
Exponential Steepest Ascent from Valued
Constraint Graphs of Pathwidth Four
Artem Kaznatcheev #

Department of Mathematics, and Department of Information and Computing Sciences,
Utrecht University, The Netherlands

Melle van Marle #

Department of Mathematics, and Department of Information and Computing Sciences,
Utrecht University, The Netherlands

Abstract
We examine the complexity of maximising fitness via local search on valued constraint satisfaction
problems (VCSPs). We consider two kinds of local ascents: (1) steepest ascents, where each step
changes the domain that produces a maximal increase in fitness; and (2) ≺-ordered ascents, where –
of the domains with available fitness increasing changes – each step changes the ≺-minimal domain.
We provide a general padding argument to simulate any ordered ascent by a steepest ascent. We
construct a VCSP that is a path of binary constraints between alternating 2-state and 3-state
domains with exponentially long ordered ascents. We apply our padding argument to this VCSP
to obtain a Boolean VCSP that has a constraint (hyper)graph of arity 5 and pathwidth 4 with
exponential steepest ascents. This is an improvement on the previous best known construction for
long steepest ascents, which had arity 8 and pathwidth 7.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases valued constraint satisfaction problem, steepest ascent, local search, bounded
treewidth, intractability

Digital Object Identifier 10.4230/LIPIcs.CP.2024.17

Acknowledgements AK would like to thank Dave Cohen and Peter Jeavons for helpful discussions.
AK and MvM would also like to thank Daniel Dadush for helpful feedback and questions.

1 Introduction

Local search is often used in combinatorial optimisation. One of the most common methods
for choosing which local modification to make is the steepest ascent algorithm, which at each
step selects the highest-value option from the neighbours of the current state. Clearly such
an algorithm could get trapped at local optima that might prevent it from reaching a higher
optimum. Surprisingly, [9] showed that for problems that are hard for the complexity class
of polynomial local search (PLS), even local optima can be intractable to find – regardless of
what polynomial time algorithm is used for the search. As such, it is natural to ask: under
what conditions could popular local search algorithms like steepest ascent be guaranteed
to find even a local optimum in reasonable time? Or stated in term of intractability: for
what problems does steepest ascent not find a local optimum quickly, taking instead an
exponential number of steps before arriving at any local optimum.

Many combinatorial optimisation problems can be formulated as valued constraint satis-
faction problems (VCSPs). Since weighted 2-SAT is PLS-complete [14] and a special case
of binary Boolean VCSPs, it is believed to be intractable to find local optima in general
VCSPs. It is also possible to create VCSPs where every ascent from some initial assignment
is exponentially long. VCSPs of bounded treewidth, however, are tractable – even for finding
global optima – by using a non-local-search algorithm [1, 2]. But the existence of efficient
non-local algorithms does not mean that local search algorithms will find optima efficiently.

© Artem Kaznatcheev and Melle van Marle;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.kaznatcheev@uu.nl
https://orcid.org/0000-0001-8063-2187
mailto:melvanmarle@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

For situations where local search is forced upon us – as is for example the case when we
are modelling biological evolution [11, 10, 13] or social systems in business [15, 17] and
economics [18]; or energy-minimization in physical systems – it is useful to know whether we
can expect the local search algorithm to terminate in reasonable time.

Even in the case of VCSPs of bounded treewidth, a (reasonable) local search algorithm
like steepest ascent may take a long time to equilibrate. [3] have provided a Boolean VCSP
with arity 8 and pathwidth 7 (and treewidth 7), on which an exponentially long steepest
ascent exists. This shows that what is tractable/intractable for steepest ascent is distinct
from what is tractable/intractable for non-local algorithms. We currently do not yet have a
full characterisation of the intractability class for steepest ascent. In this article, we take
a next step towards this full characterisation and lower the threshold for intractability, by
constructing a Boolean VCSP of arity 5 and pathwidth 4 that has exponentially long steepest
ascents. We do this in four steps:
Section 3: Introduce a general padding argument that allows us to simulate any ascent

respecting an ordering of the domains by a steepest ascent (see Theorem 9).
Section 4: Introduce a new VCSP (specifically path made by alternating two different 2-by-3

constraints between variables of domain size alternating between 2 and 3) that produces
an exponentially long ordered ascent (see Proposition 12).

Section 5: Apply the padding argument to the 2-by-3 construction. This yields a 3-by-5
construction, implementable by a VCSP with ternary constraints, on which the original
ordered ascent is simulated by a steepest ascent.

Section 6: Encode the expanded domains using Boolean variables, and apply some tricks to
get the resulting VCSP to arity 5 and pathwidth 4 while preserving the exponentially
long steepest ascent.

2 Background

Let D be a set and R ⊂ D × D a binary relation on D. We call (D, R) a domain and R the
transition relation. We omit R when it is a complete graph or obvious from context.

We will consider local search problems on search spaces of the form D1 × D2 × · · · × Dn,
where the (Di, Ri) are domains. We call the elements of D1 × · · · × Dn assignments. We
consider two assignments x, y ∈ D1 × · · · × Dn to be as adjacent iff x differs from y at
exactly one position, say k, and (xk, yk) ∈ Rk. We view Rk as being undirected, so that
(xk, yk) ∈ Rk implies that both the transition from xk to yk and the transition from yk to xk

are allowed. N(x) is the set of assignments adjacent to x.

▶ Definition 1. Let D1 ×· · ·×Dn be a search space of assignments, and f : D1 ×· · ·×Dn → Z
a function. We call f a fitness function and the pair (D1 × · · · × Dn, f) a fitness landscape.
We say that an assignment x is a local solution in the fitness landscape (D1 × · · · × Dn, f) if
f(x) ≥ f(y) for all y ∈ N(x). 1

We can represent fitness landscapes using a collection of constraints. A valued constraint
on D1 × · · · × Dn with scope S ⊆ [n] is a function CS :

∏
i∈S Di → Z. The size |S| of the

scope is the arity of the constraint.
In general, we can represent a constraint of arity n by an n-dimensional tensor, whose

fibers are indexed by the domains in the scope of the constraint. In particular, this means
that a binary constraint between two domains Dk and Dl can be represented by a matrix
whose rows are indexed by Dk and whose columns are indexed by Dl (or vice versa).

1 We could have used the more traditional “value” or “reward”, but we prefer “fitness” given the connection
to biological evolution that we discuss in Section 7.

