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Abstract
Mixed integer programming (MIP) is a fundamental model in operations research. Local search is a
powerful method for solving hard problems, but the development of local search solvers for MIP
still needs to be explored. This work develops an efficient local search solver for solving MIP, called
Local-MIP. We propose two new operators for MIP to adaptively modify variables for optimizing the
objective function and satisfying constraints, respectively. Furthermore, we design a new weighting
scheme to dynamically balance the priority between the objective function and each constraint, and
propose a two-level scoring function structure to hierarchically guide the search for high-quality
feasible solutions. Experiments are conducted on seven public benchmarks to compare Local-MIP
with state-of-the-art MIP solvers, which demonstrate that Local-MIP significantly outperforms
CPLEX , HiGHS , SCIP and Feasibility Jump, and is competitive with the most powerful commercial
solver Gurobi. Moreover, Local-MIP establishes 4 new records for MIPLIB open instances.
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1 Introduction

Mixed integer programming (MIP) is a fundamental mathematical model in operations
research [3], which represents the problem of optimizing a linear objective function under
linear constraints, where some variables are restricted to taking integer values. Due to its
powerful expressive ability, MIP is widely used both in academic areas and in industrial
sectors to model various problems [46, 41]. In previous research, many combinatorial
optimization problems can be described by MIP formulation, such as the Boolean satisfiability
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(SAT) and maximum satisfiability (MaxSAT) [13], the knapsack problem [32], the traveling
salesman problem (TSP) [37], the job-shop scheduling problem (JSP) [26], and many graph
problems [34]. In the industry domain, MIP could model lots of optimization problems in
applications, including production planning [38], crew scheduling [16], resource allocation [17],
and so on.

Solving MIP is a challenging task as the problem is NP-hard [25, 24]. The solving
methods can be divided into two classes: complete methods and incomplete methods. While
complete methods aim at computing the exact optimal solution and proving its optimality,
incomplete methods aim to obtain high-quality solutions within a reasonable time. In real-
world applications, due to the large scale of instances, problems are usually difficult to handle
by complete methods. On the other hand, high-quality solutions usually show good usability
in practical applications; thus, incomplete methods are of great importance in MIP solving.

Existing MIP solvers, however, rely primarily on complete methods. The most commonly
admitted complete method is the branch-and-bound algorithm [27, 28], which iteratively
divides the feasible region of solution space and prunes nodes by the bounds of the object-
ive function. Additionally, many techniques were developed, including the cutting plane
method [20] and the domain propagation [40], which are often incorporated into the branch-
and-bound process in modern MIP solvers [2]. Almost all state-of-the-art MIP solvers are
based on the branch-and-bound framework, including the commercial solvers Gurobi [21]
and CPLEX [36], and the academic solvers SCIP [5] and HiGHS [23].

Local search is a powerful incomplete method for solving challenging problems across
various fields in computer science and operations research [22]. It aims to find good solutions
quickly and demonstrates significant effectiveness in solving SAT and MaxSAT [6]. Some
local search solvers for special cases of MIP have been proposed, such as pseudo-Boolean
optimization [4, 11] and integer linear programming [39, 30]. However, the development of
local search solvers for MIP is still in its infancy. As far as we know, there is in lack of
efficient free local search solvers for MIP that is available to public communities. Feasibility
Jump [33] is the most related work to us, which proposed a local search algorithm to solve
MIP, and won 1st place in the MIP 2022 Competition.2 However, it only focuses on finding
feasible solutions and ignores the objective function, which does not treat MIP’s original
optimization purpose and does not show a strong capacity for finding high-quality solutions.

We intend to propose an efficient local search solver for MIP. There are two main
challenges to achieving this goal: 1. Enhancing adaptability: to handle MIP, local search
must accommodate general constraints and variables rather than specific forms. However,
solving such general-form problems is more difficult than specific combinatorial problems
since less information about problems could be leveraged. Therefore, it is important to
enhance the adaptability of the solver to search states. 2. Balance the optimization and the
satisfaction: unlike decision problems such as SAT, MIP considers both the optimization
of the objective function and the satisfaction of all constraints. But these two factors are
sometimes conflicting, thus finding the balance between them is also an important concern.

In this work, we design a novel local search solver for solving general MIP, synthesizing
new operators and scoring functions to handle the above challenges. We propose a mixed
tight move operator to satisfy general constraints, and a breakthrough operator to surpass the
best-found solution by considering the objective value of the dynamically updated best-found
solution. Moreover, we propose a two-level scoring function structure to measure the benefit
of candidate solutions, which is also related to the dynamically updated best-found objective

2 https://www.mixedinteger.org/2022/competition/
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value. Within each level of the structure, we design the scoring function that synthesizes
the score for optimizing the objective function and the score for satisfying constraints.
Experimental results demonstrate our solver’s excellent performance for solving MIP.

Contributions

We develop an efficient local search solver to find high-quality feasible solutions for MIP.
Firstly, we propose two new operators to adaptively modify variables to optimize the

objective function and satisfy constraints, respectively. The breakthrough move operator
is proposed to break through the objective value of the dynamically updated best-found
solution, and the mixed tight move operator is proposed to satisfy and tighten constraints.

