
Constraint Modelling with LLMs Using In-Context
Learning
Kostis Michailidis #

DTAI, KU Leuven, Belgium

Dimos Tsouros #

DTAI, KU Leuven, Belgium

Tias Guns #

DTAI, KU Leuven, Belgium

Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial
problems. However, modelling such problems using constraints over decision variables still requires
significant expertise, both in conceptual thinking and syntactic use of modelling languages. In
this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding
assistants, to transform textual problem descriptions into concrete and executable CP specifications.
We present different transformation pipelines with explicit intermediate representations, and we
investigate the potential benefit of various retrieval-augmented example selection strategies for
in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt
(optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from
a CP course. The results show that pre-trained LLMs have promising potential for initialising
the modelling process, with retrieval-augmented in-context learning significantly enhancing their
modelling capabilities.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Natural language generation; Computing methodologies → Discrete
space search

Keywords and phrases Constraint Modelling, Constraint Acquisition, Constraint Programming,
Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recog-
nition, Retrieval-Augmented Generation, Optimisation

Digital Object Identifier 10.4230/LIPIcs.CP.2024.20

Supplementary Material Software (Source Code): https://github.com/kostis-init/CP-LLMs-
ICL [37], archived at swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (Grant No. 101002802, CHAT-Opt).

Acknowledgements We want to thank the reviewers for their valuable feedback.

1 Introduction

Constraint Programming (CP) is a powerful paradigm for solving complex combinatorial
decision-making and optimisation problems. It is widely applicable in various industrial
tasks such as scheduling, resource allocation, and various assignment problems [49, 55].
However, utilizing CP requires the translation of real-world problems into a formal model;
defining decision variables, constraints, and potentially an optimisation function. This is a
complex process, necessitating expertise in the specific application domain, in addition to CP
modelling and the semantic and syntactic formalisms of CP solvers or modelling languages.

© Kostis Michailidis, Dimos Tsouros, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 20; pp. 20:1–20:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kostis.michailidis@kuleuven.be
https://orcid.org/0009-0000-2139-0106
mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2024.20
https://github.com/kostis-init/CP-LLMs-ICL
https://github.com/kostis-init/CP-LLMs-ICL
https://archive.softwareheritage.org/swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Constraint Modelling with LLMs Using In-Context Learning

The expertise needed for modelling CP problems has been recognised to be a bottleneck
for the wider use of CP [16, 15]. This has motivated the development of tools and meth-
ods to simplify the modelling process, e.g. high-level modelling languages and automatic
reformulation libraries such as MiniZinc [40] or CPMpy [21]. There is also active research
on assisting the user through constraint acquisition, where either the user has to provide
examples of solutions and optionally non-solutions (passive learning) [45, 35, 44] or the user
interacts with the system, classifying partial assignments as solutions or not [3, 51, 50].

While these advancements show potential in assisting the user through the modelling
process, there is still a gap between a natural language description of the problem and
its corresponding CP model. As a result, a number of works have looked at utilizing
Natural Language Processing (NLP) techniques in modelling. For example, in [27], a method
to detect constraints from textual descriptions of combinatorial problems is presented,
while [9] shows how Logic Grid Puzzle (LGP) clues can be formulated in first-order logic
expressions. A classification-based approach to detect and rewrite the typical LGP clues
as constraints was also explored [24]. Recently, the NL4Opt competition at NeurIPS1

formulated the challenge of using NLP methods to transform textual descriptions of small
linear programming optimisation problems into an LP formulation [47]. The most successful
approaches of the competition [25, 22, 41, 18] primarily utilized fine-tuned BERT [12] and
BART [29] architectures.

Orthogonally, the rise of new-generation Large Language Models (LLMs) pre-trained
on web-scale data, such as GPT-3 [4] and similar models, has enabled the introduction of
coding assistants [8]. A coding assistant is an LLM that can write a certain piece of code as a
response to a user request in natural language. Given that these LLMs are trained on large
portions of web data, they can likewise be asked to formulate constraint models for publicly
documented constraint-solving systems. Indeed, there are preliminary reports on prompting
strategies that present initial successes in CP modelling [52, 1]. On arithmetic and logical
reasoning tasks, LLMs have also been used to rewrite the task into a formal specification
that can be solved with an SMT Theorem Prover [62]. For LGPs, LLMs have been prompted
to detect the constants and then rewrite complex clues and translate them to ASP rules [23].
On the NL4Opt dataset, pre-trained LLMs have been shown to outperform the fine-tuned
BERT/BART models [43, 31].

These are promising precursors to employing LLMs to formulate CP models from natural
language descriptions of any combinatorial problem, including logic grid puzzles, integer
linear programs and more. While this is still a distant dream, it requires evaluating on
both satisfaction (CSP) and optimisation problems (COP), for well-defined evaluation
measures. We will define these and systematically investigate two orthogonal techniques
that are commonly used in LLM approaches: 1) using multiple prompts and intermediate
representations to get a final formal CP specification; and 2) using in-context examples
and retrieval-augmented example selection techniques. Our goal is to contribute to the
development and better understanding of coding assistants for CP modelling.

The contributions of this paper are as follows:
We present a framework that transforms natural language descriptions of constraint
problems into formal solvable CP models using LLMs.
We compare prompting LLMs to generate solutions, to generating CP models that are then
used to solve the problem at hand. We employ different approaches using intermediate
representations, and various retrieval-augmented in-context examples selection techniques,
including novel variations.

1 https://neurips.cc/virtual/2022/competition/50079

https://neurips.cc/virtual/2022/competition/50079

K. Michailidis, D. Tsouros, and T. Guns 20:3

We define precise evaluation metrics, to standardize the evaluation of the performance of
LLMs in modelling CP problems.
We systematically evaluate the ability of pre-trained LLMs to generate accurate constraint
models and solutions for satisfaction and optimisation problems, on 2 datasets from the
literature and exercises from a CP course.

2 Background

This section formalizes some fundamental concepts needed for our methodology.

2.1 Constraint Programming
CP is a paradigm for modelling and solving combinatorial problems, by declaratively stating
decision variables, their possible values (domains), the constraints that express the relation-
ships between these variables, as well as potentially an objective function to optimise. We
now formalize these elements for both satisfaction and optimisation problems.

Constraint Satisfaction Problems

A CSP can be formally defined as a tuple (X, D, C), where:
X = {x1, x2, . . . , xn} is a set of n decision variables.
D = {D1, D2, . . . , Dn} represents the domains of these variables, where each Di is a
subset of Z and specifies the allowable values for the decision variable xi.
C = {C1, C2, . . . , Cm} is a set of m constraints, where each constraint Cj includes tuples
of allowed values for a subset of the decision variables, formally Cj ⊆ Dj1×Dj2× . . .×Djk

for some subset {xj1, xj2, . . . , xjk} ⊆ X.

Let sol(C) denote the set of all solutions to a CSP. An assignment a = {x1 = v1, x2 =
v2, . . . , xn = vn} is in sol(C) if each vi ∈ Di and if all constraints in C are satisfied, i.e.,
(vj1, vj2, . . . , vjk) ∈ Cj for each j ∈ {1, 2, . . . , m}.