A. Kaznatcheev and M. van Marle 17:3

▶ Example 2. Let C{i,j} be a binary constraint between domains Di = {u1, u2, u3, u4} and
Dj = {v1, v2, v3}, then we can represent C{i,j} by

C{i,j} =

v1 v2 v3

C{i,j}(u1, v1) C{i,j}(u1, v2) C{i,j}(u1, v3) u1

C{i,j}(u2, v1) C{i,j}(u2, v2) C{i,j}(u2, v3) u2

C{i,j}(u3, v1) C{i,j}(u3, v2) C{i,j}(u3, v3) u3

C{i,j}(u4, v1) C{i,j}(u4, v2) C{i,j}(u4, v3) u4

(1)

▶ Definition 3 (Valued Constraint Satisfaction Problem (VCSP), based on [8]). An instance of a
valued constraint satisfaction problem (VCSP) is given by a a tuple (D1 × · · · × Dn, C), where
C = {CS1 , CS2 , . . . , CSm

} is a collection of valued constraints on domains D1 ×D2 ×· · ·×Dn.
The fitness function f of the VCSP instance is given by f(x) =

∑m
i=1 CSi((xj)j∈Si). The

goal is to find a local solution in the fitness landscape (D1 × · · · × Dn, f).

We will usually denote a VCSP instance (D1 × · · · × Dn, C,) simply by C, and we will
say that the fitness landscape (D1 × · · · × Dn, f) is implemented by C.

To any VCSP C on n variables, we can associate a constraint (hyper)graph GC , whose set
of vertices is given by [n]. For each constraint Cs, there is a (hyper)edge S, labeled by Cs.
We are interested in VCPS with “sparse” constraint graphs. Specifically, constraint graphs
of bounded pathwidth.

▶ Definition 4 (adapted from [5]). Let GC = ([n], {S | CS ∈ C}) be the constraint graph of a
VCSP C. A sequence (Xi)m

i=1 of subsets Xi ⊆ [n] is called a path decomposition of GC if the
following three properties hold
1. For all h ∈ [n], there is some i such that h ∈ Xi.
2. For all S ∈ E(GC), there is some i such that S ⊆ Xi.
3. For h ∈ [n] and for all i ≤ j ≤ k, if h ∈ Xi and h ∈ Xk, then h ∈ Xj.

The pathwidth of GC is the least l such that l ≥ |Xi| − 1 for all 1 ≤ i ≤ m.

Note that when the value of a single variable changes within a VCSP, the accompanying
change in fitness value is determined entirely by those constraints whose scope contains
this variable. Because of this, it is often useful to consider the “restricted” fitness function
resulting from only considering these domains. Let f be a fitness function associated to some
VCSP C, and let C[k] ⊂ C be the set of constraints whose scope contains the k-th variable.
We use fk to denote the function given by fk(u; z) =

∑
CSi

∈C[k] CSi(u, (zj)j∈Si\{k}) where
u is the value of the k-th variable, and z is a (sub-)assignment consisting of values for all
variables who share a constraint with the k-th variable.

▶ Definition 5. Let F = (D1 × · · · × Dn, f) be a fitness lanscape, and let p = (xt)T
t=0 ⊂

(D1 × · · · × Dn)T +1 be a sequence of assignments in D1 × · · · × Dn. We call p an ascent on F
if for all t < T , we have xt+1 ∈ N(xt), we have f(xt) < f(xt+1), and xT is a local solution.

In this article, we are focused on ascents which take steps that most increase fitness.

▶ Definition 6. Let F = (D1 × · · · × Dn, f) be a fitness landscape, and let p = (xt)T
t=0 be an

ascent on F. We call p a steepest ascent on F if for all t < T and for all y ∈ N(xt), we have
f(y) ≤ f(xt+1).

In other words, at any step, all neighbours of an assignment in p have fitness less than or
equal to the fitness of the next assignment in p.

CP 2024

17:4 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

We will use the following notation to represent local changes: if y can be generated from
x by changing the k-th entry from xk = u to yk = v, we write y = x[k : v].2 Furthermore, if
p = (xt)T

t=0 is an ascent, we write u
k→p(t) v to denote that the transition from xt to xt+1

in p consists of replacing symbol u with symbol v at position k. If the ascent is clear from
context, we drop the p from the notation.

▶ Definition 7. Let F = (D1 × · · · × Dn, f) be a fitness landscape, and let p = (xt)T
t=0 be

an ascent on F. Let ≺ be an ordering on [n]. We call p a ≺-ordered ascent on C if the
following holds. For any t < T , if xt+1 = xt[k : v], then, for all j ≺ k and for all u ∈ Dj

with (xt
j , u) ∈ R, we have f(xt[j : u]) ≤ f(xt).

In other words, at any step, the ascent changes an entry in the domain with ≺-minimal index
where a change can yield a fitness increase.

3 Steepest Ascent Simulation of Ordered Ascents

Given an ordered ascent on some fitness landscape, we show how to construct a new fitness
landscape that “simulates” the ordered ascent with a steepest ascent. This will be done by
expanding the domain and then encoding the expanded domain using Boolean variables.

3.1 Domain Expansion
Let F = (D1 × · · · × Dn, f) be a fitness landscape. Let p = (xt)T

t=0 be a ≺-ordered ascent
on F. For any k ∈ {1, 2, . . . , n}, we expand Dk by adding intermediate states σuv = σvu for
all (u, v) ∈ Rk. We call the elements of the original domain Dk main states. We denote
the resulting expanded domain by D̂k ⊃ Dk. We define the new transition relation on the
expanded domains to be R̂k = {(u, σuv) | (u, v) ∈ Rk}∪{(σuv, v) | (u, v) ∈ Rk}. This relation
ensures that the only possible transition are those from a main state to an intermediate state
and vice versa.

