
A CP/LS Heuristic Method for Maxmin and
Minmax Location Problems with Distance
Constraints
Panteleimon Iosif #

University of Western Macedonia, Kozani, Greece

Nikolaos Ploskas #

University of Western Macedonia, Kozani, Greece

Kostas Stergiou #

University of Western Macedonia, Kozani, Greece

Dimosthenis C. Tsouros #

KU Leuven, Belgium

Abstract
In facility location problems we seek to locate a set of facilities in an area, where clients may be
present, so that some criterion is optimized. For instance, in the p-center problem we seek to minimize
the maximum distance between any client and its closest facility, whereas in the p-dispersion problem
we seek to maximize the minimum distance between any two facilities. Hence, in the former we
have a minmax objective, whereas in the latter we have a maxmin objective. Recently, a variant
of p-dispersion where distance constraints exist between facilities was studied from a CP and ILP
perspective. An incomplete CP solver that uses a greedy heuristic to prune branches was shown
to significantly outperform Gurobi and OR-Tools in terms of execution time, although it failed
to discover optimal or near-optimal solutions in many instances. We enhance this work in two
directions, regarding the effectiveness and the applicability of the approach. We first show how local
search can be used to obtain better estimations of the bound at each node, resulting in more focused
pruning, which allows for optimal or near-optimal solutions to be discovered in many more instances.
Then, we demonstrate how the framework can be applied on the p-center problem with distance
constraints, comparing it to ILP and CP models implemented in Gurobi and OR-Tools, respectively.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Local Search, facility location, distance constraints,
optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2024.14

1 Introduction

Facility location problems are widely studied in OR, AI, computational geometry and other
disciplines. In such problems we seek to locate a set of facilities in an area, where clients may
be present, so that some criterion is optimized. The optimization criterion largely depends
on the type of facilities to be located. When the facilities have beneficial properties (e.g.
pharmacies), we want to locate them close to clients. In contrast, when the facilities are
(ob)noxious, i.e. they have hazardous effects (e.g. dump sites), we seek to locate them far
from clients and/or each other. In between, we have the class of semi-obnoxious facilities
that have both desirable and undesirable properties. For instance, we may wish to locate gas
stations close to clients for their convenience, but not too close because of the pollution and
potential danger they are associated with.

© Panteleimon Iosif, Nikolaos Ploskas, Kostas Stergiou, and Dimosthenis C. Tsouros;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 14; pp. 14:1–14:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.iosif@uowm.gr
https://orcid.org/0009-0001-4589-3346
mailto:nploskas@uowm.gr
https://orcid.org/0000-0001-5876-9945
mailto:kstergiou@uowm.gr
https://orcid.org/0000-0002-5702-9096
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
https://doi.org/10.4230/LIPIcs.CP.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 A CP/LS Heuristic for Location Problems with Distance Constraints

The p-center and the p-dispersion problems have been widely studied when modeling
beneficial and obnoxious scenarios, respectively [29, 38, 34]. In the former we seek to locate
p facilities in an area where clients are present, so that the maximum distance between any
client and its closest facility is minimized. In the latter we seek to locate p (ob)noxious
facilities, so that the minimum distance between any two facilities is maximized. Hence, in
p-center we have a minmax objective, whereas in p-dispersion we have a maxmin objective.
The relationship between these two problems has been identified as early as 1977 [45].

In practice, p-center problems occur when the close proximity of facilities to clients is
desirable, and in addition, we seek a fair location, in the sense that no client is too far from
the facilities. On the other hand, p-dispersion problems occur whenever a close proximity of
facilities is dangerous or for other reasons undesirable [34, 20, 37].

Recently, a variant of p-dispersion that includes distance constraints between facilities
was studied from a CP and ILP perspective [41]. Distance constraints in location problems
were first studied by Moon and Chaudhry [38] and can stem from operational needs and
regulations, such as clearance distances for safe chemical storage [1], separation distances
between packages containing radioactive materials [49] or portable fire extinguishers [50].
Also, by placing distance constraints between facilities and/or between facilities and clients,
we can model the requirements that arise when trying to locate semi-obnoxious facilities [33].

Ploskas et al. [41] described a search method that uses a heuristic to prune branches,
based on a estimation of the cost at each node. If the estimated bound, provided by a greedy
assignment of the unassigned variables, is not higher than the cost of the incumbent solution
then a fail is forced and the sub-tree below the current node is pruned. A solver that uses
this method is naturally incomplete, but the solver of [41] was shown to be much faster than
standard CP and ILP solvers. However, it was able to discover the optimal solution in only
2 out of the 82 MDPLIB benchmark instances for which the optimal solution is known, and
was quite far from the optimal in many cases. This is because the greedy heuristic may often
underestimate the cost, resulting in exceedingly high branch pruning, and the omission of
the optimal and close-to-optimal solutions.

We extend the work of [41] in two directions, regarding effectiveness and applicability.
We first enhance the heuristic used to prune the search space through the use of local search
(LS). Specifically, at each node we compute the greedy assignment and use it as the initial
solution to the relaxed problem obtained by not considering the distance constraints. Then
we try to improve this assignment through the application of a variant of the best pairwise
interchange heuristic for p-dispersion (a LS method) [22]. This results in better estimations
of the bound, allowing for the discovery of 40 optimal and many near-optimal solutions, and
resulting in better solutions being discovered in almost all instances for which the optimal
is not known. We also add a second local search component that tries to improve any new
solution being discovered by searching in the neighborhood of feasible solutions.

Secondly, we demonstrate that the entire concept of building an incomplete CP solver
around a heuristic that estimates the cost at each node and accordingly prunes the search
space, is also applicable in other location problems with distance constraints, using the
p-center problem as a demonstration. As baseline methods, we introduce ILP and CP models
for this problem and implement them in Gurobi and CP-SAT OR-Tools, respectively. We
use similar reasoning to the p-dispersion problem to build a CP solver that uses a simple
model of the problem and applies a local search method to estimate the bound at each node,
and thereby prune branches, making the solver incomplete.

We experimented with p-center problems with distance constraints of two types. In the
first one the locations of the clients and the potential facility sites are randomly placed in a
grid, while in the second we use p-median benchmark instances [3] as basis. Problems of the

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:3

first type, that typically have few solutions, can be very hard for Gurobi, as it often does
not discover any solution within 1 hour of cpu time, but mostly manageable by OR-Tools,
except for the larger ones. In contrast, OR-Tools fares badly on problems of the second type,
that typically have many solutions, while Gurobi finds most of these problems quite easy.
But both face difficulties in handling very large problems because of the size of their models.

The incomplete CP solver’s performance is much more robust. It is outperformed by
OR-Tools, in terms of solution quality, in small/medium size grid-structured problems, but
is much more efficient than Gurobi. It also discovers solutions in all instances, even the
larger ones that are out of reach for the complete solvers. On the other hand, the solver
outperforms OR-Tools in p-median based problems, finding many optimal or near-optimal
solutions much faster. It can also be quite faster than Gurobi in some cases, especially when
the number of facilities is small, but cannot compete in instances where we try to locate a
large number of facilities in relatively few facility sites.

In the following we first review related work and define the two problems, focusing on the
p-center variant which has not been considered before, in terms of solution methods. Hence,
we propose ILP and CP models for this problem. Then we describe the use of local search to
boost the effectiveness of a CP solver. Finally, we present experimental results.

2 Related Work

The p-center problem, which is NP-hard in the general case, was originally proposed
by Hakimi, along with the related p-median problem [29, 30]. Since then, various ILP
formulations for the p-center problem have been proposed [13, 18, 6]. A review of exact and
heuristic methods for the p-center problem is given in [6]. The p-dispersion problem, which
is also NP-hard on general networks for an arbitrary p [25], was originally mentioned by
Shier [45]. However, the term p-dispersion first appeared in the analysis of location problems
with distance constraints by Moon and Chaudhry [38]. The first ILP solution was proposed
by Kuby [34] while a specialized algorithm and alternative ILP models followed [19, 44, 43].

Regarding distance constraints, Moon and Chaudhry were the first to systematically
study them [38]. Both p-dispersion and p-center with distance constraints were mentioned as
problems that can arise in real-life scenarios, but no approaches towards solving them were
proposed. Recently, Dai et al. revisited the former as part of a study on circle dispersion in
non-convex polygons [12]. Distance constraints have also been considered in the context of
other location problems [9, 10, 32, 47, 8, 39, 11, 48]. For instance, Tansel et al. studied the
distance constrained p-center problem for the case where the network is a tree [47], whereas
Comley studied the problem of locating a small number of semi-obnoxious facilities that
interact with each other as well as with other existing facilities [11]. More recently, Berman
and Huang studied the problem of locating obnoxious facilities so as to minimize the total
demand covered, so that no two facilities are closer than a pre-specified distance [4]. Drezner
et al. studied obnoxious facility location problems with restrictions on the distance between
facilities and demand points [16, 17].

