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Abstract
We present a novel scheduling model that leverages Constraint Programming (CP) to enhance problem
solving performance in Temporal Planning. Building on the established strategy of decomposing
causal and temporal reasoning, our approach abstracts two common fact structures present in many
Temporal Planning problems – Semaphores and Envelopes – and performs temporal reasoning in a
CP-based scheduler. At each search node in a heuristic search for a temporal plan, we construct and
solve a Constraint Satisfaction Problem (CSP) and integrate feedback from the CP-based scheduler
to guide the causal planning search towards a solution. Through experimental analysis, we validate
the impact of these advances, demonstrating a significant reduction in both the number of states
searched and in search time alongside an increase in problem-solving coverage.
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1 Introduction

Temporal AI Planning is an extension of classical AI planning that includes a representation of
the duration of actions and reasoning about numeric variables that change over time [9]. For
such a problem, a solution is a sequence of scheduled actions, called a plan, which transforms
the world to a desired goal state from an initial description of the world. Unlike scheduling
problems such as Job-Shop Scheduling [15], but similar to most planning problems, solutions
to temporal AI planning problems do not have a pre-defined set of actions to execute, but
rather actions must be both selected and scheduled by a planner.

Planners designed to handle temporal problems typically take one of two approaches.
Decision-epoch planners build a plan by adapting a classical planning approach where actions
are selected and applied to a state to generate a new state, when a new action is started
its effects are realised and the time of its end is added to a queue, stored in the state. The
planner can then decide to apply another action at the current time or advances time until
after the next action in the queue, in order to realise that action’s effects. Further actions
can then be applied at this time point, with the process repeated until all goals are achieved
and all executing actions have completed [7, 8]. In the decision-epoch approach, the planner
reasons about both the causal and the temporal aspects of the problem.
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12:2 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

Decomposition planners separate causal and temporal reasoning [11]. The planner
applies actions to states to generate an atemporal successor state, then checks the temporal
consistency of the partial plan for that state using a scheduler. If the resulting state is
numerically and temporally consistent, additional actions can be applied to extend the plan.
If the resulting state is not consistent, it is discarded and the planner explores the expansion
of other states. This alternation between planning and scheduling continues until a goal
state is achieved. Thus, the causal reasoning takes place in task planning, while the temporal
reasoning is done using a sub-solver model such as a Simple Temporal Network [11] or a
Linear Program [3].

Decomposition Temporal Planning lends itself to transferring other temporal and/or
combinatorial structures to the sub-solver, provided that it has the ability to model and
solve such structures. This paper presents two contributions to decomposition approaches in
temporal AI planning.
1. We show that, through the use of a constraint-based scheduler, additional temporal and

combinatorial reasoning can be transferred to the sub-solver by abstracting semaphore
and envelope fact structures, reducing the number of states that the planner needs to
explore.

2. We show how this transfer also enables an increase in the feedback from the scheduler
to the planner enabling the planning heuristic to identify dead-ends earlier and, thus,
substantially reducing the search effort.

Our experiments show that our approach leads to a significant reduction in states searched,
increased coverage, and improved solve times in a range of International Planning Competition
(IPC) benchmark domains. Moreover, because we use a preprocessing detection to identify
these semaphore and envelope fact structures, there is no negative impact of our approach
on domains where these structures do not exist. This paper demonstrates that CP can be a
powerful tool for a kind of combinatorial and temporal reasoning that is traditionally solved
inefficiently in the search, which is designed for causal reasoning in AI planners.

These contributions are different from previous applications of Constraint Programming
in Temporal Planning – such as CPT [18, 10] or EUROPA [1] – because previous approaches
have directly solved the temporal planning problem. Moreover, our approach can model
numeric resources and supports a temporal-numeric fragment of PDDL2.1 even though the
performance improvements we demonstrate are derived from the temporal aspect of the
problem.

2 Background

2.1 Temporal Planning
We consider the fragment of PDDL 2.1 [9] planning problems supported by COLIN and
POPF [3] and limit our attention to problems without continuous numeric effects, although
our work could be extended to support them.

We define a planning problem as a tuple ⟨F, V,A, I,G⟩. F is a finite set of facts. A fact
f ∈ F is a proposition which, if present in a given state s, indicates that the fact is true. V
is a finite set of numeric variables. I denotes the initial state. A state is a tuple ⟨Fs, ns⟩,
where Fs ⊆ F and ns is a set of assignments to the variables in V . ns[v] denotes the value of
variable v ∈ V in state s. A is a set of durative actions, representing operators that can be
applied to states. G is a set of conditions that must hold true following execution of any
valid solution plan.
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We begin by defining a condition ψ. Conditions can either be propositional (ψ ∈ F ) or
numeric. Numeric conditions are defined as a tuple ψ = ⟨v op c⟩ such that op ∈ {≥,≤, <,>
,=} and c ∈ R. For a given state ⟨Fs, ns⟩, ψ is satisfied if it is a proposition where ψ ∈ Fs

or it is a numeric condition where ⟨ns[v] op c⟩ is true.
A durative action a ∈ A is defined as a tuple