We now construct a new fitness function f̂ : D̂1 ×· · ·×D̂n → Z. For any x ∈ D1 ×· · ·×Dn

– i.e., any x containing only main states – we set:

f̂(x) := (2n + 1)f(x) if x contains only main states. (2)

For an assignment x containing a single intermediate state σuv at position k and main states
at all other positions, if f(x[k : u]) ̸= f(x[k : v]) then we set f̂(x) to be:

f̂(x) := n − k + 1 + (2n + 1) min
w∈{u,v}

f(x[k : w]) if x containts exactly one inter-
mediate state σuv at position k. (3)

If f(x[k : u]) = f(x[k : v]) then we set f̂(x) = (2n + 1) minw∈{u,v}{f(x[k : w]).
Next, let x be an assignment that contains exactly two intermediate symbols σujvj

, σukvk

at positions j and k respectively. We do not want such an assignments to appear in the
steepest ascent. To ensure this, we require that f̂ satisfies the following:

f̂(x) ≤ 2n − (j + k) + 2 + (2n + 1) min
w∈{uj ,vj}

w′∈{uk,vk}

f(x[j, k : w, w′])
if x contains exactly two in-
termediate states σujvj

and
σukvk

at positions j and k.
(4)

For remaining assignments with more than two intermediate symbols, f̂ may take any value.

2 Note that y = x[k : v] is equivalent to x = y[k : u].

A. Kaznatcheev and M. van Marle 17:5

3.2 Steepest Ascent Simulation
▶ Definition 8. Given an ascent p = (xt)T

t=0 on a fitness landscape (D1 × · · · × Dn, f), we
define an ascent p̂ = (x̂t)2T

t=0 on the new fitness landscape (D̂1 × · · · × D̂n, f̂) as:

x̂t =
{

xs, t = 2s;
xs[k : σuv], t = 2s + 1, xs+1 = xs[k : v] and xs = xs+1[k : u].

(5)

We say p̂ a simulation of p.

Note that p̂ alternates between main states of p and the relevant intermediate states
between them. Given the definition of p̂, we are now ready to state our main result.

▶ Theorem 9. Let F = (D1 × · · · × Dn, f) be a fitness landscapes, and let ≺ be an ordering
on {1, 2, . . . , n}. Suppose p is a ≺-ordered ascent on F and that p̂ is a simulation of p. Then,
p̂ is a steepest ascent on (D̂1 × · · · × D̂n, f̂).

By reindexing the domains, we may assume that p is <-ordered without loss of generality
(where < is the standard ordering on [n]). We prove this theorem through the following two
lemmas. The first shows that the transitions from main states into intermediate states are
steepest ascent steps. The second shows that the transitions from intermediate states into
main states are steepest ascent steps.

▶ Lemma 10. Let xt, xt+1 ∈ p, with the transition between these two states being u
k→p(t) v.

Then, the highest fitness neighbour of x̂2t ∈ p̂ is x̂2t[k : σuv]. Moreover, x̂2t[k : σuv] has
higher fitness than x̂2t.

Proof. We begin by noting that x̂2t contains only main states. Due to the nature of the
encoding, the only possible transitions are those flipping a main state to an intermediate
state. Note that by equation (3), we have

f̂(x̂2t[k : σuv]) − f̂(x̂2t) = n − k + 1 > 0. (6)

Consider any l < k. Since we may assume p is a <-ordered ascent, we know that for any
neighbour xt[l : w] of xt, we have f(xt[l : w]) ≤ f(xt). It follows that

f̂(x̂2t[l : σ]) ≤ f̂(x̂2t) < f̂(x̂2t[k : σuv]

for any intermediate state σ in D̂l.
Next, consider any l ≥ k. From equation (3), it is clear that the fitness increase from

a flip to an intermediate state will be at most n − l + 1 ≤ n − k + 1. Thus, the transition
from x̂2t to neighbour x̂2t[k : σuv] with fitness increase of n − k + 1, is a steepest step as
desired. ◀

▶ Lemma 11. Let xt, xt+1 ∈ p, with the change between these two states being u
k→p(t) v.

Then, the highest fitness neighbour of x̂2t+1 ∈ p̂ is x̂2t+1[k : v]. Moreover, x̂2t+1[k : v] has
higher fitness than x̂2t+1.

Proof. We begin by noting that by definition, x̂2t+1 consists of the intermediate state σuv at
position k, and main states at all other positions. We have f̂(x̂2(t+1))− f̂(x̂2t) ≥ 2n+1, since
x̂2(t+1) = xt+1, x̂2t = xt and f(xt+1) > f(xt). Moreover f̂(x̂2t+1) − f̂(x̂2t) = n − k + 1. Thus
f̂(x̂2(t+1)) − f̂(x̂2t+1) ≥ 2n + 1 − (n − k + 1) ≥ n + 1. Since a transition to an intermediate
state at position j ∈ [n] yields a fitness increase of n− j +1, any transition to an intermediate

CP 2024

17:6 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

state can yield a fitness increase of at most n. Thus, we know that such a transition will
never be preferred over the transition from intermediate state σuv to main state v, which
yields a fitness increase of at least n + 1. By definition of the transition relation, the only
alternative transition is from σuv to main state u but this decreases fitness by n − k + 1.
Thus the transition from x̂2t+1 to neighbour x̂2t+1[k : v] is steepest step as desired. ◀

Together Lemmas 10 and 11 prove Theorem 9, implying that p̂ is a steepest ascent.

3.3 Boolean Encoding of Expanded Domains
Note that both p was an ascent on a fitness landscape of arbitrary domain sizes and p̂ was an
ascent on a fitness landscape with further expanded domains. Given that we want to arrive
at a Boolean VCSP, we will show how to encode each (D̂k, R̂k) using |Dk| Boolean variables.
Without loss of generality, we may assume that Dk = {1, 2, . . . , |Dk|}. We can now encode
any main state u ∈ Dk by the string of length |Dk| that contains a 1 at position u and a 0
in all other positions. Any intermediate state σuv can likewise be encoded by the string of
length |Dk| containing a 1 at positions u and v and a 0 at all other positions.

Using this encoding we ensure that all main states are more than a single bit-flip away
from each other. At the same time, the intermediate states are exactly one flip away from
the corresponding two main states (and more than one flip away from all other main states).
Thus, the transition relation R̂k is respected by this encoding.

4 Pair of 2-by-3 Constraints with Long Ordered Ascent

To build an ordered ascent of exponential length, we consider a VCSP on n domains
D1 × D2 × · · · × Dn, where the odd domains have size 2 (i.e. D1, D2k+1 = {A, B}), and the
even domains have size 3 (i.e. D2k = {A, B, C}. For the odd domains, the transition relation
is simply given by R1, R2k+1 = {(A, B)}. For the even domains, the transition relation is
given by R2k = {(A, B), (B, C)}. In other words, the values are only allowed to transition
between A-and-B, and between B-and-C. Transitions between A-and-C are not allowed.