Constraint Optimisation Problems

A COP extends a CSP by incorporating an objective function f that needs to be minimized
or maximized. Formally, a COP is defined as a tuple (X, D, C, f), where f :

∏n
i=1 Di →

R represents the objective function to be optimised. An optimal solution to a COP is
an assignment a, such that a ∈ sol(C), and a optimises the objective function f . For
maximization, f(a) ≥ f(b), for all b ∈ sol(C). For minimization, the inequality is reversed.

2.2 Large Language Models
Large Language Models (LLMs) are deep learning architectures with billions of parameters,
based on the Transformer [54, 2]. They are extensively trained on diverse textual data,
which allows them to learn and produce complex language patterns [30]. During inference,
LLMs generate text by predicting the next token in a sequence, based on the previous tokens.
Given an input text (or prompt) p, they produce a sequence of w tokens as follows:

LLM(p) = (x1, x2, . . . , xw), where xt+1 = arg maxxt+1 P (xt+1|p, x≤t) (1)

Here, x≤t denotes the sequence of tokens generated up to time step t, for all t ∈
{0, 1, ..., w − 1}. P (xt+1|p, x≤t) is the conditional probability of token xt+1 given the initial
prompt p concatenated with the preceding tokens x≤t. Also, x≤0 is the empty sequence

CP 2024

20:4 Constraint Modelling with LLMs Using In-Context Learning

and x1 is the first generated token. The sequence generation process terminates when a
predefined stop token is generated or when the maximum context length of the LLM is
reached. In this work, we utilize greedy decoding for LLMs and assume the transformation
of text into a token sequence and vice versa is done automatically.

In-Context Learning

In-Context Learning (ICL) received significant attention with the introduction of GPT-3 [4].
As a learning paradigm, it enables LLMs to adapt to new tasks at inference time by including
examples directly in their input prompts [14, 28, 59]. This capability allows these models to
generate responses that are contextually aligned without requiring retraining.

Formally, ICL specifies an ordered set E of k input-output pairs, denoted as E =
{(ij , oj)}k

j=1. During inference, the examples (or shots) in E are inserted before a new input
to influence the model’s output towards the expected task-oriented response. This can be
represented as LLM(E ⊕ inew) ≈ onew, where onew is the expected response for the input
inew based on the patterns outlined by the in-context examples E.

Retrieval Augmented ICL

A challenge in ICL is how to choose the in-context examples, with various studies on how
to select [33, 61, 57, 65, 32], order [36, 34, 60], or formulate [58, 20, 26, 38] them. Some
works used a predefined static set of examples [58], while others employed a more dynamic
approach by selecting them from a database at inference time [63]. The latter, referred to as
retrieval-augmented ICL (RAICL), aims to specifically adapt the context to each new input.
To implement RAICL, we define a retrieval function R that selects the in-context examples
E as follows:

E = R(inew, S, k) (2)

where inew is a text input, and S = {(ij , oj)}n
j=1 is the database of examples that the

retrieval function will choose from, with n ≥ k and thus E ⊆ S. Various strategies – i.e.
implementations of the retrieval function R – can be utilised for dynamically selecting
in-context examples. They are typically relevance-based metrics with respect to inew. We
describe some in 3.4.

3 Methodology

We now formalize the framework of our study; a baseline solution generation method, the
proposed modular pipeline to produce an executable CP model, and the RAICL strategies.

3.1 Problem Formulation
The objective is to create a system that solves constraint problems given a natural language
description PNL. More formally:
Input: A natural language description of a constraint problem PNL, from which decision

variables, constraints, and potentially an objective function must be inferred.
Output: A valid solution or assignment a of values to the decision variables, satisfying all

constraints and optimising the objective function if specified, as described in 2.1.

K. Michailidis, D. Tsouros, and T. Guns 20:5

The methods to derive a from PNL will be explored through different approaches. Firstly,
we will consider the LLMs as constraint problem solvers, where they generate reasoning
and ultimately the solution. More fundamentally, we will prompt LLMs to produce solvable
CP models, through optional intermediate representations, and use a solver to compute the
solution. The steps and pathways that we will explore are visible in Figure 1.

Problem Description Solution

Formal CP ModelBlueprint ModelTagged Entities CP Solver

Figure 1 The various pathways for solving constraint problems: direct LLM-based solving
(LLMsol), or solvable model generation (LLMCP), optionally including entity tagging (NER) and
blueprints (LLMBM) as intermediate representations.

3.2 LLMs as CP Solvers
As a baseline method, we investigate the use of LLMs to directly generate the solution from
the natural language problem description PNL of a constraint problem. This approach is
based on Chain-of-Thought (CoT) techniques, where the model is prompted to produce
a sequence of reasoning steps towards solving a given arithmetic or symbolic reasoning
problem [58]. The solution generation process is formalized as follows:

â = LLM(E ⊕ PNL), where E = R(PNL, SNL−CoT , k) (3)

Here, LLM represents the large language model as defined in (1), E is the set of in-
context examples retrieved from the full examples database SNL−CoT , and R is the retrieval
function (2). In SNL−CoT , each ij is a natural language description of a constraint problem
and oj is its CoT reasoning that ends with the solution. The input to the LLM is the
concatenation of the in-context examples E with the textual description of the problem PNL,
and the output is the generated reasoning sequence â. The final solution a is then extracted
from the end of this generated sequence.

3.3 LLMs as CP Modellers
Recognizing the limitations of LLMs in performing arithmetic and logical computations [17],
some recent works shifted towards using them to generate formal models or programs [19, 52,
23, 1]. Inspired by these studies, we introduce an additional step in which the LLM is tasked
with generating a formal CP model PCP from the given constraint problem description PNL.
Our methodology requires that PCP is formatted to fit a predefined CP solver or modelling
framework. We define a two-step model-and-solve process as follows:
1. Model Generation:

PCP = LLM(E ⊕ PNL), where E = R(PNL, SNL−CP , k) (4)

The only difference with Equation 3 is the content of the database SNL−CP . Here, each ij

is a constraint problem description in natural language and oj is its corresponding formal
CP model, formatted according to the predefined CP solver or modelling framework. An
example of a CP model can be seen in Figure 2, bottom right.

CP 2024

20:6 Constraint Modelling with LLMs Using In-Context Learning

2. Model Solution:

a = M(PCP) (5)

M represents the predefined off-the-shelf CP solver or modelling framework that computes
the solution a from the generated formal model PCP .

3.3.1 Blueprint Model Generation
Transforming textual descriptions directly into formal runnable CP models presents a complex
challenge. It could be seen as involving two separate non-trivial operations: identifying
elements of the constraint problem and generating solver-compatible output. We propose to
use different LLM calls and examples for each of the two. We refer to the intermediary result
as the blueprint model (PBM). It outlines in plain text the decision variables, constraints
and objective function (if applicable) based on the problem description, each of them in both
natural language and mathematical notation. An example is provided in Figure 2, bottom
left.

We first prompt an LLM to transform the problem description PNL into a blueprint model
PBM . Then, we use the description combined with the blueprint to generate the formal CP
model. This approach aims to decompose the complex task of direct model generation and
also provides an additional interpretable layer. We define this pipeline as follows:
1. Blueprint Generation:

PBM = LLM(E ⊕ PNL), where E = R(PNL, SNL−BM , k) (6)

In SNL−BM , each ij is a constraint problem description in natural language and oj is its
corresponding blueprint model.

