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Abstract
Weighted model counting (WMC) plays a central role in probabilistic reasoning. Given that this
problem is #P −hard, harder instances can generally only be addressed using approximate techniques
based on sampling, which provide statistical convergence guarantees: the longer a sampling process
runs, the more accurate the WMC is likely to be. In this work, we propose a deterministic search-
based approach that can also be stopped at any time and provides hard lower- and upper-bound
guarantees on the true WMC. This approach uses a value heuristic that guides exploration first
towards models with a high weight and leverages Limited Discrepancy Search to make the bounds
converge faster. The validity, scalability, and convergence of our approach are tested and compared
with state-of-the-art baseline methods on the problem of computing marginal probabilities in
Bayesian networks and reliability estimation in probabilistic graphs.

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems;
Theory of computation → Probabilistic computation; Mathematics of computing → Approximation

Keywords and phrases Projected Weighted Model Counting, Limited Discrepancy Search, Approx-
imate Method, Probabilistic Inference

Digital Object Identifier 10.4230/LIPIcs.CP.2024.10

Supplementary Material
Software (Source Code): https://github.com/aia-uclouvain/schlandals [8]

archived at swh:1:dir:3ffca0d07dbd88cffbbdfda6e3f0ae09a9e77ac0
Dataset: https://github.com/AlexandreDubray/bn-benchmarks

archived at swh:1:dir:e4644057447aa2f4b9579b41744a6dede462da6a
Dataset: https://github.com/AlexandreDubray/probabilistic-graph-benchmarks

archived at swh:1:dir:fc1586f609a54f32b09e4d71eda2eb6457f00d20

1 Introduction

Model counting, the problem of counting the number of satisfying assignments of a propos-
itional formula, is a canonical #P−hard problem with many applications. In particular,
(projected) weighted model counting ((P)WMC) has been extensively used for probabilistic
reasoning problems, such as computing the marginals in Bayesian Networks [4, 5, 20, 9]
or reliability estimation in probabilistic graphs [10, 9]. While model counters are becom-
ing increasingly efficient, computing an exact probability is not always possible for large
probabilistic models. Methods computing an approximation of the probability offer better
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scalability, but their guarantees are often statistical [3, 1, 12, 11, 13, 18]. Such methods
are often based on sampling, meaning they can be stopped anytime. Moreover, the more
the sampling process runs, the more accurate the estimated probability will likely be. For
example, model counters providing so-called (ε, δ)−guarantees return an approximation
whose relative error is bounded by a parameter ε with probability 1− δ [3, 1]. Some methods
offer weaker guarantees; they ensure that the probability of returning a wrong lower bound
on the probability decreases with the number of iterations [13, 18].

This work proposes a new search-based method for solving PWMC problems. It can be
stopped at any time and returns hard bounds on the true count. We show that a DPLL-style
model counter can maintain a lower and an upper bound on the true count at each search
tree node. This modified version of the classical DPLL-style algorithm can be stopped at
any time during its execution, providing deterministic guarantees on the true count. Then,
we observe that in the specific context of weighted model counting, Limited Discrepancy
Search [14] (LDS) offers advantages compared to classical depth-first-search methods. Based
on this observation, we propose a simple value-selection heuristic that favors the most likely
model and use it in an LDS-based search. Our final contribution is to link the lower and
upper bound on the true count to the well-known ε-guarantee. We show that bounds can be
used to compute an approximate probability that satisfies an ε requirement and to determine
the quality of an approximate model count returned by our algorithm when interrupted by a
time-out. Using this theoretical result and the LDS-based search, we provide the first anytime
method that can return, during its execution, approximate weighted counts with minimal
ε-guarantees. We implemented this method, named Schlandals-LDS-ε, in Schlandals [9],
a recently proposed projected weighted model counter specialized for probabilistic inference.
We compare our method against state-of-the-art solvers on two major probabilistic reasoning
tasks: computing marginal probabilities in Bayesian networks and reliability estimation in
probabilistic graphs. Our experiments show that Schlandals-LDS-ε performs better on both
tasks when looking at the number of solved instances and bound convergence, validating the
effectiveness of our bound calculation and LDS-based weighted model counting.

The rest of this paper is organized as follows. We review the technical background for
model counting and Schlandals in Section 2, followed by a review of the related work in
Section 3. In Section 4, we present Schlandals-LDS-ε We first introduce how to compute
bounds in Section 4.1 and then the search based on Limited Discrepancy Search in Section 4.2.
We show the link between the bounds and ε-guarantees in Section 4.3. We compare our
work with existing methods and evaluate the convergence of our bounds in Section 5 before
concluding in Section 6.