We arrange the domains into a path, where each pair of consecutive domains have a
binary constraint between them. The n-th domain gets a unary constraint inspired by the
relevant binary constraint. The binary constraints are different weights of the following:

L =

A B 0 2 A

1 1 B

2 0 C

, M =

A B C()
0 1 0 A

1 0 1 B

(7)

We recursively define weights for these constraints by setting m1 = 1, and mk+1 = 2mk +3.
We can solve this recurrence relation to get mk = 2k+1−3. To D1 and D2 we assign constraint
M . Between D2k and D2k+1 we set constraint (mk + 1)L. Between D2k+1 and D2(k+1) we
set constraint mk+1M . Finally, if n = 2h, we assign unary constraint (mh + 1)L(−, A) to
Dn. If n = 2h + 1, we assign unary constraint mh+1M(−, A) to Dn. These cases are shown
in Figure 1.

Note that whenever a variable at an even position 2k changes value, it can lose at most mk

from the left constraint (i.e., mkM), while any gain from the right constraint (i.e. (mk + 1)L)
will be at least mk + 1. Likewise, whenever a variable at an even position 2k + 1 changes
value, it can lose at most 2(mk + 1) from the left constraint (i.e. (mk + 1)L), while any gain

A. Kaznatcheev and M. van Marle 17:7

()0 A

mh + 1 B

2mh + 3 C
D2h· · ·D2k+1D2k· · ·D1

mhMmkM

mk+1︷ ︸︸ ︷
(2mk + 3) M(mk + 1)LmkMM

(a) Even number of domains.

()0 A

mh+1 BD2h+1· · ·D2k+1D2k· · ·D1

(mh + 1)LmkM

mk+1︷ ︸︸ ︷
(2mk + 3) M(mk + 1)LmkMM

(b) Odd number of domains.

Figure 1 Constraint graphs for 2-by-3 VCSP when there are an (a) even number of domains and
when there are an (b) odd number of domains. Constraints L and M are given in Equation (7). The
final domain is assigned a unary constraint (mh + 1)L(−, A) (in the even case) or mh+1M(−, A) (in
the odd case), represented as a column vector in the figures. Boxes represend domains with two
values, and circles represent domains with three values.

from the right constraint (i.e. mk+1M) will be at least mk+1 = 2(mk + 1) + 1. Thus, any
fitness gain from the right constraint will always outweigh the fitness loss from the left. The
maximal fitness value that can be attained by an assignment of length n is given by

fmax(n) :=

0, n = 0∑h

i=1(3mi + 2) = 3 · 2h+2 − 7h − 12, n = 2h for some h > 0
fmax(2h) + mh+1 = 2h+4 − 7h − 15, n = 2h + 1 for some h ≥ 0.

(8)

This fitness value is attained by the assignment BABA . . . ABABC for n = 2h and the
assignment BABA . . . ABAB for n = 2h + 1.

We now prove that there is an ascent that takes on all fitness values from 0 to fmax(n)
and is thus exponentially long in the number of variables. To prove this, it will be useful to
say that a constraint CS ∈ C is saturated by an assignment x if CS((xi)i∈S) ≥ CS(y) for all
y ∈

∏
i∈S Di.

▶ Proposition 12. Let n ∈ N, and let D1 × D2 × · · · × Dn−1 × Dn be the search space given
by setting D2k = {A, B, C} and D2k+1 = {A, B}, with only transitions between A-and-B and
B-and-C being allowed. Let p = (xt)T

t=0 be the <-ordered ascent on the VCSP with constraints
from Figure 1, given by starting at x0 = An. Then, p has length fmax(n) ≥ 3 · 2⌊ n

2 ⌋ − O(n).

Proof. We will show that for any assignment on n variables whose fitness is below fmax(n),
there is a fitness increasing move. Moreover, the fitness increasing move on the least index
where such a move is possible yields a fitness increase of 1. Since An has fitness 0, it follows
from these facts that p has length fmax(n).

Let x ∈ D1 × · · · × Dn be an assignment on n variables and suppose f(x) < fmax(n).
Then, there must be some position k ≤ n such that the constraint between xk and xk+1 is
not saturated (or in the case that k = n, then the unary constraint on xn is not saturated).
Consider the least k for which is the case.

Firstly, consider the case where k = 1. Then, we must have M(x1, x2) = 0. By considering
M , we see that we can change x1 to obtain a increase of 1.

CP 2024

17:8 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Next, consider the case where k = 2l. We must have that M(xk−1, xk) = 1, since
by assumption, this constraint is saturated. Recall that the transition relations of our
domains are such that we may only transition between A-and-B, and between B-and-C. By
considering the constraints, we see that if xk = B, one of the two options yields a increase of
ml + 1 from the right constraint (which is an L-constraint with weight ml + 1), while the
other yields a decrease of ml + 1 from right constraint. If xk = A or xk = C, then due to the
nature of the transition relation, the k-th variable can transition only to B. The fact that
M(xk−1, xk) = 1 implies that we are in case guaranteed to lose ml from the left constraint
by changing xk. Furthermore, L(xk, xk+1) not being saturated, ensures that changing xk

to B is guaranteed to yield an increase of ml + 1 from the right constraint. Thus, the
fitness-improving change of xk yields a net fitness increase of 1 by changing xk.

Finally, consider the case where k = 2l + 1. We must have that L(xk−1, xk) = 2, and
M(xk, xk+1) = 0. By considering the constraints, we see that the only possible change for xk

yields a fitness increase of 2ml + 3 = 2(ml + 1) + 1, from the right constraint, while it yields
a fitness loss of 2(ml + 1) from the left constraint. Thus, this step again yields a net fitness
increase of 1. In the cases where k = n, the above arguments hold when we fix xk+1 = A. ◀

5 Steepest Ascent Simulation of 2-by-3 Ordered Ascent

Since the exponentially long ascent described in Section 4 is ordered, we can construct a
steepest ascent that simulates it by applying the technique introduced in Section 3. This yields
a steepest ascent on an expanded VCSP with alternating 5-state and 3-state domains, and
constraints with arity at most 3. The construction has three steps: (i) we define constraints
that implement Equation (2), then we define constraints that implement Equation (3) for
(ii) odd domains and for (iii) even domains.