2. Model Generation:

PCP = LLM(E ⊕ PNL ⊕ PBM), where E = R(PNL ⊕ PBM , SNL−BM−CP , k) (7)

In SNL−BM−CP , each ij is the concatenation of a constraint problem description with
its blueprint model and oj is their corresponding formal CP model.

3. Model Solution: Same as (5).

3.3.2 Named Entity Recognition
As part of the first subtask of the NL4Opt competition, there have been numerous approaches
for accurately tagging and identifying linear optimisation entities from textual descriptions [56,
41, 13]. Based on these works, we integrate Named Entity Recognition (NER) into our
methodology to systematically identify and extract decision variables, parameters, constraints,
and objective keywords from natural language descriptions PNL of constraint problems.
Parameters are fixed coefficients or constants in the formal definition of the CP model. For
example, in Figure 2 the numeric values in the description are parameters of the problem.

This integration of entity tags aims to improve the available information for constructing
blueprints and formal CP models as follows:
1. Entity Tagging: PET = NER(PNL), where NER is an automated system designed to

detect and label specific entities relevant to CP problems within the text of PNL. This
step could also be performed with an LLM, but we chose NER4Opt as a specialized
framework trained for entity tagging in an optimisation context [11].

K. Michailidis, D. Tsouros, and T. Guns 20:7

A retired professor wants to invest up to $50000 in the airline and railway industries. Each dollar
invested in the airline industry yields a $0.30 profit and each dollar invested in the railway industry
yields a $0.10 profit. A minimum of $10000 must be invested in the railway industry and at least
25% of all money invested must be in the airline industry. How to maximize the professor’s profit?

Decision Variables:
Amount invested in the airline industry:
Airline

Amount invested in the railway industry:
Railway

Constraints:
Total investment should not exceed 50000
dollars: Airline + Railway <= 50000
Minimum investment of 10000 dollars in
the railway industry: Railway >= 10000
At least 25% of all money invested must
be in the airline industry:
Airline >= 0.25 × (Airline + Railway)

Objective:
Maximize profit ($0.30 profit per dollar
invested in the airline, $0.10 profit per
dollar invested in the railway industry):
0.30 × Airline + 0.10 × Railway

1 from cpmpy import Model , intvar
2

3 # Decision Variables
4 Airline = intvar (0, 1 _000_000)
5 Railway = intvar (0, 1 _000_000)
6

7 # Constraints
8 m = Model ()
9

10 # Total investment
11 m += Airline + Railway <= 50000
12 # Minimum investment in railway
13 m += Railway >= 10000
14 # Minimum investment in airline
15 m += Airline >= 0.25 * (Airline + Railway)
16

17 # Objective : Maximize profit
18 m. maximize (0.3 * Airline + 0.1 * Railway)
19

20 m. solve ()

Figure 2 An example of textual description (top), blueprint (bottom left), and formal CP model
written with the CPMpy library (bottom right) for the investment problem from NL4Opt.

2. Blueprint Generation:

PBM = LLM(E ⊕ PNL ⊕ PET), where E = R(PNL ⊕ PET , SNL−ET −BM , k) (8)

In SNL−ET −BM , each ij is the concatenation of a constraint problem description with a
textual representation of its tagged entities and oj their corresponding blueprint model.

3. Model Generation:

PCP = LLM(E ⊕ PNL ⊕ PET ⊕ PBM),
where E = R(PNL ⊕ PET ⊕ PBM , SNL−ET −BM−CP , k) (9)

Here, in SNL−ET −BM−CP each ij is a constraint problem description concatenated with
its tagged entities and blueprint model, and oj is its corresponding CP model.

4. Model Solution: Same as (5).

3.4 In-Context Examples Selection
A significant component of the presented pipelines is the retrieval function R, as it is
responsible for the dynamic selection of in-context examples from the full database S (2.2).

Static & Random Strategies

As a baseline method, we can employ a traditional approach where the same predefined
examples are selected for any input [58]. These examples are selected in advance and remain
unchanged, providing a consistent basis for evaluation. In our research, we retrieve the first
k example pairs from S, formalized as:

CP 2024

20:8 Constraint Modelling with LLMs Using In-Context Learning

R(inew, S, k) = {Sj | j ∈ {1, 2, . . . , k}} (10)

where Sj represents the j-th example tuple in the database.
To provide a more stochastic view, we will also consider random selection where we use

the same selection strategy but on a randomly shuffled database.

Semantic Similarity (SIM)

The first retrieval-augmented strategy that we will utilize selects examples that are semantic-
ally close to the input [6]. As it provides context that is relevant to the current query, it
has been shown to improve ICL on various tasks [33]. We define semantic similarity Sim

between two texts using the cosine similarity between their vector embeddings:

Sim(text1, text2) = v⃗(text1) · v⃗(text2)
∥v⃗(text1)∥∥v⃗(text2)∥ (11)

where v⃗(text) is the vector embedding of a text. Vector embeddings are numerical represent-
ations of tokens that capture semantic meanings, often derived from the embedding layers of
LLMs. For a new input inew, we first compute its embedding vector and then the retrieval
function R selects the k most semantically similar examples from S as follows:

R(inew, S, k) = {(Sorted(inew, S))j | j ∈ {1, 2, . . . , k}}, (12)
Sorted(inew, S) = {Sj | Sim(inew, ij) ≥ Sim(inew, ij+1) ∀j ∈ {1, 2, . . . , n− 1}}, (13)

where ij is the input element of the j-th example pair (ij , oj) in S (2.2).

Maximal Marginal Relevance (MMR)

To add more information and variety in the context, we will also consider the MMR
metric [5, 63]. It selects examples that balance relevance to the input with diversity within
the chosen set. This balance is achieved by selecting an example Sj that maximizes both its
relevance to the input and its difference from previously selected examples:

arg maxSj∈S\T

[
λ · Sim(inew, ij)− (1− λ) · max

St∈T
Sim(ij , it)

]
(14)

Here, λ is the hyperparameter that controls diversity, Sim is the similarity measure (11),
S is the total set of examples, and T is the set of already selected examples. The retrieval
function R will first select the most similar example from the database S, and select the
remaining k − 1 according to (14).

Last-Similar Variations

We also introduce variations of example selection strategies, inspired by the recency effect [10,
53, 64]. This suggests that the content positioned towards the end of an input sequence
has a more significant influence on the output of an LLM [34]. Based on this insight, the
next proposed strategies involve placing the most semantically similar example last in the
sequence to exploit this recency bias.

Reversed Semantic Similarity (R-SIM): The retrieved examples based on the
Semantic Similarity metric are reordered so that the most relevant to the current problem
is last. This was also explored in Liu et al. [33].
Reversed Maximal Marginal Relevance (R-MMR): Similarly with R-SIM, the
original MMR order is reversed, so that the most similar example is placed last.
Last-Similar, Rest-Random (LSRR): Places the most similar example from S last,
and the rest are selected randomly.