Then, to efficiently guide the search, we first design a new weighting scheme to balance
the priority between the objective function and each constraint during the search process.
Based on the weighting scheme, we propose a two-level scoring function structure to measure
the benefit of each candidate solution. The first level is the progress score, which measures
operations by comparing them with the current solution, aiming to make local progress for
the current solution. The second level is the bonus score, containing the breakthrough bonus
for improving the objective function and the robustness bonus for satisfying constraints stably,
being complementary to the progress score. The breakthrough bonus, working together
with the breakthrough move operator, enables our solver to select and modify variables
according to the dynamically updated best-found solution, improving its adaptability to the
global search state. At each level, the scoring function consider both the optimization of the
objective function and the satisfaction of constraints.

By putting these together, we develop a new local search solver for MIP called Local-MIP.
Experiments conducted on seven public benchmarks show the efficiency of Local-MIP in
finding high-quality feasible solutions for MIP. We compare Local-MIP with the state-of-the-
art MIP solvers, including the commercial solvers Gurobi [21] and CPLEX [36], the academic
solvers SCIP [5] and HiGHS [23], and the local search algorithm Feasibility Jump [33].
Experimental results show the excellent performance of Local-MIP, which significantly
outperforms CPLEX , HiGHS , SCIP and Feasibility Jump, and is competitive with the most
powerful commercial solver Gurobi, indicating a significant improvement in the field of local
search solver for MIP. Moreover, Local-MIP establishes 4 new records for MIPLIB open
instances by finding the new best solutions. Additionally, we analyze the effectiveness of
proposed strategies and the stability of Local-MIP with different random seeds.

2 Preliminaries and Notation

2.1 Formulations of MIP
▶ Definition 1. Mixed Integer Programming (MIP): Given a matrix A ∈ Rm×n, vectors
b ∈ Rm, c, l, u ∈ Rn, and a subset I ⊆ N = {1, ..., n}. Let x = {x1, x2, ..., xn} be a set of
variables. The mixed integer programming is to solve

min{c⊤x| Ax ≤ b, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z for all j ∈ I} (1)

In the above definition, we call c⊤x the objective function, Ax ≤ b the general linear
constraints, l ≤ x ≤ u the global bounds, and xj ∈ Z for all j ∈ I the integrality constraints.
A general linear constraint Aix ≤ bi is denoted as coni, and it contains xj if Aij ̸= 0. MIP
aims to minimize the objective function while satisfying all constraints. A maximization
problem and other types of linear constraints can be easily converted into this formulation.

CP 2024
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A solution s of a MIP instance is a vector of values assigned for each variable, where
sj denotes the value of xj . A solution is a feasible solution if and only if it satisfies all
constraints, including general linear constraints, global bounds, and integrality constraints.
For feasible solutions, the lower objective value indicates higher quality.

To facilitate clarity, we establish certain symbols here. s∗ denotes the best-found solution
in the local search process, and scur denotes the current solution in each step of local search.
s∗ is initialized to an empty set and updated whenever a new best feasible solution is found.
The objective value of a solution s is denoted as obj(s), i.e., obj(s) = c⊤s.

2.2 Local Search Algorithm
When solving combinatorial optimization problems, the local search typically starts from
an initial solution and iteratively modifies the current solution by changing the value of a
variable, in order to search for feasible solutions with high-quality objective values.

In local search, an operator defines how to modify variables to generate candidate
solutions. When an operator is instantiated by a specifying variable to operate, an operation
is obtained. For example, for Boolean variables, the standard operator is flip, which turns
the value of a variable to its opposite, and flip(x1) is an operation to flip the specifying
variable x1. For the current solution, performing an operation could generate a new candidate
solution.

During each step of the local search process, scoring functions are used to evaluate
different candidate operations for picking one to execute to update the current solution.
Given an operation op, a scoring function score(op) measures how good op is. An operation
op is said positive if score(op) > 0, which indicates that performing op could improve the
quality of the current solution.

In the following two sections, we propose tailored operators and scoring functions to guide
the local search process. Section 5 provides a detailed description of our local search solver.

3 New Operators Tailored for MIP

In this section, we propose two novel local search operators for MIP: the breakthrough move
for optimizing the objective function, and the mixed tight move for satisfying constraints.

3.1 Breakthrough Move
To find solutions with high-quality objective values in the local search process, for the first
time, we propose the new idea of the breakthrough move operator, which modifies the
current solution to improve the quality of the objective function, aiming to break through
the objective value of the dynamically updated best-found solution.

▶ Definition 2. Given a variable xj that appears in the objective function (i.e., cj ≠ 0), and
a solution s that obj(s) ≥ obj(s∗), the breakthrough move operator, denoted as bm(xj , s),
assigns a variable xj to the threshold value making the objective value better than obj(s∗) as
possible and keeping xj’s bounds satisfied. Precisely, let ϵ be a very small positive number
(e.g., 10−6) for making the objective value strictly better, ∆j = (obj(s∗)− obj(s)− ϵ)/cj, a
breakthrough move operation bm(xj , s) assigns xj to a new value snew

j ,

snew
j =

{
min(sj + ∆j , uj), if cj < 0,

max( sj + ∆j , lj), else.
(2)
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If xj is an integer variable, snew
j is rounded to the integer within its global bounds to optimize

the objective function, specifically:

snew
j =

{
min(⌈sj + ∆j⌉, ⌊uj⌋), if cj < 0,

max(⌊sj + ∆j⌋, ⌈lj⌉), else.
(3)

Given the above definition, the breakthrough move operator adaptively modifies the variable
to make the objective value strictly better than the best-found solution while keeping the
variable’s global bound satisfied. To the best of our knowledge, this is the first time that the
idea of an operator to break through the dynamically updated best-found objective value is
proposed in the local search for solving combinatorial optimization problems.