2 Technical Background

Let F be a boolean formula over a set of variables V . An interpretation I for a formula F is
a complete assignment to all variables in F , and a partial interpretation is an interpretation
on a subset of all the variables in F . We use I = {a = ⊤, b = ⊥} to denote an interpretation
in which a is true (⊤) and b is false (⊥). By F [I], we denote the evaluation of F under
I, using the standard way of interpreting logical formulas. If F [I] = ⊤, I is a model of
F . Let MF = {I ∈ {0, 1}|V| | F [I] = ⊤} be the set of models of F . The goal of a model
counter is to compute |MF |, the number of models of F . In weighted model counting,
each variable v ∈ V has two weights ω(v+) and ω(v−); the weight of an interpretation is
defined as ω(I) =

∏
v∈I|v=⊤ ω(v+)

∏
v∈I|v=⊥ ω(v−). A weighted model counter computes∑

I∈MF
ω(I), the weighted sum of F ’s models. Let P ⊆ V be a subset of the variables
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and πP : {0, 1}|V| 7→ {0, 1}|P| the function that keeps, from an assignment to all variables
of F , only the assignment to the variables in P. A projected model counter computes the
number of projected models, defined by |πP(MF )| = |{π(I) | I ∈ MF }|. For example, let
F = (a∨¬b)∧ (b∨c∨d)∧ (¬a∨d). This formula has 7 models, but if restricted to P = {a, b},
then it only has 3 models. The interpretations I1 = {a = ⊤, b = ⊤, c = ⊤, d = ⊤} and
I2 = {a = ⊤, b = ⊤, c = ⊥, d = ⊤} are both models of F but, when restricted on the variables
{a, b}, they are both equal: πP(I1) = πP(I2) = {a = ⊤, b = ⊤}. A projected weighted model
counter computes PWMC(F ) =

∑
I∈πP (MF ) ω(I). Notice that in such a case, a weight only

needs to be defined for an interpretation projected on the variables P.
An approximate model counter returns an ε-approximation (ε > 0) if, given a true count

c⋆, it returns a count ĉ and the following inequality holds:

c⋆

1 + ε
≤ ĉ ≤ c⋆(1 + ε), (1)

that is, the relative error of the approximation is bounded by a factor 1 + ε, and we say
that such model counters provide ε-guarantees. Approximate model counters providing
(ε, δ)-guarantees return an approximation that respects Equation (1) with a probability 1− δ.

Schlandals is a search-based projected weighted model counter specialized for probab-
ilistic inference problems [9]. Its input language has some specific features. It requires, in
particular, that the projected variables are partitioned into discrete probability distributions
D1, . . . , Dn.

▶ Example 1 (Example of an input for Schlandals). Below is an example of a formula F in
Schlandals, where all variables v are in P:

d1
2 ∧ d2

2 ⇒ d1
1 d1

1 ∧ d1
2 ⇒ d1

4 d1
1 ∧ d2

3 ∧ d3
3 ⇒ d2

5

d1
4 ⇒ d2

2 d1
1 ∧ d1

3 ⇒ d1
5 d1

1 ∧ d1
5 ⇒ d2

3

with distributions D1 = {d1
1, d2

1}, D2 = {d1
2, d2

2}, D3 = {d1
3, d2

3, d3
3}, D4 = {d1

4, d2
4}, and

D5 = {d1
5, d2

5}.

We denote by domF (Di) the domain of a distribution Di (i.e., the set of probabilistic
variables in its partition). For each variable v ∈ domF (Di), one weight P (v) needs to
be specified, in such a manner that

∑
v∈domF (Di) P (v) = 1. When determining which

interpretations are models in Schlandals, an implicit constraint is added: if an interpretation
I does not fix exactly one variable v ∈ domF (Di) to ⊤ in each distribution Di, then we have
F [I] = ⊥.

▶ Example 2. Continuing our example, an interpretation I setting d1
1 = ⊤ and d2

1 = ⊤
is not a model as two variables of the same distribution are set to ⊤. On the contrary,
I = {d2

1, d2
2, d1

3, d1
4, d1

5} is a model of the formula. The weight of this model is obtained by
calculating P (d2

1)×P (d2
2)×P (d1

3)×P (d1
4)×P (d1

5), reflecting the probabilities of the choices
made for each of the distributions in the interpretation. For conciseness, we describe a
partial interpretation I over the weighted variables by the choices (variables set to ⊤) in the
distributions.

The importance of the Schlandals language is that it allows several probabilistic inference
problems to be modeled in a concise manner, among which inference problems in Bayesian
Networks and probabilistic graphs; here, the ability to perform projected model counting is
critical for efficient encoding of inference problems on probabilistic graphs [27, 10]. The fact
that weighted variables are part of distributions ensures that weighted model counts always
correspond to probabilities.

CP 2024
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Algorithm 1 PWMC as done in Schlandals [9].

1 Function PWMCr(F)
input : A boolean formula F with distributions DF

output : P [F ] the weighted model count of F

2 if |DF | = 0 then return 1 // F is SAT, return 1. See [9]
3 if F in cache with value p then return p

4 P [F ]← 0
5 Di ← choose_distribution() // For heuristics, see [9]
6 foreach v ∈ domF (Di) do
7 if TIMEOUT then break
8 if F [v] = ⊥ then continue // Applies propagation

// prop(F [v]) are the choices, for some distributions, forced by
propagation

9 p←
∏

v′∈prop(F [v]) P (v′)
10 C ← components of F [v] // Independent components
11 foreach Fc ∈ C do pc ← PWMCr(Fc)
12 P [F ] += p×

∏
c pc

13 end
14 Adds F 7→ p in cache and return p

15 return PWMCr(F)

The Schlandals language, as presented in [9], also requires that all clauses are Horn.
This allows Schlandals to solve satisfaction problems involving only non-weighted variables
in polynomial time by means of propagation. While this restriction may seem limiting, it
was shown that many problems can be modeled even under this restriction; moreover, the
ideas presented below can also be extended to solvers for formulas without this restriction.