There are very few CP-related methods for facility location problems [23, 7, 46, 41]. As
mentioned above, we build on the work of [41] which is concerned with the p-dispersion
problem. There are CP works outside facility location that are relevant to ours, as they too
sacrifice the completeness of a CP solver to solve optimization problems faster [31, 36, 26].
However, these works typically do this through different ways, e.g. by adding extra constraints
that may disallow solutions but cut off large portions of the search tree.

CP 2024

14:4 A CP/LS Heuristic for Location Problems with Distance Constraints

The greedy heuristic for p-dispersion (resp. p-center) solves the 2-dispersion problem first
(resp. the 1-center problem) and then places the remaining facilities one by one, choosing the
location point for the currently considered facility f that maximizes the minimum distance
in the set of already placed facilities plus f (resp. minimizes the maximum distance between
clients and their closest facility among the already located ones plus f) [35, 21]. The best
pairwise interchange heuristic for p-dispersion starts with a random location of the facilities,
then it finds the pair of facilities f1,f2 that are closest to each other, and then it finds the free
location point v that by allocating either f1 or f2 to v, the value of the objective function is
maximally improved. This is repeated until no further improvement is possible [22].

3 Problem Definition

We assume that p facilities in a set of facilities F are to be placed on p nodes of a weighted
network G. Hence, we deal with discrete/network location problems. Each facility site can
host at most one facility. In a p-center with distance constraints problem (pCD), a set CL of
demand points (clients) to be serviced by the facilities is located at certain (known) nodes of
G. In a p-dispersion with distance constraints problem (pDD), we are only interested in the
dispersion of the facilities. In the following, we will use the terms demand points and clients
interchangeably, and we will assume that the set of nodes in G where the clients are located
is known, and so is the set of nodes P where the facilities can potentially be located. The
weight wij of an edge denotes the symmetric service cost (typically the distance) between
nodes i and j. We assume that once the facilities have been located in a pCD, each client
will be serviced by its closest facility, and there are no capacity restrictions on the facilities.

Between each pair of facilities fi and fj there is a distance constraint dis(fi, fj) > dij

specifying that the distance dis(fi, fj) between the points where the facilities fi and fj are
located must be greater than dij , where dij is a constant. In a pCD there is also a distance
constraint dis(fi, ck) > dki between each facility fi and any client ck, specifying that the
distance dis(fi, ck) between the node where facility fi is located and node k where client ck

is located must be greater than dki, where dki is a constant.
A common assumption in the relevant literature is that the distance bound dij is the

same for all the constraints between facilities. This is reasonable when the facilities are
homogeneous, and therefore in essence indistinguishable, but it is not always realistic,
especially when the facilities have different properties, as for example in [1, 49]. In this paper
we deal with the heterogeneous case where the distance bound may vary from constraint to
constraint. However, we follow the homogeneity assumption with respect to clients, meaning
that for a specific facility fi, we assume that the minimum distance bound between its
location and the locations of the clients is the same for all clients.

The distance between two points i and j can be given by the Euclidean distance, e.g.
for the location of hazardous facilities, or by the shortest path in a street network, e.g. for
the location of franchises, or by any other suitable metric. The methods we propose do
not depend on any particular distance measure because, as is common in the literature, we
assume that the pairwise distances between all possible client and facility location points are
given in a 2-d distance matrix D. In the case of the pCD, we assume that the service cost
between a client and the location of a facility, which we try to minimize, is as natural given
by the length of the shortest path between the two nodes in the network. We assume that
the shortest paths between all pairs of nodes have been precomputed and their lengths are
stored in a 2-d matrix SP . However, if necessary, instead of precomputing the distances and
storing them in a distance matrix, they could be computed “on the fly”, under the condition

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:5

that this operation takes constant time. This holds for Euclidean or Manhattan distances
given the coordinates of the points, but it does not hold for the shortest path in a network.
To summarize, in a pDD we have:

P : the set of candidate facility locations.
F : the set of facilities to be located.
p: the number of facilities to be located.
D[i, j]: the distance between any two points.
dij : the lower bound in the distance between each pair of facilities (i, j).

Additionally, in a pCD we have:
CL: the set of demand nodes.
SP [i, j]: the shortest path (s.p.) distance between any two points i and j.
dki: the lower bound in the distance between each facility i ∈ F and all demand nodes.

The goal in a pCD (resp. pDD) is to locate each facility so that the maximum s.p. distance
between any client and its closest facility is minimized (resp. the minimum distance between
any two facilities is maximized), subject to the satisfaction of all the distance constraints.

4 ILP Model for the pCD

In this section, we present an ILP formulation for the pCD, based on a standard formulation
for p-center [18]. The model is extended to deal with heterogeneous facilities and to include
distance constraints. We make use of the following additional notation:

C = {(i, j, f1, f2)|i, j ∈ P, f1, f2 ∈ F, D[i, j] ≤ df1f2}: the set of quadruples (i, j, f1, f2)
s.t. facilities f1 and f2 cannot be placed in facility sites i and j, respectively, because i

and j are not in a safe distance between each other with respect to the allowed distance
between f1 and f2.
N = {(i, j)|i ∈ P, j ∈ F,∃k ∈ CL, D[i, k] ≤ dkj}: the set of pairs (i, j) s.t. facility j

cannot be placed in facility site i because there exists a demand node k that is not in safe
distance from i with respect to the allowed distance between j and the demand nodes.
xij = 1 if a facility j ∈ F is located at a facility site i ∈ P and 0 otherwise.
yki = 1 if a demand node k ∈ CL is assigned to a facility site i ∈ P and 0 otherwise.

As we deal with heterogeneous facilities, we need |P | × |F | variables, i.e. one variable
xij ,∀(i, j), i ∈ P, j ∈ F , in order to know whether or not a specific facility j ∈ F is located
at a facility site i ∈ P , because facilities are not indistinguishable as in the standard case of
p-center. In addition, we need |CL| × |P | variables, i.e. yki,∀(k, i), k ∈ CL, i ∈ P , in order
to know whether or not a demand node k ∈ CL is assigned to a facility site i ∈ P . Variables
yki,∀(k, i), k ∈ CL, i ∈ P , are required in order to: (i) calculate the distance between each
demand node and the facility that serves it (in the objective function of the model), and
(ii) place restrictions on which facilities can serve each demand node based on the distance
constraints. Variable z is a continuous variable capturing the maximum s.p. distance between
clients and located facilities.

CP 2024

14:6 A CP/LS Heuristic for Location Problems with Distance Constraints

The mixed-integer linear programming model for the pCD problem can be expressed as:

min z (1)
s.t.

∑
i∈P

xij = 1 ∀j ∈ F (2)∑
i∈P

∑
j∈F

xij = p (3)∑
i∈P

yki = 1 ∀k ∈ CL (4)

yki ≤
∑

j∈F

xij ∀k ∈ CL, ∀i ∈ P (5)∑
i∈P

yki × SP [k, i] ≤ z ∀k ∈ CL (6)∑
j∈F

xij ≤ 1 ∀i ∈ P (7)

xif1 + xjf2 ≤ 1 ∀ (i, j, f1, f2) ∈ C (8)
xij = 0 ∀ (i, j) ∈ N (9)

xij ∈ {0, 1} ∀i ∈ P,∀j ∈ F (10)
yki ∈ {0, 1} ∀k ∈ CL, ∀i ∈ P (11)

z ∈ R (12)

The objective function 1 aims at minimizing the maximum s.p. distance between the
clients and their nearest located facility. Constraint 2 guarantees that each facility should
be hosted at exactly one facility site, while Constraint 3 specifies that p facilities are to be
located. Although this constraint is subsumed by Constraint 2, our experiments showed
that there are cases where it results in important speed-ups. Hence, we include it in the
model. Constraint 4 ensures that each demand node will be served by one facility site, while
Constraint 5 guarantees that each demand node will be served by a facility site where a
facility has been located. It is a generalization of the Balinski constraint [2] to the case of
heterogeneous facilities. Constraint 6 ensures that the variable z will be greater than or
equal to all the s.p. distances between demand nodes and their nearest located facility.

Constraint 7 ensures that each facility site can host at most one facility. Constraint 8
models the distance constraints between facilities. It ensures that each facility is at a safe
distance from all other facilities by not allowing two facilities f1 and f2 to be established
at sites that are at a distance closer than the allowed distance between f1 and f2. Finally,
Constraint 9 is the distance constraint between facilities and demand nodes. This constraint
ensures that any located facility is at a safe distance from every demand node.