⟨pre(a)⊢, eff(a)⊢, pre(a)↔, pre(a)⊣, eff(a)⊣, da⟩. pre(a)⊢ (pre(a)⊣) is a set of proposi-
tional and numeric conditions (preconditions) on the start (end) of the action a. pre(a)↔
are invariant conditions over the duration of action a that must be satisfied for all the time
the action is executing. Individually we denote these preconditions as pre(a)p

{⊢,⊣,↔} for
propositional conditions and pre(a)n

{⊢,⊣,↔} for numeric conditions. da is a pair ⟨dmin, dmax⟩
representing the minimum and maximum duration of the action a as positive real values.

eff(a)⊢ (eff(a)⊣) are effects that occur at the start (end) of the action a and consist of
a tuple ⟨eff+, eff−, effn⟩. eff+(eff−) is a set of propositions in F that are added to (deleted
from) a state s to create the subsequent state s′ (e.g. Fs′ = (Fs \ eff−) ∪ eff+).

effn is a set of numeric effects of the form ⟨v op c⟩, where op ∈ {+=,−=,=}, c ∈ R and
v ∈ V . Numeric effects using the operators += and −= use the value of v in s, to calculate
the value of v in the subsequent state s′. This is a commonly used restricted version of
PDDL 2.1 numeric planning.

The goal G is a set of propositional and numeric conditions. A state s |= G if s satisfies
the propositional and numeric conditions in G.

A plan π is a list of tuples of the form ⟨a, t, d⟩, with t representing the timestamp at
which action a is applied and d representing the duration of a where dmin ≤ d ≤ dmax. A
plan π is valid iff for all tuples ⟨a, t, d⟩ in π, pre(a)⊢ is satisfied at time t, pre(a)⊣ is satisfied
at time t+ d, pre(a)↔ is satisfied at all points in the interval (t, t+ d). π is a solution if it is
valid and the resulting state SG, when all actions have finished executing, satisfies G.

2.2 Constraint Satisfaction Problems

Formally, a Constraint Satisfaction Problem (CSP) is a tuple ⟨X,D,C⟩, where X is a set of
n variables, D is a set of n domains corresponding to the variables in X and ∀d ∈ D, d ⊂ Z.

C is a set of constraints. A constraint is an m-ary (m ≤ n) function c(v0, ..., vm) →
{true, false} where vi ∈ di and di ∈ D represents the domain of variable xi. A constraint can
be any mapping of an assignment for the variables in X to a truth value which indicates if
the constraint is satisfied or not.

A solution for a CSP ⟨X,D,C⟩ is a n-tuple V = ⟨v0, ..., vn⟩ representing an assignment
of the value vi to the variable xi ∈ X where vi ∈ di and ∀c ∈ C, c(V ) = true.

In CP-based scheduling, interval variables represent an optional time window. The
domain of an interval variable is a set of the form {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e} where s (e)
represents the start (end) time of the interval. For an interval variable x, if x = ⊥ it is not
present in the solution to the problem.

A global constraint is a relation on an arbitrary number of variables, typically representing
frequently observed combinatorial structure such as a set of variables all requiring pairwise
different values. Explicit representation of such relations improves problem solving perform-
ance through the use of inference (or propagation) algorithms designed for the corresponding
structure [16].

We use three common global constraints: noOverlap (or disjunctive), alternative, and span.

CP 2024
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▶ Definition 1. noOverlap(S, υ) is a global constraint over a set of interval variables S, and
numeric constant υ where for any two present intervals in S, xi and xj , start(xi) ≥ end(xj)+υ
or start(xj) ≥ end(xi) + υ holds.

▶ Definition 2. alternative(xa, S) is a global constraint over an interval variable xa, and a
set of interval variables S where xa ̸∈ S. xa is present in the solution, iff exactly one interval
x ∈ S is also present. When xa is present, start(xa) = start(x) ∧ end(xa) = end(x).

▶ Definition 3. span(xc, S) is a global constraint over an interval variable xc and a set of
interval variables S, xc ̸∈ S, that ensures that all present intervals in S are scheduled between
the start and end of xc and that interval xc starts with the start of the first present interval
in S and ends with the end of the last present interval in S. xc is absent iff all intervals in
S are absent.

2.3 Planning through Decomposition

Decomposition-based planners separate temporal reasoning from causal reasoning by relaxing
the problem to a causal representation and finding a solution to this representation using
search. In OPTIC, an A∗ search with the Metric Temporal Relaxed Planning Graph (TRPG)
[13, 6] heuristic is used to explore the state space. To reason about temporal planning,
OPTIC splits durative actions into snap actions.

▶ Definition 4. An action a of the form ⟨pre(a)⊢, eff(a)⊢, pre(a)↔, pre(a)⊣, eff(a)⊣, da⟩, can
be abstracted as a pair of snap actions ⟨a⊢, a⊣⟩: a tuple comprising ⟨pre(a)⊢, eff(a)⊢⟩
(⟨pre(a)⊣, eff(a)⊣⟩). Snap actions represent the instantaneous start and end preconditions and
effects of a durative action; the duration and invariant conditions must be tracked separately.

The search is modified to ensure that each start snap action has a corresponding end
action and that invariant conditions between start and end snap actions are satisfied [3].