The Schlandals solver implements a variant of component caching DPLL search, presen-
ted in Algorithm 1. Given how a model’s weight is defined, Schlandals does not branch
like classical model counters. It starts from a formula F and selects a distribution not yet
assigned (line 5). The variable selection heuristic is replaced by a distribution selection
heuristic, and the value selection heuristic selects which variable in the distribution must
be set to true. Then, for each value of its domain (lines 6-13), it sets it to true, applies
propagation, and gets the residual formula F [v] (line 8). Here Schlandals performs tradi-
tional forms of propagation, such as unit propagation, but also a specific form of propagation
for Horn clauses. If a formula remains after propagation, it is decomposed into independent
components (line 9) that are solved independently (line 11). The counts of the independent
components are multiplied with each other and added to the count of the formula (line 12),
multiplied by the probability of the distributions assigned during propagation (computed at
line 9).

3 Related Work

Most other approximate model counters are sampling-based; these model counters provide
statistical guarantees at best. Hashing-based approximate model counters use special classes
of hash functions to sample partitions of the search space. They count the models in
these small parts and estimate the overall count from these parts. Usually, such solvers
provide (ε, δ)−guarantees: they return an approximation whose relative (to the true count)



A. Dubray, P. Schaus, and S. Nijssen 10:5

error is bounded by a factor ε, as specified by Equation (1), with a probability of 1 − δ.
ApproxMC [3, 24, 23] is one such solver, designed for unweighted (projected) model counting.
Based on the same idea, WeightMC [1] targets weighted model counting and sampling.

Another class of methods is that of the bounding counters. SampleCount [13] uses a
sampler to estimate which variables, after being assigned, divide the solution space in half.
When the formula is small enough, it counts exactly its number of models and multiplies the
result by a constant factor to obtain an estimated count. This procedure obtains a lower
bound with probabilistic guarantees when repeated multiple times. PartialKC [18] is another
sampling-based model counter based on partial compilation. Both of these approaches are
designed for unweighted model counting. Note that such sampling-based model counters can
usually be turned into anytime model counters by estimating model counts even before the
predefined approximation guarantee is ensured. In particular, the partial representations
produced by PartialKC can be used to compute lower and upper bounds on the true count.
However, given that PartialKC works on unweighted formulas, their computations differ
from ours. Moreover, PartialKC’s compilation process does not aim to fasten the bounds
convergence.

Model counting problems are related to several other problems. One such problem is
calculating the partition function, Z, of discrete stochastic graphical models, such as Markov
Random Fields, Markov Networks, or Cost Function Networks. An algorithm, called Z∗

ε ,
for calculating an estimate of Ẑ with Z

1+ε ≤ Ẑ ≤ Z guarantees was proposed by Viricel
et al. [26] and is implemented in the Toulbar2 [21] system. Also Z∗

ε calculates upper and
lower bounds on the final model count, pruning the search based on ε. However, there are
several differences between our algorithm and this algorithm: 1) our algorithm is defined
over a different form of model that includes projected variables; 2) our algorithm is any
time and operates such that an upper-bound on the final model count can be calculated
during the search; 3) our upper-bound calculation is optimized for the type of model we work
with: it relies on the fact that only variables have weights, integrates the bound calculation
with domain propagation, and can be integrated into any DPLL-style algorithm with little
overhead; 4) it does not have the behavior stated by Viricel et al. [26] that a larger ε can
lead to less pruning; 5) we combine our method with LDS. We will demonstrate the benefits
of our approach experimentally.

Finally, weighted model counting has been used as a probabilistic inference mechanism in
probabilistic programming languages such as Problog [7, 27]. In particular, anytime methods
have been developed specifically for Problog [28], where a TP-compilation incrementally
calculates model counts by combining SDD diagrams [6].

4 Anytime Projected Weighted Model Counting with Bounds

This section describes Schlandals-LDS-ε, our anytime search-based approach for computing
bounds on P [F ]. First, we describe how a simple modification of a DPLL search can compute
bounds at each search tree node. Then, we present how Limited Discrepancy Search (LDS)
can be applied to weighted model counting. Finally, we show the relationship between the
computed bounds and ε-approximations, and we show that LDS-based search can be used to
compute approximate weighted model counts with deterministic guarantees.

4.1 Computing Bounds During the Search
Our lower and upper bounds are based on calculating which interpretations are (not) models,
accounting for how propagation reduces the domain of the distributions. Let F be the
(sub-)formula being solved and DF = {D1, . . . , Dn} the distributions in F . We denote by

CP 2024
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domF (Di) = {d1
i , . . . , dki

i } the domain of Di. During the search propagation might have
previously removed some variables from domF (Di); hence,

∑
v∈domF (Di) P (v) ≤ 1 generally

for subformulas considered during the search.