K. Michailidis, D. Tsouros, and T. Guns 20:9

4 Experiments

This section outlines our experimental framework, devised to evaluate the effectiveness of
using LLMs to convert natural language descriptions into formal CP models. We seek to
answer the following research questions:
Q1: How does each intermediate representation impact the efficiency of LLMs in generating

CP models, and how do they compare to direct solution generation from the LLMs?
Q2: How do different in-context example selection strategies influence the correctness of the

generated CP models and their solutions?
Q3: How many in-context examples should be used, depending on the type of the problems?
Q4: How effectively can LLMs with RAICL generate CP models for a small dataset of

problems that human students learn to solve?

4.1 Setup & Datasets
For our experimental setup, we utilized Python 3.9 along with several specialized tools and
libraries2. For entity tagging, we employed NER4Opt [11] and for CP modelling we used
CPMpy [21]. To implement and test RAICL strategies, we used LangChain [7] and Chroma
DB3, and the OpenAI API4 was used for accessing gpt-3.5-turbo-0125 and vector embeddings.
Our framework is evaluated on the following datasets:

NL4Opt [47]: This dataset includes NL descriptions of linear optimisation problems,
with 289 test and 713 training instances, such as in Figure 2. We use the test instances
for evaluation, and the training instances to compose the examples database S.
Logic Grid Puzzles (LGPs) [39]: Consists of 50 train and 100 test instances featuring
logical puzzles described with clues and entities; these can be expressed as CSPs. As
above, we use the test instances for evaluation and the training instances for S.
Mixed CP Dataset: Comprises 18 diverse CP problems (a mix of 13 CSPs and 5 COPs)
drawn from a university-level CP modelling course, arranged by increasing complexity.
Due to its small size, we use a leave-one-out strategy for evaluation, testing each problem
individually while utilizing the rest for S.

To facilitate both RAICL and evaluation, we extended the datasets by generating entity
tags, blueprint models and formal CPMpy models. This generation process is described in
Section 4.2. For the mixed CP dataset, we manually curated and assessed all the blueprint
and formal CP models. For more information regarding these datasets, such as the average
number of decision variables, constraints, and more, refer to Appendix E.

4.2 Data Annotations Generation
For NL4Opt and LGPs, we utilized NER4Opt [11] to generate the entity tags for all instances
(3.3.2). Then, we created detailed CoT-including solutions for 4 instances to evaluate the
baseline of our methodology (3.2). Finally, we manually created the blueprint and formal
CP models of their first six instances, ensuring clarity and correctness. For generating the
remaining ground-truth blueprint and CP models, we employed gpt-4-0125-preview [42] with
static ICL using the manually produced ones. We ensured the correctness of the generated

2 The code is available at https://github.com/kostis-init/CP-LLMs-ICL.
3 https://docs.trychroma.com/
4 https://platform.openai.com/docs/api-reference

CP 2024

https://github.com/kostis-init/CP-LLMs-ICL
https://docs.trychroma.com/
https://platform.openai.com/docs/api-reference

20:10 Constraint Modelling with LLMs Using In-Context Learning

CP models – correcting them when needed – as follows: For NL4Opt, we asserted that
the generated models are equivalent (18) and produce the same solutions with the already
existing canonical formulations. This is a deterministic procedure, as the linear constraints
can be automatically transformed into a CP model. For LGPs, we validated that the solutions
produced by the generated models match the ground-truth solutions already present in the
dataset.

4.3 Evaluation
Defining a unified evaluation framework for modelling varying CP problem types from textual
descriptions is not trivial. Evaluations at either the solution, constraint, or model level must
include some form of mapping between the decision variables (and/or their values) of the
predictions and those of the ground truth. We implemented a process that identifies the best
match for each decision variable by first considering exact matches, then prefixes, substrings,
and finally, a composite textual and numerical similarity metric.

Additionally, LLMs generate executable CP models that may contain syntax errors5.
Therefore, we also track and report the number of models containing at least one error,
denoted as #Err in the results. To ensure precise evaluation, we adopt a strict criterion: if
a generated CP model cannot be executed due to syntax errors, or if the decision variables
of the predicted model cannot all be mapped to those of the ground truth models, then the
instance is considered incorrect on all metrics.

We now present three separate accuracy measures, each focused on different aspects.

Solution Accuracy

The solution accuracy metric evaluates the correctness of the solutions produced by the
generated CP models compared to the ground truth solutions. A solution is deemed correct
if it satisfies all constraints and, if applicable, achieves the optimal objective value as defined
in the ground truth CP model. We formalize the solution accuracy as follows:

accsol =
∑N

i=1 valid(ai, truei)
N

(15)

where N is the total number of test instances, ai represents the solution derived from the
LLM or the predicted CP model predi; valid(ai, truei) equals 1 if ai ∈ sol(Ctruei

), and for
COPs ftruei

(ai) must be optimal. We do not compute all solutions, but simply check whether
ai is a satisfying solution and optionally whether its objective value equals the optimal value.

Declaration Accuracy

As part of the evaluation metrics used in the NL4Opt competition [47], declaration accuracy
measures the percentage of individual declarations (constraints and objectives) predicted
accurately with respect to the ground truth declarations. It is calculated using the formula:

accdecl = 1−
∑N

i=1 min(FPi + δi, Qi)∑N
i=1 Qi

(16)

where N is the total number of test instances and Qi is the total number of declarations,
in the i-th ground-truth model. FPi denotes the number of false positives, and δ is the
difference in the number of constraints between the ground-truth model and the predicted
model, only counted when the predicted model has fewer constraints.

5 An example is demonstrated in Appendix C.2

K. Michailidis, D. Tsouros, and T. Guns 20:11

To calculate FPi, we count all the declarations of the predicted model for which an
equivalent declaration was not found in the ground-truth model. Two constraints from
different models are considered equivalent if they imply each other for the selected decision
variable mapping. For verifying the correctness of a linear objective function, equivalence is
established by asserting that the coefficients of the mapped variables are identical.

Model Accuracy

Model accuracy assesses the semantic correctness of the generated CP models relative to
the ground truth models. It quantifies how well the entire set of constraints and the logical
structure in a predicted model capture the problem as defined in the ground truth. This
metric is defined as:

accmodel =
∑N

i=1 equiv(predi, truei)
N

(17)

where equiv(predi, truei) equals 1 if the predicted model predi is logically equivalent to
the ground truth model truei for a specified mapping of variables. Logical equivalence is
confirmed if the constraints of the predicted model imply and are implied by the constraints
of the ground truth model, ensuring a bidirectional logical consistency:

equiv(pred, true)⇔ ((
∧

pred =⇒
∧

true) ∧ (
∧

true =⇒
∧

pred)) (18)

This verifies that the complete set of constraints in one model logically corresponds to
those in the other, confirming their semantic equivalence. The equivalence algorithm is
described in Appendix B.

4.4 Results
This section details the results and findings from our experiments with the proposed methods
and systematically explores the proposed research questions. We do not present any 0-shot
attempts, primarily due to the infeasibility of producing runnable CPMpy models without
examples in the prompt context6. For the core experiments, we employed gpt-3.5-turbo-0125
with a temperature value of 0. Additional results on other LLMs are available in Appendix A.

4.4.1 Intermediate Representations
An incremental analysis is necessary to understand the effect of each intermediate component
in our pipeline. As an initial baseline, we employ static (3.4) in-context examples selection,
with k = 4 examples in the context. The results are shown in Table 1.