The successor of a state s reached by applying the sequence of snap actions (partial plan)
πs are each generated by applying a new snap action a, resulting in a new state with partial
plan π′ (a appended to πs). From π′, OPTIC creates a scheduling problem τ as follows [4]:

A set of temporal constraints of the form min ≤ t(a′) − t(a) ≤ max where a, a′ ∈ π′ and
min and max are constants.

If the temporal constraint represents an ordering between two snap actions min = ϵ

and max = ∞. Ordering constraints ensure that (1) if an action has a precondition
on a fact p then it is ordered after the last adder of p (i.e., the last action that adds
p); (2) if an action adds p it is ordered after the last deletor of p and (3) if an action
deletes p it is ordered after the last adder and all conditioners on p since it was last
added (4) if an action contditions on or effects a variable v it is ordered after the last
action to condition on or effect v.
If the temporal constraint represents the duration between the start and corresponding
end snap action for duration action a, min = dmin and max = dmax where da =
⟨dmin, dmax⟩. Duration constraints ensure that the time between the start and end
snap actions in any valid solution for τ is consistent with duration bounds of the
durative action they represent.

In the presence of continuous or duration-dependent effects these are encoded in the
scheduling problem over the values of numeric variables (v in V ) before or after each
snap action.
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In every state generated, a scheduling problem τ is constructed from the partial plan π′.
τ is solved using a sub-solver such as an STN-based solver, Linear Program (LP) or Mixed
Integer Program (MIP) which attempts to find a set of action timestamps that satisfy the
constraints.

If there is no feasible timestamp assignment, the state is temporally inconsistent and is
pruned. If an assignment is found and the state satisfies the goal, then the plan π constructed
from the timestamps is a solution. If the state is consistent but not a goal, then control
returns to the planner to continue its search.

3 Building a CP model from π′

We now construct a drop-in CP replacement for the STN/MIP scheduler currently used in
OPTIC, based on the temporal and numeric constraints described in Section 2.3. Consider a
partial plan π′ and a scheduling problem τ ; we construct a CSP ⟨X,D,C⟩ as follows.

Variables

For each start snap action a⊢ in π′ we add an interval variable xa = [s, e) to X regardless of
whether a⊣ exists in π′. s represents the timestamp of snap action a⊢, and e of a⊣, if a⊣ is
present. If a⊣ is not part of the plan π′, then we still represent the unclosed duration action
that corresponds to a⊢ with an interval and constrain its duration according to the duration
of the durative action it represents, however there will be no ordering constraints on a⊣ (and
consequently on e) because the planner has yet to reason about the addition of a⊣ to the
plan. This allows the scheduler to reason with xa as if it were a closed action, preserving the
duration. In any circumstance, even if the CP solver concludes that a schedule exists for a
plan π′ with an unclosed action, the plan is not valid and a final temporal consistency check
will occur once a complete plan is produced.

If V ̸= ∅ we add two integer variables xa,v and x′
a,v for each v ∈ V and each snap action

a ∈ π′. These variables represent the value of variable v before and after the application of
the snap action.

Temporal Constraints

For each temporal constraint in τ of the form min ≤ t(a′) − t(a) ≤ max, a constraint is
introduced according to whether the snap action a (a′) correspond to a start a⊢ (a′

⊢) or end
a⊣ (a′

⊣) snap action. Constraints are mapped accordingly as follows. If a and a′ are start snap
actions then min ≤ start(x′

a)−start(xa) ≤ max is introduced. If a and a′ are end snap actions
then min ≤ end(x′

a) − end(xa) ≤ max is introduced. In the case that a is a start snap action
and a′ is an end snap action (or vice versa) a constraint min ≤ end(x′

a) − start(xa) ≤ max
(min ≤ end(x′

a) − end(xa) ≤ max) is introduced.

Numeric Constraints

There are two types of numeric constraints which we model: conditions and effects. A
numeric condition as defined in the planning problem with the form ⟨v{≥,≤, <,>,=}c⟩
occurring in pre(a), is imposed on xa,v as it represents the value of the variable v before the
application of snap action a e.g. xa,v{≥,≤, <,>,=}c.

If a numeric effect exists in effn(a) of the form ⟨v{+=,−=,=}c⟩ then the resulting
constraint is x′

a,v = xa,v{+=,−=,=}c. If no numeric effect exists then x′
a,v = xa,v.

CP 2024
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These constraints model discrete numeric effects within the scheduling problem. In
problems where there are no continuous or duration-dependent effects, these need not be
reasoned about in the scheduler (since, given the ordering constraints OPTIC generates, the
timestamps assigned to actions cannot affect the value of numeric variables), so an STN,
without any numeric constraints can be used to solve the scheduling problem. However, in
the presence of either of these, the numeric preconditions and effects must be modelled to
ensure temporal-numeric constraints are satisfied. The approach we take to modelling these
in our CSP model, mirrors that used in OPTIC. We limit ourselves to discrete effects, here
we will use these later in our feedback mechanism from the scheduler to the planner; but in
general the same constraints over these variables that are used in OPTIC’s MIP can be used
to represent continuous/duration dependent effects in a CSP.