Two important decisions regarding the efficiency of the model are how to formulate
the requirement that each client will be served by an open facility site, and the modeling
of the distance constraints. Regarding the former, the requirement can be captured by a
generalization of the Efroymson & Ray constraint, using a Big M constant. This results in
fewer constraints compared to using the Balinski Constraint 5, but run times are clearly
worse, and therefore the Efroymson & Ray was rejected. Regarding the distance constraints,
we chose to follow and adapt the best model described in [4], where essentially the distance
constraints are modeled through a special case of clique constraints. Computational results
from [4], as well as our own preliminary experiments, showed that this model is better than
various other models proposed in the literature [38, 40].

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:7

5 CP Models for the pCD

The pCD is modeled as a Constraint Optimization Problem (X, Dom, CL, C, O), where X is
the set of decision variables, Dom is the set of finite domains, CL is the set of demand nodes,
C is the set of hard constraints, and O is the optimization function. The model is as follows:
1. For each facility i ∈ F there is a finite domain variable xi.These p variables are the

decision variables in the problem, meaning that |X| = |F | = p. The domain of each
variable xi ∈ X, denoted by Dom(xi), includes as values all the points where a facility
can be located, i.e. ∀xi ∈ X : Dom(xi) = P .

2. Y1 is a set of auxiliary variables, s.t. for each pair of variables (xi, xj) ∈ X ×X | i < j,
there is a variable y1ij ∈ Y1 and a constraint y1ij = D[xi, xj]. Hence, each y1ij ∈ Y1
models the distance between xi and xj . In CP solvers, this is implemented using the
Element global constraint, i.e. y1ij = Element(D, [xi, xj]).

3. Y2 is a set of auxiliary variables, s.t. for each pair of facilities and clients (xi, ck) ∈ X×CL,
there is a variable y2ik ∈ Y2 and a constraint y2ik = D[xi, ck]. Hence, each y2ik ∈ Y2
models the distance between xi and ck. In CP solvers, this is again implemented using
the Element constraint, i.e. y2ik = Element(D, [xi, ck]).

4. S is a set of auxiliary variables, s.t. for each pair of variables and clients (xi, ck) ∈ X×CL,
there is a variable sik ∈ S and a constraint sik = SP [xi, ck]. Hence, each sik ∈ S models
the service cost (i.e. s.p. distance) between xi and ck. Again, this is implemented using
the Element constraint, i.e. sik = Element(SP, [xi, ck]).

5. Z is a set of auxiliary variables, s.t. for each client ck ∈ CL, there is a variable zk ∈ Z

and a constraint zk = min(s1k, s2k, ..., spk). Hence, each zk ∈ Z models the shortest path
distance between each client and its nearest facility.

6. For each variable y1ij ∈ Y1, there is a distance constraint y1ij > dij .
7. For each variable y2ik ∈ Y2, there is a distance constraint y2ik > dki.
8. There is a variable z, s.t. z = max(Z), capturing the maximum shortest path distance

between a client and its closest facility.
9. The objective function is O = minimize(z).

The sik = SP [xi, ck] constraints link the auxiliary variables sik, and therefore also the z

variable and the objective function, with the decision variables. We also considered adding an
AllDifferent constraint over all variables in X. Such a constraint is redundant, as the distance
constraints already force the variables to take different values, and experiments with and
without it showed no noticeable difference. Also, to reduce the number of auxiliary variables,
the distance constraints between facilities can be captured using the Table constraint instead
of the Element constraint. Our experiments showed that this does not make a difference in
very large problems, where, as we will demonstrate, OR-Tools runs out of memory, but its
effect on smaller problems remains to be experimentally investigated in detail.

A reason for the failure of OR-Tools to solve large instances of the pCD (and the pDD)
is the size of the model it constructs, largely because of the very large domains (which are
not uncommon in location problems), along with the auxiliary variables. This is to an extent
due to the lazy clause generation mechanism of the solver, which creates a large amount of
literals to represent all the variable-value combinations. To bypass this, we propose to use a
much simpler model, dropping all the auxiliary variables and relevant constraints, resulting
in a model with only the p decision variables and the distance constraints. The optimization
function can now be handled procedurally within the solver by simply computing the cost of
any new solution found so as to determine if this cost is better than the cost of the incumbent
solution. If so, then the bound is tightened.

CP 2024

14:8 A CP/LS Heuristic for Location Problems with Distance Constraints

Dropping the auxiliary variables may result in a lighter model, but on the other hand we
lose propagation power. If there is no link between the decision variables and the objective
function, whether it is explicitly represented, as in the CP model above (items 8,9), or
procedurally handled, then any improvement in the cost of the incumbent solution will not
be propagated to the decision variables. To partially overcome this problem while keeping a
simple model, we apply the following inference techniques:

Assume that a solution A with better cost than all previously found ones has been located
and let CA denote its cost. We find the clients that determine the value of CA (i.e. clients
with distance CA from their closest facility). For each one of them, we check if there
exists a candidate facility point at a smaller distance than CA. If there is no such point
for some client, then there is no possible way for a facility to be located at a facility point
that is closer to this specific client than the value of CA. Hence, the value of the objective
function cannot be further improved, and therefore we terminate search.
After a variable has been assigned and the distance constraints have been propagated, we
check for each client if there exists a value (i.e. available facility point) in any domain of
a variable that is located at a distance smaller than the value of CA, from this specific
client. If no such value exists in any domain, then we know that in any feasible solution
existing in the sub-tree below the current assignment, at least one client will be assigned
to a facility located at an equal or greater distance than CA. Hence, the cost cannot be
improved, and therefore we prune the current branch and continue searching.

Both these techniques are subsumed by propagation in a CP solver that uses the full
model of the problem described above. But in the simple model they (partially) compensate
for the absence of a link between the optimization function and the decision variables.

6 Enhancing a Heuristic CP-Based Method Through LS

Ploskas et al. proposed a heuristic technique for the pDD that tries to prune early the parts
of the search tree for which it seems unlikely that their exploration will improve the value of
the optimization function. Specifically, the cost of the first feasible solution found is used as
the initial lower bound. Thereafter, at each node, after the currently tried assignment xi = a

has been propagated, an upper bound for the best possible solution is computed, giving an
estimation of the best possible cost that can be achieved if the sub-tree rooted at the specific
node is explored. If this is not higher than the current lower bound then the current branch
of the search tree is abandoned and the search moves on. Each time a solution with a higher
cost than the current lower bound is found, the lower bound is updated.

At each node, the bound is computed by applying the greedy heuristic for p-dispersion
on the relaxed problem obtained by not considering the distance constraints. Assuming that
xi is the current variable, x1 ← v1, . . . , xi−1 ← vi−1 is the assignment to past variables and
vi is the value under consideration for xi, the heuristic greedily computes the cost of the
“best” assignment for the future variables xi+1, . . . , xp [41]. That is, it visits these variables
one by one, starting with xi+1, and for each variable xj , i + 1 ≤ j ≤ p, and each value
vj ∈ Dom(xj), it finds the minimum distance between vj and any assignment (location)
among variables (facilities) x1, . . . , xj−1. The value that maximizes this distance is then
(temporarily) assigned to xj . This is repeated until all variables have been assigned.

This heuristic pruning method was embedded in a custom CP solver (thus making the
solver incomplete), which was compared to the complete ILP and CP-SAT solvers Gurobi
and OR-Tools. Results demonstrated that it can discover much better solutions in large
instances that are very hard for the complete solvers. However, the custom solver was able

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:9

to discover the optimal solution in only 2 out of the 82 MDPLIB instances of smaller size
that are solvable to optimality by the complete solvers. Also, in many cases the cost of the
best solution it discovered was quite far from the optimal.

The reason for this is that the greedy heuristic often underestimates the true cost that
can be obtained. This leads to faster exploration of the search space, as many branches are
pruned, but it also very often results in the omission of optimal/near-optimal solutions. We
now describe one way to improve the effectiveness of a solver that follows this reasoning
using local search to obtain more accurate bounds when estimating the cost at each node.

6.1 pDD
We propose to invoke LS before the decision is taken to cut off the branch, when the greedy
heuristic dictates to do so. We use the assignment obtained by the greedy heuristic as the
initial solution to the relaxed problem that omits the distance constraints, and then try to
improve it with local moves until either it cannot be improved any more (a local maximum)
or its cost becomes higher than that of the incumbent solution. In the former case we cut off
the current branch, while in the latter we accept it and continue its exploration.

