f2k−2 + 1..]. Suppose to the contrary
that there exists a suffix y of F2k that satisfies T2k[1..] ≻ y ≻ T2k[f2k−2 + 1..]. Since both
T2k[f2k−2 + 1..] and T2k[1..] have x as a prefix, y can be written as y = x · a · z1 or y = x · b · z2
for some strings z1, z2. Since F2k−1 ends with aab and thus aa is a suffix of x, the existence of
y = x · a · z1 contradicts the fact that a3 only occurs at the edit position. On the other hand,
the existence of y = x · b · z2 contradicts the fact that x · b = F2k−1 only occurs as a prefix of
T2k, since otherwise it would violate the second property of Lemma 2. Thus T2k[f2k−2 + 1..]
is the previous suffix of T2k[1..], and the length of the first phrase is |x| = f2k−1 − 1.

Next, we consider Type (3) phrases. Since T2k ends with baaa and no Fibonacci word has
aaa as a substring, we conclude that SAT2k

[1] = f2k, SAT2k
[2] = f2k−1, and SAT2k

[3] = f2k−2.
In particular, ba3 is the smallest suffix of T2k that begins with b. These facts imply that
T2k[f2k] = a and T2k[f2k − 3] = b are the explicit phrases, and T2k[f2k − 2..f2k − 1] = a2

between the explicit phrases is a phrase. Thus the last three phrases are b, a2, a.

(2) Inductive phrases
In the rest of this section, we explain Type (2) phrases. Firstly, we study the Lyndon
factorization LF(F) = ℓ1, ℓ2, . . . of the (infinite) Fibonacci word. To characterize these
Lyndon factors ℓi, we use the string morphism ϕ with ϕ(a) = aab, ϕ(b) = ab as defined in [24,
Proposition 3.2].

▶ Lemma 7 ([24]). ℓ1 = ab, ℓk+1 = ϕ(ℓk), and |ℓk| = f2k+1 holds.

In order to show our result, we consider the Lyndon factorization of F ′′
2k(= T ′′

2k)
(Lemma 10). Lemmas 8 and 9 explain the Lyndon factorization of a finite prefix of the
(infinite) Fibonacci word by using properties of the morphism ϕ.

▶ Lemma 8. Given a string w ∈ {a, b}+, let LF(w) = λp1
1 , . . . , λpm

m . Then LF(ϕ(w)) =
ϕ(λp1

1 ), . . . , ϕ(λpm
m ).

Proof. For any two binary strings x and y, it is clear that ϕ(x) ≻ ϕ(y) if x ≻ y. In the rest
of this proof, we show that ϕ(x) is a Lyndon word for a Lyndon word x over {a, b}. If |x| = 1,
then the statement clearly holds. Suppose that |x| ≥ 2. Let x̃ be a non-empty proper suffix
of ϕ(x). Then x̃ can be represented as x̃ = ϕ(y) for some suffix y of x, or x̃ = α · ϕ(y) for
some suffix y of x and α ∈ {ab, b}. Since x ≺ y, ϕ(x) ≺ x̃ if x̃ = ϕ(y) for some suffix y of x.
Also in the case of x̃ = α · ϕ(y), ϕ(x) ≺ x̃ holds since x[1] = a (from x is a Lyndon word)
and ϕ(x)[1..3] = aab. Thus, ϕ(x) ≺ x̃ holds for all non-empty proper suffixes x̃ of x. This
implies that ϕ(x) is a Lyndon word. Therefore, the statement holds. ◀
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▶ Lemma 9. For every integer i ≥ 1, LF(ℓ′
i) = ϕi−1(a), . . . , ϕ0(a), where ℓ′

i = ℓi[..|ℓi| − 1].

Proof. We prove the statement by induction on i. For the base case i = 1, LF(ℓ′
1) = a = ϕ0(a).

Assume that the lemma holds for all i ≤ j for some j ≥ 1. By the definition of the morphism
ϕ, ℓ′

j+1 = ϕ(ℓj)′ = ϕ(ℓ′
j) · a holds because ℓj ends with b. Also, by using Lemma 8 and the

induction hypothesis,

LF(ℓ′
j+1) = LF(ϕ(ℓ′

j) · a) = LF(ϕ(ℓ′
j)), a = ϕ(LF(ℓ′

j)), a = ϕj(a), . . . , ϕ1(a), ϕ0(a).

Therefore, the lemma holds. ◀

▶ Lemma 10. Let Li be the i-th Lyndon factor of F ′′
2k. For every k ≥ 2,

Li =
{

ϕi−1(ab) if 1 ≤ i < k − 1,
ϕ2k−i−3(a) if k − 1 ≤ i ≤ 2k − 3.

Proof. From Lemma 7,

k−1∑
i=1

|ℓi| =
k−1∑
i=1

f2i+1 = f3 + f5 + · · · + f2k−1 = f2 + (f3 + f5 + · · · + f2k−1) − 1 = f2k − 1.

Thus LF(F2k) = ℓ1, . . . , ℓk−1, a holds. Also, Li = ℓi holds for all i < k − 1 since ℓi is not a
prefix of ℓi−1. In other words, LF(F ′′

2k) = ℓ1, . . . , ℓk−2, LF(ℓ′
k−1). From Lemma 9,

LF(F ′′
2k) = ℓ1, . . . , ℓk−2, ϕk−2(a), . . . , ϕ0(a).

Then the statement also holds. ◀

Moreover, we can find the specific form of suffixes characterized by the Lyndon factoriza-
tion of F ′′

2k as described in the next lemma.

▶ Lemma 11. For every integer i ≥ 1, ϕi−1(a) · · · ϕ0(a) is a prefix of ϕi(a).

Proof. We prove the lemma by induction on i. For the base case i = 1, ϕ0(a) = a is a prefix
of ϕ1(a) = aab. Assume that the statement holds for all i ≤ j for some j ≥ 1. For i = j + 1,

ϕj+1(a) = ϕj(ϕ(a)) = ϕj(aab) = ϕj(a)ϕj(a)ϕj(b).

By induction hypothesis, ϕj(a) = ϕj−1(a) · · · ϕ0(a) · x for some string x. Then ϕj+1(a) =
ϕj(a) · ϕj−1(a) · · · ϕ0(a) · x · ϕj(b). This implies that the statement also holds for i = j + 1.
Therefore, the lemma holds. ◀

With the Lemmas 10 and 11, we obtain the following lemma, which characterizes the
first k + 1 entries of the suffix array SAT2k

of T2k.
Firstly, we consider the order of the significant suffixes of F ′′

2k.

▶ Lemma 12. SAF ′′
2k

[i] = f2k − 1 −
∑i−1

j=0 |ϕj(a)| for every i ∈ [1..k − 1].

Proof. We can see that ϕk−2(a) · · · ϕ0(a) is a suffix of F ′′
2k by Lemma 10. Our claim is that

ϕi−1(a) · · · ϕ0(a) is the i-th lexicographically smallest suffix of F ′′
2k for every 0 ≤ i ≤ k − 1.

We prove the statement by induction on i. For the base case i = 1, ϕ0(a) = a is the
lexicographically smallest suffix of F ′′

2k. Assume that the statement holds for all i ≤ i′ for some
i′ ≥ 1. Let α be a suffix of ϕi′+1(a) · · · ϕ0(a) such that there is no d with α = ϕd(a) · · · ϕ0(a).
(Otherwise we already know that α is a prefix of ϕi′+1(a), which we already processed for a

MFCS 2024
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⋯

T8F9

T6F7

f0(a)f1(a)f2(a)f3(a)
Z0

Z1
Z2

F’’10

Y1
Y2

b

b

b

b

b

b a a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a a

Figure 1 Illustration of the edited string T2k and the Lyndon factorization of F ′′
2k (when k = 5).

former suffix array entry.) Then α can be written as α = β · ϕd(a) · · · ϕ0(a) for some proper
suffix β of ϕd+1(a) and d ∈ [0..i′]. Since ϕi′+1(a) has ϕd+1(a) as a prefix and there is a
mismatching character between ϕd+1(a) and β (from β is a suffix of Lyndon word ϕd+1(a)),
then ϕi′+1(a) ≺ β holds. Therefore, the lemma holds. ◀

Because appending a’s to the end does not affect suffix orders, we can easily obtain the
following lemma from Lemma 12.

▶ Lemma 13. For every k ≥ 2, SAT2k
[1] = f2k, SAT2k

[2] = f2k − 1, and SAT2k
[i] =

f2k − 1 −
∑i−3

j=0 |ϕj(a)| for any i that satisfying 3 ≤ i ≤ k + 1.

Proof. T2k ends with the suffix aa such that T [f2k..] = a is the smallest, and T [f2k − 1..] is
the second smallest suffix of T2k. All other suffixes inherit their order from F ′′

2k, and thus
SAT2k

[i] = SAF ′′
2k

[i − 2] for i ≥ 3. ◀

We define a substring Yi and suffixes Xi and Zi of T2k as follows:

Xi = T2k[f2k − f2i+4..] (1 ≤ i ≤ k − 3),
Yi = T2k[f2k − f2i+4..f2k − f2i+3 − 2] (1 ≤ i ≤ k − 3),
Zi = T2k[f2k − f2i+3 − 1..] (0 ≤ i ≤ k − 3).

▶ Observation 14. The following properties hold:

Xi = Yi · Zi = b · T2i+4,

Yi = b · T ′′
2i+2,

Zi = b · ϕi(a) · · · ϕ0(a) · aa.

Notice that |ϕi(a) · · · ϕ0(a)| = |ℓ′
i+1| = f2i+3 − 1 holds. See also Fig. 1 for an illustration

of the specific substrings. Then Lemma 13 implies the following corollary.

▶ Corollary 15. For every integer k ≥ 2 and i satisfying 1 ≤ i ≤ k − 2, the previous suffix of
Zi w.r.t. T2k is Zi−1.

The largest suffix of T2k, denoted by maxsuf, is characterized in the following lemma. We
also use this suffix in the main lemma. Intuitively, we show that every suffix of T2k that has
an even inductive phrase as a prefix references a suffix that is the concatenation of a string
and the maximum suffix (Lemma 18).



Y. Nakashima, D. Köppl, M. Funakoshi, S. Inenaga, and H. Bannai 75:9

F2k–1 T2k–2
F2k–3 ab

a a ab

f2k–2b
F2k–3

f2k–3 f2k–1

Figure 2 Illustration of T2k for proof of Lemma 16.

▶ Lemma 16. The lexicographically largest suffix maxsuf of T2k is T2k[f2k−3..].

Proof. It is known that the lexicographically largest suffix of F2k is F2k[f2k−1..] and the
lexicographically second largest suffix of F2k is F2k[f2k−3..] (shown in [18]). Namely,
SAF2k

[f2k] = f2k−1, SAF2k
[f2k − 1] = f2k−3. Due to the edit operation, T2k[f2k−3..] ≻

T2k[f2k−1..] and the length of the longest prefix of these suffixes is f2k−2 (see Fig. 2). As-
sume on the contrary that there is a suffix T2k[i..] that is lexicographically larger than
T2k[f2k−3..]. With Property 5 of Lemma 2, the suffix aaa of T2k acts as a unique delimiter
such that the suffix T2k[f2k−3..] cannot be a prefix of any other suffixes of T2k. Let j be
the smallest positive integer such that T2k[f2k−3..f2k−3 + j] = a and T2k[i..i + j] = b. If
max(i + j, f2k−3 + j) < f2k − 1, then F2k[f2k−3..] ≺ F2k[i..] holds. This contradicts the fact
that the lexicographically second largest suffix of F2k is F2k[f2k−3..]. We can observe that
there is no j with max(i + j, f2k−3 + j) ≥ f2k − 1 and i > f2k−3 since T2k[f2k − 1..] = aa

does not contain b. If max(i + j, f2k−3 + j) ≥ f2k − 1 and i < f2k−3, F2k−3 has a beginning
position d of an occurrence satisfying 2 ≤ d ≤ f2k−3. This contradicts Lemma 2. Therefore,
the lemma holds. ◀

To prove Lemma 18, we also introduce the following corollary.

▶ Corollary 17 (of Lemma 2). For every i satisfying i ≥ 6, Ti has exactly two occurrences of
Fi−2. Moreover, Ti can be written as Ti = Fi−2 · Fi−2 · w for some string w.

▶ Lemma 18. For every k ≥ 2 and i satisfying 1 ≤ i ≤ k − 3, the previous suffix of Xi w.r.t.
T2k is Yi · a · maxsuf.

Proof. Firstly, we show that Yi · a · maxsuf is a suffix of T2k. It is clear from definitions and
properties of Lemma 2 that T2k can be written as T2k = F ′

2k−3 ·maxsuf = F ′′
2k−3 ·a ·maxsuf =

F2k−4 · F ′′
2k−5 · a · maxsuf = F2k−5 · F ′′

2k−4 · a · maxsuf. Since Yk−3 = b · T ′′
2k−4 = b · F ′′

2k−4
and the last character of F2k−5 is b (from 2k − 5 is odd), Yk−3 · a · maxsuf is a suffix of T2k.
Moreover, F2i+2 is a suffix of F2k−4 for every i that satisfying 1 ≤ i ≤ k − 3. This implies
that Yi · a · maxsuf is a suffix of T2k for every i that satisfying 1 ≤ i ≤ k − 3.

Now we go back to our main proof of the lemma. Since Xi = Yi · b · ϕi(a) · · · ϕ0(a) · aa,
Yi · a · maxsuf ≺ Xi holds. Moreover, Yi · a · maxsuf is the lexicographically largest suffix of
T2k that has Yi · a as a prefix. Hence, it is sufficient to prove that Xi is the lexicographically
smallest suffix of T2k that has Yi · b as a prefix. From Property 5 of Lemma 2, no bb occurs
in T2k, so every occurrence of Yi · b is also an occurrence of Yi · ba. We consider occurrences
of Yi · ba in a suffix Xi. From Observation 14 and Corollary 17, (Yi · ba)[2..](= F2i+2) has
exactly two occurrences in Xi(= b · T2i+4). At the first occurrence, (Yi · ba)[2..] is preceded by
b. At the second occurrence, (Yi · ba)[2..] is preceded by a. Hence, the rightmost occurrence
of Yi · ba in T2k is at the prefix of Xi. By combining with Lemma 13, we can see that there is
no suffix w such that Yi · ba · w ≺ Xi holds. Thus, Xi is the lexicographically smallest suffix
of T2k that has Yi · b as a prefix. Therefore, the lemma holds. ◀
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Lex-parse of T2k

Now we can explain the lex-parse of T2k. Recall that the length of the first phrase is f2k−1 −1
and the last three phrases are b, a2, a. Hence, from Lemma 18, the second phrase is a prefix
Yk−3 of Xk−3(= b · T2k−2). Since the remaining suffix is Zk−3, the next phrase is a prefix
Zk−4[..|Zk−4| − 1] of Zk−3 from Corollary 15. By applying this argument repeatedly, we can
finally obtain the lex-parse of size 2k − 2 of T2k as follows:

F2k[..f2k−1 − 1], (Yk−3, Zk−4[..|Zk−4| − 1]), . . . , (Y1, Z0[..|Z0| − 1]), b, a2, a.

Furthermore, we can easily obtain v(F ′′
2k · a) = 2k − 2 for a delete operation. Consider

the case for the insertion operation such that $ (which is the smallest character) is inserted
to the preceding position of the last b. We can then show that the lex-parse is of size 2k + 1
by a similar argument as follows:

F2k[1..f2k−1 − 2], (a · Yk−3, Zk−4[..|Zk−4| − 2]), . . . , (a · Y1, Z0[..|Z0| − 2]), a, ba, $, b, a.

5 Lower bounds for Alphabet-Ordering

In this section, we give tight lower bound AOS(v, n) ∈ Ω(log n) with the family of Fibonacci
words. Since b(Fk) ≤ 4 for k ≥ 5 [27, Lemma 35] also holds, our lower bound is tight for any
n ∈ {fi}i. More precisely, we prove the following theorem that determines the number of
lex-parse phrases of the Fibonacci words on any alphabet ordering.

▶ Theorem 19. For any k ≥ 6,

v(Fk, ≺) =


⌈ k

2 ⌉ + 1 (a) if k is odd and a ≺ b, (Lemma 23)
4 (b) if k is odd and b ≺ a, (Lemma 24)
4 (c) if k is even and a ≺ b, (Lemma 20)
⌈ k

2 ⌉ + 1 (d) if k is even and b ≺ a. (Lemma 25)

Although the results for a smaller than b have been proven by Navarro et al. [27], we here
give alternative proofs for this case that leads us to the proof for the case when b is smaller
than a.

5.1 Lex-parse with constant number of phrases
We start with Cases (b) and (c). Since Fk[fk − 1..fk] = ba for even k and Fk[fk − 1..fk] = ab

for odd k, we already know in the cases (b) and (c) that each of the last two characters
forms an explicit phrase. It is left to analyze the non-explicit phrases, where we start
with the first phrase. From Property 1 of Lemma 2, Fk has the border Fk−2 and thus
Fk−2 = Fk[fk−1..] ≺ Fk could be used as the reference for the first phrase, given its length
is fk−2. To be an eligible reference for lex-parse, we need to check that Fk[fk−1..] is the
previous suffix of Fk[1..]. However, Property 2 of Lemma 2 states that there is exactly one
other occurrence of Fk−2 in Fk, starting at fk−2 + 1. The proof of the following lemma shows
that the suffix starting with that occurrence is lexicographically larger than Fk, and thus
indeed the first phrase has length fk−2, and the second phrase starting with that occurrence
can make use of Fk as a reference for a phrase that just ends before the two explicit phrases
at the end.

▶ Lemma 20. Assume that k ≥ 6 is even and a ≺ b (Case (c) of Thm. 19). Then the
lex-parse of Fk is Fk−2, Fk[fk−2 + 1..fk − 2], b, a.
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Fk = Fk−1 Fk−2

Fk−2 Fk−3 Fk−4 Fk−5 Fk−4

Fk−2 Gk−3

suf
x ab x ba

Figure 3 Illustration of the proof of Lemma 20 for k even. If k is odd, the blocks ab and ba are
swapped (this gives the setting Lemma 24).

Proof. Fk can be represented as

Fk = Fk−1 · Fk−2 = Fk−2 · Fk−3 · Fk−4 · Fk−5 · Fk−4.

Let suf = Fk−2 · Gk−3 (a suffix of Fk) and x be the longest common prefix of Fk−3 and Gk−3.
Then Fk = Fk−2 · x · ab · Fk−4 · Fk−5 · Fk−4 and suf = Fk−2 · x · ba holds since k is even and
k − 3 is odd. See Fig. 3 for a sketch. This implies that the three suffixes that have Fk−2
as a prefix satisfy Fk−2 ≺ Fk ≺ suf . By combining with Property 2 of Lemma 2, the first
phrase is Fk−2 and the second phrase is Fk−2 · x (which is the longest common prefix of Fk

and suf ). The third phrase is b which is an explicit phrase of character b since the suffix ba

is the lexicographically smallest suffix that has b as a prefix. Finally, the last phrase is an
explicit phrase a. ◀

5.2 Lex-parse with logarithmic number of phrases
Next, we discuss the cases that have a logarithmic number of phrases. For any odd k ≥ 7
and even i satisfying 4 ≤ i ≤ k − 3, let

suf i = (Fi · Fi−2 · Fi−3 · · · F4) · ab = Fi+1,

suf +
i = Fi · suf i = Gi+2.

From the definitions, the following properties hold.

▶ Lemma 21. For odd k ≥ 7, suf i and suf +
i are suffixes of Fk, for every even i with

4 ≤ i ≤ k − 3. In particular, we have
(a) suf i = Fi+1 is a prefix of suf +

i = Gi+2 = FiFi+1, and
(b) suf +

i = FiFi+1 = FiFi−1Fi−2Fi−1 = Fi+1Gi = suf i · suf +
i−2.

Proof. By definitions, Fk = Fk−2Fk−3Fk−2 = Fk−2Fk−3suf k−3 = Fk−2suf +
k−2. Since suf i−2

is a suffix of suf i, the claim holds for suf i for every i. Writing suf i = Fi−1 · Fi−2 · (Fi−2 ·
Fi−3 · · · F4) · ab, we can see that suf +

i−2 is a suffix of suf i. ◀

We use these suffixes to characterize the lex-parse. The following lemma shows that suf i

is the previous suffix of suf +
i w.r.t. Fk for every i, where fk −|suf +

i |+1 and fk −|suf i|+1]−1
are the starting positions of suf +

i and suf i in Fk, respectively.

▶ Lemma 22. Assume that k ≥ 7 is odd and a ≺ b. The previous suffix of suf +
i w.r.t. Fk is

suf i for every even i satisfying 4 ≤ i ≤ k − 3.

Proof. Since suf +
i = Fi · Fi−2 · · · F4 · ab · α for some string α, suf i is a prefix of suf +

i . Thus,
suf i ≺ suf +

i . We prove that there is no suffix x of Fk with suf i ≺ x ≺ suf +
i by induction

on i.

MFCS 2024
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a

b

x =

suf +j+2 = suf +j

y

suf j suf +j–2

suf +j+2–2ℓ’
suf j+2–2ℓ’

...

suf +j–2ℓ’

suf j+2

...
y’

... b

a

Figure 4 Illustration of the proof of Lemma 22.

Let i = 4 for the base case. Assume on the contrary that there exists a suffix x of Fk such
that suf 4 ≺ x ≺ suf +

4 . Since suf 4 = F5 = F4 · ab = aba · ab and suf +
4 = F4 · F5 = F4 · abaab,

x can be written as x = F4 · abaaa · y for some string y. However, aaa is not a substring of
Fk according to Property 5 of Lemma 2, so x cannot exist. Thus, the statement holds for
the base case.

Assume that the statement holds for all even i ≤ j for some even j ≥ 4. Suppose on
the contrary that there exists a suffix x of Fk such that suf j+2 ≺ x ≺ suf +

j+2. Since suf j+2
is a prefix of suf +

j+2, we can represent x as x = suf j+2 · y for some string y. There are
two cases w.r.t. the length of x. (1) Assume that |suf j+2| < |x| < |suf +

j+2|. Because of the
assumption and the fact that F 2

j+2 is a prefix of suf +
j+2 from Lemma 21(a), Fj+2 occurs

as a substring that is neither prefix nor a suffix of F 2
j+2. However, F 2

j+2 cannot have such
occurrence of Fj+2 since Fj+2 is primitive (from Property 6 of Lemma 2), a contradiction
(from Lemma 1). (2) Assume that |suf +

j+2| < |x|. We now use that suf +
i = suf i · suf +

i−2 holds
from Lemma 21(b). By the assumption, y and suf +

j mismatch with a and b, respectively
(since x and suf +

j+2 have suf j+2 as a prefix). From Lemma 21, suf +
j+2 can be represented as

suf +
j+2 = suf j+2 · suf j · · · suf j+2−2ℓ · suf +

j−2ℓ (1)

for some integer ℓ ≥ 0. Let ℓ′ be the largest integer ℓ such that the mismatch position is in the
factor suf +

i−2ℓ of the suf +
j+2-factorization in Eq. 1, and y′ be the suffix of y that has the factor

suf j+2−2ℓ′ of the factorization in Eq. 1 as a prefix (i.e., y′ = y[|suf j · · · suf j+2−2(ℓ′−1)| + 1..]).
Since suf j+2−2ℓ′ is a prefix y′, and y′ and suf +

j−2ℓ′ mismatch at the same position, then
suf j+2−2ℓ′ ≺ y′ ≺ suf +

j+2−2ℓ′ holds. This fact contradicts the induction hypothesis (see also
Fig. 4). ◀

Now we can show the following main lemma from the above lemmas.

▶ Lemma 23. Assume that k ≥ 7 is odd and a ≺ b. Then the lex-parse of Fk is

Fk[1..fk−1 − 2], baFk−4, Fk−4, Fk−6, . . . , F5, a, a, b.

Proof. Let x be the longest common prefix of Fk−3 and Gk−3. Due to Property 2 of Lemma 2,
there are three suffixes Fk = Fk−2 · x · ba · Fk−4 · Fk−5 · Fk−4, suf = Fk−2 · x · ab, and Fk−2
that have Fk−2 as a prefix. This implies that Fk−2 ≺ suf ≺ Fk. Thus, the first phrase is
Fk−2 · x. Then the remaining suffix is ba · suf k−3 = ba · Fk−2. We show the second phrase is
ba · Fk−4 by proving that the previous suffix of ba · Fk−2 w.r.t. Fk is ba · Fk−4. It is clear that
ba · Fk−4 ≺ ba · Fk−2 since ba · Fk−4 is a prefix of ba · Fk−2. Suppose on the contrary that
there exists a suffix y of Fk that satisfies ba · Fk−4 ≺ y ≺ ba · Fk−2. From the assumption,
ba · Fk−4 is a prefix of y. We can observe that there are three occurrences of ba · Fk−4 in
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Fk from Lemma 3 (i.e., the third, the fourth, and the sixth occurrence of Fk−4 in Fk). This
implies that suffix ba · Fk−4 · Gk−1 (regarding the third occurrence of Fk−4) of Fk is the only
candidate of y. However,

y = ba · Fk−4 · Gk−1 = ba · Fk−4 · Fk−3 · Fk−2 ≻ ba · Fk−4 · Gk−3 = ba · Fk−2

holds. Thus, the previous suffix of ba · Fk−2 w.r.t. Fk is ba · Fk−4, and the second phrase
is ba · Fk−4. Then, the remaining suffix is suf +

k−5. From Lemma 22, the next phrase is
suf k−5 = Fk−4 and the remaining suffix is suf +

k−7. This continues until the remaining suffix
is aab. It is easy to see that the last three phrases are a, a, b. ◀

We can also prove the following lemmas similarly.

▶ Lemma 24. Assume that k ≥ 7 is odd and b ≺ a. Then the lex-parse of Fk is

Fk−2, Fk[fk−2 + 1..fk − 2], a, b.

▶ Lemma 25. Assume that k ≥ 6 is even and b ≺ a. Then the lex-parse of Fk is

Fk[1..fk−1 − 2], abFk−4, Fk−4, Fk−6, . . . , F6, b, a.

Overall, Theorem 19 holds.

6 Conclusion

In this paper, we considered the compression sensitivity of lex-parse for two operations:
single character edit and modification of the alphabet ordering, and gave Θ(log n) bounds
for both operations. A further work in this line of research on the alphabet orderings is the
problem of computing optimal alphabet orderings for the lex-parse. The problems for the
RLBWT and the Lyndon factorization are known to be NP-hard [2, 13].
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Abstract
Hausdorff Φ-dimension is a notion of Hausdorff dimension developed using a restricted class of
coverings of a set. We introduce a constructive analogue of Φ-dimension using the notion of
constructive Φ-s-supergales. We prove a Point-to-Set Principle for Φ-dimension, through which we
get Point-to-Set Principles for Hausdorff dimension, continued-fraction dimension and dimension of
Cantor coverings as special cases. We also provide a Kolmogorov complexity characterization of
constructive Φ-dimension.

A class of covering sets Φ is said to be “faithful” to Hausdorff dimension if the Φ-dimension
and Hausdorff dimension coincide for every set. Similarly, Φ is said to be “faithful” to constructive
dimension if the constructive Φ-dimension and constructive dimension coincide for every set. Using
the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences
satisfying a certain Kolmogorov complexity condition, we show that the notions of “faithfulness” of
Cantor coverings at the Hausdorff and constructive levels are equivalent.

We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin [1] to derive the necessary and
sufficient conditions for the constructive dimension faithfulness of the coverings generated by the
Cantor series expansion, based on the terms of the expansion.
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1 Introduction

1.1 Faithfulness in dimension
In the study of randomness and information, an important concept is the preservation of
randomness across multiple representations of the same object. Martin-Löf randomness, and
computable randomness, for example, are preserved among different base-b representations of
the same real (see Downey and Hirschfeldt [5], Nies [27], Staiger [31]) and when we convert
from the base-b expansion to the continued fraction expansion ([23, 26, 25]).

A quantification of this notion is whether the rate of information is preserved across
multiple representations. This rate is studied using a constructive analogue of Hausdorff
dimension called Constructive dimension [11, 21]. Hitchcock and Mayordomo [8] show that
constructive dimension is preserved across base-b representations. However, in a recent work,
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Akhil, Nandakumar and Vishnoi [24] show that the rate of information is not preserved across
all representations. In particular, they show that constructive dimension is not preserved
when we convert from base-b representation to continued fraction representation of the same
real.

This raises the following question: Under which settings is the effective rate of information
– i.e., constructive dimension – preserved when we change representations of the same real?
Since constructive dimension is a constructive analogue of Hausdorff dimension, this question
is a constructive analogue of the concept of “faithfulness” of Hausdorff dimension.

A family of covering sets Φ is “faithful” to Hausdorff dimension if the dimension of
every set F defined using covers constructed using Φ, called the Hausdorff Φ-dimension,
coincides with the Hausdorff dimension of F . Faithfulness is well-studied as determining the
Hausdorff dimension of a set is often a difficult problem, and faithful coverings help simplify
the calculation. This notion is introduced in a work of Besicovitch [3], which shows that the
class of dyadic intervals is faithful for Hausdorff dimension. Rogers and Taylor [29] further
develop the idea to show that all covering families generated by comparable net measures
are faithful for Hausdorff dimension. This implies that the class of covers generated by the
base b expansion of reals for any b ∈ N \ {1} is faithful for Hausdorff dimension. However,
not all coverings are faithful for Hausdorff dimension. A natural example is the continued
fraction representation, which is not faithful for Hausdorff dimension [28]. Faithfulness of
Hausdorff dimension has then been studied in various settings [1, 2, 9, 28].

1.2 Constructive Dimension Faithfulness

In this work, we introduce a constructive analogue of Hausdorff Φ-dimension which we call
constructive Φ-dimension. A family of covering sets Φ is “faithful” to constructive dimension
if the constructive Φ-dimension of every set F coincides with the constructive dimension
of F . Mayordomo and Hitchcock [8] show that all base-b representations of reals, which
are faithful for Hausdorff dimension, are also faithful for constructive dimension. On the
other hand, Nandakumar, Akhil, and Vishnoi’s work shows that the continued fraction
expansion, which is not faithful for Hausdorff dimension is also not faithful for constructive
dimension [24]. This raises the natural question: Are faithfulness with respect to Hausdorff
dimension and faithfulness with respect to constructive dimension equivalent notions? A
positive answer to this question implies that Hausdorff dimension faithfulness, a geometric
notion, can be studied using the tools from information theory. Conversely, the faithfulness
results of Hausdorff dimension can help us understand the settings under which constructive
dimension is invariant for every individual real.

In this work, we show that for the most inclusive generalization of base-b expansions under
which faithfulness has been studied classically, namely, for classes of coverings generated by the
Cantor series expansions, the notions of Hausdorff faithfulness and constructive faithfulness
are indeed equivalent. The Cantor series expansion, introduced by Georg Cantor [4], uses
a sequence of natural numbers Q = {nk}k∈N as the terms of representation. Whereas
base-b representation use exponentials with respect to a fixed b, {bn}n∈N, the Cantor series
representation Q = {nk}k∈N uses factorials {n1 . . . nk}k∈N as the basis for representation.
This class is of additional interest as there are Cantor expansions that are faithful as well
as non faithful for Hausdorff dimension, depending on the Cantor series representation
{nk}k∈N in consideration [1]. To establish our result, we use a Φ-dimensional analogue of
the Point-to-Set Principle.
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1.3 Point-to-Set Principle and Faithfulness
The Point-to-Set principle introduced by J. Lutz and N. Lutz [13] relates the Hausdorff
dimension of a set of n-dimensional reals with the constructive dimensions of points in the
set, relative to a minimizing oracle. This theorem has been instrumental in answering open
questions in classical fractal geometry using the theory of computing (See [14, 20, 19, 18, 13]).
Mayordomo, Lutz, and Lutz [15] extend this work to arbitrary separable metric spaces.

In this work, we first prove the Point-to-Set principle for Φ-dimension (Theorem 27) and
show that this generalizes the original Point-to-Set principle. We then develop a combinatorial
construction of sequences having Kolmogorov complexities that grow at the same rate as a
given sequence relative to any given oracle (Theorem 36). This new combinatorial construction
may be of independent interest in the study of randomness. Using these new tools, we
show that under the setting of covers generated by Cantor series expansions, the notions of
constructive faithfulness and Hausdorff dimension faithfulness are equivalent (Theorem 51).
We then adapt the result by Albeverio, Ivanenko, Lebid, and Torbin [1] to derive a loglimit
condition for the constructive dimension faithfulness of the coverings generated by the Cantor
series expansions (Theorem 53).

Our main results include the following.
1. We introduce the notion of constructive Φ-dimension using that subsumes base-b, contin-

ued fraction, and Cantor covering dimension. We also give an equivalent Kolmogorov
Complexity characterization of constructive Φ-dimension. We prove a Point-to-Set prin-
ciple for Φ-dimension. This generalizes the original Point-to-Set Principle and yields
new Point-to-Set principles for the dimensions of continued fractions and Cantor series
representations.

2. Using the point-to-set principle, we characterize constructive faithfulness for Cantor
series expansions using a log limit condition of the terms appearing in the series. This
generalizes the invariance result of constructive dimension under base b representations
to all Cantor series expansions that obey this log limit condition. Moreover, it implies
that for any Cantor series expansion that does not obey the log limit condition, there are
sequences whose Cantor series dimension is different from its constructive dimension.

The recent works of J. Lutz, N. Lutz, Stull, Mayordomo and others study the “point-to-set
principle” of how constructive Hausdorff dimension of points may be used to compute the
classical Hausdorff dimension of arbitrary sets. In addition to the generalization of this
point-to-set principle to Φ-systems, our final result may be viewed as a new point-to-set
phenomenon for the notion of “faithfulness”: here, equality of the constructive Cantor series
dimensions and constructive dimensions of every point yield equality for the classical Cantor
series and Hausdorff dimensions of every set, and conversely.

2 Preliminaries

2.1 Notation
We use Σ to denote the binary alphabet {0, 1}, Σ∗ represents the set of finite binary strings,
and Σ∞ represents the set of infinite binary sequences. We use |x| to denote the length
of a finite string x ∈ Σ∗. For an infinite sequence X = X0X1X2 . . . , we use X ↿ n to
denote the finite string consisting of the first n symbols of X. When n ≥ m we also use
the notation X[m, n] to denote the substring XmXm+1 . . . Xn of X ∈ Σ∞. We call two sets
U and V to be incomparable if U ̸⊆ V and V ̸⊆ U . For a set U ⊆ R, we denote |U | to
denote the diameter of U , that is |U | = supx,y∈U d(x, y), where d is the Euclidean metric.

MFCS 2024
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We use ∅ to denote the empty set, and we assume |∅| = 0. For any finite collection of
sets {U}, we use #(U) to denote the number of elements in U . Given infinite sequences
X1, . . . Xn, we define the interleaved sequence X1 ⊕X2 ⊕ . . . Xn to be the interleaved sequence
X = X1[0]X2[0] . . . Xn[0]X1[1] . . . Xn[1] . . . . For some fixed n ∈ N, we use X ⊆ Rn to denote
the metric space under consideration. We call a set of strings P ⊂ Σ∗ to be prefix free if
there are no two strings σ, τ ∈ P such that σ is a proper prefix of τ . Given n ∈ N we use [n]
to denote {0, 1, . . . n − 1}. Kolmogorov Complexity represents the amount of information
contained in a finite string. For more details on Kolmogorov Complexity, see [5, 10, 27, 30].

▶ Definition 1. The Kolmogorov complexity of σ ∈ Σ∗ is defined as K(σ) =
min
π∈Σ∗

{|π| | U(π) = σ}, where U is a fixed universal prefix free Turing machine.

2.2 Hausdorff Dimension
The following definitions are originally given by Hausdorff [7]. We take the definitions from
Falconer [6].

▶ Definition 2 (Hausdorff [7]). Given a set F ⊆ X, a collection of sets {Ui}i∈N where for
each i ∈ N, Ui ⊆ X is called a δ-cover of F if for all i ∈ N, |Ui| ≤ δ and F ⊆

⋃
i∈N Ui.

▶ Definition 3 (Hausdorff [7]). Given an F ⊆ X, for any s > 0, define

Hs
δ(F) = inf

{∑
i

|Ui|s : {Ui}i∈N is a δ-cover of F

}
.

As δ decreases, the set of admissible δ covers decreases. Hence Hs
δ(F) increases.

▶ Definition 4 (Hausdorff [7]). For s ∈ (0, ∞), the s-dimensional Hausdorff outer measure
of F is defined as:

Hs(F) = lim
δ→0

Hs
δ(F).

Observe that for any t > s, if Hs(F) < ∞, then Ht(F) = 0 (see Section 2.2 in [6]).
Finally, we have the following definition of Hausdorff dimension.

▶ Definition 5 (Hausdorff [7]). For any F ⊂ X, the Hausdorff dimension of F is defined as:

dim(F) = inf{s ≥ 0 : Hs(F) = 0}.

2.3 Constructive dimension
Lutz [11] defines the notion of effective (equivalently, constructive) dimension of an infinite
binary sequence using the notion of lower semicomputable s-gales.

▶ Definition 6 (Lutz [11]). For s ∈ [0, ∞), a binary s-gale is a function d : Σ∗ → [0, ∞) such
that d(λ) < ∞ and for all w ∈ Σ∗, d(w) = 2s.

∑
i∈{0,1} d(wi).

The success set of d is S∞(d) =
{

X ∈ Σ∞ | lim sup
n→∞

d(X ↿ n) = ∞
}

.

For F ⊆ [0, 1], G(F) denotes the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable (Definition 24) binary s-gale d with F ⊆ S∞(d).
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▶ Definition 7 (Lutz [11]). The constructive dimension or effective Hausdorff dimension of
F ⊆ [0, 1] is

cdim(F) = inf G(F).

The constructive dimension of a sequence X ∈ Σ∞ is cdim(X) = cdim({X}).

Mayordomo [21] extends the result by Lutz [12] to give the following Kolmogorov com-
plexity characterization of constructive dimension of infinite binary sequences.

▶ Theorem 8 (Lutz [12], Mayordomo [21]). For any X ∈ Σ∞,

cdim(X) = lim inf
n→∞

K(X ↿ n)
n

.

Mayordomo [22] later gave the following Kolmogorov complexity characterization of
constructive dimension of points in Rn.

▶ Definition 9 (Mayordomo [22]). For any x ∈ Rn,

cdim(x) = lim inf
r→∞

Kr(x)
r

.

where Kr(x) = min
q∈Qn

{K(q) : |x − q| < 2−r}.

Constructive dimension also works in the Euclidean space. For a real x = (x1, ...xn) ∈ Rn,
let binary expansions of the fractional parts of each of the coordinates of x be S1 ∈
Σ∞, . . . , Sn ∈ Σ∞ respectively. Then cdim(x) = n · cdim(X) where X is the interleaved
sequence X = S1 ⊕ S2 · · · ⊕ Sn [16].

We now state some useful properties of constructive dimension. Lutz [11] shows that the
constructive dimension of a set is always greater than or equal to its Hausdorff dimension.

▶ Lemma 10 (Lutz [11]). For any F ⊆ X, dim(F) ≤ cdim(F).

Further, Lutz[11] also shows that the constructive dimension of a set is the supremum of
the constructive dimensions of points in the set.

▶ Lemma 11 (Lutz [11]). For any F ⊆ X, cdim(F) = sup
x∈F

cdim(x).

3 Hausdorff Φ-dimension and Effective Φ-dimension

Hausdorff dimension is defined using the notion of s-dimensional outer measures, where a
cover is taken as the of union of a collection of covering sets {Ui}i∈N. Here a covering set Ui

can be any arbitrary subset of the space (see Section 2.2). We define the general notion of
Hausdorff Φ-dimension by restricting the class of admissible covers to Φ-covers, which are
the union of sets from a family of covering sets Φ.

3.1 Family of covering sets
In this work, we consider a family of covering sets which satisfy the properties given below.

▶ Definition 12 (Family of covering sets Φ). We consider the space X ⊆ Rη where η ∈ N. A
countable family of sets Φ =

⋃
n∈Z{Un

i }i∈N, where for each i ∈ N, n ∈ Z, Un
i ⊆ X, is called a

family of covering sets if it satisfies the following properties:

MFCS 2024
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Increasing Monotonicity: For every n ∈ Z, U ∈ {Un
i }i∈N and m ≤ n, there is a unique

V ∈ {Um
i }i∈N such that U ⊆ V .

Fineness : Given any ϵ > 0, and x ∈ X, there exists a U ∈ Φ such that |U | < ϵ and
x ∈ U .

Note that the number of sets {Un
i } in some level n ∈ Z can also be finite and bounded

by m. The definition still holds because in this case we take Un
j = ∅ for j > m. Note that

from Increasing monotonicity property, it follows that all elements {Un
i } in a particular level

n ∈ Z are incomparable.
We now define the notion of a Φ-cover of a set.

▶ Definition 13 (Φ-cover). Let Φ =
⋃

n∈Z{Un
i }i∈N be a family of covering sets. A Φ -

cover of a set F ⊆ X is collection of sets {Vj}j∈N ⊆ Φ such that {Vj}j∈N covers F , that is
F ⊆

⋃
j∈N

Vj

Note: Mayordomo [22] gives a definition of Nice covers of a metric space. They then give
the definition of constructive dimension on a metric space with a nice cover. We note here
that the notion of Family of covering sets is incomparable with the notion of Nice covers. Our
definition does not require the c-cover property and the Decreasing monotonicity property
of nice covers. Therefore, our notion includes the setting of continued fraction dimension,
which is not captured by Nice covers. Also, the Fineness property required in our definition
is not there in the definition of nice covers. The notion of Increasing monotonicity is present
in both settings.

3.2 Hausdorff Φ-dimension
Recall from Definition 13 that a Φ-cover of F is a collection of sets from Φ that covers F .
We call this as a δ-cover if the diameter of elements in the cover are less than δ.

▶ Definition 14. Let Φ be a family of covering sets defined over X. Given a set F ⊆ X, a
Φ-cover {Ui}i∈N of F is called a δ-cover of F using Φ if for all i ∈ N, |Ui| ≤ δ.

▶ Definition 15. Given an F ⊆ X, for any s > 0, we define

Hs
δ(F , Φ) = inf

{∑
i

|Ui|s : {Ui}i∈N is a δ-cover of F using Φ
}

.

From the fineness property given in Definition 12, it follows that for any F ⊆ X, and
δ > 0, δ-covers of F using Φ always exist.

As δ decreases, the set of admissible δ-covers using Φ decreases. Hence Hs
δ(F , Φ) increases.

▶ Definition 16. For s ∈ (0, ∞), define the s-dimensional Φ outer measure of F as:

Hs(F , Φ) = lim
δ→0

Hs
δ(F , Φ).

Observe that as with the case of classical Hausdorff dimension, for any t > s, if Hs(F , Φ) <

∞, then Ht(F , Φ) = 0 (see Section 2.2 in [6]).
Finally, we have the following definition of Hausdorff Φ-dimension.

▶ Definition 17. For any F ⊂ X, the Hausdorff Φ-dimension of F is defined as:

dimΦ(F) = inf{s ≥ 0 : Hs(F , Φ) = 0}.
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3.3 Effective Φ-dimension
We first formulate the notion of a Φ-s-supergale. A Φ-s-supergale can be seen as a gambling
strategy where the bets are placed on the covering sets from Φ. The definitions in this
subsection are adaptations from Mayordomo [22].

▶ Definition 18 (Mayordomo [22]). Let Φ =
⋃

n∈Z{Un
i }i∈N be a family of covering sets from

Definition 12. For s ∈ [0, ∞), a Φ-s-supergale is a function d : Φ → [0, ∞) such that:∑
U∈{U0

i
}i∈N

d(U)|U |s < ∞ and

For all n ∈ N and all U ∈ {Un
i }i∈N, the following condition holds:

d(U).|U |s ≥
∑

V ∈{Un+1
i

}i∈N,V ⊆U

d(V )|V |s .

The following is the generalization of Kraft inequality for s-supergales from Mayordomo [22].

▶ Lemma 19 (Generalisation of Kraft inequality [22]). Let d be a Φ-s-supergale. Then for
every E ⊆ Φ such that the sets in E are incomparable, we have that∑

V ∈E
d(V )|V |s ≤

∑
U∈{U0

i
}i∈N

d(U)|U |s.

▶ Definition 20 (Mayordomo [22]). Given x ∈ X, a Φ-representation of x is a sequence
(Un)n∈Z such that for each n ∈ Z, Un ∈ {Un

i }i∈N and x ∈ ∩nUn.

Note that the same x can have multiple Φ-representations. Given x ∈ X, let R(x) be the
set of Φ-representations of x.

▶ Definition 21 (Mayordomo [22]). A Φ-s-supergale d succeeds on x ∈ X if there is a
(Un)n∈Z ∈ R(x) such that lim sup

n→∞
d(Un) = ∞.

Equivalently, a Φ-s-supergale d succeeds on a point x ∈ X iff for every k ∈ N, there exists
a U ∈ Φ such that x ∈ U and d(U) > 2k.

▶ Definition 22. The success set of d is S∞(d) = {x ∈ X | d succeeds on x} .

To define constructive Φ-dimension, we require some additional computability restrictions
over Φ. It is an adaptation of the definition from [22].

▶ Definition 23 (Family of computable covering sets Φ). We consider the space X ⊆ Rη where
η ∈ N and a family of covering sets Φ =

⋃
n∈Z{Un

i }i∈N from Definition 12. We call Φ to be
a family of computable covering sets if it satisfies the following additional properties:

Computable diameter: For every n ∈ Z and i ∈ N, |Un
i | is computable.

Computable subsets: For every n ∈ Z, and i ∈ N, the set {j ∈ N : Un+1
j ⊆ Un

i } is
uniformly computable.

In definition 23, when we say |Un
i | is computable, we mean that there is a turing machine

that on input n, i, r outputs a q ∈ Q such that ||Un
i |−q| < 2r. The set {j ∈ N : Un+1

j ⊆ Un
i } is

uniformly computable if there is a turing machine which on input i, j, n decides if Un+1
j ⊆ Un

i .

We use constructive Φ-s-gales to define the notion of constructive Φ-dimension. For a
Φ-s-gale d to be constructive, we require the gale function d to be lower semicomputable.
Note that a lower semicomputable supergale actually takes as input (i, n) where i ∈ N, n ∈ Z
to place bets on Un

i . We omit this technicality in this paper and keep the domain of the gale
as Φ for the sake of simplicity.
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▶ Definition 24. A function d : Φ −→ [0, ∞) is called lower semicomputable if there exists
a total computable function d̂ : Φ × N −→ Q ∩ [0, ∞) such that the following two conditions
hold.

Monotonicity : For all U ∈ Φ and for all n ∈ N, we have d̂(U, n) ≤ d̂(U, n + 1) ≤ d(U).
Convergence : For all U ∈ Φ, lim

n→∞
d̂(U, n) = d(U).

For F ⊆ X, let GΦ(F) denote the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable Φ-s-supergale d with F ⊆ S∞(d).

▶ Definition 25. The constructive Φ-dimension of F ⊆ X is

cdimΦ(F) = inf GΦ(F).

The constructive Φ dimension of a point x ∈ X is defined by cdimΦ({x}), the constructive
Φ-dimension of the singleton set containing x.

This definition can easily be relativized with respect to an oracle A ⊆ N by giving the
s-supergale an additional oracle access to set A ⊆ N. We denote this using cdimA

Φ(F).
We now show that the constructive Φ-dimension of a set is the supremum of constructive

Φ-dimensions of points in the set. The proof is a straightforward adaptation of proof of
Theorem 11 by Lutz [11].

▶ Theorem 26. For any family of computable covering sets Φ defined over the space X, for
any F ⊆ X, we have

cdimΦ(F) = sup
x∈F

cdimΦ(x).

4 Point-to-set principle for Φ-dimension

Let Φ =
⋃

n∈Z{Un
i }i∈N be a family of computable covering sets from Definition 23. In this

work, we introduce the Point-to-Set principle for Φ-dimension. We show that the Hausdorff
Φ-dimension of any set F ⊆ X is equal to the relative constructive Φ-dimensions of elements
in the set, relative to a minimizing oracle A.

▶ Theorem 27. For a family of computable covering sets Φ over the space X, for all F ⊆ X,

dimΦ(F) = min
A⊆N

sup
x∈F

cdimA
Φ(x).

4.1 Point to Set Principle for constructive dimension
▶ Definition 28 (Dyadic Family of covers). Consider the space X = Rn. The dyadic family of
covers is the set of coverings ΦB =

⋃
r∈N{[ m1

2r , m1+1
2r ] × · · · × [ mn

2r , mn+1
2r ]}m1,m2...,mn∈[2r].

It is straightforward to verify that ΦB is a family of computable covering sets from
Definition 23. Besicovitch [3] gave the following Φ-dimension characterization of Hausdorff
dimension.

▶ Lemma 29 (Besicovitch [3]). For all F ⊆ Rn, we have dim(F) = dimΦB
(F).

Similarly, we have the following Φ-dimension characterization of Constructive dimension.

▶ Lemma 30 (Lutz and Mayordomo [16]). For all F ⊆ Rn, we have cdim(F) = cdimΦB
(F).
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From Theorem 27 for ΦB and using Lemma 29 and 30, we have the following point-to-set
principle from [13] relating Hausdorff and Constructive dimensions.

▶ Corollary 31 (J.Lutz and N.Lutz [13]). For all F ⊆ X,

dim(F) = min
A⊆N

sup
x∈F

cdimA(x).

4.2 Point to Set Principle for Continued Fraction dimension
The sequence Y = [a1, a2, . . . ] where each ai ∈ N is the continued fraction expansion

of the number y =
1

a1 +
1

a2 + · · ·

. Given u = [a1, a2 . . . an] ∈ N∗, the cylinder set of

u, Cu is defined as Cu = [[a1, a2, . . . an], [a1, a2, . . . an + 1]] when n is even and Cu =
[[a1, a2, . . . an + 1], [a1, a2, . . . an]] when n is odd.

The notion of constructive continued fraction dimension was introduced by Nandakumar
and Vishnoi [26] using continued fraction s-gales. Akhil, Nandakumar and Vishnoi [24]
showed that this notion is different from that of constructive dimension.

Consider ΦCF to be the set of covers generated by the continued fraction cylinders,
that is ΦCF =

⋃
n∈Z{C[a1,a2,...an]}a1...an∈N. It is routine to verify that this is a family of

computable covering sets from Definition 23. From Theorem 27, we therefore have the
following point-to-set principle for Continued fraction dimension.

▶ Corollary 32. For all F ⊆ X, dimCF(F) = min
A⊆N

sup
x∈F

cdimA
CF(x).

4.3 Effective Φ-dimension using Kolmogorov Complexity
We give an equivalent formulation of constructive Φ-dimension of a point using Kolmogorov
complexity. For this, we require some additional properties for the space Φ.

▶ Definition 33 (Family of finitely intersecting computable covering sets Φ). We consider the
space X ⊆ Rη where η ∈ N and a family of computable covering sets Φ =

⋃
n∈Z{Un

i }i∈N from
Definition 23. We say that Φ is a family of finitely intersecting computable covering sets if it
satisfies the following additional properties:

Density of Rational points: For each U ∈ Φ, there exists a q ∈ Qn such that q ∈ U .
Finite intersection: There exists a constant c ∈ N such that for any collection {Ui} ⊆ Φ
satisfying

(1) Ui ̸⊆ Uj for all i ̸= j, and
(2)

⋂
i Ui ̸= ∅,

we have #({Ui}) ≤ c.
Membership test: There is a computable function that given i ∈ N and n ∈ Z and a
q ∈ Qn checks if q ∈ Un

i .

The Finite intersection property states that the cardinality of any collection of incompar-
able sets from Φ having non empty intersection is bounded by a constant.

Given family of finitely intersecting computable covering sets Φ over a space X, and an
r ∈ N, we define the notion of Kolmogorov Complexity of a point X at precision r with
respect to Φ. We denote this using Kr(X, Φ).
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▶ Definition 34. Given an r ∈ N, and x ∈ X, define

Kr(x, Φ) = min
U∈Φ

{K(U) | x ∈ U and |U | < 2−r}.

where for U ∈ Φ, K(U) is defined as K(U) = min{K(q) | q ∈ U ∩ Qn}.

For any family of finitely intersecting computable covering sets Φ, we have the following
Kolmogorov Complexity characterization of constructive Φ-dimension.

▶ Theorem 35. Given a family of finitely intersecting computable covering sets Φ, over a
space X. For any x ∈ X,

cdimΦ(x) = lim inf
r→∞

Kr(x, Φ)
r

5 Kolmogorov Complexity Construction

In this section we give a technical construction which is crucial in proving the results in
section 6. Theorem 36 says that given an infinite sequence X and an oracle A, for any oracle
B, there exists a sequence Y whose relativized Kolmogorov complexity (of prefixes) with
respect to B is similar to the relativized Kolmogorov complexity (of prefixes) of X with
respect to A.

▶ Theorem 36. For all X ∈ Σ∞ and A ∈ Σ∞, given a B ∈ Σ∞, there exists a Y ∈ Σ∞

such that for all n ∈ N, |KA(X ↿ n) − KB(Y ↿ n)| = o(n) and cdimB(Y ) = cdim(Y ).

6 Equivalence of Faithfulness of Cantor Coverings at Constructive and
Hausdorff Levels

In this section, we show that when the class of covers Φ is generated by computable Cantor
series expansions, the faithfulness at the Hausdorff and constructive levels are equivalent
notions.

6.1 Faithfulness of Family of Coverings
We will first see the definition of Hausdorff dimension faithfulness. We then introduce the
corresponding notion at the effective level, which we call constructive dimension faithfulness.

A family of covering sets Φ is said to be faithful with respect to Hausdorff dimension if
the Φ dimension of every set in the space is the same as its Hausdorff dimension.

▶ Definition 37. A family of covering sets Φ over the space X is said to be faithful with
respect to Hausdorff dimension if for all F ⊆ X, dimΦ(F) = dim(F).

We extend the definition to the constructive level as well. A family of computable covering
sets Φ is defined to be faithful with respect to constructive dimension if the constructive Φ
dimension of every set is the same as its constructive dimension.

▶ Definition 38. A family of computable covering sets Φ is said to be faithful with respect
to constructive dimension if for all F ⊆ X, cdimΦ(F) = cdim(F).

The following lemma follows from Theorem 26 and Lemma 11. It states that constructive
dimension faithfulness can be equivalently stated in terms of preservation of constructive
dimensions of points in the set.
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▶ Lemma 39. A constructive family of covers Φ is faithful with respect to Constructive
dimension if and only if for all x ∈ X, cdimΦ(x) = cdim(x).

The following lemma states that the Φ-dimension of a set is always greater than or equal
to its Hausdorff dimension. Similarly, the constructive Φ−dimension of a set is always greater
than or equal to its constructive dimension.

▶ Lemma 40. For any family of covering sets Φ over X, for all F ⊆ X, dimΦ(F) ≥ dim(F).

▶ Lemma 41. For any family of finitely intersecting computable covering sets Φ over X, for
all F ⊆ X, cdimΦ(F) ≥ cdim(F).

Therefore we have that Φ is not faithful for Hausdorff dimension if and only if there
exists an F ⊂ X such that dimΦ(F) > dim(F). Similarly, Φ is not faithful for Constructive
dimension if and only if there exists an F ⊂ X such that cdimΦ(F) > cdim(F).

6.2 Cantor coverings over unit interval
We consider the faithfulness of family of coverings generated by the computable Cantor series
expansion [4]. We call such class of coverings as Cantor coverings.

Given a sequence Q = {nk}k∈N with nk ∈ N \ {1}, the expression

x =
∞∑

k=1

αk

n1.n2 . . . nk

where αk ∈ [nk] is called the cantor series expansion of the real number x ∈ [0, 1].

▶ Definition 42 (Cantor Coverings ΦQ). The class of Cantor coverings ΦQ over the space
X = [0, 1] generated by the Cantor series expansion Q = {nk}k∈N is the set of intervals⋃

k∈Z
{[ m

n0.n1.n2 . . . nk
,

m + 1
n0.n1.n2 . . . nk

]}m∈[n0.n1.n2...nk]

with n0 taken as 1.

▶ Definition 43 (Computable Cantor Coverings). The cantor series expansion Q = {nk}k∈N
is said to be computable if there exists a machine that generates nk given k. We call the class
of Cantor coverings ΦQ generated by a computable Cantor series expansion Q as a class of
Computable Cantor Coverings over X = [0, 1].

It is routine to verify that for any computable Cantor series expansion Q = {nk}k∈N,
the Cantor covering ΦQ is a family of finitely intersecting computable covering sets from
Definition 33. Therefore, from Theorem 27, we have the following Point-to-Set principle for
Cantor covering dimension.

▶ Corollary 44. For all F ⊆ X and for all computable Cantor coverings ΦQ,

dimΦQ
(F) = min

A⊆N
sup
x∈F

cdimA
ΦQ

(x).

6.3 Kolmogorov Complexity Characterization of Cantor Series
Dimension

We first show a Kolmogorov complexity characterization of constructive Φ-dimension for
computable Cantor coverings.
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▶ Theorem 45. For any x ∈ X, and any computable Cantor coverings ΦQ generated by
Q = {nk}k∈N,

cdimΦQ
(x) = lim inf

k→∞

K(X ↿ mk)
mk

where X is a binary expansion of x and mk = ⌊log2(n1.n2 . . . nk)⌋ .

Theorem 8 ensures that when the Kolmogorov complexities of any two X, Y ∈ Σ∞ align
over all finite prefixes, their constructive dimensions become equal. From Theorem 45, we
get that when this happens, the constructive Φ-dimensions also become equal.

▶ Lemma 46. For any x, y ∈ X, A, B ⊆ N and any class of computable Cantor coverings Φ,
if for all n, |KA(X ↿ n) − KB(Y ↿ n)| = o(n), then cdimA(x) = cdimB(y) and cdimA

Φ(x) =
cdimB

Φ (y). Here X and Y are the binary expansions of x and y respectively.

6.4 Faithfulness of Cantor Coverings

Using the Point-to-Set Principle and properties of Kolmogorov complexity, we show that
the notions of faithfulness for Cantor coverings at Hausdorff and Constructive levels are
equivalent.

We first show that if a class of computable Cantor coverings Φ is faithful with respect to
constructive dimension, then Φ is also faithful with respect to Hausdorff dimension.

▶ Lemma 47. For any class of computable Cantor coverings Φ, if for all F ⊆ X, cdim(F) =
cdimΦ(F), then for all F ⊆ X, dim(F) = dimΦ(F).

To prove the converse, we require the construction of set Is that contains all points in X
having constructive dimension equal to s.

▶ Definition 48. Given s ∈ [0, ∞), define Is = {x ∈ X | cdim(x) = s}.

Lutz and Weihrauch [17] showed that the Hausdorff dimension of Is is equal to s. We
provide a simple alternate proof of this using the point-to-set principle.

▶ Lemma 49 (Lutz and Weihrauch [17]). dim(Is) = s.

We now show that if a class of computable Cantor coverings Φ is faithful with respect to
Hausdorff dimension, then Φ is also faithful with respect to constructive dimension.

▶ Lemma 50. For any class of computable Cantor coverings Φ, if for all F ⊆ X, dim(F) =
dimΦ(F) , then for all F ⊆ X, cdim(F) = cdimΦ(F).