In OPTIC, when constructing a scheduling problem τ , a total ordering is imposed between
snap actions which condition on or effect the same variable v (regardless of whether this is
necessary). We could in principle relax these constraints, but since our focus here is not
specifically on numeric planning we maintain them as is. The initial value of xa′,v, therefore,
is constrained to be equal to the final value of v in a (xa′,v = x′

a,v) as we know this would
have been the last time the value of the variable v changed. If a is the first snap action π′ to
condition or effect on v, then xa,v takes the value of v in the initial state (xa,v = nI [v]).

Domain

The domain da is defined for an interval variable xa as the interval [0, h] where h represents
the sum of the maximum duration of all actions in the plan π′, plus ϵ multiplied by the
number of actions in the plan. The horizon h is an upper bound as in the worst case each
action will be executed without overlap with any other.

The domain dv – which applies to all integer variables representing v – is an interval
[minv,maxv] defined by the sum of all positive numeric effects (+=) effects applied to the
initial value maxv, and the sum of all negative effects (−=) minv. In the event assignment
(= c where c is some constant) occurs, the interval is [c− minv, c+ maxv].

Temporal planning and CP scheduling problems have adopted different conventions for
representing the timing of events. As shown in the definition of an interval variable, in CP,
time intervals are considered to be open on the right, thus allowing one interval to end at
time t and another to begin at the same time even if they are constrained to not overlap. In
contrast, temporal planning uses ϵ as the smallest representable unit of time. Actions that
are constrained to not overlap must be separated by at least ϵ. To handle this mismatch, we
represent ϵ in the CP model as one unit of time and thus force an extra gap between actions,
consistent with the planning definition. Our CP scheduler does not affect OPTIC’s support
for self-overlapping actions, is equivalent to the current STN-based approach in OPTIC, and
as such does not impact the soundness or completeness to OPTIC.

4 Abstracting Semaphores and Envelopes

So far our temporal reasoning problem is identical to that solved by the STN solver in
OPTIC. In this section, we extend our temporal representation to take advantage of CP’s
greater expressivity and solving power.

Semaphore and envelope facts [11] are causal modelling patterns that, respectively, prevent
and require the concurrent execution of a set of actions. Because these are facts, and therefore
a causal consideration, they have been considered during causal reasoning, despite being a
temporal structure. We formally define semaphore and envelope facts as follows.
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▶ Definition 5. A semaphore fact f is a fact such that f ∈ I and ∀a ∈ A exactly one of
the following holds

a is a mutual exclusive action, that is, f is in and only in pre(a)p
⊢, eff(a)−

⊢ and eff(a)+
⊣ ,

or
a is an unrelated action, that is f is not in any precondition or effect of a.

Definition 5 ensures that all actions that condition on a semaphore fact delete it at the
start and add it at the end, ensuring actions that condition on a semaphore are mutually
exclusive (cannot execute in parallel). Requiring all other actions to be unrelated ensures
the semaphore fact serves only to enforce mutual exclusion and has no other function.

▶ Definition 6. An envelope fact f is fact such that f ̸∈ I and ∀a ∈ A exactly one of the
following holds

a is an envelope achiever, that is, f is only in eff(a)+
⊢ and eff(a)−

⊣ ,
a is an envelope conditioner, that is, f is in pre(a)p

↔ and optionally in pre(a)p
⊢ and/or

pre(a)p
⊣ and f is not in eff(a)⊢ and eff(a)⊣, or

a is an unrelated action, that is, f is not in any of the sets: pre(a)p
⊢, eff(a)⊢, pre(a)p

↔,
pre(a)p

⊣, or eff(a)⊣.

An envelope fact ensures that every envelope conditioner executes concurrently with some
envelope achiever. Definition 6 ensures that an envelope achiever adds the envelope fact
at its start and deletes the same fact at its end, thus creating a window where this fact is
available. The definition also states that an envelope conditioner has an invariant condition
and thus must execute concurrently with some envelope achiever. An unrelated action as
defined in Definition 6 means an action can only act as an achiever or conditioner on an
envelope fact and not use an envelope fact for any other purpose.

Definition 6’s requirement for all other actions to be unrelated ensures that (i) no other
actions adds the envelope fact, so all conditioners must occur within an achiever, (ii) no
other actions delete the envelope fact, thus it remains throughout the entire execution of an
envelope achiever, and (iii) no other actions condition on the envelope facts at only the start
or end and thus only need to be executed partially concurrently with an achiever.

Figure 1 Envelope fact g enforces concurrency with a work shift whilst semaphore fact f prevents
more than one work activity from happening at a time. A fact appearing above (below) an action
indicates it is a condition (effect) respectively. Position indicates whether the fact is a start, invariant,
or end condition or effect. ¬f denotes that f is being deleted (made false).

Figure 1 shows how a semaphore f and envelope g interact. The blue “work shift” action
is an envelope achiever of g, into which a number of work activities have to be scheduled.
These activities – preparing Chicken, Pasta and Noodle dishes – are mutually exclusive due
to semaphore fact f and are also envelope conditioners on g.

4.1 Abstracting Semaphore Facts
Current state-of-the-art decomposition planners search over all total ordering constraints
between durative actions ai and aj that condition on semaphore fact f .

CP 2024
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Figure 2 For two mutually exclusive actions, two orderings exist that achieve the same state.