Lower bound

Our lower bound is relatively simple and amounts to maintaining a sum for models seen till
a certain moment. Without loss of generality, let us assume that the solver decides to branch
on D1. We denote by F [v] the formula that remains from F after deciding that, for D1,
variable v ∈ domF (Di) is true, and after propagation has been performed. Let prop(F [v]) be
the set of probabilistic variables that are set to true during this propagation. Essentially
our algorithm calculates the probability P [F ] recursively by exploring all possibilities for D1,
using:

P [F ] =
∑

v∈domF (D1)

P [F [v]]×
∏

v′∈prop(F [v])

P (v′)


A lower bound is obtained by executing this sum over a subset of domF (D1); hence, we can
incrementally maintain a lower bound while considering the possibilities in domF (D1).

Upper bound

Maintaining an upper bound is conceptually more complex, but we propose an upper bound
that can be calculated with relatively little overhead in a DPLL-based solver. A first naïve
upper bound, which we will improve afterwards, is P (DF ), defined as follows:

P (DF ) =
∏

Di∈DF

 ∑
v∈domF (Di)

P (v)

 (2)

i.e., P (DF ) represents the maximum probability that F can obtain if all remaining interpret-
ations are models. The intuition behind this formula is that an upper bound can be obtained
by calculating a weighted sum over the interpretations that are in the cartesian product
of the remaining domains of the remaining distributions. The product calculates this sum
efficiently. As illustrated in the following example, this upper bound can be tightened during
the search when the domains of the distributions are pruned by propagation.

▶ Example 3. Continuing Example 1, let us consider the case when, at the root, the solver
decides to branch on D4 and assigns d1

4 = ⊤. In that case, the clause d1
4 =⇒ d2

2 becomes
⊤ =⇒ d2

2, forcing d2
2 = ⊤. Since exactly one variable must be true in each distribution, we

have that d1
2 = ⊥. This means that no interpretation containing d1

4 = ⊤ and d1
2 = ⊤ can be a

model of F , and the upper bound for the formula F can be improved. Assuming that no other
variable is set to ⊥ during that propagation, the weight of the removed interpretations is
equal to P (d1

4)×P (d1
2), and the upper bound for F can be decreased to 1.0−P (d1

4)×P (d1
2).

This improved upper bound calculation is formalized in Algorithm 2, which is an adapta-
tion of Algorithm 1 to compute bounds on P [F ]. Intuitively, this algorithm computes, for
any search tree node with sub-formula F ′, a sum of probabilities of models of F ′, denoted pin,
and a sum of probabilities of interpretations that are not models, denoted pout. From these
two values, the lower and upper bounds can be inferred. The structure of Algorithm 2 is the
same as Algorithm 1. The search stops when there are no more distributions in F (line 2) or
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Algorithm 2 PWMC with Bounds Computaton.

1 Function PWMC-Bounds(F)
input : A boolean formula F with distributions DF

output : The probability of the considered models (pin) and non-models (pout)
2 if |DF | = 0 then return (1, 0)
3 if F in cache with values (p′

in, p′
out) then return (p′

in, p′
out)

4 pin ← 0; pout ← 0
5 Di ← choose_distribution() // For heuristics, see [9]
6 foreach v ∈ domF (Di) do
7 if TIMEOUT then break
8 if F [v] = ⊥ then
9 pout += P (v)× P (DF \{Di}) // Uses Equation (2)

10 else
11 p←

∏
v′∈prop(F [v]) P (v′)

12 pout += P (v)× (P (DF \{Di})− P (DF [v])) // Uses Equation (2)
13 C ← components of F [v] // Independent components
14 foreach Fc ∈ C do
15 (pc

in, pc
out)← PWMC-Bounds(Fc)

16 end
17 pin += p×

∏
c pc

in

18 pout += p× (P (DF [v])−
∏

c(P (DFc
)− pc

out)) // Uses Equation (2)
19 end
20 end
21 Add F 7→ (pin, pout) in cache and return (pin, pout)
22 (pin, pout)← PWMC-Bounds(F , ε)
23 return (pin, 1− pout)

the formula is in the cache (line 3). Otherwise, it selects a distribution to branch on (line 5).
Then, it iterates over its domain (lines 6-20), applies Schlandals’ propagation (line 8), and
recursively explores the independent components (lines 13-16). Moreover, the computation
of pin, the sum of F models’ probability (line 17), is the same as the computation of P [F ] in
Algorithm 1.

Hence, the main difference between Algorithm 2 and Algorithm 1 is the computation of
pout. When exploring sub-problems of F (i.e., branching for some value v of a distribution),
F [v], the formula obtained after applying Schlandals’ propagation, might turn out to be
unsatisfiable. Then, all interpretations containing v = ⊤ cannot be models of F , and pout

is increased (line 8). This rule also applies after propagation: propagation may remove
some variables from a distribution’s domain, making some interpretations non-models. The
probability of the interpretations setting one of these variables to ⊤ can be added to pout

(line 10). This computation is based on the difference in the maximum probability of the
distributions before (P (DF \ {Di})) and after the propagation (P (DF [V ])). Finally, the
probabilities of the non-models of each independent component are combined and added to
pout (line 18). The intuition for this formula is that if one partial interpretation in one of the
components evaluates to false, then the whole interpretation evaluates to false regardless
of the partial interpretation in the other components. Hence, if Uc represents the random
event that the c-th component evaluates to ⊥ (with probability pc

out), we wish to compute
P (∨|C|

i=1Ui) = P (¬(∧|C|
i=1¬Ui)); this gives the indicated formula as for each component the

probability that it is satisfiable is given by P (DFc)− pc
out.