Therefore, we have the following theorem which states that for the classes of Cantor
coverings Φ, faithfulness with respect to Hausdorff and Constructive dimensions are equivalent
notions.

▶ Theorem 51. For any class of computable Cantor coverings Φ,

∀F ⊆ X ; dim(F) = dimΦ(F) ⇐⇒ ∀F ⊆ X ; cdim(F) = cdimΦ(F).
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6.5 Log limit condition for faithfulness
Albeverio, Ivanenko, Lebid and Torbin [1] showed that the Cantor coverings ΦQ generated
by the Cantor series expansions of Q = {nk}k∈N can be faithful as well as non faithful
with respect to Hausdorff dimension depending on Q. Interestingly, they showed that the
Hausdorff dimension faithfulness of Cantor coverings can be determined using the terms nk

in Q.

▶ Theorem 52 (Albeverio, Ivanenko, Lebid and Torbin [1]). A family of Cantor coverings
ΦQ generated by Q = {nk}k∈N is faithful with respect to Hausdorff dimension if and only if
lim

k→∞
log nk

log n1·n2...nk−1
= 0.

Using the above result and the result that faithfulness at the constructive level is equivalent
to faithfulness with respect to Hausdorff dimension (Theorem 51), we have that the condition
stated above provides the necessary and sufficient conditions for Cantor series coverings to
be faithful for constructive dimension.

▶ Theorem 53. A family of Cantor coverings ΦQ generated by Q = {nk}k∈N is faithful with
respect to constructive dimension if and only if

lim
k→∞

log nk

log n1.n2 . . . nk−1
= 0. (1)

The Cantor series expansion is a generalization of the base-b representation, which is
the special case when nk = b for all k ∈ N. That is Qb = {b}n∈N. Since the condition in
Theorem 53 is satisfied by Qb for any b ∈ N, we have the following result by Hitchcock and
Mayordomo about the base invariance of constructive dimension.

▶ Corollary 54 (Hitchcock and Mayordomo [8]). For any x ∈ [0, 1] and k, l ∈ N \ {1},
cdim(k)(x) = cdim(l)(x). where cdim(k)(x) represents the constructive dimension of x with
respect to its base-k representation.

Note that condition (1) classifies the Cantor series expansions on the basis of constructive
dimension faithfulness. As an example, when nk = 2k, condition (1) holds, and therefore
Q = {2k}k∈N is faithful for constructive dimension. However, when nk = 22k , condition (1)
does not hold, and therefore Q = {22k }k∈N is not faithful for constructive dimension.

7 Conclusion and Open Problems

We develop a constructive analogue of Φ-dimension and prove a Point-to-Set principle for Φ-
dimension. Using this, we show that for Cantor series representations, constructive dimension
faithfulness and Hausdorff dimension are equivalent notions. We also provide a loglimit
condition for faithfulness of Cantor series expansions.

The following are some problems that remain open
1. Are the faithfulness at constructive and Hausdorff levels equivalent for all computable

family of covering sets Φ ?
2. What is the packing dimension analogue of faithfulness, is there any relationship between

faithfulness of Hausdorff dimension and packing dimension ?
3. Is there any relationship between faithfulness of constructive dimension and constructive

strong dimension ?

MFCS 2024
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Toward Grünbaum’s Conjecture for 4-Connected
Graphs
Christian Ortlieb
Institute of Computer Science, University of Rostock, Germany

Abstract
Given a spanning tree T of a 3-connected planar graph G, the co-tree of T is the spanning tree of
the dual graph G∗ given by the duals of the edges that are not in T . Grünbaum conjectured in
1970 that there is such a spanning tree T such that T and its co-tree both have maximum degree at
most 3.

In 2014, Biedl proved that there is a spanning tree T such that T and its co-tree have maximum
degree at most 5. Using structural insights into Schnyder woods, Schmidt and the author recently
improved this bound on the maximum degree to 4. In this paper, we prove that in a 4-connected
planar graph there exists a spanning tree T of maximum degree at most 3 such its co-tree has
maximum degree at most 4. This almost solves Grünbaum’s conjecture for 4-connected graphs.
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1 Introduction

In 1966, Barnette showed that every 3-connected planar graph has a spanning 3-tree [3].
Here and in the following, a k-tree denotes a tree with maximum degree at most k. The
dual of a 3-connected planar graph G is also 3-connected and planar. As mentioned in the
abstract, for a spanning tree T the duals of the edges E(G) − E(T ) form a spanning tree
of the dual graph G∗, the so called co-tree ¬T ∗ of T . Thus, the question of a simultaneous
bound on the maximum degree of T and its co-tree naturally arises. In 1970, Grünbaum
made the following conjecture.

▶ Conjecture 1 (Grünbaum [16, p. 1148], 1970). Every planar 3-connected graph G contains
a 3-tree T whose co-tree ¬T ∗ is also a 3-tree.

While Grünbaum’s conjecture is to the best of our knowledge still unsolved, progress has
been made by Biedl [4], who proved the existence of a 5-tree whose co-tree is a 5-tree. Her
approach uses structural properties of canonical orderings. Schmidt and the author recently
proved that in a 3-connected planar graph there is a spanning tree T such that T and its
co-tree have maximum degree at most 4 [20]. In this paper, we prove that in a 4-connected
planar graph there is a spanning 3-tree such that its co-tree is a spanning 4-tree of the dual.
We use structural properties of minimal Schnyder woods. Schnyder woods are a tool which
is widely applied in graph drawing [1, 13,15,21,22] and beyond [6, 7, 10,17].

Our approach divides into two steps. Let G be the graph in question. First, we identify
a suitable candidate graph H. This candidate is a spanning and connected subgraph of G

of maximum degree at most 3. By the well-known cut-cycle duality [11, Prop. 4.6.1], its
co-graph (that is the graph with edge set E(G∗) − E(H)∗) is acyclic. We show that the
co-graph also has maximum degree 3. Then, we only lack the acyclicity of the primal graph.
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Thus, in the second step, we delete edges of the candidate graph H such that it becomes
acyclic and the co-graph remains acyclic. Then, we show that the degree of the resulting
co-graph does not exceed 4. This then yields the desired 3-tree such that its co-tree is a
4-tree. The first step is far from being trivial. Especially, it is hard to prove the connectivity
of the candidate graph. The second step uses parts of the proof of the main theorem of [20].
Hence, we focus on the first step.

We discuss Schnyder woods, their lattice structure and ordered path partitions in Section 2,
the candidate graph H in Section 3 and the second and final step in Section 4. Due to space
limitations some proofs are omitted or only sketched.

2 Schnyder Woods and Ordered Path Partitions

We only consider simple undirected graphs. A graph is plane if it is planar and embedded
into the Euclidean plane without intersecting edges. The neighborhood of a vertex set A is
the union of the neighborhoods of vertices in A. Although parts of this paper use orientation
on edges, we will always let vw denote the undirected edge {v, w}.

2.1 Schnyder Woods
Let σ := {r1, r2, r3} be a set of three vertices of the outer face boundary of a plane graph
G in clockwise order (but not necessarily consecutive). We call r1, r2 and r3 roots. The
suspension Gσ of G is the graph obtained from G by adding at each root of σ a half-edge
pointing into the outer face. With a little abuse of notation, we define a half-edge as an arc
that has a startvertex but no endvertex.

▶ Definition 2 (Felsner [12]). Let σ = {r1, r2, r3} and Gσ be the suspension of a 3-connected
plane graph G. A Schnyder wood of Gσ is an orientation and coloring of the edges of Gσ

(including the half-edges) with the colors 1,2,3 (red, green, blue) such that
(a) Every edge e is oriented in one direction (we say e is unidirected) or in two opposite

directions (we say e is bidirected). Every direction of an edge is colored with one of the
three colors 1,2,3 (we say an edge is i-colored if one of its directions has color i) such
that the two colors i and j of every bidirected edge are distinct (we call such an edge
i-j-colored). Throughout the paper, we assume modular arithmetic on the colors 1,2,3
in such a way that i + 1 and i − 1 for a color i are defined as (i mod 3) + 1 and (i + 1
mod 3) + 1, respectively. For a vertex v, a uni- or bidirected edge is incoming (i-colored)
in v if it has a direction (of color i) that is directed toward v, and outgoing (i-colored)
of v if it has a direction (of color i) that is directed away from v.

(b) For every color i, the half-edge at ri is unidirected, outgoing and i-colored.
(c) Every vertex v has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored

edges e1, e2, e3 of v occur in clockwise order around v. For every color i, every incoming
i-colored edge of v is contained in the clockwise sector around v from ei+1 to ei−1 (see
Figure 1).

(d) No inner face boundary contains a directed cycle (disregarding possible opposite edge
directions) in one color.

For a Schnyder wood and color i, let Ti be the directed graph that is induced by the
directed edges of color i. The following result justifies the name of Schnyder woods.

▶ Lemma 3 ([13,21]). For every color i of a Schnyder wood of Gσ, Ti is a directed spanning
tree of G in which all edges are oriented to the root ri.



C. Ortlieb 77:3

1

23 1 1 1

2
2
2 3

3

Figure 1 Properties of Schnyder woods. Condition 2c at a vertex.

For a directed graph H, we denote by H−1 the graph obtained from H by reversing the
direction of all its edges.

▶ Lemma 4 (Felsner [15]). For every i ∈ {1, 2, 3}, T −1
i ∪ T −1

i+1 ∪ Ti+2 is acyclic.

▶ Lemma 5 (folklore). Let S be a Schnyder wood of Gσ. Then, G is internally triangulated,
i.e., every face except the outer face is a triangle if and only if every internal edge of G is
unidirected in S.

2.2 Dual Schnyder Woods

Let G be a 3-connected plane graph. Any Schnyder wood of Gσ induces a Schnyder wood of
a slightly modified planar dual of Gσ in the following way [9,14] (see [19, p. 30] for an earlier
variant of this result given without proof). As common for plane duality, we will use the
plane dual operator ∗ to switch between primal and dual objects (also on sets of objects).

Extend the three half-edges of Gσ to non-crossing infinite rays and consider the planar
dual of this plane graph. Since the infinite rays partition the outer face f of G into three
parts, this dual contains a triangle with vertices b1, b2 and b3 instead of the outer face vertex
f∗ such that b∗

i is not incident to ri for every i (see Figure 2). Let the suspended dual Gσ∗ of
Gσ be the graph obtained from this dual by adding at each vertex of {b1, b2, b3} a half-edge
pointing into the outer face.

r1

r2r3

b1

b2 b3

Figure 2 The completion of G obtained by superimposing Gσ and its suspended dual Gσ∗
(the

latter depicted with dotted edges). The primal Schnyder wood is not the minimal element of the
lattice of Schnyder woods of G, as this completion contains a clockwise directed cycle (marked in
yellow).

MFCS 2024



77:4 Toward Grünbaum’s Conjecture for 4-Connected Graphs

Consider the superposition of Gσ and its suspended dual Gσ∗ such that exactly the primal
dual pairs of edges cross (here, for every 1 ≤ i ≤ 3, the half-edge at ri crosses the dual edge
bi−1bi+1).

▶ Definition 6. For any Schnyder wood S of Gσ, define the orientation and coloring S∗ of
the suspended dual Gσ∗ as follows (Figure 2):
(a) For every unidirected (i − 1)-colored edge or half-edge e of Gσ, color e∗ with the two

colors i and i + 1 such that e points to the right of the i-colored direction.
(b) Vice versa, for every i-(i + 1)-colored edge e of Gσ, (i − 1)-color e∗ unidirected such that

e∗ points to the right of the i-colored direction.
(c) For every color i, make the half-edge at bi unidirected, outgoing and i-colored.

The following lemma states that S∗ is indeed a Schnyder wood of the suspended dual.
The vertices b1, b2 and b3 are called the roots of S∗.

▶ Lemma 7 ([18], [14, Prop. 3]). For every Schnyder wood S of Gσ, S∗ is a Schnyder wood
of Gσ∗ .

Since S∗∗ = S, Lemma 7 gives a bijection between the Schnyder woods of Gσ and the
ones of Gσ∗ . Let the completion G̃ of G be the plane graph obtained from the superposition
of Gσ and Gσ∗ by subdividing each pair of crossing (half-)edges with a new vertex, which we
call a crossing vertex (Figure 2). The completion has six half-edges pointing into its outer
face.

Any Schnyder wood S of Gσ implies the following natural orientation and coloring G̃S

of its completion G̃: For any edge vw ∈ E(Gσ) ∪ E(Gσ∗), let z be the crossing vertex of G̃

that subdivides vw and consider the coloring of vw in either S or S∗. If vw is outgoing of v

and i-colored, we direct vz ∈ E(G̃) toward z and i-color it; analogously, if vw is outgoing
of w and j-colored, we direct wz ∈ E(G̃) toward z and j-color it. In the case that vw is
unidirected, say w.l.o.g. incoming at v and i-colored, we direct zv ∈ E(G̃) toward v and
i-color it. The three half-edges of Gσ∗ inherit the orientation and coloring of S∗ for G̃S . By
Definition 6, the construction of G̃S implies immediately the following corollary.

▶ Corollary 8. Every crossing vertex of G̃S has one outgoing edge and three incoming edges
and the latter are colored 1, 2 and 3 in counterclockwise direction.

Using results on orientations with prescribed outdegrees on the respective completions,
Felsner and Mendez [8,13] showed that the set of Schnyder woods of a planar suspension Gσ

forms a distributive lattice. The order relation of this lattice relates a Schnyder wood of Gσ

to a second Schnyder wood if the former can be obtained from the latter by reversing the
orientation of a directed clockwise cycle in the completion. This gives the following lemma.

▶ Lemma 9 ([8, 13]). For the minimal element S of the lattice of all Schnyder woods of Gσ,
G̃S contains no clockwise directed cycle.

We call the minimal element of the lattice of all Schnyder woods of Gσ the minimal
Schnyder wood of Gσ.

▶ Lemma 10 (Di Battista et al. [9]). The boundary of every internal face of G can be
partitioned into six paths P1,3, p2,3, P2,1, p3,1, P3,2 and p1,2 which appear in that clockwise
order. For those paths the following holds (see Figure 3).
(a) Pi,j consists of one edge which is either unidirected i-colored, unidirected j-colored or

i-j-colored. Color i is directed in clockwise direction and color j in counterclockwise
direction around f .

(b) pi,j consists of a possibly empty sequence of i-j-colored edges such that color i is directed
clockwise around f .
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f∗

P1,3

p2,3

P2,1

p3,1

P3,2

p1,2

Figure 3 Illustration for Lemma 10. A face f , the paths on its boundary and the dual edges
incident to f∗. If P1,3 is unidirected 1-colored and p2,3 is non-empty, there is a clockwise cycle in
G̃S , marked in yellow.

2.3 Ordered Path Partitions
We denote paths as tuples of vertices such that consecutive vertices in the tuple are adjacent
in the path. If a path P consists of only one vertex x, we might also write P = x. The
concatenation of two paths P1 and P2 we denote by P1P2.

▶ Definition 11. For any j ∈ {1, 2, 3} and any {r1, r2, r3}-internally 3-connected plane graph
G, an ordered path partition P = (P0, . . . , Ps) of G with base-pair (rj , rj+1) is a tuple of
induced paths such that their vertex sets partition V (G) and the following holds for every
i ∈ {0, . . . , s − 1}, where Vi :=

⋃i
q=0 V (Pq) and the contour Ci is the clockwise walk from

rj+1 to rj on the outer face of G[Vi].
(a) P0 is the clockwise path from rj to rj+1 on the outer face boundary of G, and Ps = rj+2.
(b) Every vertex in Pi has a neighbor in V (G) \ Vi.
(c) Ci is a path.
(d) Every vertex in Ci has at most one neighbor in Pi+1.

By Definition 11a and 11b, G contains for every i and every vertex v ∈ Pi a path from v

to rj+2 that intersects Vi only in v. Since G is plane, we conclude the following.

▶ Lemma 12. Every path Pi of an ordered path partition is embedded into the outer face of
G[Vi−1] for every 1 ≤ i ≤ s.

2.3.1 Compatible Ordered Path Partitions
We describe a connection between Schnyder woods and ordered path partitions that was first
given by Badent et al. [2, Theorem 5] and then revisited by Alam et al. [1, Lemma 1].

▶ Definition 13. Let j ∈ {1, 2, 3} and S be any Schnyder wood of the suspension Gσ of G. As
proven in [1, arXiv version, Section 2.2], the inclusion-wise maximal j-(j + 1)-colored paths
of S then form an ordered path partition of G with base pair (rj , rj+1), whose order is a linear
extension of the partial order given by reachability in the acyclic graph T −1

j ∪ T −1
j+1 ∪ Tj+2;

we call this special ordered path partition compatible with S and denote it by Pj,j+1.

For example, for the Schnyder wood given in Figure 2, P2,3 consists of the six maximal
2-3-colored paths, of which four are single vertices. We denote each path Pi ∈ Pj,j+1 by
Pi := (vi

1, . . . , vi
k) such that vi

1vi
2 is outgoing j-colored at vi

1.
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Let Ci be as in Definition 11. By Definition 11c and Lemma 12, every path Pi =
(vi

1, . . . , vi
k) of an ordered path partition satisfying i ∈ {1, . . . , s} has a neighbor vi

0 ∈ Ci−1
that is closest to rj+1 and a different neighbor vi

k+1 ∈ Ci−1 that is closest to rj . We call vi
0

the left neighbor of Pi, vi
k+1 the right neighbor of Pi and P e

i := vi
0Piv

i
k+1 the extension of Pi;

we omit superscripts if these are clear from the context. For 0 < i ≤ s, let the path Pi cover
an edge e or a vertex x if e or x is contained in Ci−1, but not in Ci, respectively.

3 The Candidate Graph H

In this section, we define a special triangulation τ(G) of G. We also give some structural
properties of τ(G). Afterwards, we define our candidate graph H as a subgraph of τ(G).
Then, we are left to show some structural properties of H. First, we show that H is also
a subgraph of G. Then, we argue that H and its co-graph have maximum degree at most
3. And finally, we show that if G is 4-connected, then H is connected. The latter will need
some technical preparation.

Let P be the counterclockwise 3-colored path on the boundary of some internal face. By
Lemma 10, P consists of p2,3 (a possibly empty sequence of 2-3-colored edges) and possibly
P1,3 (an edge which is either unidirected 1-colored, unidirected 3-colored or 1-3-colored).
Since S is minimal, we do not have clockwise cycles in G̃S . Hence, if p2,3 is non-empty, then
P1,3 is either unidirected 3-colored or 3-1-colored (Figure 3), and we might define τ(G) as
follows. A similar construction, but in the reverse direction, is used by Bonichon et al. [5].

▶ Definition 14. Let G be a 3-connected planar graph and let S be the minimal Schnyder wood
of Gσ. Define the internal triangulation τ(G) of G and the Schnyder wood of the σ-suspension
of τ(G) to be the graph and Schnyder wood obtained by modifying every internal face f of
G as follows (Figure 4). Let P be the counterclockwise 3-colored path on the boundary of
f and let v1, . . . , vk be its vertices in counterclockwise order around f . If k ≥ 3, proceed as
follows. Add 3-colored edges v1vk, . . . , vk−2vk directed towards vk and for j = 2, . . . , k − 1
change the color and orientation of vjvj+1 such that vjvj+1 is 2-colored and directed towards
vj. Proceed the same way for the counterclockwise 1-colored path and the counterclockwise
2-colored path on the boundary of f .

Observe that if G is k-connected, then so is τ(G).

v1v4

vk = v5

v2v3

e

(a) An internal face of G.

v1v4

vk = v5

v2v3

e′
e

(b) The corresponding subgraph of τ(G).

Figure 4 Illustration for the definition of τ(G). The counterclockwise 3-colored path P on the
boundary of the face of G is highlighted in yellow.

▶ Lemma 15. For a minimal Schnyder wood of Gσ, Definition 14 yields a minimal Schnyder
wood of the σ-suspension of τ(G).
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▶ Definition 16. Let G be a 3-connected plane graph. Let S be a minimal Schnyder wood of
Gσ such that r1r3 and r3r2 are both edges of G. Define the subgraph H of τ(G) as follows
(Figure 5). Let V (H) = V (τ(G)). The edge set of H is defined in the following. The edges
on the outer face of τ(G) that are either 1-2-colored or 2-3-colored are defined to be in E(H).
Now, we define which of the internal edges of τ(G) are in E(H). For this, we treat the
1-2-colored edges and the 1-3-colored edge like unidirected 1-colored edges. The 2-3-colored
edge we treat like a unidirected 2-colored edge. Then, for all i ∈ {1, 2, 3}, an internal i-colored
edge e of τ(G) is in E(H) if e and two (i + 1)-colored edges form a face. Observe that, by
Definition 2c, this face needs to be right of e w.r.t. the orientation of e.

Figure 5 Illustration for the definition of H. H is depicted in yellow.

▶ Lemma 17. As in Definition 16, treat the 1-2-colored edges and the 1-3-colored edge like
unidirected 1-colored edges and the 2-3-colored edge like a unidirected 2-colored edge. An
edge of τ(G) with head x is in E(H) if and only if it is the first incoming i-colored edge in
clockwise direction at x for some i ∈ {1, 2, 3}.

▶ Lemma 18. H has maximum degree at most 3.

Sketch of proof. Treat the edges of the outer face of τ(G) as described in Definition 16. Let
v ∈ V (H) be a vertex that is not a root vertex. It is possible to argue for the root vertices
in a similar way. We show that, for every i ∈ {1, 2, 3}, of the incoming i-colored and the
outgoing (i + 1)-colored edges at v there is at most one edge in E(H). Assume that at v

there is an incoming edge e = vy ∈ E(H), and w.l.o.g. e is 2-colored. By Definition 16, e

and the outgoing 3-colored edge vx at v form a triangle with another 3-colored edge xy. By
Definition 2c, xy is incoming 3-colored at x. Hence, xy precedes vx in clockwise order around
x. Thus, by Lemma 17, vx /∈ E(H). Furthermore, by Lemma 17, e is the only incoming
2-colored edge at v that is in H.

If at v there is an outgoing edge vw ∈ E(H), and w.l.o.g. vw is 3-colored. Then, by
Definition 16, vw and the at v outgoing 1-colored edge vu are on the boundary of a face
together with another 1-colored edge. By Definition 2c, incoming 2-colored edges at v only
occur in the clockwise sector between vw and vu. As vw and vu are on the same face, this
sector is empty and thus there is no incoming 2-colored edge at v.

Hence, for every i ∈ {1, 2, 3}, of the set of the incoming i-colored edges and the outgoing
(i + 1)-colored edge at v there is at most one edge in E(H). Those three sets cover all edges
incident to v and hence degH(v) ≤ 3. Similar arguments show that also the root vertices
have degree at most 3. ◀

▶ Lemma 19. H is a subgraph of G.
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Proof. Let e ∈ E(τ(G))\E(G) be w.l.o.g. 3-colored with tail v and head w. In the following,
we show that e is no edge of H. This implies that H is a subgraph of G. Let f be the face
of τ(G) that has v and w on the boundary in that clockwise order. Let e′ = wu be the edge
succeeding e on f in clockwise order. As observed in Definition 14, wu is incoming 3-colored
at w (Figure 4). If w ̸= r3, then wv is not the in clockwise order first incoming 3-colored
edge at w in the sense of Lemma 17. Hence, wv /∈ E(H).

So let w = r3. Assume, for the sake of contradiction, that u = r1. The edge uv = r1v

succeeding wu = r3r1 on f in clockwise order is outgoing 2-colored at u by Definition 14
(Figure 4). The only outgoing 2-colored edge at r1 is on the clockwise path from r1 to r2 on
the outer face of τ(G). And hence, v is on that path. As vr3 is unidirected, v ̸= r2. Hence,
{v, r3} is a 2-separator of τ(G) and thus of G, contradicting the 3-connectivity of G. This
implies that u ≠ r1 and thus r1r3 ̸= wu. As above, wv is not the in clockwise order first
incoming 3-colored edge at w in the sense of Lemma 17, and thus, wv /∈ E(H). ◀

▶ Lemma 20. The co-graph ¬H∗ of H in G has maximum degree at most 3. All edges in
E(¬H∗) except (r1r3)∗ are bidirected.

Sketch of proof. We show that all bidirected edges of G except r1r3 are in H. Let e = xy

be a bidirected internal edge in G.
Case 1. x and y are both internal vertices of G. Assume that e is w.l.o.g. a 2-3-colored edge

in G. By Definition 14, e becomes 2-colored and is on a face with two 3-colored edges e1
and e2 in τ(G). As x and y are both internal vertices, e1 and e2 are both internal edges
and, by Lemma 5, unidirected. And thus, e ∈ E(H) by Definition 16.

Case 2. x and y are both on the outer face of G. If they do not appear consecutively, then
they form a 2-separator of G, contradicting the 3-connectivity of G. Thus, xy is an edge
on the outer face of G. Then, by Definition 16, e ∈ E(H) if and only if e ̸= r1r3.

Case 3. W.l.o.g. x is on the outer face of G and y is an internal vertex. This case follows
with similar arguments as Case 1.

Hence, only (r1r3)∗ and the dual edges of unidirected edges might be edges of ¬H∗. By
Corollary 8, the dual edges of unidirected edges in G are bidirected. Also, observe that
(r1r3)∗ is unidirected and points into the outer face of G. Thus, for an internal face f of G

only the outgoing edges of f∗ might be in ¬H∗. Hence, deg¬H∗(f∗) ≤ 3. As, by Definition 16,
only one edge on the boundary of the outer face of G is not in H, the dual of the outer face
has degree 1 in ¬H∗. ◀

The following definition and lemmas are in preparation of the final statement (Proposi-
tion 26) of this section. They study the structure of τ(G) under the assumption that H is
not connected. In the end, they allow us to show that if H is not connected, then there is a
3-separator in G (Figure 6). This yields that if G is 4-connected, then H is connected.

▶ Definition 21. For x ∈ V (τ(G)), define DFS(x) to be the DFS-index of x for a depth first
search on T1 that starts at r1 and explores the children of each vertex in counterclockwise
order.

For a vertex x ∈ V (τ(G)) let p3(x) and p1(x) be the parent of x in T3 and T1, respectively
(Figure 6). Let c2(x) be the vertex such that c2(x)x is the clockwise first incoming 2-colored
edge at x if existent, i.e., c2(x) is the clockwise first child of x in T2. Define ld(x) ("leftmost
descendant") to be the descendant v of x in T1 such that v is a leaf of T1 and DFS(v) is
minimal.

For a set of vertices S ⊆ V (τ(G)) denote the set of the descendants of S in T1 by desc(S).
Define desc+(S) := desc(S) ∪ S.
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ld(x)

p1(x)

v4

c2(v4)
p3(x)

x
v1 v2 v3

Figure 6 Illustration for Proposition 26. If x is not connected to a vertex with smaller DFS-index
in H, then p3(x), p1(x) and vj = v4 form a separating triangle.

▶ Remark 22. Remember that, by Lemma 4, T1
−1 ∪ T2 ∪ T3

−1 is acyclic. Observe that the
DFS-index is a total order of T1

−1 ∪T2 ∪T3
−1. E.g. for an edge xy that is 1-colored incoming

at y we have that DFS(x) > DFS(y).
Also, observe that we obtain the path from x to ld(x) in T1 by descending T1 starting at

x and choosing the counterclockwise first child until we hit a leaf of T1.

▶ Lemma 23. Assume x is not connected to p1(x) in H, i.e., there is no path in H that
has x and p1(x) as endpoints. Then, the situation in τ(G) is as follows. Let v0, . . . , vk be
the DFS-ordered children of p1(x) in T1, i.e., DFS(v0) < . . . < DFS(vk), and x = vt for
some t ∈ {0, . . . , k}. Then, there exists j ∈ {t + 1, . . . , k} such that c2(vj) exists and is not
in desc+(vt, . . . , vk) (Figure 6). We say that x has property B.

Proof. Let the height of a vertex v in T1 be the length of a longest oriented path in T1 from
a leaf of T1 to v. The proof is by induction on the height of p1(x) in T1. Assume that this
height is one. Then, the vertices x = vt, . . . , vk are all leaves in T1. We now show that if
x does not have property B, then x is connected to p1(x) in H. So assume that for every
i ∈ {t + 1, . . . , k} either c2(vi) does not exist or c2(vi) is a vertex of vt, . . . , vk in T1.

If c2(vi) does not exist, for some i ∈ {t + 1, . . . , k}, i.e., vi does not have an incoming
2-colored edge, then, as τ(G) is internally 3-connected, vivi−1 exists and is 3-colored by
Definition 2c. As vip1(x) and vi−1p1(x) are 1-colored, vivi−1 is in H by Definition 16.
Otherwise, c2(vi) = vj for some j ∈ {t, . . . , k}. As observed in Definition 21, DFS(c2(vi)) <

DFS(vi) and hence j ∈ {t, . . . , i − 1}. Since c2(vi)vi is in E(H) by Lemma 17, vj and vi are
connected in H. Hence, in any case vi is connected in H to a vertex vj with j ∈ {t, . . . , i − 1}.
This finally yields that x = vt and vk are connected in H. As vkp1(x) is the clockwise first
incoming 1-colored edge at p1(x), vkp1(x) is in E(H) by Lemma 17. And thus, x = vt and
p1(x) are connected in H.

Assume that the height of p1(x) is at least two. Again, we show that if x does not have
property B, then x and p1(x) are connected in H. As before, we observe that if c2(vi) does
not exist for some i = t + 1, . . . , k, then vi and vi−1 are connected in H. Also, if c2(vi) = vj

for some j ∈ {t, . . . , k}, then j < i and vj and vi are connected in H.
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So assume that c2(vi) is a descendant of vj , j ∈ {t, . . . , k}. For the same reason as above,
j ∈ {t, . . . , i − 1}. Let P be the 1-colored path from c2(vi) to vj in τ(G). P , c2(vi)vi, vip1(x)
and vjp1(x) form a cycle C. Observe that all vertices of C except for p1(x) are descendants
of p1(x). Thus, by planarity, for every vertex in the interior of C the outgoing 1-colored
path meets p1(x) or a descendant of p1(x). And thus, all vertices in the interior of C are
descendants of p1(v) in T1. Let y ̸= vj be a vertex of P . As p1(y) is a descendant of p1(x), it
has smaller height in T1 than p1(x). We want to apply induction on y. Hence, we need to
show that y does not have property B.

Assume, for the sake of contradiction, that y has property B. Then, there is a child
z of p1(y) such that DFS(y) < DFS(z), c2(z) exists and for every child b of p1(y) with
DFS(y) ≤ DFS(b), c2(z) is neither a descendant nor c2(z) = b. Especially, DFS(c2(z)) <

DFS(y). All vertices of C and all vertices in its interior, except for vertices on the 1-colored
path from p1(y) to p1(x), have a higher DFS-index than y. By Lemma 4, c2(z) cannot be on
this path from p1(y) to p1(x). Thus, c2(z) cannot occur on C or in its interior. And hence,
c2(z) needs to be in the exterior of C. As all neighbors of y that have a higher DFS-index
than y are in the interior of C, we have that z is in the interior of C. Hence, c2(z) is in the
exterior and z is in the interior of C, violating planarity.

This yields that y does not have property B and by induction y and p1(y) are connected
in H. This holds for every vertex on P \ {vj}. Thus, vj and c2(vi) are connected in H. By
Lemma 17, c2(vi)vi ∈ E(H), and thus vj and vi are connected in H. As before, we obtain
that x and p1(x) are connected in H. ◀

▶ Lemma 24. If x ∈ V (τ(G)) \ {r1} is not connected to a vertex v with DFS(v) < DFS(x)
in H, then x is not connected to p1(x) in H and x is the child of p1(x) in T1 with smallest
DFS-index. Furthermore, all vertices w on the x-ld(x)-path in T1 are connected to x in H.
And we have for all vertices w on the p1(x)-ld(x)-path in T1 that p3(w) = p3(x) (Figure 6).

Proof. Let x ∈ V (τ(G)) such that x is not connected to a vertex v with DFS(v) < DFS(x).
Let v0, . . . , vk be the DFS-ordered children of p1(x) in T1. First, we show that x = v0. Assume,
for the sake of contradiction, that x = vj with j ∈ {1, . . . , k}. Then, xvj−1 has either color 2
or 3. If it has color 3, then, by Definition 16, xvj−1 is in H and DFS(vj−1) < DFS(x), a
contradiction. If xvj−1 has color 2, then this edge is incoming 2-colored at x, by Definition 2c.
This implies that c2(x) exists. DFS(c2(x)) < DFS(x) and, by Lemma 17, c2(x)x ∈ E(H),
a contradiction. And hence, x = v0.

Assume, for the sake of contradiction, that there exists a vertex w on the x-ld(x)-path
in T1 such that w is not connected to x in H. Choose w such that DFS(w) is minimal.
Then, p1(w) is connected to x in H, and hence, w is not connected to p1(w) in H. Thus, by
Lemma 23, w has property B. Let w = w0, . . . , wk be the DFS-ordered children of p1(w) in
T1. Let j be the maximal index such that c2(wj) exists and is not a descendant of p1(w).
Since w has property B, j exists. Since j is maximal, wj does not have property B. Hence,
by Lemma 23, it is connected to p1(w) in H and thus to x. Since c2(wj)wj ∈ E(H), x is
connected to c2(wj) in H.

As observed in Definition 21, DFS(c2(wj)) < DFS(wj). The DFS-indices of the ver-
tices w0, . . . , wj−1 and their descendants are exactly the indices in between DFS(wj) and
DFS(w0). And the DFS-indices of the vertices on the p1(w)-x-path are exactly the indices
in between DFS(p1(w)) and DFS(x). By Lemma 4, c2(wj) cannot be on the p1(w)-x-path.
Hence, DFS(c2(wj)) < DFS(x), a contradiction. Hence, w is connected to x in H.
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As all vertices on the x-ld(x)-path in T1 are connected to x in H, they all do not have
incoming 2-colored edges. Indeed, incoming 2-colored edges at those vertices would connect
x to a vertex with smaller DFS-index. Since every vertex on the x-ld(x)-path needs to form
a triangle with its parent, the vertex and the parent send their 3-colored outgoing edge to
the same vertex p3(x). ◀

Similar arguments are used to show the following lemma.

▶ Lemma 25. Let x ∈ V (τ(G))\{r1} be not connected to a vertex v with DFS(v) < DFS(x)
in H. Let x = v0, . . . , vk be the DFS-ordered children of p1(x) in T1. Let vj be the vertex
of smallest index such that c2(vj) exists and is not in desc+(v0, . . . , vj−1). Then, the edge
vjp3(x) is in E(τ(G)).

▶ Proposition 26. If G is 4-connected, then H is connected.

Proof. Observe that if G is 4-connected, then so is τ(G). We show that every vertex x ̸= r1
is connected in H to a vertex with lower DFS-index. Assume, for the sake of contradiction,
that x is not connected to a vertex with lower DFS-index. With the help of the previous
lemmas we show that p3(x), p1(x) and vj (as defined in Lemma 23) form a 3-separator in H.
Let v0, . . . , vk be the DFS-ordered children of p1(x) in T1.

By Lemma 23, there exists a vertex vj , j ∈ {1, . . . , k} of smallest DFS-index such that
c2(vj) exists and is not in desc+(v0, . . . , vj−1). Observe that p1(x)vj is an edge of τ(G).

By Lemma 24, x = v0 and all vertices on the p1(x)-ld(x)-path in T1 send their 3-colored
outgoing edge to the same vertex p3(x). Thus, p1(x)p3(x) ∈ E(τ(G)).

By Lemma 25, the edge vjp3(x) exists in τ(G). Hence, the edges vjp3(x), p1(x)p3(x) and
p1(x)vj form a triangle in τ(G). The vertex x is in the interior of this triangle. Assume, for
the sake of contradiction, that r1 is not in the exterior of this triangle. Then, r1 = p1(x) and,
by Lemma 24, x = r3. By Definition 16, r3 is connected to r1 by the clockwise path on the
outer face from r1 to r3. As DFS(r1) < DFS(r3), we arrive at a contradiction. Hence, r1 is
in the exterior of the triangle of vjp3(x), p1(x)p3(x), i.e., this triangle is a separating triangle
in τ(G), contradicting the 4-connectivity of τ(G). This yields that every vertex, except for
r1, is connected to a vertex with lower DFS-index in H, and thus H is connected. ◀

4 A Tree of Maximum Degree 3 and a Co-Tree of Maximum Degree 4

In this section, we give one lemma on the structure of ordered path partitions. Then, we
finally prove the main theorem.

We want to remind the reader of the definition of ordered path partitions and the fact
that the maximal 2-3-colored paths of a Schnyder wood yield the compatible ordered path
partition P2,3.

▶ Lemma 27 ([20]). Let G be a 4-connected plane graph, S be the minimal Schnyder wood
of Gσ and P2,3 = (P0, . . . , Ps) be the ordered path partition that is compatible with S. Let
Pi := (v1, . . . , vk) ̸= P0 be a path of P2,3 and v0 and vk+1 be its left and right neighbor.
Then, every edge vlw /∈ {v0v1, vkvk+1} with vl ∈ Pi and w ∈ Vi−1 is unidirected, 1-colored
and incoming at vk and w /∈ {v0, vk+1}.

▶ Theorem 28. Every 4-connected planar graph G contains a 3-tree such that its co-tree is
a 4-tree.

Sketch of proof. Let S be a minimal Schnyder wood of G such that r1r3 and r3r2 are both
edges of G. By Lemma 9, the completion G̃S of G contains no clockwise directed cycle. By
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Proposition 26 and Lemma 19, G has a connected subgraph H as defined in Definition 16. It
has maximum degree at most 3 by Lemma 18, and its co-graph has maximum degree at most
3 by Lemma 20. Now, we define a subset D of the edges of H such that H − D becomes
acyclic and the degree of its co-graph does not exceed 4.

Let C be a cycle in H. Let P2,3 = (P0, . . . , Ps) be the compatible ordered path partition
of S. Let P be the path of maximal length in C such that P ⊆ PM = (v1, . . . , vk) with
M := max{i | Pi ∩ V (C) ̸= ∅}. P is the index maximal subpath of C.

Since P ⊆ PM is the index maximal subpath of the cycle C, there need to be two edges
in H that join a vertex of P with a vertex of VM−1. Say that those edges are the associated
edges of P . Remember that Vi :=

⋃i
q=0 V (Pq). The Schnyder wood S is minimal. Hence, by

Lemma 27, every edge except for v0v1 and vkvk+1 that joins a vertex of PM with a vertex of
VM−1 is unidirected, 1-colored and incoming in vk. Let eP be the clockwise first incoming
1-colored edge at vk if existent. Otherwise, let eP be vkvk+1. It is possible to show that v0v1
and eP are the only edges in H that join a vertex of P with a vertex of VM−1. This also
directly yields that P = PM .

Let Pmax be the set of all index maximal subpaths of cycles in H. Now, we need to
identify for each P = (v1, . . . , vk) ∈ Pmax an edge of the set E(P ) ∪ {v0v1, eP } such that
removing those edges leaves H acyclic and connected and does not raise the maximum degree
of ¬H∗ above 4. Define D = Duni ∪ Dbi to be this set of edges. Start with Duni = Dbi = ∅.

If eP is unidirected, add it to Duni. Otherwise, if eP is bidirected and v0v1 is unidirected
add v0v1 to Duni. By Lemma 20, all edges of ¬H∗ except for (r1r3)∗ are bidirected. As all
edges in Duni are unidirected, their duals are bidirected, by Corollary 8. Hence, all edges
in ¬H∗ + D∗

uni except for (r1r3)∗ are bidirected. By the same reasoning as in the proof of
Lemma 20, the maximum degree of ¬H∗ + D∗

uni is at most 3.
Let Pbi

max ⊆ Pmax be the paths P = (v1, . . . , vk) such that both v0v1 and eP are bidirected.
Observe that in this case eP = vkvk+1. Hence, we now are in the same situation as in the
proof of the main theorem of [20]. We are able to apply the exact same arguments in order to
obtain the desired set Dbi such that H − D becomes acyclic and ¬H∗ + D∗ remains acyclic
and has maximum degree at most 4. Since H has maximum degree at most 3, so does H − D.
And thus, H − D and ¬H∗ + D∗ are the desired trees. ◀
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C2k+1-Coloring of Bounded-Diameter Graphs
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Abstract
For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph
G and we have to determine whether there exists an edge-preserving mapping φ : V (G) → V (H).
Note that Hom(C3), where C3 is the cycle of length 3, is equivalent to 3-Coloring. The question
of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open
problem. In this paper we study the Hom(C2k+1) problem on bounded-diameter graphs for k ≥ 2,
so we consider all other odd cycles than C3. We prove that for k ≥ 2, the Hom(C2k+1) problem is
polynomial-time solvable on diameter-(k + 1) graphs – note that such a result for k = 1 would be
precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give
subexponential-time algorithms for diameter-(k + 2) and -(k + 3) graphs.

We complement these results with a lower bound for diameter-(2k + 2) graphs – in this class of
graphs the Hom(C2k+1) problem is NP-hard and cannot be solved in subexponential-time, unless
the ETH fails.

Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We
consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show
that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.
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1 Introduction

A natural approach to computationally hard problems is to restrict the class of input graphs,
for example by bounding some parameters. One of such parameters is the diameter, i.e., for a
graph G, its diameter is the least integer d such that for every pair of vertices u, v of G, there is
a u-v path on at most d edges. We say that G is a diameter-d graph, if its diameter is at most
d. Recently, bounded-diameter graphs received a lot of attention [23, 20, 25, 3, 2, 24, 9, 6].
It is known that graphs from real life applications often have bounded diameter, for instance
social networks tend to have bounded diameter [30]. Furthermore, almost all graphs have
diameter 2, i.e., the probability that a random graph on n vertices has diameter 2 tends to
1 when n tends to infinity [21]. Therefore, solving a problem on bounded-diameter graphs
captures a wide class of graphs. On the other hand, not all of the standard approaches can
be used – note that the class of diameter-d graphs is not closed under vertex deletion.

Even if we consider the class of diameter-2 graphs, its members can contain any graph as
an induced subgraph. Indeed, consider any graph G, and let G+ be the graph obtained from
G by adding a universal vertex u, i.e., we add vertex u and make it adjacent to all vertices of
G. It is straightforward to observe that the diameter of G+ is at most 2. This construction
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can be used for many graph problems on diameter-2 graphs as a hardness reduction, which
proves that they cannot be solved in subexponential time under the Exponential Time
Hypothesis (ETH, see [19]), for instance Max Independent Set.

The construction of G+ also gives us a reduction from (k − 1)-Coloring to k-Coloring
on diameter-2 graphs, and thus for any k ≥ 4, the k-Coloring problem on diameter-2
graphs is NP-hard and cannot be solved in subexponential time, unless the ETH fails. Note
that this argument does not work for k = 3 since then we reduce from 2-Coloring, which
is polynomial-time solvable. A textbook reduction from NAE-SAT implies that for d ≥ 4,
the 3-Coloring problem is NP-hard and cannot be solved in subexponential-time, unless
the ETH fails [28]. Therefore, it is only interesting to study 3-Coloring on diameter-2
and -3 graphs. Mertzios and Spirakis proved that 3-Coloring is NP-hard on diameter-3
graphs [25]. However, the question of whether 3-Coloring can be solved in polynomial time
on diameter-2 graphs remains open.

For 3-Coloring on diameter-2 graphs, subexponential-time algorithms were given, first
by Mertzios and Spirakis with running time 2O(

√
n log n) [25]. This was later improved by

Dębski, Piecyk, and Rzążewski, who gave an algorithm with running time 2O(n1/3·log2 n) [9].
They also provided a subexponential-time algorithm for 3-Coloring for diameter-3 graphs.

The 3-Coloring problem on bounded-diameter graphs was also intensively studied on
instances with some additional restrictions, i.e., on graphs with some forbidden induced
subgraphs – and on such graph classes polynomial-time algorithms were given [23, 20, 24].

One of the generalizations of graph coloring are homomorphisms. For a fixed graph
H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G,
and we have to determine whether there exists an edge-preserving mapping φ : V (G) →
V (H), i.e., for every uv ∈ E(G), it holds that φ(u)φ(v) ∈ E(H). Observe that for Kk

being a complete graph on k vertices, the Hom(Kk) problem is equivalent to k-Coloring.
Observe also that the problem is trivial when H contains a vertex x with a loop since
we can map all vertices of G to x. In case when H is bipartite, in fact we have to verify
whether G is bipartite and this can be done in polynomial time. Hell and Nešetřil proved
that for all other graphs H, i.e., loopless and non-bipartite, the Hom(H) problem is NP-
hard [18]. Such a complete dichotomy was provided by Feder, Hell, and Huang also for
the list version of the problem [13]. The graph homomorphism problem and its variants
in various graph classes and under various parametrizations received recently a lot of
attention [26, 15, 14, 4, 5, 7, 8, 14, 27, 17]. We also point out that among all target graphs
H, odd cycles received a lot of attention [16, 1, 10, 31, 22]. Note that the cycle on 5 vertices
is the smallest graph H such that the Hom(H) problem is not equivalent to graph coloring.

Our contribution. In this paper we consider the Hom(C2k+1) problem on bounded-diameter
graphs, where C2k+1 denotes the cycle on 2k + 1 vertices. Note that for k = 1, we have C3,
so this problem is equivalent to 3-Coloring. In this work we consider all other values of k.
Our first result is the following.

▶ Theorem 1. Let k ≥ 2. Then Hom(C2k+1) can be solved in polynomial time on diameter-
(k + 1) graphs.

Note that such a result for k = 1 would yield a polynomial-time algorithm for 3-Coloring
on diameter-2 graphs. Let us discuss the crucial points where this algorithm cannot be
applied directly for k = 1. The first property, which holds for every cycle except C3 and C6,
is that if for some set S of vertices, any two of them have a common neighbor, then there
is a vertex that is a common neighbor of all vertices of S. Furthermore, for every cycle of
length at least 5 except C6, for a set S of 3 vertices, every vertex of S has a private neighbor
with respect to S, i.e., a neighbor that is non-adjacent to any other vertex of S.
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Table 1 Complexity of Hom(C2k+1) on bounded-diameter graphs. The symbol in the cell (k, d)
denotes that Hom(C2k+1) on diameter-d, resp., P – is polynomial-time solvable, NP-h – is NP-hard,
S – can be solved in subexponential time, and NS – cannot be solved in subexponential time under
the ETH. The rows for k ≥ 2 are filled due to Theorems 1–3. The first row is based on [25, 9].

k / diam 1 2 3 4 5 6 7 8 9 ≥ 10
1 P S S, NP-h NS NS NS NS NS NS NS
2 P P P S S NS NS NS NS NS
3 P P P P S S ? ? NS NS
4 P P P P P S S ? ? NS

≥ 5 P P P P P P S S ? ?

We first show that for an instance of Hom(C2k+1), for each vertex v we can deduce the
set of vertices it can be mapped to and define a list of v – all lists are of size at most 3. The
properties discussed above allow us to encode coloring of a vertex with list of size 3 using
its neighbors with lists of size two, and such a reduced instance of a slightly more general
problem (we have more constraints than just the edges, but all of them are binary) can be
solved in polynomial time by reduction to 2-SAT, similar to the one of Edwards [11].

Furthermore, we give subexponential-time algorithms.

▶ Theorem 2. Let k ≥ 2. Then Hom(C2k+1) can be solved in time:

(1.) 2O((n log n)
k+1
k+2 ) on diameter-(k + 2) n-vertex graphs,

(2.) 2O((n log n)
k+2
k+3 ) on diameter-(k + 3) n-vertex graphs.

Here the branching part of the algorithm is rather standard. The more involved part is to
show that after applying braching and reduction rules we are left with an instance that can
be solved in polynomial time. Similar to Theorem 1, we first analyze the lists of all vertices,
and then reduce to an instance of more general problem where all lists are of size at most 2.

We complement Theorem 1 and Theorem 2 with the following NP-hardness result – since
our reduction from 3-SAT is linear, we also prove that the problem cannot be solved in
subexponential time under the ETH. The summary of the results is presented in Table 1.

▶ Theorem 3 (♠). Let k ≥ 2. Then Hom(C2k+1) is NP-hard on diameter-(2k + 2) graphs
(of radius k + 1) and cannot be solved in subexponential time, i.e., there is no algorithm
solving every n-vertex instance G of Hom(C2k+1) in time 2o(n) · nO(1), unless the ETH fails.

The next direction we study in the paper is the following. Instead of considering larger
odd cycles and apropriate diameter, we focus on diameter-2 input graphs, but we change
the target graph to arbitrary H. Note that it only makes sense to consider graphs H of
diameter-2, since the homomorphic image of a diameter-2 graph has to induce a diameter-2
subgraph. We consider triangle-free target graphs. We point out that the class of triangle-free
diameter-2 graphs is still very rich, for instance, contains all Mycielski graphs.

▶ Theorem 4. Let H be a triangle-free graph. Then the Hom(H) problem can be solved in
polynomial time on diameter-2 graphs.

Finally, let us point out that we actually prove stronger statements of Theorem 1,
Theorem 2, Theorem 4 as we consider more general list version of the problem.

The proofs of statements marked with ♠ can be found in the full version of the paper [29].
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2 Preliminaries

For a vertex v, by NG(v) we denote the neighborhood of v in G, and for a set U ⊆ V (G), we
denote NG(U) :=

⋃
u∈U NG(u) \ U . By distG(u, v) we denote the length (number of edges)

of a shortest u-v path in G. For a positive integer d, by N≤d
G (v) we denote the set of all

vertices u ∈ V (G) such that distG(u, v) ≤ d. If G is clear from the contex, we omit the
subscript G and simply write N(v), N(U), N≤d(v), and dist(u, v). A diameter of G, denoted
by diam(G), is the maximum dist(u, v) over all pairs of vertices u, v ∈ V (G). We say that G

is diameter-d graph if diam(G) ≤ d. A radius of G is the minimum integer r such that there
is a vertex z ∈ V (G) such that for every v ∈ V (G), it holds that dist(v, z) ≤ r. By [n] we
denote the set {1, 2, . . . , n} and by [n]0 we denote {0, 1, . . . , n}. Throughout this paper all
graphs we consider are simple, i.e., no loops, no multiple edges.

Homomorphisms. For graphs G, H, a homomorphism from G to H is an edge-preserving
mapping φ : V (G) → V (H), i.e., for every uv ∈ E(G), it holds φ(u)φ(v) ∈ E(H). For
fixed H, called target, in the homomorphism problem, denoted by Hom(H), we are given
a graph G, and we have to determine whether there exists a homomorphism from G to
H. In the list homomorphism problem, denoted by LHom(H), G is given along with lists
L : V (G) → 2V (H), and we have to determine if there is a homomorphism φ from G to H

which additionally respects lists, i.e., for every v ∈ V (G) it holds φ(v) ∈ L(v). We will write
φ : G → H (resp. φ : (G, L) → H) if φ is a (list) homomorphism from G to H, and G → H

(resp. (G, L) → H) to indicate that such a (list) homomorphism exists. Since the graph
homomorphism problem generalizes graph coloring we will often refer to homomorphism as
coloring and to vertices of H as colors. For an instance (G, L) and an induced subgraph G′

of G while refering to a subinstance (G′, L|G′), we will often simply write (G′, L).

Cycles. Whenever C2k+1 is the target graph, we will denote its vertex set by [2k]0, unless
stated explicitly otherwise. Moreover, whenever we refer to the vertices of the (2k + 1)-cycle,
i.e., cycle on 2k + 1 vertices, by + and − we denote respectively the addition and the
subtraction modulo 2k + 1.

Lists. For an instance (G, L) of LHom(C2k+1), by Vi we denote the set of vertices v of G

such that |L(v)| = i. Sometimes we will refer to vertices of V1 as precolored vertices. We also
define V≥i =

⋃
j≥i Vj . We say that a list L(v) is of type (ℓ1, . . . , ℓr) if |L(v)| = r + 1 and its

vertices can be ordered c0, . . . , cr so that for every i ∈ [r − 1]0, we have that ci+1 = ci + ℓi.
For example, for k ≥ 4, one of the types of the list {1, 4, 6, 7} is (3, 2, 1).

Binary CSP and 2-SAT. For a given set (domain) D, in the Binary Constraint Satis-
faction problem (BCSP) we are given a set V of variables, list function L : V → 2D, and
constraint function C : V × V → 2D×D. The task is to determine whether there exists an
assignment f : V → D such that for every v ∈ V , we have f(v) ∈ L(v) and for every pair
(u, v) ∈ V × V , we have (f(u), f(v)) ∈ C(u, v). Clearly, any instance of LHom(H) can be
seen as an instance of BCSP, where the domain D is V (H), list function remains the same,
and for every edge uv ∈ E(G) we set C(u, v) = {(x, y) | xy ∈ E(H)} and for every uv /∈ E(G)
we set C(u, v) = V (H) × V (H). We will denote by BCSP(H, G, L) the instance of BCSP
corresponding to the instance (G, L) of LHom(H). Standard approach of Edwards [11] with
a reduction to 2-SAT implies that in polynomial time we can solve an instance of BCSP
with all list of size at most two.
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▶ Theorem 5 (Edwards [11]). Let (V, L, C) be an instance of BCSP over the domain D.
Assume that for every v ∈ V it holds |L(v)| ≤ 2. Then we can solve the instance (V, L, C) in
polynomial time.

3 Reduction rules and basic observations

In this section we define reduction rules and show some basic observations.

Reduction rules

Let H be a graph and let (G, L) be an instance of LHom(H). We define the following
reduction rules.
(R1) If H = C2k+1 and G contains an odd cycle of length at most 2k − 1, then return NO.
(R2) If H = C2k+1 and in G there are two (2k+1)-cycles with consecutive vertices respectively

c0, . . . , c2k and c′
0, . . . , c′

2k and such that c0 = c′
0 and ci = c′

j for some i, j ̸= 0, then a)
if i = j, then identify cℓ with c′

ℓ for every ℓ ∈ [2k], b) if i = −j, then identify cℓ with
c′

(−ℓ) for every ℓ ∈ [2k], c) otherwise return NO.
(R3) For every edge uv, if there is x ∈ L(u) such that NH(x) ∩ L(v) = ∅, then remove x

from L(u).
(R4) If there is v ∈ V (G) such that L(v) = ∅, then return NO.
(R5) For every v ∈ V (G), if there are x, y ∈ L(v) such that for every u ∈ NG(v), we have

NH(x) ∩ L(u) ⊆ NH(y) ∩ L(u), then remove x from L(v).
(R6) For a vertex x ∈ V (H), and vertices u, v ∈ V (G) such that L(u) = L(v) = {x}, if

uv ∈ E(G), then return NO, otherwise contract u with v.

Clearly, each of the above reduction rules can be applied in polynomial time. The
following lemma shows that the reduction rules are safe.

▶ Lemma 6. After applying each reduction rule to an instance (G, L) of LHom(H), we
obtain an equivalent instance with diameter at most diam(G).

Proof. First, any odd cycle cannot be mapped to a larger odd cycle, so the reduction rule
(R1) is safe. Furthermore, for any (2k + 1)-cycle, in any list homomorphism to C2k+1, its
consecutive vertices have to be mapped to consecutive vertices of C2k+1. Let c0, . . . , c2k and
c′

0, . . . , c′
2k be the vertices of two (2k + 1)-cycles such that c0 = c′

0 and ci = c′
j for some

i, j ̸= 0. Suppose we are dealing with a yes-instance and let φ : (G, L) → C2k+1. Without
loss of generality assume that φ(c0) = φ(c′

0) = 0 and φ(ci) = φ(c′
j) = i. Then φ(cs) = s for

every s ∈ [2k]0. Moreover, either j = i or j = −i, and φ(c′
s) = s for every s ∈ [2k]0 in the

first case, or φ(c′
s) = −s for every s ∈ [2k]0 in the second case. Therefore, the reduction rule

(R2) is safe.
Let uv ∈ E(G) be such that there is x ∈ L(u) such that N(x) ∩ L(v) = ∅. Suppose that

there is a list homomorphism φ : (G, L) → C2k+1 such that φ(u) = x. Then v must be
mapped to a vertex from N(x)∩L(v) = ∅, a contradiction. Thus we can safely remove x from
L(u), and (R3) is safe. Clearly, if any list of a vertex is an empty set, then we are dealing
with a no-instance and thus (R4) is safe. Finally, assume there is v ∈ V (G) and x, y ∈ L(v)
such that for every u ∈ NG(v), it holds NH(x) ∩ L(u) ⊆ NH(y) ∩ L(u), and suppose there is
a list homomorphism φ : (G, L) → H such that φ(v) = x. Then φ′ defined so that φ′(v) = y

and φ′(w) = φ(w) for w ∈ V (G) \ {v} is also a list homomorphism (G, L) → H. Therefore,
(R5) is safe. If two vertices have the same one-element list, then they must be mapped to
the same vertex. Since we only consider loopless graphs H, adjacent vertices of G cannot be

MFCS 2024



78:6 C2k+1-Coloring of Bounded-Diameter Graphs

mapped to the same vertex. Therefore, if two vertices u, v of G have lists L(v) = L(u) = {x}
for some x ∈ V (H), then if uv ∈ E(G) we are dealing with a no-instance. Otherwise, we can
identify u and v and thus (R6) is safe. ◀

In the following lemma we describe the lists of vertices that are at some small distance of
a precolored vertex.

▶ Lemma 7. Let k ≥ 2 and let (G, L) be an instance of LHom(C2k+1). Let u ∈ V (G) be
such that L(u) = {i} and let v ∈ V (G) be such that dist(u, v) = d. If none of the reduction
rules can be applied, then
a) L(v) ⊆ {i − d, i − d + 2, . . . , i − 2, i, i + 2, . . . , i + d − 2, i + d} if d is even,
b) L(v) ⊆ {i − d, i − d + 2, . . . , i − 1, i + 1, . . . , i + d − 2, i + d} if d is odd.

Proof. Let P be a shortest u-v path such that the consecutive vertices of P are u =
p0, p1, . . . , pd = v. We have L(p0) = {i}. Since the reduction rule (R3) cannot be applied for
p0p1, we must have L(p1) ⊆ {i − 1, i + 1}. Applying this reasoning to consecutive vertices of
the path, for j ∈ [d], we must have

L(v) ⊆ {i − j, i − j + 2, . . . , i − 2, i, i + 2, . . . , i + j − 2, i + j},

if j is even,

L(v) ⊆ {i − j, i − j + 2, . . . , i − 1, i + 1, . . . , i + j − 2, i + j},

if j is odd, which completes the proof. ◀

The next lemma immediately follows from Lemma 7.

▶ Lemma 8. Let k ≥ 2 and let (G, L) be an instance of LHom(C2k+1). Let u, w ∈ V (G) be
such that L(u) = {i} and L(w) = {i+1}. Let v ∈ V (G) be such that dist(u, v) = dist(w, v) =
k + ℓ. If none of the reduction rules can be applied, then L(v) ⊆ {i + k − ℓ + 1, i + k − ℓ +
2, . . . , i + k + ℓ + 1}.

In the following lemma we show that for a partial mapping φ : V (G) → [2k]0 for k ≥ 2,
for v ∈ V (G), if every pair (a, b) of its neighbors is precolored so that φ(a) and φ(b) have
a common neighbor in L(v), then φ can be extended to v so that it preserves the edges
containing v.