▶ Example 3. Given a MIP instance whose objective function is obj = 3x1 − 2x2, where x1
is an integer variable with global bounds 1 ≤ x1 ≤ 5; x2 is a real variable with 1 ≤ x2 ≤ 3.
Suppose the best-found solution is s∗ = {s1 = 3, s2 = 2}, thus obj(s∗) = 5; the current
solution is scur = {s1 = 4, s2 = 1.5}, thus obj(scur) = 9. As shown in Figure 1, the
operation bm(x1, scur) refers to assigning x1 to the threshold value 2 to make objective
value better than obj(s∗), and the operation bm(x2, scur) assigns x2 to its upper bound 3
to optimize the objective function as much as possible while satisfying the variable’s bound.

Figure 1 A graphical explanation of the breakthrough move operator.

3.2 Mixed Tight Move
How to adaptively move variables to satisfy constraints is the key technology when applying
local search to solve linear systems.

The Simplex algorithm [12] solves linear programming by tightening constraints to locate
solutions in extreme points of the polyhedron. Also, tightening constraints show benefits for
finding feasible solutions for integer programming [30]. Both linear programming and integer
programming are the subclasses of MIP. Here, based on the insight for tightening constraints,
we go one step further and propose an operator suitable for MIP, which can handle both real
and integer variables, dubbed as the mixed tight move.

▶ Definition 4. Given a variable xj, a constraint coni containing xj (i.e., Aij ≠ 0), and a
solution s, the mixed tight move operator, denoted as mtm(xj , coni, s), assigns xj to
the threshold value making the constraint coni satisfied and tight while keeping xj’s bounds
satisfied. Precisely, let ∆ij = (bi−Ai ·s)/Aij , a mixed tight move operation mtm(xj , coni, s)
assigns xj to a new value snew

j ,

snew
j =


min(sj + ∆ij , uj), if ∆ij > 0,

max(sj + ∆ij , lj), if ∆ij < 0,

sj , else.

(4)

CP 2024
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If xj is an integer variable, snew
j is rounded to the feasible integer to satisfy and tighten the

corresponding constraint, specifically:

snew
j =


min(⌈sj + ∆ij⌉, ⌊uj⌋), if bi −Ai · s < 0 and Aij < 0,

max(⌊sj + ∆ij⌋, ⌈lj⌉), if bi −Ai · s < 0 and Aij > 0.

max(⌈sj + ∆ij⌉, ⌈lj⌉), if bi −Ai · s > 0 and Aij < 0,

min(⌊sj + ∆ij⌋, ⌊uj⌋), if bi −Ai · s > 0 and Aij > 0,

sj , else.

(5)

According to the above definition, both violated and satisfied constraints can be handled
by the mixed tight move operator. The mixed tight move ensures the global bound of related
variables is satisfied. Assuming that there is no global bound for each variable, a mixed tight
operation of a violated constraint will satisfy the corresponding constraint by choosing the
minimal possible change to a variable, which will have the least impact on other constraints
that contain the corresponding variable. For a satisfied constraint, a mixed tight operation
assigns a variable to its extreme value while ensuring that the corresponding constraint
remains satisfied. This allows the exploration for escaping local optimum, as it takes the
maximal change of the corresponding variable to the objective function and other constraints.

4 Weighting Scheme and Scoring Functions

As core techniques to guide the local search process, scoring functions measure the benefits of
candidate operations for selecting one with the highest score to execute in each step. When
solving combinatorial optimization problems, dynamic weighting techniques are commonly
used in scoring functions to guide and diversify the search process [29, 11]. In this section, we
first design a new weighting scheme for MIP, and then we propose a two-level weighting-based
scoring function structure to hierarchically guide search for high-quality feasible solutions.

4.1 Weighting Scheme for MIP
Weighting schemes are usually used to adjust the priority of each constraint by diversified
weights in the local search process [45, 43]. Weighting schemes typically increase the weights
of constraints that are often violated, hence guiding the search process toward satisfying these
constraints. When designing a weighting scheme for combinatorial optimization problems,
the main challenge is how to balance the weights between the objective function and each
constraint in the search process [45]. For example, in solving MaxSAT, excessive weights of
soft clauses would make the local search difficult to satisfy all hard clauses, thereby hindering
the capability of finding feasible solutions [10].

Here, we design a new weighting scheme for MIP based on the probabilistic version of
PAWS scheme [44, 9, 7, 30], which updates weights according to a smoothing probability sp,
and we set sp = 0.0003 as mentioned in [7, 30]. Our weighting scheme aims to dynamically
balance the weights of the objective function and each constraint by preventing excessive
weight while maintaining the distinction between them. It works as follows:
(a) The objective function and each constraint have the attribute of an integral weight, which

are denoted as w(obj) and w(coni), respectively.
(b) Initalization: w(obj) = 1 and w(coni) = 1.
(c) When the search process is trapped in a local optimum (i.e., there is no positive operation

to select), the weighting scheme is activated, and weights are updated in one of the ways
as follows:
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With probability 1 − sp, if the current solution is feasible, w(obj) = w(obj) + 1;
otherwise, for each violated constraint coni, w(coni) = w(coni) + 1.
With probability sp, if obj(scur) < obj(s∗) and w(obj) > 0, w(obj) = w(obj)− 1; for
each satisfied constraint coni whose w(coni) > 0, w(coni) = w(coni)− 1.