Using LLMs as CP modellers, instead of direct combinatorial problem-solvers, proved to
be essential for obtaining substantial performance across the datasets. Even if the LLM is
instructed to solve the problem with 4 pairs of descriptions and CoT solutions in the context,
the direct solving approach results in significantly lower solution accuracy.

Interestingly, appending NER in the pipeline of the LGP instances nearly doubled the
number of errors and dropped accuracy compared to direct CP modelling. Our qualitative
analysis showed that decision variables were often misclassified as parameters, leading to
inconsistencies and irrelevant context at subsequent steps in the pipeline [48]. Conversely, in
the NL4Opt instances, where NER tagging was more accurate, the performance improvements
were comparable to those achieved with BM. The inclusion of BM was slightly more beneficial

6 An example with errors is demonstrated in Appendix C.1

CP 2024

20:12 Constraint Modelling with LLMs Using In-Context Learning

Table 1 Comparison of our methods for both NL4Opt (#289 test instances) and LGPs (#100
test instances). Configuration: gpt-3.5-turbo-0125, 4-shot static in-context examples selection.

Dataset Method #Err Accuracy (%)
Solution Declaration Model

NL4Opt

Direct - 11.46 - -
CP 7 81.31 87.81 79.24
+ BM 8 84.43 89.93 82.01
+ NER 8 85.47 88.60 80.62

LGPs

Direct - 9.36 - -
CP 11 57.00 80.45 55.00
+ BM 18 58.00 70.69 58.00
+ NER 20 54.00 67.77 50.00

than directly generating CP models, but it produced a larger number of errors in the LGP
dataset. This can be attributed to the larger structure of the intermediate models in LGPs7.
As such, LGP blueprints are prone to be generated with errors, which would introduce
irrelevant context in the LLMs, similar to NER.

Comparing the results of the two datasets, we can see a discrepancy that can be attributed
to their different nature and modelling difficulties. On the one hand, NL4Opt contains simple
linear optimisation problems with around 2 decision variables and 3 constraints on average per
instance. LGPs, in contrast, include 12 decision variables and 4 clues on average, including
complex constraints such as all different and pairwise exclusive disjunction.

Overall, the best approach for both datasets is the blueprint and CP model generation,
thus we will utilize this to investigate RAICL in the following experiments.

4.4.2 Examples Selection Strategy
To understand the impact of RAICL and different in-context example selection strategies,
we evaluated the presented methods with a fixed number of k = 4 in-context examples. The
results are shown in Table 2.

In both datasets, the dynamic retrieval algorithms consistently outperform static and
random selection methods, underlining the importance of semantic relevance in the prompt
context.

As proposed, applying the recency effect by placing the most similar example last in
the context considerably improves accuracy. This is mostly evident in the large accuracy
difference between the random and LSRR methods across both datasets; and additionally
between the reversed retrieval methods in the LGPs with direct CP modelling. In this
configuration, LSRR also outperforms MMR and R-MMR, which suggests that adding even
more diversity further improves performance in LGPs.

In the NL4Opt dataset, the dynamic methods showed relatively similar performance, with
all of them achieving higher accuracies than the static and random strategies. Declaration
accuracy in this dataset is on par with the LP-specialized top-ranked approaches in the
NL4Opt competition8 [18]. In LGPs, employing retrieval-augmented ICL not only improved
accuracy over all metrics but also significantly diminished the number of errors. This
showcases that relevance in the context is important for generating valid and runnable code.

7 An example is available in Appendix F
8 https://nl4opt.github.io/

https://nl4opt.github.io/

K. Michailidis, D. Tsouros, and T. Guns 20:13

Table 2 Comparison of example selection strategies for NL4Opt and LGPs datasets, gpt-3.5-
turbo-0125, 4-shot ICL, λ = 0.5.

Dataset Method
CP BM + CP

#Err Accuracy (%) #Err Accuracy (%)
Sol. Decl. Mod. Sol. Decl. Mod.

NL4Opt

Static 7 81.31 87.81 79.24 8 84.43 89.93 82.01
Random 11 77.16 85.60 75.09 14 78.55 83.13 77.16
SIM 8 85.12 87.72 80.28 5 86.16 90.02 84.08
R-SIM 11 83.39 88.16 80.62 11 85.47 89.31 83.04
MMR 8 84.08 87.99 80.97 7 86.51 90.81 85.47
R-MMR 6 83.74 87.10 80.62 8 87.54 89.93 84.78
LSRR 12 83.74 88.34 80.62 11 83.39 88.25 82.70

LGPs

Static 11 57.00 80.45 55.00 18 58.00 70.69 58.00
Random 14 66.00 76.75 62.00 8 59.00 81.51 52.00
SIM 9 68.00 85.34 66.00 9 66.00 81.24 63.00
R-SIM 4 72.00 89.83 69.00 19 61.00 73.18 58.00
MMR 10 66.00 83.09 64.00 7 63.00 83.75 58.00
R-MMR 6 74.00 87.98 71.00 7 64.00 81.77 61.00
LSRR 4 76.00 89.96 72.00 5 75.00 86.39 70.00

The overall results indicate that RAICL outperforms static selection in generating formal
CP models by a large margin for both datasets. Additionally, the results of R-MMR and
LSRR highlight the importance of both the last in-context example and the context diversity
in the prompt.

4.4.3 Number of In-Context Examples

The results shown in Figure 3, illustrate how the number of in-context examples influences
the model and solution accuracy in NL4Opt and LGPs, both for including blueprint model
generation and not. We selected R-MMR as a retrieval strategy as it demonstrated consistently
fewer errors and high accuracy across the two datasets.

2 4 8 12 16
Number of Shots

50

55

60

65

70

75

80

85

M
od

el
 A

cc
ur

ac
y

(%
)

NL4Opt CP
NL4Opt BM+CP
LGPs CP
LGPs BM+CP

(a) Model accuracy changes with the number of
shots.

2 4 8 12 16
Number of Shots

55

60

65

70

75

80

85

So
lu

tio
n

Ac
cu

ra
cy

 (%
)

NL4Opt CP
NL4Opt BM+CP
LGPs CP
LGPs BM+CP

(b) Solution accuracy changes with the number of
shots.

Figure 3 Comparison of model and solution accuracies with a varying number of in-context
examples. Config: gpt-3.5-turbo-0125 R-MMR (λ = 0.5).

CP 2024

20:14 Constraint Modelling with LLMs Using In-Context Learning

In the NL4Opt dataset, we observe a progressive gain in accuracy metrics as the number
of in-context examples increases, reaching an optimal performance at 12 shots when not
including BM. However, beyond this point, a further increase shows a slight performance
degradation. Including the blueprint model caused this decline to start earlier, at 4–8 shots,
hinting towards a ceiling effect on the size of the prompt context. The LGPs dataset presents
a similar picture but with the BM inclusion consistently underperforming in comparison
to the direct CP model generation. As in NL4Opt, including blueprint models peaks at
a smaller k value (4) than when directly generating the CP model (peaking at k = 8). It
should be noted that with blueprint models, the examples that generate the CP model are
much larger as they also contain these blueprints.

Based on these observations, a balance is needed between providing adequate context
and avoiding information overload, which can influence the quality of the provided answers.
The number of in-context examples should also be adapted according to their size so that
the prompt does not become overly dense. Notably, the LGPs with the blueprint model
generation could not accommodate more than 8 in-context examples due to their length and
the limitations imposed by the 16k context window of gpt-3.5-turbo-0125.