CP 2024
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Figure 1 Example of iterative (from left to right) exploration of the search space with Limited
Discrepancy Search. At each iteration, d is the current discrepancy, starting from 0. The white
nodes represent newly explored nodes, while the grey ones represent nodes explored in previous
iterations.

4.2 Limited Discrepancy Search for Weighted Model Counting
Limited Discrepancy Search [14] is a search procedure initially designed to solve constraint
satisfaction problems in situations where it is reasonable to assume that a branching heuristic
will often be correct. An essential intuition behind LDS is that if a branching heuristic is
always correct, a solution can be found by following the leftmost branch of the search tree,
that is, the branch preferred by the heuristic. If the number of times the heuristic is wrong
is limited, and the lefthand branch of a node does not provide a solution, then the heuristic
should be incorrect less often in the righthand subtree. Limited Discrepancy Search builds
on this intuition; it iteratively explores the search space, deviating more and more from
the heuristic, as illustrated in Figure 1. Initially, it follows exactly the branching heuristic,
exploring the leftmost branch of the search tree. If no solution is found, it allows deviating
from the heuristic at one node per branch: the discrepancy is 1. This process continues,
incrementing the maximum number of discrepancies each time until a solution is found or the
whole search space is explored. This intuition naturally extends to optimization problems: a
good heuristic will guide the search toward a good solution and provide tight bounds. Hence,
large parts of the search space can be pruned in subsequent iterations of the LDS. However,
it is not obvious that counting problems benefit from such a search scheme; the whole search
space must be explored to calculate the exact model count.

However, we argue that LDS offers advantages compared to Algorithm 2 in the specific
setting of anytime weighted model counting, where the interest is to converge the bounds as
rapidly as possible. Indeed, the interpretations of a formula F are unlikely to have uniform
weights. If LDS’ assumptions are true, then the most likely interpretations can be found using
a small discrepancy, which is very fast for LDS, as it ignores large parts of the search space.
On the other hand, methods based on depth-first-search, as presented in Algorithm 1 must
explore the whole sub-tree, including unlikely interpretations, before switching to a more
promising part of the search space; moreover, when decomposing a formula in components,
DFS-based algorithms face the problem that they cannot raise the lower-bound before all
components have been considered. Hence, for the hardest problems, DFS-based methods
might even time out before exploring likely interpretations and considering all components.
Limited Discrepancy Search has the potential not to suffer from these problems, if the
branching heuristic is reasonable.

Algorithm 3 gives the modified procedure to perform an LDS-based DPLL search in
Schlandals. The structure of the algorithm is the same as Algorithm 2: a recursive procedure
(lines 1-18) explores the search space by selecting a distribution (line 5), exploring its values
(lines 6-17) and recursively solving the sub-problems (line 12-14) while maintaining the pin

and pout counts (lines 11,15-16). However, there are some key differences, which we will
describe next.
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Algorithm 3 PWMC with Bounds Computation and Limited Discrepancy Search.

1 Function Schlandals-LDS(F , d)
input : A boolean formula F with distributions DF and a discrepancy budget d

output : The probability of the considered models (pin) and non-models (pout)
2 if |DF | = 0 then return (1, 0)
3 if F in cache with values (pin, pout, d′) with d′ ≤ d or pin + pout = P (DF ) then

return (pin, pout)
4 pin ← 0; pout ← 0
5 Di ← choose_distribution() // For heuristics, see [9]
6 for k ← 1 to min(d + 1, |domF (Di)|) do
7 if TIMEOUT then break
8 v ← k−th values of domF (Di) // Has the k−th highest weight
9 if F [v] = ⊥ then pout += P (v)×P (DF \{Di}); continue // Equation (2)

10 p←
∏

v′∈prop(F [v]) P (v′)
11 pout += P (v)× (P (DF \{Di})− P (DF [v]))
12 C ← components of F [v]
13 foreach Fc ∈ C do

// Discrepancy not decrement for first child
(pc

in, pc
out)← Schlandals-LDS(Fc, d− (k − 1))

14 end
15 pin += p×

∏
c pc

in

16 pout += p× (P (DF )−
∏

c(P (DFc
)− pc

out))
17 end
18 Add (pin, pout, d) in cache and return (pin, pout)
19 d← 0; lb← 0; ub← 0
20 while not TIMEOUT do
21 (pin, pout)← Schlandals-LDS(F , d)
22 lb← max(pin, lb), ub← min(1− pout, ub)
23 output (lb, ub)
24 d += 1
25 end
26 return (lb, ub)

First, when a formula is found in the cache (line 3), its result is not automatically returned.
Indeed, if a node in the search tree is only partially explored when first encountered, its
bounds are not tight, and pin + pout ̸= P (DF ). Such a formula must still be explored, but
only if the discrepancy budget is higher than the one stored in the cache; otherwise, no new
interpretation can be found.