The weighting scheme makes the weights of constraints diverse, reflecting different priorities
for considering constraints in search directions. By focusing on constraints that are often
violated in local optima, the weighting scheme helps the local search process find feasible
solutions. Accordingly, if the search process frequently visits feasible solutions in local optima,
then the objective function should be prioritized and will be set with a higher weight, which
helps to find higher-quality feasible solutions. Besides, the weight of the objective function
decreases if the visited solutions are often infeasible but have a better objective value than the
best-found solution, which means the satisfaction of constraints should be more addressed.

4.2 Two-level Scoring Function Structure
Based on the weighting scheme, we propose a two-level scoring function structure, which
contains a base scoring function for the first level and a bonus scoring function for the second
level. The base scoring function incorporates basic metrics on improving the quality of the
objective function and the number of satisfied constraints. The bonus score evaluates the
selected operations from a finer view: it both rewards the breakthrough of the objective
function, and the robust satisfaction of constraints.

In evaluating an operation, the base scoring function is applied first to select the best
operations under it, and then the bonus scoring function is used to evaluate the operations
with the best base scores. The composition of the two-level scoring functions takes into
consideration both the basic improvement and the adaptive adjusting with the solving
process. Moreover, at each level, the scoring functions both measure the objective value and
satisfaction of constraints, which balance the aim of optimization and satisfaction.

4.2.1 First Level: Progress Score as the Base Scoring Function
In the first level, we propose the progress score as the base scoring function. The progress
score takes a local perspective for improving the quality of the current solution, including
the value of the objective function and the satisfaction of each constraint.

MIP aims to minimize the objective. Therefore, the progress score rewards the situation
if the objective value is decreased from the current solution, and punishes it if increased.

▶ Definition 5. Given an operation op, and the current solution scur. Let sop be the new
candidate solution generated by performing op on scur. The progress score of op for improving
the quality of the objective value, denoted as scoreobj

progress(op),

scoreobj
progress(op) =


w(obj), if obj(sop) < obj(scur),
−w(obj), if obj(sop) > obj(scur),
0, else.

(6)

For constraints, the primary goal of MIP is to make them satisfied, thus the progress score
rewards the changes from violated to satisfied, and punishes reverse changes. Additionally, for
unsatisfied constraints, it is preferred to make them closer to being satisfied. Therefore, the
progress score also rewards the proximity to be satisfied and punishes aggravated violations.

CP 2024
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▶ Definition 6. Given an operation op, a constraint coni, and the current solution scur. Let
sop be the new candidate solution generated by performing op on scur. The progress score of
op for improving the satisfaction of the constraint coni, denoted as scoreconi

progress(op),

scoreconi
progress(op) =


w(coni), if Ai · sop ≤ bi < Ai · scur,

−w(coni), if Ai · scur ≤ bi < Ai · sop,

w(coni)/2, if bi < Ai · sop < Ai · scur,

−w(coni)/2, if bi < Ai · scur < Ai · sop,

0, else.

(7)

Considering the objective function and all constraints, the progress score is defined as
below.

▶ Definition 7. Given an operation op, the progress score of op, denoted as scoreprogress(op),

scoreprogress(op) = scoreobj
progress(op) +

m∑
i=1

scoreconi
progress(op) (8)

According to the above definitions, the progress score measures benefits including improving
objective value and satisfying constraints. Performing the operations with positive progress
scores indicates overall progress made based on the current solution.

4.2.2 Second Level: Bonus Scoring Function
The progress score introduced above is employed as the elementary scoring function for
selecting the operations with the highest score to be applied. However, the progress score has
limited capacity to distinguish better operations, according to our preliminary experiments
which execute 10000 steps local search on all testing instances, there are on average %47.5
steps where multiple operations with the same greatest progress score are presented. It is
important to further evaluate these operations by designing finer scores, to do tie-breaking
and award better operations in some metrics. For a similar purpose, previous local search
works often use the age information of variables as the secondary scoring function [8], where
age is defined as the number of steps since the last time it is modified, and the operation of
oldest age variable is selected to break tie.

However, the age scoring function does not consider the characterizations of MIP and
cannot effectively guide the search process for MIP according to the experiment. According
to Definition 7, the progress score takes the local perspective to make progress for the current
solution. Therefore, to further choose an operation among operations with the same best
progress score, we consider global properties for the objective function and each constraint,
instead of comparing the candidate solution with the current solution.

We design the bonus scoring function as the second level, denoted as scorebonus, which
contains the breakthrough bonus for the objective function and the robustness bonus for
constraints, to make distinctions in operations with the best progress score.

Breakthrough Bonus

For the objective function, the bonus scoring function aims to move a variable to break
through the global best-found solution, working together with the proposed breakthrough
move operator. Thus, we propose the breakthrough bonus to reward the situation that the
new candidate solution is better than the dynamically updated best-found solution for the
objective value.
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▶ Definition 8. Given an operation op, and the best-found solution s∗. Let sop be the new
candidate solution generated by performing op on the current solution. The breakthrough
bonus of op for breaking through the objective value of s∗, denoted as bonusbreak(op),

bonusbreak(op) =
{

w(obj), if obj(sop) < obj(s∗),
0, otherwise.

(9)

Robustness Bonus

For a constraint Ai · x ≤ bi, we take a further step by distinguishing satisfied constraints in
terms of the equality between left-hand side Ai · x and right-hand side bi. For the current
solution scur, a special type of satisfied constraint is those Ai · scur = bi. These constraints,
although being satisfied, would become violated more easily than other satisfied constraints
because they are fragile and sensitive to the operations of variables contained in the constraint.
Therefore, we propose the robustness bonus to reward the operations that keep the strict
inequality, i.e. the left-hand side is strictly less than the right-hand side

▶ Definition 9. Given an operation op, a constraint coni. Let sop be the new candidate
solution generated by performing op on the current solution. The robustness bonus of op of
the constraint coni, denoted as bonusconi

robust(op),

bonusconi

robust(op) =
{

w(coni), if Ai · sop < bi,

0, otherwise.
(10)

To our knowledge, this is the first time that the distinctions in satisfied constraints are
utilized for scoring in local search.