4.4.4 Mixed CP Dataset
We complete this section by assessing the potential of LLMs to generate correct CP models
from a dataset with diverse and more complex constraint problems. We focused exclusively on
solution accuracy since there can be multiple different CP models for such complex problems,
which may involve varying selections of decision and auxiliary variables. As a result, the
variable mapping required to use the other metrics proved impractical.

For these problems, we included additional instructions in the problem descriptions,
specifying how solutions should be printed and formatted by the generated CP model code.
This allowed us to directly validate this output with the ground truth model, ensuring that
the solutions can be assessed without needing to map decision variables. Also, we chose
R-SIM as the selected retrieval-augmented technique to balance the diversity of the dataset.
The results are shown in Table 3, with supplementary results in Appendix D.

While adding more in-context examples improves the accuracy of the produced solutions,
blueprint inclusion degrades performance. This suggests that its integration might be less
beneficial for complex problems, in which the generated blueprints are even more likely to
contain errors. Additionally, using retrieval-augmented R-SIM does not seem to improve
much over static selection. Due to the small dataset size, static and R-SIM often share some
of the same examples. This limited size and high diversity of the dataset proves challenging
for LLMs, with only a bit over half of the exercises solved.

Table 3 Solution Accuracy across different numbers of in-context examples for both static and
R-SIM retrieval strategies in the mixed CP dataset. LLM: gpt-3.5-turbo-0125.

#Shots
Solution Accuracy (%)

Static R-SIM
CP BM + CP CP BM + CP

2 33.33 16.67 50.00 38.89
4 50.00 50.00 55.56 38.89
8 50.00 44.44 55.56 44.44
12 55.56 50.00 61.11 44.44
16 50.00 - 61.11 -

K. Michailidis, D. Tsouros, and T. Guns 20:15

As these problems are based on a university course, we arranged them in increasing
difficulty based on the exercise session they were covered in. Figure 4 shows that as the
difficulty of the problems increases, there is also an analogous decrease in accuracy, pointing
to the challenge LLMs face when required to produce CP models for complex problems.

Ex. Session 1 Ex. Session 2 Ex. Session 3 Ex. Session 4
Exercise Sessions

0
10
20
30
40
50
60
70
80

Co
rre

ct
 S

ol
ut

io
ns

 (%
)

CP
BM + CP

Exercise sessions:
1. 6 problems: Five Floors, Bank Card,

Guards and Apples, Magic Square,
Thick as Thieves, Money Change.

2. 5 problems: Color Simple, Movie
Scheduling, Subset Sum, Subsets 100,
Maximal Independent Sets.

3. 4 problems: Exodus, People in a Room,
Kidney Exchange, Farmer and Cows.

4. 3 problems: Grocery, Climbing Stairs,
Hardy 1729.

Figure 4 Solution accuracy per session when increasing difficulty. Config: R-SIM, 12-shot ICL.

5 Conclusion & Future Work

In this paper, we explored the potential of leveraging pre-trained Large Language Models to
model CP problems from textual problem descriptions. We introduced and systematically
evaluated LLM-based approaches, investigating the use of intermediate representations with
multiple prompting steps, to formulate an executable CP model specification. We utilized
in-context learning and retrieval techniques for the in-context examples. As the use of LLMs
for modelling constraint problems has not been explored in much depth in the literature, we
also focused on both augmenting existing datasets and defining evaluation measures. We
augmented the NL4Opt and LGP datasets, with intermediate representations and formal
model specifications in CPMpy, and created a small course-based diverse CP dataset. We
presented an evaluation framework with precise metrics for the correctness of solutions, the
semantic equivalence of the individual constraints, as well as the overall constraint model.

Our experiments demonstrated how challenging it is for LLMs to solve combinatorial
problems directly. However, using them to write constraint models was significantly more
successful. Including NER, as proposed in the NL4OPT challenge, did not always improve
the quality of the final models. On the other hand, using a human-interpretable blueprint
modelling before the executable model generation was beneficial only for the simple linear
optimisation problems of NL4Opt. We observed that such intermediate steps can introduce
additional errors, due to incorrect tagging and irrelevant prompt context. What mostly
improved the performance of LLMs is: a) retrieval-augmented selection of the in-context
examples, based on a balance of relevance to the current input and context diversity, and
b) increasing the number of such examples up to a certain threshold per dataset. We also
demonstrated that the small mixed CP dataset was a harder challenge, because of both the
complexity of the problems and the small amount of available CP problems to effectively
utilize RAICL, highlighting the need for creating more such datasets.

Further advancements towards the development and evaluation of CP modelling assistants
require more high-quality NL-CP datasets, including pairs of problem descriptions and their
formal CP model, potentially inspired by educational material or examples from modelling
systems. This could also allow going beyond in-context learning and towards supervised

CP 2024

20:16 Constraint Modelling with LLMs Using In-Context Learning

fine-tuning of LLMs. In addition, addressing larger (parameterized) problems that include
external data files is an interesting challenge. Finally, as the generated models will likely have
occasional errors, the integration with other (code-specialized) LLMs, debugging techniques,
or example-based constraint acquisition techniques holds much promise.

References

1 Boris Almonacid. Towards an automatic optimisation model generator assisted with generative
pre-trained transformer. CoRR, abs/2305.05811(arXiv:2305.05811), 2023. doi:10.48550/
arXiv.2305.05811.

2 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. doi:10.48550/arXiv.1409.0473.

3 Christian Bessiere, Clément Carbonnel, Anton Dries, Emmanuel Hebrard, George Katsirelos,
Nadjib Lazaar, Nina Narodytska, Claude-Guy Quimper, Kostas Stergiou, Dimosthenis C.
Tsouros, and Toby Walsh. Learning constraints through partial queries. Artif. Intell.,
319:103896, 2023. doi:10.1016/j.artint.2023.103896.

4 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. URL: https://proceedings.
neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

5 Jaime G. Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In W. Bruce Croft, Alistair Moffat, C. J.
van Rijsbergen, Ross Wilkinson, and Justin Zobel, editors, SIGIR ’98: Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, August 24-28 1998, Melbourne, Australia, SIGIR ’98, pages 335–336, New York, NY,
USA, 1998. ACM. doi:10.1145/290941.291025.

6 Dhivya Chandrasekaran and Vijay Mago. Evolution of semantic similarity - A survey. ACM
Comput. Surv., 54(2):41:1–41:37, February 2022. doi:10.1145/3440755.

7 Harrison Chase. Langchain, October 2022. URL: https://github.com/langchain-ai/
langchain.

8 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374,
2021. doi:10.48550/arXiv.2107.03374.

https://doi.org/10.48550/arXiv.2305.05811
https://doi.org/10.48550/arXiv.2305.05811
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1016/j.artint.2023.103896
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/3440755
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.48550/arXiv.2107.03374

K. Michailidis, D. Tsouros, and T. Guns 20:17

9 Jens Claes, Bart Bogaerts, Rocsildes Canoy, Emilio Gamba, and Tias Guns. Zebratutor:
Explaining how to solve logic grid puzzles. In Katrien Beuls, Bart Bogaerts, Gianluca Bontempi,
Pierre Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts, Gilles Louppe, and Paul Van
Eecke, editors, Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC
2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels,
Belgium, November 6-8, 2019, volume 2491 of CEUR Workshop Proceedings. CEUR-WS.org,
2019. URL: https://ceur-ws.org/Vol-2491/demo96.pdf.