▶ Lemma 9. Let k ≥ 2, let (G, L) be an instance of LHom(C2k+1) and let v ∈ V (G). Let
φ : N(v) → [2k]0 be a mapping such that for every a, b ∈ N(v), we have that NC2k+1(φ(a)) ∩
NC2k+1(φ(b)) ∩ L(v) ̸= ∅. Then

⋂
u∈N(v) NC2k+1(φ(u)) ∩ L(v) ̸= ∅.

Proof. Define A = {φ(u) | u ∈ N(v)}. If |A| ≤ 2, then the statement clearly follows. We
will show that this is the only case. So suppose that |A| ≥ 3. If two distinct vertices of C2k+1
for k ≥ 2 have a common neighbor, then they must be at distance exactly two. Without
loss of generality, let 0, 2 ∈ A and 1 ∈ L(v). Moreover, let i ∈ A \ {0, 2}. By assumption
NC2k+1(i) ∩ NC2k+1(0) ̸= ∅, so i = 2k − 1. On the other hand, NC2k+1(i) ∩ NC2k+1(2) ̸= ∅, so
i = 4. Thus 2k − 1 = 4, a contradiction. ◀

In the next lemma we show that for an odd cycle C and a vertex v there is at least one
pair of consecutive vertices of C with equal distances to v.

▶ Lemma 10. Let G be a connected graph, let C be a cycle in G with consecutive vertices
c0, . . . , c2k, and let v ∈ V (G) \ V (C). Then there is i ∈ [2k]0 such that dist(v, ci) =
dist(v, ci+1).
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Proof. First observe, that for all i, we have | dist(v, ci)−dist(v, ci+1)| ≤ 1 since cici+1 ∈ E(G).
Therefore, going around the cycle the distance from v to ci can increase by 1, decrease by
1, or remain the same. Since we have to end up with the same value at the end and the
length of the cycle is odd, there is at least one pair of consecutive vertices ci, ci+1 such that
dist(v, ci) = dist(v, ci+1). ◀

4 Polynomial-time algorithm

In this section we prove Theorem 1. In fact we prove a stronger statement for the list version
of the problem.

▶ Theorem 11. Let k ≥ 2. Then LHom(C2k+1) can be solved in polynomial time on
diameter-(k + 1) graphs.

Proof. Let (G, L) be an instance of LHom(C2k+1) such that G has diameter at most k + 1.
First for every i ∈ [2k]0 we check whether there is a list homomorphism φ : (G, L) → C2k+1
such that no vertex is mapped to i, so we look for a list homomorphism to a path which can
be done in polynomial time by [12].

If there is no such a list homomorphism, then we know that all colors have to be used
and thus we guess 2k + 1 vertices that will be mapped to distinct vertices of C2k+1. Let
c0, . . . , c2k be the vertices such that ci is precolored with i. We check whether such a partial
assignment satisfies the edges with both endpoints precolored. Moreover, if ci, ci+1 are
non-adjacent, we add the edge cici+1 – this operation is safe as ci, ci+1 are precolored with
consecutive vertices of C2k+1 and adding an edge does not increase the diameter. Finally, we
exhaustively apply the reduction rules.

Observe that the vertices c0, . . . , c2k induce a (2k + 1)-cycle C. Suppose there is a vertex
v that after the above procedure is not on C. By Lemma 10, there is i ∈ [2k]0 such that
dist(v, ci) = dist(v, ci+1) =: ℓ.

First we show that we cannot have ℓ ≤ k. Suppose otherwise. Let P1, P2 be shortest
v-ci-, and v-ci+1-paths, respectively. Let u be the their last common vertex (it cannot be
ci or ci+1 as the distances are the same and ci, ci+1 are adjacent). Note that since P1, P2
are shortest, the u-ci-path P ′

1 obtained from P1 and the u-ci+1-path P ′
2 obtained from P2

have the same length. Therefore we can construct a cycle by taking P ′
1, P ′

2 and the edge
cici+1. The length of the cycle is odd, and it is at most 2k + 1. This cycle contains at least
two vertices from C, so either it should be contracted by (R2) or (R1) would return NO.
Therefore we cannot have ℓ ≤ k, and thus, since diam(G) ≤ k + 1, we have ℓ = k + 1.

By Lemma 8, for v ∈ V≥3, we have that L(v) ⊆ {i + k, i + k + 1, i + k + 2}. Therefore,
all lists of our instance have size at most 3. Moreover, each vertex of V3 has list of type
(1, 1). Furthermore, since (R3) cannot be applied, for a vertex with list {j, j + 1, j + 2},
the possible lists of its neighbors in G[V3] are then {j − 1, j, j + 1}, {j, j + 1, j + 2}, and
{j + 1, j + 2, j + 3}.

For a list {i, j, r} of type (1, 1), where j is the vertex such that j = i + 1 and j = r − 1,
we will call j the middle vertex of {i, j, r}. For a homomorphism φ we will say that a vertex
v ∈ V3 is φ-middle, if φ maps v to the middle vertex of its list.

Now consider a connected component S of G[V3], let v ∈ V (S), and let L(v) = {j −
1, j, j + 1}. The following claim is straightforward.

▷ Claim 12. Suppose there is a list homomorphism φ : (S, L) → C2k+1. Then
(1.) if v is φ-middle, then any u ∈ NS(v) with list {j − 1, j, j + 1} cannot be φ-middle, and

every w ∈ NS(v) with list {j − 2, j − 1, j} or {j, j + 1, j + 2} has to be φ-middle,
(2.) if v is not φ-middle, then every u ∈ NS(v) with list {j − 1, j, j + 1} has to be φ-middle,

and any w ∈ NS(v) with list {j − 2, j − 1, j} or {j, j + 1, j + 2} cannot be φ-middle.
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Thus deciding if one vertex of S is φ-middle, already determines for every vertex of S if
it is φ-middle or not. It is described more formally in the following claim, whose proof can
be found in the full version of the paper [29].

▷ Claim 13 (♠). In polynomial time we can either (1) construct a partition (U1, U2) of
V (S) (U1, U2 might be empty) such that for every list homomorphism φ : (S, L) → C2k+1,
either all vertices of U1 are φ-middle and no vertex of U2 is φ-middle, or all vertices of U2
are φ-middle and no vertex of U1 is φ-middle, or (2) conclude that we are dealing with a
no-instance.

Therefore, for every connected component S of G[V3] we solve two subinstances:
(I1) (S, L1), where for every v ∈ V (S) with list {i−1, i, i+1} for some i ∈ [2k]0, L1(v) = {i}

if v ∈ U1 and L1(v) = {i − 1, i + 1} if v ∈ U2,
(I2) (S, L2), where for every v ∈ V (S) with list {i−1, i, i+1} for some i ∈ [2k]0, L2(v) = {i}

if v ∈ U2 and L2(v) = {i − 1, i + 1} if v ∈ U1.

Note that both subinstances have all lists of size at most two and thus can be solved in
polynomial time by Theorem 5. If for some component in both cases we obtain NO, then we
return NO.
Creating a BCSP instance. Let (V (G), L, C) = BCSP(C2k+1, G[V1 ∪ V2], L). We will
modify now the instance (V (G), L, C) so it is equivalent to the instance (G, L). For every
v ∈ V3 and for every pair of a, b ∈ N(v) ∩ V2, we leave in C(a, b) only these pairs of vertices
that have a common neighbor in L(v) – recall that by Lemma 9 this ensures us that there
will be color left for v. Furthermore, for every connected component S of G[V3], we add
constraints according to which of the two possibilities S can be properly colored (possibly
S can be colored in both cases) as follows. Let v ∈ V (S) with L(v) = {i − 1, i, i + 1}, and
without loss of generality assume that v ∈ U1. The neighbors of v in V2 have lists {i − 1, i}
and {i, i + 1}. For each such v:

if S cannot be properly colored so that vertices of U1 are middle (v is colored with i), we
remove i − 1 and i + 1 from the lists of neigbors of v,
if S cannot be properly colored so that vertices of U1 are not middle (v is colored with
one of i − 1, i + 1), we remove i from the lists of neigbors of v.
Moreover, for every u ∈ V (S) with list {j − 1, j, j + 1}, for every neighbor u′ ∈ V2 ∩ N(u),
and for every v′ ∈ V2 ∩ N(v), if u ∈ U1, then we remove from C(u′, v′) pairs (j, i + 1),
(j, i − 1), (j − 1, i), (j + 1, i), and if u ∈ U2, then we remove from C(u′, v′) the pairs (j, i),
(j − 1, i − 1), (j − 1, i + 1), (j + 1, i − 1), (j + 1, i + 1).

This completes the construction of BCSP instance (V (G), L, C). By Theorem 5 we solve
(V (G), L, C) in polynomial time.
Correctness. The detailed proof of correctness can be found in the full version of the
paper [29].

▷ Claim 14 (♠). (V (G), L, C) is a yes-instance of BCSP iff (G, L) is a yes-instance of
LHom(C2k+1).

Let us only mention here the idea behind each of introduced constraints. First, we start
with BCSP(C2k+1, G[V1 ∪ V2], L), so that the assignment restricted to V1 ∪ V2 can be a
list homomorphism φ on (G[V1 ∪ V2], L). The remaining constraints ensure us that we can
extend φ to each connected component S of G[V3]. First, we make sure that for every vertex
v ∈ V (S), there is a color left for v in L(v) – it is a necessary condition. Observe that for a
vertex v with list {i − 1, i, i + 1}, if the neighbors of v in V2 are mapped so that there is a
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color left for v, then either they are colored with i − 1, i + 1 and the color left for v is i, or
all such neighbors are colored with i, and both i − 1, i + 1 are left for v (unless one of them
is not on L(v)). Therefore, we can assume that v has the same list as in one of the instances
(I1) and (I2). Moreover, because of the last introduced constraint, all vertices of S have lists
corresponding to the same instance, say (I1). Finally, if these lists are still present, then we
know that (I1) is a yes-instance, and φ can be extended to S. This completes the proof. ◀

5 Subexponential-time algorithms

In this section we prove the following stronger version of Theorem 2.

▶ Theorem 15. Let k ≥ 3. Then LHom(C2k+1) can be solved in time:

(1.) 2O((n log n)
k+1
k+2 ) on n-vertex diameter-(k + 2) graphs,

(2.) 2O((n log n)
k+2
k+3 ) on n-vertex diameter-(k + 3) graphs.

We start with defining branching rules crucial for our algorithm.

Branching rules. Let k ≥ 2, let (G, L) be an instance of LHom(C2k+1) and let d ≥ diam(G).
Let µ =

∑2k+1
ℓ=2 ℓ · |Vℓ|. We define the following branching rules.

(B1) If there is a vertex v ∈ V≥2 with at least (µ log µ)1/d neighbors in V≥2, for some a ∈ L(v),
we branch on coloring v with a or not, i.e., we create two instances Ia = (G, La),
I ′

a = (G, L′
a) such that La(u) = L′

a(u) = L(u) for every u ∈ V (G)\{v}, and La(v) = {a}
and L′

a(v) = L(v) \ {a}.
(B2) We pick a vertex v and branch on the coloring of N≤d−1[v]∩V≥2, i.e., for every mapping

f of N≤d−1[v] ∩ V≥2 that respects the lists, we create a new instance If = (G, Lf ) such
that Lf (u) = L(u) for u /∈ N≤d−1[v]∩V≥2 and Lf (w) = {f(w)} for w ∈ N≤d−1[v]∩V≥2.

Algorithm Recursion Tree

Let us describe an algorithm that for fixed d takes an instance (G, L) of LHom(C2k+1)
with a fixed precolored (2k + 1)-cycle C and such that diam(G) ≤ d, and returns a rooted
tree R whose nodes are labelled with subinstances of (G, L). We first introduce the root
r of R and we label it with (G, L). Then for every node we proceed recursively as follows.
Let s be a node labelled with an instance (G′, L′) of LHom(C2k+1). We first exhaustively
apply to (G′, L′) reduction rules and if some of the reduction rules returns NO, then s does
not have any children. Otherwise, if possible, we apply branching rule (B1). We choose
a ∈ L(v) for (B1) as follows. If on NG′[V≥2](v) there are no lists of type (2), then we take
any a ∈ L(v). Otherwise, let S be the most frequent list of type (2) on NG′[V≥2](v), and let
S = {j − 1, j + 1} for some j ∈ [2k]0. Then we take any a ∈ L(v) \ {j}. After application of
(B1), we exhausively apply reduction rules to each instance. Furthermore, for each instance
created by (B1), we create a child node of s and we label it with that instance.

So suppose that (B1) cannot be applied. We proceed as follows.

Case 1: there is no vertex v such that dist(v, ci) = dist(v, ci+1) = k + 3 for some
i ∈ [2k]0. Then we apply the branching rule (B2) once, we exhausively apply reduction
rules, and again for each instance created by (B2), we introduce a child node of s. The choice
of v is not completely arbitrary. If possible, we choose v so that dist(v, C) ≥ ⌈ d

2 ⌉ – note that
the cycle C is present in all instances of R.
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Case 2: there exists at least one vertex v such that dist(v, ci) = dist(v, ci+1) = k + 3
for some i ∈ [2k]0. For every i ∈ [2k]0, we choose (if exists) a vertex v such that
dist(v, ci) = dist(v, ci+1) = k + 3, and again, if possible, we choose v so that dist(v, C) ≥ ⌈ d

2 ⌉.
For each such v, we apply the branching rule (B2) and exhaustively reduction rules, and the
children of s are those introduced for all instances created in all applications of (B2).

In both cases, we do not recurse on the children of s for which we applied (B2). Let us
analyze the running time of Recursion Tree and properties of the tree R.

▶ Lemma 16. Given an instance (G, L) of LHom(C2k+1) with a fixed precolored (2k + 1)-
cycle C and such that n = |V (G)|, diam(G) ≤ d, the algorithm Recursion Tree in time
2O((n log n)

d−1
d ) returns a tree R whose nodes are labelled with instances of LHom(C2k+1)

and (G, L) is a yes-instance if and only if at least one instance corresponding to a leaf of R
is a yes-instance.

Proof. First we show that for every node s of R the corresponding instance is a yes-instance
if and only if at least one instance corresponding to a child of s is a yes-instance. Let s

be a node of R and let (G′, L′) be the corresponding instance. The algorithm Recursion
Tree applies first reduction rules to (G′, L′) and by Lemma 6, we obtain equivalent instance.
Furthermore, we applied to (G′, L′) either (B1) or (B2) where the branches correspond to
all possible colorings of some set of vertices so indeed (G′, L′) is a yes-instance if and only
if at least one instance corresponding to a child of s is a yes-instance. Since the root of R
is labelled with (G, L), we conclude that (G, L) is a yes-instance if and only if at least one
instance corresponding to a leaf of R is a yes-instance.

It remains to analyze the running time. Let F (µ) be the upper bound on the running
time of Recursion Tree applied to an instance (G′, L′) with µ =

∑2k+1
ℓ=2 ℓ · |Vℓ|. Let p(n)

be a polynomial such that the reduction rules can be exhaustively applied to an instance
on n vertices in time p(n) – note that each reduction rule either decreases the number of
vertices/sizes of lists or returns NO, so indeed exhaustive application of reduction rules can
be performed in polynomial time. Observe that if we apply (B1) to (G′, L′), then

F (µ) ≤ F

(
µ − (µ log µ)1/d

2k + 1

)
+ F (µ − 1) + 2 · p(n).

Indeed, let v be the vertex to which we apply (B1). If there are no lists of type (2) on
NG′[V≥2](v), then in the branch where we set L(v) = {a}, after application of reduction rules,
every neighbor of v must have L(v) ⊆ {a − 1, a + 2}. If |L(v)| ≥ 2 and L(v) ̸= {a − 1, a + 1},
then |L(v)| ∩ {a − 1, a + 1}| < |L(v)|. Therefore, in this case we decrease sizes of all lists on
NG′[V≥2](v). Otherwise, we chose a ∈ L(v) \ {j}, where {j − 1, j + 1} is the most frequent
list of type (2) on NG′[V≥2](v). Since there are exactly 2k + 1 lists of type (2), at least

1
2k+1 -fraction of NG′[V≥2](v) has list of different type than (2) or has list {j − 1, j + 1}. Thus,
for the branch where we set L(v) = {a}, the sizes of lists of at least 1

2k+1 · (µ log µ)1/d vertices
decrease. In the branch where we remove a from L(v), we decrease the size of L(v) at least
by one. In both branches we apply the reduction rules, so the desired inequality follows.

If we apply (B2) to (G′, L′) – recall that we stop recursing in this case – and if we are in
Case 1, then we obtain

F (µ) ≤ (2k + 1)(µ log µ)
d−1

d · p(n),

since we guess the coloring on N≤d−1
G′[V≥2](v) whose size is bounded by (µ log µ) d−1

d (in this
case we could not apply (B1) so the degrees in G′[V≥2] are bounded by (µ log µ)1/d) and the
number of possible colors is at most 2k + 1.



M. Piecyk 78:11

In Case 2, we have:

F (µ) ≤ (2k + 1)(2k+1)·(µ log µ)
d−1

d · p(n),

where additional (2k + 1) in the exponent comes from the fact that we applied (B2) possibly
(2k + 1) times.

We can conclude that F (µ) ≤ 2O((µ log µ)
d−1

d ) (see for example [9], proof of Theorem 7)
which combined with the inequality µ ≤ (2k + 1)n = O(n) completes the proof. ◀

The following lemma shows that we can solve every instance corresponding to a leaf of R
in polynomial time. We only sketch the proof here – for the full proof see [29].

▶ Lemma 17 (♠). Let (G′, L′) be an instance of LHom(C2k+1) such that diam(G′) ≤
k + 3 and let C be a fixed precolored (2k + 1)-cycle. Assume that we applied algorithm
Recursion Tree to (G′, L′) and let R be the resulting recursion tree. Let (G, L) be as
instance corresponding to a leaf in R. Then (G, L) can be solved in polynomial time.

Sketch of proof. By Lemma 10, for every vertex u outside the cycle C, there must be
j ∈ [2k]0 such that dist(u, cj) = dist(u, cj+1). Since the reduction rules (R1), (R2) cannot
be applied and diam(G) ≤ k + 3, then that distance is either k + 1, k + 2, or k + 3. In case
of k + 1 or k + 2 by Lemma 8 have that L(u) ⊆ {i − 2, i − 1, i, i + 1, i + 2} for some i ∈ [2k]0,
and in case of k + 3 we have L(u) ⊆ {i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3} for some i ∈ [2k]0.

Moreover, since for (B2), if we could, we chose vertex v whose distance from C is at
least ⌈ d

2 ⌉, each vertex of V≥3 is at distance ⌊ d
2 ⌋ from C. Indeed, every vertex u′ that was

in N≤d
G[V ≥2](v) has list of size at most 2, as we guessed a color either for u′ or at least one

of its neighbors. So for any vertex u left in V≥3, the shortest u-v path (whose length is at
most the diameter d) should contain a vertex from C and length of that path is at least
dist(v, C) + dist(u, C). So either all vertices outside C were at distance at most ⌊ d

2 ⌋ or v

was at distance at least ⌈ d
2 ⌉ and thus u is at distance at most ⌊ k+3

2 ⌋ from C. If k > 3, then
⌊ k+3

2 ⌋ < k, which by Lemma 7 implies that L(u) is an independent set. Combining the facts,
for u ∈ V≥3, diam ≤ k + 2, and k > 3, we obtain L(u) = {i − 2, i, i + 2}. By careful analysis
we can prove that the same holds in the remaining cases (♠).

Furthermore, observe that if v is a neighbor of u with list {i−2, i, i+2} and the reduction
rule (R3) cannot be applied, then the possible list of v is {i−1, i+1}, {i−3, i+1}, {i−1, i+3},
{i − 3, i − 1, i + 1}, or {i − 1, i + 1, i + 3}. If for some vertex u with list {i − 2, i, i + 2}, some
of possible lists is not present on N(u), then we add v with such a list to G and make it
adjacent to u. Note that now the diameter of G might increase, but we will not care about
the diameter anymore. Moreover, any list homomorphism on G − v can be extended to v,
whose degree is 1. So since now, we can assume that for u with list {i − 2, i, i + 2}, all lists
{i − 1, i + 1}, {i − 3, i + 1}, {i − 1, i + 3} are present on N(u) – this will allow us to encode
coloring of u on its neighbors with lists of size 2.
BCSP instance. We start with BCSP(C2k+1, G − V3, L). Then, for every vertex v ∈ V3 and
for every v′, v′′ ∈ V2∩N(v), we leave in C(v′, v′′) only such pairs that have a common neighbor
in L(v). Furthermore, for every edge uv with u, v ∈ V3 and lists L(u) = {i − 2, i, i + 2},
L(v) = {i − 1, i + 1, i + 3}, and for every pair u′, v′ ∈ V2 such that uu′, vv′ ∈ E(G), we
remove (if they are present) from C(u′, v′) the following pairs: (i − 3, i + 2), (i − 1, i + 4), and
(i + 3, i − 2). This completes the construction of (V, L, C), which is equivalent to (G, L) (♠).

Clearly (V, L, C) is constructed in polynomial time. Moreover, since all the lists have size
at most 2, by Theorem 5, (V, L, C) can be solved in polynomial time, which completes the
proof. ◀

MFCS 2024
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Now we are ready to prove Theorem 15.

Proof of Theorem 15. Let (G, L) be an instance of LHom(C2k+1) such that diam(G) is at
most d ∈ {k + 2, k + 3}. As in Theorem 1, first for every i ∈ [2k]0, we check in polynomial
time whether there is a list homomorphism φ : (G, L) → C2k+1 such that no vertex is mapped
to i – this can be done by [12]. If there is no such list homomorphism, we guess 2k + 1
vertices c0, . . . , c2k which will be colored so that ci is mapped to i. We add the edges cici+1
and we obtain an induced (2k + 1)-cycle C (if not, then we are dealing with a no-instance).
Note that adding edges cannot increase the diameter and since the edges are added between
vertices precolored with consecutive vertices, we obtain an equivalent instance.

Now for (G, L) and C as the fixed precolored (2k+1)-cycle we use the algorithm Recursion

Tree, which by Lemma 16 in time 2O((n log n)
d−1

d ) returns a tree R. Moreover, in order to
solve the instance (G, L) it is enough to solve every instance corresponding to a leaf of
R by Lemma 16, and by Lemma 17, we can solve each such instance in polynomial time.
Furthermore, since the size of R is bounded by the running time, the instance (G, L) can be
solved in time 2O((n log n)

d−1
d ) · nO(1) = 2O((n log n)

d−1
d ), which completes the proof. ◀

6 Beyond odd cycles

In this section we consider target graphs other than odd cycles. Instead, we focus on input
graphs with diameter at most 2. Since homomorphisms preserve edges, for graphs G, H, a
homomorphism φ : G → H and a sequence of vertices v1, . . . , vk forming a path in G, the
sequence φ(v1), . . . , φ(vk) forms a walk in H. Therefore, if G has diameter at most 2, we can
assume that H has also diameter at most 2. The following observation is straightforward.

▶ Observation 18. Let G, H be graphs such that G is connected. If there exists a homo-
morphism φ : G → H, then the image φ(V (G)) induces in H a subgraph with diameter at
most diam(G).

We prove the following stronger version of Theorem 4.

▶ Theorem 19. Let H be a simple triangle-free graph. Then LHom(H) is polynomial-time
solvable on diameter-2 graphs.

Proof. Let (G, L) be an instance of LHom(H). We guess the set of colors that will be
used – by Observation 18 they should induce a diameter-2 subgraph H ′ of H. For each
such H ′, we guess h′ = |H ′| vertices v1, . . . , vh′ of G that will be injectively mapped to
V (H ′) = {x1, . . . , xh′}. For each tuple (H ′, v1, . . . , vh′), we solve the instance (G, L′) of
LHom(H ′), where L′(v) = {xi} for v = vi, i ∈ [h′] and L′(v) = L(v) otherwise. Note that
(G, L) is a yes-instance if and only if at least one instance (G, L′) is a yes-instance.

First for every edge xixj ∈ E(H ′), if vi, vj are non-adjacent, we add the edge vivj to G –
note that this operation is safe, since we cannot increase the diameter by adding edges and
we only add edges between vertices that must be mapped to neighbors in H ′. Therefore, we
can assume that the set V ′ = {v1, . . . , vh′} induces a copy of H ′ in G (if not, then we have an
extra edge, which means that we are dealing with a no-instance and we reject immediately).
Furthermore, we exhaustively apply reduction rules.

So from now on we assume that the instance (G, L′) is reduced. We claim that either
(G, L′) is a no-instance or V (G) = {v1, . . . , vh′}, i.e., after exhaustive application of the
reduction rules the graph G is isomorphic to H ′. Note that in the latter case we can return
YES as an answer.
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Suppose there is v ∈ V (G) \ V ′. Moreover, we choose such v which is adjacent to some
vertex of V ′ (see Figure 1). Suppose that there exists φ : (G, L′) → H ′ and let xi = φ(v).
Then v cannot be adjacent to vi since there are no loops in H ′. Furthermore, the only
neighbors of v in V ′ can be the neighbors of vi. Suppose that there is vj ∈ NG(vi) ∩ V ′

which is non-adjacent to v. Since the diameter of G is at most 2, then there must be
u ∈ NG(v) ∩ NG(vj). Observe that u /∈ V ′. Indeed, v does not have any neighbors in
V ′ \ NG(vi) and if u ∈ NG(v), then there is a triangle uvivj in a copy of H ′, a contradiction.
Furthermore, it must hold that φ(u) is adjacent to xi in H ′ as u is adjacent to v and
φ(v) = xi, and similarly, φ(u) must be adjacent to xj as u is adjacent to vj . Then φ(u)xixj

forms a triangle in H ′, a contradiction. Thus v must be adjacent to all vertices of N(vi) ∩ V ′.

vi

vj

v u

H ′

Figure 1 Copy of H ′ in G and a vertex v such that for some homomorphism φ, it holds
φ(vi) = φ(v). We show that a vertex u which is a common neighbor of v and some neighbor vj of vi

in the copy of H ′ cannot exist.

Since (R3) cannot be applied, each vertex of L′(v) is adjacent to all vertices of NH(xi).
Moreover, since (R5) cannot be applied, it holds that L′(v) = {xi}. Indeed, otherwise there is
xi′ ̸= xi such that xi′ ∈ L′(v). Recall that xi′ is adjacent to all vertices of NH(xi). Therefore,
NH(xi) ⊆ NH(xi′), and thus one of xi, xi′ should have been removed from L′(v) by (R5).
Furthermore, since (R6) cannot be applied, we must have v = vi ∈ V ′, a contradiction. This
completes the proof. ◀

7 Conclusion

In this paper we studied the computational complexity of Hom(C2k+1) problem on bounded-
diameter graphs. We proved that for k ≥ 2, the Hom(C2k+1) problem can be solved in
polynomial-time on diameter-(k + 1) graphs and we gave subexponential-time algorithms for
diameter-(k + 2) and -(k + 3) graphs. We also proved that Hom(H) for triangle-free graph
H, can be solved in polynomial time on diameter-2 graphs.

The main open problem in this area remains the question whether 3-Coloring on
diameter-2 graphs can be solved in polynomial time. However, as more reachable, we propose
the following future research directions. (i) Is the Hom(C2k+1) problem NP-hard for the
subexponential-time cases, i.e., diameter-(k+2) or -(k+3) graphs? (2) Let H be a diameter-2
graph such that H contains a triangle but H ̸→ K3. Is the Hom(H) problem NP-hard?
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Abstract
This paper studies the influence of probabilism and non-determinism on some quantitative aspect X

of the execution of a system modeled as a Markov decision process (MDP). To this end, the novel
notion of demonic variance is introduced: For a random variable X in an MDP M, it is defined as
1/2 times the maximal expected squared distance of the values of X in two independent execution of
M in which also the non-deterministic choices are resolved independently by two distinct schedulers.

It is shown that the demonic variance is between 1 and 2 times as large as the maximal variance
of X in M that can be achieved by a single scheduler. This allows defining a non-determinism
score for M and X measuring how strongly the difference of X in two executions of M can be
influenced by the non-deterministic choices. Properties of MDPs M with extremal values of the
non-determinism score are established. Further, the algorithmic problems of computing the maximal
variance and the demonic variance are investigated for two random variables, namely weighted
reachability and accumulated rewards. In the process, also the structure of schedulers maximizing
the variance and of scheduler pairs realizing the demonic variance is analyzed.
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1 Introduction

In software and hardware systems, uncertainty manifests in two distinct forms: non-
determinism and probabilism. Non-determinism emerges from, e.g., unknown operating
environments, user interactions, or concurrent processes. Probabilistic behavior arises
through deliberate randomization in algorithms or can be inferred, e.g., from probabilities
of component failures. In this paper, we investigate the uncertainty in the value X of
some quantitative aspect of a system whose behavior is subject to non-determinism and
probabilism. On the one hand, we aim to quantify this uncertainty. In the spirit of the
variance that quantifies uncertainty in purely probabilistic settings, we introduce the notion
of demonic variance that generalizes the variance in the presence of non-determinism. On the
other hand, we provide a non-determinism score (NDS) based on this demonic variance that
measures the extent to which the uncertainty of X can be ascribed to the non-determinism.

As formal models, we use Markov decision processes (MDPs, see, e.g., [29]), one of
the most prominent models combining non-determinism and probabilism, heavily used in
verification, operations research, and artificial intelligence. The non-deterministic choices in
an MDP are resolved by a scheduler. Once a scheduler is fixed, the system behaves purely
probabilistically.
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Figure 1 MDPs modeling a communication protocol and the time required to process a message.

Demonic variance. For a random variable Y , the variance is equal to half the expected
squared deviation of two independent copies Y1 and Y2 of Y :

V(Y ) def= E((Y − E(Y ))2) = E(Y 2) − E(Y )2 = 1
2E(Y 2

1 − 2Y1Y2 + Y 2
2 ) = 1

2E((Y1 − Y2)2).

For a quantity X in an MDP M, we obtain a random variable XS
M for each scheduler S.1

The maximal variance Vmax
M (X) def= supS V(XS

M) can serve as a measure for the “amount
of probabilistic uncertainty” regarding X present in the MDP. However, in the presence of
non-determinism, quantifying the spread of outcomes in terms of the squared deviation of
two independent executions of a system gives rise to a whole new meaning: We can allow the
non-determinism to be resolved independently as well. To this end, we consider two different
scheduler S1 and S2 in two independent copies M1 and M2 of M and define

VS1,S2
M (X) def= 1

2E((XS1
M1

− XS2
M2

)2).

If we now allow for a demonic choice of the two schedulers making this uncertainty as large
as possible, we arrive at the demonic variance Vdem

M (X) def= supS1,S2 V
S1,S2
M (X) of X in M.

▶ Example 1.1. To illustrate a potential use case, consider a communication network in
which messages are processed according to a randomized protocol employed on different
hardware at the different nodes of the network. A low worst-case expected processing time
of the protocol is clearly desirable. In addition, however, large differences in the processing
time at different nodes make buffering necessary and increase the risk of package losses.

Consider the MDPs M and N in Fig. 1 modeling such a communication protocol. Initially,
a non-deterministic choice between α, β, and γ is made. Then, a final node containing the
processing time X is reached according to the depicted distributions. In both MDPs, the
expected value of X lies between 1 and 3 for all schedulers S – with the values 1 and 3 being
realized by α and γ. Furthermore, as the outcomes lie between 0 and 4, the distribution over
outcomes leading to the highest possible variance of 4 is the one that takes value 0 and 4 with
probability 1

2 each, which is realized by a scheduler choosing β. So, Vmax
M (X) = Vmax

N (X) = 4.
However, the demonic variances are different: Our results will show that the demonic

variance is obtained by a pair of deterministic schedulers that do not randomize over the
non-deterministic choices. In M, we can easily check that no combination of such schedulers
S and T leads to a value VS,T

M (X) of more than 4 = Vβ,β
M (X) where β denotes the scheduler

that chooses β with probability 1. In N , on the other hand, the demonic variance is
Vdem

N (X) = Vα,γ
N (X) = 1

2E((Xα
N1

− Xγ
N2

)2) = 1
2

( 10
16 · 16

)
= 5.

1 Note that the notation XS
M here differs from the notation used in the technical part of the paper.
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Figure 2 Example MDPs with different non-determinism scores (NDSs).

So, despite the same maximal variance and range of expected values, the worst-case
expected squared deviation between two values of X in independent executions is worse in
N than in M. Hence, we argue that the protocol modeled by M should be preferred.

Non-determinism score (NDS). By the definition of the demonic variance, it is clear that
Vdem

M (X) ≥ Vmax
M (X). Under mild assumptions ensuring the well-definedness, we will prove

that Vdem
M (X) ≤ 2Vmax

M (X), too. So, the demonic variance is between 1 and 2 times as large
as the maximal variance. We use this to define the non-determinism score (NDS)

NDS(M, X) def= Vdem
M (X) − Vmax

M (X)
Vmax

M (X) ∈ [0, 1].

The NDS captures how much larger the expected squared deviation of two outcomes can be
made by resolving the non-determinism in two executions independently compared to how
large it can be solely due to the probabilism under a single resolution of the non-determinism.

▶ Example 1.2. For an illustration of the NDS, four simple MDPs and their NDSs are
depicted in Figure 2. In all of the MDPs except for the first one, a scheduler has to make
a (randomized) choice over actions α and β in the initial state sinit. Afterwards one of the
terminal states is reached according to the specified probabilities. The terminal states are
equipped with a weight that specifies the value of X at the end of the execution. For all of
these MDPs, the maximal variance can be computed by expressing the variance in terms
of the probability p that α is chosen and maximizing the resulting quadratic function. In
the interest of brevity, we do not present these computations. The pair of (deterministic)
schedulers realizing the demonic variance always consists of the scheduler choosing α and
the scheduler choosing β making it easy to compute the demonic variance in these examples.

Potential applications. First of all, the demonic variance might serve as the basis for
refined guarantees on the behavior of systems, in particular, when employed in different
environments. As a first result in this direction, we will prove an analogue to Chebyshev’s
Inequality using the demonic variance. Further, as illustrated in Example 1.1, achieving a
low demonic variance or NDS can be desirable when designing systems. Hence, a reasonable
synthesis task could be to design a system ensuring a high expected value of a quantity X

while keeping the demonic variance of X below a threshold.
Secondly, the demonic variance and the NDS can serve to enhance the explainability of a

system’s behavior, a topic of growing importance in the area of formal verification (see, e.g.,
[4] for an overview). More concretely, the NDS can be understood as a measure assigning
responsibility for the scattering of a quantity X in different executions to the non-determinism
and the probabilism present in the system, respectively. Further, considering the NDS for
different starting states makes it possible to pinpoint regions of the state space in which the
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non-determinism has a particularly high influence. Notions of responsibility that quantify to
which extent certain facets of the behavior of a system can be ascribed to certain components,
states, or events have been studied in various settings [10, 33, 6, 25, 5].

Finally, the NDS can also be understood as a measure for the power of control when
non-determinism models controllable aspects of a system. This interpretation could be useful,
e.g., when designing exploration strategies in reinforcement learning. Here, the task is to
learn good strategies as fast as possible by interacting with a system. One of the main
challenges is to decide which regions of the state space to explore (see [21] for a recent survey).
Estimations for the NDS starting from different states could be useful here: States from
which the NDS is high might be more promising to explore than states from which the NDS
is low as the difference in received rewards from such a state is largely subject to randomness.

Contributions. Besides establishing general results for the demonic variance and the NDS,
we investigate the two notions for weighted reachability and accumulated rewards. For
weighted reachability, terminal states of an MDP are equipped with a weight that is received
if an execution ends in this state. For accumulated rewards, all states are assigned rewards
that are summed up along an execution. The main contributions of this paper are as follows.

We introduce the novel notions of demonic variance and non-determinism score. For
general random variables X, we prove that the demonic variance is at most twice as large
as the maximal variance. Furthermore, we prove an analogue of Chebyshev’s inequality.
For the non-determinism score, we establish consequences of a score of 0 or 1.
In the process, we prove a result of independent interest using a topology on the space of
schedulers that states that convergence with respect to this topology implies convergence
of the corresponding probability measures.
For weighted reachability, we show that the maximal and the demonic variance can be
computed via quadratic programs. For the maximal variance, this results in a polynomial-
time algorithm; for the demonic variance, in a separable bilinear program of polynomial
size yielding an exponential time upper bound. Further, we establish that there is a
memoryless scheduler maximizing the variance and a pair of memoryless deterministic
schedulers realizing the demonic variance.
For accumulated rewards, we prove that the maximal variance and an optimal finite-
memory scheduler can be computed in exponential time. Further, we prove that the
demonic variance is realized by a pair of deterministic finite-memory schedulers which
can be computed via a bilinear program of exponential size.

Related work. We are not aware of investigations of notions similar to the demonic variance
for MDPs. Previous work on the variance in MDPs usually focused on the minimization of
the variance. In [24], the problem to find schedulers that ensure a certain expected value
while keeping the variance below a threshold is investigated for accumulated rewards in
the finite horizon setting. It is shown that deciding whether there is a scheduler ensuring
variance 0 is NP-hard. In [22], the minimization of the variance of accumulated rewards and
of the mean payoff is addressed with a focus on optimality equations and no algorithmic
results. The variance of accumulated weights in Markov chains is shown to be computable in
polynomial time in [32]. For the mean payoff, algorithms were given to compute schedulers
that achieve given bounds on the expectation and notions of variance and variability in [9].

One objective incorporating the variance that has been studied on MDPs is the variance-
penalized expectation (VPE) [16, 13, 28]. Here, the goal is to find a scheduler that maximizes
the expected reward minus a penalty factor times the variance. In [28], the objective is
studied for accumulated rewards. Methodically, our results for the maximal and demonic



J. Piribauer 79:5

variance of accumulated rewards share similarities with the techniques of [28] and we make use
of some results proved there, such as the result that among expectation-optimal schedulers
a variance-optimal memoryless deterministic scheduler can be computed in polynomial
time. Nevertheless, the optimization of the VPE inherently requires the minimization of the
variance. In particular, it is shown in [28] that deterministic schedulers are optimal for the
VPE, while randomization is necessary for the maximization of the variance.

Besides the variance, several other notions that aim to bound the uncertainty of the
outcome of some quantitative aspect in MDPs have been studied – in particular, in the
context of risk-averse optimization: Given a probability p, quantiles for a quantity X are
the best bound B such that X exceeds B with probability at most p in the worst or best
case. For accumulated rewards in MDPs, quantiles have been studied in [31, 3, 17, 30]. The
conditional value-at-risk is a more involved measures that quantifies how far the probability
mass of the tail of the probability distribution lies above a quantile. In [20], this notion has
been investigated for weighted reachability and mean payoff; in [27] for accumulated rewards.
A further measure incentivizing a high expected value while keeping the probability of low
outcomes small is the entropic risk measure. For accumulated rewards, this measure has
been studied in [2] in stochastic games that extend MDPs with an adversarial player.

Finally, as the demonic variance is a measure that looks at a system across different
executions, there is a conceptual similarity to hyperproperties [12, 11]. For probabilistic
systems, logics expressing hyperproperties that allow to quantify over different executions or
schedulers have been introduced in [1, 15].

2 Preliminaries

Notations for Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S, Act, P, sinit) where S is a finite set of states, Act a finite set of actions, P : S × Act ×
S → [0, 1] ∩ Q the transition probability function, and sinit ∈ S the initial state. We require
that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S × Act. We say that action α is enabled in state

s iff
∑

t∈S P (s, α, t) = 1 and denote the set of all actions that are enabled in state s by Act(s).
We further require that Act(s) ̸= ∅ for all s ∈ S. If for a state s and all actions α ∈ Act(s),
we have P (s, α, s) = 1, we say that s is absorbing. The paths of M are finite or infinite
sequences s0 α0 s1 α1 . . . where states and actions alternate such that P (si, αi, si+1) > 0 for
all i ≥ 0. For π = s0 α0 s1 α1 . . . αk−1 sk, P (π) = P (s0, α0, s1) · . . . ·P (sk−1, αk−1, sk) denotes
the probability of π and last(π) = sk its last state. Often, we equip MDPs with a reward
function rew : S × Act → N. The size of M is the sum of the number of states plus the
total sum of the encoding lengths in binary of the non-zero probability values P (s, α, s′)
as fractions of co-prime integers as well as the encoding length in binary of the rewards
if a reward function is used. A Markov chain is an MDP in which the set of actions is a
singleton. In this case, we can drop the set of actions and consider a Markov chain as a tuple
M = (S, P, sinit, rew) where P now is a function from S × S to [0, 1] and rew a function from
S to N.

An end component of M is a strongly connected sub-MDP formalized by a subset
S′ ⊆ S of states and a non-empty subset A(s) ⊆ Act(s) for each state s ∈ S′ such that
for each s ∈ S′, t ∈ S and α ∈ A(s) with P (s, α, t) > 0, we have t ∈ S′ and such that
in the resulting sub-MDP all states are reachable from each other. An end-component is
a 0-end-component if it only contains state-action-pairs with reward 0. Given two MDPs
M = (S, Act, P, sinit) and N = (S′, Act′, P ′, s′

init), we define the (synchronous) product M⊗N
as the tuple (S × S′, Act × Act′, P ⊗, (sinit, s′

init)) where we define P ⊗((s, s′), (α, β), (t, t′)) =
P (s, α, t) · P (s′, β, t′) for all (s, s′), (t, t′) ∈ S × S′ and (α, β) ∈ Act × Act′.
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Schedulers. A scheduler (also called policy) for M is a function S that assigns to each finite
path π a probability distribution over Act(last(π)). If S(π) = S(π′) for all finite paths π and
π′ with last(π) = last(π′), we say that S is memoryless. In this case, we also view schedulers
as functions mapping states s ∈ S to probability distributions over Act(s). A scheduler
S is called deterministic if S(π) is a Dirac distribution for each finite path π, in which
case we also view the scheduler as a mapping to actions in Act(last(π)). Given two MDPs
M = (S, Act, P, sinit) and N = (S′, Act′, P ′, s′

init) and two schedulers S and T for M and N ,
respectively, we define the product scheduler S⊗T for M⊗N by defining for a finite path π =
(s0, t0) (α0, β0) (s1, t1) . . . (sk, tk): S ⊗ T(π)(α, β) = S(s0 α0 . . . sk)(α) · T(t0 β0 . . . tk)(β)
for all (α, β) ∈ Act × Act′.

Probability measure. We write PrSM,s to denote the probability measure induced by a
scheduler S and a state s of an MDP M. It is defined on the σ-algebra generated by
the cylinder sets Cyl(π) of all infinite extensions of a finite path π = s0 α0 s1 α1 . . . αk−1 sk

starting in state s, i.e., s0 = s, by assigning to Cyl(π) the probability that π is realized under S,
which is PS(π) def=

∏k−1
i=0 S(s0 α0 . . . si)(αi)·P (si, α0, si+1). This can be extended to a unique

probability measure on the mentioned σ-algebra. For details, see [29]. For a random variable
X, i.e., a measurable function defined on infinite paths in M, we denote the expected value
of X under a scheduler S and state s by ES

M,s(X). We define Emin
M,s(X) def= infS ES

M,s(X) and
Emax

M,s(X) def= supS ES
M,s(X). The variance of X under the probability measure determined by

S and s in M is denoted by VS
M,s(X) and defined by VS

M,s(X) def= ES
M,s((X −ES

M,s(X))2) =
ES

M,s(X2) − ES
M,s(X)2. We define Vmax

M,s(X) def= supS VS
M,s(X). If s = sinit, we sometimes

drop the subscript s in PrSM,s, ES
M,s and VS

M,s(X).

Mixing schedulers. Intuitively, we often want to use a scheduler that initially decides to
behave like a scheduler S and then to stick to this scheduler with probability p and to behave
like a scheduler T with probability 1 − p. As this intuitive description does not match the
definition of schedulers as functions from finite paths2, we provide a formal definition: For
two schedulers S and T and p ∈ [0, 1], we use pS⊕ (1−p)T to denote the following scheduler.
For a path π = s0 α0 s1 α1 . . . αk−1 sk, we define for an action α enabled in sk

(pS ⊕ (1 − p)T)(π)(α) def= p · PS(π) · S(π)(α)
p · PS(π) + (1 − p) · PT(π) + (1 − p) · PT(π) · T(π)(α)

p · PS(π) + (1 − p) · PT(π) .

This is well-defined for any path that has positive probability under S or T. The following
result is folklore; a proof is included in the full version [26].

▶ Proposition 2.1. Let the schedulers S and T and the value p be as above. Then, for any
path π = s0 α0 s1 α1 . . . αk−1 sk, we have P pS⊕(1−p)T(π)(π) = pPS(π) + (1 − p)PT(π).

We conclude PrpS⊕(1−p)T
M,s (A) = pPrSM,s(A) + (1 − p)PrTM,s(A) for any measurable set

of paths A. Hence, we can think of the scheduler pS ⊕ (1 − p)T as behaving like S with
probability p and like T with probability (1 − p). In particular, we can also conclude that
for a random variable X, we have EpS⊕(1−p)T

M,s (X) = pES
M,s(X) + (1 − p)ET

M,s(X). For the
variance, we obtain the following as shown in full version [26].

▶ Lemma 2.2. Given M, X, and two schedulers S1 and S2, as well as p ∈ [0, 1], let T =
pS1 ⊕(1−p)S2. Then, VT

M(X) = pVS1
M (X)+(1−p)VS2

M (X)+p(1−p)(ES1
M (X)−ES2

M (X))2.

2 This description would be admissible if we allowed stochastic memory updates (see, e.g., [8]).
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Figure 3 Graphical illustration of the task to find the demonic variance (see Example 3.2).

Topology and convergence of measures. Given a family of topological spaces ((Si, τi))i∈I ,
the product topology τ on

∏
i∈I Si is the coarsest topology such that the projections

pi :
∏

i∈I Si → Si, (si)i∈I 7→ si are continuous for all i ∈ I. For measures (µj)j∈N and µ on
a measure space (Ω, Σ) where Ω is a metrizable topological space and Σ the Borel σ-algebra
on Ω, we say that the sequence (µj)j∈N weakly converges to µ if for all bounded continuous
functions f : Ω → R, we have limj→∞

∫
fdµj =

∫
fdµ. The set of infinite paths ΠM of an

MDP M with the topology generated by the cylinder sets is metrizable as we can define the
metric d(π, π′) = 2−ℓ where ℓ is the length of the longest common prefix of π and π′.

3 Demonic variance and non-determinism score

In this section, we formally define the demonic variance. After proving first auxiliary results,
we prove an analogue of Chebyshev’s Inequality using the demonic variance. Then, we
introduce the non-determinism score and investigate necessary and sufficient conditions for
this score to be 0 or 1. Proofs omitted here can be found in the full version [26].

Throughout this section, let M = (S, Act, P, sinit) be an MDP and let X be a random
variable, i.e., a Borel measurable function on the infinite paths of M. We will work under
two assumptions that ensure that all notions are well-defined: First, note that Vmax

M (X) = 0
implies that there is a constant c such that under all schedulers S, we have PrSM(X = c) = 1
– an uninteresting case. Furthermore, for meaningful definitions of demonic variance and
non-determinism score, we need that the expected value and the variance of X in M are
finite. Hence, we work under the following assumption:

▶ Assumption 3.1. We assume that 0 < Vmax
M (X) < ∞ and that supS

∣∣ES
M(X)

∣∣ < ∞.

3.1 Demonic variance
As described in the introduction, the idea behind the demonic variance is to quantify the
expected squared deviation of X in two independent executions of M, in which the non-
determinism is resolved independently as well. We use the following notation: Given a path
in M ⊗ M consisting of a sequence of pairs of states and pairs of actions, we denote by X1
and X2 the function X applied to the projection of the path on the first component and on
the second component, respectively. Given two schedulers S1 and S2 for M, we define

VS1,S2
M (X) def= 1

2E
S1⊗S2
M⊗M ((X1 − X2)2).
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Intuitively, in this definition two independent executions of M are run in parallel while the
non-determinism is resolved by S1 in the first execution and by S2 in the second component.
As the two components in the products M ⊗ M and S1 ⊗S2 are independent, the resulting
distributions of X in the two components, i.e., X1 and X2 are independent as well. The
factor 1

2 is included as for a random variable Y , this factor also appears in the representation
V(Y ) = 1

2E((Y1 − Y2)2) for two independent copies Y1 and Y2 of Y .
The demonic variance is now the worst-case value when ranging over all pairs of schedulers:

Vdem
M (X) def= sup

S1,S2

1
2E

S1⊗S2
M⊗M ((X1 − X2)2).

A first simple, but useful, result allows us to express VS1,S2
M (X) in terms of the expected

values and variances of X under S1 and S2.

▶ Lemma 3.1. Given two schedulers S1 and S2 for M, we have

VS1,S2
M (X) = 1

2

(
VS1

M (X) + VS2
M (X) + (ES1

M (X) − ES2
M (X))2

)
.

This lemma allows us to provide an insightful graphical interpretation of the demonic
variance using the standard deviation SD(X) def=

√
V(X) of a random variable X:

▶ Example 3.2. Suppose in an MDP M, there are four deterministic scheduler S1, . . . ,S4
with expected values 1, 2, 3, and 4 and variances 1, 8, 8, and 5 for a random variable X.
Lemma 2.2 allows us to compute the variances of schedulers obtained by randomization
leading to parabolic line segments in the expectation-variance-plane as depicted in Figure
3a (see also [28]). Further randomizations also make it possible to realize any combination
of expectation and variance in the interior of the resulting shape. When looking for the
maximal variance and the demonic variance, only the upper bound of this shape is relevant.

In Figure 3b, we now depict the standard deviations of schedulers on this upper bound
over the expectation twice on two orthogonal planes. Clearly, the highest standard deviation
(and consequently variance) is obtained for the expected value 2.5 in this example. The red
dotted line of length

√
2Vmax

M (X) connects the two points corresponding to this maximum

on the two planes. Considering S2 and S4, we can also find the value
√

2VS2,S4
M (X) : The

blue dashed line connects the point corresponding to S2 on one of the planes to the point
corresponding to S4 on the other plane. By the Pythagorean theorem, its length is√√

VS2
M (X)

2
+ (ES2

M (X) − (ES4
M (X))2 +

√
VS4

M (X)
2

=
√

2VS2,S4
M (X).

So, finding
√

2 times the “demonic standard deviation” and hence the demonic variance
corresponds to finding two points on the two orthogonal graphs with maximal distance.

The relation between maximal and demonic variance is shown in the following proposition.

▶ Proposition 3.3. We have Vmax
M (X) ≤ Vdem

M (X) ≤ 2Vmax
M (X).

By means of Chebyshev’s Inequality, the variance can be used to bound the probability that
a random variable Y lies far from its expected value. Using the demonic variance, we can
prove an analogous result providing bounds on the probability that the outcomes of X in two
independent executions of the MDP M lie far apart. This can be seen as a first step in the
direction of using the demonic variance to provide guarantees on the behavior of a system.
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▶ Theorem 3.4. We have PrS⊗T
M⊗M

(
|X1 − X2| ≥ k ·

√
Vdem

M (X)
)

≤ 2
k2 for any k ∈ R>0

and schedulers S and T for M.

Using the result that Vdem
M (X) ≤ 2Vmax

M (X), we obtain the following variant of the
inequality providing a weaker bound in terms of the maximal variance.

▶ Corollary 3.5. We have PrS⊗T
M⊗M

(
|X1 − X2| ≥ k ·

√
Vmax

M (X)
)

≤ 4
k2 for any k ∈ R>0 and

schedulers S and T for M.

3.2 Non-determinism score
We have seen that the demonic variance is larger than the maximal variance by a factor
between 1 and 2. As described in the introduction, we use this insight as the basis for a
score quantifying how much worse the “uncertainty” of X is when non-determinism can be
resolved differently in two executions of an MDP compared to how bad it can be in a single
execution. We define the non-determinism score (NDS)

NDS(M, X) def= Vdem
M (X) − Vmax

M (X)
Vmax

M (X) .

By Assumption 3.1, the NDS is well-defined. By Proposition 3.3, the NDS always returns a
value in [0, 1]. Clearly, in Markov chains, the NDS is 0. A bit more general, we can show:

▶ Proposition 3.6. If ES
M(X) = ET

M(X) for all schedulers S and T, then NDS(M, X) = 0.

In transition systems viewed as MDPs in which all transition probabilities are 0 or 1, the
NDS is 1: Under Assumption 3.1 in a transition system the value of X must be bounded,
i.e., X ∈ [a, b] for some a, b ∈ R such that supπ X(π) = b and infπ X(π) = a where π ranges
over all paths. Any path can be realized by a scheduler with probability 1. So, for any ε > 0,
there are schedulers S and T with PrSM(X < a + ε) = 1 and PrTM(X > b − ε) = 1. Then,
VS,T

M (X) ≥ 1
2 (b − a − 2ε)2. For ε → 0, this converges to (a−b)2

2 . It is well-known that the
variance of random variables taking values in [a, b] is maximal for the random variable taking
values a and b with probability 1

2 each. The variance in this case is (a−b)2

4 . So, the maximal
variance is (at most) half the demonic variance in this case. Consequently, the NDS is 1.

Of course, a NDS of 1 does not imply that there are no probabilistic transitions in M.
Nevertheless, a NDS of 1 has severe implications showing that the outcome of X can be
heavily influenced by the non-determinism in this case as the following theorem shows:

▶ Theorem 3.7. If NDS(M, X) = 1, the following statements hold:
1. For every ε > 0, there are schedulers Minε and Maxε with EMinε

M (X) ≤ Emin
M (X) + ε and

VMinε

M (X) ≤ ε, and EMaxε

M (X) ≥ Emax
M (X) − ε and VMaxε

M (X) ≤ ε.
2. If there are schedulers S0 and S1, with Vdem

M (X) = VS0,S1
M (X), then, for i = 0 or i = 1,

PrSi

M(X = Emin
M (X)) = 1 and PrS1−i

M (X = Emax
M (X)) = 1.

3. If X is bounded and continuous wrt the topology generated by the cylinder sets, there are
schedulers Min and Max with PrMin

M (X = Emin
M (X)) = 1 and PrMax

M (X = Emax
M (X)) = 1.

The first two statements can be shown by elementary calculations. For the third statement,
we use topological arguments. We view schedulers as elements of

∏∞
k=0 Distr(Act)Pathsk

M

where Pathsk
M is the set of paths of length k in M and prove the following result:

▶ Proposition 3.8. The space of schedulers Sched(M) =
∏∞

k=0 Distr(Act)Pathsk
M with the

product topology is compact. So, every sequence of schedulers has a converging subsequence
in this space. Further, for a sequence (Sj)j∈N converging to a scheduler S in this space, the
sequence of probability measures (PrSj

M )j∈N weakly converges to the probability measure PrSM.
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An example for a random variable that is bounded and continuous wrt the topology
generated by the cylinder sets is the discounted reward: Given a reward function rew : S → R,
the discounted reward of a path π = s0α0s1 . . . is defined as DRλ(π) def=

∑∞
j=0 λjrew(sj) for

some discount factor λ ∈ (0, 1). First, |DRλ| is bounded by maxs∈S |rew(s)| · 1
1−λ . Further,

for any ε > 0, let N be a natural number such that maxs∈S |rew(s)| · λN

1−λ < ε. Then,
|DRλ(π) − DRλ(ρ)| < ε for all paths π and ρ that share a prefix of length more than N .

4 Weighted reachability

We now address the problems to compute the demonic and the maximal variance for weighted
reachability where a weight is collected on a run depending on which absorbing state is
reached. As the NDS is defined via these two quantities, we do not address it separately here.
Throughout this section, let M = (S, Act, P, sinit) be an MDP with set of absorbing states
T ⊆ S and let wgt : T → Q be a weight function. We define the random variable WR on
infinite paths π by WR(π) = wgt(t) if π reaches the absorbing state t ∈ T , and WR(π) = 0
if π does not reach T . The main result we are going to establish is the following:

Main result. The maximal variance Vmax
M (WR) and an optimal memoryless randomized

scheduler can be computed in polynomial time.
The demonic variance Vdem

M (WR) can be computed as the solution to a bilinear program
that can be constructed in polynomial time. Furthermore, there is a pair of memoryless
deterministic schedulers realizing the demonic variance.

The following standard model transformation collapsing end components (see [14]) allows
us to assume that T is reached almost surely under any scheduler: We add a new absorbing
state t∗ and set wgt(t∗) = 0 and collapse all maximal end components E in S \ T to single
states sE . In sE , all actions that were enabled in some state in E and that did not belong to
E as well as a new action τ leading to t∗ with probability 1 are enabled. In the resulting
MDP N , the set of absorbing states T ∪ {t∗} is reached almost surely under any scheduler.
Further, for any scheduler S for M, there is a scheduler T for N such that the distribution
of WR is the same under S in M and under T in N , and vice versa. So, w.l.o.g., assume
the following:

▶ Assumption 4.1. The set T is reached almost surely under any scheduler S for M.

In the sequel, we first address the computation of the maximal variance and afterwards
of the demonic variance of WR in M. Omitted proofs can be found in the full version [26].

Computation of the maximal variance. It is well-known that the set of vectors (PrSM(♢q))q∈T

of combinations of reachability probabilities for states in T that can be realized by a scheduler
S can be described by a system of linear inequalities (see, e.g., [18]). We provide such a
system of inequalities below in equations (1) – (3). The equations use variables xs.α for all
state-action pairs (s, α) encoding the expected number of times action α is taken in state s.
Setting 1s=sinit = 1 if s = sinit and 1s=sinit = 0 otherwise, we require

xs,α ≥ 0 for all (s, α), (1)∑
α∈Act(s)

xs,α =
∑

t∈S,β∈Act(t)

xt,β · P (t, β, s) + 1s=sinit for all s ∈ S \ T , (2)

yq =
∑

t∈S,β∈Act(t)

xt,β · P (t, β, q) for all q ∈ T . (3)
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The variables yq for q ∈ T represent the probabilities that state q is reached. We can now
express the expected value of WR and WR2 via variables e1 and e2 via the constraints:

e1 =
∑
q∈T

yq · wgt(q) and e2 =
∑
q∈T

yq · wgt(q)2. (4)

The variance can now be written as a quadratic objective function in e1 and e2:

maximize e2 − e2
1. (5)

▶ Theorem 4.1. The maximal value in objective (5) under constraints (1) – (4) is Vmax
M (WR).

Due to the concavity of the objective function, we conclude:

▶ Corollary 4.2. The maximal variance Vmax
M (WR) can be computed in polynomial time.

Furthermore, there is a memoryless randomized scheduler S with VS
M(WR) = Vmax

M (WR),
which can also be computed in polynomial time.

Computation of the demonic variance. The demonic variance can also be expressed as
the solution to a quadratic program. To encode the reachability probabilities for states in T

under two distinct schedulers, we use variables xs,α for all state weight pairs (s, α) and yq

for q ∈ T subject to constraints (1) – (3) as before. Additionally, we use variables x′
s,α for all

state weight pairs (s, α) and y′
q for q ∈ T subject to the analogue constraints (1′) – (3′) using

these primed variables. The maximization of the demonic variance can be expressed as

maximize 1
2

∑
q,r∈T

yq · y′
r · (wgt(q) − wgt(r))2. (6)

▶ Theorem 4.3. The maximum in (6) under constraints (1) – (3), (1′) – (3′) is Vdem
M (WR).