Our expanded domains are given by D̂1, D̂2k+1 = {A, B, σAB} for the odd domains, and
D̂2k = {A, B, C, σAB , σBC} for the even domains. In order to obtain the required fitness value
for our main states, we add expanded versions L̂ and M̂ from Equation (7). These expanded
constraints are still binary, and are given by firstly setting L̂uv = Luv and M̂vu = Mvu for
all u ∈ {A, B, C} and v ∈ {A, B}. All other entries in L̂ and M̂ , for which at least one of
the indices is an intermediate state, are set to 0.

We place these constraints into a path as in Section 4, with new weight 2n + 1 times
the original weight. For any assignment x containing only main states, these expanded
constraints yield f̂(x) = (2n + 1)f(x), which is Equation (2), as desired.

We will separately define constraints that ensure that Equation (3) holds for neighbour-
hoods of odd domains, and for neighbourhoods of even domains. We begin with the odd
domains by introducing a ternary constraint P̂ that we call the minimisation constraint, as
well as unary constraint Û .

Suppose intermediate state σAB is at odd position k = 2l + 1. We assume u = xk−1 and
v = xk+1 are main states. Equation (3) requires our restricted fitness function f̂k to satisfy:

f̂k(σAB ; u, v) = n − k + 1 + (2n + 1) min
h∈{A,B}

{fk(h; u, v)} (9)

= n − k + 1 + (2n + 1) min
{

(ml + 1) · L(u, A) + ml+1 · M(A, v)
(ml + 1) · L(u, B) + ml+1 · M(B, v)

(10)

= n − k + 1 + (2n + 1)(ml + 1) · K(u, v) (11)

A. Kaznatcheev and M. van Marle 17:9

where K =

A B C 0 2 0 A

1 1 1 B

2 0 2 C

. K specifies the non-zero part of the minimisation constraint

P̂ , by setting P̂uwv = Kuv for u, v ∈ {A, B, C} and w = σAB. All other entries in P̂ (i.e.
those for w is a main state, or at least one of u and v is an intermediate state) are set to
0. In order to get the +n − k + 1 term from Equation (3), we need a unary constraint

Û⊤ =
A B σAB()
0 0 1 . For odd k = 2l + 1, we assign Û with weight n − k + 1 to D̂k. We

assign ternary constraint P̂ with weight (2n + 1)(ml + 1) to D̂k, D̂k−1 and D̂k+1.
Now, suppose that x is an assignment with exactly one intermediate symbol σAB at odd

position k = 2l + 1. For any two adjacent main states in x, the binary constraint between
them is given by the binary constraint from the original VCSP, multiplied by a factor 2n + 1.
Moreover, P̂ is 0 when there are two adjacent main states among its three indices. Together
P̂ and Û ensure that for our single intermediate state σAB at position k, Equation (10) holds.
This yields f̂(x) = n − k + 1 + (2n + 1) minh∈A,B{f(x[k : h])} – the desired Equation (3).

Next, consider intermediate symbol w ∈ {σAB , σBC} at even position k = 2l. Assume
u = xk−1 and v = xk+1 are main states. Equation (3) requires:

f̂k(σAB ; u, v) = n − k + 1 + (2n + 1) min
h∈{A,B}

{fk(x[k : h])} (12)

= n − k + 1 + (2n + 1) min
{

ml · M(u, A) + (ml + 1) · L(A, v)
ml · M(u, B) + (ml + 1) · L(B, v)

(13)

= n − k + 1 + (2n + 1) · Ql(u, v) (14)

f̂k(σBC ; u, v) = n − k + 1 + (2n + 1) min
h∈{B,C}

{fk(x[k : h])} (15)

= n − k + 1 + (2n + 1) min
{

ml · M(u, B) + (ml + 1) · L(B, v)
ml · M(u, C) + (ml + 1) · L(C, v)

(16)

= n − k + 1 + (2n + 1) · Rl(u, v) (17)

where Ql =

A B()
0 2ml + 1 A

ml ml + 1 B

and Rl =

A B()
2ml + 1 0 A

ml + 1 ml B

. The matrices Ql and Rl

specify the non-zero part of the ternary minimisation constraint Ŝl, by setting Ŝl
uwv = Ql

uv

for w = σAB, and Ŝl
uwv = Rl

uv for w = σBC . All other entries in Ŝl (i.e. those for w is a
main state, or at least one of u and v is an intermediate state) are set to 0. Furthermore,
in order to get the first summands of Equation (3), we need a unary constraint V̂ ⊤ =

A B C σAB σBC()
0 0 0 1 1 . For any even k = 2l, we assign constraint V̂ with weight n − k + 1

to D̂k. We also assign the ternary constraint Sl with weight 2n+1 to D̂k and its neighbouring
domains D̂k−1 and D̂k+1.3

3 Note that introducing these new constraints does not impact Equation (3), since V̂ adds fitness value 0
for main states, and Suwv adds fitness value 0 if w is a main state or u or v is an intermediate symbol
(which are the only situations occurring in Equation (3)).

CP 2024

17:10 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Now, suppose that x is an assignment with exactly one intermediate symbol w ∈
{σAB , σBC} at even position k = 2l. Note that constraints P̂ and Û do not add any fitness
value for this assignment. Thus, in the same manner as before, the binary constraints M̂ and
L̂, together with Ŝ and V̂ yield the desired f̂(x) = k + (2n + 1)f minh∈A,B({f(x[k : h])}.

In order to apply Theorem 9, it only remains to show that the inequality from Equation (4)
holds. By inspecting Ŝl and P̂ however, it is clear that this is the case. Specifically, we have
equality in the case of two non-adjacent intermediate states, and strict inequality in the case
of adjacent intermediate states.

6 Low-arity Boolean Encoding for 3-by-5 Steepest Ascent

In order to turn the alternating 3-state and 5-state VCSP from Section 5 into a Boolean
VCSP, we encode the expanded domains using Boolean variables as in Section 3.3. The
3-state domain is encoded by two boolean variables with A = 10, B = 01 and σAB = 11. The
5-state domain is encoded using three variables with A = 100, B = 010, C = 001, σAB = 110
and σBC = 011. We write D̂̂k for an encoded domain and f̂̂ for our new fitness function.
Note that f̂̂ takes the same values as our old fitness function f̂ , but has a new domain.