10 Cathleen Cortis Mack, Caterina Cinel, Nigel Davies, Michael Harding, and Geoff Ward. Serial
position, output order, and list length effects for words presented on smartphones over very
long intervals. Journal of Memory and Language, 97:61–80, 2017. doi:10.1016/j.jml.2017.
07.009.

11 Parag Pravin Dakle, Serdar Kadioglu, Karthik Uppuluri, Regina Politi, Preethi Raghavan,
SaiKrishna Rallabandi, and Ravisutha Srinivasamurthy. Ner4opt: Named entity recognition
for optimization modelling from natural language. In André A. Ciré, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research - 20th International
Conference, CPAIOR 2023, Nice, France, May 29 - June 1, 2023, Proceedings, volume
13884 of Lecture Notes in Computer Science, pages 299–319, Cham, 2023. Springer. doi:
10.1007/978-3-031-33271-5_20.

12 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi:10.18653/v1/n19-1423.

13 Xuan-Dung Doan. VTCC-NLP at nl4opt competition subtask 1: An ensemble pre-trained
language models for named entity recognition. CoRR, abs/2212.07219(arXiv:2212.07219),
2022. doi:10.48550/arXiv.2212.07219.

14 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun,
Jingjing Xu, Lei Li, and Zhifang Sui. A survey for in-context learning. CoRR,
abs/2301.00234(arXiv:2301.00234), 2023. doi:10.48550/arXiv.2301.00234.

15 Eugene C. Freuder. Progress towards the holy grail. Constraints An Int. J., 23(2):158–171,
2018. doi:10.1007/s10601-017-9275-0.

16 Eugene C. Freuder and Barry O’Sullivan. Grand challenges for constraint programming.
Constraints An Int. J., 19(2):150–162, 2014. doi:10.1007/s10601-013-9155-1.

17 Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of
chatgpt. CoRR, abs/2301.13867, 2023. doi:10.48550/arXiv.2301.13867.

18 Neeraj Gangwar and Nickvash Kani. Highlighting named entities in input for auto-formulation
of optimization problems. In Catherine Dubois and Manfred Kerber, editors, Intelligent Com-
puter Mathematics - 16th International Conference, CICM 2023, Cambridge, UK, September
5-8, 2023, Proceedings, volume 14101 of Lecture Notes in Computer Science, pages 130–141.
Springer, Springer, 2023. doi:10.1007/978-3-031-42753-4_9.

19 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 10764–10799.
PMLR, PMLR, 2023. URL: https://proceedings.mlr.press/v202/gao23f.html.

20 Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith, and Luke Zettlemoyer. Demystifying
prompts in language models via perplexity estimation. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pages 10136–10148, Singapore, December 2023. Association
for Computational Linguistics. doi:10.18653/v1/2023.findings-emnlp.679.

CP 2024

https://ceur-ws.org/Vol-2491/demo96.pdf
https://doi.org/10.1016/j.jml.2017.07.009
https://doi.org/10.1016/j.jml.2017.07.009
https://doi.org/10.1007/978-3-031-33271-5_20
https://doi.org/10.1007/978-3-031-33271-5_20
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2212.07219
https://doi.org/10.48550/arXiv.2301.00234
https://doi.org/10.1007/s10601-017-9275-0
https://doi.org/10.1007/s10601-013-9155-1
https://doi.org/10.48550/arXiv.2301.13867
https://doi.org/10.1007/978-3-031-42753-4_9
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.18653/v1/2023.findings-emnlp.679

20:18 Constraint Modelling with LLMs Using In-Context Learning

21 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

22 Jianglong He, Mamatha N, Shiv Vignesh, Deepak Kumar, and Akshay Uppal. Linear
programming word problems formulation using ensemblecrf NER labeler and T5 text gen-
erator with data augmentations. CoRR, abs/2212.14657(arXiv:2212.14657), 2022. doi:
10.48550/arXiv.2212.14657.

23 Adam Ishay, Zhun Yang, and Joohyung Lee. Leveraging large language models to generate
answer set programs. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner, editors,
Proceedings of the 20th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, KR ’23, pages 374–383, 2023.
doi:10.24963/kr.2023/37.

24 Elgun Jabrayilzade and Selma Tekir. Lgpsolver - solving logic grid puzzles automatically. In
Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1118–1123. Association for Computational Linguistics, 2020.
doi:10.18653/v1/2020.findings-emnlp.100.

25 Sanghwan Jang. Tag embedding and well-defined intermediate representation improve auto-
formulation of problem description. CoRR, abs/2212.03575(arXiv:2212.03575), 2022. doi:
10.48550/arXiv.2212.03575.

26 Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk Kim, Kang Min Yoo, and Sang-goo
Lee. Self-generated in-context learning: Leveraging auto-regressive language models as a
demonstration generator. CoRR, abs/2206.08082(arXiv:2206.08082), 2022. doi:10.48550/
arXiv.2206.08082.

27 Zeynep Kiziltan, Marco Lippi, and Paolo Torroni. Constraint detection in natural language
problem descriptions. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, IJCAI’16, pages 744–750. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.
org/Abstract/16/111.

28 Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory W. Mathewson, Mi-
chael Henry Tessler, Antonia Creswell, James L. McClelland, Jane Wang, and Felix Hill.
Can language models learn from explanations in context? In Yoav Goldberg, Zornitsa Koz-
areva, and Yue Zhang, editors, Findings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 537–563, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi:10.18653/v1/2022.findings-emnlp.38.

29 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7871–7880. Association for Computational Linguistics, Association for Computational
Linguistics, 2020. doi:10.18653/v1/2020.acl-main.703.

30 Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Pretrained language model for
text generation: A survey. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, pages 4492–4499. ijcai.org, 2021. doi:10.24963/ijcai.2021/612.

31 Qingyang Li, Lele Zhang, and Vicky Mak-Hau. Synthesizing mixed-integer linear programming
models from natural language descriptions. doi:10.48550/arXiv.2311.15271[math].

32 Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 6219–6235, Singa-
pore, December 2023. Association for Computational Linguistics. doi:10.18653/v1/2023.
findings-emnlp.411.

https://doi.org/10.48550/arXiv.2212.14657
https://doi.org/10.48550/arXiv.2212.14657
https://doi.org/10.24963/kr.2023/37
https://doi.org/10.18653/v1/2020.findings-emnlp.100
https://doi.org/10.48550/arXiv.2212.03575
https://doi.org/10.48550/arXiv.2212.03575
https://doi.org/10.48550/arXiv.2206.08082
https://doi.org/10.48550/arXiv.2206.08082
http://www.ijcai.org/Abstract/16/111
http://www.ijcai.org/Abstract/16/111
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.48550/arXiv.2311.15271 [math]
https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://doi.org/10.18653/v1/2023.findings-emnlp.411

K. Michailidis, D. Tsouros, and T. Guns 20:19

33 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Eneko Agirre, Marianna Apidianaki,
and Ivan Vulic, editors, Proceedings of Deep Learning Inside Out: The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, DeeLIO@ACL 2022,
Dublin, Ireland and Online, May 27, 2022, pages 100–114, Dublin, Ireland and Online, May
2022. Association for Computational Linguistics. doi:10.18653/v1/2022.deelio-1.10.