Figure 2 shows how the mutual exclusion of semaphore f creates two alternate plans
to explore to achieve the same state. If there are n actions required to achieve goal G that
condition on the semaphore fact f , there are n! orderings of those actions to be considered.
However in many cases, side effect constraints and other optimisations [5] can reduce the
search space.

To abstract a semaphore fact f , from a planning problem ⟨F, V,A, I,G⟩, we create a set
of actions mf = {a : a ∈ A, f ∈ pre(a)p

⊢}. We perform the following set operations ∀a ∈ mf :
pre(a)p

⊢ \ {f}, eff(a)−
⊢ \ {f}, and eff(a)+

⊣ \ {f}. Finally, we remove f from the initial state I.
For the scheduling problem corresponding to partial plan π′, a new mutual exclusion

constraint is added for the actions in π′ that appear in the set of actions mf .

▶ Definition 7. A mutual exclusion constraint is a noOverlap constraint of the form
noOverlap({xa ∈ X : a ∈ π′ ∧ a ∈ mf }, ϵ).

Following Definition 5, we demonstrated that the only purpose of a semaphore fact was to
ensure mutual exclusion between actions conditioning on it. A semaphore fact has no implied
ordering between actions that condition on it. Search in OPTIC imposes a total ordering
among such actions (due to ordering each conditioner after the most recent adder), with
different orderings considered by exploring different plans. We replace the total orderings
imposed at the planning level, with a mutual exclusion constraint imposed during scheduling.
The scheduler will consider any ordering of actions in the mutual exclusion constraint that
respects ordering constraints imposed by other facts (since these still remain as temporal
constraints). As a result, the substitution preserves soundness. By considering all sound
partial orderings, the substitution maintains completeness.

4.2 Abstracting Envelope Facts
An envelope achiever of fact g creates a time window that an envelope conditioner on g

must execute within. With multiple achiever and conditioner actions, a set of possible time
windows is defined and the planner must decide which envelopes each conditioner must
execute within.

In Figure 3 two achievers of g – “Work Shift 1” and “Work Shift 2” – exist and “Prepare
Chicken Dish” could be scheduled within either; resulting in two different assignments to
consider. The number of assignments grows exponentially with both the number of envelope
achievers n and the number of envelope conditioners m provided n > 1.

Assignment decisions are only important if envelope conditioners cannot be executed
concurrently. If all envelope conditioners can execute concurrently, an envelope achiever large
enough to execute concurrently with the longest conditioner can satisfy all conditioners.
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Figure 3 For two envelope achievers (work shift 1 and 2); prepare chicken could be assigned to
either.

To abstract an envelope fact g from a planning problem ⟨F, V,A, I,G⟩, we create two sets
of actions achieversg = {a : a ∈ A, g ∈ eff(a)+

⊢ } and conditionersg = {a : a ∈ A, g ∈ pre(a)p
↔}.

∀a ∈ achieversg, we perform eff(a)−
⊣ \ {g}. ∀a ∈ conditionersg we perform the following set

operations: pre(a)p
↔ \ {g}, pre(a)p

⊣ \ {g}, and pre(a)p
⊢ ∪ {g}.

To ensure that envelope conditioners are scheduled concurrently with an envelope achiever,
a new envelope constraint comprised of new variables and a set of constraints is added to the
scheduling problem for the partial plan π′.

▶ Definition 8. An envelope constraint for an envelope fact g, with sets of actions
achieversg and conditionersg and partial plan π′, comprises new interval variables xa,c,∀a ∈
achieversg,∀c ∈ conditionersg, and a dummy optional interval xa,dur for all a ∈ achieversg

and the following constraints:
∀c ∈ π that also appears in conditionersg, alternative(xc, {xa,c : a ∈ achieversg ∩π′}). xc

is the interval variable in X representing the conditioner action c. Exactly one achiever,
a, for each conditioner is assigned by enforcing the presence of one optional interval
variable xa,c.
∀a ∈ π′ that also appears in achieversg, span(xa, {xa,c : c ∈ conditionersg} ∪ {xa,dur}).
xa is the interval variable in X representing the achiever action a. This ensures that
each envelope conditioner executes concurrently with the envelope achiever assigned in
the alternative constraint.

The dummy optional interval xa,dur ensures that the conditioners on an envelope do not
have to be scheduled such that one starts exactly at the start of xa and one finishes exactly
at the end. The dummy action can be used to satisfy this condition imposed by the span
constraint, and thus we do not compromise completeness (as the planning model does not
necessarily imply this constraint).

Following Definition 6, we demonstrated that the only purpose of an envelope fact in
the domain was to ensure that all envelope conditioners execute entirely within envelope
achievers. An envelope fact does not imply an assignment of a specific conditioner to a
specific achiever.

In OPTIC, an assignment of a conditioner to an achiever is done during search. Search
first adds the start of an achiever (a⊢), then the start of the conditioner (c⊢), imposing an
ordering constraint in τ : t(a⊢) < t(c⊢). Search then adds the end of the conditioner (c⊣).
Finally, search adds the end of the achiever (a⊣), ordering the end of the achiever after the
end of the conditioner (t(c⊣) < t(a⊣)). The result of these constraints is a total ordering
(t(a⊢) < t(c⊢) < t(c⊣) < t(a⊣)).1

1 OPTIC may choose to add some other action or actions between the addition of these individual snap
actions. This is a simple example of how envelope concurrency is achieved.
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In imposing these ordering constraints in the scheduling problem τ , search assigns a
conditioner to an achiever and enforces their concurrent execution using the same constraints.
Search in OPTIC considers a different assignment of an achiever to a conditioner, by
performing the same process described above, but using different achievers.