Then, when a distribution Di is selected for branching, the iteration on its domain (line 6)
differs from classical DPLL-search: it is limited by the discrepancy budget. Moreover, the
effectiveness of LDS heavily depends on the value selection heuristic. We propose a simple
heuristic that favors the most likely interpretation first. Let domF (Di) = {v1, . . . , vn} be the
domain of Di. Let us assume that the domain is iterated from v1 to vn; given a discrepancy
budget d, the values v1, . . . , vd are explored. We propose to order the values of the domain
such that P (v1) ≥ P (v2) ≥ . . . ≥ P (vn). The rationale behind this heuristic is the following.
The weight of an interpretation of F is computed as

∏
Di∈DF

P (v⊤
i ) with v⊤

i being the
variable set to ⊤ for distribution Di. Hence, selecting the most likely variable first aims to
favor the most likely interpretations.
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Finally, the outer loop calling the recursive function (lines 20-25) is specific to LDS. The
bounds are initialized (line 19), and while the time limit is not reached, an iteration of LDS
is done (line 21). The bounds are updated (line 22), output to the user (line 23), and the
discrepancy is incremented (line 24). Notice that the bounds are updated if they are better
than the previously found bounds. Indeed, if the time limit is reached, the last iteration of
LDS may explore only a small part of the search space, leading to worse bounds than in
the previous iteration. When the whole search space has been explored or the time limit is
reached, the bounds are returned to the user (line 26).

4.3 From Bounds to an Epsilon Guarantee
We have shown that it is possible to modify a DPLL-style search algorithm to compute a
lower and upper bound on the true probability. We now show a relationship between these
bounds and an ε-guarantee. Remember that a model counter computes an approximate
probability p̂ of p with ε-guarantee on its error if p

1+ε ≤ p̂ ≤ p(1 + ε).

▶ Theorem 4. Let F be a formula with true probability P [F ], ε ≥ 0 an error factor. If Pl[F ]
is a lower bound on P [F ], Pu[F ] an upper bound on F , and Pu[F ] ≤ Pl[F ]× (1 + ε)2 then
we have that

P [F ]
1 + ε

≤
√

Pl[F ]× Pu[F ] ≤ P [F ](1 + ε).

Proof. Let us first prove the left part of the inequality. By definition, we have that P [F ] ≤
Pu[F ] and, by assumption, Pu[F ]

(1+ε)2 ≤ Pl[F ], hence

P [F ]2 ≤ Pu[F ]2 ⇔ P [F ]2

(1 + ε)2 ≤
Pu[F ]2

(1 + ε)2 = Pu[F ]Pu[F ]
(1 + ε)2 ≤ Pl[F ]× Pu[F ]

⇔

√
P [F ]2

(1 + ϵ)2 = P [F ]
(1 + ε) ≤

√
Pl[F ]× Pu[F ]

We prove the second inequality in a similar manner.

P [F ] ≥ Pl[F ]⇔ P [F ]2(1 + ε)2 ≥ Pl[F ]2(1 + ε)2 = Pl[F ]Pl[F ](1 + ε)2 ≥ Pl[F ]Pu[F ]

⇔
√

P [F ]2(1 + ε)2 = P [F ](1 + ε) ≥
√

Pl[F ]× Pu[F ] ◀

This theorem tells us two things. First, if the bounds on a probability P [F ] are close
enough, with respect to an allowed ε error factor, the search can be stopped before a time-out
is reached and we can return a probability that respects a required ε-guarantee. Second,
however, if a time-out is reached, we can also still estimate the quality of the model count
at that moment, with respect to an ε−guarantee: given a lower bound Pl[F ] and an upper
bound Pu[F ], Theorem (4) allows us to compute the minimum required ε that would stop the
search at that moment. Algorithm 4 shows an adaptation of the outer loop of Algorithm 3
to perform LDS with an optional error factor ε. The algorithm runs until the condition
of Theorem 4 is met or until the time limit is reached. At each iteration, it outputs an
approximate probability with the ε error factor that would stop the search at that moment.

We believe that this setting can be useful for instance in experiments where a large
number of probabilities need to be calculated; using our solver this can be done with a time
out limit on each query, while at the end of the experiment statistics can be calculated on
the approximation quality of the probabilities calculated in the experiment.
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Algorithm 4 Approximate PWMC with LDS.

1 d← 0; lb← 0; ub← 0
2 while not TIMEOUT and not ub ≤ lb(1 + ε)2 do
3 (pin, pout)← Schlandals-LDS(F , d)
4 lb← max(pin, lb), ub← min(1− pout, ub)

5 εd ←
√

ub
lb − 1

6 output (
√

lb× ub, εd)
7 d += 1
8 end
9 return (

√
lb× ub,

√
ub
lb − 1)

5 Experimental Results

In this section, we evaluate the effectiveness of our LDS-based1 search method against
state-of-the-art methods. All methods are evaluated on two axes: i) How many instances
they can solve and ii) how fast they converge toward the true probability. Moreover, we
evaluate the effectiveness of our value-selection heuristic.