We use a variant of the best pairwise interchange heuristic for p-dispersion. Our method
takes as input the complete assignment A =< x1 ← v1, . . . , xi ← vi, xi+1 ← vi+1, . . . , xp ←
vp >, where xi+1 ← vi+1, . . . , xp ← vp is the temporary assignment to future variables, the
cost CA of this assignment and the cost of the incumbent solution CI . It then finds the pairs
of facilities (xl, xk) that are closest to each other, and therefore have distance equal to CA

(there can be many such pairs, which we call “culprit”), it forms the set of variables Xc

involved in such pairs, and for each variable in Xc, it tries to find an alternative location so
as to improve the value of CA as much as possible. Note that for any “culprit” pair, both
variables will necessarily be among xi+1, . . . , xp (the future ones), and therefore we can freely
change their values in the assignment. This stems from the propagation of the updated
bound any time a solution that improves the current bound is discovered. CP solvers do
this by adding a constraint forcing subsequent solutions to be better than the current one,
while the method of [41], that we follow, does it in a slightly different way by integrating the
bound’s propagation in the solver’s arc consistency propagation mechanism.

If at some point, CA becomes higher than CI then the method terminates, signaling
that the current branch must not be cut off. If this does not happen then the method stops
when a local maximum is reached, e.g. when there is no alternative location for any variable
in Xc that can increase the value of CA. Algorithm 1 depicts this process, which, as our
experiments showed, is more effective than the best pairwise interchange heuristic which it
modifies, especially when a variable is involved in more than one “culprit” pair.

A[xj] denotes the value that variable xj takes in the assignment A. Function
Compute_Cost takes a complete assignment of the variables and returns its cost. The
identification of the pairs of facilities that are closest to each other takes place each time a
local move is made because any improvement to the cost means that other pairs are now the
“culprit” ones.

Naturally, more sophisticated LS methods or meta-heuristics might be able to obtain
better bounds. Indeed, we tried several options, including a GRASP meta-heuristic. The LS
method of Algorithm 1 was chosen because it achieves a good balance in terms of quality and
cpu time. For instance, the GRASP procedure rarely offered overall quality improvements to
compensate for the higher run times (and implementation complexity).

Finally, we also use LS to tighten the bound obtained each time a solution that improves
the incumbent is discovered. Specifically, once a new incumbent solution A =< x1 ←
v1, . . . , xp ← vp > with cost CI is discovered, we evaluate the alternative assignments of all

CP 2024

14:10 A CP/LS Heuristic for Location Problems with Distance Constraints

Algorithm 1 LS(X, Dom, C, A, CA, CI) for the pDD.

repeat until no change in value of CA

Xc ← {xl, xk ∈ X|D[A[xl], A[xk]] = CA};
Ctemp ← CA;
for each xj ∈ Xc

for each vj ∈ Dom(xj)|vj ̸= A[xj]
A[xj] ← vj ;
temp-cost ← Compute_Cost(X, Dom, C, A);
if temp-cost > Ctemp

Ctemp ← temp-cost;
mark A[xj] = vj as best move;

restore A[xj];
if Ctemp > CA

CA ← Ctemp;
if CA > CI return true;
make best move;

return false;

variables involved in “culprit” pairs. If an assignment that improves CI (say xi ← vk) is
found, and by changing the value of xi to vk in A, we get a feasible solution (i.e. the distance
constraints are satisfied) then CI is tightened and the process is repeated until no local move
that results in a feasible solution can improve CI . Thereafter, the solver continues search as
usual, but with a (hopefully) tightened bound. Using LS to improve the solutions found by a
CP solver in optimization problems is a standard way of integrating CP and LS [24].

6.2 pCD

The heuristic we have developed for the pCD works in a similar way. The cost of the first
feasible solution found is now used as the initial upper bound, as we have a minimization
problem. The initial estimation at each node is again performed by solving the relaxed
problem without the distance constraints in a greedy fashion. That is, for each variable xj ,
i + 1 ≤ j ≤ p, and each value vj ∈ Dom(xj), we compute the maximum distance between
any client and its closest facility among x1, . . . , xj that we would get if vj was assigned to xj .
The value that minimizes this distance is then temporarily assigned to xj . After all future
variables have been assigned in this way, the resulting assignment A is given to a local search
method that tries to improve it. The only difference between this method and the one of
Algorithm 1, is that in the case of the pCD there are no “culprit” pairs of variables. Hence,
the second line in Algorithm 1 is omitted and all variables are considered when looking for
the best local move. Let us explain this.

In a pCD the cost CA of any complete assignment A is due to the one or more clients
that are at distance CA from their closest facility. But any relocation of a facility xi may
potentially result in an improvement of the cost (a decrease in the value of CA), as xi may
move closer to these clients, meaning that they could perhaps now be serviced by xi. In
contrast, in the pDD, if none of the variables in a culprit pair is relocated, the cost will never
improve (but could worsen), regardless of the relocation of other facilities.

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:11

7 Experiments

We experimented with instances generated in two different ways. The first uses a benchmark
library as basis to create pCDs or pDDs. For the former, we use the p-median benchmark
dataset [3], while for the latter we use the p-dispersion benchmark library MDPLIB 2.0 [37],
as in [41]. In the second generation method we seek to locate a number of facilities in a grid.

Computations were performed on an Intel i7 CPU 8700 with 16 GB of main memory,
a clock of 3.2 GHz, an L1 cache of 348 KB, an L2 cache of 2 MB, and an L3 cache of 12
MB, running under CentOS 8.4. We set a time limit of 3,600 seconds for all the experiments
reported below. The ILP model was solved using Gurobi 9.0.3 [28]. The CP model was
written in the CPMpy modeling tool [27] and compiled into CP-SAT OR-Tools [15]. The
heuristic CP approach, for both pDDs and pCDs, was implemented in a custom solver written
in C. This solver, which is basically a MAC search algorithm [42], implements the simple CP
model of Section 5, uses dom/wdeg for variable ordering [5], lexicographic value ordering,
arc consistency for the propagation of distance constraints and implements the two inference
techniques of Section 5. We also ran experiments with an 8-thread version of OR-Tools,
which uses techniques such as large neighborhood search in parallel with the main search,
as well as the CP solver Choco [14]. The ILP model is stored in compressed sparse column
format, as the constraint matrix can sometimes be too large to be stored as a full array.

7.1 Problem Generation Models
The MDPLIB collects a large number of p-dispersion instances divided into various classes [37].
In the GKD, MDG, and SOM classes, the distances between the potential facility locations
are given by Euclidean distances, random real numbers, and random integers, respectively.
The instances we tried have 100-1000 potential facility points and 10-30 facilities.

We generated pCDs in two different ways. The grid generation model creates problems
embedded in a n × n grid. It takes the following parameters: n, p, |CL|, |P |. We first
randomly select |CL| + |P | among the n×n nodes. |CL| of these nodes are randomly selected
to place the clients and the remaining nodes are the potential facility locations. We assume
that the weight of each edge in the grid is equal to 1. Therefore, given that we have a grid, the
distance of the shortest path between any two points can be at best equal to the Manhattan
distance between them. For each distance constraint dis(xi, xj) > dij between facilities
xi and xj , dij is randomly set to an integer number in the interval [0, max_euc/2], where
max_euc is the maximum Euclidean distance between two points on the grid. Accordingly,
for the constraints specifying the distances between facilities and clients, a random integer is
set in the (experimentally selected) interval [0, 3], in order to minimize infeasibilities.

The p-median based generator takes instances from the p-median benchmark dataset [3],
consisting of problems with 100–900 nodes and 5 to 200 facilities. We randomly select |P |
nodes to be candidate facilities, while the remaining nodes are clients. We have considered
two cases: 1) 80% of the nodes are candidate facility sites and the remaining 20% are clients.
If the resulting number of candidate sites is less than or equal to p, then we progressively
increase the number of candidate sites until |P | > p and the generated instances are feasible.
2) 20% of the nodes are candidate facility sites and the remaining 80% are clients. Similarly
to the previous case, we progressively increase the number of candidate sites until |P | > p

and the generated instances are feasible. To set the parameter dij , we find the minimum and
maximum distance between all pairs of candidate sites and we set dij equal to a random
number in the range [min, min +(max−min)/10]. Similarly for parameter dki.

For each generation model and each setting of the parameters, 10 instances were generated.

CP 2024

14:12 A CP/LS Heuristic for Location Problems with Distance Constraints

7.2 Experiments with the pDD
In Table 1 we compare the LS-enhanced CP-based method, denoted CPLS , to that of [41],
denoted CPG, using the same instances (https://github.com/ploskasnikos/pdispersion), and
adding some larger ones that are very hard for the complete solvers. For each class we give
the number of the MDPLIB instance on which it is based, and in brackets the numbers of
potential location sites and facilities. For each solver configuration we report the total cpu
time taken over the 10 instances (

∑
cpu columns), the number of times when the optimal

solution was found (#opt columns), and the mean value of the best solution found within
the time limit. In the #opt column for CPG we give in brackets the number of instances for
which the optimal is known. We also give the number of instances in each class where CPLS

found a better solution compared to CPG (#imp columns). In brackets we give the number
of instances where CPLS found a worse solution. As baseline, in the last column, for each
class we give the mean value of the best solution found by the complete solver that displayed
the best performance in the particular class. This is left blank (-) if no complete solver was
able to find at least one solution in all instances of a class.