By abstracting an envelope fact, leaving only a start add effect for achievers and a start
precondition for conditioners, the only ordering constraint added by OPTIC to τ orders all
conditioners after the first achiever; an ordering implied in any valid envelope assignment
and execution. By using an alternative constraint, the scheduler can consider the assignment
of a conditioner to any achiever. Meanwhile, the span constraint ensures the concurrent
execution of a conditioner with the achiever it is assigned to.

Because we only abstract envelope facts, other constraints in τ are preserved (still
generated by OPTIC’s machinery). The assignment of a conditioner to an achiever will only
be considered by the CP Scheduler if that assignment respects all other constraints in τ . As
a result, this abstraction does not compromise soundness.

By allowing the CP Scheduler to consider different assignments of conditioners to achievers,
we ensure that, in one state, the scheduler considers all orderings that OPTIC considers over
a number of states. We therefore do not compromise completeness.

5 Improving Feedback to the Planner

The abstractions described in Section 4 and allow us to transfer some reasoning about
orderings of actions in the planner’s search to reasoning with powerful global constraints in a
CP sub-solver. These abstractions also allow us to enhance the communication between the
causal reasoning in task planning and the temporal reasoning in scheduling.

In delete-free relaxation heuristics [12], envelopes are a particular challenge [11] because
once an envelope fact g is achieved, there is no further value to the heuristic to achieve
g again. Without reasoning about how much time is required for envelope conditioners,
search has to blindly add achievers until sufficient time is available for the scheduler. Yet
if envelopes have limited time, it is critical that further achievers are added. The need for
multiple achievers is greatest when conditioners are mutually exclusive

In Section 4.2, when an envelope fact g was abstracted, the add effects in all achievers were
preserved and a start precondition was added to all conditioners on g. This transformation
forces search to add at least one achiever prior to adding any conditioners for envelope fact g.

To guide search, we now add a new subset of numeric variables to the set V for a planning
problem ⟨F, V,A, I,G⟩. These new numeric variables – Envelope Time Tracking variables –
create a producer-consumer relationship between envelope achievers and mutually exclusive
conditioners. Envelope Time Tracking variables are added for each semaphore fact f and
envelope fact g.

▶ Definition 9. A time tracking variable is a numeric variable vf,g ∈ V . The initial state
value of variable vf,g is 0 (nI [vf,g] = 0).

Each achiever a ∈ achieversg has a new start effect vf,g += dmax. Meanwhile each
conditioner c ∈ conditionersg ∩ mf has a new start condition vf,g ≥ dmin and a new start
effect vf,g −= dmin.

The variable vf,g increases by the maximum duration of each achiever of g added to π′.
The variable vf,g decreases by the minimum duration of each conditioner of g in mf added
to the partial plan π′. vf,g represents a trivial upper bound on the amount of free time
remaining in envelope achievers for envelope conditioners in mutual exclusion mf .
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The introduction of the precondition vf,g ≥ dmin means that, across all achievers, there
must exist enough free time to fully contain a conditioner before the search can add it.
Pruning based on the value of vf,g does not compromise completeness because it is an
overestimate and so we necessarily need to add another achiever before we can fit any further
conditioners.

Prioritising More Easily Schedulable States

If π′ is shown to be temporally consistent, the scheduler produces a plan π which includes a
valid schedule for all actions in the plan. We can use this schedule to identify when adding a
new action to the plan will likely lead to a trivially schedulable partial plan; and when we
might need to add another envelope achiever in order to find a solution.

For a given envelope achiever a in π we can compute the maximum free time, va
f,g, by

summing the available free time in a in the computed schedule.

▶ Definition 10. For an envelope achiever a, va
f,g = da −

∑
dc, ∀c ∈ conditionersg ∩ mf

where conditioner c is in the plan π and scheduled concurrently with a (i.e. in π, tc is in the
interval [ta, ta + da]).

Variable va
f,g allows us to determine the maximum free space within a single envelope

achiever a in a plan π. Figure 4 shows an example of the calculation in Definition 10, where
the maximum possible free space within the envelope a is 10 time units.

Figure 4 illustrates an envelope achiever a of envelope fact g to which several conditioners have
been assigned in a plan.

vπ
f,g is calculated for a plan π using Definition 10, a semaphore fact f and envelope fact g

as follows:

▶ Definition 11. For a plan π, a semaphore fact f , and an envelope fact g is vπ
f,g = max(va

f,g)
(Definition 10), ∀a ∈ achieversg, where a is in the plan π.

vπ
f,g gives us an estimate across the plan π of the longest conditioner we could schedule

within any achiever. Whilst this bound is a good estimate of the upper bound, it is not a
guaranteed maximum because it is possible that reassigning conditioners to different achievers
could increase the value of va

f,g for some achiever a. Thus, we cannot use vπ
f,g for pruning as

we do with vf,g. Instead we favour expanding states that are more likely to be schedulable:
any state generated by applying an action for which vπ

f,g ≤ dmin is added to a second open
list that is only expanded if the first open list becomes empty.