Note that the constraints can be encoded by taking the value of the original constraint
for any encoded states and 0 for strings that don’t encode any states. In the encoded VCSP,
the arity of the constraints defined in Section 5 increases. The Ŝl-constraint, which was a
ternary constraint on a 3-state, a 5-state and another 3-state domain, turns into a constraint
with arity 2 + 3 + 2 = 7 in the encoded VCSP. The P̂ -constraint, which was a ternary
constraint on a 5-state, a 3-state, and another 5-state domain, turns into a constraint with
arity 3 + 2 + 3 = 8. We will use some tricks to reduce this arity to 5 in both cases. The
resulting full encoded VCSP is shown in Figure 2.

First, we look at a lower arity implementation of the minimisation constraint P̂ for 3-state
domain neighbourhoods, from Section 5. Suppose that we have an intermediate state σAB at
odd position k = 2l + 1. We assume that xk−1 and xk+1 are main states, represented by u

and v respectively. Recall that the non-zero part of P̂ is given by P̂∗σAB∗ =

A B C 0 2 0 A

1 1 1 B

2 0 2 C

.4

Instead of encoding σAB with the single string 11, we can let both 00 and 11 perform part of
the role of encoding σAB . Importantly, this encoding still agrees with our transition relation,
since 00 and 11 are two bit-flips away from one another, and a single bit flip away from 10 and
01. We now have to set up the fitness values in such a way that we can transition through either
00 or 11. In order for this to work, we require that maxs∈{00,11} f̂̂k(s; u, v) = f̂k(σAB; u, v)

for all u, v. We may view u and v as vectors, writing them as vectors with A⃗ =
A B C()
1 0 0 ,

B⃗ =
A B C()
0 1 0 and C⃗ =

A B C()
0 0 1 . We can achieve our desired property with:

4 One could try to decompose P̂ into two arity-5 constraints between D̂̂k−1-and-D̂̂k and one between
D̂̂k-and-D̂̂k+1. This is not possible if σAB is encoded by a single string (see Appendix A).

A. Kaznatcheev and M. van Marle 17:11

Û̂ l−1

(2n + 1) ·
(

L̂̂l−1 + P̂̂ (l−1)− + Ĵ̂⊤
)

(2n + 1) ·
(

M̂̂ l + P̂̂ (l−1)+ + Ĵ̂
)

(2n + 1) · Ŝ̂l

(2n + 1) · Ŝ̂l−1

· · · · · ·

G2l−1

(a)

V̂̂ l

(2n + 1) · Ŝ̂l

(2n + 1) ·
(

L̂̂l + P̂̂ l− + Ĵ̂⊤
)

(2n + 1) ·
(

M̂̂ l + P̂̂ (l−1)+ + Ĵ̂
)

· · · · · ·

G2l

(b)

Figure 2 The final VCSP contains 5n domains, divided alternatingly into collections G1, G2l+1

of 2 domains and collections G2l of 3 domains. There are eight different types of constraints M̂̂ l, L̂̂l,
P̂̂ l−, P̂̂ l+, Ŝ̂l, Ĵ̂ , Û̂ l, and V̂̂ l. Their values can be found in Equations (23)-(30). These constraints
are arranged in a path of repeating chunks. These chunks are shown for (a) odd collections and (b)
even collections. As exceptions, we do not include a P̂̂ + constraint between the first two collections
G1 and G2. Furthermore, for the final collection Gn, we pretend the pattern continues, but that
the values for collections beyond Gn are fixed to 100 for even collections and 10 for odd collections.
The steepest ascent starting from assignment 10100⌊ n

2 ⌋ (with an extra 10 at the end in case n is
odd), has length at least 3 · 2⌊ n

2 ⌋+3 − O(n) (see Proposition 12 and Theorem 9). Furthemore, the
constraint graph has pathwidth 4. To see this, take for the path decomposition the scopes of the M̂̂ l

constraints, the scopes of the Ŝ̂l constraints, and the scopes of the L̂̂l constraints as the bins, and
put these bins in the path · · ·-M̂̂ l-Ŝ̂l-L̂̂l-M̂̂ l+1-· · ·.

f̂̂k(00; u, v) = n − k + 1 + (2n + 1)(ml + 1)u⃗

0 −2 0
1 −1 1
2 0 2

 v⃗ (18)

= n − k + 1 + (2n + 1)(ml + 1)u⃗

0
1
2

 (
1 1 1

)
+

1
1
1

 (
0 −2 0

) v⃗, (19)

f̂̂k(11; u, v) = n − k + 1 + (2n + 1)(ml + 1)u⃗

 0 2 0
−1 1 −1
−2 0 −2

 v⃗ (20)

= n − k + 1 + (2n + 1)(ml + 1)u⃗

2
1
0

 (
1 1 1

)
+

1
1
1

 (
−2 0 −2

) v⃗. (21)

Note that P̂∗σAB∗ is the element-wise maximum of the two 3 × 3 matrices above. From this,
we obtain our desired arity-5 constraints P̂̂ l− and P̂̂ l+ between D̂̂k−1 and D̂̂k, and between
D̂̂k and D̂̂k+1. The non-zero part of P̂̂ l− and P̂̂ l+ are given by

P̂̂ l− =

00 11 0 2(ml + 1) 100

ml + 1 ml + 1 010

2(ml + 1) 0 001

and P̂̂ l+ = −2(ml + 1) ·

100 010 001()
0 1 0 00

1 0 1 11
. (22)

CP 2024

17:12 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Next, we look at a lower arity implementation of the minimisation constraint Ŝl. Suppose
that we have an intermediate state σAB at even position k = 2l. We assume that xk−1 and
xk+1 are main states, represented by u and v respectively. Recall that the non-zero parts of

Ŝl are given by Ŝl
∗σAB∗ =

A B()
0 2ml + 1 A

ml ml + 1 B

and Ŝl
∗σBC∗ =

A B()
2ml + 1 0 A

ml + 1 ml B

.

This time we will use a different trick to lower the arity of the encoded constraint from
7 to 5. Note that only one domain can enter transition. Since we are considering domain
Dk entering transition, we can assume that u and w are main states. This implies that we
do not need to look at both bits of u’s and w’s representation to know their value. We can
just look at the right bit of u and the left bit of v. This reduces the arity of the constraint
to 5. We get a new constraint Ŝ̂l whose scope consists of right bit of the encoding of xk−1,
three bits that encode xk, and left bit of the encoding of xk+1. Non-zero parts of Ŝ̂l are

Ŝ̂l
∗110∗ =

1 0()
0 2ml + 1 0

ml ml + 1 1
and Ŝ̂l

∗011∗ =

1 0()
2ml + 1 0 0

ml + 1 ml 1
.