The quadratic objective function (6) is not concave. However, it is bilinear and separable.
This means that the variables can be split into two sets, the primed and the unprimed
variables, such that the quadratic terms only contain products of variables from different
sets and each constraint contains only variables from the same set. In general, checking
whether the solution to a separable bilinear program exceeds a given threshold is NP-hard [23].
Nevertheless, solution methods tailored for bilinear programs that perform well in practice
have been developed (see, e.g., [19]). Further, bilinearity allows us to conclude:

▶ Corollary 4.4. There is a pair of memoryless deterministic schedulers S and T for M
such that Vdem

M (WR) = VS,T
M (WR).

For the complexity of the threshold problem, we can conclude an NP upper bound.
Whether the computation of the demonic variance is possible in polynomial time is left open.

▶ Corollary 4.5. Given M, wgt and ϑ ∈ Q, deciding whether Vdem
M (WR) ≥ ϑ in in NP.

5 Accumulated rewards

One of the most important random variables studied on MDPs are accumulated rewards:
Let M = (S, Act, P, sinit) be an MDP and let rew : S → N be a reward function. We extend
the reward function to paths π = s0α0s1 . . . by rew(π) =

∑∞
i=0 rew(si). For this random

variable, we prove the following result:

MFCS 2024
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Main result. The maximal variance Vmax
M (rew) and an optimal randomized finite-memory

scheduler can be computed in exponential time.
The demonic variance Vdem

M (rew) can be computed as the solution to a bilinear program
that can be constructed in exponential time. Furthermore, there is a pair of deterministic
finite-memory schedulers realizing the demonic variance.

We provide a sketch outlining the proof strategy. For a detailed exposition, see [26].

Proof sketch for the main result. It can be checked in polynomial time whether
Emax

M (rew) < ∞ [14]. If this is the case, this allows us to perform the same preprocessing as
in Section 4 that removes all end components without changing the possible distributions of
rew [14].

Bounding expected values and expectation maximizing actions. After the pre-processing,
a terminal state is reached almost surely. As shown in [28], this allows to obtain a bound Q

on Emax
M (rew2) in polynomial time. Further, the maximal expectation Emax

M,s(rew) from each
state s can be computed in polynomial time [7, 14]. From these values, a set of maximizing
actions Actmax(s) for each state s can be computed. After the preprocessing, a scheduler
is expectation optimal iff it only chooses actions from these sets. If a scheduler S initially
chooses a non-maximizing action in a state s, the expected value ES

M,s(rew) is strictly smaller
than Emax

M,s(rew). We define δ to be the minimal difference between these values ranging over
all starting states and non-maximizing actions. So, δ is the “minimal loss” in expected value
of rew received by choosing a non-maximizing action.

Switching to expectation maximization. Using the values Q and δ, we provide a bound B

such that any scheduler choosing a non-maximizing action with positive probability after
a path π with rew(π) ≥ B cannot realize the maximal variance. Intuitively, the reason is
that the influence of accumulating future rewards on the variance grows with the amount of
rewards already accumulated due to the quadratic nature of variance. The bound B can be
computed in polynomial time and its numerical value is exponential in the size of the input.

It follows that variance maximizing schedulers have to maximize the future expected
rewards after a reward of at least B has been accumulated. Furthermore, we can show that
among all expectation maximizing schedulers, a variance maximizing scheduler has to be used
above the reward bound B. In [28], it is shown that a memoryless deterministic expectation
maximizing scheduler U that maximizes the variance among all expectation maximizing
schedulers can be computed in polynomial time. So, schedulers maximizing the variance of
rew can be chosen to behave like U once a reward of at least B has been accumulated.

Quadratic program. Now, we can unfold the MDP M by storing in the state space how
much reward has been accumulated up to the bound B. This results on an exponentially
larger MDP M′. Using the expected values EU

M,s(rew) and the variances VU
M,s(rew) under

U from each state s, we can formulate a quadratic program similar to the one for weighted
reachability in Section 4 for this unfolded MDP M′. From the solution to this quadratic
program, the maximal variance and an optimal memoryless scheduler S for M′ can be
extracted. Transferred back to M, the scheduler S corresponds to a reward-based finite-
memory scheduler that keeps track of the accumulated reward up to bound B. As the
quadratic program is convex, these computations can be carried out in exponential time.

Demonic variance. For the demonic variance, the overall proof follows the same steps.
Similar to the bound B above, a bound B′ can be provided such that in any pair of
scheduler S and T realizing the demonic variance, both schedulers can be assumed to switch
to the behavior of the memoryless deterministic scheduler U above the reward bound B′.
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Again by unfolding the state space up to this reward bound, the demonic variance can be
computed via a bilinear program of exponential size similar to the one used in Section 4 for
weighted reachability. Furthermore, the pair of optimal memoryless deterministic schedulers
in the unfolded MDP, which can be extracted from the solution, corresponds to a pair of
deterministic reward-based finite-memory schedulers in the original MDP M. ◀

6 Conclusion

We introduced the notion of demonic variance that quantifies the uncertainty under probabil-
ism and non-determinism of a random variable X in an MDP M. As this demonic variance
is at most twice as big as the maximal variance of X, we used it to define the NDS for MDPs.

The demonic variance can be used to provide new types of guarantees on the behavior
of systems. A first step in this direction is the variant of Chebyshev’s Inequality using the
demonic variance proved in this paper. Furthermore, the demonic variance and the NDS can
serve as the basis for notions of responsibility. On the one hand, such notions could ascribe
responsibility for the uncertainty to non-determinism and probabilism. On the other hand,
comparing the NDS from different starting states can be used to identify regions of the state
space in which the non-deterministic choices are of high importance.

For weighted reachability and accumulated rewards, we proved that randomized finite-
memory schedulers are sufficient to maximize the variance. For the demonic variance, even
pairs of deterministic finite-memory schedulers are sufficient. While we obtained upper
bounds via the formulation of the computation problems as quadratic programs, determining
the precise complexities is left as future work. In the case of accumulated rewards, we
restricted to non-negative rewards. When dropping this restriction, severe difficulties have
to be expected as several related problems on MDPs exhibit inherent number-theoretic
difficulties rendering the decidability status of the corresponding decision problems open [27].

Of course the investigation of the demonic variance and NDS for further random variables
constitutes an interesting direction for future work. For practical purposes, studying also the
approximability of the maximal and demonic variance is important.

Finally, In the spirit of the demonic variance, further notions can be defined to quantify the
uncertainty in X if the non-determinism in two executions of M is not resolved independently,
but information can be passed between the two executions. This could be useful, e.g., to
analyze the potential power of coordinated attacks on a network. Formally, such a notion
could be defined as supS ES

M⊗M((X1 −X2)2) where S ranges over all schedulers for M⊗M.
In this context, also using an asynchronous product of M with M could be reasonable.
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Abstract
We present a computational model for Parsing Expression Grammars (PEGs). The predecessor
of PEGs top-down parsing languages (TDPLs) were discovered by A. Birman and J. Ullman in
the 1960-s, B. Ford showed in 2004 that both formalisms recognize the same class named Parsing
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60-s TDPLs were abandoned and then upgraded by B. Ford to PEGs, so the parsing algorithm
was improved (from the practical point of view) as well. Now PEGs are actively used in compilers
(eg., Python replaced LL(1)-parser with a PEG one) so as for text processing as well. In this
paper, we present a computational model for PEG, obtain structural properties of PELs, namely
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concatenation with regular closure of DCFLs. We present an extension of the PELs class based on
the extension of our computational model. Our model is an upgrade of deterministic pushdown
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1 Introduction

We present a computational model for Parsing Expression Grammars (PEGs) presented by B.
Ford in [6]. The predecessor of PEGs top-down parsing languages (TDPLs) was discovered
by A. Birman and J. Ullman in the 1960s (so as generalized TDPLs) [4]. While the PEGs
formalism has more operations, it has the same power as TDPLs and generalized TDPLs
which was shown by B. Ford in [7]. We refer to the class of languages generated by PEGs
(and TDPLs, and generalized TDPLs) as Parsing Expression Languages (PELs).

Little is known about the structural properties of PELs. From the 60’s it is known that
PELs contain DCFLs as a subclass and some non-context-free languages like anbncn as well.
A linear-time parsing algorithm (in RAM) had been constructed for TDPLs, but it was
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impractical in the 1960s since it required too much memory for memoization and TDPLs
had been abandoned. B. Ford upgraded the TDPLs formalism to PEGs and presented a
linear-time practical algorithm in 2002 [6]. Now PEGs are being actively used in compilers
(eg., Python replaced an LL(1)-parser with a PEG one [16]) so as for text processing as
well. In this paper, we present a computational model for PELs and obtain some interesting
properties for this class, analyze (some of) its subclasses, and generalize the PELs class as
well.

A computational model for PELs was presented in [12], but this model significantly differs
from classical models of computations, so it is hard to clarify the place of PELs among
known classes of formal languages, based on this model. So we present a simpler and more
convenient model that discovers the place of PEGs in the variety of formal language classes.
Namely, the computational model is a modified deterministic pushdown automaton (DPDA)
that puts to the stack a symbol with the pointer of the head’s position on the tape (from
which the push has been performed). During the pop, the automaton has two options:
either leave the head in the current position or move the head to the position stored in the
pointer (retrieved during the pop of the symbol). We call this model a deterministic pointer
pushdown automaton (DPPDA). This description of PELs from the automata point of view
helped us to obtain other important results not only for the PELs but for the general area of
formal languages as well. Namely, we prove that boolean closure of regular closure of DCFLs
is linear-time recognizable (in RAM), what extends the nontrivial result by E. Bertsch and
M.-J. Nederhof [3] that regular closure of DCFLs is linear-time recognizable.

To describe our results we shall mention the following important results in the area
of formal languages and automata theory. Donald Knuth invented LR(k) grammars that
describe DCFLs for k ≥ 1 and were widely used in practice. It is easier to design an LL(k)
grammar for practical purposes, so despite the power of LR, LL grammars are widely used
for parsing (and some artificial modification of recursive descent parsing as well). Top-
down parsing languages (TDPLs, predecessor of PEGs) cover LL(1) grammars and even
contain DCFLs as a subclass, but their linear-time parsing algorithm was impractical in the
1970s, so TDPLs had been abandoned till B. Ford upgraded them to PEGs and presented
a practically reasonable linear-time parser (Packrat). So, linear-time recognizable classes
of formal languages are used in compilers, and LR (DCFLs) parsers now compete with
PEGs which cover a wider class of formal languages that is almost undiscovered. There
are no comprehensive results on the structure of PELs, so we make a contribution to this
open question. Another wide linear-time recognizable class of formal languages is languages
recognizable by two-way deterministic pushdown automata (2DPDA). S. Cook obtained
in [5] a famous linear-time simulation algorithm for this model. There also was an amazing
story about how D. Knuth used S. Cook’s algorithm to discover the Knuth-Morris-Pratt
algorithm ([10], Section 7).

We modify 2DPDA in the same way as we did for DPDA: we add symbols to stack
with a pointer that allows returning the head to the cell from which the push had been
performed. S. Cook’s linear-time simulation algorithm applies to this model as well (with a
little modification). So we extend the important class of formal languages (recognizable by
2DPDAs) preserving linear-time parsing. This extension can be used to generalize PEGs.
Also, this algorithm provides another approach to linear time recognition of languages
generated by PEGs described via DPPDAs. Note that there are not many structural results
about PELs. Moreover, even equivalence of TDPLs and generalized TDPLs (with PEGs)
had been proved by B. Ford [7] decades after these classes had been invented. In our opinion,
one of the reasons for that is that TDPL-based formalisms are hard. So even the proof of
inclusion DCFLs in PELs [4] is complicated, while it directly follows from the equivalence of
PEGs with our model.
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So we hope that our model will raise interest in investigations of PELs and will help with
these investigations as well. Our results also clarify the place of another interesting result (we
also improved it, as described below). It was shown by E. Bertsch and M.-J. Nederhof [3] that
regular closure of DCFLs is linear-time recognizable. We show that this class is recognizable
by DPPDAs which simplifies the original proof [3] and shows the place of this class in the
formal languages classes.

There are many linear-time recognizable classes of formal languages. Recently Rubtsov
showed [14] that Hibbard’s hierarchy (the subclass of CFLs) is linear-time recognizable. So
there are many open questions related to the systematization of linear time recognizable
classes of formal languages and particularly the relation of Hibbard’s hierarchy with languages
recognizable by 1-2 DPPDAs.

1.1 Results
In this paper, we present a new computational model DPPDA which is equivalent to PEGs.
We also consider the two-way model 2DPPDA and provide a linear time simulation algorithm
for this model following S. Cook’s construction. Via DPPDA we show that the PEGs class is
closed over left concatenation with regular closure of DCFLs, so PELs contain the regular
closure of DCFLs as a subclass. With the linear-time simulation algorithm for 2DPPDA,
we obtain another linear-time recognition algorithm for the regular closure of DCFLs and
since PELs are closed over Boolean operation we prove that the Boolean closure of regular
closure of DCFLs is linear-time recognizable. Note that the last result not only generalizes
well known result of linear-time recognizability of regular closure of DCFLs [3], but also our
proof is significantly simpler as well.

The full version of this paper is available on arXiv [13]. We put the reference to [13]
when the proof is omitted due to the space limitations.

1.2 Basic Notation
We follow the notation from [9] on formal languages, especially on context-free grammars
(CFGs) and pushdown automata. We denote the input alphabet as Σ and its elements
(letters, terminals) are denoted by small letters a, b, c, . . ., while letters w, x, y, z denote words.
The empty word is denoted by ε. We denote nonterminals N by capital letters A,B,C, . . .,
and X,Y, Z can be used for both nonterminals and terminals. The axiom is denoted by
S ∈ N . Words over the alphabet N ∪Σ are called sentential forms and are denoted by small
Greek letters.

1.3 Informal Description of PEGs
The formal definition of PEGs is not well intuitive, so we begin with an informal one that
clarifies a simple idea behind this formal model. The intuition behind PEGs lies in recursive
descent parsing.

One of the parsing methods for CF-grammars is a recursive descent parsing that is a
process when the derivation tree is built top-down (starting from the axiom S) and then
each nonterminal is substituted according to the associated function. A rollback is possible
as well, where by rollback we mean the replacement of one production rule by another or
even the replacement of the rule higher above the current node with the deletion of subtrees.
This method is very general and we do not go deep into details. For our needs, we describe a
recursive descent parsing of LL(1) grammars and its modification that defines PEGs.

MFCS 2024



80:4 Computational Model for Parsing Expression Grammars

For LL(1) grammar, the following assertion holds. Fix a leftmost derivation of a word
w◁ = uav◁ and let uAα◁ be a derivation step (here ◁ is a right end marker of the input).
The next leftmost derivation step is determined by the nonterminal A and the terminal a, so
the rule is the function R(A, a). So, the recursive descent algorithm for an LL(1)-parser is as
follows. An input w◁ is written in the one-way read-only tape called the input tape. The
pointer in the (constructing) derivation tree points to the leftmost nonterminal node (without
children), initially the axiom S. This node is replaced according to the function R. In the
fixed above derivation step uAα◁ the pointer is over the nonterminal A, R(A, a) = xBβ,
where A → xBβ is a grammar rule. So, xBβ is glued into A as a subtree, x is a prefix of
av and the head of the input tape moves while scanning x. If R(A, a) does not contain a
nonterminal, then (after replacement) the tree is traversed via DFS until the next (leftmost!)
nonterminal is met. Each terminal during this traversal shifts the head of the input tape. If
the symbol under the head differs from the traversed terminal, the input word is rejected.
We illustrated the described process in Fig. 1. Note that u, x, α, β are the subtrees and u, v,
x, v′ in fact occupies several cells of the input tape.

S

u A α

u a v ◁

A

S

u A

x B β

α

u x b v′ ◁

B

Figure 1 Example of LL(1) recursive descent parsing.

So now we move to the description of PEGs via modification of recursive descent parsing.
In the first example, we will provide similar PEG and CFG (Fig. 2) and explain their
similarity and differences.

PEG

S ← AB /BC

A← aA/ a

B ← abb / b

C ← cC / ε

CFG

S → AB | BC
A→ aA | a
B → abb | b
C → cC | ε

Figure 2 PEG and CFG for comparison.

PEGs look similar to context-free grammars, but the meaning of almost all concepts are
different, therefore the arrow ← is used to separate the left part of a rule from the right part.
The difference comes from the following approach to recursive descent parsing. We describe
the PEG via the transformation of the CFG. Let us order all the rules of the CFG for each
nonterminal. During recursive descent parsing, we will try each rule according to this order.
If a failure happens, let us try the next rule in the order. If the last rule leads us to the
failure too, propagate the failure to the parent and try using the next rule in the order on
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the previous tree level. So, that is the reason why all right-hand sides of the rules in PEG
are separated by the delimiter /, but not by |. The order of rules in PEGs matters, unlike
CFGs. Consider the parsing (Fig. 3) of the word aab by the PEG defined on Fig. 2.

S

A

a A

a A

a A

B

a a b ◁

a

S

A

a A

a A

a

B

a a b ◁

a

S

A

a A

a

B

a b b

a a b ◁

a

S

A

a A

a

B

b

a a b ◁

b

Figure 3 Parsing of aab by PEG.

The rule A← aA is applied while the content of the input tape matches the crown (the
leafs) of the tree. So, when the last application is unsuccessful, it is replaced by the following
rule A← a which is unsuccessful too. So failure signal goes to the level above and the second
rule A← aA is replaced by A← a. After that, the control goes to the nonterminal B for
which firstly the rule B ← abb is applied, but since it leads to the failure, finally the rule
B ← b is applied and it finishes the parsing since the whole word has been matched.

So PEGs are similar to CFGs since they share the idea of recursive descent parsing. But
the difference is significant. Since all the rules for each nonterminal are ordered, the classical
notion of concatenation does not apply to PEGs. We cannot say that if a word u is derived
from A and v is derived from B, then uv is derived from AB as explained below. In the
PEG example above, a word abb is never derived from B because A from AB will always
parse all a’s from the input. Note that the failure during the parsing occurs only because
of a mismatch. So, the input abbc will be parsed by the PEG as following. The prefix ab

will be successfully parsed by AB and by S as well, but since the whole word has not been
parsed, the input is rejected. Since there was no failure, the rule S ← AB was not replaced
by S ← BC. So the word abbc is not accepted by the PEG while it is derived from the CFG.
▶ Remark 1. It is an open question, whether PELs are closed over concatenation.

Note that the patterns of iteration A ← aA/ a and C ← cC / ε work in a greedy way.
In the case of concatenation Ce (with an expression e), all c’s from the prefix of the input
would be parsed by C.

In the considered example we have not mentioned an important PEG’s operation. There is
a unary operator ! that is applied as follows. In the case !e the following happens. Firstly the
parsing goes to the expression e. If e parsed the following input successfully (i.e., a subtree for
e that matches the prefix of the unprocessed part of the input has been constructed without
a failure), then !e produces failure. If a failure happens, then !e is considered to parse the
empty word ε and the parsing process continues. For example, consider the following PEG:

S ← A(!C) /B A← aAb / ε B ← aBc / ε C ← a / b

(!C) guarantees that if A(!C) finished without failure, then it parsed the whole input.
So, in the case of the input anbn for n ≥ 0, the input will be parsed by A(!C) and there will
be no switch to the rule S ← B. For any other input, the parsing of A(!C) fails and the rule
is switched to S ← B. So, this PEG generates the language {anbn | n ≥ 0} ∪ {ancn | n ≥ 0}.
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Another common use of the operator ! is its double application that has its name:
&e = !(!e). This construction checks whether the prefix of the (unprocessed part of the)
input matches e: in the positive case, & parses an empty word and computation continues, in
the negative case, it returns failure. So & acts similarly to !, but the conditions are flipped.
Consider the following example:

S ← (&(Ac))BC A← aAb / ε B ← aB / a C ← bCc / ε

This PEG checks that the input has the prefix anbnc and then parses the input if it has the
form a+bncn, so the PEG generates the language {anbncn | n ≥ 1}.

So it is known that PEGs generate non CFLs and it is still an open question whether
PEGs generate all CFLs. The conditional answer is no: there exists a linear-time parsing
algorithm for PEG, while the work of L. Lee [11] and Abboud et al. [1] proves that it is very
unlikely for CFLs due to theoretical-complexity assumptions: any CFG parser with time
complexity O(gn3−ε), where g is the size of the grammar and n is the length of the input
word, can be efficiently converted into an algorithm to multiply m×m Boolean matrices in
time O(m3−ε/3). Note that this conditional result shows that it is unlikely that 2DPPDAs
recognize all CFLs as well.

2 Formal Definition of PEGs

Our definition slightly differs from the standard definition of PEG from [7] (Section 3) due
to technical reasons. We discuss the difference after the formal definition.

▶ Definition 2. A parsing expression grammar G is defined by a tuple (N,Σ, P, S), where N
is a finite set of symbols called nonterminals, Σ is a finite input alphabet (a set of terminals),
N ∩Σ = ∅, S ∈ N is the axiom, and P is a set of production rules of the form A← e such
that each nonterminal A ∈ N has the only corresponding rule, and e is an expression that
is defined recursively as follows. The empty word ε, a terminal a ∈ Σ, and a nonterminal
A ∈ N are expressions. If e and e′ are expressions, then so are (e) which is equivalent to e, a
sequence ee′, a prioritized choice e / e′, a not predicate !e. We assume that ! has the highest
priority, the next priority has the sequence operation and the prioritized choice has the lowest
one. We denote the set of all expressions over G by EG or by E if the grammar is fixed.

To define the language generated by a PEG G we define recursively a partial function
R : E × Σ∗ → (Σ∗ ∪ {F}) that takes as input the expression e, the input word w, and if
R(e, w) = s ∈ Σ∗, then s is the suffix of w = ps such that the prefix p has been parsed by
e during the processing of w; if R(e, w) = F it indicates a failure that happens during the
parsing process. So, the function R is defined recursively as follows:

R(ε, w) = w, R(a, as) = s, R(a, bs) = F (where a ̸= b)
R(e1e2, w) = R(e2, R(e1, w)) if R(e1, w) ̸= F, otherwise R(e1e2, w) = F
R(A,w) = R(e, w), where A← e ∈ P
R(e1 / e2, w) = R(e1, w) if R(e1, w) ̸= F, otherwise R(e1 / e2, w) = R(e2, w)
R(!e, w) = w if R(e, w) = F, otherwise R(!e, w) = F

Note that R(e, w) is undefined if during the recursive computation, R comes to an infinite
loop. In fact, we will never meet this case because for each PEG there exists an equivalent
form for which R is a total function (see Subsection 2.1).

We say that a PEG G generates the language L(G) = {w | R(S,w) = ε}; if R(S,w) = ε

we say that w is generated by G.
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2.1 Difference with other standard definitions and forms of PEGs
Note that our definition of L(G) differs from [7] (Section 3). The difference is about the
operations allowed in PEG and the acceptance condition as well. In this subsection, we
explain the difference and provide an overview of different forms of PEGs.

In the case of practical parsing, it is convenient to have more operations in the definition
of PEG, but theoretically, it is more convenient to have fewer operations for the sake of
the proofs’ simplicity. In [7] B. Ford investigated different forms of PEGs and proved their
equivalence, so as the equivalence with (generalized) top-down parsing languages. We begin
our overview with operations that are so easy to express via operations from our definitions
that they can be considered (as programmers say) syntactic sugar:

Iterations: e∗ is equivalent to A← eA / ε; e+ = ee∗

Option expression: e? is equivalent to A← e / ε

And predicate: &e = !(!e)
Any character: • = a1 / a2 / . . . / ak where Σ = {a1, . . . , ak}
Failure: F = !ε (we use the same notation as for the failure result)

We can use these constructions below. In this case, the reader can assume that they are
reduced to the operations from Definition 2 as we have described.

So by adding to the definition (or removing) syntactic sugar operations, one obviously
obtains an equivalent definition (in terms of recognizable languages’ class). Now we move to
the nontrivial cases proved in [7].

A PEG G is complete if for each w ∈ Σ∗ the function R(S,w) is defined. A PEG G is
well-formed if it does not contain directly or mutually left-recursive rules, such as A← Aa/ a.
It is easy to see that a well-formed grammar is complete. It was proved in [7] that each PEG
has an equivalent well-formed one and the algorithm of the transformation had been provided
as well. So from now on we assume that each PEG in our constructions is well-formed. Note
that most PEGs that are used in practice are well formed by construction.

Another interesting result from [7] is that each PEG has an equivalent one without
predicate !. Despite this fact, we decided to include ! in our definition since unlike substitutions
for syntactical sugar operations, removing ! predicate requires significant transformations of
the PEG. Since ! predicate is widely used in practice and it does not affect our constructions,
by including ! in the definition we achieve the constructions that can be used in practice.

As we have already mentioned our condition of the input acceptance also differs from [7].
We used the provided approach since if R(S,w) = ε we can reconstruct the parsing tree with
the root S that generates w. We use this property for the transformation of PEG to the
computational model and the inverse transformation as well. Firstly, in [7] there is no axiom
in PEG, but there is a starting expression eS . This difference is insignificant since one can
state eS = S and S ← eS for the opposite direction. A PEG from [7] generates the input w
if R(eS , w) ̸= F, so R(eS , w) = y, where w = xy. So to translate PEG from [7] to ours one
needs to set S ← eS(•)∗. The transformation in the other direction is eS = S(!•).

3 Definition of the Computational Model

We call our model deterministic pointer pushdown automata (DPPDA). We consider a one-
way model (1DPPDA or just DPPDA) as a restricted case of a two-way model (2DPPDA),
so we define the two-way model only.

▶ Definition 3. A 2-way deterministic pointer pushdown automata M is defined by a tuple

⟨Q,Σ▷◁,Γ, F, q0, z0, δ⟩

MFCS 2024



80:8 Computational Model for Parsing Expression Grammars

Q is the finite set of automaton states.
Σ▷◁ = Σ ∪ {▷,◁}, where Σ is the finite input alphabet and ▷,◁ are the endmarkers.
The input has the form ▷w◁, w ∈ Σ∗.
Γ is the alphabet of the pushdown storage.
F ⊆ Q is the set of the final states.
q0 ∈ Q is the initial state.
Z0 ∈ Γ is the initial symbol in the pushdown storage.
δ is the partial transition function defined as δ : Q× Σ▷◁ × Γ→ Q× Γ∗

ε × {←, ↓, ↑,→},
where Γε = Γ ∪ {ε}. Moreover, if δ(q, a, z) = (q′, α, ↑), then α = ε.

To define and operate with configurations of automata we introduce some notation. We
denoted by α× i⃗ = (Zm, im), . . . , (Z0, i0) the zip of the sequences α and i⃗, which are of the
same length by the definition. A right associative operation x : l⃗ prepends an element x to
the beginning of the vector l⃗ (we adopt this operator from Haskell programming language).
E.g., if l⃗ = 1, 2, 3 and r⃗ = 2, 3, we write l⃗ = 1 : r⃗.

A configuration of M on a word w is a quadruple c ∈ Q × (Γ × I)∗ × I, where I =
{0, . . . , |w| + 1}; we refer to wi, i ∈ I as the i-th input symbol; w0 = ▷, w|w|+1 = ◁. A
configuration c = (q, α× i⃗, j) has the following meaning. The head of 2DPPDA M is over
the symbol wj in the state q; the pushdown contains α = ZmZm−1 · · ·Z0 (the stack grows
from right to left) and there is also additional information vector i⃗ = im, im−1, . . . , i0, ik ∈ I
such that Zk was pushed to the pushdown store when the head was over the ik-th cell.

The automaton’s move is defined via the relation ⊢ as follows. Let δ(q, a, Zn) = (q′, β, d).
The relation

(q, Znα× in : i⃗, j) ⊢ (q′, α′ × i⃗′, j′)

is defined according to the following case analysis.
If d ∈ {←, ↓,→}, then j′ = j− 1, j′ = j, j′ = j + 1 respectively. The cases a = ▷, d =←
and a = ◁, d =→ are forbidden.
If β = ε and d ∈ {←, ↓,→}, then α′ = α, i⃗′ = i⃗

If β = ε and d = ↑, then α′ = α, i⃗′ = i⃗, j′ = in
If β = X1 · · ·Xk, k > 0, then α′ = βZnα, i⃗′ = j′ : j′ : · · · : j′︸ ︷︷ ︸

k

: in : i⃗

The initial configuration is (q0, Z0×0, 0) and an accepting configuration is (qf , ε× (), |w|+
1), where qf ∈ F and by () we have denoted the empty sequence of integers. I.e., M reaches
the right end marker ◁ empties the stack and finishes the computation in an accepting state.
Formally, a word w is accepted by M if there exists a computational path from the initial
configuration to an accepting one.

In the case of 1DPPDA (or just DPPDA), the moves ← are forbidden.

3.1 Properties of DPPDA
Now we discuss the properties of the model and provide some shortcuts for the following needs.
Note that each move of a 2DPPDA is either push- or pop-move due to the sake of convenience
in the proofs (induction invariants are simpler). At the same time, in constructions, it
is convenient to have right, left, and even stay moves that do not change the stack. So
we add moves ↪→, ←↩, and

↪→ that are syntactic sugar for such moves. So, when we write
δ(q, a, z) = (p, ↪→), we mean the sequence of moves:

δ(q, a, z) = (p′, Z ′,→);∀σ ∈ Σ▷◁ : δ(p′, σ, Z ′) = (p, ε, ↓).

The construction for ←↩ and

↪→ are similar.
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Due to the definition of δ, a DPPDA can move only if the stack is non-empty and since
each move is either push or pop, we have that Z0 lies at the bottom of the stack till the last
move of a computation or even after the last move in the case of unsuccessful computation.
In the case of a successful computation, Z0 is popped at the last move.

4 Equivalence of DPPDAs and PEGs

In this section, we provide an algorithm that transforms a PEG into a DPPDA. The algorithm
of the inverse transformation provided in [13] due to space limitations. Our construction is
similar to the well-known proof of equivalence between CFGs and DPDA for CFLs, but since
both DPPDAs and PEGs are more complicated than DPDAs and CFLs, our constructions
are technically harder. We refer the reader to [15] for the detailed explanation of the proof
idea, where it was provided for CFLs (so as the proof for CFLs as well).

In this section we assume that PEGs have a special form. We call it Chomsky’s normal
form since it is similar to such a form for CFGs.

▶ Definition 4. A PEG G has a Chomsky normal form if the axiom S never occurs on the
right side of the rules and the rules are of the following form:

A← B /C, A← BC, A← !B, A← a, A← ε.

▶ Lemma 5 ([13]). Each PEG G has an equivalent PEG G′ in Chomsky’s normal form
which is complete if so was G.

▶ Theorem 6. For a PEG G there exists an equivalent DPPDA M .

Proof. We assume that G is a well-formed PEG in a Chomsky normal form (by Lemma 5).
We construct an equivalent DPPDA M = ⟨Q,Σ▷◁,Γ, {qf}, q0, Z0, δ⟩ by the PEGs description.
We formally describe δ on Fig. 4; we do not provide a full list of states Q and pushdown
alphabet Γ since most of the states and symbols depend on rules listed in δ’s construction
and can be easily restored from it. Since the construction is straightforward, we describe
here only the main details.

The DPPDA M simulates the parsing process of a PEG G on the input w. Firstly M
performs a series of technical moves to come from the initial configuration to the initial
simulation configuration:

(q0, Z0 × 0, 0) ⊢
∗

(q, SZ0 × (1 : 0), 1),

where q is the main work state and S is the axiom of the PEG.
During the simulation the following invariants hold. Below A is a nonterminal of the

PEG.

1. If the automaton is in the main work state q and on the top of the stack is the pair A× i,
then the head is over the cell i.

2. If the head is over the cell r + 1 in a state qA± (hereinafter qA± ∈ {qA+ , qA−}) and the
topmost symbol had been added at the position l, then it means the following.
qA+ A subword s = wl · · ·wr would be parsed by the PEG from A (starting from the

position l); when r + 1 = l, we have s = ε. In the other direction: if the PEG parses
wl · · ·wr from A starting from the position l, then the DPPDA that starts computation
from the position l in the main work state q with A on the top on the stack finishes at
the position r + 1 with (the same) A on the top of the stack, i.e.,

(q, Aα× l : i⃗, l) ⊢
∗

(qA+ , Aα× l : i⃗, r + 1).
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qA− After the PEG started parsing from A from the position l, the computation ended
up with a failure at some point in the case of qA− . In the other direction: if the PEG
fails, then for some r ≥ l − 1:

(q, Aα× l : i⃗, l) ⊢
∗

(qA− , Aα× l : i⃗, r + 1).

DPPDA M accepts the input only if the head reaches the symbol ◁ in the state qS+
(note that the axiom does not occur on the right side of the rules). Formally, we add the rule

δ(qS+ ,◁, Z0) = (qf , ε, ↓),

where qf is the only final state of the DPPDA. So, from the invariant it follows that the
DPPDA accepts the input iff the PEG parses the input.

The rest of the construction is the delta’s description in Fig. 4. The proof is a straight-
forward induction on the recursion depth of the PEGs computation. So we describe the
behavior of the automaton corresponding to formal construction in two main cases and check
that the invariants hold (the remaining cases are simple).

Construction of δ

We denote by Z ∈ Γ and σ ∈ Σ▷◁ arbitrary symbols. The rules are grouped with respect
to the PEG’s operations. Note that the states q, qA± are the same for all rules, while
other states and stack symbols depend on the rule, i.e., stack symbols A1’s from different
rules are different even if they correspond to the same nonterminal A. When we use
nonterminals (and states) with signs ± or ∓, the signs have corresponding matching,
i.e., if in a rule we have A± and B∓, then when A± = A+, B∓ equals to B− and when
A± = A−, B∓ equals to B+.

0. General rules
δ(q0,▷, Z0) = (q0, ↪→); ∀σ′ ∈ Σ ∪ {◁} : δ(q0, σ

′, Z0) = (q, S, ↓);
δ(qA± , σ, A) = (qA± , ε, ↓); δ(qS+ ,◁, Z0) = (qf , ε, ↓).

1. A← BC

δ(q, σ,A) = (q,BA1, ↓)
δ(qB+ , σ, A1) = (q, CA2, ↓);
δ(qB− , σ, A1) = (qA− , ε, ↑);
δ(qC+ , σ, A2) = (q′

A2
, ε, ↓);

δ(q′
A2
, σ, A1) = (qA+ , ε, ↓);

δ(qC− , σ, A2) = (q′
A2−

, ε, ↑);
δ(q′

A2−
, σ, A1) = (qA− , ε, ↑).

2. A← B /C

δ(q, σ,A) = (q,BA1, ↓)
δ(qB+ , σ, A1) = (qA+ , ε, ↓)
δ(qB− , σ, A1) = (qA2 , ε, ↑)
δ(qA2 , σ, Z) = (q, CA2, ↓)
δ(qC+ , σ, A2) = (qA+ , ε, ↓)
δ(qC− , σ, A2) = (qA− , ε, ↑);

3. A← ε

δ(q, σ,A) = (qA+ ,

↪→ )

4. A← !B
δ(q, σ,A) = (q,BA1, ↓);
δ(qB± , σ, A1) = (qA∓ , ε, ↑)

5. A← a

δ(q, a,A) = (qA+ , ↪→);
δ(q, b, A) = (qA− ,

↪→ ), here b ̸= a;

Figure 4 Construction of δ by the PEG G.

Each rule is applied to a configuration of the form (q, Aα× l : i⃗, l). In the first case (of
concatenation) the automaton pushes the auxiliary symbol A1 at the same position that A
has been pushed (since the invariant 1 holds) and then pushes B. If it reached a configuration
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of the form (qB+ , BA1Aα× l : l : l : i⃗, r′ + 1), then B has successfully parsed the subword
wl · · ·wr′ due to invariant 2, then B is popped due to General rules and DPPDA pushes
C at the position r′ + 1 and goes to the main work state q. If then the DPPDA reaches a
configuration of the form (qC+ , CA2A1Aα× (r′ + 1) : (r′ + 1) : l : l : i⃗, r+ 1) we have that the
PEG parsed wr′+1 · · ·wr from C and after the sequences of technical pops the automaton
comes to the configuration (qA+ , Aα× l : i⃗, r+ 1) that proves that invariant 2-qA+ holds (the
arguments for the other direction are similar).

In the case of reaching the configuration (qC− , CA2A1Aα× (r′ +1) : (r′ +1) : l : l : i⃗, r+1)
or (qB− , BA1Aα × l : l : l : i⃗, r′ + 1) earlier, the sequence of pops lead the DPPDA to the
configuration (qA− , Aα× l : i⃗, l) that proves that invariant 2-qA− holds (the arguments for
the other direction are similar).

The case of the ordered choice is similar to the case of concatenation. The difference
is, that in the case of a configuration (qB+ , BA1Aα × l : l : l : i⃗, r + 1), the automaton
reaches the configuration (qA+ , Aβ × l : i⃗, r + 1) via the technical moves, and in the case of
(qB− , BA1Aα× l : l : l : i⃗, r + 1) the automaton reaches the configuration (q, CA2Aα× l : l :
l : i⃗, l) after which

either (q, CA2Aα× l : l : l : i⃗, l) ⊢
∗

(qC+ , CA2Aα× l : l : l : i⃗, r+1) ⊢
∗

(qA+ , Aα× l : i⃗, r+1),

or (q, CA2Aα× l : l : l : i⃗, l) ⊢
∗

(qC− , CA2Aα× l : l : l : i⃗, r + 1) ⊢
∗

(qA− , Aα× l : i⃗, l).
The analysis of the remaining cases directly follows from the definitions, so we omit it. ◀

5 Linear-Time Simulation of 2DPPDA

Our linear-time simulation algorithm for 2DPPDA is almost the same as S. Cook’s algorithm
for 2DPDA [5]. One can find the detailed exposition in [2] and [8].

▶ Theorem 7 ([13]). Let M be a 2DPPDA. The language L(M) is recognizable in time O(n)
in the RAM model. Moreover, there exists an O(|w|) (in RAM) simulation algorithm for M
on the input w.

6 Structural Results

We use the computational model to obtain new structural results about the PELs.

▶ Lemma 8. Let X be a DCFL and Y be a PEL. Then XY is a PEL.

Proof. We describe a DPPDA M recognizing XY that simulates a DPDA MX recognizing
X and a DPPDA MY recognizing Y , constructed by a (well-formed) PEG.

DPPDA M simulates MX until it reaches an accepting state. Then it pushes the
information of the state to the stack, then pushes Z0 (of MY ) and simulates MY . If MY

accepts the rest of the input, then the whole input is accepted. Otherwise, M pops symbols
from the stack until it reaches the info about the MX state and continues the simulation
until it reaches an accepting state again. This process is continued until either MY accepts,
or MX reaches the end of the input (and MY rejects ε).

The correctness easily follows from the construction. During the process M tests all the
prefixes of the input from X and checks whether the corresponding suffixes belong to Y . ◀

We use the notation PEL, DCFL, and REG for the language classes in formulas (the last
one denotes regular languages). Denote by ΓREG(DCFL) the regular closure of DCFLs; this
class is defined as follows. L ∈ ΓREG(DCFL) if there exists a regular expression (RE) R over
an alphabet Σk = {a1, . . . , ak} and DCFLs L1, . . . , Lk such that if we replace ai by Li in R

the resulting expression ψ(R) describes L.
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▶ Lemma 9 ([13]). ΓREG(DCFL) ⊆ PEL.

We describe only the proof idea. We provided the proof of Lemma 8 to generalize it
as follows. In the case of a single concatenation, we have a kind of linear order for an
exhaustive search. In the case of ΓREG(DCFL) we will perform an exhaustive search in the
order corresponding to a (graph of) deterministic finite automaton (DFA) recognizing R.
If a word w on the input belongs to L ∈ ΓREG(DCFL), then it can be split into subwords
w1 · · ·wk = w such that there exists a word α1 · · ·αk ∈ R such that wi ∈ Lαi

, where Lαi

is the DCFL from the substitution that maps αi to Lαi . So, the exhaustive search finds
the split of w by considering α1 · · ·αk in the length-lexicographic order and considering w’s
subwords wi ∈ Lαi

ordered by the length. If a word w1 ∈ Lα1 is the shortest prefix, the
DPPDA tries to find the shortest w2 ∈ Lα2 and so on. If at some point the DPPDA failed to
find wj+1 ∈ Lαj+1 , it rollbacks to αj and tries to find a longer word wj ∈ Lαj

. If it fails, then
it rollbacks to αj−1 and so on. During the search of wj , the DPPDA simulates a DPDA Mj

recognizing Lαj
.

Denote by ΓBool(L ) the Boolean closure of the language’s class L , i.e., ΓBool(L ) is a
minimal class satisfying the conditions:

L ⊆ ΓBool(L )
∀A,B ∈ ΓBool(L ) : A ∪B,A ∩B,A ∈ ΓBool(L )

▶ Theorem 10. The following assertions hold.
1. ΓBool(ΓREG(DCFL)) ⊆ PEL.
2. ΓREG(DCFL) · PEL = PEL.

Proof. It was shown in [7] that ΓBool(PEL) = PEL. We proved that ΓREG(DCFL) ⊆ PEL, so
ΓBool(ΓREG(DCFL)) ⊆ PEL.

The inclusion ΓREG(DCFL) · PEL ⊇ PEL is obvious ({ε} ∈ ΓREG(DCFL)). The inclusion
ΓREG(DCFL) · PEL ⊆ PEL follows from the modification of the simulation algorithm from
the proof of Lemma 9 by the simulation step from the proof of Lemma 8: when Mj reaches
an accepting state and the corresponding state of A is an accepting state, M simulates the
DPPDA for the PEG. If it successfully parses the suffix, the input is accepted, otherwise,
the simulation continues as in the proof of Lemma 9. Recall that it is not known, whether
PELs are closed over concatenation ( Remark Remark:ConcatClosure), so we have to use
Lemma 9 to for left concatenation with ΓREG(DCFL). ◀

▶ Corollary 11. For each L ∈ ΓBool(ΓREG(DCFL)) there exists a RAM-machine M that
decides, whether w ∈ L in time O(|w|). In other words, the class ΓBool(ΓREG(DCFL)) is
linear-time recognizable.
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Abstract
Given a finite set A of square matrices and a square matrix B, all of the same dimension, the
membership problem asks if B belongs to the monoid M(A) generated by A. The rank one problem
asks if there is a matrix of rank one in M(A). We study the membership and the rank one
problems in the case where all matrices are upper triangular matrices over the Boolean semiring. We
characterize the computational complexity of these problems, and identify their PSPACE-complete
and NP-complete special cases.

We then consider, for a set A of matrices from the same class, the problem of finding in M(A) a
matrix of minimum rank with no zero rows. We show that the minimum rank of such matrix can be
computed in linear time.We also characterize the space complexity of this problem depending on the
size of A, and apply all these results to the ergodicity problem asking if M(A) contains a matrix
with a column consisting of all ones. Finally, we show that our results give better upper bounds
for the case where each row of every matrix in A contains at most one non-zero entry than for the
general case.
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1 Introduction

Membership in matrix monoids. Given a finite set A of n × n matrices and an n × n

matrix B, the membership problem asks if B belongs to the monoid M(A) generated by A,
which is the set of all products of matrices from A. For matrices over rational numbers,
membership is solvable in polynomial time if A consists of one matrix [22]. This result was
later extended to the case where A is a set of commuting matrices [1], and then to a special
class of non-commutative matrices [28]. Membership is also decidable for 2 × 2 non-singular
integer matrices [34]. On the other hand, membership is already undecidable for 3 × 3 integer
matrices with determinant equal to 0 [32].

For sets of matrices over the Boolean semiring (the set {0, 1} with addition and multiplic-
ation defined the same way as for integer numbers, except that 1 + 1 = 1), many natural
problems, including membership, are trivially in PSPACE, and are thus more tractable.
However, membership in this case is actually PSPACE-complete [25]. In this paper, we
further restrict the setting and study upper triangular matrices over the Boolean semiring.
Everywhere below in this paper, we assume all matrices to be square and over the Boolean
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semiring, unless specified otherwise. Upper triangular matrices may seem to be a simple
and restrictive class, but sets of such matrices and the corresponding automata have been
studied extensively, and many problems for them are known to be PSPACE-complete, see e.g.
[33, 26, 31, 37, 30]. Nevertheless, we are not aware of any results on the four problems we
consider in this paper (membership, rank one, minimum rank of a total word and ergodicity)
specifically for the case of upper triangular matrices, except for the results of [43] on the
ergodicity problem, which we explain below.

Matrices and sets of matrices over the Boolean semiring play an important role in
automata theory [4], discrete-time Markov chains [38], graph theory [2], variable-length
codes [12], and symbolic dynamics [27]. They are often used in the theory of nonnegative
matrices, since in many problems one is not interested in the actual values of the entries, but
only in which values are zero and which are strictly positive [3].

Boolean square matrices can also be viewed as binary relations on a finite set Q. Matrices
with at most one non-zero entry in each row thus correspond to partial transformations,
and if they have exactly one non-zero entry in every row, to complete transformations. We
call such matrices transformation and complete transformation matrices respectively. For
monoids of complete transformation matrices, membership is PSPACE-complete [25], and its
complexity was studied for several subsclasses [7, 6, 9, 8]. Connections of membership with
the automata intersection problem are explored in [13].

The rank one problem. Instead of asking if the monoid M(A) contains a given matrix,
one can ask if it contains a matrix from a certain class. Given a set A of matrices, the rank
one problem asks if there is a matrix of rank one in M(A).

The rank one problem is known to be solvable in polynomial time for monoids of
complete transformation matrices (see e.g. [41]), strongly connected monoids of transformation
matrices [11] and, more generally, for strongly connected monoids of unambiguous relations
and their subclasses [36, 14, 24, 4] (a monoid of n × n matrices is called strongly connected
if for each pair (i, j), 1 ≤ i, j ≤ n, it contains a matrix whose entry (i, j) is equal to one).
The latter case plays an important role in the theory of variable-length codes because of
its connections with synchronizing codes [12]. On the other hand, the rank one problem is
PSPACE-complete already for monoids of transformation matrices which are not strongly
connected [10]. The complexity of deciding if a monoid of complete transformation matrices
contains a matrix of given rank is studied in [18].

The rank one problem is related to the Černý conjecture and its generalizations. Indeed,
the case of monoids of complete transformations corresponds exactly to the case of complete
DFAs, and hence in this case the rank one problem is nothing else than the problem of
checking if a complete DFA is synchronizing. We refer to the surveys [41, 42, 23, 5] for the
vast literature on synchronizing DFAs.

Careful synchronization and ergodicity. A similar problem is, given a set A of matrices, to
find in M(A) a minimum rank matrix without zero rows. We call matrices with no zero rows
total, since they correspond to total relations. For sets of transformation matrices, monoids
of matrices containing a total matrix of rank one correspond to carefully synchronizing
DFAs [29]. Deciding if M(A) contains a total matrix of rank one is PSPACE-complete even
if A consists of two matrices [29], and the length of a shortest product of matrices from
A resulting in a total matrix of rank one can be exponential [29]. If A is a set of upper
triangular transformation matrices, deciding if M(A) contains a total matrix of rank one
and finding a product resulting in such a matrix is solvable in polynomial time [43]. We
discuss the contributions of [43] and their connection to the results of this paper in more
details in the beginning of Section 4.
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A closely related notion is that of ergodic matrices (also known as column-primitive [16]
or D3-directing [20, 21]). A matrix is called ergodic [44] if it has a column consisting of
all ones. Note that a transformation matrix is ergodic if and only if it is a total matrix of
rank one, that is, this case also coincides with carefully synchronizing DFAs. The ergodicity
problem asks if a given matrix monoid contains an ergodic matrix. The ergodicity problem
is PSPACE-complete [29], but is solvable in polynomial time for monoids of matrices with
no zero rows [35, 44]. An application of ergodicity to deciding if a discrete-time multi-agent
system can be driven to consensus is presented in [16]. We emphasize that the existing
polynomial-time solvability results on ergodicity [44, 16, 15] (except for [43]) consider monoids
of matrices with no zero rows, while our results for this problem do not have this requirement.

2 Main definitions and our contributions

Boolean rank. The Boolean semiring is the set {0, 1} with addition and multiplication
defined in the usual way except that 1 + 1 = 1. All matrices in this paper are over the
Boolean semiring. The Boolean rank [17] (which we call just rank for brevity in this paper)
of an n ×n matrix A is the smallest number r such that A = CR, where C is an n × r matrix,
and R is an r × n matrix, with usual matrix multiplication over the Boolean semiring.

For example, the following equality shows that the rank of A is at most two (moreover, it
cannot be one since there are two different non-zero rows in A):

A =

1 1 1
1 1 0
0 1 1

 =

1 1
1 0
0 1

 (
1 1 0
0 1 1

)
= CR.

Matrices and automata. Let A = {A1, . . . , Am} be a set of n×n matrices over the Boolean
semiring. The monoid generated by A is the set of all possible products (with respect to the
usual matrix multiplication) of matrices from A, including the empty product corresponding
to the identity matrix. By assigning to each matrix Ai ∈ A a letter ai from a finite alphabet
Σ of size m, the set A can be equivalently seen as a nondeterministic finite automaton (NFA)
with state set Q = {1, 2, . . . , n}, alphabet Σ and transition relation ∆ : Q × Σ → 2Q defined
for each letter ai by the action of the corresponding matrix Ai. That is, we have j ∈ ∆(i, ak)
if and only if the entry (i, j) in Ak is one. If the transition relation is clear from the context,
we denote the set ∆(q, a) as q · a. Equivalently, given an NFA (Q, Σ, ∆), we can consider
for each a ∈ Σ the matrix such that its entry (p, q), p, q ∈ Q, is non-zero if and only if
q ∈ ∆(p, a). This allows to consider an NFA as a set of matrices corresponding to its letters.
The transition relation can be homomorphically extended to the set Σ∗ of words over Σ.
Words over Σ thus naturally correspond to products of matrices. In particular, by the matrix
of a word we mean the result of this product, and by the rank of a word we mean the rank
of its matrix. In this paper we make use of this correspondence between NFAs and matrix
monoids and switch between the languages of matrices and automata whenever convenient.
We remark that the described construction is nothing more than a homomorphism from the
free monoid Σ∗ to the monoid of matrices over the Boolean semiring.

In NFA terms, the matrix M of a word w has rank at most r if and only if there exist r

subsets Q1, . . . , Qr of Q such that the image of every state of Q under w is a union of some
of these subsets. If r is the smallest such number, the rank of M is equal to r. In particular,
the rank of a word is one if and only if there is a subset Q1 ⊆ Q such that the image of every
state under w is either Q1 or the empty set, and not all images are empty.
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For a set S ⊆ Q of states and a word w ∈ Σ∗, we denote S · w = {p ∈ Q | p ∈
q · w for some q ∈ S}. We say that the action of a word w is defined for a state q if q · w is
non-empty. A word is called total if its action is defined for every state. Equivalently, it
means that the matrix of a word does not have zero rows.

An NFA is a deterministic finite automaton (DFA) if for every p ∈ Q and a ∈ Σ we
have that |∆(p, a)| ≤ 1. In this case we use δ instead of ∆ to emphasize that the transition
relation is a (partial) transition function. If moreover δ(p, a) is defined for every p ∈ Q and
a ∈ Σ, the DFA is called complete. For DFAs, the rank of a word w is simply the size |Q · w|.

Ergodic words. A word w is called ergodic for an NFA A = (Q, Σ, ∆) if there is a state q ∈ Q

such that for every state p ∈ Q we have q ∈ p · w. Equivalently, a word is ergodic if its matrix
contains a column of all ones. Clearly, every ergodic word is total. We call an NFA ergodic if
it admits an ergodic word.

Partially ordered automata. An NFA A = (Q, Σ, ∆) is called partially ordered (poNFA) if
there exists an order ≺ on its set of states Q which is preserved by all its transitions. That
is, if p ∈ ∆(q, a) for p, q ∈ Q and a ∈ Σ, then q ≺ p or q = p. Such order can be found in
time O(mn) by topological sorting, and in deterministic logarithmic space [40], hence we
always assume that a poNFA is provided together with the order ≺. Equivalently, an NFA
is a poNFA if the underlying digraph of A does not have any cycles other than self-loops,
or, alternatively, if the matrices of all letters of A are upper triangular. A poNFA A is
called self-loop deterministic if for every letter a ∈ Σ such that q ∈ q · a for a state q ∈ Q we
have q · a = {q}. Following [26], we denote self-loop deterministic partially ordered NFAs as
rpoNFAs. We denote partially ordered DFAs as poDFAs.

Decision problems. An NFA acceptor A = (Q, Σ, ∆, I, F ) is an NFA (Q, Σ, ∆) with
distinguished sets I ⊆ Q and F ⊆ Q of, respectively, initial and final states. The language
L(A) of an NFA acceptor is the set of words w ∈ Σ∗ such that there exist states i ∈ I, f ∈ F

with f ∈ i·w. Given an NFA acceptor, the universality problem asks if it accepts all words over
its alphabet. Universality of poNFAs is PSPACE-complete even over a binary alphabet [26],
and remains PSPACE-complete for rpoNFAs over polynomial size alphabet [26, 30].

Given an NFA A and a matrix B, the membership problem asks if there exists a word
such that its matrix in A is equal to B. Given an NFA A, the rank one problem asks if there
is a word whose matrix has rank one in A.

We assume that the reader is familiar with basic notions of automata theory and compu-
tational complexity, see e.g. [39].

Our contributions. In the first half of this paper, Section 3, we analyze the computational
complexity of the membership and rank one problems for poNFAs (equivalently, for monoids
of upper triangular matrices). We show that they are PSPACE-complete for rpoNFAs and
ternary poNFAs (Proposition 6). The main results of Section 3 are that for rpoNFAs over a
fixed alphabet the membership problem is in NP (Theorem 1), and remains NP-complete
even for complete poDFAs over a binary alphabet (Theorem 8). We show containment in NP
by proving that for each word there is a short word with the same matrix (Proposition 2).
We complement this result with a lower bound on the length of words with a given matrix
(Lemma 7).

In the second half of the paper, Section 4, we study the problem of finding the minimum
rank of a total word in a poNFA. We show that, depending on the size of the alphabet, this
problem lies between L and P-complete, and moreover can be solved in linear time. These
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results are summarized in Theorem 11. All these results transfer to the problem of ergodicity
of a set of upper triangular matrices (Theorem 15), which asks if a matrix monoid contains
a matrix with a column consisting of all ones. We then further extend these results to get
improved bounds for ergodicity of poDFAs (Theorem 16).

3 Membership and minimum rank

3.1 Upper bounds for rpoNFAs
The goal of this subsection is to prove the following theorem.

▶ Theorem 1. Membership for rpoNFAs over a fixed alphabet is in NP.

We start with the following key result which, intuitively, shows that if A is an rpoNFA, a
product of matrices from A cannot contain too many partial products.

▶ Proposition 2. Let A = (Q, Σ, ∆) be an rpoNFA with n states and m letters. For every
word w ∈ Σ∗ there exist at most n(n + 1)m−1 prefixes of w with pairwise different matrices.

Proof. We prove the statement by induction on m. Clearly, if m = 1, the matrix of every
word w of length more than n is equal to the matrix of some word v of length at most n,
and thus the matrix of every prefix of w is equal to the matrix of some prefix of v, and there
are only at most n prefixes.

Assume now that m ≥ 2 and the statement is true for rpoNFAs over all alphabets Σ′ ⊂ Σ,
|Σ′| ≤ m − 1. We can assume that every letter from Σ appears in w, otherwise the statement
is proved. Let Q = Q1 ∪ Q′

1, where Q1 is the set of states p such that there exists a letter
a ∈ Σ with p ̸∈ p · a, and Q′

1 = Q \ Q1. Let q be a smallest (with respect to ≺) state in Q1,
and let a ∈ Σ be a letter such that q ̸∈ q · a.

Let w′ be the prefix of w before the first appearance of a, that is, w′ is the prefix of w

such that w′ does not contain a, and w′a is also a prefix of w. Clearly, w′ ∈ (Σ \ {a})∗. By
the induction assumption, there are at most n(n+1)m−2 prefixes of w′ with pairwise different
matrices. After the first application of a, for each state p ∈ Q1 · w′a we have that q ≺ p.

Now we perform the following iterative process. If the suffix of w after the first appearance
of a does not contain all letters from Σ, we stop. Otherwise, we consider the smallest state
q′ in Q1 · w′a and a letter a′ such that q′ ̸∈ q′ · a′, and repeat the argument above with
Q1 · w′a taken as Q1, q′ taken as q, a′ taken as a, and w′ taken as w. This argument will
be repeated at most n times in total, since after n times Q1 must be empty, and thus the
remaining suffix does not change the matrix of the word. Hence we get that there are at
most n · (n(n + 1)m−2 + 1) ≤ n(n + 1)m−1 prefixes of w with pairwise different matrices. ◀

▶ Lemma 3. Let A be an rpoNFA and w be a word. Let P be the set of matrices of all
prefixes of w, and |P | = k. Then there exist words w1, . . . , wk such that w = w1w2 . . . wk,
every matrix in P is equal to the matrix of w1 . . . wi for some i, and for each i, 0 ≤ i < k,
for every non-empty prefix v of wi+1 the matrices of w1w2 . . . wiv and w1w2 . . . wiwi+1 are
equal.

Proof. Represent w as a concatenation w1w2 . . . wk of words wi such that for every i,
0 ≤ i < k, the matrices of w1w2 . . . wi and w1w2 . . . wiwi+1 are different, but the matrix of
w1w2 . . . wiv is equal to the matrix of w1w2 . . . wiwi+1 for every non-empty prefix v of wi+1.
We only need to show that for i ̸= j the matrices of w1w2 . . . wi and w1w2 . . . wj cannot be
equal. This follows from the fact that in rpoNFAs, if for some non-empty words u1, u2 the
matrices of u1 and u1u2 are different, there is no word u3 such that the matrices of u1 and
u1u2u3 are equal. ◀
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81:6 Monoids of Upper Triangular Matrices over the Boolean Semiring

The following statement implies that membership is in NP for rpoNFAs over a fixed
alphabet, thus proving Theorem 1. It also implies that the rank one problem for rpoNFAs
over a fixed alphabet is in NP.

▶ Proposition 4. Let A be an rpoNFA with n states and m letters. Then for every word
there exists a word of length at most n(n + 1)m−1 with the same matrix.

Proof. Let w1, . . . , wk be the words from the statement of Lemma 3. By Proposition 2,
k ≤ n(n + 1)m−1. For each i, 1 ≤ i ≤ k, let ai be the first letter of wi. Then the matrix of
a1a2 . . . ak is equal to the matrix of w. ◀

As another consequence of our results, we get an elementary combinatorial proof of a
theorem from [26] which originally required some non-trivial formal languages machinery.

▶ Corollary 5 (Theorem 23 in [26]). Let A be an NFA acceptor, and B be an rpoNFA acceptor,
both over the same fixed alphabet. Checking if L(A) ⊆ L(B) is in coNP.

Proof. If L(A) ̸⊆ L(B), there exists a word w accepted by A and not accepted by B. Let
w1, . . . , wk be the words from the statement of Lemma 3. By Proposition 2, k ≤ n(n+1)m−1.
For each i let ai be the first letter of wi, and let wi = aiw

′
i. Furthermore, let Σi be the set

of letters occurring in w′
i. Consider the regular expression e = a1Σ∗

1a2Σ∗
2a3 . . . Σ∗

k−1akΣ∗
k.