Table 1 Comparing CPLS to CPG on MDPLIB-generated pDDs.

Class CPG CPLS Baseline
(p,|P |)

∑
cpu #opt cost

∑
cpu #opt #imp cost cost

MDG
a1 (100,10) 1 0 (10) 4.35 1 10 10 (0) 4.68 4.68
a1 (100,20) 94 0 (0) 1.69 170 0 8 (2) 1.79 1.17
a1 (500,10) 51 0 (0) 5.88 56 0 10 (0) 6.11 6.02
a1 (500,20) 132 0 (0) 2.91 188 0 9 (1) 2.96 1.57
a2 (100,10) 1 0 (10) 4.24 1 10 10 (0) 4.74 4.74
a2 (100,20) 156 0 (0) 1.64 166 0 7 (2) 1.71 1.4
a2 (500,10) 54 0(0) 5.94 66 0 10 (0) 6.22 5.92
b1 (100,10) 1 0 (10) 428.18 1 0 10 (0) 455.94 460.11
b1 (100,20) 63 0 (0) 181.2 133 0 8 (1) 200.49 109.35
b1 (500,10) 45 0 (0) 576.45 53 0 10 (0) 591.56 584.33
b1 (500,20) 107 0 (0) 290.64 128 0 9 (0) 302.75 -
b2 (100,10) 1 0 (9) 428.17 1 9 10 (0) 459.99 459.99
b2 (100,20) 109 0 (0) 159.93 140 0 8 (2) 170.40 113.33
b2 (500,10) 51 0 (0) 574.55 55 0 10 (0) 608.61 581.31

GKD
d1 (100,10) 2 1 (10) 33.42 2 0 9 (1) 33.85 34.06
d1 (250,10) 11 0 (7) 34.25 21 3 10 (0) 36.06 35.98
d1 (250,20) >19,837 0 (0) 18.83 >24,663 0 8 (1) 19.24 10.55
d1 (500,10) 108 0 (0) 36.01 99 0 10 (0) 38.21 36.96
d1 (1000, 20) >36,000 0 (0) 16.99 >36,000 0 6 (1) 17.95 -
d2 (100,10) 2 1 (10) 31.29 3 8 10 (0) 34.22 34.82
d2 (250,10) 10 0 (5) 35.06 22 0 10 (0) 37.1 36.31
d2 (250,20) >24,865 0 (0) 14.93 >24,998 0 5 (0) 15.39 -
d2 (1000, 10) 846 0 (0) 36.47 1,830 0 10 (0) 39.25 32.72

SOM-GRID
b5 (200, 20) 11 0 (0) 2 13 0 0 (0) 2 2
g7 (80, 30) 36 10 (10) 2 51 10 0 (0) 2 1.9

We can make the following observations. CPLS finds better solutions than CPG in the vast
majority of instances, discovering the optimal solution in 40 MDPLIB instances, compared to
only 2 for CPG. This gives an improvement in the mean cost in all classes of the MDG and

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:13

GKD categories, often by large margins. As a result, CPLS finds optimal solutions or near-
optimal ones in all of the smaller classes that are within reach of the complete solvers, while
improving the bounds in larger classes for which the optimal is unknown (e.g. in b1(100,20)
where the value is now almost twice that obtained by the complete solvers). Importantly, the
cpu time overheads of CPLS compared to CPG are not very significant, keeping in mind that
the

∑
cpu columns give total run times over 10 instances until termination or cut-off and

that both solver configurations are orders of magnitude faster than the complete solvers [41].
CPLS usually reaches the best solution found by CPG in similar or faster run times, but
often takes longer to terminate because it further improves this solution.

For CPLS , we counted the number of times that the greedy heuristic made an estimation
lower than the current bound, meaning that LS was then called, and the number of times that
LS managed to increase the estimation to a value greater than the current bound, meaning
that the current branch was not cut off. It turns out that in around 4% to 14% of the calls
to LS, on average, the current branch was not cut off (details in the Appendix). Despite
these relatively low percentages, CPLS obtains significant improvements in solution quality.

Results from the SOM MDPLIB class and from grid-structured problems are also given
in [41]. These categories were both very easy in terms of run times for CPG and CPLS . In
these cases, CPLS found the same solutions as CPG because either CPG already discovered
the (known) optimal solutions in the smaller classes, or the solutions discovered had very
little room for improvement (objective values in the range 1 . . . 5). Hence, we only give
indicative results from the hardest class from each category. In the b5 SOM class, CPLS and
CPG display similar performance and probably both discover the optimal in all instances
(Gurobi also finds solutions with cost 2, but was unable to prove optimality within the time
limit). In the g7 grid class, both CPLS and CPG discover the known optimal solutions in all
instances.

Finally, in some rare cases CPG can locate slightly better solutions than CPLS . To put
it simply, this is because both methods are heuristic. In more detail, a possible scenario
is the following: Suppose that the first solution A located has objective value CA. As the
search continues, assume that LS improves the heuristic’s estimation at some node and does
not cut the current branch (as CPG would do), leading to a better solution B being later
located, with value CB < CA. The discovery of solution B may lead to more branches being
then cut off, potentially including a branch that leads to a solution C with value CC < CB .
Hence, CPLS will not discover this solution. On the other hand, it is possible that CPG

locates solution C, because using the upper bound of CA > CB to prune, may lead to weaker
pruning, allowing for the branch that leads to solution C to be explored.

7.3 Experiments with the pCD
Table 2 details the classes generated for pCDs using the two generation models. For the
p-median based ones, we give the name of the p-median benchmark used as basis. Each such
class is defined by the parameters < |V |, p, |P |, |CL| >. For example, class <400,5,80,320>

includes problems with 400 points, 5 facilities, 80 potential locations and 320 clients. The
2nd column gives classes where the number of clients is larger or equal to the number of
candidate sites, while the 3rd gives classes where there are more candidate sites than clients.
Each grid based class is defined by the parameters < n, p, |P |, |CL| >. For example, in class
<10,20,80,20> we have a 10×10 grid, 20 facilities, 80 potential locations and 20 clients.

We have experimented with five solvers: Gurobi, OR-Tools, 8-threads OR-Tools, Choco,
our custom CP solver. These are all complete solvers. We also experimented with three
configurations of our solver that incorporate the pruning heuristic, making the solver incom-

CP 2024

14:14 A CP/LS Heuristic for Location Problems with Distance Constraints

Table 2 Problem classes and their characteristics.

p-median based |CL| ≥ |F P | |F P | > |CL| grid based
pmed5 <100,33,40,60> <100,33,80,20> g1 <10,20,80,20>

pmed10 <200,67,100,100> <200,67,160,40> g2 <20,10,350,50>

pmed15 <300,100,150,150> <300,100,240,60> g3 <20,20,350,50>

pmed21 <500,5,100,400> <500,5,400,100> g4 <20,25,350,50>

pmed26 <600,5,120,480> <600,5,480,120> g5 <30,20,300,50>

pmed31 <700,5,140,560> <700,5,560,140> g6 <30,10,500,100>

pmed36 <800,10,400,400> <800,10,640,160> g7 <30,20,500,100>

pmed38 <900,5,450,450> <900,5,720,180> g8 <30,20,700,200>

g9 <50,100,1300,200>

plete. The first (CPG), only uses a greedy heuristic to estimate the cost at each node (as
in [41] for the pDD), the second one uses LS to perform the estimation, and the third one
(CPLS), adds the LS component that tries to improve any solution found. Choco displayed
inferior performance compared to OR-Tools and therefore was not included in extensive
experiments, while the 8-thread version of OR-Tools did not demonstrate any significant
benefits compared to the single thread one. The basic complete version of our solver (i.e.
without the heuristic) was not competitive, despite using a simple model of the problem.
Indicative results of this solver and 8-threads OR-Tools are given in the Appendix.

Among the configurations of our solver that use the bound estimation heuristic, CPLS

displayed the best results. CPLS finds the optimal in 85 out of the 187 instances for which
the optimal is known, as opposed to 68 for CPG, and improves the cost found by CPG (resp.
worsens it) in 47 (resp. 4). Regarding run times, as in the pDD, CPLS usually reaches the
best solution found by CPG in similar or faster run times, but may take longer to terminate
because it further improves this solution. It achieves similar run times in classes where CPLS

rarely improves the cost, while it can take up to twice the time to terminate in classes where
it often improves the cost. The second LS component makes a slight contribution towards
the solver’s performance. When turned off (i.e. LS only used for branch pruning) then there
is an improvement in 43 instances (82 optimal) compared to CPG.