This manipulation guides search to favour adding conditioners whose duration fits within
an existing achiever or adding another achiever first; before attempting to add further
conditioners. Such a preference is useful in counteracting the heuristic blind spot discussed
earlier, in which there is no heuristic guidance to open new envelopes. Prioritisation of states
in this way does not compromise completeness because, whilst it would not be sound to
prune states based on vπ

f,g, the use of a second open list ensures that these states will be
explored eventually if required.
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Table 1 Benchmark domains used.

IPC Domain No. of Problems Type
cafe 29 both

crew planning 29 both
driverlog (shift) 20 envelopes only

match 20 both
pipes (no tankage) 30 envelopes only

turn and open 20 envelopes only
satellites 30 both

TMS 20 both

This type of communication between the planner and scheduler is novel. Where previous
communication has been limited to constraints and inconsistencies, here the scheduler is
communicating temporal information that is incorporated into the planner’s search, opening
the possibility of the communication of other temporal search guidance.

6 Evaluation

To evaluate our transformations, we identify a wide variety of International Planning Com-
petition (IPC) domains from across a number of years that contain envelopes and (optionally)
semaphores. Table 1 shows the domains used. The use of our transformations and the CP
scheduler is automatically decided based on the presence of envelope and/or semaphore facts,
in a preprocessing step that takes < 0.001s, if none are detected the planner runs exactly as
before. Therefore performance on domains which do not contain envelopes or semaphore
facts is unaffected; thus we do not consider these in our evaluation.

We compare the performance of the CP Scheduling approach to the baseline standard
approach in OPTIC. The two configurations we tested are:

The base configuration is a version of OPTIC [2], a leading general-purpose temporal-
numeric planner. OPTIC uses an STN-based scheduler with a P-time complexity.2

The experimental configuration is the base configuration plus a CP scheduler that includes
our abstraction of semaphores and envelopes and the time tracking variables. The
CP scheduler is configured to return the first feasible solution found. The search and
memoization machinery of OPTIC is otherwise unchanged.

We experimented with a configuration that caches the scheduler solution to allow warm
starting in subsequent states. This was not successful because the memory overheads of
storing a CP solution in every state are too high, and the planner began to hit the memory
limit.

All problems were executed on an Intel i7-8650U 1.9GHz machine with 3GB of memory
and a search time limit of 30 minutes. We use IBM’s CP Optimizer 22.1.0 as our CP
sub-solver. Each plan is validated using VAL [14]. We note that all unsolved problems were
the result of search timeout, rather than memory limits.

2 OPTIC has both an STN and a MIP scheduler which it chooses based on the nature of the problem.
None of these problems have continuous numerics, so OPTIC defaults to the STN scheduler.
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The objective of this evaluation is to investigate whether the transformations reduce the
number of states explored, by replacing multiple planning states with a single state with a
less constrained partial order plan and increased search guidance through temporal feedback
from the scheduler. We go on to investigate whether planner performance is improved as a
result. Thus our evaluation focuses on comparing the two scheduling approaches within the
same planner.

Figure 5 Comparison of base and experimental configuration, by states, time and makespan.
Points on the far right/top axis indicate problems not solved by the base/experimental configuration
respectively.

6.1 Reduction in States Generated
The graph of states generated in Figure 5, shows that the experimental configuration reduces
the number of states generated across all domains. The shift of the disjunctive reasoning,
created by semaphore and envelope facts, from the planner to the scheduler means fewer
disjunctive decisions are made in planning search and consequently fewer states are generated.

Domains with a modest reductions in the number of states generated, such as the Match
domain and Cafe domain, are a result of the underlying envelope and semaphore structure.
In the Match domain, the goal is to mend a set of fuses in a power outage where matches
must be lit to provide light. Each mend fuse action is mutually exclusive, and any fuse can
be fixed whilst any match is lit. Each match can be used to repair at most two fuses, and the
goal is for all fuses to be fixed with the matches provided. Matches are symmetrical; therefore,
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Table 2 No. of Problems solved by base and experimental configurations.

IPC Domain Problems Base Experimental
cafe 29 7 8
crew planning 29 7 8
driverlog 20 3 8
match 20 19 19
pipes 30 8 12
turn and open 20 8 8
satellites 30 7 13
TMS 20 1 2

reordering how matches are lit does not make a temporally inconsistent partial plan consistent,
so abstracting mutual exclusion is redundant. For the envelope assignment problem that
exists between matches and fuses, each match is equally capable of mending each fuse. Thus
the choice of assignment is also redundant. The only benefit of the transformations described
is in guiding search to add sufficient matches to mend all fuses.

Cafe has a similar structure to Match, with three distinctions. Firstly, Match consists
of one “temporal” resource being consumed: matches. In Cafe, there are two symmetrical
resources, Ovens and Cooks. Ovens and Cooks are not a consumable resource, i.e. they can
be reused to complete other actions. The final distinction is that the meals being prepared
have different durations, whereas each fuse takes the same amount of time to fix in Matches.
Despite these differences, they are otherwise very similar domains and therefore experience a
similar issue where searching symmetrical space yields similar generated state space to the
base configuration.