Synthesize the breakthrough bonus for breaking through the best-found solution and the
robustness bonus for robust satisfaction, the bonus scoring function that serves in the second
level is defined below.

▶ Definition 10. Given an operation op, the bonus score of op, denoted as scorebonus(op),

scorebonus(op) = bonusbreak(op) +
m∑

i=1
bonusconi

robust(op) (11)

Complementary to the progress score that compares new candidate solutions with the
current solution from a local perspective, the breakthrough bonus considers information from
a global perspective to compare and try to break through the global best-known solution,
thus extending the selection and modification of variables according to the global search
performances. Moreover, the robustness bonus score makes distinctions of inequalities,
providing a finer evaluation of the satisfaction of constraints.

Consequently, we combine the progress score and the bonus score in a two-level manner
to hierarchically evaluate operations in our solver. This design considers both the local
improvement and global improvement for operations and balances the objective optimizing
and constraints satisfaction, enhancing the adaptability and efficiency of our algorithm.

5 The Local-MIP Algorithm

Based on the ideas proposed in previous sections, we develop a local search solver for solving
MIP called Local-MIP. The pseudo-code of Local-MIP is outlined in Algorithm 1.

CP 2024



19:10 An Efficient Local Search Solver for Mixed Integer Programming

Algorithm 1 The Local-MIP Algorithm.

Input: MIP instance Q, time limit cutoff
Output: Best-found solution s∗ of Q and its objective value obj(s∗)

1 scur ← all variables are set to the value closest to 0 within their global bounds;
2 s∗ ← ∅; obj(s∗)← +∞;
3 while running time < cutoff do
4 if scur is feasible then
5 Improve the objective value while maintaining feasibility by lift move process;
6 if obj(scur) < obj(s∗) then
7 s∗ ← scur; obj(s∗)← obj(scur);

8 candOP ← Get Candidate Operations(Q, scur) ;
9 candOP + ← operation(s) with the greatest progress score in candOP ;

10 op← an operation with the greatest bonus score in candOP +;
11 scur ← a new solution generated by performing op to modify scur ;
12 return s∗ and obj(s∗);

We use scur to denote the current solution which is maintained during the search process,
while s∗ and obj(s∗) denote the best-found solution and its objective value. In the beginning,
each variable of scur is initialized as the value closest to 0 within its global bounds (Line 1).
s∗ is initialized as an empty set, and obj(s∗) is initialized as +∞ (Line 2).

After initialization, Local-MIP conducts the search process until a given time limit
cutoff is reached (Lines 3–10). In each step of local search, the best-found solution and the
corresponding objective value are updated once a new better feasible solution is discovered
(Lines 4-7). The lift move process was proposed in [30] to improve the objective value while
maintaining feasibility for a feasible solution of integer programming, a subclass of MIP,
which can be easily applied for a feasible solution of MIP, and thus we employ the process
once a feasible solution is found in the search process (Line 6). The lift move process improves
the quality of the objective function via the best local feasible domain derived by the local
domain reduction, until reaches the local optimum [30].

The algorithm generates neighborhood solutions through candidate operations by calling
the function Get Candidate Operations(Q, scur) (Line 8), which is detailedly described in
Algorithm 2. Afterward, Local-MIP selects the operations with the greatest progress score,
if there is only one such operation, it is applied directly; otherwise the second level of the
bonus score function is applied and an operation with the greatest bonus score is selected
and performed (Line 9-10), to modify the current solution to get a new scur (Line 11).

Candidate Operations in Each Step

The candidate solutions in each step are constructed by Algorithm 2, containing the break-
through move operation and the mixed tight move operation proposed in Section 3. For
brevity, we denote the breakthrough move as bm, and denote the mixed tight move as mtm.

At the beginning of the search, the top priority is to find the first feasible solution, thus it
first considers the positive mtm operations in violated constraints (Lines 1-3). For violated
constraints under an infeasible solution, there are always mtm operations that improve the
satisfaction of these violated constraints. However, there may be no positive operations since
their scores are defined on all constraints, since they perhaps reduce the satisfaction of other
constraints.
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Algorithm 2 Get Candidate Operations.

Input: MIP instance Q, current solution scur

Output: Candidate operations set candOP

1 if no feasible solution is found then
2 if ∃ positive mtm operation in violated constraints then
3 candOP ← positive mtm operations in violated constraints;

4 else
5 if ∃ positive bm operation or mtm operation in violated constraints then
6 candOP ← positive bm operations ∪ mtm operations in violated

constraints;
7 else if ∃ positive mtm operation in satisfied constraints then
8 candOP ← positive mtm operations in satisfied constraints;

9 if op == ∅ then
10 if ∃ positive Boolean flip operation then
11 candOP ← positive Boolean flip operations;
12 else
13 Activate the weighting scheme to update the weights;
14 candOP ← bm operations ∪ random selected mtm operations;

15 return candOP ;

Once any feasible solution has been found, the goal of the search process is transformed
into discovering feasible solutions with high-quality objective value. Therefore, the primal
candidate operations are the union of positive bm operations and positive mtm operations in
violated constraints (Lines 5-6). If there are no such positive operations, it tries to construct
the candidate operations set with the positive mtm operations in satisfied constraints
(Lines 7-8).