Interestingly, in only around 0.3% to 3% of the calls to LS, the current branch was not
cut off. Despite these very low percentages, CPLS still managed to find better solutions than
CPG in many instances. It is not surprising that the corresponding percentages are higher
in pDDs, as intuitively it is more likely to improve the bound’s estimation by changing the
location of a facility through a local move in a pDD rather than in a pCD, where a local
move must place a facility fi close to all the clients that are at maximum distance from their
closest facility, so that they are now served by fi.

In Table 3, we compare CPLS to Gurobi and OR-Tools. We report the total cpu times,
the mean cost of the best solution found, and the number of instances where any solver was
cut off (in brackets after

∑
cpu). If a solver did not terminate, we count 3, 600 secs towards

its cpu time sum and record the best solution it was able to find. Column tb gives the mean
cpu time taken by CPLS to find its best solution. Columns tm give the mean cpu time taken
by Gurobi and OR-Tools to find the first solution that matches (or improves) the cost of
the best solution found by CPLS . If CPLS was unable to find any solution within the time
limit in some instances then tb is left blank (-). Accordingly, if Gurobi or OR-Tools did
not manage to match the solution found by CPLS in some instances, tm is left blank. The
last column gives the number of instances where CPLS found the optimal solution. In some
classes, OR-Tools (and Gurobi in one class) suffered memory exhaustion and crashed in all
instances without discovering any solutions. This is denoted with MEM in the

∑
cpu column.

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:15

Table 3 Comparing solvers on pCD problems.

Gur
∑

cpu tm cost ORt
∑

cpu tm cost CPLS

∑
cpu tb cost #opt

|CL| ≥ |F P |
pmed5 2 (0) 0 100.5 1,668 (0) 164 100.5 >7,306 (2) - - 5
pmed10 44 (0) 4 63.4 1,963 (0) 196 63.4 4 (0) 0.2 63.4 10
pmed15 123 (0) 12 49.7 19,753 (0) 1,974 49.7 384 (0) 1.3 50.1 9
pmed21 201 (0) 11 45.8 212 (0) 18 45.8 6 (0) 0.3 46.5 6
pmed26 206 (0) 13 43.2 224 (0) 16 43.2 9 (0) 0.3 44 4
pmed31 985 (0) 67 34.7 254 (0) 19 34.7 17 (0) 0.7 35.6 3
pmed36 1,160 (0) 19 35.9 >18,468 (3) 951 35.9 478 (0) 19 37 4
pmed38 146 (0) 14 37.2 3,522 (0) 352 37.2 52 (0) 3 37.3 9

|F P | > |CL|
pmed5 5 (0) 0 47 249(0) 25 47 407 (0) 40 47 10
pmed10 64 (0) 6 25.3 10,775 (0) 1,076 25.3 343 (0) 2 26.3 7
pmed15 219 (0) 21 21.6 MEM - - 7,544 (0) 36 22.3 7
pmed21 252 (0) 9 27.6 >19,747 (1) 225 27.6 101 (0) 5 28.6 2
pmed26 537 (0) 27 24.7 14,901 (0) 460 24.7 113 (0) 5 25.6 2
pmed31 2,535 (0) 48 21.8 >33,041 (5) 912 21.8 227 (0) 8 22.8 0
pmed36 >5,817 (1) 110 19 MEM - - 1,697 (0) 110 20.7 0
pmed38 4,345 (0) 69 20.2 >33,218 (6) 2,454 20.2 184 (0) 8 20.9 3

GRID

g1 4,103 (0) 381 2.1 443 (0) 14 2.1 2 (0) 0.1 2.8 3
g2 5,191 (0) 73 4.1 7,737 (0) 16 4.1 26 (0) 0.1 6.1 0
g3 >36,000 (10) - - >36,000 (10) 159 4.2 205 (0) 14 5.3 0
g4 >36,000 (10) - - >33,302 (9) - - 9,300 (0) 922 5.4 1
g5 >36,000 (10) - - >36,000 (10) 818 6.9 3,317 (0) 320 8.4 0
g6 >23,021 (4) 852 7.6 >34,641 (9) 30 7.4 99 (0) 0.5 9.9 0
g7 >36,000 (10) - - >36,000 (10) - - 1,264 (0) 100 8.4 0
g8 >36,000 (10) - - >36,000 (10) - - 275 (0) 10 9 0
g9 MEM - - MEM - - >36,000 (10) 814 13.7 0

Gurobi outperforms OR-Tools, in run times, in all classes of the p-median based problems,
and in fact finds these problems quite easy, terminating within the time limit in all but one
instance. CPLS is able to find many optimal or near-optimal solutions, and it does this
very fast in most classes. As the tb and tm columns indicate, it can take OR-Tools orders of
magnitude longer runs to match the solutions found by CPLS (e.g. pmed15 and pmed38).
Compared to Gurobi, CPLS is generally able to find good solutions faster, especially in
classes with few facilities (e.g. pmed31), but cannot compete in classes that include many
facilities and relatively few facility points. In terms of optimal solutions found, CPLS is
quite successful in classes with more clients than facility points, as it finds at least 5 optimal
solutions in 5 classes, while it locates all of them in the pmed10 class. The performance is
not as good in the |FP | > |CL| category, as there are classes where no optimal solution is
found. This is not surprising, considering that in such classes, domain sizes are larger.

Regarding grid based problems, the results differ significantly. OR-Tools now performs
better than Gurobi, as the latter finds 6 out of the 9 classes very hard and did not manage to
find any solution in any instance of these classes. OR-Tools also finds some of these classes
very hard, but managed to discover solutions in at least one instance from every class, but
not in all instances (hence the blank tm and cost columns). CPLS is much more robust,
being able to find solutions in all instances of all classes, and doing this very fast in some
classes (including hard ones, such as g8).

CP 2024

14:16 A CP/LS Heuristic for Location Problems with Distance Constraints

Regarding solution quality, in classes where one or both of the complete solvers solved
all instances, the cost of the solutions discovered by CPLS is worse than that discovered by
OR-Tools (and in some cases Gurobi). Also, CPLS managed to find only 4 of the known
optimal solutions. On the other hand, CPLS obtained solutions in all instances, even the
very large ones with 1,300 facility points. This ability to handle the very large instances is
due to both the simpler model of the problem and the pruning heuristic. The simpler model
means that propagation is not very costly, and therefore an initial solution is sooner or later
located. Thereafter, the heuristic takes over and prunes many branches, allowing for the
solution to be quickly improved.

On the other hand, the propagation performed by OR-Tools is costly, because of the
many auxiliary variables and relevant constraints, meaning that for very large grid problems,
which typically have few solutions, it is either unable to reach a solution within the time limit,
even if the memory requirements are manageable, or takes very long to improve the ones
found. Of course, OR-Tools could also use the simpler model, but in this case the pruning
heuristic should be written into the solver as a specialized constraint to make it competitive.

Regarding Gurobi, a factor that seems to affects its performance is the ratio of candidate
facility sites to facilities. If this is small then Gurobi quickly locates the optimal solution
and proves optimality. In contrast, when it is large then Gurobi finds the problems harder.
On the other hand, the performance of CPLS , and OR-Tools to a large extent, is dependant
on the number of facilities/variables which mainly determines the size of the search space
these solvers explore.

Another important factor that affects the performance of the solvers is the number of
solutions. Gurobi seems to benefit from the presence of many solutions in an instance, while
this does not hold for CPLS and OR-Tools. In contrast, Gurobi finds it hard to deal with
problems that only have a few solutions, whereas the CP solvers handle such problems more
efficiently. Let us note that p-median generated instances typically have a very large number
of solutions. For example, a simple enumeration of the feasible solutions, using a complete
CP solver without the objective function, counted 13,343,409 solutions in 10 minutes of cpu
time on average for the 10 instances of pmed38 with |CL| ≥ |FP |. The enumeration was
stopped after 10 minutes, meaning that the actual number of solutions could be much higher.
Further to this, focusing on two contrasting instances of class g1; one having only 58 feasible
solutions and another with 87,950,294 solutions, Gurobi took 3,590 secs to match the best
solution of CPLS in the former, while it managed this in 17 secs in the latter.