By construction, w is accepted by e, and for every word accepted by e its matrix in B is
equal to the matrix of w in B, and thus every such word is not accepted by B. Moreover, e

can be straightforwardly transformed into a poNFA acceptor E with at most n(n + 1)m−1

states and m letters. It remains to note that the intersection of A and E can be decided in
polynomial time, and hence E can be used as a certificate for coNP. ◀

3.2 Lower bounds for rpoNFAs
We now complement the positive results from the previous subsection with lower bounds.
We first show that if the alphabet is not fixed, membership for rpoNFAs is as hard as for
general NFAs. The proof of that is done by constructing a reduction from the universality
problem for rpoNFA acceptors, which is PSPACE-complete [26]. The same proof works for
ternary poNFAs.

▶ Proposition 6. The membership and rank one problems are PSPACE-complete for rpoNFAs
and ternary poNFAs.

Proof. To prove both statements, we use the following reduction from the universality
problem for poNFA acceptors. Let A = (Q, Σ, ∆, I, F ) be a poNFA acceptor. Construct
a poNFA A′ = (Q ∪ {q0, p0, p1, q+, q−}, Σ ∪ {r}, ∆′). The transition relation ∆′ includes
all transitions in ∆, with the addition of ∆′(q0, r) = I, ∆′(q, r) = {q+} if q ∈ F , and
∆′(q, r) = {q−} if q ∈ Q \ F . We also define ∆′(p0, r) = {p1}, ∆′(p1, r) = {q−}. Finally, all
letters in Σ induce self-loops for q+, q−, q0, p0, p1. See Figure 1 for an illustration.

We claim that A does not accept a word in Σ∗ if and only if there exists a word in A′

which maps q0 and p0 to {q−}, and all other states to the empty set. Indeed, if there exists
a word w not accepted by A, then the word rwr has the required action in A′. Conversely,
if w′ is a word having the required action, then it must contain exactly two occurrences
of r, and its factor between the first and the second occurrence of r maps I to a subset of
Q \ F and is thus not accepted by A. Observe also that every word of rank one must have
this action by construction. Furthermore, the described construction preserves the property
that the NFA is an rpoNFA. It remains to use the fact that the universality problem is
PSPACE-complete for rpoNFA acceptors and binary poNFA acceptors [26]. ◀
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q0

q−

q+

p1 p0

I

Q
F

r

r

r
r

r

Σ
Σ

Σ
ΣΣ

Figure 1 Illustration for the reduction in Proposition 6.

The following lemma provides a lower bound for the value discussed in Proposition 4.
We remark that for constant m our lower and upper bounds are asymptotically the same,
and if m = n − 1 the lower bound is exponential.

▶ Lemma 7. Let n and m be positive natural numbers such that m divides n − 2. Then there
exists an rpoNFA with n states and m letters such that for some states t and f the length of
a shortest word w with f · w = {f} and q · w = {t} for every state q ̸= f is n−2

m ( n−2
m + 1)m−1.

Proof. Let n = ms+2. We construct an rpoNFA A = (Q, Σ, ∆) with the required properties
as follows. Let Q(j) = {q

(j)
1 , . . . , q

(j)
s } and S = ∪1≤j≤mQ(j). Take Q = S ∪ {t, f}, where t

and f are fresh states, and Σ = {a1, a2, . . . , am}. The transition relation ∆ is defined for the
states in the sets Q(1), . . . , Q(m) in such a way that while reading a word w with S · w = {t},
the states in Q(j) that contain an image of a state from S imitate an m-ary counter counting
to zero, with some additional traversal in the process. Formally, for 1 ≤ j, k ≤ m, 1 ≤ i ≤ s

we set

∆(q(k)
i , aj) =



{f} if j < k;
{q

(k)
i+1} if j = k and i < s;

Q(k+1) ∪ . . . ∪ Q(m) if j = k < m and i = s;
{t} if j = k = m and i = s;
{q

(k)
i } if j > k.

See Figure 2 for an illustration.

q
(1)
1 q

(1)
2 q

(2)
1 q

(2)
2 q

(3)
1 q

(3)
2

f

t

a1, a2, a3

a1, a2, a3

Figure 2 Illustration for the construction in Lemma 7. For unlabeled transitions, solid lines stand
for a1, dashed for a2, dotted for a3.

The only way to map a state to {t} is to map it first to {q
(m)
s } and then apply the

letter am, otherwise the state is mapped to a set containing f . Observe that the shortest
word such that S · w = {t} is unique. Indeed, at every moment of time there is a unique
letter that does not act as the identity and does not map any state of S to f . To estimate the
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length of this word, we argue inductively. Mapping Q(m) to {t} requires a word of length s.
Mapping the set Q(j), j < m, to {t} requires subsequently mapping each of its states to
∪k>jQ(k), and then mapping this union to {t} before we can proceed to Q(j−1). Hence we
get the bound of s(s + 1)m−1. ◀

By applying the idea of the reduction in the proof of Proposition 6 to the automaton
constructed in the proof of Lemma 7, one can get a slightly weaker lower bound of n−4

m−1 ( n−4
m−1 +

1)m−2 + 1 for the length of a shortest word of rank one in rpoNFAs with n states and m

letters, where m − 1 divides n − 4. Recall that a word of rank one is allowed to kill some
states.

3.3 Partially ordered DFAs
The following theorem characterizes the complexity of membership and rank one for poDFAs.

▶ Theorem 8. The membership problem is NP-complete for complete poDFAs, even over
a binary alphabet. The rank one problem is NP-complete for poDFAs, even over a binary
alphabet.

The proof of NP-hardness is an adaptation of a construction from [37], and is omitted
due to space constraints. Containment in NP follows from the following result.

▶ Proposition 9. Let A be a poDFA with n states. Then for every word there exists a word
of length at most 1

2 (n + 1)n with the same matrix.

Proof. Let A = (Q, Σ, δ). Introduce a new state f , and define all undefined transitions of A
to end there. Then for every state q ∈ Q \ {f} we have q ≺ f . Let w be a word such that
there is no shorter word with the same matrix. For each prefix w′a of w with w′ ∈ Σ∗, a ∈ Σ,
a must map one of the states in the image Q · w′ to a larger state, otherwise this occurrence
of a can be removed from w without changing its matrix. Hence the maximal length of w is
at most n + (n − 1) + (n − 2) + . . . + 1 = 1

2 (n + 1)n. ◀

A lower bound on the value from Proposition 9 is provided in Lemma 17 below. Its
adaptation provides the following lower bound on shortest words of rank one for poDFAs.

▶ Lemma 10. For every natural numbers n and m ≥ 2 such that m divides n − 1, there
exists a poDFA with 2n + 1 states and m + 1 letters such that the length of a shortest word
of rank one for it is m−1

2m (n − 1)2 + (n − 1).

We remark that the rank one problem is trivial for poNFAs which do not have a word
whose matrix is the zero matrix. Indeed, the minimum rank of a word in such poNFA is
just the number of states such that each letter induces a self-loop for them. However, this
obviously does not affect the complexity of membership, since adding a fresh state having
self-loops by all letters guarantees that the matrix of each word is non-zero, while preserving
the actions of all letters on the remaining states. For poDFAs, one can even obtain a complete
poDFA by adding a sink state and sending all undefined transitions to it.

4 Total words of minimum rank and ergodic words

As shown above, the rank one problem is NP-complete for poDFAs and PSPACE-complete
for rpoNFAs. In this section, we show that computing the minimum rank of a total word in
a poNFA can be done in polynomial time. We then consider the case of poDFAs, show a
tight quadratic bound on the length of shortest total words of minimum rank, and provide a
fast algorithm to compute a total word of minimum rank within this length bound.



A. Ryzhikov and P. Wolf 81:9

In [43], the second author proposed two algorithms for finding a total word of rank one
in a poDFA if it exists. The first algorithm is greedy: take a letter mapping a currently
active state to a larger one without taking undefined transitions. This algorithm does not
seem to generalize to poNFAs, and is inherently sequential even for poDFAs. Moreover,
its implementation proposed in [43] has time complexity O(mn3). The second algorithm
proposed in [43], of time complexity O(m2n2), uses a much less obvious approach. In this
section we use a somewhat similar but more involved idea to deal with a more general case
of poNFAs, and, in particular, show how to compute the minimum rank of a total word
in linear time. For poDFAs, we show that a total word of minimum rank can be found in
time O(mn2), thus further improving on the results of [43]. We further refine the guarantee
on the length of a found total word of minimum rank taking into account the size of the
alphabet, and show that our upper bound it tight.

4.1 Total and ergodic words in poNFAs
▶ Theorem 11. Let A = (Q, Σ, ∆) be a poNFA with n states and m letters.
(a) The length of a shortest total word of minimum rank in A is at most n(n + 1)m.
(b) Finding the minimum rank of a total word in A can be done in O(m log m + log n)

deterministic space.
If m = O( log n

log log n ), this problem is in L, and if m = Θ(n), it is P-complete.
(c) The minimum rank of a total word in A can be computed in O(mn + |∆|) time, that is,

in linear time in the size of the input.

We first describe an algorithm that, given a poNFA A = (Q, Σ, ∆) with n states and m

letters, constructs an auxiliary sequence of sets C0 ⊃ C1 ⊃ . . . ⊃ Ck and a sequence of
distinct letters a1, a2, . . . , ak ∈ Σ for some k ≤ min{m, n − 1}. Note that we use ⊃ and ⊂ to
denote proper set inclusion. The value of k is determined by the algorithm and depends on
the number of steps it makes. The intuition behind this algorithm (and the reason why it is
called “stabilization algorithm”) are provided below in the proof of its correctness.

Stabilization algorithm

We initialize the set of currently considered states C0 = Q and the currently explored
alphabet Σ0 = ∅. At step i, i ≥ 1, find a letter ai ∈ Σ \ Σi−1 which is defined for every
state in Ci−1 and does not induce a self-loop for at least one of them. That is, for every
state q ∈ Ci−1, q · ai must be non-empty, and for at least one state q ∈ Ci−1 we must have
q ̸∈ q · ai. If no such letter ai exists, stop and output |Ci−1|. Define Ci to be the subset of
states in Ci−1 for which ai induces a self-loop, that is, Ci = {q ∈ Ci−1 | q ∈ q · ai}. Take
Σi = Σi−1 ∪ {ai}. Go to the step i + 1.

q1 q2 q3 q4 q5 q6 q7

∈ C1, C2 ∈ C1 ∈ C1, C2, C3 ∈ C1, C2, C3

Figure 3 Running example for Section 4.1.
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As a running example, we use the rpoNFA in Figure 3. The application of the algorithm
gives C0 = Q = {q1, q2, q3, q4, q5, q6, q7}, C1 = {q1, q3, q4, q7}, C2 = {q1, q4, q7}, C3 = {q4, q7}.
The letters chosen by the algorithm are as follows: a1 is solid, a2 is dashed, a3 is dotted.
The dashdotted letter is not used by the algorithm.

Correctness

We now analyze the output of the algorithm and show that it provides an upper bound on
the minimum rank of a total word in A. For rpoNFAs, this upper bound is tight. For general
poNFAs, we then extend the algorithm with a second stage using similar ideas.

Assume that the algorithm makes k + 1 ≤ m + 1 steps and then stops and returns the
answer |Ck|. Consider the sequence of words defined as w0 = ϵ, wi = wi−1(aiwi−1)n for
1 ≤ i ≤ k. In our example, w1 = a7

1, w2 = a7
1(a2a7

1)7, w3 = a7
1(a2a7

1)7(a3a7
1(a2a7

1)7)7. Table 1
illustrates the images of states under wi in our example.

The intuition is that with i increasing, the words wi map every state to larger and larger
states with respect to ≺, until a fixed point is reached. This can be informally seen as
stabilization of the images of states from Ci under the word wi.

Table 1 The images of states under wi, 1 ≤ i ≤ 3.

q q1 q2 q3 q4 q5 q6 q7

q · w1 q1 q3, q7 q3 q4 q7 q7 q7

q · w2 q1 q4, q7 q4, q7 q4 q7 q7 q7

q · w3 q4, q7 q4, q7 q4, q7 q4 q7 q7 q7

▷ Claim 12. For each i, the word wi is total.

Proof. We show by induction that the image of each state under wi contains a state from
Ci, starting with i = 1. By construction, a1 is defined for every state q ∈ C0 = Q. Since A
is partially ordered, we get that after n applications of a1, the image of every state must
contain a state q such that q ∈ q · a1. Every such state is by definition in C1.

Assume now that the image of every state under wi−1 contains a state from Ci−1. We
thus only need to show that for each state in Ci−1 its image under wi contains a state
from Ci. By definition, the image of every state from Ci−1 under ai is non-empty. Let
q ∈ Ci−1 be a state. If q ∈ Ci, there is nothing to prove. Otherwise, q ̸∈ q · ai. Thus we
have that every state in q · aiwi−1 is larger (with respect to ≺) than q. By the induction
assumption, there is another state from Ci−1 in q · aiwi−1. Since A is partially ordered, by
repeating this argument at most n times, we get a state from Ci in the image of q. ◁

▷ Claim 13. For every i, the rank of wi is at most |Ci|.

Proof. For every state q ∈ Q, call the i-trace of q the set q · wi. To prove the claim, we show
that for every i ≥ 1 and every state q ∈ Q, the i-trace of q is a union of i-traces of some states
from Ci. We prove that by induction on i. For i = 1, this is obvious from the construction
of w1 since A is partially ordered. Assume now that the statement holds true for i − 1. Then
we need to show that for every q ∈ Q and p ∈ q · wi−1 we have that p · (aiwi−1)n is a union
of i-traces of some states from Ci. Observe that since A is partially ordered, for every p′ ∈ Q

we have p′ · (aiwi−1)n = p′ · (aiwi−1)h(p′), where h(p′) = |{s ∈ Q | p′ ≺ s or p′ = s}|. Hence,
it is enough to prove that p · (aiwi−1)h(p) is a union of i-traces of some states from Ci.
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We do that again by induction, now on the order ≺. For the largest state t with respect
to ≺ this is obvious, since its i-trace for every i is {t}. Assume now that this is true for
all states larger than p with respect to ≺. If p ∈ Ci, the statement is proved. Assume now
that p ̸∈ Ci. Then there exists 1 ≤ j ≤ i such that p ̸∈ p · aj , and hence every state in
p · aiwi−1 is larger (with respect to ≺) than p. For every state p′ such that p ≺ p′, we have
that h(p′) < h(p), hence we can use the assumption of the induction on ≺, which concludes
the proof. ◁

Hence we get that wk is a total word of rank |Ck|. If A is an rpoNFA, the rank of every
total word in A is at least |Ck|. Indeed, by the definition of the algorithm, each letter in Σ
either induces a self-loop for every state of Ck, or is undefined for at least one state in Ck.
Since A is an rpoNFA, this means that if the action of a word w is defined for every state
of A, then for every state q ∈ Ck we must have q · w = {q}. Since A is partially ordered,
every set q · w can only contain q and states that are larger with respect to ≺ than q, hence
the rank of w is at least |Ck|. Observe that the length of wi is (n + 1)m − 1, which proves
Theorem 11 (a) for rpoNFAs.

To deal with the general case of poNFAs instead of rpoNFAs, we continue our analysis of
the stabilization algorithm, and extend it with a very similarly defined second part, which we
call moving algorithm. The moving algorithm is executed after the stabilization algorithm.
We start with some definitions. Recall that the result of the stabilization algorithm is the set
Ck of states and the alphabet Σk.

Let S ⊆ Ck be the set of states q ∈ Ck such that for every letter a ∈ Σk we have that
q · a = {q}. Let Σ′ ⊆ Σ \ Σk be the set of letters not from Σk which are defined for every
state in S. Only letters from Σk ∪ Σ′ can occur in a total word, since the first occurrence of
any other letter will kill at least one state in S. After the stabilization algorithm provides its
output, we run the moving algorithm defined as follows.

Moving algorithm

We initialize the set of currently considered states C ′
0 = Ck and the currently explored

alphabet Σ′
0 = ∅. At step i, i ≥ 1, find a letter a′

i ∈ Σ′ \ Σ′
i−1 such that for at least one state

q ∈ C ′
i−1 we have q ̸∈ q ·a′

i. If no such letter a′
i exists, stop and output |C ′

i−1|. Define C ′
i to be

the subset of states in C ′
i−1 for which a′

i induces a self-loop, that is, C ′
i = {q ∈ C ′

i−1 | q ∈ q·a′
i}.

Take Σ′
i = Σ′

i−1 ∪ {a′
i}. Go to the step i + 1.

Correctness of the moving algorithm

Assume that the algorithm makes k′ + 1 steps, outputs |C ′
k′ | and stops. Consider the

words w′
i defined as follows. We take w′

0 = (wk)n. This is done to make sure that the image
of every state in Q under w′

0 contains at least one state from S. For 1 ≤ i ≤ k′, define
w′

i = w′
i−1(a′

iw
′
i−1)n.

First, we claim that each w′
i is total. This follows inductively from the fact that for

every i, the image of every state under w′
i contains at least one state from S, and a′

i is defined
for all states in S.

The fact that the rank of w′
i is at most |C ′

i| is proved by exactly the same argument as in
the proof of Claim 13, since the construction of the words w′

i coincides with the construction
of the words wi. Observe that in the setting of Claim 13, ai is defined for every state in Ci,
but this fact is never used in the proof of this claim.

It remains to show that the rank of every total word in A is at least |C ′
k′ |. Indeed, by

the definition of the moving algorithm, for each letter a ∈ Σ which is defined for every state
in S, we have that q ∈ q · a for every state q ∈ C ′

k′ . As argued above, only letters defined for
each state in S can occur in a total word, which concludes the proof.
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It is easy to see that the length of w′
k′ is at most n(n + 1)m. This concludes the proof of

Theorem 11 (a) for general poNFAs.
To simplify the presentation, we assume that if the poNFA is not an rpoNFA, the moving

algorithm is the second part of the stabilization algorithm. To comply with the notation of
the stabilization algorithm, we define Ck+i = C ′

i and Σk+i = Σk ∪ Σ′
i for 1 ≤ i ≤ k′. Observe

that by construction, Σk and Σ′
k′ do not intersect, every letter in Σk+k′ induces a self-loop

for every state in Ck+k′ and wk+k′ is a total word of minimum rank. Thus, everywhere below
we denote the value k′ + k simply by k.

Space complexity

We show how to implement a variant of the stabilization algorithm in O(m log m + log n)
deterministic space. To do so, it is enough to note that the sets Ci do not have to be
constructed explicitly, and each Ci can be reconstructed on the fly based only on Σi. Indeed,
assume that the sequence a1, . . . , ai is already constructed and stored in the memory. Then
to test if a given state q belongs to Ci, we need to check that all of a1, . . . , ai induce self-loops
for it. Testing if a given letter a can be taken as ai is then straightforward and only requires
going through all states of A in an arbitrary order.

If m = O( log n
log log n ), the bit length of the representation of one letter in Σ is O(log log n).

Thus storing a sequence a1, . . . , ad, d ≤ m, of letters in Σ requires O( log n
log log n · log log n) =

O(log n) bits, which provides a deterministic algorithm running in logarithmic space. The
described algorithm can obviously also be implemented in polynomial time, and P-hardness
is stated in the following lemma. This concludes the proof of Theorem 11 (b).

▶ Lemma 14. Deciding if a poDFA over an alphabet of linear size in the number of its states
admits a total word of rank one is P-hard under an AC0 reduction.

Proof. We reduce from the monotone circuit value problem. A monotone Boolean circuit is
an acyclic digraph C = (V, E) with a labeling function L : V → {∧, ∨,□}. Intuitively, the
word “monotone” refers to the fact that negation gates are not allowed. Every vertex labeled
by {∧, ∨} is called an inner gate and has indegree two. Each vertex labeled by □ is called
an input gate and has outdegree one and indegree zero. Additionally, there is a designated
vertex of outdegree zero, which is called the output gate. A vertex v with an outgoing edge
to a vertex u is called the child of u.

Let k be the number of input gates in C. Then the value of C on the input x1, . . . , xk, xi ∈
{0, 1}, is defined recursively by computing the value of a gate by applying the corresponding
Boolean operation to its children. Given a monotone Boolean circuit C with k input gates
and the values x1, . . . , xk, xi ∈ {0, 1}, of these input gates, the monotone circuit value
problem asks if the value of the output gate of C is 1. This problem is P-complete, even if
the circuit in the input is topologically ordered [19].

Given C = (V, E) with a labeling function L, and the input values x1, . . . , xk, define a
poDFA A = (Q, Σ, δ) as follows. Define Q = V ∪ {f}, where f is a fresh state.

We now define the letters in Σ and their action on the states to force the following
behavior of A. We start with the whole set of states active, and then make a state non-active
if the corresponding gate can be evaluated to one at the current step. First, we can map every
state corresponding to an input gate with value one to f . This is done by a separate letter
for each gate, and such a letter leaves every other state in its place. Then we inductively
proceed with ∧- and ∨-gates, whose corresponding states can be sent to f if and only if all
their children in C have value 1 (respectively, at least on child has value 1). This is done by
simple gadgets guaranteeing that all the children of a gate (respectively, at least one child
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of a gate) are non-active by leaving certain transitions for them undefined, see Figure 4 for
an illustration of these gadgets. If by some sequence of such letter applications the state
corresponding to the output gate can be made non-active, and hence the value of C is 1,
then another letter mapping all other states to f can be taken. This letter cannot be taken
initially, since it is undefined for the state corresponding to the output gate.

q∨

q1 q2

f a1, a2

a1 a2

q∧

q1 q2

f a

Figure 4 The gadgets for an ∨-gate q∨ with children q1, q2 (left) and an ∧-gate q∧ with children
q1, q2 (right). The solid arrows denote transitions of the DFA, and the dotted arrows denote child-
parent relations in the circuit.

We now formally define the remaining part of A to guarantee the described behavior.
For each input gate v whose value is 1, add a fresh letter mapping v to f and acting as
the identity for all states in Q except v.
For each ∨-gate v, add two fresh letters av

1, av
2 acting as follows. Both av

1 and av
2 maps v

to f . Letter av
1 induces a self-loop for the first child of v and is undefined for its second

child. Symmetrically, av
2 is undefined for the first child and maps the second child to

itself. For all remaining states both av
1 and av

2 induce self-loops.
Similarly, for each ∧-gate v, add a fresh letter av to Σ such that av maps v to f , is
undefined for both children of v and induces self-loops for all other states.
Finally, add a fresh letter r which is undefined for the state corresponding to the output
gate and maps all other states to f .

Applying a total word to A now resembles sequential evaluation of C: starting from the
states corresponding to the input gates, we can make the states corresponding to gates with
value one non-active by mapping them to f , and then proceed inductively to their parents.
By definition of the action of r, A has a total word of rank one if and only if the state
corresponding to the output gate eventually becomes non-active, which is possible if and
only if the value of the output gate in C is one. ◀

Time complexity

To implement the stabilization algorithm with low time complexity, we use a data structure
which we simply refer to as a list of states. We implement it as an array of length n that
indicates for each state if it appears in the list, and also refers to the previous and next states
in the array with respect to ≺, if they exist. Hence, testing non-emptiness of such a list can
be done in constant time, going through its elements takes time linear in the size of the list
(and not in n), and removing an element takes constant time.

We first show how to compute the minimum rank of a total word in time complexity
O(mn). For each letter a ∈ Σ we maintain a list Da. After step i, this list contains the states
in Ci for which a is undefined. We also maintain a list D of letters a ∈ Σ \ Σi for which Da

is currently empty and there is a state q ∈ Ci which is mapped by a to a different state.
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The algorithm makes at most m steps. At step i, we take an arbitrary letter from D as ai.
We then update the set of currently considered states to Ci, which takes O(n) time, and
remove the entry corresponding to each state in Ci−1 \ Ci from all the lists Da, a ∈ Σ \ Σi.
Observe that the entry for each state is removed at most once during the execution of the
algorithm. Hence, the overall time complexity is O(mn + |∆|), which proves Theorem 11 (c).

Ergodicity

Recall that a word is ergodic if and only if its matrix has a column consisting of all ones.
Clearly, in the case of poNFAs, this can only be the last column. We now apply the obtained
results to ergodic words for a poNFA A. Let Σ′ be the set of letters in Σ which are defined
for every state in Ck obtained in the stabilization algorithm. Let Ck = {q1, q2, . . . , qr} such
that q1 ≺ q2 ≺ . . . ≺ qr.

Observe that there exists an ergodic word for A if and only if for every state qi, 1 ≤ i ≤ r−1,
there exists a letter a′

i ∈ Σ′ such that there is a state p ∈ Q, q ≺ p, with p ∈ q · a′
i. If such a

letter does not exist for some state in Ck \ {qr}, an ergodic word for A obviously does not
exist. For the opposite direction, observe that for every state in Q its image under a′

1wk

contains a state from Ck \ {q1}. Moreover, qr · a′
1wk = {qr}, since qr must be the largest

state in Q with respect to ≺. By inductively repeating this argument r − 1 times in total,
we get that for every state in Q its image under the concatenation of the words (a′

iwk) for
1 ≤ i ≤ r − 1 must contain qk, and hence this word is ergodic. Since r ≤ n, its length is at
most (n − 1)n(n + 1)m. We thus obtain the following theorem.

▶ Theorem 15. Let A be a poNFA with n states and m letters.
(a) The length of its shortest ergodic word is at most (n − 1)n(n + 1)m.
(b) Checking if A is ergodic can be done in O(m log m + log n) deterministic space.

If m = O( log n
log log n ), this problem is in L, and if m = Θ(n), it is P-complete.

(c) Checking if A is ergodic can be done in time O(mn + |∆|).

4.2 Partially ordered DFAs
For poDFAs, a total word has rank one if and only if it is ergodic. Thus the following theorem,
which is the main result of this subsection, applies to ergodic words if one takes r = 1.

▶ Theorem 16. Let A be a poDFA with n states and m letters.
(a) The length of a shortest total word of minimum rank r in A is at most k−1

2k (n−r)2+(n−r),
where k = min{n − r, m}. If m divides n − r, the bound is tight.

(b) Finding such a word of at most this length can be done in time O(mn2).

We remark on the values that the bound k−1
2k (n−r)2+(n−r) takes depending on the size of

the alphabet, assuming that r = 1. If m = 2, the lower bound is 1
4 (n−1)(n+3) = 1

4 n2 +O(n),
while for m = n − 1 it becomes 1

2 n(n − 1). As we will see later, having more than n − 1
letters in the alphabet cannot increase the bound.

Proof. We start with proving (a). We continue the analysis of the stabilization algorithm for
rpoNFAs from Section 4.1. In the proof of its correctness, we constructed a very long word
wk. However, intuitively, during the application of this word to a poDFA, most letters do
not change the image of any state at the moment of their application, and each such letter
can thus be removed from the word. For 1 ≤ i ≤ k, denote |Ci| = ci

Put a token onto each state of A and move them according to the transitions taken during
the application of wk letter by letter. We are going to track the paths of these tokens. First,
we claim that for each state, if a token appears on it and then leaves it, it leaves it every
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time along the transition labeled by the same letter. Indeed, by construction of wk, each
state q ∈ Q \ Ck belongs to a set Ci−1 \ Ci for exactly one value of i, and thus we can show
by induction that ai is the letter labeling such a transition from q. Given a state q ∈ Q, we
call such a transition the moving transition of q. The number of moving transitions labeled
by ai is |Ci−1 \ Ci| = ci−1 − ci. The total number of moving transitions labeled by letters
in Σi is thus (c0 − c1) + (c1 − c2) + . . . + (ci−1 − ci) = c0 − ci.

Now, consider what happens when wi−1 is already applied to A, and we start applying
(aiwi−1)n. Observe that at this moment the set of states containing a token is precisely the
set Ci−1, which can be proved by induction. By the application of (aiwi−1)n, each token
on a state in Ci−1 \ Ci is moved to a state in Ci. The number of letters in (aiwi−1)n whose
application moves at least one token is thus upper bounded by the number of moved tokens,
which is |Ci−1 \Ci|, multiplied by the number of moving transitions labeled by letters in Σi−1,
plus at most one application of ai per state in Ci−1\Ci. Hence we get that the number of useful
letters in (aiwi−1)n is at most (ci−1 − ci)(c0 − ci−1) + (ci−1 − ci) = (ci−1 − ci)(c0 − ci−1 + 1).

By construction, c0 = n and ck = r. The overall length of the word consisting only of
letters in wk moving at least one token is upper bounded by∑

1≤i≤k

(ci−1 − ci)(c0 − ci−1 + 1) = (c0 + 1)(c0 − ck) − (
∑

1≤i≤k

c2
i−1 −

∑
1≤i≤k

ci−1ci)

= (c0 + 1)(c0 − ck) − (1
2(c2

0 − c2
k) + 1

2
∑

1≤i≤k

(ci−1 − ci)2)

≤ (c0 + 1)(c0 − ck) − 1
2(c2

0 − c2
k) − 1

2k
(c0 − ck)2 = k − 1

2k
(n − r)2 + (n − r).

Hence the upper bound is proved. The fact that if m divides n − r the bound is tight
follows from the following lemma, concluding the proof of (a).

▶ Lemma 17. For every positive natural numbers n, m and r such that m divides n − 1,
there exists a poDFA A with n states and m letters such that the length of its shortest total
word of minimum rank r is m−1

2m (n − r)2 + (n − r).

Proof. We start with r = 1. We construct a poDFA A = (Q, Σ, δ) as follows. Let n = ms + 1
and Q(j) = {q

(j)
1 , . . . , q

(j)
s }. Take Q = ∪1≤j≤mQ(j) ∪ {q

(m+1)
1 }, and Σ = {a1, a2, . . . , am}.

For each 1 ≤ j ≤ m, define δ(q(j)
i , aj) = q

(j)
i+1 for 1 ≤ i < s, δ(q(j)

s , aj) = q
(j+1)
1 and

δ(q(j)
i , aℓ) = q

(j)
i if j < ℓ and 1 ≤ i ≤ s. Set each letter in Σ to induce a self-loop for q

(m+1)
1 .

Leave all remaining transitions undefined. See Figure 5 for an example.

q
(1)
1 q

(1)
2 q

(2)
1 q

(2)
2 q

(3)
1 q

(3)
2 q

(4)
1

a2, a3 a2, a3 a3 a3 a1, a2, a3

a1 a1 a2 a2 a3 a3

Figure 5 Example of the construction in the proof of Lemma 17 for m = 3, s = 2 and r = 1.

Observe that there exists a unique shortest total word of rank one for A. Indeed, at every
moment, only one transition that does not act as the identity can be taken. Namely, if no
state in Q(j) is active and some state in Q(j−1) is active, we can take aj , and as soon as one
state in Q(j) becomes active, it has to be sent all the way to a

(m+1)
1 before any other state

MFCS 2024
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can be sent to another state. Hence, the length of a shortest total word of rank one for A is
s+(s2 +s)+(2s2 +s)+ . . .+((m−1)s2 +s) = s2(1+2+ . . .+(m−1))+sm = s2 · (m−1)m

2 +ms.
Since s = n−1

m , this value is equal to m−1
2m (n − 1)2 + (n − 1).

Finally, observe that adding r − 1 states such that every letter induces a self-loop for
each of them provides a required construction for the case of rank r. ◀

We continue with proving item (b) of Theorem 16. To construct a total word of minimum
rank within the required length bound, recall the definition of the moving transitions from
the length analysis above. For each state q ∈ Q, find the letter labeling its moving transition.
Now we follow the tokens. At step i, all tokens on states in Ci are not moved, so we only
need to compute a word that maps all tokens on the states in Ci−1 \ Ci to states in Ci. To
do so, we need to decide which letters from (aiwi)n move at least one token. Clearly, if ai

does not move anything, we go to the next step. Otherwise, we apply ai and recursively
perform the argument from step i − 1 for the moved tokens. The total number of moments
of time when we do not move anything and thus go to the next step is upper bounded by
O(mn2) by the construction of wk, and the number of moves of tokens is upper bounded by
m−1
2m (n − r)2 + (n − r) = O(mn2). This concludes the proof of (b). ◀
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Two graphs G and H are homomorphism indistinguishable over a family of graphs F if for all graphs
F ∈ F the number of homomorphisms from F to G is equal to the number of homomorphism from
F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism,
cospectrality, and logical equivalences can be characterised as homomorphism indistinguishability
relations over various graph classes.

The wealth of such results motivates a more fundamental study of homomorphism indistin-
guishability. From a computational perspective, the central object of interest is the decision problem
HomInd(F) which asks to determine whether two input graphs G and H are homomorphism
indistinguishable over a fixed graph class F . The problem HomInd(F) is known to be decidable
only for few graph classes F . Due to a conjecture by Roberson (2022) and results by Seppelt (MFCS
2023), homomorphism indistinguishability relations over minor-closed graph classes are of special
interest. We show that HomInd(F) admits a randomised polynomial-time algorithm for every
minor-closed graph class F of bounded treewidth.

This result extends to a version of HomInd where the graph class F is specified by a sentence in
counting monadic second-order logic and a bound k on the treewidth, which are given as input. For
fixed k, this problem is randomised fixed-parameter tractable. If k is part of the input, then it is
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1 Introduction

In 1967, Lovász [32] proved that two graphs G and H are isomorphic if and only if they
are homomorphism indistinguishable over all graphs, i.e. they admit the same number of
homomorphisms from every graph F . Subsequently, many graph isomorphism relaxations
have been characterised as homomorphism indistinguishability relations. For example, two
graphs are quantum isomorphic if and only if they are homomorphism indistinguishable over
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all planar graphs [34]. Moreover, two graphs satisfy the same sentences in k-variable first-
order logic with counting quantifiers if and only if they are homomorphism indistinguishable
over all graphs of treewidth less than k [20, 19]. A substantial list of similar results
characterises notions from quantum information [34, 5], finite model theory [20, 24, 22],
convex optimisation [19, 28, 38], algebraic graph theory [19, 28], machine learning [35, 41, 25],
and category theory [18, 1] as homomorphism indistinguishability relations.

The wealth of such examples motivates a more principled study of homomorphism
indistinguishability [3, 37, 40]. Notably, all graph classes featured in the results listed
above are minor-closed and this is not a mere coincidence [40, Theorem 1]. Therefore,
homomorphism indistinguishability relations of minor-closed graph classes are of central
interest in light of the emerging theory of homomorphism indistinguishability. In [37],
Roberson conjectured that any two distinct graph classes which are closed under disjoint
unions and taking minors have distinct homomorphism indistinguishability relations. From
a computational perspective, the central question on homomorphism indistinguishability
concerns the complexity and computability of the following decision problem for a fixed
graph class F [37, Question 9]:

HomInd(F)
Input Graphs G and H.
Question Are G and H homomorphism indistinguishable over F?

The graphs G and H may be arbitrary graphs and do not necessarily have to be in F .
Typically, the graph class F is infinite. Thus, the trivial approach to HomInd(F) of checking
whether G and H have the same number of homomorphisms from every F ∈ F does not even
render HomInd(F) decidable. Beyond this observation, the understanding of the problems
HomInd(F) is limited to a short list of examples of graph classes F : For the class G of
all graphs, HomInd(G) is graph isomorphism [32], a problem representing a long standing
complexity-theoretic challenge and currently only known to be in quasi-polynomial time [6].
For the class P of all planar graphs, HomInd(P) is quantum isomorphism and undecidable [34].
Finally, for the class T Wk of all graphs of treewidth at most k, HomInd(T Wk) can be decided
in polynomial time with the well-known k-dimensional Weisfeiler–Leman algorithm [20, 19].

These results illustrate that the complexity of HomInd(F) is not monotone in the sense
that if F1 ⊆ F2, then HomInd(F1) is at most as hard as HomInd(F2). For example, despite
that T W2 ⊆ P ⊆ G, deciding homomorphism indistinguishability over T W2, P, and G
is polynomial-time, undecidable, and quasi-polynomial-time, respectively. Furthermore,
although HomInd(T Wk) is in polynomial-time for every k, there are infinitely many minor-
closed graph classes F of bounded treewidth, e.g. the classes of k-outerplanar graphs, for
which HomInd(F) could yet be undecidable. Our main result shows that this is not the
case: HomInd(F) is in randomised polynomial time for every minor-closed graph class F of
bounded treewidth.

▶ Theorem 1. Let k ≥ 1. If F is a k-recognisable class of graphs of treewidth at most k − 1,
then HomInd(F) is in coRP.

Spelled out, Theorem 1 asserts that there exists a randomised algorithm for HomInd(F)
which always runs in polynomial time, accepts all YES-instances and incorrectly accepts
NO-instances with probability less than one half. Recognisability is a fairly general property
that arises in the context of Courcelle’s theorem [14], cf. Definition 10. Courcelle showed that
every graph class definable in counting monadic second-order logic CMSO2 is recognisable.
This subsumes graph classes defined by finitely many forbidden (induced) subgraphs and
minors, and by the Robertson–Seymour Theorem, all minor-closed graph classes.
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Thereby, Theorem 1 applies to e.g. the class of graphs of bounded branchwidth, k-outer-
planar graphs, and the class of trees of bounded degree. As a concrete application, we
resolve an open question from [38] by showing in Theorem 22 that the exact feasibility of
the Lasserre semidefinite programming hierarchy for graph isomorphism can be decided in
randomised polynomial-time.

The proof of Theorem 1 combines Courcelle’s graph algebras [15] with the homomorphism
tensors from [34, 28]. Graph algebras comprise labelled graphs and operations on them such
as series and parallel composition. Homomorphism tensors keep track of homomorphism
counts of labelled graphs. We show that recognisability and bounded treewidth guarantee
that homomorphism tensors yield finite-dimensional representations of suitable graph algeb-
ras which certify homomorphism indistinguishability and are efficiently computable. The
algorithm in Theorem 1 is randomised as it employs arithmetic modulo random primes to
deal with integers which would otherwise grow to exponential size. For graph classes of
bounded pathwidth, this issue can be avoided:

▶ Theorem 2. Let k ≥ 1. If F is a k-recognisable class of graphs of pathwidth at most k− 1,
then HomInd(F) is in polynomial time.

The connection to Courcelle’s theorem motivates considering the parametrised problem
HomInd. Here, the CMSO2-sentence φ allows the graph class to be specified as part of the
input. Using results by Courcelle [14], we generalise Theorem 1 in Theorem 3.

HomInd
Input Graphs G and H, a CMSO2-sentence φ, an integer k.
Parameter |φ|+ k.
Question Are G and H homomorphism indistinguishable over the graph class Fφ,k of

graphs of treewidth at most k − 1 satisfying φ?

▶ Theorem 3. There exists a computable function f : N→ N and a randomised algorithm
for HomInd of runtime f(|φ| + k)nO(k) for n := max{|V (G)|, |V (H)|} which accepts all
YES-instances and accepts NO-instances with probability less than one half.

Equipped with the parametrised perspective offered by HomInd, we finally consider lower
bounds on the complexity of this problem. Firstly, we show that it is coW[1]-hard and that
the runtime in Theorem 3 is optimal under the Exponential Time Hypothesis (ETH).

▶ Theorem 4. HomInd is coW[1]-hard under fpt-reductions. Unless ETH fails, there is no
algorithm for HomInd that runs in time f(|φ| + k)no(|φ|+k) for any computable function
f : N→ N.

Secondly, we show that, when disregarding the parametrisation, HomInd is coNP-hard.
We do so by showing coNP-hardness of deciding indistinguishability under the k-dimensional
Weisfeiler–Leman (WL) algorithm (recently, the same result was independently obtained by
[31]). WL is an important heuristic in graph isomorphism and tightly related to notions in
finite model theory [13] and graph neural networks [41, 35, 25]. The fastest known algorithm
for WL runs in time O(k2nk+1 log n) [29], which is exponential when regarding k as part
of the input. It was shown that when k is fixed, then the problem is PTIME-complete [23].
Establishing lower bounds on the complexity of WL is a challenging problem [7, 8, 26].
Theorem 5 is a first step towards resolving a question posed by Berkholz [7]: Is the decision
problem in Theorem 5 EXPTIME-complete?

▶ Theorem 5. The problem of deciding given graphs G and H and an integer k ∈ N
whether G and H are k-WL indistinguishable is coNP-hard under polynomial-time many-one
reductions.

MFCS 2024
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2 Preliminaries

All graphs in this work are finite, undirected, and without multiple edges and loops. For
a graph G, we write V (G) for its vertex set and E(G) for its edge set. A homomorphism
h : F → G from a graph F to a graph G is a map V (F )→ V (G) such that h(u)h(v) ∈ E(G)
for all uv ∈ E(F ). Write hom(F, G) from the number of homomorphisms from F to G.

Two graphs G and H are homomorphism indistinguishable over a class of graph F ,
in symbols G ≡F H, if hom(F, G) = hom(F, H) for all F ∈ F . For an integer n ≥ 2,
G and H are homomorphism indistinguishable over F modulo n, in symbols G ≡n

F H, if
hom(F, G) ≡ hom(F, H) mod n for all F ∈ F , cf. [21, 30].

2.1 (Bi)labelled Graphs and Homomorphism Tensors
Let k, ℓ ≥ 1. A distinctly k-labelled graph is a tuple F = (F, u) where F is a graph and
u ∈ V (F )k is such that ui ≠ uj for all 1 ≤ i < j ≤ k. We say ui ∈ V (F ), the i-th entry of u,
carries the i-th label. Write D(k) for the class of distinctly k-labelled graphs.

A distinctly (k, ℓ)-bilabelled graph is a tuple F = (F, u, v) where F is a graph and
u ∈ V (F )k and v ∈ V (F )ℓ are such that ui ̸= uj for all 1 ≤ i < j ≤ k and vi ̸= vj for all
1 ≤ i < j ≤ ℓ. Note that u and v might share entries. We say ui ∈ V (F ) and vi ∈ V (F )
carry the i-th in-label and out-label, respectively. Weite D(k, ℓ) for the class of distinctly
(k, ℓ)-bilabelled graphs.

For a graph G, and F = (F, u) ∈ D(k) define the homomorphism tensor F G ∈ NV (G)k of
F w.r.t. G whose v-th entry is equal to the number of homomorphisms h : F → G such that
h(ui) = vi for all i ∈ [k]. Analogously, for F ∈ D(k, ℓ), define F G ∈ NV (G)k×V (G)ℓ . As the
entries of homomorphism tensors are integral, we can view them as vectors in vector spaces
over R as in Section 3 or over finite fields Fp as in Section 4.

As observed in [34, 28], (bi)labelled graphs and their homomorphism tensors are intriguing
due to the following correspondences between combinatorial operations on the former and
algebraic operations on the latter:
Dropping labels corresponds to sum-of-entries (soe). For F = (F, u) ∈ D(k), define the

underlying unlabelled graph soe(F ) := F of F . Then for all graphs G, hom(soe F , G) =∑
v∈V (G)k F G(v) =: soe(F G).

Gluing corresponds to Schur products. For F = (F, u) and F ′ = (F ′, u′) in D(k), define
F ⊙F ′ ∈ D(k) as the k-labelled graph obtained by taking the disjoint union of F and F ′

and placing the i-th label at the vertex obtained by merging ui with u′
i for all i ∈ [k].

Then for every graph G and v ∈ V (G)k, (F ⊙F ′)G(v) = F G(v)F ′
G(v) =: (F G⊙F ′

G)(v).
One may similarly define the gluing product of two (k, ℓ)-bilabelled graphs.

Series composition corresponds to matrix products. For bilabelled graphs K = (K, u, v)
and K ′ = (K ′, u′, v′) in D(k, k), define K ·K ′ ∈ D(k, k) as the bilabelled graph obtained
by taking the disjoint union of K and K ′, merging the vertices vi and u′

i for i ∈ [k],
and placing the i-th in-label (out-label) on ui (on v′

i) for i ∈ [k]. Then for all graphs G

and x, z ∈ V (G)k, (K ·K ′)G(x, z) =
∑

y∈V (G)k KG(x, y)K ′
G(y, z) =: (KG ·K ′

G)(x, z).
One may similarly compose a graph in D(k, k) with a graph in D(k) obtaining one in
D(k). This operation corresponds to the matrix-vector product.

2.2 Labelled Graphs of Bounded Treewidth
Labelled graphs of bounded treewidth represent the technical foundation of most proofs in
this article. Several versions of such have been used in previous works [28, 15, 22].



T. Seppelt 82:5

Let F be a graph. A tree decomposition of F is a pair (T, β) where T is a tree and
β : V (T )→ 2V (F ) is a map such that
1. the union of the β(t) for t ∈ V (T ) is equal to V (F ),
2. for every edge uv ∈ E(F ) there exists t ∈ V (T ) such that {u, v} ⊆ β(t),
3. for every vertex u ∈ V (F ) the set of vertices t ∈ V (T ) such that u ∈ β(t) is connected

in T .
The width of (T, β) is the maximum over all |β(t)| − 1 for t ∈ V (T ). The treewidth tw F

of F is the minimum width of a tree decomposition of F . A path decomposition is a tree
decomposition (T, β) where T is a path. The pathwidth pw F of F is the minimum width of
a path decomposition of F .

Building on [9, Lemma 8], we show in the following Lemma 6 that every tree decomposition
can be rearranged such that the depth of the decomposition tree gives a bound on the number
of vertices in the decomposed graph.

▶ Lemma 6. Let k ≥ 1 and F be a graph such that tw F ≤ k − 1 and |V (F )| ≥ k. Then F

admits tree decomposition (T, β) such that
1. |β(t)| = k for all t ∈ V (T ),
2. |β(s) ∩ β(t)| = k − 1 for all st ∈ E(T ),
3. there exists a vertex r ∈ V (T ) such that the out-degree of every vertex in the rooted tree

(T, r) is at most k.

Proof. By [9, Lemma 8], there exists a tree decomposition (T, β) of F satisfying the first
two assertions. Pick a root r ∈ V (T ) arbitrarily. To ensure that the last property holds, the
tree decomposition is modified recursively as follows:

By merging vertices, it can be ensured that no two children of r carry the same bag, i.e.
that there exist no two children s1 ̸= s2 of r such that β(s1) = β(s2).

For every v ∈ β(r), let C(v) denote the set of all children t of r such that β(r)\β(t) = {v},
i.e. C(v) is the set of all children of r whose bags do not contain the vertex v. The collection
C(v) for v ∈ β(r) is a partition of the children of r in at most k parts. Note that for two
distinct children t1 ̸= t2 in the same part C(v) it holds that |β(t1) ∩ β(t2)| = k − 1. Rewire
the children of r as follows: For every v ∈ β(r) with C(v) ̸= ∅, pick t ∈ C(v), make t a child
of r and all other elements of C(v) children of t. The vertex r now has at most k children
and the new tree decomposition still satisfies the first two assertions. Proceed by processing
the children of r. ◀

Inspired by Lemma 6, we consider the following family of distinctly labelled graphs. The
depth of a rooted tree (T, r) is the maximal number of vertices on any path from r to a leaf.

▶ Definition 7. Let k, d ≥ 1. Define T Wd(k) as the set of all F = (F, u) ∈ D(k) such that
F admits a tree decomposition (T, β) of width ≤ k − 1 satisfying the assertions of Lemma 6
with some r ∈ V (T ) such that β(r) = {u1, . . . , uk} and (T, r) is of depth at most d. Let
T W(k) :=

⋃
d≥1 T Wd(k).

Every graph in T Wd(k) has at least k vertices. Conversely, Definition 7 permits the
following upper bound on the size of the graphs in T Wd(k) in terms of d and k.

▶ Lemma 8. Let k, d ≥ 1. Every F ∈ T Wd(k) has at most max{kd, d} vertices.

Proof. Let (T, β) and r ∈ V (T ) be as in Definition 7. If k = 1, then every vertex in (T, r)
has out-degree 1 and F at most d vertices.

Suppose that k ≥ 2. The proof is by induction on the depth d of the rooted tree (T, r).
If d = 1, then T contains only a single vertex and F has at most k vertices.

MFCS 2024
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(a) 1 ∈ T W(k).
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(c) J i ∈ D(k, k).

Figure 1 The (bi)labelled generators of T W(k) in wire notion of [34]. A vertex carries in-label
(out-label) i if it is connected to the index i on the left (right) by a wire. Actual edges and vertices
of the graph are depicted in black.

For the inductive step, let F be of depth d. If r has only a single neighbour s, then S :=
T − r is such that (S, s) is of depth d− 1. By the inductive hypothesis,

∣∣∣⋃s∈V (S) β(s)
∣∣∣ ≤ kd.

Furthermore,
∣∣∣⋃t∈V (T ) β(t) \

⋃
s∈V (S) β(s)

∣∣∣ = 1. Hence, F has at most kd−1 + 1 ≤ kd many
vertices.

If r has multiple neighbours, observe that due to Lemma 6 every vertex in β(r) is also in
β(s) for some neighbour s of r. Hence, the number of vertices in F is bounded by the number
of vertices covered by the subtrees of T − r rooted in s. Thus, F has at most kd−1 · k ≤ kd

many vertices. ◀

Clearly, if F ∈ T W(k), then tw(soe F ) ≤ k − 1. Conversely, by Lemma 6, for every F

with tw F ≤ k− 1 and |V (F )| ≥ k, there exists u ∈ V (F )k such that (F, u) ∈ T W(k). Thus
the underlying unlabelled graphs of the labelled graphs in T W(k) are exactly the graphs of
treewidth ≤ k − 1 on ≥ k vertices.

The family T W(k) is generated by certain small building blocks under series composition
and gluing as follows: Let 1 ∈ T W1(k) be the distinctly k-labelled graph on k vertices
without any edges. For i ∈ [k], let J i = (J i, (1, . . . , k), (1, . . . , i − 1, î, i + 1, . . . , k)) the
distinctly (k, k)-bilabelled graph with V (J i) := [k]∪ {̂i} and E(J i) := ∅. Writing

([k]
2

)
for the

set of pairs of distinct elements in [k], let Aij = (Aij , (1, . . . , k), (1, . . . , k)) for ij ∈
([k]

2
)

be
the distinctly (k, k)-bilabelled graph with V (Aij) := [k] and E(Aij) := {ij}. These graphs
are depicted in Figure 1. Let B(k) := {J i | i ∈ [k]} ∪ {Aij | ij ∈

([k]
2

)
}.

It can be readily verified that if F ∈ T W(k) and B ∈ B(k), then B · F ∈ T W(k).
Furthermore, if F , F ′ ∈ T W(k), then F ⊙ F ′ ∈ T W(k). Conversely, the elements of B(k)
generate T W(k) in the following sense:

▶ Lemma 9. Let k ≥ 1. For every F ∈ T W(k), one of the following holds:
1. F = 1,
2. F =

∏
ij∈A Aij · F ′ for some A ⊆

([k]
2

)
and F ′ ∈ T W(k) with less edges than F ,

3. F = J i · F ′ for some i ∈ [k] and F ′ ∈ T W(k) with less vertices than F ,
4. F = F 1 ⊙ F 2 for F 1, F 2 ∈ T W(k) on less vertices than F .

2.3 Recognisability and CMSO2

Recognisability is a property of a class of unlabelled graphs which is shared by most named
graph classes. It is the assumption of Theorem 1 which rules out esoteric graph classes as
constructed in [12, Theorem 1]. We consider the following definition of recognisability.
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1
(a) 1.

1
(b) P .

1
(c) Q.

1
(d) C.

Figure 2 Representatives for ∼1
W and W the class of paths from Example 11.

▶ Definition 10 ([11]). Let k ≥ 1. For class of unlabelled graphs F , define the equivalence
relation ∼k

F on the class of distinctly k-labelled graphs D(k) by letting F 1 ∼k
F F 2 if and only

if for all K ∈ D(k) it holds that

soe(K ⊙ F 1) ∈ F ⇐⇒ soe(K ⊙ F 2) ∈ F .

The class F is k-recognisable if ∼k
F has finitely many equivalence classes. The number of

classes of ∼k
F is the k-recognisability index of F .

To parse Definition 10, first recall that K ⊙F 1 is the k-labelled graph obtained by gluing
K and F 1 together at their labelled vertices. The soe-operator drops the labels yielding
unlabelled graphs. Intuitively, F 1 ∼k

F F 2 iff both or neither of their underlying unlabelled
graphs are in F and the positions of the labels in F 1 and F 2 is equivalent with respect to
membership in F . This intuition is made more concrete in the following example:

▶ Example 11. The class W of all paths is 1-recognisable. Its 1-recognisability index is 4.
The equivalence classes are described by the representatives in Figure 2.

Proof. To show that the labelled graphs in Figure 2 cover all equivalence classes, let F = (F, u)
be arbitrary. If F is not a path, then F ∼1

W C. Indeed, for every K ∈ D(1), F is a subgraph
of soe(K ⊙F ). Hence, regardless of K, both soe(K ⊙F ) and soe(K ⊙C) are not paths. If
F is a path„ then F and 1, P , or Q are equivalent depending on whether the degree of u is
0, 1, or 2.

To show that the representatives in Figure 2 are in distinct classes, observe for example
that soe(P ⊙ P ) ∈ W while soe(P ⊙Q) ̸∈ W, thus P ̸∼1

W Q. Similarly, soe(1 ⊙Q) ∈ W
whereas soe(P ⊙Q) ̸∈ W, thus 1 ̸∼1

W P . ◀

A more involved example is the following. Analogously, one may argue that every class
defined by forbidden minors is recognisable.

▶ Example 12. Let F be the family of H-subgraph-free graphs for some graph H. Then F
is k-recognisable for every k ≥ 1.

Proof. Suppose H has m vertices. For a distinctly k-labelled graph F = (F, u), consider the
set H(F ) of (isomorphism types of) distinctly k-labelled graphs F ′ = (F ′, u) where F ′ is a
subgraph of F such that V (F ′) ⊇ {u1, . . . , uk} has at most k + m vertices. Clearly, there are
only finitely many possible sets H(F ). Furthermore, if H(F 1) = H(F 2), then F 1 ∼k

F F 2.
Indeed, if K ∈ D(k) is such that soe(K ⊙ F 1) contains H as a subgraph, then so does
soe(K ⊙ F 2) since F 1 and F 2 contain the same subgraphs on k + m vertices containing
their labelled vertices. ◀

Courcelle [14] proved that every CMSO2-definable graph class is recognisable, i.e. it is
k-recognisable for every k ∈ N. Conversely, Bojańczyk and Pilipczuk [11] proved that if a
recognisable class F has bounded treewidth, then it is CMSO2-definable. Furthermore, they
conjecture that k-recognisability is a sufficient condition for a graph class of treewidth at
most k − 1 to be CMSO2-definable.

MFCS 2024
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Here, counting monadic second-order logic CMSO2 is the extension of first-order logic
by (1) variables that range over sets of vertices or edges, or over edges, (2) atomic formulas
inc(x, y) which evaluate to true if x is assigned a vertex v and y is assigned an edge e such
that v is incident with e, and (3) atomic formulas cardp,q(X) for integers p, q ∈ N and set
variables X expressing that |X| ≡ p mod q. See [15] for further details.

3 Decidability

As a first step, we show that the problem HomInd(F) is decidable for every k-recognisable
graph class F of treewidth at most k − 1. We do so by establishing a bound on the
maximum size of a graph F ∈ F for which hom(F, G) = hom(F, H) needs to be checked
in order to conclude whether G ≡F H. For a graph class F and ℓ ∈ N, define the class
F≤ℓ := {F ∈ F | |V (F )| ≤ ℓ}.

▶ Theorem 13. Let k ≥ 1. Let F be a graph class of treewidth ≤ k− 1 with k-recognisability
index C. For graphs G and H on at most n vertices, with fk,C(n) := max{k2Cnk

, 2Cnk},

G ≡F H ⇐⇒ G ≡F≤fk,C (n) H.

Fix throughout a graph class F as in Theorem 13. In reminiscence of Courcelle’s theorem,
we let Q denote the set of equivalence classes of ∼k

F , as defined in Definition 10, and call
them states. A state q ∈ Q is accepting if for an (and equivalently, every) F in q it holds
that soe(F ) ∈ F . Write A ⊆ Q for the set of all accepting states.

To every state q ∈ Q, we associate a finite-dimensional vector space spanned by the
homomorphism tensors of the k-labelled graphs F that belong to state q. We show that these
vector spaces certify homomorphism indistinguishability. Using a dimensionality argument,
we show that these vector spaces are spanned by homomorphism tensors of graphs whose
size is bounded by the function f from Theorem 13. To that end, we decompose the labelled
graphs F ∈ T W(k) using the operations considered in Lemma 9.

Formally, we associate to a state q ∈ Q and an integer d ≥ 1 the vector space1

Sd(q) := ⟨{F G ⊕ F H | F ∈ T Wd(k) in state q}⟩ ⊆ RV (G)k∪V (H)k

.

Here, F is a k-labelled graph of bounded treewidth in the state q. The vector F G ⊕ F H :=(
F G

F H

)
∈ RV (G)k∪V (H)k is obtained by stacking the homomorphisms vectors of F w.r.t. G

and H. Since T Wd(k) ⊆ T Wd+1(q), the space Sd(q) is a subspace of Sd+1(q) for every
d ≥ 1. Ultimately, we are interested in S(q) :=

⋃
d≥1 Sd(q), i.e. the vector space spanned by

the homomorphism vectors of all labelled graphs of treewidth ≤ k − 1 in state q.
By the following Lemma 14, the vectors in S(q) for q ∈ A can be used to infer whether

G and H are homomorphism indistinguishable over F . For a labelled graph F ∈ T W(k),
the number 1T

G(F G ⊕ F H) is equal to the number of homomorphisms from the underlying
unlabelled graph of F to G. This observation readily yields the backward implication
in Lemma 14. For the forward implication, observe that the space S(q) is spanned by
homomorphism tensors F G ⊕ F H , which satisfy the assertion by assumption.

▶ Lemma 14. Two graph G and H are homomorphism indistinguishable over F≥k := {F ∈
F | |V (F )| ≥ k} if and only if 1T

Gv = 1T
Hv for every q ∈ A and every v ∈ S(q).

1 Wlog we may suppose that V (G) and V (H) are disjoint.
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Proof. For the forward direction, note that S(q) is spanned by the F G ⊕ F H where F ∈
T W(k) is in state q. Let F in q ∈ A be arbitrary. Then soe(F ) =: F ∈ F≥k and it holds
that 1T

G(F G ⊕ F H) = soe(F G) = hom(F, G) = hom(F, H) = 1T
H(F G ⊕ F H). Conversely,

let F ∈ F≥k be arbitrary. Since tw F ≤ k − 1, by Lemma 6, there exists u ∈ V (F )k

such that F := (F, u) ∈ T W(k). Furthermore, F belongs to some accepting q ∈ Q. Thus,
F G⊕F H ∈ S(q), and hence hom(F, G) = 1T

G(F G⊕F H) = 1T
H(F G⊕F H) = hom(F, H). ◀

By Lemma 8, the space Sd(q) for d ≥ 1 is spanned by homomorphism tensors of graphs
of size max{kd, d}. Thus, Theorem 13 follows once we establish that Sd′(q) = S(q) for all
q ∈ Q and d′ := 2Cnk. This d′ arises as an upper bound on the dimension of the space⊕

q∈Q S(q). The spaces
⊕

q∈Q Sd(q) for d ≥ 1 form a chain of nested subspaces in
⊕

q∈Q S(q).
The following Lemma 15 shows that once this chain becomes stationary, then the maximal
subspace is reached.