By restricting our perspective to only a single bit of the representation of xk−1 and xk+1,
we can no longer distinguish whether xk−1 and xk+1 are main states, or whether they are
intermediate states. Through this, we may inadvertently violate Equation (4). To remedy
this, we introduce an arity-5 constraint Ĵ that penalises the occurrence of two adjacent

intermediate states by setting the non-zero part of Ĵ as −fmax(n) ·

110 011()
1 1 00

1 1 11
where n

is the number of domains in the original VCSP and fmax(n) is the maximal fitness from
Equation (8) of the original 2-by-3 VCSP. The magnitude of this negative value is always
larger than the magnitude of any fitness value assigned by Sl for any l.

We have now constructed a VCSP with Boolean domains. We arrange these domains
alternatingly into collections G2l consisting of 3 domains and G2l+1 of 2 domains. The VCSP
has eight different types of constraints which we list explicitly. We have an arity-5 constraint
M̂̂ l on collections G2l−1 and G2l:

M̂̂ l =

100 010 001 110 101 011 000 111

0 ml 0 0 0 0 0 0 10

ml 0 ml 0 0 0 0 0 01

0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 11

(23)

and an an arity-5 constraint L̂̂l on collections G2l and G2l+1, given by:

L̂̂l =

10 01 00 11

0 2(ml + 1) 0 0 100

ml + 1 ml + 1 0 0 010

2(ml + 1) 0 0 0 001

0 0 0 0 110

0 0 0 0 101

0 0 0 0 011

0 0 0 0 000

0 0 0 0 111

(24)

A. Kaznatcheev and M. van Marle 17:13

Then, we have our (decomposed) minimisation constraints P l− and P l+, on collections G2l

and G2l+1, and collections G2l+1 and G2(l+1), respectively. These constraints are given by:

P̂̂ l− =

10 01 00 11

0 0 0 2(ml + 1) 100

0 0 ml + 1 ml + 1 010

0 0 2(ml + 1) 0 001

0 0 0 0 110

0 0 0 0 101

0 0 0 0 011

0 0 0 0 000

0 0 0 0 111

(25)

P̂̂ l+ = −2(ml + 1) ·

100 010 001 110 101 011 000 111

0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 01

0 1 0 0 0 0 0 0 00

1 0 1 0 0 0 0 0 11

(26)

The next minimisation constraint is the arity-5 constraint Ŝ̂l with scope consisting of a
single domain in G2l−1, all three domains in G2l and one more domain in G2l+1. The single
domains are selected such that the scopes of Ŝ̂l and Ŝ̂l+1 do not overlap. Ŝ̂l is given by:

Ŝ̂l =

(0,0) (1,0) (0,1) (1,1)

0 0 0 0 100

0 0 0 0 010

0 0 0 0 001

2ml + 1 ml + 1 0 ml 110

0 0 0 0 101

0 ml 2ml + 1 ml + 1 011

0 0 0 0 000

0 0 0 0 111

(27)

where the (u, v) for the column indices takes u and v as the values for respective single domains
in G2l−1 and G2l+1. In order to ensure that this constraint does not inadvertently allow
adjacent intermediate states, we introduce an arity-5 constraint Ĵ̂ on adjacent collections:

Ĵ̂ = −fmax(n) ·

100 010 001 110 101 011 000 111

0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 01

0 0 0 1 0 1 0 0 00

0 0 0 1 0 1 0 0 11

(28)

where n is the number of collections, and fmax(n) is as defined in Equation (8).

CP 2024

17:14 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Finally, we have arity-3 constraint V l on G2l and arity-2 constraint U l on G2l+1:

(Û̂ l)⊤ =
10 01 00 11()
0 0 n − 2l n − 2l (29)

(V̂̂ l)⊤ =
100 010 001 110 101 011 000 111()
0 0 0 n − 2l + 1 0 n − 2l + 1 0 0 (30)

We arrange these constraints into a path of repeating chunks between the collections, as
shown in Figure 2.

7 Summary and Future Directions

In this paper, we presented a sequence of three constructions with each improving on the
state-of-the-art for the “simplest” VCSP with exponential (steepest) ascents. In Section 4,
we presented a binary VCSP with a path as its constraint graph and domains alternating
in size between two-state and three-state. In Proposition 12, we showed that this 2-by-3
VCSP has an exponential ascent. This a simplification over [13]’s simplest example of an
exponential ascent from a path-structured VCSP with all domains of size 3. Our example
also has the added benefit over prior work of the exponential ascent being an ordered-ascent.
The ascent being ordered allows us to apply our general padding technique from Section 3
to create a ternary VCSP with domains alternating between size 3 and 5 in Section 5. It
then follows from Theorem 9 that this 3-by-5 ternary VCSP produces a fitness landscapes
with exponential steepest ascents. This could be viewed as a simplification over the binary
VCSP with domains of size 10 implicit in [3]’s construction of exponential steepest ascents.
Finally, in Section 6, we encoded the 3-by-5 VCSP with Boolean domains to construct a
Boolean VCSP with a constraint graph of pathwidth 4 that produce a fitness landscape with
an exponentially long steepest ascent. This is an improvement over the pathwidth 7 of the
best known prior construction [3].

Our final construction means that Boolean VCSPs of pathwidth 4 are intractable for local
search by steepest ascent. Since our graph also has treewidth 4 this means that Boolean
VCSPs of treewidth 4 are also intractable for steepest ascent. For tractability, [13] have
shown that all ascents – and thus in particular the steepest ascent – have at most quadratic
length when the constraint graph is a tree, i.e. has treewidth 1. This leaves a gap between
treewidth 1 and treewidth 4 for which the status of steepest ascent for finding local maxima
in Boolean VCSPs remains unknown. Our current best guess at the exact location of the
tractability boundary for steepest ascent is at pathwidth 2:

▶ Conjecture 13. There exists a polynomial p(n) such that for any Boolean VCSP instance
C on n variables if the constraint graph of C has pathwidth ≤ 2, then any steepest ascent in
the associated fitness landscape has length at most p(n).