When there are few solutions then Gurobi is either unable to find any solution within the
time limit and/or finds it hard to obtain a good initial bound, meaning that its progress
towards the optimal is very slow. In contrast, in the presence of many solutions, it starts
with a good initial bound and is able to quickly improve it. The low number of solutions in
grid problems is also a possible explanation for the lower quality of solutions discovered by
CPLS compared to OR-Tools in classes that OR-Tools can handle. In such cases, erroneous
pruning by the heuristic may be costly, as the optimal and near-optimal solutions are few,
whereas when there are many solutions, (as in the MDPLIB and p-median benchmarks),
mistakes are not as costly, as there may be many branches that lead to good solutions.

8 Conclusion

We have enhanced a recent heuristic approach towards solving the p-dispersion problem with
distance constraints in two directions. First, we showed how LS can significantly improve
the effectiveness of the method by computing better bound estimations at each node, and

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:17

therefore performing more focused branch pruning, and to a lesser extent by tightening the
bound each time a new solution is discovered. Second, we showed that the entire method is
applicable to other location problems, using the p-center problem as an example. Results
demonstrated that a solver that heuristically prunes the search space during search is more
robust than standard ILP and CP solvers. It would be very interesting to investigate the
applicability of the approach to other types of constraint optimization problems.

References
1 T. Argo and E. Sandstrom. Separation distances in NFPA codes and standards (tech. rep.).

Fire Protection Research Foundation. 2014.
2 M.L. Balinski. Integer programming: methods, uses, computations. Management Science,

12(3):253–313, 1965.
3 J.E. Beasley. A note on solving large p-median problems. European Journal of Operational

Research, 21(2):270–273, 1985.
4 O. Berman and R. Huang. The minimum weighted covering location problem with distance

constraints. Computers and Operations Research, 35(12):356–372, 2008. doi:10.1016/j.cor.
2006.03.003.

5 F. Boussemart, F. Heremy, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, pages 482–486, 2004.

6 H. Calik and B.C. Tansel. Double bound method for solving the p-center location problem.
Comput. Oper. Res., 40(12):2991–2999, 2013. doi:10.1016/j.cor.2013.07.011.

7 H. Cambazard, D. Mehta, B. O’Sullivan, and L. Quesada. A computational geometry-based
local search algorithm for planar location problems. In Proceedings of the 9th International
Conference on the Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 2012), pages 97–112, 2012.

8 S. Chaudhry, T. McCormick, and I. D. Moon. Locating independent facilities with maximum
weight: Greedy heuristics. International Journal of Management Science, 14(5):383–389, 1986.

9 R. L. Church and M. E. Meadows. Results of a new approach to solving the p-median problem
with maximum distance constraints. Geographical Analysis, 9(4):364–378, 1977.

10 V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979. doi:10.1287/moor.4.3.233.

11 W. Comley. The location of ambivalent facilities: Use of a quadratic zero-one programming
algorithm. Applied Mathematical Modeling, 19(1):26–29, 1995.

12 Z. Dai, K. Xu, and M. Ornik. Repulsion-based p-dispersion with distance constraints
in non-convex polygons. Annals of Operations Research, 307:75–91, 2021. doi:10.1007/
s10479-021-04281-z.

13 M.S. Daskin. Network and discrete location: models, algorithms, and applications, 2nd edn.
Wiley, Hoboken, 2013.

14 Choco development team. An Open-Source java library for constraint programming.
https://choco-solver.org/.

15 OR-Tools development team. OR-Tools, CP-SAT solver.
https://developers.google.com/optimization/cp/cp_solver.

16 T. Drezner, Z. Drezner, and A. Schöbel. The weber obnoxious facility location model: A
big arc small arc approach. Computers and Operations Research, 98:240–250, 2018. doi:
10.1016/j.cor.2018.06.006.

17 Z. Drezner, P. Kalczynski, and S. Salhi. The planar multiple obnoxious facilities location
problem: A Voronoi based heuristic. Omega, 87:105–116, 2019.

18 S. Elloumi, M. Labbé, and Y. Pochet. A new formulation and resolution method for the
p-center problem. INFORMS J. Comput., 16(1):83–94, 2004. doi:10.1287/ijoc.1030.0028.

19 E. Erkut. The discrete p-dispersion problem. European Journal of Operational Research,
46(1):48–60, 1990.

20 E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European
Journal of Operational Research, 40(3):275–291, 1989.

CP 2024

https://doi.org/10.1016/j.cor.2006.03.003
https://doi.org/10.1016/j.cor.2006.03.003
https://doi.org/10.1016/j.cor.2013.07.011
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1007/s10479-021-04281-z
https://doi.org/10.1007/s10479-021-04281-z
https://doi.org/10.1016/j.cor.2018.06.006
https://doi.org/10.1016/j.cor.2018.06.006
https://doi.org/10.1287/ijoc.1030.0028

14:18 A CP/LS Heuristic for Location Problems with Distance Constraints

21 E. Erkut and S. Neuman. Comparison of four models for dispersing facilities. Information
Systems and Operational Research, 29:68–86, 1991.

22 E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of p-dispersion heuristics. Computers
& Operations Research, 21(10):1103–1113, 1994. doi:10.1016/0305-0548(94)90041-8.

23 M. M. Fazel-Zarandi and J. C. Beck. Solving a location-allocation problem with logic-based
benders’ decomposition. In Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming (CP 2009), pages 344–351, 2009.

24 F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming. In F.W.
Glover and G.A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International
Series in Operations Research & Management Science, pages 369–403. Kluwer / Springer,
2003. doi:10.1007/0-306-48056-5_13.

25 J. B. Ghosh. Computational aspects of the maximum diversity problem. Operations Research
Letters, 19(4):175–181, 1996. doi:10.1016/0167-6377(96)00025-9.

26 C. Gomes and M. Sellmann. Streamlined constraint reasoning. In Proceedings of the Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2004), pages
274–289, 2004.

27 T. Guns. Increasing modeling language convenience with a universal n-dimensional array,
CPpy as python-embedded example. In Proceedings of the 18th Workshop on Constraint
Modelling and Reformulation, 2019.

28 LLC Gurobi Optimization. Gurobi optimizer reference manual. , 2023. URL: https://www.
gurobi.com.

29 S.L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of
a graph. Operations Research, 12(3):450–459, 1964.

30 S.L. Hakimi. Optimum distribution of switching centers in a communication network and
some related graph theoretic problems. Operations Research, 13(3):462–475, 1965.

31 N. Isoart and J.-C. Régin. A k-Opt Based Constraint for the TSP. In Proceedings of the 27th
International Conference on Principles and Practice of Constraint Programming (CP 2021),
2021.

32 B. M. Khumawala. An efficient algorithm for the p-median problem with maximum distance
constraints. Geographical Analysis, 5(4):309–321, 1973.

33 J. Krarup, D. Pisinger, and F. Plastria. Discrete location problems with push-pull object-
ives. Discrete Applied Mathematics, 123(1-3):363–378, 2002. doi:10.1016/S0166-218X(01)
00346-8.

34 M. J. Kuby. Programming models for facility dispersion: The p-dispersion and maxisum
dispersion problems. Mathematical and Computer Modelling, 10(10):792, 1988.

35 A.A. Kuehn and M.J. Hamburger. A heuristic program for locating warehouses. Management
Science, 9:643–666, 1963.

36 M.Z. Lagerkvist and M. Rattfeldt. Half-checking propagators. In Proceedings of the 19th
Workshop on Constraint Modelling and Reformulation, 2020.

37 R. Marti, A. Martinez-Gavara, S. Perez-Pelo, and J. Sanchez-Oro. A review on discrete diversity
and dispersion maximization from an OR perspective. European Journal of Operational
Research, 299(3):795–813, 2022. doi:10.1016/j.ejor.2021.07.044.

38 I. D. Moon and S. Chaudhry. An analysis of network location problems with distance
constraints. Management Science, 30(3):290–307, 1984.

39 I. D. Moon and L. Papayanopoulos. Minimax location of two facilities with minimum separation:
Interactive graphical solutions. Journal of the Operations Research Society, 42:685–694, 1991.

40 A.T. Murray, R.L. Church, R.A. Gerrard, and W.S. Tsui. Impact models for siting undesirable
facilities. Papers in Regional Science, 77(1):19–36, 1998.

41 N. Ploskas, K. Stergiou, and D.C. Tsouros. The p-dispersion problem with distance constraints.
In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of
Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of

https://doi.org/10.1016/0305-0548(94)90041-8
https://doi.org/10.1007/0-306-48056-5_13
https://doi.org/10.1016/0167-6377(96)00025-9
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1016/j.ejor.2021.07.044

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:19

LIPIcs, pages 30:1–30:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CP.2023.30.

42 D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A.G. Cohn, editor, Proceedings of the Eleventh European Conference on Artificial Intelligence,
Amsterdam, The Netherlands, August 8-12, 1994, pages 125–129, 1994.