▶ Lemma 15. If Sd(q) = Sd+1(q) for d ≥ 1 and all q ∈ Q, then Sd(q) = S(q) for all q ∈ Q.
In particular, S2Cnk (q) = S(q) for all q ∈ Q.

The proof of Lemma 15 relies on the properties of the relation ∼k
F . In particular, it uses

the fact that series composition and gluing, the operations under which T W(k) is generated
by Lemma 9, preserve the relation ∼k

F .

▶ Lemma 16. For F , F ′, F 1, F 2, F ′
1, F ′

2 ∈ D(k), L ∈ D(k, k),
1. if F 1 ∼k

F F ′
1 and F 2 ∼k

F F ′
2, then F 1 ⊙ F 2 ∼k

F F ′
1 ⊙ F ′

2,
2. if F ∼k

F F ′, then L · F ∼k
F L · F ′.

Proof. Let K = (K, u) ∈ D(k) be arbitrary. Then soe((K ⊙ F 1)⊙ F 2) ∈ F ⇔ soe((K ⊙
F 1)⊙ F ′

2) ∈ F ⇔ soe(K ⊙ F ′
1 ⊙ F ′

2) ∈ F .
For a (k, k)-bilabelled graph L = (L, u, v), write L∗ := (L, v, u) for the (k, k)-bilabelled

graph obtained by swapping the in-labels and out-labels. Then soe(K ⊙ (L ·F )) = soe((L∗ ·
K)⊙ F ). Thus the second claim follows from the first. ◀

The algebraic operations on homomorphism tensors corresponding to series composition
and gluing are the matrix-vector product and Schur product. Crucially, these operations are
linear and bilinear, respectively. This allows Lemma 15 to be proven by structural induction
along Lemma 9.

Proof of Lemma 15. We argue that Sd(q) ⊇ Sd+i(q) for all i ≥ 1 by induction on i. The
base case holds by assumption. The space Sd+i+1(q) is spanned by the vectors F G ⊕ F H

where F ∈ T Wd+i+1(k) is in q. For such F , by Lemma 9, there exist A ⊆
([k]

2
)
, L ⊆ [k], and

F ℓ ∈ T Wd+i(k) for ℓ ∈ L such that

F =
∏

ij∈A

Aij ·
⊙
ℓ∈L

J ℓF ℓ.

Let qℓ denote the state of F ℓ. By assumption, there exist Kℓm ∈ T Wd(k) in state qℓ and
αm ∈ R such that F ℓ

G ⊕ F ℓ
H =

∑
αmKℓm

G ⊕Kℓm
H . By Lemma 16,

F ∼k
F

∏
ij∈A

Aij ·
⊙
ℓ∈L

J ℓKℓm

for all m. Thus, F G⊕F H can be written as linear combination of vectors in Sd+i(q) ⊆ Sd(q),
by induction. For the final claim, consider the chain of nested subspaces⊕

q∈Q

S1(q) ⊆
⊕
q∈Q

S2(q) ⊆ · · · ⊆
⊕
q∈Q

S(q).
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By what was just shown, for every d ≥ 1, either
⊕

q∈Q Sd(q) is a proper subspace of⊕
q∈Q Sd+1(q) or

⊕
q∈Q Sd(q) =

⊕
q∈Q S(q). Since the dimension of

⊕
q∈Q S(q) is at most

2Cnk, the chain becomes stationary after at most 2Cnk steps. ◀

This concludes the preparations for the proof of Theorem 13.

Proof of Theorem 13. It suffices to prove the backward implication. Since k ≤ k2Cnk , it
suffices to show that G ≡F≥k

H by verifying the condition in Lemma 14. By Lemma 15,
Sd(q) = S(q) for d := 2Cnk and all q ∈ Q. Hence, S(q) is spanned by the F G ⊕ F H

where F ∈ T Wd(k) is in state q. By Lemma 8, these graphs have at most max{kd, d} =
max{k2Cnk

, 2Cnk} vertices. Thus, 1T
G(F G ⊕ F H) = hom(soe F , G) = hom(soe F , H) =

1T
H(F G ⊕ F H), as desired. ◀

Finally, we adapt the techniques developed so far to prove the following analogue of
Theorem 13 for graph classes of bounded pathwidth. In contrast to Theorem 13, the function
in Theorem 17 bounding the size of the graphs which need to be considered is polynomial.
The proof is deferred to the full version.

▶ Theorem 17. Let k ≥ 1. Let F be a graph class of pathwidth ≤ k− 1 with k-recognisability
index C. For graphs G and H on at most n vertices, with fk,C(n) := 2Cnk + k − 1,

G ≡F H ⇐⇒ G ≡F≤fk,C (n) H.

4 Modular Homomorphism Indistinguishability in Polynomial Time

The insight that yielded Theorem 13 is that the chain of vector spaces S1(q) ⊆ · · · ⊆ Sd(q) ⊆
Sd+1(q) ⊆ . . . reaches a fixed point after polynomially many steps. In this section, we
strengthen this result by showing that bases B(q) for the spaces S(q) can be computed
efficiently. A technical difficulty arising here is that the numbers produced in the process can
be of doubly exponential magnitude. In order to overcome this problem, we first consider
homomorphism indistinguishability modulo primes. See [21, 30], for background on modular
homomorphism indistinguishability.

ModHomInd(F)
Input Graphs G and H, a prime p in binary.
Question Are G and H homomorphism indistinguishable over F modulo p?

▶ Theorem 18. Let k ≥ 1. If F is a k-recognisable graph class of treewidth ≤ k − 1, then
ModHomInd(F) is in polynomial time.

The algorithm yielding Theorem 18 is formally stated as Algorithm 1. The idea is to
iteratively compute bases B(q) for the spaces

S(q) := ⟨{F G ⊕ F H | F ∈ T W(k) in state q}⟩ ⊆ FV (G)k∪V (H)k

p .

Initially, all B(q) are empty. Only B(q0) where q0 is the state of 1 ∈ T W(k) from Figure 1a
contains the homomorphism vector 1G ⊕ 1H . Subsequently, the operations from Lemma 9
are applied to compute new homomorphism vectors. For every new vector belonging to
state q, it is checked whether it is a linear combination of the already computed basis vectors
in B(q). If not, it is added to B(q). Analogous to Lemma 15, this process reaches a fixed
point after a polynomial number of iterations. At this point, the computed B(q) are bases
for the S(q). Finally, Lemma 14 can be invoked to conclude whether the input graphs are
homomorphism indistinguishable over F modulo p.
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Algorithm 1 is supplied with a hard-coded description of the graph class F . To that
end, consider the following objects. Write π : T W(k)→ Q for the map that associates an
F ∈ T W(k) to its state q ∈ Q. Write q0 for the state of 1 ∈ T W(k). Furthermore, write
g : Q×Q→ Q and bB : Q→ Q for every B ∈ B(k) such that

g(π(F ), π(F ′)) = π(F ⊙ F ′), (1)
bB(π(F )) = π(B · F ). (2)

for every F , F ′ ∈ T W(k) and B ∈ B(k). Note that Q, A, g, q0 and the bB, B ∈ B(k), are
finite objects, which can be hard-coded. The map π does not need to be computable and is
only needed for analysing the algorithm.

Algorithm 1 ModHomInd(F) for k-recognisable F of treewidth ≤ k − 1.

Input: graphs G and H, a prime p in binary.
Data: k, Q, A, q0, g, bB for B ∈ B(k).
Output: whether G ≡p

F H.
1 With brute force check whether G and H are homomorphism indistinguishable over

the finite graph class F≤k modulo p and reject if not;
2 B(q0)← {1G ⊕ 1H} ⊆ FV (G)k∪V (H)k

p ;
3 B(q)← ∅ ⊆ FV (G)k∪V (H)k

p for all q ̸= q0;
4 repeat
5 foreach B ∈ B(k), q ∈ Q, v ∈ B(q) do
6 w ← (BG ⊕BH)v :=

(
BG 0

0 BH

)
v;

7 if w ̸∈ ⟨B(bB(q))⟩ then
8 add w to B(bB(q));
9 foreach q1, q2 ∈ Q, v1 ∈ B(q1), v2 ∈ B(q2) do

10 w ← v1 ⊙ v2;
11 if w ̸∈ ⟨B(g(q1, q2))⟩ then
12 add w to B(g(q1, q2));
13 until none of the B(q), q ∈ Q, are updated;
14 if 1T

Gv = 1T
Hv for all q ∈ A and v ∈ B(q) then

15 accept;
16 else
17 reject;

▶ Lemma 19. Write n := max{|V (G)|, |V (H)|} and C := |Q|. There exists a computable
function f such that Algorithm 1 runs in time f(k, C)nO(k)(log p)O(1).

Proof. Consider the following individual runtimes: Counting homomorphisms of a graph on
k vertices into a graph on n vertices, can be done in time O(nk). Hence Line 1 requires time
f(k)nk for some computable function f .

Throughout the execution of Algorithm 1, the vectors in each B(q), q ∈ Q, are linearly
independent. Thus, |B(q)| ≤ dim S(q) ≤ 2nk and

∑
q∈Q |B(q)| ≤ 2Cnk. Hence, the body of

the loop in Line 1 is entered at most 2Cnk many times.
The loop in Line 1 iterates over at most k2 ·C · 2nk many objects. Computing the vector

w takes polynomial time in 2nk · log p. The same holds for checking the condition in Line 1,
e.g. via Gaussian elimination. The loop in Line 1 iterates over at most C2 · (2nk)2 many
objects. Finally, checking the condition in Line 1 takes C · 2nk · (log p)O(1) many steps. ◀
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The following Lemma 20 implies that Algorithm 1 is correct.

▶ Lemma 20. When Algorithm 1 terminates, B(q) spans S(q) for all q ∈ Q.

Proof. First observe that the invariant B(q) ⊆ S(q) for all q ∈ Q is preserved throughout
Algorithm 1. Indeed, for example in Line 1, since v ∈ B(q) ⊆ S(q), it can be written as
linear combination of F G ⊕ F H for F ∈ T W(k) of state q. Because B · F is in state bB(q)
by Equation (2), (BG ⊕BH)v is in the span of BGF G ⊕BHF H ∈ S(bB(q)).

Now consider the converse inclusion. The proof is by induction on the structure in
Lemma 9. By initialisation, 1G ⊕ 1H is in the span of B(q0).

For the inductive step, suppose that F ∈ T W(k) of state q ∈ Q is such that F G ⊕F H =∑
v∈B(q) αvv for some coefficients αv ∈ Fp. Let B ∈ B(k) and F ′ := B · F . Then

(BG⊕BH)v is in the span of B(bB(q)) for all v ∈ B(q) by the termination condition. Hence,
F ′

G ⊕ F ′
H =

∑
v∈B(q) αv(BG ⊕BH)v is in the span of B(bB(q)).

Let F 1, F 2 ∈ T W(k) of states q1, q2 ∈ Q be such that F 1
G ⊕ F 1

H =
∑

v∈B(q1) αvv

and F 2
G ⊕ F 2

H =
∑

w∈B(q2) βww for some coefficients αv, βw ∈ Fp. Since the algorithm
terminated, all v ⊙ w for v ∈ B(q1) and w ∈ B(q2) are in the span of B(g(q1, q2)). Then
(F 1 ⊙ F 2)G ⊕ (F 1 ⊙ F 2)H = (F 1

G ⊕ F 1
H)⊙ (F 2

G ⊕ F 2
H) =

∑
v∈B(q1),w∈B(q2) αvβw(v ⊙w) is

in the span of B(g(q1, q2)). ◀

This concludes the preparations for the proof of Theorem 18:

Proof of Theorem 18. Lemma 20 implies that the conditions in Lemma 14 and Line 1 are
equivalent. Thus, G and H are homomorphism indistinguishable over F≥k modulo p if and
only if the condition in Line 1 holds. The runtime bound is given in Lemma 19. ◀

5 Randomised Polynomial Time

In this section, we give a randomised polynomial-time reduction from HomInd(F) to
ModHomInd(F). Thereby, we prove Theorems 1 and 2. Theorems 13 and 17 give bounds
N on the size of the largest graph in F which needs to be considered in order to conclude
whether two graphs on at most n vertices are homomorphism indistinguishable over F . A
graph on at most N vertices may have at most nN homomorphisms to a graph on n vertices.
Thus, for graphs on at most n vertices, homomorphism indistinguishability over F is the
same as homomorphism indistinguishability over F modulo any number greater than nN .
Equipped with the following Lemma 21, which is derived from the Chinese Remainder
Theorem and the Prime Number Theorem, we show Theorems 1 and 2. Let log denote the
logarithm to base 2.

▶ Lemma 21. Let N, n ∈ N be such that N log n ≥ e2000. Let F be a graph class and G and
H be graphs on at most n vertices. If G ̸≡F≤N

H then the probability that a random prime
N log n < p ≤ (N log n)2 is such that G ≡p

F≤N
H is at most 2

N log n .

For graph classes of bounded pathwidth, the bound on N from Theorem 17 is polynomial
in n. Thus, one can enumerate all primes N log n < p ≤ (N log n)2 in polynomial time and
invoke ModHomInd(F).

▶ Theorem 2. Let k ≥ 1. If F is a k-recognisable class of graphs of pathwidth at most k− 1,
then HomInd(F) is in polynomial time.
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For graph classes of bounded treewidth, the bound on N from Theorem 13 is exponential
in n. The randomised algorithm yielding Theorem 1 stated in the full version samples primes
of polynomial size and invokes ModHomInd(F). Lemma 21 implies that a random prime p

of appropriate size certifies that G ̸≡F H with high probability. This yields Theorem 1:

▶ Theorem 1. Let k ≥ 1. If F is a k-recognisable class of graphs of treewidth at most k − 1,
then HomInd(F) is in coRP.

6 Fixed-Parameter Tractability

In this section, we deduce Theorem 3 from Theorem 1. The challenge is to efficiently compute
the data describing the graph class Fφ,k for Algorithm 1 from the CMSO2-sentence φ and k.
That this can be done was proven by Courcelle [15]. More precisely, Courcelle proved that
for every CMSO2-sentence φ and integer k one can compute a finite automaton processing
expressions which encode (tree decompositions of) graphs of bounded treewidth. It is this
automaton from which the data required by Algorithm 1 can be constructed.

▶ Theorem 3. There exists a computable function f : N→ N and a randomised algorithm
for HomInd of runtime f(|φ| + k)nO(k) for n := max{|V (G)|, |V (H)|} which accepts all
YES-instances and accepts NO-instances with probability less than one half.

For graph classes of bounded pathwidth, the analogous problem can be decided determin-
istically in the same time, cf. the full version.

7 Lasserre in Polynomial Time

By phrasing graph isomorphism as an integer program, heuristics from integer programming
can be used to attempt to solve graph isomorphism. Prominent heuristics are the Sherali–
Adams linear programming hierarchy and the Lasserre semidefinite programming hierarchy.
While the (approximate) feasibility of each level of these hierarchies can be decided efficiently,
it is known that a linear number of levels is required to decide graph isomorphism for all
graphs [4, 27, 38].

In [38], for each t ≥ 1, feasibility of the t-th level of the Lasserre hierarchy was characterised
as homomorphism indistinguishability relation over the graph class Lt which was constructed
in the same paper. Moreover, the authors asked whether there is a polynomial-time algorithm
for deciding these relations. In this section, we give a randomised algorithm for this problem
which is polynomial-time for every level.

The Lasserre semidefinite program can be solved approximately in polynomial time using
e.g. the ellipsoid method. How to decide exact feasibility is generally unknown [2]. Since the
graph class Lt is a minor-closed and of treewidth at most 3t− 1, Theorem 1 immediately
yields a randomised polynomial-time algorithm for each level of the hierarchy. However,
it is not clear how to compute the data describing Lt given t. The following Theorem 22
overcomes this problem by making the dependence on the parameter t effective:

▶ Theorem 22. There exists a computable function f : N→ N and a randomised algorithm
deciding given graphs G and H on at most n vertices and an integer t ≥ 1 whether the
level-t Lasserre relaxation of the integer program for G ∼= H has an exact solution. This
algorithm always runs in time f(t)nO(t), accepts all YES-instances and accepts NO-instances
with probability less than one half.
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8 Lower Bounds

In this final section, we establish two hardness results for the problem HomInd. In both
cases, we show hardness for families of minor-closed graph classes. The approaches are
orthogonal in the sense that the reduction yielding coNP-hardness in Theorem 5 is from a
fixed-parameter tractable problem while the reduction yielding coW[1]-hardness in Theorem 4
is not polynomial-time.

coNP-Hardness. The first hardness result concerns deciding whether two graphs are indis-
tinguishable under the k-dimensional Weisfeiler–Leman algorithm when k is part of the input.
By [20, 13, 19], k-WL indistinguishability coincides with homomorphism indistinguishability
over the class of graphs of treewidth at most k. Hence, the problem in Theorem 5 is clearly a
special case of HomInd, i.e. with φ set to true. Thus, when disregarding the parametrisation,
HomInd is coNP-hard under polynomial-time many-one reductions. We obtain Theorem 5
by reducing the NP-complete problem of deciding whether a graph of bounded degree has
treewidth ≤ k [10]. The reduction is based on the ubiquitous CFI construction [13].

▶ Theorem 5. The problem of deciding given graphs G and H and an integer k ∈ N
whether G and H are k-WL indistinguishable is coNP-hard under polynomial-time many-one
reductions.

Towards the proof of Theorem 5, we recall the following version of the classical CFI
graphs [13] from [37]. Let G be a connected graph and U : V (G)→ Z2 a function from G to
the group on two elements Z2. For a vertex v ∈ V (G), write E(v) ⊆ E(G) for the set of edges
incident to v. The graph GU has vertices (v, S) for every v ∈ V (G) and S : E(v)→ Z2 such
that

∑
e∈E(v) S(e) = U(v). Two vertices (u, S) and (v, T ) are adjacent in GU if uv ∈ E(G)

and S(uv) + T (uv) = 0. Note that |V (GU )| =
∑

v∈V (G) 2deg(v)−1. By [37, Lemma 3.2], if∑
v∈V (G) U(v) =

∑
v∈V (G) U ′(v) for U, U ′ : V (G)→ Z2, then GU

∼= GU ′ . We may thus write
G0 and G1 for the even and the odd CFI graph of G. We recall the following properties:

▶ Lemma 23 ([37, Corollary 3.7]). Let G be a connected graph and U : V (G)→ Z2. Then
the following are equivalent:
1. G0 ∼= GU ,
2.

∑
v∈V (G) U(v) = 0,

3. hom(G, G0) = hom(G, GU ).

Proof of Theorem 5. For a graph G, write ∆(G) for its maximum vertex degree. The
following problem is NP-complete by [10, Theorem 11]:

BoundedDegreeTreewidth
Input a graph G with ∆(G) ≤ 9, an integer k

Question Is tw G ≤ k?

By deleting isolated vertices, we may suppose that every connected component of G

contains at least two vertices. If G has multiple connected components, take one vertex from
each component and connect them in a pathlike fashion. This increases the maximum degree
potentially by one but makes the graph connected. The treewidth is invariant under this
operation. Thus, we may suppose that G is connected and ∆(G) ≤ 10.

Given such an instance, we produce the instance (G0, G1, k) of WL, i.e. the decision
problem in Theorem 5. Here, G0 and G1 are the even and odd CFI graphs of G.
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Then G0 and G1 are k-WL indistinguishable if and only if tw G ≥ k + 1. Indeed, by
[13, 20] and [36, Lemma 4.4], since G is connected, if tw G ≥ k +1, then G0 and G1 are k-WL
indistinguishable. Conversely, if tw G < k + 1, then G0 and G1 are distinguished by k-WL
since hom(G, G0) ̸= hom(G, G1) by Lemma 23 and [20]. Hence, (G, k) is a YES-instance of
BoundedDegreeTreewidth if and only if (G0, G1, k) is a NO-instance of WL. The graphs
G0 and G1 are of size

∑
v∈V (G) 2deg(v)−1 ≤ 29n, which is polynomial in the input. ◀

coW[1]-Hardness. The second hardness result concerns HomInd as a parametrised problem.
Write G≤k for the class of all graphs on at most k vertices and consider the following problem:

HomIndSize
Input Graphs G and H, an integer k ≥ 1.
Parameter k.
Question Are G and H homomorphism indistinguishable over the class G≤k?

The problem HomIndSize fixed-parameter reduces to HomInd. To that end, consider
the first-order formula φk := ∃x1 . . . ∃xk∀y

∨k
i=1(y = xi) for k ∈ N. Then, a graph models φk

if and only if it has at most k vertices. Furthermore, |φk| = O(k). Hence, transforming the
instance (G, H, k) of HomIndSize to the instance (G, H, φk, k − 1) of HomInd gives the
desired reduction. Since |φk|+ k = O(k), Theorem 24 implies Theorem 4.

▶ Theorem 24. HomIndSize is coW[1]-hard under fpt-reductions. Unless ETH fails, there
is no algorithm for HomIndSize that runs in time f(k)no(k) for any computable function
f : N→ N.

Proof. The proof is by reduction from the parametrised clique problem Clique, which is
well-known to be W[1]-complete and which does not admit an f(k)no(k)-time algorithm for
any computable function f unless ETH fails [16, Theorems 13.25, 14.21].

Let K denote the k-vertex complete graph and K0 and K1 the even and odd CFI
graphs of K. We first observe that K0 ≡G≤k\{K} K1. Indeed, by [37, Theorem 3.13], for
every graph F , hom(F, K0) ̸= hom(F, K1) if and only if there exists a weak oddomorphism
h : F → K as defined in [37, Definition 3.9]. By definition, a weak oddomorphism is a
homomorphism which is surjective on edges and vertices, i.e. for every uv ∈ E(K) there
exists u′v′ ∈ E(F ) such that h(u′v′) = uv. Hence, if hom(F, K0) ̸= hom(F, K1), then F has
at least k vertices and

(
k
2
)

edges. The only graph in G≤k matching this description is K.
The reduction produces given the instance (G, k) of Clique the instance (G×K0, G×

K1, k) of HomIndSize where K is the k-vertex clique and × denotes the categorical product
(also known as tensor product) of two graphs. Producing this instance is fixed-parameter
tractable. Furthermore, the parameter k is not affected by this reduction. For correctness,
consider the following argument.

If G×K0 ≡G≤k
G×K1, then hom(K, G) = 0. Indeed, by assumption and [33, (5.30)],

hom(K, G) hom(K, K0) = hom(K, G ×K0) = hom(K, G ×K1) = hom(K, G) hom(K, K1).
However, hom(K, K0) ̸= hom(K, K1) by Lemma 23, and thus hom(K, G) = 0.

Conversely, it holds that K0 ≡G≤k\{K} K1 and hence also G×K0 ≡G≤k\{K} G×K1 by
the initial observation and [33, (5.30)]. Since hom(K, G) = 0, also G×K0 ≡G≤k

G×K1. ◀

MFCS 2024
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9 A Trichotomy for Homomorphism Indistinguishability?

Theorem 1, our central result, asserts that deciding homomorphism indistinguishability is
tractable over every recognisable graph class of bounded treewidth. In particular, Theorem 1
shows that HomInd(F) is tractable for every minor-closed graph class of bounded treewidth.
Notably, this result does not rely on reformulations of homomorphism indistinguishability
relations in terms of logic etc. but operates with the homomorphism counts themselves.

A reasonable next step is to combine Theorem 1 with a hardness result. To that end, we
propose the following working hypothesis:

▶ Conjecture 25. Let F be a minor-closed graph class.
1. If F is the class of all graphs, then HomInd(F) is graph isomorphism.
2. If F has bounded treewidth, then HomInd(F) is in polynomial time.
3. If F is proper and has unbounded treewidth, then HomInd(F) is undecidable.

The first assertion is implied by [32]. The second assertions amounts to derandomising
Theorem 1 and is predicted by the complexity-theoretic hypothesis P = BPP. The third
assertion is wide open: The only minor-closed graph class F for which HomInd(F) is known
to be undecidable, is the class P of planar graphs, as shown by Mančinska and Roberson [34].
Conjecture 25 is inspired by this example and a result from graph minor theory [39] which
asserts that every minor-closed graph class is either of bounded treewidth or contains all
planar graphs. Intuitively, HomInd(P) is undecidable since the problem amounts to solving
an infinite-dimensional system of equations. Roughly speaking, the dimension corresponds
to the number of labels needed to generate all planar graphs under operations like series
composition. Theorem 1 makes the other direction of this vague argument precise: We
show that if the number of labels is bounded (e.g. the graph class has bounded treewidth),
then considering finite-dimensional spaces suffices, rendering the problem tractable. That
treewidth might be the right parameter in Conjecture 25 is also suggested by the complexity
dichotomy for counting homomorphisms [17].

Conjecture 25 implies a weak version of Roberson’s conjecture [37, Conjecture 5] asserting
that ≡F is not the isomorphism relation ∼= for every proper minor-closed graph class F .
Towards Conjecture 25, one could devise reductions between HomInd(F1) and HomInd(F2)
for distinct minor-closed graph classes F1 and F2. We are not aware of any such reduction.

Another pathway to Conjecture 25 is suggested by Theorems 13 and 17: Instead of
proving hardness of the problem HomInd(F), one may attempt to give lower bounds on any
function2 f : N→ N such that G ≡F H if and only if G ≡F≤f(n) H for all graphs G and H

on at most n vertices. This problem is purely combinatorial and avoids the intricacies of
computation. Theorems 13 and 17 give such functions for every recognisable graph class of
bounded treewidth. By [32], for the class G of all graphs, f can be taken to be the identity
n 7→ n. By [34], there exists no such function for the class P of all planar graphs which is
computable. Conjecture 25 implies that no such function is computable for any minor-closed
graph class of unbounded treewidth.

▶ Question 26. For a graph class F , what is the least function f : N→ N such that

G ≡F H ⇐⇒ G ≡F≤f(n) H

for all graphs G and H on at most n vertices?

2 Such a function always exists since there are only finitely many equivalences classes of ≡F on graphs on
most n vertices, each pair of which is distinguished by homomorphism counts from a single graph F ∈ F .
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Leakage-Resilient Hardness Equivalence to
Logspace Derandomization
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Abstract
Efficient derandomization has long been a goal in complexity theory, and a major recent result by
Yanyi Liu and Rafael Pass identifies a new class of hardness assumption under which it is possible
to perform time-bounded derandomization efficiently: that of “leakage-resilient hardness.” They
identify a specific form of this assumption which is equivalent to prP “ prBPP.

In this paper, we pursue an equivalence to derandomization of prBP¨L (logspace promise problems
with two-way randomness) through techniques analogous to Liu and Pass.

We are able to obtain an equivalence between a similar “leakage-resilient hardness” assumption
and a slightly stronger statement than derandomization of prBP¨L, that of finding “non-no” instances
of “promise search problems.”

2012 ACM Subject Classification Theory of computation Ñ Pseudorandomness and derandomiza-
tion; Theory of computation Ñ Complexity classes

Keywords and phrases Derandomization, logspace computation, leakage-resilient hardness, psuedo-
random generators

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.83

Related Version Full Version: https://arxiv.org/abs/2312.14023 [12]

Funding Funded by Chris Umans’ Simons Investigator Grant and Dr. Arjun Bansal and Ms. Ria
Langheim’s donation through the California Institute of Technology’s “Summer Undergraduate
Research Fellowship” (SURF) program.

Acknowledgements Most of all, I’d like to thank Professor Chris Umans at Caltech for providing
guidance and suggestions throughout this project, helping me find ways forward when I was stuck,
and providing references to relevant resources. I’m also very grateful to Winter Pearson, member of
the undergraduate class of 2024 at Caltech, for helping with copy-editing and proofreading.

1 Introduction

In a time-bounded setting, pseudorandom generators have historically been used to show
that certain circuit-complexity lower bounds imply that P “ BPP (in particular, problems
in E which require exponential size circuits [5]). Another key result showed that P “ BPP
(and specifically, a deterministic polynomial-time algorithm for polynomial identity testing)
implies that either NEXP requires super-polynomial boolean circuits or computing permanents
requires super-polynomial arithmetic circuits [6]. However, historically the lower bounds
known to imply P “ BPP and those implied by P “ BPP have not matched. Seeing these
results, one might hope to find a hardness assumption H such that

“P “ BPP if and only if there exists a problem satisfying H.”

A recent exciting paper, “Leakage-Resilient Hardness v.s. Randomness” [8] by Liu
and Pass, has done exactly this, building on prior work by Chen and Tell [2]; Nisan and
Wigderson [9]; Impagliazzo and Wigderson [5]; Sudan, Trevisan, and Vadhan [13]; and

1 Research conducted as a student at the California Institute of Technology.
© Yakov Shalunov;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 83; pp. 83:1–83:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yasha@uchicago.edu
https://orcid.org/0009-0005-3865-4872
https://doi.org/10.4230/LIPIcs.MFCS.2024.83
https://arxiv.org/abs/2312.14023
https://arxiv.org/abs/2312.14023
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


83:2 Leakage-Resilient Hardness Equivalence to Logspace Derandomization

Goldreich [4]. Liu and Pass found an alternate form of hardness assumption which they were
able to formulate as equivalent to prP “ prBPP using a cryptographic notion of “leakage-
resilient hard functions” [11] – i.e., hard functions which are still uniformly hard even if you
have some “leaked” information about the output (formalized as a “leakage function” of
bounded output length taking the hard function’s output as an input).

In the space-bounded derandomization setting, there’s been an enormous effort to prove
unconditionally that L “ BPL, and while it’s believed that there’s no obstruction to being
able to do so, this goal continues to remain elusive. However, it is also known that it is
possible to get a conditional derandomization in logarithmic space with PRG machinery
similar to the time-bounded randomization setting [7].

1.1 Overview
In the vein of conditional derandomization, this paper constructs a result similar to Liu
and Pass for logarithmic space-bounded computation. We obtain an equivalence utilizing a
space-bounded analog to the time-bounded assumption in Liu and Pass’s paper.

Liu and Pass’s ideas do not carry directly to the space-bounded setting because certain
manipulations required by the proof cannot be carried out in logspace. In particular:

Worst-case vs. average-case hardness. A key step in the Liu and Pass proof that “hardness
implies derandomization” uses error-correcting codes to convert worst-case hardness to
average-case hardness. In the space-bounded setting, we do not have access to error-
correcting codes capable of list-decoding the available 1

2 ` O
` 1

n

˘

fraction of correct bits.
As a consequence, our version of leakage-resilient hardness is average case instead of worst
case. Using a stronger hardness assumption then required additional work in the converse
direction.

Average-case hardness. When analyzing the constructed Nisan-Wigderson generator in
the standard way, Liu and Pass use rejection sampling to find a prefix fixing for Yao’s
distingiusher-to-predictor transformation with a sublinear number of trials. However, in the
space-bounded setting, we cannot write down a single fixing (since the size of the fixing is
superlogarithmic), so our hardness assumption must be strengthened until even a linearly
small chance of having the correct fixing contradicts the hardness assumption. This version
then allows us to sample once and write it directly to the output tape without verification.

Search problem reduction. When Liu and Pass prove that prP “ prBPP implies their
hardness assumption, they rely on a prior result by Goldreich to reduce the task of finding
a non-no solution for a prBPP search problem to a polynomial number of prBPP decision
problems [4], which can then be solved deterministically by assumption. In the space-bounded
setting, we’ve found no equivalent transformation and, as a result, our main theorem works
directly with the non-standard derandomization of search problems (which in polynomial
time is equivalent to prP “ prBPP). Specifically, we use a “one-sided search” which, given a
“promise search problem,” finds a solution which is not a no-instance (these terms are more
precisely defined in the following section).

Nevertheless, we are able to obtain:

▶ Theorem 1.1 (Main Theorem (informal)). There is a logspace-computable function which
is leakage-resilient hard if and only if it is possible, in logspace, to deterministically solve a
one-sided search for any prBP¨L search problem.
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This shows a meaningful equivalence between a hardness assumption and a derandomization
of a search version of prBP¨L. Notably, the derandomization necessary follows from the
existence of a standard pseudorandom generator construction powerful enough to derandomize
prBP¨L.

Shortly after the original release of this paper as a preprint, Pass and Renard released
their own, independent result “Characterizing the Power of (Persistent) Randomness in
Log-space” [10] which presents a theorem very similar to our own – their result is a full
derandomization of prBP¨L search problems under a roughly equivalent condition. Their
techniques in both directions are analogous to ours and their result is fundamentally similar.

In particular, despite presenting their result differently, Pass and Renard’s work demon-
strates the same one-sided search as ours. While their derandomization direction (claims 5.3,
4.12, 4.9, and 4.10 in [10]) relies on a non-promise version of BP¨L search problems (where
non-no instances are yes instances), their hardness direction relies on promise search like
ours. (Notably, Goldreich’s reduction in polynomial time also produces non-no instances
rather than yes instances, suggesting this is a more fundamental limit of this formulation
of search problems.) Unfortunately, this produces a mismatch that makes their results not
quite correct-as-written.

Pass and Renard’s paper further contributes a “partial derandomization” analogous to
Liu and Pass’s low-end regime (i.e. for positive γ, containment of searchBP¨L in searchL1`γ is
equivalent to existence of Oplog1`γ nq computable hard f). Though we believe it contains the
same mismatch of directions, after some simple reformatting into a one-sided derandomization,
it will be an elegant extension to the equivalence.

We believe our proof of the key equivalence is more direct, briefer, and clearer as it, in
particular, achieves equivalence without the use of Doron and Tell’s [3] recent results in
logspace PRGs (with no significant increase in complexity) by using a better suited version
of leakage resilient hardness. Their result does, however, show that our versions of leakage
resilient hardness are equivalent to each other.

Because our result follows a similar path to Liu and Pass’s, in Section 2 we provide an
accessible summary and informal description of the key ideas in their result.

In Section 3, we provide a formal statement of our result and the definitions necessary
for it.

In Sections 4 and 5, we prove the forward and reverse directions of the claim respectively,
and in Section 6 we discuss potential further work.

2 Informal description of Liu and Pass’s polynomial-time equivalence
result

In this section, we provide a high-level summary of Liu and Pass’s proof, which also serves
as an outline for our own work.

Since it is central to the proof, we start with the definition of “leakage-resilient hardness,”
which is a uniform hardness assumption coined by Rivest and Shamir in 1985 [11] and
modified by Liu and Pass based on Chen and Tell’s [2] work with almost-all input hardness.

In the proof, leakage is used to uniformly substitute for non-uniform hard-coded bits in
the proof of correctness of the Nisan-Wigderson generator, which we expand on later in the
section.

▶ Definition 2.1 (Almost-all input leakage-resilient hardness [8][11][2]). Let f : t0, 1u
n

Ñ

t0, 1u
n be a function. We say that f is almost-all-input pT, ℓq-leakage-resilient hard if for all

T -time probabilistic algorithms pleak, Aq satisfying |leakpx, fpxqq| ď ℓp|x|q, for all sufficiently
long strings x, Apx, leakpx, fpxqqq ‰ fpxq with probability at least 2

3 .
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To illustrate this property, consider when f is the classical example of a (potentially) hard
function used in cryptography: prime factorization of a product, x, of two primes. Given
fpxq (a correct factorization of x), a leakage function leakpx, fpxqq which picks the smaller
prime number from fpxq and leaks it would make prime factorization “easy” as it would
allow the attacker A to simply be a division algorithm. Since both division and identifying
the smaller factor can be done in polynomial (say, nk) time, and the smaller factor must be
at most n{2 bits, prime factorization is not pnk, n{2q-leakage-resilient hard – even if, without
leakage, it requires superpolynomial time.

The simplest expression of Liu and Pass’s result as relevant to ours is the following:

▶ Theorem 2.2 (Liu and Pass [8]). There exists a constant c such that for all ε P p0, 1q, the
following are equivalent:

There exists a function f : t0, 1u
n

Ñ t0, 1u
n, computable in deterministic polynomial time,

which is almost-all input pnc, nεq-leakage-resilient hard; and
prP “ prBPP.

2.1 Forward direction (Liu and Pass)

Liu and Pass’s forward direction – hardness assumption to prP “ prBPP – adapts the original
proof that the Nisan-Wigderson pseudorandom generator (NW PRG) yields derandomization,
with a few key differences. The generator they construct (invented by Goldreich [4]) is
“targeted,” meaning both it and the distinguishers it beats get access to a “target” string as
an input in addition to the seed. When performing derandomization using the generator, the
appropriately padded input becomes the target. (The utility of this is explained at the end
of this subsection.)

Their construction of a NW-like PRG uses the error-correcting encoded output of the
leakage-resilient hard function f on the “target” x instead of the standard hard-coded truth
table of a non-uniformly hard function. (In our proof, the error-correcting encoding step is
replaced with average-case hardness.)

Recall that in the standard proof of correctness for a Nisan-Wigderson pseudorandom
generator, when converting a distinguisher to a predictor, there is a step where a prefix is
fixed and a small table of a subset of outputs from the hard truth-table is hard-coded. The
key difference here is that, in order to obtain a contradiction, instead of hard-coding this
prefix and table non-uniformly, it is instead computed by the leak function, which has access
to the hard truth-table (since it is efficiently computed from the output of f , which leak has
access to). The prefixes are found by rejection sampling to pick a “good one.” (In our proof,
we select one randomly.) This output can be made polynomially small compared to n to
satisfy the length bound ℓ on leak.

The final step of the proof is to argue that if there is a problem in prBPP that cannot
be derandomized by this PRG, we can turn this into a distinguisher by fixing the problem.
Observe, however, that for a contradiction, we need derandomization to fail in infinitely
many cases (since the hardness assumption is almost-all input). Furthermore, we are only
fooling uniform distinguishers. This is where the targeting of the PRG is necessary.

By using (a padded version of) the input to the decision problem, x, as the target, we
ensure that we can uniformly “find” the infinitely many values of x where the distinguisher
succeeds. If the PRG were untargeted, we would have no way to uniformly identify which
value of x the PRG fails on for a given length, so failing to derandomize some decision
problem would not guarantee a distinguisher.
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(In our proof, we additionally perform a one-sided search derandomization. The search
problem’s search algorithm (the “finder”) is run a with pseudorandom string generated for
each possible seed until one is found which the verifier accepts. We show that such a seed
must exist and that this process produces the desired derandomization. In the polynomial
time regime, this one-sided search derandomization follows from decision derandomization
directly without further access to a PRG and so happens on the converse side.)

2.2 Backward direction (Liu and Pass)
The key idea of the backward direction – prP “ prBPP to hardness assumption – is that,
if we were able to assign a “random” string to each input, we could build such an f since
leaking some information about that random string would not help you reconstruct the rest
of the output.

Liu and Pass make use of a result by Goldreich [4] which states that finding non-no
solutions to a prBPP search problem can be reduced to a polynomial number of prBPP
decision problems. Liu and Pass then formulate finding a “good output” fpxq for any given
input x as a prBPP search problem (defined below). They then apply Goldreich’s result and
then the derandomization assumption to create a hard function whose output is deterministic
but behaves sufficiently like a “random string” would.

In Goldreich’s formulation, a prBPP search problem is defined as follows:

▶ Definition 2.3 (prBPP search problems [4]). RYES, RNO Ď t0, 1u
˚

ˆ t0, 1u
˚ where RYES X

RNO “ ∅ represent a prBPP search problem if both of the following hold:
RYES and RNO represent a prBPP decision problem. I.e., there is a PPT machine V (the
“verifier”) such that

@px, yq P RYES, PrV px, yq “ 1s ě
2
3 and @px, yq P RNO, PrV px, yq “ 0s ě

2
3

There exists a PPT machine F (the “finder”) such that for all x, if Dy, px, yq P RYES,
then

Prpx, F pxqq P RYESs ě
2
3

Let SR “ tx : Dy, px, yq P RYESu be the set of inputs for which a solution exists.

Liu and Pass formulate computing f as finding solutions to a search problem. A given pair
px, yq is a yes-instance of the problem if every pair pA, leakq of attacker and leakage functions
whose program descriptions have length at most log n and which run in the desired time
bound has Apx, leakpx, yqq “ y with probability at most 1{6. Similarly, px, yq is a no-instance
if there exists pA, leakq such that Apx, leakpx, yqq “ y with probability at least 1{3. (The gap
between yes- and no-instance probabilities is allowed by it being a promise search problem
and is used by the verifier.)

Only attacker pairs bounded to length 2 log n need to be considered because this only
excludes any particular machine from consideration for a finite number of inputs x.

When allowed to use randomness, the finder is simple – as established, simply ignoring x

and picking a random string y works with high probability. The verifier can check whether
a yes-or-no instance is a yes-instance by simply iterating over all attackers and leakage
functions up to length log n (truncating their run time to the required bound) and checking
whether any of them compute y with probability greater than 1{4. This runs in polynomial
time since there are n machines each truncated to a polynomial time bound and each pair
only needs to be run polynomially many times to be correct with high probability.
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The desired hard function can then be computed by using Goldreich’s reduction to reduce
the search problem to a polynomial number of prBPP problems. These are then derandomized
to deterministically produce a non-no instance. The y-component of the resulting non-no
instance is then exactly the desired hard output, by the construction of the search problem.

(In our case, we need access to the PRG rather than merely prL “ prBP¨L to perform the
one-sided search, so it is performed when proving the forward direction.)

3 Results

▶ Theorem 3.1 (Main theorem). There exist parameters c1, c2, α ą 0 (in particular, α “ 1
3

works) such that the following are equivalent:
1. There exists a logspace function f which is almost-all-input pnc1 , c2 log n, ℓ, δq-leakage-

resilient average hard where ℓ “ nε (for ε “ 2α` α3

5 ) and δ “
` 1

2 ´ 1
m2

˘

n (for m “ nα3
{5).

2. For any prBP¨L search problem RYES, RNO, we can create a deterministic algorithm F 1

such that for any x P SR, we have that px, F 1pxqq R RNO. (In particular, this implies
prBP¨L “ prL.)

Proof. The forward direction is theorem 4.1 and the reverse direction is theorem 5.1. ◀

3.1 Preliminaries
Note that we are working with a read-only random tape with two-way movement. For
decision problems, this definition corresponds to the complexity class BP¨L, though we work
with its promise and search promise counterparts.

Our result is formulated in terms of “search problems,” analogous to the prBPP search
problems defined by Goldreich in [4].

▶ Definition 3.2 (prBP¨L search problems). A pair of sets RYES, RNO Ď t0, 1u
˚

ˆ t0, 1u
˚

where RYES X RNO “ ∅ represent a prBP¨L search problem if both of the following hold
RYES and RNO represent a prBP¨L decision problem. I.e., there is a PPT logspace machine
V (the “verifier”) such that

@px, yq P RYES, PrV px, yq “ 1s ě
2
3 and @px, yq P RNO, PrV px, yq “ 0s ě

2
3

There exists a PPT logspace machine F (the “finder”) such that for all x, if Dy, px, yq P

RYES, then

Prpx, F pxqq P RYESs ě
2
3

Let SR “ tx : Dy, px, yq P RYESu be the set of inputs for which a solution exists.

This definition is identical to the polynomial variant with the added constraint that the
machines are bounded to logarithmic space in addition to the polynomial time bound.

Our hardness assumption is a modification of leakage resilient hardness as defined in
definition 2.1 of [8], which in turn builds on [11].

▶ Definition 3.3 (Almost-all-input leakage resilient average hard). Let f : t0, 1u
n

Ñ t0, 1u
n be

a multi-output function. f is almost-all-input pT, S, ℓ, dq-leakage resilient average hard if for
all S-space T -time probabilistic algorithms pA, leakq satisfying |leakpx, fpxqq| ď ℓpnq, we have
that for all sufficiently long strings x,

PrdHpApx, leakpx, fpxqqq, fpxqq ă dpnqs ă
1
n

with probability over the internal randomness of the algorithms, where dH is Hamming
distance.
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Note that this is “stronger” than a direct analog to the time-bounded assumption [8] in
two ways: first, and most importantly, we’ve added another parameter which parameterizes
how “good of an approximation” is allowed, whereas in the time-bounded setting, forbidding
strict equality was sufficient. Second, the allowed probability of “success” is 1

n rather than 1
3 .

The first difference converts the worst-case hardness to average-case hardness. It is
necessary because in the time-bounded setting, we have access to much more powerful
error-correcting codes which are not available in the logspace setting. In the time-bounded
setting, error-correcting codes let us convert a small edge in breaking the generator to an
exact computation of the hard function. Meanwhile, in the logspace setting, we’re limited to
just that small edge, so we bake it into the hardness assumption instead.

The second difference exists to handle issues in the distinguisher to predictor transfor-
mation. In polynomial time, the attacker functions can “try” op1{nq strings and figure out
which one is the ideal choice, but because the strings are super-logarithmic in length, we
cannot verify them in logspace. Thus, the hardness assumption is strengthened to allow
simply choosing a random one without verification.

While much of the high-level structure of the following proof is similar to that presented
in section 2, we have that:

in the “hard function implies derandomization” direction, we show the desired derandom-
ization of search problems; and
in the “derandomization implies hard function” direction, the search problem is constructed
such that anything which is not a no-instance is a valid value for the function to take for
that x. Then, instead of Goldreich’s reduction, we apply the derandomization reduction
directly.

4 Existence of hard function implies derandomization

▶ Theorem 4.1 (Existence implies derandomization). The forward direction of the main
theorem (3.1). I.e., (1) implies (2).

Proof. Apply lemma 4.4 with C “ 3 to get the necessary PRG, then apply lemma 4.7 to
perform the desired derandomization with the PRG. ◀

The following are fairly standard definitions of a distinguisher and pseudorandom generator
with the caveat of the additional “target” string. For brevity, write Dm

x pγq for Dp1m, x, γq

and similarly for G.

▶ Definition 4.2 (Targeted distinguisher). Given a function G : t1u
m

ˆ t0, 1u
n

ˆ t0, 1u
d

Ñ

t0, 1u
m, a targeted distinguisher for G with advantage β ą 0 is a machine D : t1u

m
ˆ

t0, 1u
n

ˆ t0, 1u
m such that for all sufficiently large m and for all x P t0, 1u

n, we have that∣∣∣Ps„Ud

“

Dm
x pGm

x psqq “ 1
‰

´ Pγ„Um

“

Dm
x pγq “ 1

‰

∣∣∣ ě β (1)

where Uk is the uniform distribution on t0, 1u
k.

Throughout, we will refer to targeted distinguishers as “distinguishers.”

This definition becomes useful in the context of the following (modified from [4, 8]):

▶ Definition 4.3 (Uniform targeted pseudorandom generator). For parameters S, n, and d

dependent on output length m, an S-secure uniform pn, dq-targeted PRG is a deterministic
function

G : t1u
m

ˆ t0, 1u
n

ˆ t0, 1u
d

Ñ t0, 1u
m

which satisfies the property that there does not exist a targeted distinguisher with advantage
β running in space S for any β ą 0.

MFCS 2024



83:8 Leakage-Resilient Hardness Equivalence to Logspace Derandomization

Throughout the rest of this article, “PRG” and “pseudorandom generator” refer to a
uniform targeted PRG. n is the “target length” of the generator and d is the “seed length.”

We show that our hardness assumption implies an Oplog mq-secure ppolypmq, Oplog mqq

PRG and then that the existence of an such a PRG implies the desired derandomization.

4.1 Hard function implies existence of PRG
First, we prove that a hard function with the given parameters implies the existence of a
PRG.

Fix a sufficiently small value of α ą 0. α “ 1{3 works.

▶ Lemma 4.4 (Hard function implies existence of PRG). For any C, there exist constants
c1, c2 such that if there exists a logspace computable function f such that f is almost-all-input
`

nc1 , c2 log n, nε,
` 1

2 ´ 1
m2

˘

n
˘

-leakage resilient average hard with m “ n
α3
5 and ε “ 2α ` α3

5 ,
then there exists a C log m-secure pn, log n

α q PRG which is logspace computable.

As is standard for a Nisan-Wigderson generator, we will require designs for the construction.

▶ Definition 4.5 (Combinatorial design). A design is a collection of (potentially large) sets
with a bounded pairwise intersection size. More precisely:

For any natural numbers pd, r, sq such that d ą r ą s, a pd, r, sq-design of size m is a
collection I “ tI1, . . . , Imu of subsets of rds such that for each j P rms, |Ij | “ r and for each
k P rms such that k ‰ j, |Ij X Ik| ď s.

Because we’re working in logspace, we will need the following lemma:

▶ Lemma 4.6 (Creating designs). There is a deterministic algorithm we call GenDesignpd, αq

which produces a pd, αd, 2α2dq design of size 2 α4d
5 in space SGenDesign “ Opdq.

Proof. Proven by Klivans and Melkebeek in the appendix of [7]. ◀

Outline of proof of 4.4. As presented in the overview, the construction of the PRG is a fairly
standard Nisan-Wigderson generator [9] construction, with the caveats that it is a targeted
PRG and that instead of the truth table of a hard-coded non-uniformly hard function, we
use the output of our f on the target string. The key change is that the leakage function
then replaces the hard-coded tables in the search-to-decision reduction.

We show that this can be done in logspace and that the hard-coded tables fit in the inverse
polynomial leakage bound nε. In order to compute the tables in logspace, the probability
of generating “good tables” needs to be low because it’s impossible to verify the tables.
However, a probability high enough to contradict leakage-resilient hardness, i.e., over 1

n , is
achievable.

Assuming a distinguisher that defeats the PRG, the attacker function is then able to
use the tables from the leakage function together with the distinguisher to perform the
search-to-decision reduction with enough accuracy to violate the average-case hardness
constraint. ◀

Proof of 4.4. With an appropriate choice of c1, c2, we can construct a C log m-secure PRG
for any constant C ě 0.

We construct a targeted PRG G : t1u
m

ˆ t0, 1u
n

ˆ t0, 1u
d

Ñ t0, 1u
m, where n “ m

5
α3

and d “
log n

α .
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The algorithm is similar to that in time-bounded case [8]: it is simply a Nisan Wigderson
generator [9], with the hard-coded truth table replaced with one outputted by the hard
function.

On input 1m, x, s, it proceeds as follows:
1. Compute z “ fpxq. Define hpiq “ zi.
2. Compute I “ GenDesignpd, αq. Note that r “ dα “ log n and 2 α4d

5 ě m due to our choice
of n and d.

3. Output

Gp1m, x, sq “ hpsI1 q ¨ ¨ ¨ hpsIm
q

Suppose there exists a distinguisher D computable in space C log m with advantage
β ą 0. We will use this to approximate f with enough of an advantage to violate the average
hardness assumption by a standard hybrid argument (lemma 3.15 in [8], proposition 7.16
in [14], theorem 10.12 in [1]).

We can remove the absolute value from the distinguisher definition (1) by noting that
there exists b P t0, 1u such that

Ps„Ud
rDm

x pGm
x psqq “ bs ´ Pγ„Um

rDm
x pγq “ bs ě β

since flipping b flips the sign.
Then, for every j P t0, . . . , mu, define

Hj “ phpsI1 q, . . . , hpsIj
q, wj`1, . . . , wmq

(with h defined as in the generator) where s „ Ud and each wk „ U1 (for j ` 1 ď k ď m).
Notice that H0 “ Um and Hm “ Gp1m, x, Udq. Therefore it follows that

1
m

m
ÿ

jP1

´

Py,wrDm
x pHjq “ bs ´ Py,wrDm

x pHj´1q “ bs

¯

“
1
m

´

Py,wrDm
x pHmq “ bs ´ Py,wrDm

x pU0q “ bs

¯

ě
β

m

Considering j as a random variable distributed uniformly over rms, we get that

EjPrms

”

Py,wrDm
x pHjq “ bs ´ Py,wrDm

x pHj´1q “ bs

ı

ě
β

m

Since Py,wrDm
x pHjq “ bs ´ Py,wrDm

x pHj´1q “ bs is upper bounded by 1, by an averaging
argument, with probability at least β

2m over the choice of j Ð rms, yrdszIj
Ð t0, 1u

d´r, and
wrmszrjs Ð t0, 1u

m´j , the strings j, yrdszIj
, and wrmszrjs will satisfy:

PyIj
„Ur

rDm
x pHjq “ bs ´ PpyIj

,wj q„Ur`1 rDpHj´1q “ bs ě
β

2m
(2)

Suppose we have a choice j, yrdszIj
, and wrmszrjs satisfying the above equation. By Yao’s

prediction vs. indistinguishability theorem [15], it holds that

PpyIj
,wj q„Ur`1

“

Dm
x pHj´1q ‘ b ‘ wj “ hpyIj q

‰

ě
1
2 `

β

2m

There then must exist a choice of wj such that

PyIj
„Ur

“

Dm
x pHj´1q ‘ b ‘ wj “ hpyIj q

‰

ě
1
2 `

β

2m
(3)
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Observe that in order to compute Hj´1 as a function of yIj
, one does not need to know

the entire truth table of h. Instead, note that the overlap between Ij and Ii, i ă j, is at most
2α2d “ 2αr. Thus, as a function of yIj

, hpyIi
q can only take 22αr possible values. Thus, to

compute all of Hj´1, one needs j22αr ď m22αr bits of the truth table of h.
Then, given a distinguisher D with advantage β, we can approximate f with the functions

pA, leakq described below.
On input x, z “ fpxq, leak proceeds as follows (denote hpiq “ zi):

1. Evaluates I “ GenDesignpd, αq, with d chosen the same way as the PRG.
2. Chooses a random j P rms and a random yrdszIj

, storing them on its work tape.
3. Writes j and yrdszIj

to the output tape.
4. For 0 ă i ă j and for each value of y obtained by ranging over possible values of yIj

(since yrdszIj
is already fixed), leak writes hpyIi

q to the output tape.
5. Writes random bits b, wj and string wrms´rjs to the output tape.

Then, on input x, w “ leakpx, fpxqq, A proceeds as follows:
1. A evaluates I “ GenDesignpd, αq, with d chosen the same way as the PRG.
2. Defines b, j, yrdszIj

, wj , and wrmszrjs to be those read from its input tape.
3. For each yIj

“ k in rns yielding a full string y,
a. Computes Hj´1, with bit i ă j found by looking in position k in the ith table output

by leak in step 4 and i ě j found by taking the appropriate bit of w, also output by
leak.

b. Computes Dm
x pHj´1q ‘ b ‘ wj and writes it to the output tape.

We will show that the result is a pair which runs in the necessary time and space bounds
and, with high probability, is a good enough approximation of fpxq to achieve contradiction.

Space-bound. leak step 1 requires space SGenDesign “ Opdq “ O
´

log n
α

¯

. Since it is locally
computed by future steps, this becomes OpSGenDesignq. The second step requires space d`log m,
and uses the local computation of step 1. The third step requires space logplog m ` dq, since
it is simply iteration and printing. The fourth step uses space log m ` d again since it iterates
over indices i and values of y. For each value, it simply performs a lookup into the input,
which requires at most space equal to the size of the index, bounded by d ` 1. Finally, step 5
requires space log m, since it needs to keep track of the number of bits it needs to write.

Thus, the overall space used by leak is Opdq ` Oplog nq ` Oplog mq “ Oplog n ` log αq “

Oplog nq.
For A, step 1 again requires space OpSGenDesignq. Step 2 is simply a definition and thus

requires no space. Step 3 requires log n bits of iteration overhead plus the space used by
3.(a) and 3.(b). 3.(a) is simply indexing into the input based on k and so requires space
log n. This is the locally recomputed by step 3.(b), so 3.(a) requires space Oplog nq. Finally,
3.(b) requires space C log m.

Thus, A and leak run in space c2 log n for a constant c2 dependent only on C.

Time-bound. Due to space constraints, the straightforward time complexity analysis can
be found in the full version [12].



Y. Shalunov 83:11

Contradiction of hardness. First, note that leak outputs at most log m`d´r `m`m22α2d

bits. The log m and d ´ r terms are logarithmic and thus fall within any polynomial bound.
The constraints on d and α, chosen such that dα “ log n and 2 α4d

5 “ m tell us that for the
m22α2d term, we have that

2α2d “
10
α2 log m so 22α2d “ m

10
α2

Thus, m22α2d “ m
10
α2 `1, which is

m
10
α2 `1

“

´

n
α3
5

¯

10
α2 `1

“ n2α` α3
5

Thus, if α is small enough (e.g., 1
3 ), then for ε “ 2α` α3

5 ă 1, we have that |leakpx, fpxqq| ď

nε.
Observe that (2) is satisfied with probability β

2m by leak’s random choice of j, yrdszIj
,

and wrmszrjs. Furthermore, with probability 1{4, leak’s random choices of b and wj are the
correct choices such that (3) holds. Thus, with probability β

8m , we have that (3) holds for
our choices.

Consider the case where it does. Note that the randomness in (3) is over the argument to
h, which is the index into fpxq. Then, when A evaluates Dm

x pHj´1q ‘ b ‘ wj for each index,
we conclude that at least a 1

2 `
β

2m fraction of bits output by A agree with fpxq. We thus
have that

P
„

dHpApx, leakpx, fpxqqq, fpxqq ď

ˆ

1
2 ´

β

2m

˙

n

ȷ

ě
β

8m

However, note that β
8m ą 1

n for sufficiently large n (since m is polynomially smaller than
n) and 1

2 ´
β

2m ă 1
2 ´ 1

m2 for any constant β and sufficiently large n. This contradicts the
hardness assumption of f , so such a distinguisher can’t exist and we must have that G is a
C log m-secure PRG. ◀

4.2 Derandomization of search problems using the PRG
Now, we prove that the PRG is sufficient. This formulation is similar to work by Goldreich [4]
which was seen in Liu and Pass’s [8] reproduction.

▶ Lemma 4.7 (Derandomization of search problems using the PRG). The existence of a
3 log m-secure ppolypmq, Oplog mqq, logspace-computable PRG implies (2) of main theorem
(3.1).

As is typical for derandomization using a PRG, we will need the ability to pad strings.
We will treat functions padpx, kq and unpadpx1q as having “negligible” complexity. The
exact definition and proof of this can be seen in the “efficient padding” lemma of the full
version [12], but we effectively use an expanded alphabet (encoded as pairs of bits) to add
an “pad” character.

We separate our proof of 4.7 into two parts: derandomizing prBP¨L using a PRG and
then derandomizing prBP¨L search problems using both prBP¨L “ prL and the PRG.

▶ Lemma 4.8 (Derandomization of promise problems). The existence of a 3 log m-secure
ppolypmq, Oplog mqq, logspace-computable PRG implies prBP¨L “ prL.

MFCS 2024
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Proof sketch. This is an adaptation of the time-bounded derandomization construction as
seen in Goldreich’s and Liu and Pass’s work. The detailed working is omitted due to space
constraints, but can be found in the full version [12] to verify that there are no hiccups
related to logarithmic space. (In particular, the unpadded case becomes time Opkq and space
log k ` Op1q, and the padding exponent becomes the maximum of the exponent on time and
the multiplier on space.) ◀

Proof of 4.7. Suppose G is an 3 log m-secure pn, dq PRG with parameters n “ mθ for some
θ and d “ Oplog mq. By lemma 4.8, we have that prBP¨L “ prL.

Suppose RYES, RNO is a prBP¨L search problem with verifier V px, y; ωq and finder F px; γq

where |γ| ď tp|x|q. Observe that we can derandomize V to V px, yq (since it is a prBP¨L decision
problem) such that px, yq P RNO ùñ V px, yq “ 0 and px, yq P RYES ùñ V px, yq “ 1.