6.2 Coverage
Table 2 shows the coverage (number of problems solved) for the base and experimental
configurations. The experimental configuration performs as well or better than the baseline
for all domains, solving a superset of the instances that the baseline solves. In the Driverlog,
Satellites and Pipes domains the experimental configuration increased coverage dramatically.
Across the 198 problems we evaluated, coverage rose from 30.3% in the base configuration to
39.3% in the experimental configuration. Because these transformations are only applied in
domains where semaphores or envelopes exist, coverage in other domains is unaffected.

The improvements in coverage are a reflection of the reduction in states generated.
The Driverlog and Pipes domain, which experienced larger reductions on smaller problems,
increased coverage as their respective problem sets scaled.

6.3 Search Time
The graphs of states generated and search time in Figure 5 have a similar spread, with
a downward shift for points in the search time graph. To understand this shift, Table 3
presents the states generated per second. The experimental condition has an average 1.69
fold increase in time taken per state compared to the baseline.

The increased time per state is a result of the two types of scheduler used. The base
configuration solves a P-time scheduling problem each time a state is generated whereas
the experimental configuration solves an NP-complete scheduling problem. As a result of
the difference in complexity, it is to be expected that the CP solver takes longer per state.
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Table 3 States per second, and ratio (base/experimental). TMS excluded due to insufficient
data.

IPC Domain Base Experimental Ratio
Cafe 882 992 0.89
Crew Planning 747 759 0.98
Driverlog 891 204 4.37
Match 8696 5703 1.52
Pipes 1339 1224 1.09
Turn and Open 354 1184 0.3
Satellites 475 178 2.67
Average 1912 1464 1.69

A sufficiently large reduction in the number of states generated results in a reduction in
the search time, in spite of the increased overhead per state, as seen by the solutions that
timed-out for the base configuration.

In domains where the experimental configuration outperforms the base configuration in
states per second (Cafe, Crew Planning and Turn and Open), we attribute this to the heavily
constrained nature of the scheduling problems within these problems. This constraining
makes the search space for the CP solver significant smaller when compared to other problems.

6.4 IPC Benchmark Score
In the temporal track of the IPC, a benchmark score is used to compare planners [17]. For a
given problem, let T ∗ be the minimum search time in seconds required by any planner to
solve the problem. A planner that solves the problem in search time T (in seconds) gets a
score of 1

1+log10(T/T ∗) . If a configuration does not solve a problem, it receives a score of 0.
Search times of less than one second are rounded up.

Across the domains presented in this evaluation, the base configuration achieved a score
of 41.6, whilst the experimental configuration achieved one of 78.

To restate, these transformations and the CP scheduler are only applied in problems
where a semaphore or envelope fact is detected. Thus, these transformations represent a net
improvement on the IPC score of the base planner. The performance of OPTIC in all other
domains remains unaffected.

6.5 Makespan
Makespan is broadly equivalent across all mutually solved problems. This is primarily because
the envelope actions somewhat artificially determine the makespan of the plan, even if the
conditioner actions are scheduled more efficiently, so the scope for improving makespan is
limited in most of domains. The one exception is a slight reduction in makespan for the
experimental configuration in the Turn and Open domain. The difference can be attributed
to the reallocation of disjunctive reasoning to the CP scheduler.

States generated during search by the base configuration are more constrained and have
a stricter ordering than propositionally and numerically equivalent states generated by the
experimental configuration. A single state represents more partial-orderings of the relaxed
plan that achieves it in the experimental configuration. This can result in a reduction or
increase of the makespan depending on the solution that the CP scheduler finds to the
envelope allocation and mutual exclusion problems.
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6.6 Evaluating Individual Abstractions
As part of our evaluation, we also evaluated abstractions individually. We saw no significant
performance improvements from abstracting envelopes or semaphores alone: our improve-
ments lean heavily on the interactions between envelopes and semaphores, in particular, the
constraining effect of envelopes relative to the consumptive effect of semaphores.

We also evaluated using the envelope and semaphore abstractions without the time
tracking variables defined in Section 5. Experimentally, we saw that the number of expanded
states is 93% of that of the base configuration compared to the experimental configuration’s
48%. The overall run-time was similarly impacted. When excluding Time Tracking Variables,
there was no increase in coverage or improvement in makespan compared to the base
configuration. These results suggest that the enhanced search guidance provided by the novel
communication from the sub-solver embodied in these variables is a key to the improved
performance that we observed.

7 Conclusion

By abstracting semaphores and envelopes, we remove two forms of disjunctive temporal
reasoning from the planning level that cause exponential state space growth in temporal-
numeric planning problems. Introducing new numeric variables to represent the available time
within envelope achievers and using these variables as a means to communicate remaining
envelope time to the planner further guides search and further reduces the state space.

The reductions in search space show that there are significant improvements to be
made in more complex decomposition approaches. This new abstraction and decomposition
demonstrates that a more expressive scheduler can improve coverage, reduce search space and
reduce search times. This work opens the door to further exploration of how planning decisions
are divided between task planning and CP-based scheduling and how an appropriate division,
further exploiting the strengths of the CP sub-solver, can be used to yield improvements in
coverage and speed.
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