We evaluate our methods against the following state-of-the-art methods. We com-
pare against PartialKC [18], a recently proposed anytime unweighted model counter2

and ApproxMC [3, 24, 23], which is a popular hashing-based model counter providing
(ε, δ)−guarantees. We omit WeightMC [1] in our experiments as the available code was
not updated recently and did not scale on our instances. We also compare our LDS search
against the TP-compilation algorithm of Problog[7, 28], which provides a lower and an
upper bound on the probability in an anytime fashion. Unfortunately, the upper bound is not
available to users, and there is no easy way to extract it3. The Toulbar2 [21] solver was also
run with the algorithm presented in [26]. Finally, using Theorem 4, we evaluate an anytime
version of Algorithm 2, which can be seen as the DFS alternative to our LDS-based search.
To do so, we ran Algorithm 2 with increasingly high timeouts, storing for each timeout the
returned bounds. In the rest of this section, we denote by DFS this approach, and by LDS
the approach presented in Algorithm 4. To better evaluate these approaches, we also ran
D4 [15, 16], GPMC [25] and ExactMC [17] on our benchmarks. All methods ran with a timeout
of 600 seconds and a memory limit of 15Gb when the option was available with the solver.
Except for parameters related to approximations, all methods have been executed with their
default parameters. We evaluated these methods on two problems: computing the marginals
in Bayesian networks without evidence and computing reachability queries in probabilistic
graphs.

The Bayesian networks have various sizes, ranging from a few parameters to tens of
thousands, and originated from the bnlearn R package [22]. For each network, we use one
query per value of the leaves: if a leaf node in the network has four values, we create four
instances that compute the marginal probability of each value. Overall, there are 2749

1 The source code is available at https://github.com/aia-uclouvain/schlandals.
2 At the time of the writing of this work, there exists a parameter in PartialKC to perform weighted

model counting. Unfortunately, the feature is not yet implemented
3 We checked this with the maintainers of the Problog implementation.
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Figure 2 Proportion of solved instances over time, with a timeout of 600 seconds, for Bayesian
networks (left) and reliability estimation (right) problems.

instances4. For Schlandals, we use the encoding presented in [9], and for PartialKC and
ApproxMC, we use the encoding from [4]. Since these solvers work on unweighted formulas, we
transformed the weighted instances into unweighted ones using the approach proposed in [2],
which encodes the weight with additional variables and clauses. Then, the unweighted count
can be divided by a normalization factor to obtain the weighted model count. A precision
parameter can adjust the number of clauses and variables added at the cost of a less precise
weighted model count. We chose a precision of 10 so that the result after normalization is
similar to the true probability up to five decimals. However, using a lower precision did not
change the results significantly. For Toulbar2, we used the UAI format with, as evidence, the
pair node-value to query. Since Problog is not designed to work directly on CNF formulas,
implementing the various optimizations for encoding Bayesian networks is impossible. Hence,
we decided not to run it on these benchmarks as it would only scale to the easiest instances.

For the reachability queries, we took the graphs representing power grid networks in
Europe and the USA extracted by the GridKit tool [19, 29]. For each of these graphs,
sub-graphs were created by splitting the nodes and edges by country (for Europe) and state
(for the USA). Following the description in [10], we assign each edge a probability of 0.125
of being down. Finally, five queries are created for each sub-graph by taking random pairs
of nodes and computing their connection probability5. For Schlandals, we again used the
encoding presented in [9], which is based on the ones presented in [10] and used for the
other solvers. Unfortunately, PartialKC and Toulbar2 are not projected model counters and
cannot be launched on these instances. For ApproxMC, the instances were made unweighted
using the same approach as for the Bayesian networks but with a precision of 3.

Evaluation of Solving Instances

First, we analyze how many instances each method can solve. Here, we consider an instance
solved if it respects the approximation contract, if any, or finds the true probability. For
example, an instance with a probability of 0.5 would be solved by a solver returning 0.55

4 The scripts to generate the instances can be found at https://github.com/AlexandreDubray/
bn-benchmarks

5 The scripts to generate the instances can be found at https://github.com/AlexandreDubray/
probabilistic-graph-benchmarks

https://github.com/AlexandreDubray/bn-benchmarks
https://github.com/AlexandreDubray/bn-benchmarks
https://github.com/AlexandreDubray/probabilistic-graph-benchmarks
https://github.com/AlexandreDubray/probabilistic-graph-benchmarks
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Figure 3 Average convergence of the estimated probability (p̂) towards the true probability (p⋆) for
Bayesian networks (left) and reliability estimation (right) problems. For Schlandals, the estimated
probability is given by

√
lb × ub; the other methods directly output an estimated probability. The

continuous lines represent the average over all instances, the dotted lines are the average over the
easy instances (can be solved by Schlandals in less than 60 seconds), and the dashed lines are the
average over the hard instances.

when required to produce an ε-approximation with ε = 0.2. Figure 2 shows the proportion
of solved instances within the time limit for Bayesian networks (left) and reachability queries
(right). It can be seen that Schlandals performs the best regardless of the problem and
the type of solver (exact, approximate, or anytime). The unweighted model counters are
performing less well. Adding variables and clauses for the weights heavily impacts their
performance, particularly for large probabilistic models with thousands of weights. In our
experiments, on most instances, Toulbar2 was not able to improve its performance when
calculating an ε-approximation using the algorithm presented in [26]. Hence, this graph only
includes the result for ε = 0.