If the algorithm fails to find any positive operation in the previous process, it tries to
search for positive Boolean flip operations as candidate operations (Lines 9-11), which we
will describe later. Once the above exploration fails, it is indicated that local search falls into
the local optimum (Line 12). It first activates the weighting scheme to update the weights
of objective function and constraints (Line 13). Afterward, it randomly selects a violated
constraint if one exits, and then generates candidate operations set by the union of bm
operations and mtm operations in the selected constraint (Line 14).

Note that we use the Boolean flip operation in Lines 9-11 to flip the values of Boolean
variables. The motivation is due to the importance of Boolean variables in MIP modeling
(involved in 96.3% of the MIPLIB instances) and the feature of the flip operation that it
could generate more operations than the above operators for Boolean candidate variables.
Thus we adopt the flip operator as a special treatment for Boolean variables and apply it to
complement the proposed operators to generate more operations.

Besides the main part as shown in Algorithm 1 and 2, we also introduce a forbidding
strategy to further improve efficiency. Local search methods may often stuck in suboptimal
regions. To address the cycling phenomenon of revisiting the same regions, we employ
a forbidding strategy, the tabu strategy [19, 7]. The tabu strategy is directly applied to
Local-MIP. Once a variable is modified, it forbids the modification for the reverse direction
in the following tt iterations, where tt is called tabu tenure, and we set tt = 3 + rand(10) as
mentioned in [7].
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6 Experimental Evaluations

Here, we introduce the preliminaries and results of our experiments. First, we compare
Local-MIP with 5 state-of-the-art MIP solvers, including Gurobi, CPLEX , SCIP, HiGHS
and Feasibility Jump. Moreover, we report new records established by Local-MIP for 4 open
instances in the MIPLIB dataset. Additionally, we analyze the effectiveness of proposed
strategies and the stability of Local-MIP with different random seeds.

6.1 Experiment Preliminaries
6.1.1 Benchmarks
Our experiments are carried out with 4 benchmarks of the mainstream dataset for MIP,
i.e., MIPLIB [18] with hard3 and open4 instances. In each instance of MIPLIB, at least one
variable is an integer variable. Depending on the type of variables, the MIPLIB instances
are classified into the 4 benchmarks.

MIPLIB-BP: the binary programming (66 instances), only contains Boolean variables.
MIPLIB-IP: the integer programming (32 instances), where all variables are integer
variables, and at least one variable is not a Boolean variable.
MIPLIB-MBP: the mixed binary programming (195 instances), where all variables are
Boolean or real variables, and at least one variable is a real variable.
MIPLIB-MIP: the mixed integer programming (62 instances), where integer variable
and real variable both exist and at least one of integer variables is not a Boolean variable.

Additionally, two practical problems are tested: the bin packing and the scheduling problem.
They are challenging combinatorial optimization problems, and also have significant applic-
ations in real-world industry. We evaluate solvers on 1 standard bin packing benchmark
for [15], and 2 standard scheduling benchmarks provided by Taillard’s instances [42].

BBP: the Bin Packing problem, This benchmark consists of 60 instances with 500 and
1000 items to pack, encoded by the modeling method proposed in [14].
JSP: the Job-shop Scheduling problem. This benchmark consists of 80 instances encoded
by the modeling method proposed in [26].
OSP: the Open-shop Scheduling problem. This benchmark consists of 60 instances
encoded by the modeling method proposed in [35].

6.1.2 State-of-the-art Competitors
In Section 6.2, we compare Local-MIP with 5 state-of-the-art MIP solvers.

HiGHS [23]: an academic solver for large-scale sparse MIP (version 1.6.0).5
SCIP [5]: one of the fastest academic solvers for MIP (Version 8.1.0, using SoPlex 6.0.4).6
Gurobi [21]: the most powerful commercial MIP solvers (version 11.0.0). We use both
its complete and heuristic versions, denoted by Gurobicomp and Gurobiheur, respectively.7
CPLEX [36]: a famous commercial MIP solver to solve complex models (version 22.1.0).8
Feasibility Jump [33]: FJ for short, the state-of-the-art local search MIP algorithm,
which won 1st place in MIP 2022 Computational Competition.9

3 https://miplib.zib.de/downloads/hard-v22.test
4 https://miplib.zib.de/downloads/open-v22.test
5 https://github.com/ERGO-Code/HiGHS
6 https://www.scipopt.org
7 https://www.gurobi.com/solutions/gurobi-optimizer/
8 https://www.ibm.com/products/ilog-cplex-optimization-studio
9 https://github.com/sintef/feasibilityjump

https://miplib.zib.de/downloads/hard-v22.test
https://miplib.zib.de/downloads/open-v22.test
https://github.com/ERGO-Code/HiGHS
https://www.scipopt.org
https://www.gurobi.com/solutions/gurobi-optimizer/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/sintef/feasibilityjump
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All of the competitors are downloaded from their websites, and always use default settings.
Note that HiGHS , SCIP, Gurobi, and CPLEX are trying to do much more than find a
high-quality solution quickly. They are also finding optimality certificates and trying to
guarantee a feasible solution.

6.1.3 Experiment Setup
Local-MIP is implemented in C++ and compiled in g++ with the ’-O3’ option. All experi-
ments are carried out on a server with AMD EPYC 9654 CPU and 2048G RAM under the
system Ubuntu 20.04.4. we use two metrics to evaluate the performance of each solver for
the ability to find high-quality feasible solutions in a reasonable time:

#Feas: the number of instances where a solver can find a feasible solution within given
time limits. This evaluates a solver’s ability to find feasible solutions.
#Win: the number of instances in which the solver yields the best solution among all
solvers within time limits. This evaluates the ability to find high-quality feasible solutions.