Of course, the existence of exponential steepest ascents does not mean that all ascents
are long. In our construction, it is relatively easy to find a short ascent that violates the
steepest ascent condition. In fact, [12] has shown that polynomially short ascents to some
local solution exist from all initial assignment in fitness landscape from VCSPs of bounded
treewidth. More generally, there exist efficient (non-local search) algorithms for finding the
global maximum in VCSPs of bounded treewidth [1, 7, 2]. However, such global algorithms
cannot always be run – especially in cases where the algorithm is actually some natural
process and thus we have no (or only partial) control to “rewrite” the algorithm.

A. Kaznatcheev and M. van Marle 17:15

Biological evolution is an important local search algorithm that is set by nature [20, 16, 11].
The intractability of finding local peaks provides an explanations for important features of
evolution like its open-endededness [10, 11]. In this case, we can read ascents as “adaptive
paths” [4] and steepest ascent as a strong-selection weak mutation dynamic that is often
studied in evolutionary biology [6, 16]. The VCSP’s variables correspond to genetic loci, the
valued constraints correspond to gene-interactions, and the constraint graphs of the VCSPs
encoding fitness landscapes correspond to gene-interaction networks [19, 11].5 In this case,
finding the “simplest” VCSPs that have exponential steepest ascents allows us to reason
about the minimal conditions for open-endedness in evolution. Thus, our hope is that further
progress on local search for VCSPs increases not only our understanding of combinatorial
optimization but also of natural processes like biological evolution.

References
1 Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. Journal of

Combinatorial Theory, Series A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.
2 Clément Carbonnel, Miguel Romero, and Stanislav Živný. The complexity of general-valued

constraint satisfaction problems seen from the other side. SIAM Journal on Computing,
51(1):19–69, 2022. doi:10.1137/19M1250121.

3 David A Cohen, Martin C Cooper, Artem Kaznatcheev, and Mark Wallace. Steepest ascent
can be exponential in bounded treewidth problems. Operations Research Letters, 48:217–224,
2020.

4 K. Crona, D. Greene, and M. Barlow. The peaks and geometry of fitness landscapes. Journal
of Theoretical Biology, 317:1–10, 2013.

5 Reinhard Diestel. Graph Theory. Springer Publishing Company, Incorporated, 5th edition,
2017.

6 John H Gillespie. A simple stochastic gene substitution model. Theoretical population biology,
23(2):202–215, 1983.

7 Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Tractable optimization problems
through hypergraph-based structural restrictions. In International Colloquium on Automata,
Languages, and Programming, pages 16–30. Springer, 2009.

8 P. Jeavons, A. Krokhin, and S. Živný. The complexity of valued constraint satisfaction. Bulletin
of the European Association for Theoretical Computer Science, 113:21–55, 2014.

9 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

10 Artem Kaznatcheev. Computational complexity as an ultimate constraint on evolution.
Genetics, 212(1):245–265, 2019.

11 Artem Kaznatcheev. Algorithmic Biology of Evolution and Ecology. PhD thesis, University of
Oxford, 2020.

12 Artem Kaznatcheev. Local search for valued constraint satisfaction parameterized by treedepth.
ArXiv, 2024.

13 Artem Kaznatcheev, David A Cohen, and Peter Jeavons. Representing fitness landscapes
by valued constraints to understand the complexity of local search. Journal of Artificial
Intelligence Research, 69:1077–1102, 2020.

14 Mark W. Krentel. On finding and verifying locally optimal solutions. SIAM Journal on
Computing, 19(4):742–749, 1990. doi:10.1137/0219052.

5 Similar models where the local search algorithm is set by nature exist for social systems studied in
business [15, 17] and economics [18]; and for energy-minimization in physical systems.

CP 2024

https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1137/19M1250121
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1137/0219052

17:16 Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

15 Daniel A Levinthal. Adaptation on rugged landscapes. Management Science, 43(7):934–950,
1997.

16 H. Allen Orr. The genetic theory of adaptation: a brief history. Nature Reviews. Genetics,
6:119–127, 2005.

17 Jan W Rivkin and Nicolaj Siggelkow. Patterned interactions in complex systems: Implications
for exploration. Management Science, 53(7):1068–1085, 2007.

18 T Roughgarden. Computing equilibria: A computational complexity perspective. Economic
Theory, 42:193–236, 2010.

19 Alexandru Strimbu. Simulating evolution on fitness landscapes represented by valued constraint
satisfaction problems. arXiv:1912.02134, 2019.

20 S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In
Proc. of the 6th International Congress on Genetics, pages 355–366, 1932.

A No naive decomposition into arity-5 constraints for P

Let k > 0 be an odd integer. One option for reducing the arity of constraint P̂ from Section 5,
would be to decompose it into two arity-5 constraints, one between Dk−1-and-Dk and one
between Dk-and-Dk+1. Note that in this case, the value xk would pick out the column of
the Dk−1-Dk-constraint, and the row of the Dk-Dk+1-constraint. Taken together, these two
components would need to result in K from Section 5. Thus, if we want to implement this
with two arity-5 constraints between we need to show how to implement K as the sum Q of
two rank-1 matrices:

Q =

0 1 2
2 1 0
0 1 2

 ?=

A1
B1
C1

 (
1 1 1

)
+

1
1
1

 (
A2 B2 C2

)
(31)

=

A1 + A2 A1 + B2 A1 + C2
B1 + A2 B1 + B2 B1 + C2
C1 + A2 C1 + B2 C1 + C2

 = Q (32)

We can see that this is impossible to satisfy because on the side of Q we have:

Q1,1 + Q2,2 = A1 + A2 + B1 + B2 (33)
= A1 + B2 + B1 + A2 = Q1,2 + Q2,1 (34)

but on the side of K we have:

K1,1 + K2,2 = 0 + 1 (35)
̸= 1 + 2 = K1,2 + K2,1. (36)

Thus, if the even domains contain only a single intermediate state, we cannot decompose
the minimisation constraint P̂ into two arity-5 constraints between Dk−1-and-Dk and Dk-
and-Dk+1.

	1 Introduction
	2 Background
	3 Steepest Ascent Simulation of Ordered Ascents
	3.1 Domain Expansion
	3.2 Steepest Ascent Simulation
	3.3 Boolean Encoding of Expanded Domains

	4 Pair of 2-by-3 Constraints with Long Ordered Ascent
	5 Steepest Ascent Simulation of 2-by-3 Ordered Ascent
	6 Low-arity Boolean Encoding for 3-by-5 Steepest Ascent
	7 Summary and Future Directions
	A No naive decomposition into arity-5 constraints for P