It can be seen that when solving the problems exactly (ε = 0), the LDS version of
Schlandals performs less well than its DFS version; this is to be expected as parts of the
search space are traversed multiple times. However, when a small error (ε) is acceptable, then
LDS performs roughly the same as DFS on Bayesian networks and surpasses it on reachability
queries (with ε = 0.01, the DFS does not solve more instances within the time limit, so we
did not include this curve in the graph). Even more striking, LDS can solve at least as many
instances, in the same amount of time, as DFS and produce probabilities under much stronger
guarantee requirements (ε = 0.05 instead of ε = 0.8). Although LDS has some overhead by
exploring some parts of the search space, and it can be seen when the whole search space
must be explored, when computing ε-approximation, it seems that it allows to converge
much faster towards the true probability. We confirm this intuition in the next section by
analyzing the convergence of the various methods.

Convergence of the Anytime Methods

Figure 3 shows the average convergence of the methods towards the true probability when
computing it exactly (i.e., with ε = 0). For the two versions of Schlandals, we use Theorem 4
and the bounds to produce an approximation. We modified the outer loop of ApproxMC
(see Algorithm 1 in [3]) to output the estimated probability at each iteration. While these
intermediate solutions have weaker guarantees, considering ApproxMC as an anytime model

CP 2024
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Figure 4 Lower and upper bound convergence towards the true probability p⋆ on Bayesian
networks (left) and reachability queries (right) for the two versions of Schlandals.

counter is possible. All other methods provide a lower bound on the probability during their
execution, which is used as a comparison in the figure. Figure 3 shows the average convergence
on all instances (solid lines), but also on easy (dotted lines) and hard instances (dashed
lines). We use a simple threshold to consider an instance difficult or not: if Schlandals can
solve the instance in less than a minute, we consider the instance as easy. For the Bayesian
networks, the true probability is known for each instance, but this is not true for reachability
queries. Hence, for the later problem, we only consider, in this graph, the instances for which
at least one solver can produce an exact solution. Such instances are mainly the easiest ones,
explaining why the methods converge faster than for Bayesian networks.

As previously noted, Schlandals is the best-performing method. Hence, its estimated
probability converges, on average, to the true probability. However, the gap between the
convergence of the easy and hard instances is much larger for the DFS version of Schlandals
than for any other method. Due to its depth-first nature, it stays in parts of the search
space containing small-weight interpretations. On the other hand, LDS suffers much less from
this problem, and the convergence gap between the easy and the hard instances is smaller.
Due to its inability to solve the hardest instances, Toulbar2 does not converge, on average,
toward the true probability. We hypothesize that it gets trapped in part of the search space
where it accumulates little probability mass before being timed out. Finally, due to their
poor scalability on weighted problems, PartialKC and ApproxMC converge poorly. Indeed,
they can not produce a first solution for many hard instances. Hence, the default lower
bound on these instances is 0, pulling their average convergence towards that value.

Finally, we evaluate if limited discrepancy search effectively allows finding likely models
first. To do so, we analyze how the lower and upper bounds converge toward the true
probability. If our search-based methods find the most likely model first, the bounds should
converge quickly towards the probability, then plateau until the final convergence or timeout.
To assess the convergence of a lower bound Pl[F ], we use the metric Pl[F ]/P [F ] ∈ [0, 1]; when
no solution has been found, it is 0 and when all solutions have been found it is 1. For the
upper bound Pu[F ], we use (1− Pu[F ])/(1− P [F ]), which exhibits the same characteristics.
Figure 4 shows, for both problems, the average convergence, using the metrics defined above,
for DFS and LDS. It can be seen that both methods quickly accumulate probability mass for
models and non-models of F , validating that our value-selection heuristic favors the most
likely models. Moreover, LDS performs significantly better than DFS, reaching an average of
more than 0.9 for both metrics in less than 100 seconds.
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6 Conclusion

In this work, we proposed a new method for performing (projected) weighted model counting
that can be stopped at any time during its execution. Unlike other anytime methods, the
proposed approach provides deterministic lower and upper bounds on the true count. We
have shown that the propagators of DPLL-style weighted model counters can be leveraged
to maintain such an upper bound during exploration. We proposed a simple heuristic that
favors exploring the highly weighted interpretations first, fastening the convergence of the
bounds. We enhanced this convergence further using Limited Discrepancy Search (LDS).
Finally, we have shown that these lower and upper bounds can be linked to the well-known
notion of ε-approximations; hence, the proposed method can be used seamlessly to perform
an interruptable computation for either the true weighted model count or an ε-approximation.
We implemented this method in the Schlandals solver, specialized for probabilistic inference,
and evaluated it against state-of-the-art methods on probabilistic reasoning tasks. Our
experiments show that Schlandals is the best-performing solver on the studied tasks and
that the LDS-based search outperforms classical DFS when computing ε-approximations.

The method presented in this work uses a simple strategy for the discrepancy, and more
work could be done to enhance the performance of the LDS-based search. Moreover, the
method presented here could be applied to other weighted model counters, including those
that support arbitrary CNF formulas, such as provided in model counting competitions;
moreover, an interesting research direction is to apply LDS to unweighted model counting.
In this case, our simple heuristic can not be applied since all interpretations have the same
weight, and another heuristic would be necessary.
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