For both #Feas and #Win, a larger metric value on a benchmark indicates better performance
on the corresponding benchmark. For each instance, each solver is executed by one thread
with time limits of 10, 60, and 300 seconds as mentioned in [30]. For each time limit setting
in the table, the best performance for the corresponding metric is highlighted in bold.
Additionally, the number of instances in each benchmark is denoted by #Inst. Detailed
results and the sourced code are made publicly available on GitHub.10

6.2 Comparison with State-of-the-art MIP Solvers

Figure 2 Run time comparison on each instance for finding the first feasible solution. Note that
the comparison with CPLEX is absent, as it do not provide the exact time for finding solutions.

10 https://github.com/shaowei-cai-group/Local-MIP/
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Table 1 Empirical results on comparing Local-MIP with the state-of-the-art MIP solvers in terms
of #Feas and #Win within each given time limit.

Benchmark #Inst HiGHS SCIP CPLEX Gurobicomp Gurobiheur FJ Local-MIP
#Feas #Win #Feas #Win #Feas #Win #Feas #Win #Feas #Win #Feas #Win #Feas #Win

time limit 10 seconds
MIPLIB-BP 66 6 0 29 2 42 11 44 9 44 7 42 4 44 31
MIPLIB-IP 32 7 0 11 2 17 4 17 8 17 8 11 1 17 7
MIPLIB-MBP 195 57 1 80 7 116 31 117 43 119 51 56 10 103 35
MIPLIB-MIP 62 9 2 21 0 32 10 37 11 37 13 18 4 35 15
BPP 60 9 0 0 0 60 0 60 0 60 0 60 0 60 60
JSP 80 22 0 70 25 31 0 10 1 12 8 0 0 45 36
OSP 60 48 22 60 20 28 7 47 27 42 25 1 0 60 45
Total 555 158 25 271 56 326 63 332 99 331 112 188 19 364 229

time limit 60 seconds
MIPLIB-BP 66 14 0 35 2 43 8 46 10 47 15 49 2 48 28
MIPLIB-IP 32 12 1 14 1 20 6 20 7 20 9 12 1 21 6
MIPLIB-MBP 195 96 6 109 2 129 32 137 49 134 65 62 9 119 23
MIPLIB-MIP 62 15 3 28 1 36 7 41 8 41 18 20 3 43 17
BPP 60 40 0 20 0 60 11 60 13 60 15 60 0 60 33
JSP 80 41 0 70 15 52 1 23 3 26 13 1 0 54 38
OSP 60 58 27 60 20 30 10 53 37 51 31 9 0 60 42
Total 555 276 37 336 41 370 75 380 127 379 166 213 15 405 187

time limit 300 seconds
MIPLIB-BP 66 22 1 42 4 43 6 47 10 48 23 49 0 49 17
MIPLIB-IP 32 14 2 17 2 21 5 21 10 22 14 12 1 22 4
MIPLIB-MBP 195 115 7 122 7 137 22 150 59 152 69 67 11 123 14
MIPLIB-MIP 62 24 1 34 1 38 7 44 10 43 23 21 3 45 16
BPP 60 47 0 40 0 60 31 60 30 60 13 60 0 60 3
JSP 80 49 0 70 0 68 1 36 10 34 20 1 0 70 41
OSP 60 60 38 60 24 33 13 55 40 60 43 19 0 60 44
Total 555 331 49 385 38 400 85 413 169 419 205 229 15 429 139

The results of comparison with 4 state-of-the-art MIP solvers are shown in Tables 1.

The ability to find feasible solutions (#Feas). Local-MIP performs best on 4 benchmarks
in the 10s and 60s time limits, and 5 benchmarks in the 300s. For all benchmarks, Local-MIP
performs best on most benchmarks in the 60s and 300s time limits, and the second most in
the 10s. In terms of the total instances of all benchmarks, Local-MIP establishes the best
performance for all the time limits. In general, this result confirms the powerful ability of
Local-MIP to find a feasible solution within reasonable times.

The ability to find high-quality feasible solutions (#Win). Local-MIP performs best on
5 benchmarks in the 10s time limit, 4 benchmarks in 60s, and 2 benchmarks in 300s. For
all benchmarks, Local-MIP performs best on most benchmarks in the 10s and 60s, and the
second most in the 300s. Particularly, Local-MIP exhibits the best performance for JSP
and OSP benchmarks on all time limits, indicating the advantages of our solver in solving
scheduling problems. In terms of total instances, Local-MIP consistently establishes the
best performance for 10s and 60s, but in 300s, Gurobi wins more instances than Local-MIP,
especially its heuristic version. Overall, for the ability to find high-quality feasible solutions,
Local-MIP significantly outperforms the two academic MIP solvers HiGHS and SCIP, and
another local search solver Feasibility Jump. Moreover, Local-MIP performs better than the
commercial MIP solver CPLEX , and is competitive with the most powerful solver Gurobi.

According to Table 1, Local-MIP outperforms Feasibility Jump on almost all settings,
indicating a significant improvement in the field of local search solver for MIP.
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Furthermore, the run time comparison on all instances for finding the first feasible solution
is presented in Figure 2. For comparison with each solver, there are obviously more instances
above the red line, which confirms the powerful solving ability of Local-MIP.