43 D. Sayah and S. Irnich. A new compact formulation for the discrete p-dispersion problem.
European Journal of Operational Research, 256(1):62–67, 2017. doi:10.1016/j.ejor.2016.
06.036.

44 F. Sayyady and Y Fathi. An integer programming approach for solving the p-dispersion
problem. European Journal of Operational Research, 253(1):216–225, 2016. doi:10.1016/j.
ejor.2016.02.026.

45 D. R. Shier. A min-max theorem for p-center problems on a tree. Transportation Science,
11:243–252, 1977.

46 S.Y.D. Sorkhabi, D.A. Romero, J.C. Beck, and C. Amon. Constrained multi-objective
wind farm layout optimization: Novel constraint handling approach based on constraint
programming. Renewable Energy, 126(C):341–353, 2018.

47 B.C. Tansel, R.L. Francis, T.J. Lowe, and M.L. Chen. Duality and distance constraints for
the nonlinear p-center problem and covering problem on a tree network. Operations Research,
30(4):725–744, 1982. doi:10.1287/opre.30.4.725.

48 S.B. Welch and S. Salhi. The obnoxious p facility network location problem with facility
interaction. European Journal of Operations Research, 102:302–319, 1997.

49 49 C.F.R. §175.701. Separation distance requirements for packages containing class 7 (radio-
active) materials in passenger-carrying aircraft. Title 49 Code of Federal Regulations, Part
175. 2021.

50 29 C.F.R. §1910.157. Portable fire extinguishers. Title 29 Code of Federal Regulations, Part
157. 2021.

Appendix

In Table 4 we give mean results regarding the pruning of the heuristic and the effect of LS.
CPLSh

is the solver configuration that uses LS only within the branch pruning heuristic
to perform a potential improvement in the estimation of the bound. We denote by Ra the
ratio of branches accepted (not cut off) by LS (within the branch pruning heuristic) to the
total number of times that it was called. We denote by Rb the ratio of the total number of
branches pruned by the heuristic to the number of times the heuristic was called. We denote
by Ri, the ratio of the number of times that LS further improved a feasible solution to the
number of times that it was called to do so. The ratios are presented as percentages and are
computed as means over all the instances of a problem category (MDG and GKD in pDDs -
p-median and grid in pCDs).

The high percentages of Rb explain the efficiency of the solver that applies this type of
pruning, as large amounts of the search tree are cut off (more than 90% of the calls to the
heuristic, on average, result in branch pruning, in both categories of the pCD and one of the
pDD). As expected, the basic CPG variant usually displays a higher pruning ratio compared
to CPLS , but not always, because in some instances, especially p-median based pCDs, the
latter quickly finds very good solutions, tightening the bound, and thereby resulting in heavy
pruning. Regarding the effect of LS as a means to improve newly discovered solutions, in the
GKD classes of pDDs and the p-median classes of pCDs there was an improving ratio Ri of
around 60%, meaning that LS was able to improve an incumbent solution more than half of
the times it was called to do so.

CP 2024

https://doi.org/10.4230/LIPIcs.CP.2023.30
https://doi.org/10.4230/LIPIcs.CP.2023.30
https://doi.org/10.1016/j.ejor.2016.06.036
https://doi.org/10.1016/j.ejor.2016.06.036
https://doi.org/10.1016/j.ejor.2016.02.026
https://doi.org/10.1016/j.ejor.2016.02.026
https://doi.org/10.1287/opre.30.4.725

14:20 A CP/LS Heuristic for Location Problems with Distance Constraints

Table 4 Ratios for pDDs and pCDs.

Ra Rb Ri Ra Rb Ri

pDD MDG GKD
CPG - 91.78% - - 85.18% -
CPLS 4.16% 91.22% 35.64% 14.15% 79.94% 58.89%
CPLSh 4.19% 90.82% - 14.12% 79.54% -
pCD p-median Grid
CPG - 90.55% - - 95.35% -
CPLS 0.36% 91.78% 60.91% 2.76% 93.79% 31.34%
CPLSh 0.61% 90.24% - 3.08% 92.96% -

In Table 5 an indicative comparison between the basic solver fo pCDs (denoted CPde),
i.e. the solver with the branch pruning heuristic deactivated, and CPLS is presented. For
each class, we report the total cpu times taken by the solvers, the mean cost of the best
solution found, and the number of instances where any solver reached the cut off limit of 1
hour without terminating (in brackets after the total cpu time). Column tb gives the mean
cpu time taken by the solvers to find their best solution. Column tm gives the mean cpu
time taken by CPde to find the first solution that matches (or improves) the cost of the best
solution found by CPLS . If CPde did not manage to match the solution found by CPLS in
some instances, tm is left blank. Finally, we also report the total nodes visited by each solver.

Table 5 Comparing CP solver with/without the branch pruning heuristic in pCDs.

CPde CPLS

Class
∑

cpu tb tm cost
∑

nodes
∑

cpu tb cost
∑

nodes
|CL| ≥ |F P |
pmed21 2,775 (0) 19 8 45.9 72,202,355 6 (0) 0.3 46.5 2,995
pmed36 >21,600 (6) 406 - 37.8 307,856,397 478 (0) 19 37 15,731
pmed38 >12,355 (3) 286 - 37.5 269,869,194 52 (0) 3 37.3 8,960
|F P | > |CL|
pmed21 >36,000 (10) 1,292 - 29.4 3,479,429,138 101 (0) 5 28.6 26,045
pmed36 >36,000 (10) 643 - 22.7 1,365,670,278 1,697 (0) 110 20.7 74,489
pmed38 >36,000 (10) 430 - 21.1 2,996,757,611 184 (0) 8 20.9 24,921
GRID

g3 >32,788 (9) 381 17 4.1 67,219,121 205 (0) 14 5.3 154,500
g6 >36,000 (10) 751 88 9.2 250,773,552 99 (0) 0.5 9.9 11,230
g8 >31,509 (8) 918 20 7.6 23,653,359 275 (0) 10 9 55,194

Not surprisingly, the behaviour of CPde resembles somewhat that of OR-Tools. It is
by far slower than its incomplete version CPLS , and typically discovers worse solutions, in
p-median based problems. On the other hand, it is still slower in grid problems (though by
smaller margins), but it discovers better solutions than CPLS . The huge numbers of visited
nodes compared to CPLS , demonstrate the pruning power of the branch pruning heuristic,
although results from the grid classes indicate that this massive pruning can sometimes
be costly, in terms of solution quality, when problems have a relatively small amount of
solutions.

P. Iosif, N. Ploskas, K. Stergiou, and D. C. Tsouros 14:21

In Table 6 we give an indicative comparison between two different configurations of
OR-Tools, one single threaded and one with 8 threads. For each class, we report the total
cpu times taken, the mean cost of the best solution found, and the number of instances
where the cut off limit of 1 hour without terminating is reached (in brackets after the total
cpu time).

Table 6 Comparing ORtools with 1 and 8 threads.

ORt1
∑

cpu tb cost ORt8
∑

cpu tb cost
|CL| ≥ |F P |
pmed5 1,668 (0) 167 100.5 872 (0) 86 100.5
pmed10 1,963 (0) 196 63.4 1,902 (0) 188 63.4
pmed21 212 (0) 18 45.8 203 (0) 16 45.8
pmed26 224 (0) 19 43.2 195 (0) 18 43.2
|F P | > |CL|
pmed5 249 (0) 25 47 249 (0) 24 47
pmed10 10,775 (0) 1,077 25.3 10,726 (0) 1,071 25.3
pmed21 >19,747 (1) 497 27.6 10,173 (0) 319 27.6
pmed26 14,901 (0) 604 24.7 9,775 (0) 525 24.7
GRID

g1 443 (0) 30 2.1 272 (0) 14 2.1
g2 7,737 (0) 98 4.1 8,178 (0) 158 4.1
g3 >36,000 (10) 396 4.2 >35,977 (9) 354 4.1
g6 >34,641 (9) 358 7.4 >35,334 (9) 732 7.4

Results demonstrate that the 8 thread configuration for OR-Tools did not result in
significantly improved run times (sometimes it is detrimental). In most classes, the mean
times taken for the discovery of the best solution were close. But importantly, the 8 thread
variant very rarely manages to improve the cost of the best solution found. Finally, the two
versions crashed in the same classes that are denoted with MEM in Table 3.

CP 2024

	1 Introduction
	2 Related Work
	3 Problem Definition
	4 ILP Model for the pCD
	5 CP Models for the pCD
	6 Enhancing a Heuristic CP-Based Method Through LS
	6.1 pDD
	6.2 pCD

	7 Experiments
	7.1 Problem Generation Models
	7.2 Experiments with the pDD
	7.3 Experiments with the pCD

	8 Conclusion