First we will perform this derandomization for search problems where F px; γq has time
complexity tpkq “ Opkq and the random procedure Mpx; γq “ V px, F px; γqq has space
complexity log k ` Op1q. Define m “ tpkq as the maximum amount of randomness used.

Consider the following deterministic procedure F 1: On input x,
1. For each seed s P t0, 1u

d,
Compute b Ð V px, F px; Gm

x1 psqqq, where x1 “ padpx, nq.
If b “ 1, output F px; Gm

x1 psqq.
2. Output the empty string.

Note that this procedure operates in logspace since iterating seeds requires space d “

Oplog mq “ Oplog kq and step 3.(a) and 3.(b) are logspace compositions (a more detailed
treatment can be see in the proof of 4.8).

Observe also that if this procedure terminates within the loop, it outputs a string y such
that V px, yq “ 1 and thus such that px, yq R RNO. It remains to show that this procedure
terminates within the loop on all but finitely many inputs (since we can hard-code any finite
number of misbehaving cases).

Suppose the contrary. Then there exist infinitely many inputs for which,

@s P t0, 1u
d

V px, F px; Gm
x1 psqqq “ 0

Further, by definition of a finder, Pγrpx, F px; γqq P RYESs ě 2
3 . Thus,

PsrV px, F px; Gm
x1 psqqq “ 1s “ 0 and Pγrpx, F px; γqq P RYESs ě

2
3

This tells us that Dp1m, x1, rq “ Mpunpadpxq; rq “ Mpx; rq is a distinguisher with
advantage β ě 2

3 which works for infinitely many values of x1 and runs in space 2 log m (since
it is the truncation machine composed with M ; again, a more detailed treatment can be seen
in the proof of 4.8). This contradicts the security of the generator.

Thus, px, F 1pxqq R RNO for all but finitely many x (which can be hard-coded).
Now consider an arbitrary prBP¨L search problem, pRYES, RNOq with derandomized verifier

V and finder F px; γq such that the time complexity of F is Opkaq and the space complexity
of V px, F px; γqq is b log k ` Op1q. Again, let c “ maxpa, bq and define x1 “ padpx, kcq. We
create RYESpad “ tpx1, yq : px, yq P RYESu and RNOpad “ tpx1, yq : px, yq P RNOu.

Then Vpadpx1, yq “ V punpadpx1q, yq, Fpadpx1q “ F punpadpx1qq satisfy

Mpadpx1; rq “ Vpadpx1, Fpadpx1; rqq

being a machine with space complexity log k1 ` Op1q and Funpad having time complexity
Opk1q. Thus, we have deterministic algorithm F 1

padpx1q such that px1, F 1
padpx1qq R RNOpad.



Y. Shalunov 83:13

We can then define F 1 as the function which on input x computes F 1
padppadpx, kcqq. Observe

that if px, F 1pxqq P RNO then px1, F 1
padpx1qq “ px1, F 1pxqq P RNOpad, which contradicts F 1

pad
being a derandomized finder for RNOpad.

Thus, we have achieved the desired partial derandomization of prBP¨L search problems. ◀

5 Derandomization implies existence of hard function

▶ Theorem 5.1 (Derandomization implies existence). Suppose that for any prBP¨L search
problem pRYES, RNOq, we can create a deterministic algorithm F 1 such that for any x P SR,
we have that px, F 1pxqq R RNO.

We will show that for any constants c1, c2 there exists a logspace computable function
f such that f is almost-all-input pT, S, ℓ, dq “

`

nc1 , c2 log n, nε,
` 1

2 ´ 1
m2

˘

n
˘

-leakage-resilient
average hard where ε “ 2α ` α3

5 and m “ n
α3
5 for α “ 1

3 .

The “Random is hard” lemma is similar to claim 1 in section 3.1 of Liu and Pass’s
paper [8] but needs a much stronger claim than in the time-bounded setting, corresponding
to the use of an average-case hardness assumption.

5.1 Random is hard
▶ Lemma 5.2 (Random is hard). For any probabilistic algorithms pA, leakq and for all n P N,
x P t0, 1u

n, it holds that

Pr|leakpx, rq| ď ℓ ^ dHpApx, leakpx, rqq, rq ă ds ě
1

2n

with probability at most n ¨ 2n¨pHpd{nq´1q`ℓ`Op1q (where Hppq is the binary entropy function
Hppq “ p log 1

p ` p1 ´ pq log 1
1´p ) over r „ Un.

Proof. Consider any n P N, x P t0, 1u
n, and any probabilistic algorithm A. We will show

that for any deterministic function leak1 that outputs at most ℓ bits,

Pr„Un

„

P
“

dHpApx, leak1
px, rqq, rq ă d

‰

ě
1

2n

ȷ

ď n ¨ 2n¨pHpd{nq´1q`ℓ`Op1q (4)

The claim for any probabilistic algorithm leak follows immediately by letting leak1 be leak
with the best random tape fixed. To show (4), consider the set of “bad” r’s defined as

B “

"

r P t0, 1u
n : Dw P t0, 1u

ℓ s.t. PrdHpApx, leakpx, rqq, rq ă ds ě
1

2n

*

For any r, if there exists a leak1 such that |leak1
px, rq| ď ℓ and P

“

dHpApx, leak1
px, rqq, rq ă d

‰

ě
1

2n , then r P B. Thus, the probability that Apx, leakpx, rqq successfully approximates r is
bounded by the probability that r P B.

We now bound B. Observe that for a given choice of w P t0, 1u
ďℓ, there exists 2n

Hamming balls (which, in the worst case, do not overlap) of radius d contained in B, since
there are at most 2n Hamming balls which gpx, wq can occupy with probability ě 1

2n .
Finally, note that a Hamming ball of radius d on strings of length n has volume

2nHpd{nq´ 1
2 log n`Op1q ď 2nHpd{nq`Op1q. Thus, |B| ď 2ℓ`1 ¨ 2n ¨ 2nHpd{nq`Op1q

We can roll the 2 in 2n into the Op1q in the final exponent, along with the `1 in ℓ ` 1.
Thus, the probability that a randomly chosen r satisfies the condition in (4) is at most

|B|

2n
ď n ¨ 2npHpd{nq´1q`ℓ`Op1q ◀
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5.2 Construction of hard function
Proof of theorem 5.1. We can construct a prBP¨L search problem to represent computing
our desired hard problem. This search problem is similar to the corresponding search problem
from [8] with the changes corresponding directly to the differences between the time-bounded
worst-case version of leakage-resilient hardness and the space-bounded average-case version
presented in this work.

The search problem. Note that, since we consider only efficiently and uniformly computable
pA, leakq, a given pair has some constant length. We can thus consider only pairs pA, leakq

with descriptions of length at most log n. For any given attacker pair, then, we will only skip it
under our search problem in a finite number of cases, which is covered by the almost-all-input
hardness.

Let RYES be a binary relation such that px, rq P RYES if both of the following are true:
1. |x| “ |r|.
2. For all probabilistic pA, leakq such that |A|, |leak| ď log n (where |A| (resp. leak) refers to

the length of the description of the program A in some arbitrary encoding scheme), it
holds that

P
“

|leak1
px, rq| ď ℓ ^ dHpA1px, leak1

px, rqq, rq ă d
‰

ă
1

2n
(5)

where A1 and leak1 are time-space-truncated versions of A and leak which are only executed
until they run for nc1 steps or try to use more than c2 log n space (where c1, c2 are from
theorem 5.1).

Let RNO be a binary relation such that px, rq P RNO if |x| ‰ |r| or for at least one pair of
pA, leakq (within log n size bound), (5) doesn’t hold with a 1

n lower bound instead of an 1
2n

upper bound.
We then show this is a prBP¨L search problem by finding a verifier and finder.

Verifier. On input px, rq, the verifier immediately rejects if |x| ‰ |r|. Otherwise, it enu-
merates all probabilistic machines pA, leakq such that |A|, |leak| ď log n. For each one, V

estimates the value

pA,leak “ P
“

|leak1
px, rq| ď ℓ ^ dHpA1px, leak1

px, rqq, rq ă d
‰

by simulating A1px, leak1
px, rqq polynomially many times and recording whether the Hamming

distance is at most d. If during this process, for any pA, leakq, we have that the sample
estimate p̂A,leak exceeds 3

4n , V outputs 0 and terminates. Otherwise, the value pA,leak is
discarded for this attacker pair and estimated for the next attacker pair. If we iterate every
attacker pair without terminating, we output 1 and terminate. By the Chernoff bound and
the union bound, V will accept with high probability if px, rq P RYES and reject with high
probability if px, rq P RNO.

This step is exactly where two-way randomness becomes necessary. We can compute
A1px, leak1

px, rqq in logspace since with two-way randomness of BP¨L, we can compose func-
tions. The rest is logspace, since computing Hamming distance can be done in a read-once
manner by tallying number of agreeing bits, which requires log n bits, and keeping a tally of
successes vs. total count represents the success probability in log num_trials space. Since
only a polynomial number of trials is necessary, this is all logspace.

We can compute it in polynomial time, since we only need polynomially many samples
and each of A1 and leak1 is time truncated to a polynomial time-bound.
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Finder. On input x, the finder outputs a random string of the same length. Observe that
for any fixed x P t0, 1u

n, by the “random is hard” lemma (5.2), and a union bound over
choices of pA, leakq, we conclude that F pxq outputs an invalid witness with probability at
most

n2 ¨ n ¨ 2npHpd{nq´1q`ℓ`Op1q

When ℓ “ nε “ n2α` α3
5 and d

n “ 1
2 ´ 1

m2 with m “ n
α3
5 and α “ 1

3 , this converges to 0, and
thus satisfies the search problem requirement of error probability less than 1

3 (except for
perhaps some finite number of small samples where answers can be hard-coded).

Computing the hard function. By the derandomization assumption, there exists a deter-
ministic, logspace function F 1 such that px, F 1pxqq R RNO.

Note that F 1pxq R RNO, so |F 1pxq| “ |x| and for all machines pA, leakq which run within
the time and space bounds, (5) (with 1

2n replaced with 1
n ) holds for all but the finitely many

strings too short to include the descriptions of A, leak.
Therefore, by construction, f “ F 1 is a logspace computable pnc1 , c2 log n, ℓ, dq-leakage-

resilient average hard function as desired. ◀

6 Discussion

We suspect it is possible to reduce the derandomization part of our assumption to prBP¨L “

prL, such that we do not explicitly need the separate partial derandomization of prBP¨L
search problems. However, we were not able to identify such a reduction within the duration
of this research.
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Abstract
Given a set of n points in Rd and two positive integers k and m, the Euclidean k-means with outliers
problem aims to remove at most m points, referred to as outliers, and minimize the k-means cost
function for the remaining points. Developing algorithms for this problem remains an active area
of research due to its prevalence in applications involving noisy data. In this paper, we give a
(1 + ε)-approximation algorithm that runs in n2d((k + m)ε−1)O(kε−1) time for the problem. When
combined with a coreset construction method, the running time of the algorithm can be improved
to be linear in n. For the case where k is a constant, this represents the first polynomial-time
approximation scheme for the problem: Existing algorithms with the same approximation guarantee
run in polynomial time only when both k and m are constants. Furthermore, our approach generalizes
to variants of k-means with outliers incorporating additional constraints on instances, such as those
related to capacities and fairness.
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1 Introduction

Clustering is a frequently encountered task in many fields related to machine learning, aiming
to partition a given set of points into several cohesive clusters. Among the various ways
of formalizing the task of clustering, the Euclidean k-means problem is perhaps the most
commonly studied one. In this problem, we are given a set P ⊂ Rd of points and a positive
integer k, and the goal is to identify a set C ⊂ Rd of no more than k centers so that the
objective function

∑
p∈P minc∈C ||p − c||2 is minimized. Here, the points are partitioned into

different clusters according to the disparities in their corresponding centers, namely, the
nearest ones. In most applications of the problem, the upper bound on the number of centers
(i.e., k) is significantly smaller than the number of points to be clustered. This prompts
considerable efforts in developing algorithms for the case where k is fixed. Specifically, it is
known that the problem admits polynomial-time approximation schemes (PTASs) when k is
a constant [14, 18, 11, 37, 33, 34].

Despite extensive study, algorithms developed for the Euclidean k-means problem often
exhibit poor performance. The main issue lies in the lack of robustness of the objective
function to noisy data: A few outliers within the point set can significantly impact the
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value of the function. Removing these outliers typically leads to a better clustering result.
Motivated thus, we consider the Euclidean k-means with outliers (k-MeansOut) problem,
which can be defined as follows.

▶ Definition 1 (Euclidean k-MeansOut). An instance of Euclidean k-MeansOut is specified
by a set P ⊂ Rd of points and two positive integers k and m. A feasible solution to the
instance is a set C ⊂ Rd of centers satisfying |C| ≤ k and a set O ⊆ P of outliers satisfying
|O| ≤ m. The cost of such a solution is

∑
p∈P\O minc∈C ||p − c||2. The goal of Euclidean

k-MeansOut is to find a feasible solution with minimum cost.

Solving the Euclidean k-MeansOut problem helps to the removal of more interpretable
outliers that can be contextualized by the clusters. This, in turn, results in more cohesive
clusters. Notably, it has been observed that adopting this joint perspective on outlier detection
and clustering leads to improved performance, even when solely focusing on the task of
outlier removal [9, 25]. Given its important role in dealing with noisy data, the Euclidean k-
MeansOut problem has received lots of attention from both theoretical and practical points
of view. A series of algorithms have been proposed for the problem, including heuristics [9],
distributed algorithms [10, 39, 24, 23, 27], approximation algorithms [25, 36, 6, 15, 30, 41],
and coreset-construction methods [17, 19, 28, 29].

A commonly used way for relaxing the Euclidean k-MeansOut problem is to assume that
the upper bounds on the numbers of centers and outliers (i.e., k and m) are small constants.
Under this assumption, several PTASs exist for the problem. Feldman and Schulman [19]
showed that a coreset-based approach yields a (1 + ε)-approximation algorithm running in
nd(k + m)O(k+m) + (ε−1k log n)O(1) time, where n denotes the size of the given point set.
Bhattacharya et al. [7] later gave an outlier-to-outlier-free reduction, where they mapped
an instance of k-MeansOut to an instance of the standard k-means problem. This incurs
an arbitrarily small loss in the approximation ratio and a (k + m)mε−O(1) multiplicative
overhead on the running time of the executed algorithm. Subsequently, Agrawal et al. [1]
and Jaiswal and Kumar [32] gave different reductions that impose multiplicative overheads
of nO(1)((k + m)ε−1)O(m) and ((k + m)ε−1)O(m) on the running time, respectively. When
combined with the state-of-the-art approximation scheme running in O(ndk + d(kε−1)O(1) +
(kε−1)O(kε−1)) time for the Euclidean k-means problem [18], these reductions yield (1 + ε)-
approximation algorithms with running times exponentially dependent on k and m. When
k and m are not fixed, PTASs for Euclidean k-MeansOut exist for the case where d is a
constant and the upper-bound constraint on the number of centers can be slightly violated,
including the (dε−1)O(d)-swap local-search algorithm given by Friggstad et al. [20] and the
algorithm based on split-tree decomposition given by Cohen-Addad et al. [12]. These existing
(1 + ε)-approximation results are summarized in Table 1.

1.1 Our Results
As described above, there are (1 + ε)-approximation algorithms for Euclidean k-MeansOut
with running time exponential in both k and m. We cannot hope to achieve a better solution
(i.e., an optimal one) in the same time frame: Euclidean k-MeansOut has been shown to
be NP-hard, even for the case where k = 2 and m = 0 [38]. Nevertheless, this negative result
does not rule out the possibility of achieving a (1 + ε)-approximation solution in a more
efficient manner. In particular, given that the outliers often constitute a constant fraction of
the entire point set [21, 22, 15], it is interesting to consider whether a (1 + ε)-approximation
algorithm without exponential dependence on m exists in high-dimensional spaces. The main
result in this paper is the first affirmative answer to this question, as described in Theorem 2.
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Table 1 (1 + ε)-approximation algorithms for Euclidean k-MeansOut. The first two are bi-
criteria approximation algorithms that violate the upper-bound constraint on the number of centers
by a factor of 1 + O(ε). T (n, d, k, ε) = O(ndk + d(kε−1)O(1) + (kε−1)O(kε−1)) denotes the running
time of the state-of-the-art approximation scheme for the Euclidean k-means problem.

Running time Parameter(s) in Reference
the exponent

(nk)(dε−1)O(d)
d [20]

2ε−O(d2)
n logO(1) n + nO(1) d [12]

nd(k + m)O(k+m) + (ε−1k log n)O(1) k, m [19]
(k + m)mε−O(1)

T (n, d, k, ε) k, m [7]
nO(1)((k + m)ε−1)O(m)T (n, d, k, ε) k, m [1]
((k + m)ε−1)O(m)T (n, d, k, ε) k, m [32]
nd((k + m)ε−1)O(kε−1) k This work

▶ Theorem 2. Given a constant ε ∈ (0, 1) and an instance (P, k, m) of Euclidean k-
MeansOut satisfying P ⊂ Rd and |P| = n, there is a (1 + ε)-approximation algorithm
running in n2d((k + m)ε−1)O(kε−1) time.

Leveraging a coreset construction method that reduces the point set to a weighted set of
size poly(m, k, ε−1) [29], we can improve the running time of the algorithm in Theorem 2 to
be linear in n. A detailed analysis is given in Section 4.2.

Awasthi et al. [3] showed that obtaining a PTAS for Euclidean k-MeansOut for arbitrary
k and d = Ω(log n) is also NP-hard. Given that we avoid the exponential dependence
on d, the exponential dependence on k exhibited in Theorem 2 is unavoidable. Existing
approximation schemes without exponential dependence on k, like the ones in [20, 12], work
only in low-dimensional spaces and select more than k centers.

The optimal solutions to instances of k-MeansOut exhibit a useful property: The center
associated with each point is simply the one nearest to the point. This property, called the
locality property, guides the estimation of the locations of centers selected by an optimal
solution. One advantage of our approach is that it no longer relies on the locality property.
This enhances the versatility of the approach, allowing us to deal with problems not satisfying
the locality property. Indeed, we show that our approach establishes a unified framework for
addressing generalizations of Euclidean k-MeansOut that invalidate the locality property,
including the Euclidean versions of capacitated and fair k-MeansOut [32, 13]. As in the
unconstrained case, we give the first PTAS for each considered generalization of Euclidean
k-MeansOut, assuming k is a constant.

1.2 Our Techniques
Most existing approximation schemes for k-MeansOut are built heavily on the following
natural idea: The m outliers can be viewed as m virtual centers, each corresponding
to a cluster containing only itself, and solving a (k + m)-clustering problem enables the
identification of the k centers and m outliers. This provides a clear strategy for constructing
the desired approximation solution. However, the complexities of clustering problems
increase with the number of centers to be identified, and considering the additional m virtual
centers incurs an exponential time-dependence on m, as exhibited in the running times
of the approximation schemes given in [19, 7, 1, 32]. To deal with the case where m is
super-constant, we employ a different sampling-based method.
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Given a small positive constant ε, it is well-known that the centroid of O(ε−1) uniformly
sampled points is close to the optimal 1-means clustering center of the entire point set
(Lemma 6). Building upon this insight, we uniformly sample from the point set for each
cluster defined by an optimal solution, and enumerate the sampled points to find a subset of
O(ε−1) points uniformly distributed in the cluster, such that the corresponding center can
be approximated by the centroid of the subset. This idea follows the one for the k-means
problem outlined in [37], while the case we consider poses more challenges. The first issue we
encounter lies in the presence of a non-fixed number of outliers, which reduces the proportion
of some small clusters within the point set, and so, the likelihood of obtaining members of
these clusters through randomly sampling may not be sufficiently high. To address this issue,
we carefully adjust the sampling region for each cluster in a recursive way, ensuring a sufficient
proportion of the cluster within the defined region. Another issue emerges as we extend our
consideration to the constrained variants of k-MeansOut that do not satisfy the locality
property. In these variants, the points are not guaranteed to be close to their corresponding
centers. This leads to the lack of a distinct pattern in the distributions of the clusters, making
it more difficult to determine appropriate sampling regions. In dealing with this issue, it is
essential to address the points that violate the locality property, meaning those far from
their corresponding centers. Instead of attempting to find these points through sampling,
we regard previously identified approximate centers close to these points as substitutes,
enumerating the union of the sampled points and the previously selected centers to construct
a small representative set for the considered cluster.

2 Preliminaries

Given a positive integer λ, define [λ] = {1, · · · , λ}. Given a set X ⊂ Rd and a point y ∈ Rd,
let ∆(y, X ) = minx∈X ||y − x||2 denote the squared distance from y to the nearest point
in X , and let ∆(X , y) =

∑
x∈X ||x − y||2 denote the sum of squared distances from y to

the points in X . Additionally, define c(X ) = |X |−1 ∑
x∈X x as the centroid of X , and let

∆(X ) = minc∈Rd ∆(X , c) denote the minimum 1-means clustering cost of X .
The following two lemmas provide ways of estimating the squared distances from the

points to the centers selected by an approximate solution. As a corollary of the first one, we
know that ∆(X ) = ∆(X , c(X )) for each X ⊂ Rd.

▶ Lemma 3 ([35]). Given a point x ∈ Rd and a set X ⊂ Rd, we have ∆(X , x) = ∆(X ) +
|X | · ||c(X ) − x||2.

▶ Lemma 4 ([16]). Given a set X ⊂ Rd, a real number λ ∈ (0, 1], and a subset X ′ ⊆ X
satisfying |X ′| ≥ λ|X |, we have ||c(X ′) − c(X )||2 ≤ (1 − λ)(λ|X |)−1∆(X ).

The following lemma is an extensive version of triangle inequality.

▶ Lemma 5. Given three points x, y, and z in Rd and a real number λ > 0, we have
||x − z||2 ≤ (1 + λ)||x − y||2 + (1 + λ−1)||y − z||2.

Proof. Using triangle inequality, we have||x − z|| ≤ ||x − y|| + ||y − z||, which implies that

||x − z||2 ≤(||x − y|| + ||y − z||)2

=||x − y||2 + ||y − z||2 + 2
√

λ||x − y|| 1√
λ

||y − z||

≤||x − y||2 + ||y − z||2 + λ||x − y||2 + 1
λ

||y − z||2,

as desired. ◀
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The following result says that uniform sampling works for the 1-means problem.

▶ Lemma 6 ([31]). Given a set X ⊂ Rd, a multi-set S constructed by sampling points from
X independently and uniformly, and a positive real number λ, inequality ||c(S) − c(X )||2 ≤
(λ|S||X |)−1∆(X ) holds with probability at least 1 − λ.

The following result is known as Chernoff bound, which has been widely used in analysis
of sampling-based algorithms.

▶ Lemma 7 ([26]). Given a set of t independent random variables a1, · · · , at and a real
number p ∈ (0, 1), if ai ∈ {0, 1} and Pr[ai = 1] ≥ p hold for each i ∈ [t], then each real
number λ ∈ (0, 1) satisfies Pr

[∑t
i=1 ai < (1 − λ)pt

]
< e− 1

2 λ2pt.

As a corollary of Lemma 7, we have the following result about uniform sampling.

▶ Lemma 8. Given a set X ⊂ Rd, a subset S ⊆ X , a positive integer t, and a real number
λ ∈ (0, 1), the following event happens with probability more than 1 − e− λ2t|S|

2|X | : A multi-set
of more than t points independently and uniformly sampled from X contains no less than
(1 − λ)t|S||X |−1 points in S.

Proof. We define a set of independent random variables a1, · · · , at as follows: For each i ∈ [t],
let ai = 1 if the i-th point sampled from X is in S, and let ai = 0 otherwise. We have
Pr[ai = 1] = |S||X |−1 for each i ∈ [t]. Lemma 7 implies that

Pr[
t∑

i=1
ai ≥ (1 − λ)t|S||X |−1] = 1 − Pr[

t∑
i=1

ai < (1 − λ)t|S||X |−1] > 1 − e− λ2t|S|
2|X | .

This completes the proof of Lemma 8. ◀

3 The Sampling Algorithm

In this section we give a sampling-based approach for constructing candidate center sets, as
described in Algorithm 1. Taking as inputs three real numbers k, m, and ε, two sets C′ and
P†, and a collection C, the algorithm recursively augments C with some center sets. Here,
k is the upper bound on the size of a center set, m is the upper bound on the number of
outliers, ε is the factor trading off the approximation ratio and running time, C′ is a center
set that needs to be updated or added to C, P† is the sampling region, and C contains the
center sets that have been constructed. The algorithm constructs a multi-set S as follows: It
independently and uniformly samples O((k + m)ε−3) points from P† and then adds to the
set O(ε−1) copies of each center in C′. After constructing S, the algorithm considers each
subset of size O(ε−1) of S, adding the centroid of the subset to C′ and recursively invoking
itself with the updated center set. Finally, it throws away half of the points in P† that are
close to the centers in C′, and invokes itself again with the reduced point set.

By inducting on the sizes of the given sets of centers and points, we obtain the following
upper bounds on the running time of our sampling algorithm and the quantity of center sets
it generates.

▶ Lemma 9. Given a constant ε ∈ (0, 1), a collection C, and an instance (P, k, m) of
Euclidean k-MeansOut with |P| ≤ n and P ⊂ Rd, Sampling(k, m, ε, ∅, P,C) runs in
nd((k + m)ε−1)O(kε−1) time and adds at most n((k + m)ε−1)O(kε−1) center sets to C.
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Algorithm 1 Sampling(k, m, ε, C′, P†,C).

Input: Two positive integers k and m, a constant ε ∈ (0, 1), a set C′ ⊂ Rd of no more
than k centers, a set P† ⊂ Rd of points, and a collection C of center sets

1 N ⇐ ⌈(17400k + 60m)ε−3⌉, M ⇐ ⌈25ε−1⌉;
2 if |C′| = k then
3 C ⇐ C ∪ {C′};
4 else
5 Sample a multi-set S of N points from P† independently and uniformly;
6 S ⇐ S ⊎ {M copies of each c ∈ C′};
7 for each S ′ ⊂ S satisfying |S ′| = M do
8 Calculate the centroid c(S ′) of S ′;
9 Sampling(k, m, ε, C′ ⊎ {c(S ′)}, P†,C);

10 if C′ ̸= ∅ and |P†| > 1 then
11 Let P‡ be the set of the ⌊ |P†|

2 ⌋ points p ∈ P† with the largest values of
∆(p, C′);

12 Sampling(k, m, ε, C′, P‡,C).

3.1 An Overview of Analysis
We now introduce some notations to be used throughout this section. We consider a constant
ε ∈ (0, 1) and an instance I = (P, k, m) of Euclidean k-MeansOut, where P ⊂ Rd and
|P| = n. Let N = ⌈(17400k + 60m)ε−3⌉ and M = ⌈25ε−1⌉. Let P1, · · · , Pk, O denote k + 1
arbitrary disjoint subsets of P satisfying |O| = m,

⋃k
i=1 Pi ∪ O = P , and |P1| ≥ |P2| ≥ · · · ≥

|Pk|. For each i ∈ [k], let c∗
i = c(Pi) be the centroid of Pi. Define ∆(P) =

∑k
i=1 ∆(Pi).

Let C denote the collection of center sets constructed by Sampling(k, m, ε, ∅, P, ∅). We
will show that C contains a center set approximating {c∗

1, . . . , c∗
k} well with high probability.

More formally, we will prove the correctness of the following result.

▶ Lemma 10. The following event happens with probability no less than 15−k: There is a
center set C ∈ C satisfying

∑k
i=1 minc∈C ∆(Pi, c) ≤ (1 + ε)∆(P).

The proof of Lemma 10, presented in Section 3.2, is based on an inductive method.
Specifically, for a given integer i ∈ {2, · · · , k}, we assume that a set Ci−1 = {c1, · · · , ci−1} of
centers, where cj is close to c∗

j for each j ∈ [i − 1], has been constructed, and prove that a
center close to c∗

i can be identified and added to Ci−1 when invoking Algorithm 1 with Ci−1.
Define (informally) Bi−1 as the set of points close to one of the centers in Ci−1. Given a real
number λ defined based on the value of ε, we divide the analysis into the following two cases:
(1) |Pi\Bi−1| ≤ λ|Pi|, and (2) |Pi\Bi−1| > λ|Pi|.

The case of |Pi\Bi−1| ≤ λ|Pi| captures the scenario where most points in Pi are from
Bi−1 and in close proximity to one of the centers in Ci−1. Conditioned on this, the centers
copied in step 6 of Algorithm 1 can be regarded as proxies for the points in Pi. Based on
Lemma 4 and Lemma 6, we are able to show that the centroid of a subset of the copies is
close to c∗

i and can be added to Ci−1 by the algorithm.
For the case where |Pi\Bi−1| > λ|Pi|, we handle the points from Pi ∩ Bi−1 similarly to

the above approach: We regard the copies of centers in Ci−1 as proxies of these points. It
remains to consider how to deal with the points from Pi\Bi−1. When formally defining Bi−1
in Section 3.2, we carefully establish its range such that the ratio of |P\Bi−1| to |Pi\Bi−1| is
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polynomial in m, k, and ε if |Pi\Bi−1| > λ|Pi| (as exhibited in Claim 15), which implies that
a limited number of points uniformly sampled from P\Bi−1 contains a representative subset
of Pi\Bi−1 with a good chance. Furthermore, it is shown that Algorithm 1 can recursively
adjust the sampling region to make it close to P\Bi−1, based on the operation in step 12.
Putting everything together, we know that a representative subset of Pi\Bi−1 is involved in
the points sampled by the algorithm.

3.2 Proof of Lemma 10
It can be seen that the algorithm Sampling makes multiple recursive calls to itself. We
conceptualize the execution of Sampling(k, m, ε, ∅, P, ∅) as a tree denoted by T . Each node
within the tree, identified by (C′, P†), corresponds to an invocation of the algorithm with
center set C′ and sampling region P†. The children of a node symbolize the recursive calls
made in the corresponding invocation of the algorithm, and each leaf of the tree is associated
with a set of k centers added to C.

Prior to showing the correctness of Lemma 10, we establish the following invariant for
each i ∈ [k].
τ (i): With probability at least 15−i, there exists a node (Ci, P†) in T such that (1) Ci

consists of i centers c1, · · · , ci (added in this order), (2) each j ∈ [i] satisfies ∆(Pj , cj) ≤
(1 + ε

2 )∆(Pj) + ε
2k ∆(P), and (3) {p ∈ P : ∆(p, Ci) > ε∆(P)

8k|Pi| } ⊆ P†.

We prove the invariant by induction on i. We first consider the base case of i = 1. It can
be seen that Sampling(k, m, ε, ∅, P, ∅) independently and uniformly samples a multi-set S
of N points from P , and T has a node ({c(S ′)}, P) for each S ′ ⊂ S with |S ′| = M . We have
|P||P1|−1 = (

∑k
j=1 |Pj | + |O|)|P1|−1 ≤ k + m due to the fact that |P1| ≥ |P2| ≥ · · · ≥ |Pk|.

This inequality and Lemma 8 (with t = N and λ = 1 − M(k + m)N−1) imply that a
node ({c(S ′)}, P) satisfying |S ′| = M and S ′ ⊆ P1 exists in T with probability more than
1 − e−(1−M(k+m)N−1)2N)/(2(k+m)) > 1

3 . Using Lemma 6 (with λ = 4
5 ), we know that if such

a node ({c(S ′)}, P) exists, then inequality

||c(S ′) − c∗
1||2 ≤ 5∆(P1)

4|P1||S ′|
= ε∆(P1)

20|P1|
(1)

holds with probability at least 1
5 . Inequality (1) and Lemma 3 imply that

∆(P1, c(S ′)) = ∆(P1) + |P1| · ||c(S ′) − c∗
1||2 ≤ (1 + ε

20)∆(P1),

which in turn implies that τ(1) is true.
We now assume that τ(i − 1) holds for an integer i ∈ {2, · · · , k}, and prove that τ(i) also

holds. Let (Ci−1, P†) be a node satisfying

∆(Pj , cj) ≤ (1 + ε

2)∆(Pj) + ε

2k
∆(P) (2)

for each j ∈ [i − 1] and

{p ∈ P : ∆(p, Ci−1) >
ε∆(P)

8k|Pi−1|
} ⊆ P†, (3)

where Ci−1 = {c1, · · · , ci−1}. τ(i − 1) implies that such a node (Ci−1, P†) exists in T
with probability no less than 151−i. Conditioning on the existence of this node, we define
Bi−1 = {p ∈ P : ∆(p, Ci−1) ≤ ε∆(P)

8k|Pi| }. Let Pn
i = Pi ∩ Bi−1 and Pf

i = Pi\Bi−1 for brevity.
As described in Section 3.1, we prove τ(i) differently based on the size of Pf

i . Specifically, we
consider the following two cases: (1) |Pf

i | ≤ ε
17 |Pi|, and (2) |Pf

i | > ε
17 |Pi|. These two cases

are respectively analyzed in the following two subsections.
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Case (1): |Pf
i | ≤ ε

17 |Pi|
In this case, most points in Pi are close to the centers in Ci−1, based on which we show that
a convex combination of the latter’s members effectively approximates c∗

i . We consider a
multi-set P ′

i = {c(p) : p ∈ Pn
i }, where c(p) is the center in Ci−1 nearest to p. The proximity

of each point in Pn
i to its counterpart in P ′

i, combined with the substantial proportion of Pn
i

in Pi, implies that the centroid of P ′
i is close to c∗

i . This is confirmed by the following lemma.

▶ Lemma 11. If |Pf
i | ≤ ε

17 |Pi|, then we have ||c(P ′
i) − c∗

i ||2 ≤ ε∆(Pi)
8|Pi| + ε∆(P)

4k|Pi| .

Lemma 11 suggests that c(P ′
i) is close to c∗

i . Unfortunately, directly approximating c∗
i

using c(P ′
i) is not feasible, as the members of both Pn

i and P ′
i are unknown. The idea of

Algorithm 1 is to take M copies of each center from Ci−1 and simulate P ′
i using a subset of

these copies. The following lemma implies that this yields a center approximating c∗
i well

with high probability and, furthermore, generates the node claimed in τ(i).

▶ Lemma 12. If |Pf
i | ≤ ε

17 |Pi|, then the following event happens with probability at least 1
5 :

(Ci−1, P†) has a child (Ci−1 ⊎ {ci}, P†) satisfying {p ∈ P : ∆(p, Ci−1 ⊎ {ci}) > ε∆(P)
8k|Pi| } ⊆ P†

and ∆(Pi, ci) < (1 + ε
2 )∆(Pi) + ε

2k ∆(P).

Proof. The fact that |P1| ≥ |P2| ≥ · · · ≥ |Pk| and ∆(p, Ci−1) ≥ ∆(p, Ci−1 ⊎ {c}) for each
p ∈ P and c ∈ Rd suggests that

{p ∈ P : ∆(p, Ci−1 ⊎ {c}) >
ε∆(P)
8k|Pi|

} ⊆ {p ∈ P : ∆(p, Ci−1) >
ε∆(P)

8k|Pi−1|
} ⊆ P† (4)

for each c ∈ Rd, where the last step is due to inequality (3).
In the invocation of Algorithm 1 corresponding to (Ci−1, P†), the algorithm takes M

copies of each center from Ci−1 and calculates the centroid of each subset of the copies with
size M . By Lemma 6 (with λ = 4

5 ) and the fact that P ′
i ⊆ Ci−1, we know that a center ci

identified in this way satisfies

||ci − c(P ′
i)||2 ≤ 5∆(P ′

i)
4M |P ′

i|
≤ ε∆(P ′

i)
20|P ′

i|
= ε∆(P ′

i)
20|Pn

i |
(5)

with probability no less than 1
5 .

Denote by ci a center satisfying inequality (5). Intuitively, inequality (5) and Lemma 11
imply an upper bound on the squared distance from ci to c∗

i . Combining this insight with
Lemma 3, we can derive the following claim.

▷ Claim 13. If |Pf
i | ≤ ε

17 |Pi|, then we have ∆(Pi, ci) < (1 + ε
2 )∆(Pi) + ε

2k ∆(P).

Using Claim 13 and inequality (4), we complete the proof of Lemma 12. ◀

Case (2): |Pf
i | > ε

17 |Pi|
As in the previous case, we simulate the points in Pn

i using the centers in Ci−1. The main
challenge in the current case is that we cannot ignore the points from Pf

i as we did previously,
since their proportion in Pi is no longer bounded by a small value. As a remedy, we argue
that we can sample sufficient points from Pf

i in step 5 of Algorithm 1 by recursively adjusting
the sampling region. Furthermore, we will show that a combination of these sampled points
and the centers in Ci−1 approximates c∗

i well.
The following lemma suggests a lower bound on the proportion of Pf

i within a carefully
selected sampling region.
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▶ Lemma 14. If |Pf
i | > ε

17 |Pi|, then there is a node (Ci−1, P‡) in the descendants of
(Ci−1, P†) (including itself) that satisfies P\Bi−1 ⊆ P‡ and ε−2(580k + 2m)|Pf

i | > |P‡|.

Proof. Our idea for proving Lemma 14 is to show that |Pf
i | is not too small compared to

|P\Bi−1|, and then argue that the invocation of Algorithm 1 corresponding to (Ci−1, P†) can
find a sampling region P‡ close to P\Bi−1.

The following claim establishes a lower bound on the ratio of |Pf
i | to |P\Bi−1|.

▷ Claim 15. If |Pf
i | > ε

17 |Pi|, then ε−2(290k + m)|Pf
i | > |P\Bi−1|.

The fact that |P1| ≥ |P2| ≥ · · · ≥ |Pk| and inequality (3) imply that

P\Bi−1 = {p ∈ P : ∆(p, Ci−1) >
ε∆(P)
8k|Pi|

} ⊆ P†. (6)

We sort the points p ∈ P† by decreasing values of ∆(p, Ci−1). Let pt be the t-th point
in this order for each t ∈ [|P†|], and define P†

s = {pt : t ∈ [⌊2−s|P†|⌋]} for each integer
s ∈ [0, ⌊log |P†|⌋]. Equality (6) implies the existence of an integer s̃ ∈ [0, ⌊log |P†|⌋] satisfying
P\Bi−1 ⊆ P†

s̃ and 2|P\Bi−1| ≥ |P†
s̃ |, and we have ε−2(580k+2m)|Pf

i | > |P†
s̃ | due to Claim 15.

Moreover, the operations performed in steps 12 and 13 of Algorithm 1 ensure that (Ci−1, P†
s̃ )

is a descendant of (Ci−1, P†). This completes the proof of Lemma 14. ◀

Following the approach in Case (1), we consider a multi-set where each p ∈ Pn
i is replaced

by the nearest center c(p) in Ci−1. We define the multi-set as P ′
i = {c(p) : p ∈ Pn

i } ∪ Pf
i .

Intuitively, we can closely simulate this multi-set using the union of a subset of {c(p) : p ∈ Pn
i }

and a set of points sampled from Pf
i , and the centroid of the simulated set is close to c∗

i ,
given that the squared distance from each p ∈ Pn

i to c(p) is upper-bounded by a small value
and sufficient points from Pf

i can be sampled. This motivates the following lemma.

▶ Lemma 16. If |Pf
i | > ε

17 |Pi|, then the following event happens with probability at least 1
15 :

(Ci−1, P†) has a descendant (Ci−1 ⊎ {ci}, P‡) with {p ∈ P : ∆(p, Ci−1 ⊎ {ci}) > ε∆(P)
8k|Pi| } ⊆ P‡

and ∆(Pi, ci) < (1 + ε
2 )∆(Pi) + ε

2k ∆(P).

Proof. Denote by (Ci−1, P‡) the descendant of (Ci−1, P†) claimed in Lemma 14. When
calling Algorithm 1 with (Ci−1, P‡), we independently and uniformly sample N points from
P‡ and take M copies of each center from Ci−1 to construct a multi-set S. (Ci−1, P‡) has
a child (Ci−1 ⊎ {c(S ′)}, P‡) for each S ′ ⊂ S with |S ′| = M . By Lemma 8 (with t = N

and λ = 1
6 ) and the fact that Pf

i ⊆ P\Bi−1 ⊆ P‡ and ε−2(580k + 2m)|Pf
i | > |P‡| (due to

Lemma 14), we know that S contains no less than M points uniformly distributed in Pf
i

with probability at least 1 − e−ε2N/(72(580k+2m)) > 1
3 . Moreover, the probability that S has

a subset S ′ consisting of M points uniformly distributed in P ′
i can be lower-bounded by

the same constant, given that there are M copies of each distinct member of P ′
i\Pf

i within
S. Under the assumption that such a subset S ′ exists, Lemma 4 (with λ = 4

5 ) implies that
inequality

||ci − c(P ′
i)||2 ≤ 5∆(P ′

i)
4M |P ′

i|
= ε∆(P ′

i)
20|Pi|

(7)

holds with probability at least 1
5 , where ci = c(S ′) is the centroid of S ′. Putting everything

together, we know that (Ci−1, P‡) has a child (Ci−1 ⊎ {ci}, P‡) satisfying inequality (7) with
probability at least 1

15 .
We now show that (Ci−1 ⊎ {ci}, P‡) satisfies the properties claimed in Lemma 16. By a

similar argument as in the proof of Claim 13, we can obtain the following upper bound on
∆(Pi, ci).
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Algorithm 2 The Algorithm for Euclidean k-MeansOut.

Input: A constant ε ∈ (0, 1) and an instance (P, k, m) of Euclidean k-MeansOut
satisfying P ⊂ Rd

Output: A set C ⊂ Rd of no more than k centers and a set O ⊆ P of no more than
m outliers

1 C ⇐ ∅;
2 for t ⇐ 1 to 15k do
3 Sampling(k, m, ε, ∅, P,C);
4 for each C′ ∈ C do
5 cost(C′) ⇐ min

O′⊆P∧|O′|≤m

∑
p∈P\O′ ∆(p, C′);

6 C ⇐ arg min
C′∈C

cost(C′);

7 O ⇐ arg max
O′⊆P∧|O′|≤m

∑
p∈O′ ∆(p, C);

8 return C, O.

▷ Claim 17. If |Pf
i | > ε

17 |Pi|, then ∆(Pi, ci) < (1 + ε
5 )∆(Pi) + 3ε

10k ∆(P).

Observe that

{p ∈ P : ∆(p, Ci−1 ⊎ {ci}) >
ε∆(P)
8k|Pi|

} ⊆ {p ∈ P : ∆(p, Ci−1) >
ε∆(P)
8k|Pi|

} = P\Bi−1 ⊆ P‡,

where the last step is due to Lemma 14. Combining this with Claim 17, we know that
Lemma 16 is true. ◀

Lemma 12 and Lemma 16 suggest that for each i ∈ {2, · · · , k}, τ(i) holds if τ(i − 1) is
true. Combining this with the initial condition τ(1) being true, we establish the validity of
τ(i) for each i ∈ [k]. The proof of Lemma 10 effortlessly follows from the statement of τ(k).

4 Applications

In this section we show the applications of Algorithm 1. We first address the Euclidean
k-MeansOut problem, and then show how to extend our approach to constrained cases.

4.1 The Algorithm for Euclidean k-MeansOut
Our approach for solving Euclidean k-MeansOut is presented in Algorithm 2, which takes
as inputs a constant ε ∈ (0, 1) and an instance I = (P, k, m) with P ⊂ Rd and |P| = n.
The algorithm iteratively invokes Algorithm 1 to construct a collection of center sets and
returns the one, along with the corresponding outlier set, that minimizes the cost for I. By
analyzing the performance of Algorithm 2, we complete the proof of Theorem 2.

Proof (of Theorem 2). Let (C∗, O∗) be an optimal solution to I, which opens a set C∗ =
{c∗

1, · · · , c∗
k} of k centers from Rd and removes a set O∗ of m outliers from P. For each

i ∈ [k], denote by P∗
i the subset of the points in P\O∗ whose closest center in C∗ is c∗

i . Define
∆(P) =

∑k
i=1 ∆(P∗

i , c∗
i ) =

∑
p∈P\O∗ ∆(p, C∗) as the cost of (C∗, O∗). Moreover, let C be

the collection of center sets constructed by Algorithm 2, and let (C, O) be the solution to I
returned by the algorithm. Observe that the statement in Lemma 10 holds with probability
no less than 15−k. Given that Algorithm 2 invokes Sampling 15k times to construct C, the
probability of the statement in Lemma 10 being true in at least one of these invocations can
be lower-bounded by 1 − (1 − 15−k)15k

> 1 − e−1. Consequently, inequality
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∑
p∈P\O

∆(p, C) ≤
k∑

i=1
min
c∈C

∆(P∗
i , c) ≤ (1 + ε)∆(P) (8)

holds with probability at least 1 − e−1, where the first step is due to the operation in step 9
of Algorithm 2, and the second step follows from Lemma 10. Inequality (8) implies that the
approximation ratio of Algorithm 2 is 1 + ε.

It remains to analyze the running time of Algorithm 2. Lemma 9 implies that invoking
Sampling 15k times takes nd((k + m)ε−1)O(kε−1) time and adds n((k + m)ε−1)O(kε−1)

center sets to C. For each center set from C, the algorithm takes O(ndk) time to compute
the corresponding cost for I. Consequently, we know that Algorithm 2 runs in n2d((k +
m)ε−1)O(kε−1) time. This completes the proof of Theorem 2. ◀

4.2 A Coreset-Based Accelerated Algorithm
In a recent study, Huang et al. [29] showed that a subset of poly(m, k, ε−1) weighted points,
referred to as a coreset, can be identified in linear time for the given instance of Euclidean
k-MeansOut, such that the outlier-removal clustering costs, induced by any set of k

centers, are similar between the coreset and the entire point set. Such a method for coreset
construction can serve as a means to accelerate our algorithm. Specifically, when selecting a
well-performing center set from the collection C, we can compare the clustering costs induced
by the center sets on the coreset rather than the entire point set. This reduces the running
time of the algorithm in Theorem 2 to nd((k + m)ε−1)O(kε−1), with an arbitrarily small loss
in the approximation ratio.

▶ Lemma 18 ([29]). Given a constant ε ∈ (0, 1), an instance I = (P, k, m) of Euclidean
k-MeansOut satisfying P ⊂ Rd and |P| = n, and an algorithm that has the guarantee of
yielding a solution (C, O) satisfying

∑
p∈P\O ∆(p, C) ≤ α · opt, |C| ≤ βk, and |O| ≤ γm for

three real numbers α, β, γ ≥ 1 in T (n, d, k, m) time (opt is the cost of an optimal solution
to I), a weighted subset S ⊆ P satisfying |S| ≤ γm + β(kε−1)O(1) with weight function
w : S → [0, +∞) can be constructed in T (n, d, k, m) + O(ndk) time, such that

min
O′⊆S∧

∑
p∈O′ w(p)≤m

∑
p∈S\O′

w(p)∆(p, C′) ∈ (1 ± αε) min
O′⊆P∧|O′|≤m

∑
p∈P\O′

∆(p, C′)

for each C′ ⊂ Rd with |C′| = k.

To leverage Lemma 18, we give a straightforward and fast bi-criteria approximation
algorithm for Euclidean k-MeansOut, based on the D2-sampling method given by Arthur
and Vassilvitskii [2].

▶ Lemma 19. Given an instance I = (P, k, m) of Euclidean k-MeansOut with P ⊂ Rd

and |P| = n, a center set C ⊂ Rd satisfying |C| = O(k + m) and
∑

p∈P ∆(p, C) ≤ O(opt) can
be identified in O(nd(k + m)) time, where opt is the cost of an optimal solution to I.

Taking as an input the algorithm given in Lemma 19, Lemma 18 yields a coreset of size
((k + m)ε−1)O(1) in O(nd(k + m)) time. Leveraging this coreset allows us to reduce the
running time of our algorithm for Euclidean k-MeansOut to be linear in n, as described in
the following theorem.

MFCS 2024
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▶ Theorem 20. Given a constant ε ∈ (0, 1) and an instance (P, k, m) of Euclidean k-
MeansOut satisfying P ⊂ Rd and |P| = n, there is a (1 + O(ε))-approximation algorithm
running in nd((k + m)ε−1)O(kε−1) time.

Proof. Let S ⊆ P be the coreset constructed by Lemma 18 when taking as inputs constant
ε, instance (P, k, m), and the algorithm in Lemma 19, and let w : S → [0, +∞) be the
corresponding weight function. We have |S| ≤ ((k + m)ε−1)O(1) due to Lemma 18 and
Lemma 19. Our accelerated algorithm for Euclidean k-MeansOut is identical to Algorithm 2,
differing only in steps 6 and 8, where we calculate the outlier-removal clustering costs induced
by the candidate center sets and select the one with minimum cost. We now define

wcost(C′) = min
O′⊆S∧

∑
p∈O′ w(p)≤m

∑
p∈S\O′

w(p)∆(p, C′)

for each C′ ∈ C in step 6 of the algorithm, and select the center set C ∈ C with minimum
value of wcost(C) in step 8.

Observe that calculating wcost(C′) for each C′ ∈ C takes O(|S||C′|d) ≤ d((k + m)ε−1)O(1)

time. Combining this with the fact that we take nd((k + m)ε−1)O(kε−1) time to construct
a collection C of n((k + m)ε−1)O(kε−1) candidate center sets (as argued in the proof of
Theorem 2), we know that the accelerated algorithm runs in nd((k + m)ε−1)O(kε−1) time.

The analysis of the approximation ratio of our accelerated algorithm follows that of
Algorithm 2 (given in the proof of Theorem 2). Denote by (C̃, Õ) the solution to I constructed
by the accelerated algorithm, and let (C, O) be a solution to I satisfying inequality (8). We
have∑

p∈P\Õ

∆(p, C̃) ≤ wcost(C̃)
1 − O(ε) ≤ wcost(C)

1 − O(ε) ≤ 1 + O(ε)
1 − O(ε)

∑
p∈P\O

∆(p, C), (9)

where the first and third steps follow from the approximation guarantee of the coreset given
by Lemma 18 and Lemma 19, and the second step is due to the fact that the center set C̃
selected by our accelerated algorithm satisfies wcost(C̃) = minC′∈C wcost(C′). Combining
inequality (9) with inequality (8), we know that the approximation ratio of the accelerated
algorithm is 1 + O(ε). ◀

5 Extensions to Constrained Cases

Constrained k-MeansOut problems generalize k-MeansOut by introducing additional
constraints on the feasibilities of solutions. For example, in the capacitated generalization,
there is an upper bound on the size of each cluster. Similarly, in the lower-bounded
generalization, each cluster must contain at least a specified number of points. There are
known frameworks for reducing constrained k-MeansOut problems to their outlier-free
counterparts with small losses in the approximation ratios [32, 13]. Combined with the
approximation schemes applicable in outlier-free cases, such as the ones given in [8, 16, 4],
these frameworks enable the development of (1 + ε)-approximation algorithms for constrained
k-MeansOut problems. However, similar to the unconstrained case, the reductions given
in [32, 13] require time exponentially dependent on m.

An apparent distinction between constrained k-MeansOut problems and the uncon-
strained counterpart lies in the locality property described in Section 1.1: In the former,
clusters in an optimal solution can be quite different from the ones with minimum clustering
cost, as additional constraints are imposed on their feasibilities. Fortunately, Lemma 10
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implies that a near-optimal set of centers corresponding to any outlier-removal k-clustering
result can be found by Algorithm 1, including those imposed with additional constraints.
Given k good-enough centers, it is sufficient to remove the outliers and assign each point
to a center under the additional constraints. Indeed, combining Algorithm 1 with problem-
specific methods for identifying outliers and assigning points, we obtain the first PTASs for
constrained k-MeansOut problems in Euclidean spaces for constant k and super-constant
m, including capacitated and fair k-MeansOut.

Our algorithms for constrained k-MeansOut problems closely resemble Algorithm 2,
with the only difference being in the construction of the solution based on C (as shown in
steps 5-10). Given a set P ⊂ Rd with |P| = n, a real number ε ∈ (0, 1], and two positive
integers k and m, let C be the collection of center sets constructed by Algorithm 2. By
Lemma 10 and the fact that C is constructed by invoking Sampling 15k times, we know
that the following event happens with probability no less than 1 − (1 − 15−k)15k

> 1 − e−1:
For any k disjoint subsets P1, · · · , Pk of P with

∑k
i=1 |Pi| = n − m, there is a center set

C ∈ C satisfying

k∑
i=1

min
c∈C

∆(Pi, c) ≤ (1 + ε)
k∑

i=1
∆(Pi). (10)

This implies a good chance of finding a near-optimal set of centers corresponding to any
outlier-removal k-clustering result in C. The next step involves developing problem-specific
methods to remove m outliers and partition the remaining points into k clusters based on
the given center set, with the objective of minimizing the clustering cost (defined as the sum
of the squared distances from the points to the corresponding centers) while satisfying the
specified additional constraints. If we can remove the outliers and partition the points in
an optimal way, then the guarantee of the center set given in inequality (10) suggests the
achievement of a (1 + ε)-approximation solution.

5.1 The Algorithm for Capacitated k-MeansOut
Capacitated clustering is one of the most extensively studied generalizations of the standard
clustering formulation, which imposes an upper-bound constraint on the size of each cluster.
An Euclidean instance of capacitated k-MeansOut is specified by a set P ⊂ Rd of n points,
two positive integers k and m, and a capacity u ≥ 1. A feasible solution to the instance
selects a set C ⊂ Rd of centers and a set O ⊆ P of outliers, and assigns each point p ∈ P\O
to a center φ(p) ∈ C, such that |C| ≤ k, |O| ≤ m, and |φ−1(c)| ≤ u for each c ∈ C. The
cost of such a solution is

∑
p∈P\O ||p − φ(p)||2. The goal of the problem is to find a feasible

solution with minimum cost.
Motivated by the method for solving outlier-free constrained problems given in [16], we

reduce the task of identifying outliers and assigning points for capacitated k-MeansOut to
the well-known minimum-cost circulation problem [40], which can be defined as follows.

▶ Definition 21 (minimum-cost circulation). An instance of the minimum-cost circulation
problem is specified by a directed graph G(V, A) with a set V of vertices and a set A of
arcs, where each (v, w) ∈ A has a cost ∆(v, w) ≥ 0, a capacity u(v, w) ≥ 0, and a demand
l(v, w) ∈ [0, u(v, w)]. A feasible solution to the instance associates each (v, w) ∈ A with a
flow f(v, w) ∈ [l(v, w), u(v, w)] such that

∑
w:(v,w)∈A f(v, w) =

∑
w:(w,v)∈A f(w, v) for each

v ∈ V. The cost of this solution is
∑

(v,w)∈A ∆(v, w)f(v, w). The problem aims to find a
feasible solution with minimum cost.

MFCS 2024
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Let I = (P, k, m, u) be an Euclidean instance of capacitated k-MeansOut. As previously
discussed, Algorithm 2 can construct a collection C of center sets, including a near-optimal
one for I, with high probability. For each C ∈ C, we construct an instance of minimum-cost
circulation as follows.

The vertex set V consists of the points in P , the centers in C, and three additional vertices
v1, v2, and v3.
There is an arc (v3, v1) ∈ A with ∆(v3, v1) = 0 and u(v3, v1) = l(v3, v1) = |P|.
For each p ∈ P and c ∈ C, there is an arc (p, c) ∈ A with ∆(p, c) = ||p − c||2, u(p, c) = 1,
and l(p, c) = 0. Here, f(p, c) = 1 signifies the assignment of point p to center c (i.e.,
φ(c) = p).
For each p ∈ P , there is an arc (p, v2) ∈ A with ∆(p, v2) = 0, u(p, v2) = 1, and l(p, v2) = 0.
A point p with f(p, v2) = 1 is identified as an outlier. To ensure that the outliers are
no more than m (more formally,

∑
p∈P f(p, v2) ≤ m), we add to A an arc (v2, v3) with

∆(v2, v3) = 0, u(v2, v3) = m, and l(v2, v3) = 0.
To ensure that each p ∈ P is assigned to a center in C or identified as an outlier (i.e.,∑

c∈C∪{v2} f(p, c) = 1), we add to A an arc (v1, p) with ∆(v1, p) = 0 and u(v1, p) =
l(v1, p) = 1.
To satisfy the capacity constraint imposed on each c ∈ C (i.e.,

∑
p∈P f(p, c) ≤ u), we add

to A an arc (c, v3) with ∆(c, v3) = 0, u(c, v3) = ⌊u⌋, and l(c, v3) = 0.

Given that all the capacities and demands in the instance of minimum-cost circulation
described above are integers, its optimal integral solutions can be found in (nk)O(1) time [40].
It can be seen that these solutions correspond to optimal ways of identifying outliers and
assigning points for the given center set.

Let (C∗, O∗, φ∗) be an optimal solution to I, where C∗ = {c∗
1, · · · , c∗

k}. For each i ∈ [k],
define P∗

i = {p ∈ P\O∗ : φ∗(p) = c∗
i }. Inequality (10) implies that there is a center set

C ∈ C satisfying

k∑
i=1

min
c∈C

∆(P∗
i , c) ≤ (1 + ε)

k∑
i=1

∆(P∗
i ) = (1 + ε)

∑
p∈P\O∗

||p − φ∗(p)||2 (11)

with constant probability. Based on an optimal integral solution to the instance of minimum-
cost circulation corresponding to such a center set C, we can construct a solution (C, O, φ) to
I satisfying

∑
p∈P\O

||p − φ(p)||2 ≤
k∑

i=1
min
c∈C

∆(P∗
i , c). (12)

Inequalities (11) and (12) imply that a (1 + ε)-approximation solution to I has been
constructed. Recall that C is of size n((k + m)ε−1)O(kε−1) and can be constructed in
nd((k + m)ε−1)O(kε−1) time (due to Lemma 9). Combining this with the fact that the
instance of minimum-cost circulation corresponding to each center set in C can be solved
in (nk)O(1) time, we know that constructing the (1 + ε)-approximation solution takes
nO(1)d((k + m)ε−1)O(kε−1) time.

▶ Theorem 22. Given a constant ε ∈ (0, 1) and an Euclidean instance (P, k, m, u) of
capacitated k-MeansOut satisfying P ⊂ Rd and |P| = n, there is a (1 + ε)-approximation
algorithm running in nO(1)d((k + m)ε−1)O(kε−1) time.
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5.2 The Algorithm for Fair k-MeansOut
Motivated by applications related to fair data representation [5], fair clustering problems,
which impose constraints on the proportions of each type of points within the clusters, have
garnered significant attention. We consider the fair k-MeansOut problem defined in [13].
An instance of the problem is specified by a collection P = {P1, · · · , Pℓ} of ℓ disjoint sets of
points in Rd, a positive integer k, two fairness vectors α⃗, β⃗ ∈ [0, 1]ℓ, and an outlier vector
m⃗ ∈ Nℓ. A feasible solution to this instance selects a set C ⊂ Rd of no more than k centers
and a set O ⊆

⋃ℓ
i=1 Pi of outliers, and assigns each point p ∈

⋃ℓ
i=1 Pi\O to a center φ(p) ∈ C,

such that |Pi ∩ φ−1(c)||φ−1(c)|−1 ∈ [αi, βi] and |Pi ∩ O| ≤ mi for each i ∈ [ℓ] and c ∈ C.
The cost of the solution is

∑ℓ
i=1

∑
p∈Pi ||p − φ(p)||2.