6.3 New Records to Open Instances
In the MIPLIB dataset, the instances labeled as open are those that the optimal solution has
not yet been solved. The current best solutions known for each open instance are available
on the corresponding page on the MIPLIB website. These open instances are representative
of the hard-solving problems.

Table 2 Local-MIP establishes new records to 4 open instances. #var and #cons denote the
number of variables and constraints of the corresponding instance, respectively.

Instance name #var #cons constraint types Previous best Local-MIP
genus-sym-g31-8 3484 32073 knapsack, precedence, etc. -21 -23
genus-sym-g62-2 12912 78472 set partitioning, set covering, etc. -34 -38
genus-g61-25 14380 94735 cardinality, general linear, etc. -34 -40
neos-4232544-orira 87060 180600 aggregations, variable bound, etc. 17540506.0 15108527.512195

Excitingly, Local-MIP established the new best-known solutions for 4 open instances.
The new records have been submitted to MIPLIB 2017 and have been accepted; the links
to the website are denoted in the footnotes.11 12 13 14 As shown in Table 2, each of
these 4 instances contains multiple different constraint types,15 simultaneously indicating
the powerful solving ability and its extensive applicability.

6.4 Analysis on the Proposed Ideas

Table 3 Comparison bettewn Local-MIP and its modified versions. #better and #worse denote
the number of instances where Local-MIP obtains better and worse best-found solution, respectively.

Benchmark #Inst 10 seconds 60 seconds 300 seconds 10 seconds 60 seconds 300 seconds
#better #worse #better #worse #better #worse #better #worse #better #worse #better #worse

Comparison with Vno−bm Comparison with Vno−weight

MIPLIB-BP 66 28 7 23 17 24 18 33 4 34 7 34 8
MIPLIB-IP 32 10 2 11 5 12 4 15 0 19 0 20 0
MIPLIB-MBP 195 61 20 68 26 63 35 95 5 112 5 116 5
MIPLIB-MIP 62 22 7 27 8 27 8 35 0 40 1 41 0
BPP 60 59 0 59 0 58 0 35 10 56 0 60 0
JSP 80 32 13 45 8 60 10 45 0 54 0 70 0
OSP 60 48 5 49 1 46 3 60 0 60 0 60 0
Total 555 260 54 282 65 290 78 318 19 375 13 401 13

Comparison with Vrandom Comparison with Vage

MIPLIB-BP 66 26 10 27 15 26 15 27 10 23 16 26 13
MIPLIB-IP 32 10 4 13 3 15 4 11 3 15 1 15 1
MIPLIB-MBP 195 69 27 80 30 71 43 66 28 68 42 71 41
MIPLIB-MIP 62 22 12 19 18 18 17 23 10 23 13 22 15
BPP 60 28 15 11 27 11 34 34 11 16 29 13 25
JSP 80 29 16 31 23 39 31 30 15 31 23 42 26
OSP 60 25 20 27 15 21 12 29 18 31 13 22 13
Total 555 209 104 208 131 201 156 220 95 207 137 211 134

11 https://miplib.zib.de/instance_details_genus-sym-g31-8.html
12 https://miplib.zib.de/instance_details_genus-sym-g62-2.html
13 https://miplib.zib.de/instance_details_genus-g61-25.html
14 https://miplib.zib.de/instance_details_neos-4232544-orira.html
15 https://miplib.zib.de/statistics.html
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To verify the effectiveness of the proposed strategies, we conduct comparative experiments
on 4 alternative versions of Local-MIP, which are obtained as follows.

Vno−bm: to analyze the effectiveness of the breakthrough move operator, we modify
Local-MIP by removing all the breakthrough move operations in Algorithm 2.
Vno−weight: to analyze the weighting scheme, we modify Local-MIP by removing the
activation of the weighting scheme in Algorithm 2 and making all weights equal to 1.
Vrandom and Vage: to analyze the effectiveness of the bonus score, we modify Local-MIP
by utilizing the random selection and the age strategy instead of bonus score to break
ties in Algorithm 1, resulting the versions Vrandom and Vage, respectively.

As shown in Table 3, Local-MIP significantly outperforms other variations in almost all
settings, confirming the effectiveness of the proposed strategies.

6.5 Stability with Repetitive Experiments
To examine the stability of Local-MIP which involves randomness, we run Local-MIP 10
times with seeds ranging from 1 to 10, and measure the coefficient of variation [1, 11].

For each instance, we calculate the average value AV G and the standard deviation STD

for the absolute objective values of the best-found solutions from 10 different seeds. The
coefficient of variation of each instance is STD/AV G, and the lower value indicates greater
stability. The experimental results are presented in Table 4, where over 85% have a coefficient
of variation less than 0.1, indicating Local-MIP exhibits stable performance.

Table 4 Experimental results of Local-MIP with 10 different seeds on each benchmark, where
#CV denotes the number of instances in each range of the coefficient of variation.

Time limit #CV
[0, 0.01) [0.01, 0.1) [0.1, 0.5) [0.5, +∞)

10 second 335 140 56 24
60 second 322 150 60 23
300 second 316 160 49 30

7 Conclusions and Future Work

In this paper, for solving MIP, we proposed two operators, a weighting scheme, and a tow-level
scoring function structure. Based on these novel strategies, we developed an efficient local
search solver for MIP. Experimental results demonstrate our solver’s excellent performance
for solving MIP. Moreover, we establish 4 new records for MIPLIB open instances by finding
new best solutions.

For future work, we would like to develop more sophisticated operators and scoring
functions to improve the performance of the local search solver for MIP.
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