Similar to our previous strategy, we address the fair k-MeansOut problem based on
a collection of center sets constructed by repeatedly invoking Algorithm 1. Unfortunately,
identifying outliers and assigning points for a given set of centers in an optimal way within
polynomial time is no longer feasible. Specifically, a reduction from the 3D-matching problem
suggests that this task is NP-hard [5]. Using the mixed-integer linear programming-based
algorithm given in [13], this task can be completed in an exponential time.

▶ Lemma 23 ([13]). Given a set C ⊂ Rd of no more than k centers and an instance
I = (P, k, α⃗, β⃗, m⃗) of fair k-MeansOut satisfying |P| = ℓ,

∑
P∈P |P| = n,

∑ℓ
i=1 mi = m,

and P ⊂ Rd for each P ∈ P, a feasible solution to I with minimum cost among the ones
taking C as the center set can be constructed in (kℓ)O(kℓ)nO(1)dL time, where L is the bit-size
of I.

Using our sampling-based algorithm for constructing center sets (m is replaced with∑ℓ
i=1 mi) and the algorithm for constructing solutions given in Lemma 23, we obtain the

following approximation scheme for fair k-MeansOut.

▶ Theorem 24. Given a constant ε ∈ (0, 1) and an instance I = (P, k, α⃗, β⃗, m⃗) of fair
k-MeansOut satisfying |P| = ℓ,

∑
P∈P |P| = n,

∑ℓ
i=1 mi = m, and P ⊂ Rd for each P ∈ P,

there is a (1 + ε)-approximation algorithm running in nO(1)d((k + m)ε−1)O(kε−1)(kℓ)O(kℓ)L

time, where L is the bit-size of I.

6 Conclusions

In this paper, we present (1 + ε)-approximation algorithms with running times exponential
in k for Euclidean k-MeansOut and constrained generalizations of the problem, including
capacitated and fair k-MeansOut. For each considered problem, our proposed algorithm
stands for the first PTAS for constant k.

Considering the APX-hardness of Euclidean k-MeansOut [3], it is unlikely to design a
(1 + ε)-approximation algorithm without exponential dependence on k in high dimensions.
Nonetheless, exploring ways to improve the running time of our algorithm for Euclidean
k-MeansOut remains an interesting direction for future research. Especially, one can see
whether it is possible to develop a (1+ε)-approximation algorithm running in (ndm)O(1)f(k, ε)
time for some positive function f .
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Abstract
In the all-pairs suffix-prefix (APSP) problem [Gusfield et al., Inf. Process. Lett. 1992], we are given a
dictionary R of r strings, S1, . . . , Sr, of total length n, and we are asked to find the length SPLi,j of
the longest string that is both a suffix of Si and a prefix of Sj , for all i, j ∈ [1 . . r]. APSP is a classic
problem in string algorithms with applications in bioinformatics, especially in sequence assembly.
Since r = |R| is typically very large in real-world applications, considering all r2 pairs of strings
explicitly is prohibitive. This is when the data structure variant of APSP makes sense; in the same
spirit as distance oracles computing shortest paths between any two vertices given online.

We show how to quickly locate k-approximate matches (under the Hamming or the edit distance)
in R using a version of the k-errata tree [Cole et al., STOC 2004] that we introduce. Let SPLk

i,j be
the length of the longest suffix of Si that is at distance at most k from a prefix of Sj . In particular,
for any k = O(1), we show an O(n logk n)-sized data structure to support the following queries:

One-to-Onek(i, j): output SPLk
i,j in O(logk n log log n) time.

Reportk(i, d): output all j ∈ [1 . . r], such that SPLk
i,j ≥ d, in O(logk n(log n/ log log n + output))

time, where output denotes the size of the output.

In fact, our algorithms work for any value of k not just for k = O(1), but the formulas bounding
the complexities get much more complicated for larger values of k.
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1 Introduction

Given a dictionary R of r strings, S1, . . . , Sr, of total length n, the all-pairs suffix-prefix
(APSP) problem asks us to find, for each string Si, i ∈ [1 . . r], its longest suffix that is a prefix
of string Sj , for all j ̸= i, j ∈ [1 . . r]. APSP is a classic problem in string algorithms [18] with
numerous applications in sequence assembly [18, 26, 31, 7, 10]. Gusfield et al. [19] presented
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an algorithm running in the optimal O(n + r2) time for solving APSP, assuming all strings
in R are over an integer alphabet of size σ = nO(1). Many other optimal algorithms exist for
APSP aiming at a smaller memory footprint [27, 36, 24].

DNA sequences (fragments) read by sequencing machines are typically assembled by first
computing the maximal overlap between every pair of sequences. The size r of dictionary R

in this case is very large. In particular, r2 usually dominates n, and thus the r2 factor is the
bottleneck both in the time and the space complexity of assembly applications. For instance,
in typical benchmark datasets for genome assembly using short DNA fragments, r is in the
order of 106 to 108 and n is in the order of 108 to 1010. Hence r2 dominates n significantly.

In [25], we initiated a study on several data structure variants of APSP. Let SPLi,j , for
any i, j ∈ [1 . . r], denote the length of the longest suffix of Si that is a prefix of Sj . We
proposed O(n)-sized data structures to support the following queries:

One-to-One(i, j): output SPLi,j in O(log log r) time.
Report(i, d): output all distinct j ∈ [1 . . r] such that SPLi,j ≥ d, for some d ∈ N, in
O(log n/ log log n + output) time, where output denotes the size of the output.

We also proposed other O(n)-sized data structures for answering One-to-All(i), Count(i, ℓ),
and Top(i, K) queries efficiently (see [25] for the precise definitions of these queries).

This framework is interesting both from a practical and from a theoretical perspective.
By being able to answer different types of such queries efficiently, practitioners may be able
to design alternative algorithms that avoid the r2 factor in their time or space complexity;
see the recent work of Talera et al. [33], which investigates practical aspects of our framework.
Furthermore, the underlying data structure problems are also appealing from a theoretical
perspective: (i) they are analogous to distance oracles for networks [35, 28, 14, 13, 11, 17];
and (ii) they are special types of internal pattern matching data structures [21, 20, 2, 1, 12, 4].

In this work, we make the next natural yet challenging step, that is, extend the framework
we introduced in [25] to support k-approximate suffix-prefix queries. Indeed, these are the
most useful queries in real-world applications. Approximate variants of APSP, under the
Hamming or edit distance, have been considered in the literature. Barton et al. [5] showed
how to solve the problem for two strings (r = 2), under Hamming or edit distance k, in O(nk)
time. Thankachan et al. [34] showed how to solve the problem in O((n+r2) logk n) time under
Hamming or edit distance k, for any r and k = O(1). Many other proposed methods aimed at
practical efficiency and are thus based on filtering strategies [29, 37, 22]. They typically use
a two-step approach: candidate regions are identified that potentially correspond to sought
matches; and those candidates are checked to actually verify the desired matching condition.
These approaches do not yield strong theoretical time bounds but they are very efficient in
practice. In any case, none of the proposed methods addresses the data structure variant.

Problems Statements. Let us start with the following basic definition.

▶ Definition 1. For any given set R = {S1, . . . , Sr} of r strings, we define the longest
suffix-prefix of Si and Sj with k-errors as the longest suffix Ui of Si that is at Hamming/edit
distance at most k from some prefix Vj of Sj. We denote the length of Ui by SPLk

i,j.

By fixing k apriori, we want to efficiently compute the values SPLk
i,j for certain (Si, Sj)

pairs given in an online fashion. In particular, we consider the following queries:
One-to-Onek(i, j): output SPLk

i,j .
Reportk(i, d): output all distinct j ∈ [1 . . r] such that SPLk

i,j ≥ d, for some d ∈ N.



W. Zuba, G. Loukides, S. P. Pissis, and S. V. Thankachan 85:3

The offline version (that is, the k-approximate variant of APSP), which we denote by APSPk,
is defined as follows: output SPLk

i,j , for all 1 ≤ i, j ≤ r. Recall that APSPk has already been
solved by Thankachan et al. [34] in O((n + r2) logk n) time for any k = O(1).

▶ Observation 2. For Hamming distance we always have that |Ui| = SPLk
i,j = |Vi|. However,

for edit distance it does not need to be the case: we cannot always maximize the lengths
of both suffix and prefix simultaneously. For Si = xx · · · xabcd, Sj = bcdeyy · · · y, we have
SPL1

i,j = 4 as abcd is at edit distance 1 from bcd, but bcd is at edit distance 1 from bcde, and
abcd is at edit distance 2 from bcde. In this sense, edit distance is a bit more complicated.

Results and Paper Organization. We assume the standard word-RAM model of computa-
tions with word size w = Ω(log n), where n is the input size. We present our results below for
any k = O(1); our algorithms work for any arbitrary value of k but the formulas bounding
the complexities get much more complicated for larger values of k. For the exact time
complexities we defer the reader to the actual theorem statements (Theorems 13 and 14).

Query Space (words) Query time Note
One-to-Onek(i, j) O(n logk n) O(logk n log log n) Theorem 13
Reportk(i, d) O(n logk n) O(logk n(log n/ log log n + output)) Theorem 14

Let us introduce the central notion of extension-prefix pair for any two strings X and Y .

▶ Definition 3. A pair of strings (Y, X) is an extension-prefix pair, if X is a prefix of
Y ; and hence Y is called an extension of X. A pair of strings (Y, X) is a k-approximate
extension-prefix pair, if X is at (Hamming or edit) distance at most k from some prefix of Y .

Section 2 introduces the necessary definitions and notation as well as a few observations.
In Section 3, we introduce a version of the k-errata tree [15] and show its efficient construction
as well as some of its properties that are crucial to arrive at our main results. Specifically in
Section 3.1, we show the construction for edit distance, and then also state the changes for
the (easier) case of the Hamming distance. In Section 3.2, we show the key combinatorial
property of the extension-prefix pairs (Lemma 5) in our k-errata tree. Section 3.3 shows an
upper bound on the size of the k-errata tree introduced here for the interesting case where
k = O( log n

log log n ), which is then used to bound the running time and space of the algorithms
– we are not interested in k = ω( log n

log log n ) as in this case we have poly(n) = O(logk n), and
hence trivial algorithms become (at least) as efficient as our approach. Section 3.4 refines
the combinatorial Lemma 5 to its algorithmic applications (Corollaries 10–12). For the sake
of an application, consider that we have two dictionaries D1 and D2. We concentrate not
only on pairs of strings which are at distance at most k, but globally, for any string Y ∈ D2,
we show how to compute its longest prefix which is at distance at most k from any other
string X ∈ D1, and further show how to compute the set of lengths of all such prefixes.

Finally, in Sections 4.1 and 4.2, we apply our techniques to construct the data structures
for answering One-to-Onek and Reportk queries, respectively. Full detailed proofs omitted
from the main text are included in Appendix A.

2 Preliminaries

We consider strings over an integer alphabet Σ = [1 . . σ] of size σ. The elements of Σ are
called letters. A string X = X[1 . . n] is a sequence of letters from Σ; we denote by |X| = n

the length of X. The fragment X[i . . j] of X is an occurrence of the underlying substring
S = X[i] · · · X[j] occurring at position i in X. A prefix of X is a substring of X of the form
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X[1 . . j] and a suffix of X is a substring of X of the form X[i . . n]. The reverse of X is
the string XR = X[n] · · · X[1]. By LCP(X, Y ), we denote the length of the longest common
prefix of strings X and Y . The Hamming distance of two equal-length strings is the number
of positions where the strings differ. The edit distance (or Levenshtein distance) of two
strings X and Y is the minimum number of edit operations required to transform X into Y .
Here, by edit operation we mean an insertion, a substitution, or a deletion of a single letter.
A set D of strings is called a dictionary.

The following edit-distance property (Lemma 4) underlies most string algorithms on edit
distance; e.g., [23]. We provide a proof of this property in Appendix A for completeness.

▶ Lemma 4. For any two strings X and Y , there exists a smallest sequence of edit operations
changing X to Y satisfying recursively that the first operation occurs at position LCP(X, Y )+1.
By recursively, we mean that after applying the first operation on X to obtain X ′, the leftmost
operation to get from X ′ to Y occurs at position LCP(X ′, Y ) + 1 ≥ LCP(X, Y ) + 1.

Let D be a dictionary of n = |D| strings. A node in the trie of D is called branching if
it has at least two children and terminal if it represents a string in D. The compacted trie
T of D is obtained from the underlying trie by removing all nodes except the root node,
the branching and the terminal nodes. The removed nodes are called implicit while the
remaining ones are called explicit. Each terminal node corresponding to a string X from D

is labeled with the identifier of X: a pointer to X in D. Edge labels are stored as pointers
to fragments of strings in D and so the compacted trie takes |T | = O(n) extra space.

Our algorithms use a version of the famous k-errata tree of Cole et al. [15]. The tree nodes
store information about strings and a representation of edit operations applied on them. In
order to efficiently operate on those edit operations we define their representation here as an
abstract structure and describe the operations that are performed on such structures later.

For convenience we represent multisets of edit operations by lists sorted non-decreasingly.
A Hamming distance list consists of up to k elements, where every element is denoted by
lS , for l ∈ [1 . . n]. An edit distance list consists of up to k elements, where every element is
denoted by lE for l ∈ [1 . . n], E ∈ {S, I, D}; elements are first sorted by l, then by D < S < I,
and lD elements may repeat (denoting that several letter deletions occur at the same position
l). A single list does not contain both lS and lI , or multiple such elements, for the same l.
By |ℓ| we denote the number of elements in list ℓ (counting the multiplicities). For any two
lists ℓ1, ℓ2, by ℓ1 ⊆ ℓ2, we denote that every element of ℓ1 appears in ℓ2 and the multiplicity
of any element in ℓ1 does not exceed its multiplicity in ℓ2. By ℓ1 ∪ ℓ2 we denote the union of
the two lists; for each element of ℓ1 or ℓ2 its multiplicity is equal to its maximum multiplicity
in ℓ1 and ℓ2. By max+(ℓ) we denote the smallest element that can be inserted at the end
of list ℓ without breaking the specified condition of the list being non-decreasing; that is,
the maximum element of the list if this element may appear multiple times and the smallest
larger element if the currently maximal element cannot appear multiple times (max+(ℓ) = lD
when the last element of ℓ is equal to lD, (l − 1)S or (l − 1)I , max+(∅) = 1D). By ℓd we
denote the prefix of list ℓ containing only the elements lE such that l ≤ d, and by surpl(ℓ) we
denote the surplus of lD operations over lI operations in ℓ, that is |{lD ∈ ℓ}| − |{lI ∈ ℓ}|; i.e.,
by how many letters the length of the string decreases after applying the operations from ℓ.

3 Finding Approximate Extension-Prefix Pairs using the k-Errata Tree

For any dictionary D, extension-prefix pairs can be found by using a trie of D. Every such
pair corresponds to a descendant-ancestor node pair in the trie. By using this property, all
such pairs can be listed in the optimal time. In this section, we show that for k-approximate
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extension-prefix pairs, a similar property holds for a version of the k-errata tree of the trie of
D. We start by showing the tree construction, then we show the counterpart of this property,
and we end by showing how to use the tree for finding k-approximate extension-prefix pairs.

The Hamming distance can be treated as a special case of edit distance, where only
substitution operations are allowed; we thus focus on the edit distance construction, and then
comment on the differences that should be made to obtain the tree for Hamming distance.
Let D be a dictionary of n = |D| strings and T be the compacted trie of D. In the complexity
analysis of our construction, we assume that k ≤ log n

2 log log n [15]. (The construction itself and
the combinatorial lemmas do not assume any bound on k.)

We compute the heavy-light decomposition of T in O(n) time [32]. Let s(w) denote the
number of node labels in the subtree of T rooted at w (these labels identify the full strings
from D). We call an edge (u, v) of T heavy if s(v) is maximal among every edge originating
from u (breaking ties arbitrarily). All other edges are called light. We call a node that is
reached from its parent through a heavy edge heavy; otherwise, it is called light. The heavy
path of T is the path that starts at the root of T and at each node on the path descends to the
heavy child as defined above. The heavy path decomposition is then defined recursively: it is
a union of the heavy path of T and the heavy path decompositions of the off-path subtrees of
the heavy path. The crucial well-known property of this decomposition is that every root to
node path in T passes through O(log n) light nodes. Our k-errata tree construction actually
refers to the heavy-light decomposition of the uncompacted trie of D – in particular to the
direct children of the branching nodes even if those are implicit. The decompositions of both
the uncompacted and the compacted versions of T are in a bijection: a child of a branching
node of the uncompacted version is light if and only if its closest explicit descendant is light
in the compacted version. Therefore we refer to the nodes of the uncompacted version of
T , and access all children of the branching nodes in time proportional to the size of its
compacted version, obtaining the compacted version of the errata tree in the process.

3.1 The k-Errata Tree Construction

T

a

b
c

d
e

f
g

h

c
d
e
b
f

Y

X

T (1)

a

b

c
d

e

f
g

h

b
f

d
e
b
f

c

d
e

b
f

d

e
b

f

Y

(X, 2I)
(X, 2S) X

(X, 2D)

T (2)

a

b

c

d
e

f

g
h

b

f
g

h

g
h

g

h

e
b

f

d

e
b

f

e

b
f

c

d
e

b
f

d

e
b

f

e

b
f

Y(X, 2I),
(X, 2S , 3I)(Y, 6I)

(Y, 6S)
(Y, 6D)

(X, 2S , 3S) (X, 2S),
(X, 2D, 2I)

(X, 2D, 2S),
(X, 2S , 3D)

X
(X, 2D)

(X, 2D, 2D)

Figure 1 Example of an edit distance 1- and 2-errata tree for trie T of strings {Y = abcdefgh, X =
acdebf}. The rectangles mark the nodes with multiple distinct labels. Notice that a node with label
(Y, 6I) has an ancestor with two labels (X, ℓ), since |{2I} ∪ {6I}| ≤ 2, X is at edit distance at most
2 from some prefix of Y . Label (X, 2S , 3I) does not provide such result as |{2S , 3I} ∪ {6I}| = 3 > 2.

We denote the k-errata tree of T by T (k) and construct it as a 1-errata of T (k−1), where T (0) =
T . Before constructing the 1-errata tree of T , we compute the heavy-light decomposition
of T . For every light node v at string depth l = d(v) in T that is reached from its parent
through an edge labeled with a ∈ Σ, we create three copies of its subtree (inspect Figure 1):
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In one copy, corresponding to a substitution, we change the labels of the subtree nodes
from X to (X, lS) and merge it with the subtree of its heavy sibling.
In one copy, corresponding to a deletion, we change the labels of the subtree nodes from
X to (X, lD) and merge it with the subtree of its parent.
In one copy, corresponding to an insertion, we change the labels of the subtree nodes
from X to (X, lI) and merge it with the child of its heavy sibling reached through the
edge labeled with letter a (or create such a child if it does not exist).

A node of 1-errata with label: (X, lS) can be reached by replacing the l-th position of X by
the heavy letter (the letter used to reach the heavy child from the node reached by spelling
X[1 . . l − 1] in T ); (X, lD) can be reached by deleting the letter at the l-th position in X;
and (X, lI) can be reached by inserting that heavy letter before the l-th position of X. It
should be clear that in the Hamming distance case only the first copy is required.

For convenience, we represent all the added parts of labels collectively with lists of
edit operations (see Section 2). To keep the data structure simpler, we avoid introducing
redundant labels that would later make proofs and implementations more complicated (in
particular an insertion or deletion would change the positions of the edits to the right).
Specifically, we produce a copy of a label (X, ℓ) only if the added element lE is greater or
equal to max+(ℓ). This means that the lists are sorted non-decreasingly. We do not miss any
significant sequence of edit operations due to Lemma 4 as shown in the proof of Lemma 5.

Since we may possibly delete a few next letters from the same position (after removing a
single letter the next one takes its position) we have to allow elements lD to appear in a list
multiple times. In case of insertions or substitutions this is not needed (and we can prioritize
deletions over other operations as there is no reason to first modify a letter and then delete
it), hence we do not allow two elements lI or lS (or lI and lS) for the same l ∈ [1 . . n]. As
such, the order of elements lE , l ∈ [1 . . n], E ∈ {S, D, I}, is defined by first comparing l, and
then D < S < I, thus the definition of max+(ℓ) (see Section 2).

In our construction of trie T , unlike the one used in the classic construction [15] where D

is made prefix-free, two terminal nodes can lie on the same heavy path (for an extension-prefix
pair (Y, X) for X, Y ∈ D the node representing X may in fact be an internal labeled node
that lies on a heavy path). This does not allow for checking if Y is a k-approximate prefix of
X in the same way since it is already an extension of X (in case of edit distance one can
always check if the difference of lengths is at most k, and in case of Hamming distance simply
respond negatively if |X| < |Y |); for example, when D = {X = abc, Y = abcde}, T (2) = T ,
there is a single heavy path since T has no light nodes. To mitigate this problem and still
have the nice properties of our construction (ancestor-descendant relations of the labeled
nodes), for a labeled node u with label (X, ℓ) that has (non-trivial) descendants, we also
create a copy with label (X, ℓ ∪ (d(u) + 1)I) and add it to its heavy child (insertion after the
last position of X). Substitution and deletion after the end of a string clearly do not make
sense, thus an insertion operation is the only one allowed. This change does not influence
our bounds on the k-errata tree size as the total size of all such subtrees is the number of
the labeled nodes; we change this from O(|T | logk |T |) to O(|T |(log |T | + 1)k).

We remark, that our structure differs substantially from the original k-errata from [15]. In
particular, we do not use extra letters outside of the alphabet to mark the edges transitioning
from the original tree to a copied part, and instead actually merge the nodes corresponding
to the same string. Thanks to this change we do not need to use the extra copies called group
trees, which makes the search algorithm simpler in the case of our structure (the first place
where the search can diverge from the heavy path is the place where the pattern actually
diverges from the heavy path) and running in asymptotically the same time (up to an f(k)
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factor for some f and k = O( log n
log log n )). We do not describe the algorithm in detail however,

since in this paper we are only interested in internal queries (the data structure is constructed
for the fixed dictionary D and no other string is ever queried). All those simplifications
pose the cost of dealing with the lists of edit operations, which are not present in the data
structure from [15], but we show how to do that efficiently in the remainder of this section.

3.2 Extension-Prefix Pairs in a k-Errata Tree
We now prove the key combinatorial property of the described k-errata tree of dictionary D.

▶ Lemma 5. For any two elements X, Y ∈ D, X is at edit (resp. Hamming) distance at
most k from some prefix of Y if and only if there exist two nodes, u and its descendant v, in
T (k) with labels (X, ℓ1) and (Y, ℓ2) respectively, such that |ℓ1 ∪ ℓ2| ≤ k, where T (k) is the edit
(resp. Hamming) distance k-errata tree of D.
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Figure 2 Illustration of a part of the edit distance 2-errata tree T for dictionary D containing
X = abacab and Y = abccbabca with the choice of heavy paths depicted with thicker lines. X is
at edit distance 2 from Y ′ = abccbab, which is a prefix of Y ; the operations used to transform X

into Y ′ are substitution at position 3 and insertion at position 5. The lowest common ancestor of
nodes with labels X and Y is at string depth 2 (ab); as shown in the proof of Lemma 5 there exists
a child of this node that is a common ancestor of nodes with labels (X, ℓ′

1) and (Y, ℓ′
2) such that

ℓ′
1 ∪ ℓ′

2 = {3S}, and a descendant of this child with label (X, ℓ1) that is an ancestor of a node with
label (Y, ℓ2), such that |ℓ1 ∪ ℓ2| = 2. Conversely, since there exists such an ancestor-descendant pair
of nodes one can compute the list of at most 2 edit operations that transform X into Y ′.

Sketch of Proof. The proof of the forward implication follows a path down the k-errata
tree – one starts with empty lists ℓ1 and ℓ2. Each time an edit operation is applied to X one
adds an element to ℓ1 or ℓ2 or both (depending on the edit operation and the location of the
heavy child) and finds a descendant of the current node that is a common ancestor of nodes
with labels (X, ℓ1) and (Y, ℓ2). The backward implication can be obtained by reversing that
approach and producing a list of at most k edit operations that transform X into a prefix of
Y (see Appendix A for the full proof and Figure 2 for an example of the construction). ◀

The full proof shows that, if a prefix Y ′ of Y is at distance at most k from X, then
there exists a pair of nodes u and v with labels (X, ℓ1) and (Y, ℓ2), respectively, in an
ancestor-descendant relationship, such that f(d(u)) − k + |ℓ1 ∪ ℓ2| ≤ |Y ′| ≤ f(d(u)), where
f(l) = l + surpl(ℓl

2) is the actual length of the prefix of Y represented by the ancestor of v

at depth l. In particular, the longest prefix is represented by either such a pair for u = v

(the whole Y is at edit distance at most k from X), or a pair where |ℓ1 ∪ ℓ2| = k, and hence
ℓ2 = ℓ

d(u)
2 .
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This property and the monotonicity of f(l) for a single label (Y, ℓ2) of node v imply that
to find the longest prefix of Y at distance at most k from X it is enough to focus on the
lowest ancestor u of v with label (X, ℓ1) such that |ℓ1 ∪ ℓ2| ≤ k. In fact, if ℓ2 ̸= ℓ

d(u)
2 , then

both u ̸= v and |ℓ1 ∪ ℓ
d(u)
2 | < |ℓ1 ∪ ℓ2| ≤ k, hence there must exist a pair u′, v′ with labels

(X, ℓ′
1) and (Y, ℓ′

2) respectively, for which d(u′) + surpl(ℓ′d(u′)
2 ) > d(u) + surpl(ℓd(u)

2 ) (we can
extend the prefix Y ′ by inserting the next letter of Y after its last position), hence we get the
following corollary. (The algorithm can easily use ℓ

d(u)
2 for the comparison between different

ℓ2, but it is neater this way.)

▶ Corollary 6. The length of the longest prefix of Y that is at edit distance at most k from
X is equal to the maximum over all node pairs (u, v) of value d(u) + surpl(ℓ2), where u has
label (X, ℓ1), v has label (Y, ℓ2), u is a (potentially trivial) ancestor of v, and |ℓ1 ∪ ℓ2| ≤ k.

This is also the case for the Hamming distance but then surpl(ℓ2) = 0.
When we are interested not only in the longest prefix of Y at edit distance at most k

from X, but in the set of all the prefixes with this property, it is enough to compute the
union of the intervals d(u) + surpl(ℓ2) + [−k + |ℓ1 ∪ ℓ2| . . 0] over all such pairs u and v.

▶ Corollary 7. The set of lengths of prefixes of Y that are at edit distance at most k from X

is equal to the union of intervals d(u) + surpl(ℓ2) + [−k + |ℓ1 ∪ ℓ2| . . 0] over all node pairs
(u, v), where u has label (X, ℓ1), v has label (Y, ℓ2), u is a (potentially trivial) ancestor of v,
and |ℓ1 ∪ ℓ2| ≤ k.

For Hamming distance the same property is simpler as the intervals are singletons {d(u)}.

3.3 Size of the k-Errata Tree
For completeness of the k-errata tree construction, we show a bound on the size of the data
structure for a compacted trie T with at most n explicit nodes and n distinct node labels.
We assume k ≤ log n

2 log log n (for all further complexity considerations), but the properties and
the correctness of the algorithms shown further do not require this assumption on k. For
such a value of k, the size of our data structure is asymptotically the same as of the k-errata
tree from [15] up to an f(k) factor (the bound is not necessarily tight – optimizing the f(k)
value is not a focus of this paper). The proof of Lemma 8 can be found in Appendix A.

▶ Lemma 8. For any compacted trie T with at most n explicit nodes and n distinct node
labels, and for any k ≤ log n

2 log log n , the k-errata tree T (k) has O(nk!(cδ log n)k) explicit nodes
and labels, where cδ = 1 for Hamming distance and cδ = 3 for edit distance.

In particular, a single node label of T has O(k!(cδ log n)k) copies in T (k).

▶ Corollary 9. For any k ≤ log n
2 log log n , we have log |T (k)| = O(k log n).

In what follows, we give the complexity of our algorithms including the proven bound on
the f(k) factor, and additionally the formulas in the most interesting case k = O(1).

3.4 Finding Approximate Prefixes
In Section 3.2, we were interested in a single extension-prefix pair (Y, X), such that X, Y ∈ D.
Here, say that we are given two subdictionaries D1 and D2 such that D1, D2 ⊆ D, and want
to find for every element of D2 its longest prefix that is at distance at most k from some
element of D1 using Corollary 6, or the lengths of all such prefixes using Corollary 7. Let
n = |D|, n1 = |D1|, n2 = |D2|, and let m be the length of the longest string in D.
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By running a DFS on T (k) and storing the labels from all the ancestors of a given node
labeled (Y, ℓ2), Y ∈ D2, we can find all the pairs where this node is the descendant. We need,
however, to take care of the lists of edit operations: for the label (Y, ℓ2), we have to look for
the elements (X, ℓ1), X ∈ D1, stored in the set of ancestor labels, such that |ℓ1 ∪ ℓ2| ≤ k. We
do not want to check all the elements from this set separately however (potentially there are
Ω(n) such elements). We can group the elements based on their lists ℓ1; still for a single ℓ2
there can be

(
m
k

)
such fitting lists ℓ1 for Hamming distance (and even more for edit distance).

Corollary 6 tells us that as long as |ℓ1 ∪ ℓ2| ≤ k it does not matter what is the content of
ℓ1, nor what is the X in the label as long as X ∈ D1. In order to avoid looking for each list
ℓ1 separately, we can store the elements (string depths of nodes with labels (X, ℓ1) for any
X ∈ D1 and ℓ1) grouped by the size of ℓ1 and its intersection with every possible ℓ2.

More formally we can store the information about the ancestors of the current node of
the DFS traversal in stacks indexed with pairs (ℓ, x), where ℓ is a valid list of elements and
x ∈ [0 . . k − |ℓ|]. For a single label (X, ℓ1) of node u we store d(u) in stacks (ℓ, x), such that
ℓ ⊆ ℓ1, |ℓ1|−|ℓ| ≤ x ≤ k−|ℓ| (ℓ1 contains all elements of ℓ plus at most x other elements) upon
reaching u (and remove it when returning to its parent). Since a list can have up to k elements,
every single label (X, ℓ1) is responsible for 2|ℓ1| · (k − |ℓ1| + 1) ≤ 2k(k + 1) elements in stacks,
hence in total the DFS traversal will perform O(2k(k + 1) · |T (k)|) = O(n(k + 1)!(2 · cδ log n)k)
operations on stacks. Notice that we use a sparse representation (hash table) to store only
the non-empty stacks explicitly – the universe of all possible stacks is of size at least mk. We
can access a stack in O(1) worst-case time by using perfect hashing [8].

Now, for a single label (Y, ℓ2) of a node v, Y ∈ D2, to find the deepest node u with label
(X, ℓ1) over all X ∈ D1, such that |ℓ1 ∪ ℓ2| ≤ k, one only needs to take the maximum of the
top elements over at most 2|ℓ2| = O(2k) stacks (ℓ, k − |ℓ2|) for ℓ ⊆ ℓ2. Through the whole
DFS, we need to perform a total of O(n2 · 2kk!(cδ log n)k) such operations for all Y ∈ D2 as
there are O(k!(cδ log n)k) copies of label Y in T (k) by Lemma 8.

▶ Corollary 10. For any two dictionaries D1 and D2 such that D1, D2 ⊆ D, we can find the
longest prefix of Y , for every Y ∈ D2 at (Hamming or edit) distance at most k from some
string X ∈ D1, in O(n(k + 1)!(2 · cδ log n)k) total time; for any k = O(1), this is O(n logk n).

If we rather want to find the list of all the prefixes of Y which are at distance at most k

from any X ∈ D1, we need to look through the whole stacks, not only at the top elements,
and also pay attention to the size of ℓ1 ∪ ℓ2, for labels (Y, ℓ2).

For a single label (Y, ℓ2) of a node v, if a node u with label (X, ℓ1), such that |ℓ1∪ℓ2| = x ≤
k, is an ancestor of v, then upon visiting v, d(u) will be stored on stack (ℓ, y), where ℓ = ℓ1∩ℓ2,
and y = |ℓ1|−|ℓ| = |ℓ1∪ℓ2|−|ℓ2| (as |ℓ1∪ℓ2| = |ℓ1|+|ℓ2|−|ℓ|). For such an element on the stack,
we produce an interval d(u)+surpl(ℓ2)+[−k+|ℓ1∪ℓ2| . . 0] = d(u)+surpl(ℓ2)+[−k+y+|ℓ2| . . 0]
of lengths of prefixes of Y that are at edit distance at most k from X (by Corollary 7), or
simply a length d(u) of a prefix of Y at Hamming distance at most k from X.

The element (X, ℓ1) can be also represented on other stacks (ℓ′, y′) for ℓ′ ⊆ ℓ1 ∩ ℓ2 and
y′ ≥ |ℓ1| − |ℓ′|, but then y′ + |ℓ2| ≥ |ℓ1| + |ℓ2| − |ℓ′| ≥ |ℓ1| + |ℓ2| − |ℓ| = |ℓ1 ∪ ℓ2| = y + |ℓ2|;
hence the interval generated this way is a subset of the interval represented by (ℓ, y) and
thus does not change the union of such intervals (still we do not know what is the right ℓ or
y, so we need to check all valid pairs).

This way we can compute the union of those at most m · 2k(k + 1) elements of stacks for
Hamming distance or of at most (m + k) · 2k(k + 1) intervals for edit distance for a single
label (Y, ℓ2) of node v in time proportional to those values (in case of edit distance using the
sweep line technique).
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▶ Corollary 11. For any two dictionaries D1 and D2 such that D1, D2 ⊆ D, we can find the
lengths of all the prefixes of Y at (Hamming or edit) distance at most k from some string
X ∈ D1 for every Y ∈ D2 in O((n + n2(m + k))(k + 1)!(2 · cδ log n)k) total time; for any
k = O(1), this is O((n + n2m) logk n), where m is the length of the longest string in D.

If the focus of the output is oriented towards D1 instead (we want to know what strings
from D1 are at distance at most k from some prefix of a string in D2), then we can store in
the stacks for each label (X, ℓ1) the identifier of X instead. In this case if we run a DFS,
and for each label (Y, ℓ2) we collect the union of sets represented by the stacks (ℓ, y), then
the union of those results over all Y ∈ D2 and all ℓ2 would be equal to exactly the elements
of D1 at distance at most k from some prefix of some Y ∈ D2.

To avoid handling unnecessary duplicates of strings X for a single (ℓ, y) (with different
lists ℓ1 ⊇ ℓ and ℓ′

1 ⊇ ℓ), or for many different Y , instead of stacks, we store the information
in a multiset data structure: a hash table storing as keys the elements of D1 and as satellite
data the multiplicity of every element. When an element X ∈ D1 is read (and hence also
returned), we delete it from every hash table and store it separately, so that it is never added
again. The removal of those copies from every multiset is easy since we additionally store
pointers to all of them partitioned by the elements of D1. For the label (Y, ℓ2), when reading
this multiset, we iterate over the elements in the hash table in time proportional to their
number (the deleted elements are stored separately). We implement multisets as dynamic
perfect hash tables with O(1)-time worst-case operations [8].

▶ Corollary 12. For any two dictionaries D1 and D2 such that D1, D2 ⊆ D, we can find all
the elements of D1 at (Hamming or edit) distance at most k from a prefix of some Y ∈ D2
in O(n(k + 1)!(2 · cδ log n)k) total time; for any k = O(1), this is O(n logk n).

4 Application to Approximate Suffix-Prefix Dictionary Queries

Recall that we are given a dictionary R = {S1, . . . , Sr} of r strings whose total length is n,
and we want to find, for a given set of pairs i, j, the value SPLk

i,j equal to the length of the
longest suffix of Si that is at (Hamming or edit) distance at most k from some prefix of Sj .

We focus on finding the longest prefix of Sj that is at distance at most k from some
suffix of Si, as our k-errata structures are more focused on the prefix lengths than suffix
lengths; by Observation 2, those values are not necessarily maximized simultaneously in the
edit distance case. Still the two problems reduce to one another by reversing all the strings
in R. Henceforth, SPLk

i,j denotes the length of the longest prefix of Sj that is at (Hamming
or edit) distance at most k from some suffix of Si.

In preprocessing, we construct the generalized suffix tree STR of R (without the commonly
used $ /∈ Σ separators) [16]: STR is the compacted trie of the suffixes of all strings in R. A
node u in STR is labeled by i if and only if u represents a suffix of string Si from R. Provided
that we are given an integer k > 0, we also construct the k-errata tree ST

(k)
R of STR. We also

distinguish the labels corresponding to the full strings Si (and not their non-trivial suffixes) –
we mark all their copies and store links to them for O(1)-time access.

4.1 Approximate One-to-One Queries
We first describe the full data structure for answering One-to-Onek queries; then we give
the querying algorithm; and, finally, we analyze the data structure size and the query time.
Recall that One-to-Onek(i, j) returns SPLk

i,j , for two i, j ∈ [1 . . r].
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Data Structure. After preprocessing ST
(k)
R , we construct the data structure for answering

One-to-Onek queries. It consists of O((k + 1)2k) trees, in total, of three types:
the main tree ST

(k)
R ;

trees STi,ℓ, which contain nodes of ST
(k)
R with labels (i, ℓ1), such that ℓ ⊆ ℓ1, for i ∈ [1 . . r];

trees STi,ℓ,x, for x ∈ [0 . . k − |ℓ|], which contain nodes with labels (i, ℓ1), such that ℓ ⊆ ℓ1
and x ≥ |ℓ1| − |ℓ|.

Note that |ℓ| ≤ k and that we do not actually construct the empty trees (i.e., trees that contain
no labels in the instance of the problem). Even though STi,∅ is basically the counterpart
of the tree STi from the One-to-One without errors solution [25], it is not necessarily equal
to the k-errata tree of the suffix tree of Si, since the heavy-light decomposition of STi and
of the generalized suffix tree (and hence the errata trees) may differ. That is, to obtain a
smaller tree, we make a copy of a larger tree, remove the labels that do not fit, remove the
nodes that do not have any labels in their subtree, and finally compactify the tree.

The trees of the first two types are enhanced with rank-select (RS) [6] and lowest common
ancestor (LCA) data structures [9]; the trees of the third type are enhanced with a weighted
ancestor (WA) data structure [3] plus a pointer from each node to its closest ancestor with a
label. (The latter information can be trivially computed by using a DFS tree traversal.)

While the LCA and WA data structures are by default defined on (rooted) trees, we need
to specify how the RS data structures are defined on trees (as they are usually defined on
arrays). In our case, the RS data structures span over all the node labels (in one of the
constructions a single label will actually be given a few next positions). In particular, the
positions are first ordered by the position of the node (left to right DFS first visit order), and
next its labels (i, ℓ) are ordered lexicographically. In case of ST

(k)
R , the RS data structure

is over the alphabet [1 . . r], where the letter representing the node label (i, ℓ) is i. Each
label of ST

(k)
R is linked with its counterpart from STi,∅. The tree STi,ℓ is connected to

trees STi,ℓ∪{lE}, where lE ≥ max+(ℓ) and trees STi,ℓ,x, where x ≤ k − |ℓ|, and hence it
contains two separate RS data structures. The first one is over the alphabet of valid elements:
[max+(ℓ) . . nS ] for Hamming distance; [max+(ℓ) . . (n + k)I ] for edit distance. Each label
(i, ℓ1) is given a position for every element lE ∈ ℓ1 greater or equal to max+(ℓ) and this
element lE is its representative. This position in the RS array is linked with the corresponding
terminal node of tree STi,ℓ∪{lE}. The second one is over alphabet [0 . . k − |ℓ|]. Each node
label (i, ℓ1) is given k − |ℓ1| + 1 positions that contain values x ∈ [|ℓ1| − |ℓ| . . k − |ℓ|]. Each
such position is connected to the corresponding node label of the tree STi,ℓ,x.

Querying. We want to find SPLk
i,j , i.e., the longest prefix of Sj that is at (Hamming or

edit) distance at most k from some suffix of Si (if we store some additional information
with the labels we can also find the length of this suffix). By Lemma 8, Sj corresponds
to O(k!(cδ log n)k) different node labels (j, ℓ2) in ST

(k)
R ; we will consider each such label

independently, and then choose the optimal result.
For a single node v with label (j, ℓ2), we want to find its lowest ancestor with label (i, ℓ1)

such that |ℓ1 ∪ ℓ2| ≤ k. We know that the ancestor is contained in one of the trees STi,ℓ,k−|ℓ2|
for some ℓ ⊆ ℓ2. If we know a node v′ with a label that is stored in that tree, and is the
closest to v in the DFS order of ST

(k)
R (they have the deepest LCA among all such nodes

v′), then we know that any ancestor of v that belongs to STi,ℓ,k−|ℓ2| is also an ancestor of v′,
and that every ancestor of v′ at depth at most LCA(v, v′) is also an ancestor of v. Thus for
knowing the location of v′ in STi,ℓ,k−|ℓ2| and the value of LCA(v, v′), it suffices to ask a WA
query in STi,ℓ,k−|ℓ2| for node v′ and depth LCA(v, v′) and then ask for the lowest ancestor of
the node with a label (this information is stored in the node as a pointer) - the answer is
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ST
(3)
R

(i, 2S , 4I)

(i, 2S)
(i, 2S , 3I , 5D)

(Sj , 2S , 3D)
(i, 1D, 4S , 6I)

STi,∅

(i, 2S , 4I)

(i, 2S)
(i, 2S , 3I , 5D)

(i, 1D, 4S , 6I)

STi,2S

(i, 2S , 4I)

(i, 2S)
(i, 2S , 3I , 5D)

STi,2S ,1

(i, 2S , 4I)

(i, 2S)

Figure 3 An example traversal through the trees to reach the lowest ancestor (i, ℓ1) of label
(Sj , 2S , 3D), such that 2S ∈ ℓ1 and |ℓ1 ∪ {2S , 3D}| ≤ 3. The green node depicts the label that is
closest to (Sj , 2S , 3D) in ST

(3)
R , out of the ones existing in the tree, while the blue one depicts the

lowest common ancestor of the two nodes (equal to green in ST
(3)
R ). The next green node is obtained

via a rank-select query, while the blue nodes depth is obtained via an LCA query. After reaching a
terminating tree, we ask for the depth of the lowest ancestor of the blue node that contains a label.

the sought ancestor of v. To obtain the location of v′ and the value of LCA(v, v′), we jump
through the trees in between, always storing the two pieces of information: the labeled node
v′′ closest to v that appears in the tree; and the value LCA(v, v′′).

In ST
(k)
R we want to find the closest label (i, ℓ1) for any ℓ1; we simply ask an RS query to

find the closest such node to the left and to the right of v. We compare those two nodes by
the string depth of their LCA with v, choose the one for which this depth is larger (breaking
ties arbitrarily), and then we proceed to the node with this label in STi,∅.

Now, in tree STi,ℓ, for ℓ ⊆ ℓ2, we start with the labeled node v′ closest to v in ST
(r)
R ,

and the string depth of their LCA. For each element lE ∈ ℓ2, such that lE ≥ max+(ℓ), we
find the closest node with label (i, ℓ3) such that ℓ ∪ {lE} ⊆ ℓ3 in STi,ℓ by asking the RS
data structure (the one over [max+(ℓ) . . (n + k)I ]) for lE – both left and right. We compare
those two nodes based on the LCA string depth with v′ to get the node v′′, then compute
LCA(v, v′′) = min{LCA(v, v′), LCA(v′, v′′)}, and jump to the corresponding terminal node of
STi,ℓ∪{lE} with the new LCA value. Additionally we ask the other RS data structure for the
closest label represented by k − |ℓ2|, and jump to the labeled node of STi,ℓ,k−|ℓ2|. There we
find its lowest ancestor at depth at most the value of stored LCA string depth, and ask this
ancestor for the string depth of its lowest ancestor storing a label. If this value is larger than
the value of the currently stored candidate, we replace the candidate with the new one.

After the whole recursive procedure ends for each labeled node v corresponding to the
full string Sj , the stored candidate is the final answer. Inspect Figure 3, for an example.

Data Structure Size. Each node of ST
(k)
R belongs to O((k + 1) · 2k) different trees. In

total, the trees have size N = O(n(k + 1)!(2cδ log n)k). The RS [6], LCA [9], and WA [3]
data structures occupy O(N) space and can be constructed in O(N log log N) time.

Query Time. We have O(k!(cδ log n)k) node labels (Sj , ℓ2) for a full string Sj . For each
of those we reach at most 2k further trees. Each operation of reaching the next tree (from
the previous one) costs a constant number of RS, LCA and WA queries – that is, the cost
of reaching each tree is O(log log n); hence the total cost is O((2cδ log n)k log log n). In
particular, the RS [6] and WA [3] queries take O(log log n) time when O(n) space is used.
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▶ Theorem 13. For any dictionary of strings of total length n and any k ≤ log n
2 log log n , we can

construct a data structure of O(n(k + 1)!(2cδ log n)k) words of space answering One-to-Onek

queries in O((k + 1)!(2cδ log n)k log log n) time. The data structure can be constructed in
O(n(k + 1)!(2cδ log n)k log log n) time.

For any k = O(1), the data structure size is O(n logk n), the query time is O(logk n log log n)
and the construction time is O(n logk n log log n).

4.2 Approximate Report Queries
Once again we use an inverted version of the problem that is equivalent to the original one;
i.e., we want to answer Reportk(j, d) queries that return all the values of i ∈ [1 . . r] such that
there exits a prefix of Sj at distance at most k from some suffix of Si of length at least d.
Recall that by Observation 2, for edit distance, this is not necessarily equivalent to finding all
j such there exists a prefix of Sj of length at least d at distance at most k from some suffix
of Si – this can be done using the idea of Corollary 12 within the same time complexity.

By Corollary 6, to find whether a prefix of length at least d of Sj is at distance at most
k from a suffix of Si, it suffices to check, for every label (j, ℓ2) of a node v representing
the full string Sj , if it has an ancestor u with label (i, ℓ1), such that |ℓ1 ∪ ℓ2| ≤ k and
d(u) ≥ d − surpl(ℓ2). We first describe the data structure for answering Reportk queries and
analyze its size; then we give the querying algorithm and analyze the query time.

Data Structure. We start by constructing ST
(k)
R . For each pair (ℓ, x), such that x ≤

k − |ℓ| and there exists a label with list ℓ in ST
(k)
R , we create a linear-space 2D rectangle

stabbing data structure [30]. For every node u with label (i, ℓ1), we create a rectangle
[L(u) . . R(u)] × [0 . . d(u)] with label i, where L(u) and R(u) are the numbers of the leftmost
and the rightmost label in the subtree of u in ST

(k)
R when ordered in the left-to-right DFS

traversal order, and insert it to data structures (ℓ, x) for each ℓ ⊆ ℓ1 and |ℓ1|−|ℓ| ≤ x ≤ k−|ℓ|.
Next in every structure we make the rectangles of the same type disjoint.

We have in total |ST
(k)
R | = O(nk!(cδ log n)k) labels, hence the total number of rectangles

in all the data structures is |ST
(k)
R | · (k + 1)2k = O(n(k + 1)!(2cδ log n)k), and the dimensions

of the rectangles are in [0 . . |ST
(k)
R |] × [0 . . n]. Hence the total size is O(n(k + 1)!(2cδ log n)k).

Querying. For each label (j, ℓ2) of a node v representing the full string Sj , and for each
ℓ ⊆ ℓ2, we ask a query (L(v), d − surpl(ℓ2)) to the 2D rectangle stabbing data structure
(ℓ, k − |ℓ2|). Over all labels (j, ℓ2), we have in total O(k!(2cδ log n)k) lists of total length
O(|Q| · k!(2cδ log n)k), where |Q| is the size of the output, and we want to output their union.
By using the 2D rectangle stabbing data structure from [30] we obtain the following result.

▶ Theorem 14. For any dictionary of strings of total length n and any k ≤ log n
2 log log n , we can

construct a data structure of O(nk!(2cδ log n)k) words of space answering Reportk queries in
O((k + 1)!(2cδ log n)k(log n/ log log n + |Q|)) time. For any k = O(1), the data structure size
is O(n logk n) and the query time is O(logk n(log n/ log log n + |Q|)).
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A Omitted Proofs

Proof of Lemma 4. Say, that the leftmost operation in an optimal sequence of edit operations
between strings X and Y happens at position l1 ≤ LCP(X, Y ), that is, in particular X[l1] =
Y [l1].

The positions 1, . . . , l1 − 1 of strings X and Y are matched respectively, and we need to
match the letter Y [l1] with something in X. Therefore, the leftmost operation (subset of
subsequent operations) is either an insertion of letter Y [l1] or a possibly empty sequence of
deletions followed by an identity or a substitution on the first not deleted position (if the
first operation after deletions was an insertion, then we can pull this insertion left).

If the first operation is insertion, then we can instead match letter Y [l1] with the letter
X[l1], and insert the letter one position further - since the inserted letter and X[l1] are
equal this does not change the number of operations nor the result.
If a sequence of deletions is followed by an identity, then we can instead match letter
Y [l1] with X[l1] and delete the matched letter X[l2] for l2 > l1 (if the sequence was empty
then the position of the first operation was not l1) shifting the left-most first operation
to the right.
If a sequence of deletions was followed by a substitution of letter X[l2], then we can
instead match letter Y [l1] with X[l1] and delete letter X[l2] obtaining a set of operations
of smaller size - a contradiction with the minimality of the set.

For the recursive part the same proof follows the same way after applying the first operation.
◀

Full proof of Lemma 5. (⇒) Let Y ′ be a prefix of Y at edit distance at most k from X. In
particular there exists a sequence of at most k operations that transform X into Y ′. Using
this sequence of edit operations, we find two nodes u and v in T (k) with labels (X, ℓ1) and
(Y, ℓ2) respectively, satisfying the conditions of the statement.

Recall that T denotes the compacted trie of D. We start our search at the root of T with
two empty lists ℓ1 and ℓ2. By Lemma 4 we can safely assume that the position of the first
edit operation used to change X into Y ′ is l = LCP(X, Y ′) + 1 = LCP(X, Y ) + 1. The letter
at position l in X is changed: it is deleted; substituted with the l-th letter of Y ′; or the l-th
letter of Y ′ is inserted right before this letter.

Let us first assume that neither X is a prefix of Y nor Y ′ is a prefix of X (or that we do
not have any more edit operations to apply).

We know that in T the nodes with labels X and Y have their lowest common ancestor at
depth l − 1. Now, assume, that the heavy child of this common ancestor is reached from its
parent through an edge labeled with letter a. Now depending on the operation performed:

If the operation is a substitution, then if X[l] ̸= a, add lS to ℓ1, and if Y [l] ̸= a, add lS
to ℓ2 (possibly both lists gain the same element).
If the operation is a deletion, then if X[l] ̸= a, add lD to ℓ1, otherwise (Y [l] ̸= a), add lI
to ℓ2.
If the operation is an insertion, then, if Y [l] = a (X[l] ̸= a), add lI to ℓ1, otherwise
(Y [l] ̸= a), add lD to ℓ2.

https://doi.org/10.1145/1044731.1044732
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Now the nodes with labels (X, ℓ1) and (Y, ℓ2) belong to the subtree of a node at depth
l − 1 in T (1) (and hence also in T (k)), and actually if the added label was not lD also of
the node at depth l (the heavy child of the one at depth l − 1), this ensures that the next
element will be no smaller than max+(ℓ1 ∪ ℓ2). Furthermore, we know that the edit distance
between X and Y ′, with the operations in lists ℓ1 and ℓ2 applied, is smaller by 1 than the
distance between X and Y ′.

We iterate this technique at most k times walking down the tree. At step x ≤ k we
start our work at a node of T (x−1) (a node of T (k) that was there before the x-th step of
the k-errata construction) that is an ancestor of nodes with labels (X, ℓ1) and (Y, ℓ2). After
at most k steps we get to a node in T (k), such that its descendant with label (X, ℓ1) is an
ancestor of the node with label (Y, ℓ2) as no further edit operations remain. Y ′ turns out to
the prefix of Y with the last d(v) − d(u) letters removed.

Now consider the case where, after applying x − 1 operations, the nodes with labels
(X, ℓ1) and (Y, ℓ2), respectively, are already in an ancestor descendant relationship, and there
are still operations changing X into Y ′ not processed yet.

If a node with label (X, ℓ1) is a (non-trivial) descendant of node with label (Y, ℓ2) the
only possible next operation is deletion (we need to remove the suffix of X). If the first edge
used to reach the node with label (X, ℓ1) from the node with label (Y, ℓ2) is heavy in T (x−1)

we can still add lI to ℓ2 (due to the extra copy of labeled nodes), otherwise a node with label
(X, ℓ1 ∪ {lD}) is a descendant of the node with label (Y, ℓ2) in T (x) of smaller depth. We
apply this until we reach a single node with both labels (X, ℓ1) and (Y, ℓ2).

If a node with label (X, ℓ1) is a (non-trivial) ancestor of a node with label (Y, ℓ2), we
already know that the claim is true (for some prefix Y ′′ of Y , that is at smaller edit distance
from X than Y ′). We may still want to pair X with a longer (or a shorter) prefix of Y , in
particular the longest possible. If the next applied operation is an insertion (we want to
make the prefix longer) of letter Y [l], then this is symmetric to the case considered in the
previous paragraph. We do not provide any modification that allows applying deletion in
this case since, in our main application, we care for the longest prefixes only. Still, we know,
that the shortest prefix of Y we could obtain this way would be k − x + 1 letters shorter
than Y ′′, and hence every such prefix is actually represented in T (k).

In case of Hamming distance the set of operations consists solely of substitutions, and
hence the proof reduces naturally (only elements lS are inserted to the lists, hence only copies
of labels with such lists are considered).

(⇐) This is the reversal of the forward (⇒) proof construction, that is, we change ℓ1 and
ℓ2 into a single list of edit operations.

In the Hamming distance case, the set of mismatches between X and Y [1 . . |X|] is
contained in the set {l : lS ∈ ℓ1 ∪ ℓ2}, hence X and a prefix of Y are at Hamming distance at
most |ℓ1 ∪ ℓ2| ≤ k (|ℓ1 ∪ ℓ2| may be greater than the actual Hamming distance if a suboptimal
pair of labeled nodes is chosen, but this is not a problem). In the edit distance case, the
construction is more complicated due to the shifts made by insertions and deletions.

We have two nodes u and v with labels (X, ℓ1) and (Y, ℓ2), respectively, such that u is
an ancestor of v. Let Y ′ be the prefix of Y of length |Y | − d(v) + d(u) = d(u) + surpl(ℓ2)
assuming that ℓ2 = ℓ

d(u)
2 (l ≤ d(u) for lE ∈ ℓ2) – otherwise we can remove those larger

elements as those only affect the part of Y that does not play a role in the transformation of
X into Y ′ (there exists a descendant of u with label (Y, ℓ

d(u)
2 ) which we can choose as our

v). We know that after applying operations from ℓ1 to X and operations from ℓ2 to Y ′ we
obtain the same string: the one obtained by reading the path from root to u in T (k).
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Let ℓ = ℓ1 ∪ ℓ2, and for each element of ℓ we mark whether it comes from ℓ1, from ℓ2, or
from both. For ℓ it may actually be the case that both lS and lI appear (coming from two
different lists ℓ1, ℓ2); this will not be that much of a problem however since this is counted as
two edit operations in |ℓ|. We continue by showing that in fact ℓ encodes a transformation of
X into Y ′ with the use of at most |ℓ| edit operations.

We read ℓ and modify X step by step to reach Y ′ keeping an invariant that when element
lE is about to be processed the first l − 1 + i positions of the modified string X are equal to
the first l − 1 + i positions of Y , where the value i represents the imbalance between deletion
and insertion operations from ℓ2 already applied, and hence it starts from 0. We have that
i = surpl(ℓ′

2), where ℓ′
2 is the prefix of ℓ2 storing operations already applied - ℓ′

2 = ℓl
2 when

we move to the node at depth l for the first time.
If the element is lS , we substitute the letter at position l + i of the current version of X

with Y [l + i].
If the element lD comes from both lists ℓ1 and ℓ2 (multiple lD in both lists are matched
into pairs), we replace the letter at position l + i by Y [l + i] and increase i by 1 (deletion
of the corresponding letters of both strings is equivalent to a substitution, but the depth
of the node decreases by one).
If the element lD comes from list ℓ1 (a surplus in pairing), we remove the letter at position
l + i in the current version of X.
If the element lD comes from list ℓ2 (a surplus in pairing), we add letter Y [l + i] between
letters at positions l + i − 1 and l + i in X and increase i by 1.
If the element lI comes from both lists we do not modify X, and instead decrease i by 1
(inserting the same letter at corresponding positions in X and Y does not change the
edit distance).
If the element lI comes from list ℓ1, we insert letter Y [l + i] between letters at positions
l + i − 1 and l + i in X.
If the element lI comes from list ℓ2, we delete the letter at position l + i in X and decrease
i by 1.

Notice that when i decreases, the value l of the next lE must be strictly greater, hence the
sum l + i never decreases between operations; and when l + i increases, X[l + i] and Y [l + i]
(for X after the changes applied and the old value of l + i) must actually be equal.

Further notice that, as claimed, the prefix Y ′ obtained from X by applying those edit
operations (obtained from ℓ1 and ℓ

d(u)
2 ) has length equal to d(u) + surpl(ℓd(u)

2 ). ◀

Proof of Lemma 8. Let |T (k)| denote the size of the k-errata of T . The proof proceeds by
induction. |T (0)| = |T | ≤ 3n.

Assume, that |T (k−1)| ≤ cn,k−1 · n(k − 1)!(cδ log n)k−1, for a constant 3 ≤ cn,k−1 ≤ 16,
depending only on n and k, to be specified later.

A single node or label can be copied at most cδ log |T (k−1)|+1 times, since the heavy-light
decomposition of the (k − 1)-errata tree is weighted by the number of explicit nodes and
labels. Note that cδ comes from the number of copies made, and +1 comes from the extra
copy of a labeled node that is not a leaf.

Now cδ log |T (k−1)| + 1 ≤ cδ log[cn,k−1 · n(k − 1)!(cδ log n)k−1] + 1 ≤ cδ[log cn,k−1 + log n +
(k − 1) log k + (k − 1)[log cδ + log n]] + 1 ≤ cδ[k(log n + log k + 7)] = cδk log n[1 + log k+7

log n ].
Hence, |T (k)| ≤ |T (k−1)| · (cδ log |T (k−1)|+1) ≤ cn,k−1 ·n(k −1)!(cδ log n)k−1 · cδk log n[1+

log k+7
log n ] = cn,k−1 · [1 + log k+7

log n ] · [nk!(cδ log n)k].
Hence for cn,k = cn,k−1 · [1 + log k+7

log n ] the property |T (k)| ≤ cn,k · nk!(cδ log n)k is satisfied,
and it remains to show, that cn,k ≤ 16 if k ≤ log n

2 log log n . cn,0 = 3, cn,k ≤ 3 · [1 + log k+7
log n ]k.

Recall, that (1 + 1
x )x → e, and that for k ≤ log n

2 log log n we have log k+7
log n ≤ 2 log log n

log n (for large
enough n), hence cn,k ≤ 3e < 16.

The bound on the number of copies of a single label follows analogously. ◀
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