34 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Trans. Assoc.
Comput. Linguistics, 12:157–173, 2024. doi:10.1162/tacl_a_00638.

35 Michele Lombardi and Michela Milano. Boosting combinatorial problem modeling with
machine learning. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 5472–5478. ijcai.org, July 2018. doi:10.24963/ijcai.2018/772.

36 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 8086–8098, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi:10.18653/v1/2022.acl-long.556.

37 Kostis Michailidis, Dimos Tsouros, and Tias Guns. CP-LLMs-ICL. Software, swhId:
swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271 (visited on 2024-08-16). URL:
https://github.com/kostis-init/CP-LLMs-ICL.

38 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi,
and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context
learning work? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 11048–11064, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi:10.18653/v1/2022.emnlp-main.759.

39 Arindam Mitra and Chitta Baral. Learning to automatically solve logic grid puzzles. In
Lluís Màrquez, Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors,
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1023–1033, Lisbon, Portugal,
September 2015. The Association for Computational Linguistics. doi:10.18653/v1/d15-1118.

40 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,
editor, Principles and Practice of Constraint Programming - CP 2007, 13th International
Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume
4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007. doi:10.1007/
978-3-540-74970-7_38.

41 Yuting Ning, Jiayu Liu, Longhu Qin, Tong Xiao, Shangzi Xue, Zhenya Huang, Qi Liu, Enhong
Chen, and Jinze Wu. A novel approach for auto-formulation of optimization problems. CoRR,
abs/2302.04643(arXiv:2302.04643), 2023. doi:10.48550/arXiv.2302.04643.

42 OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi:10.48550/arXiv.2303.
08774.

43 Ganesh Prasath and Shirish Karande. Synthesis of mathematical programs from natural
language specifications. CoRR, abs/2304.03287(arXiv:2304.03287), 2023. doi:10.48550/
arXiv.2304.03287.

44 Steven Prestwich and Nic Wilson. A statistical approach to learning constraints. International
Journal of Approximate Reasoning, page 109184, 2024. doi:10.1016/j.ijar.2024.109184.

45 Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In
Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial

CP 2024

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.24963/ijcai.2018/772
https://doi.org/10.18653/v1/2022.acl-long.556
https://archive.softwareheritage.org/swh:1:dir:5e4383ad6c4329796c9f21c51bbff4882dca8271
https://github.com/kostis-init/CP-LLMs-ICL
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/d15-1118
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.48550/arXiv.2302.04643
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2304.03287
https://doi.org/10.48550/arXiv.2304.03287
https://doi.org/10.1016/j.ijar.2024.109184

20:20 Constraint Modelling with LLMs Using In-Context Learning

Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 7965–7970.
AAAI Press, 2018. doi:10.1609/aaai.v32i1.12217.

46 Rindranirina Ramamonjison, Haley Li, Timothy T. L. Yu, Shiqi He, Vishnu Rengan,
Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. Augmenting operations re-
search with auto-formulation of optimization models from problem descriptions. CoRR,
abs/2209.15565(arXiv:2209.15565), 2022. doi:10.48550/arXiv.2209.15565.

47 Rindranirina Ramamonjison, Timothy T. L. Yu, Raymond Li, Haley Li, Giuseppe Carenini,
Bissan Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou,
and Yong Zhang. Nl4opt competition: Formulating optimization problems based on their
natural language descriptions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht,
editors, NeurIPS 2022 Competition Track, November 28 - December 9, 2022, Online, volume
220 of Proceedings of Machine Learning Research, pages 189–203. PMLR, PMLR, 2021. URL:
https://proceedings.mlr.press/v220/ramamonjison22a.html.

48 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pages 31210–31227. PMLR, 2023. URL: https://proceedings.mlr.press/v202/
shi23a.html.

49 Helmut Simonis. Building industrial applications with constraint programming. In Hubert Co-
mon, Claude Marché, and Ralf Treinen, editors, Constraints in Computational Logics: Theory
and Applications, International Summer School, CCL’99 Gif-sur-Yvette, France, September
5-8, 1999, Revised Lectures, volume 2002 of Lecture Notes in Computer Science, pages 271–309.
Springer, 1999. doi:10.1007/3-540-45406-3_6.

50 Dimosthenis C. Tsouros, Senne Berden, and Tias Guns. Guided bottom-up interactive
constraint acquisition. In Roland H. C. Yap, editor, 29th International Conference on Principles
and Practice of Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada,
volume 280 of LIPIcs, pages 36:1–36:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CP.2023.36.

51 Dimosthenis C. Tsouros, Senne Berden, and Tias Guns. Learning to learn in interactive con-
straint acquisition. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors,
Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 8154–8162. AAAI Press, 2024. doi:10.1609/aaai.v38i8.28655.

52 Dimosthenis C. Tsouros, Hélène Verhaeghe, Serdar Kadioglu, and Tias Guns. Holy grail 2.0:
From natural language to constraint models. CoRR, abs/2308.01589(arXiv:2308.01589), 2023.
doi:10.48550/arXiv.2308.01589.

53 Giuseppe Vallar and Costanza Papagno. Phonological short-term store and the nature of the
recency effect: Evidence from neuropsychology. Brain and Cognition, 5(4):428–442, 1986.

54 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
volume 30, pages 5998–6008, 2017. URL: https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

55 Mark Wallace. Practical applications of constraint programming. Constraints An Int. J.,
1(1/2):139–168, 1996. doi:10.1007/BF00143881.

https://doi.org/10.1609/aaai.v32i1.12217
https://doi.org/10.48550/arXiv.2209.15565
https://proceedings.mlr.press/v220/ramamonjison22a.html
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://doi.org/10.1007/3-540-45406-3_6
https://doi.org/10.4230/LIPIcs.CP.2023.36
https://doi.org/10.1609/aaai.v38i8.28655
https://doi.org/10.48550/arXiv.2308.01589
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1007/BF00143881

K. Michailidis, D. Tsouros, and T. Guns 20:21

56 Kangxu Wang, Ze Chen, and Jiewen Zheng. Opd@nl4opt: An ensemble approach for the
NER task of the optimization problem. CoRR, abs/2301.02459(arXiv:2301.02459), 2023.
doi:10.48550/arXiv.2301.02459.

57 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large
language models are latent variable models: Explaining and finding good demonstrations
for in-context learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Sys-
tems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, volume 36, pages 15614–15638. Cur-
ran Associates, Inc., 2023. URL: http://papers.nips.cc/paper_files/paper/2023/hash/
3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html.

58 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in
large language models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, NIPS ’22, Red Hook, NY, USA,
2022. Curran Associates Inc. URL: http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

59 Jerry W. Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen,
Hanxiao Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context
learning differently. CoRR, abs/2303.03846, 2023. doi:10.48550/arXiv.2303.03846.

60 Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context
learning: An information compression perspective for in-context example selection and ordering.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages 1423–1436, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi:10.18653/v1/2023.acl-long.79.

61 Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional
exemplars for in-context learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 39818–39833. PMLR, 23–29 July 2023. URL:
https://proceedings.mlr.press/v202/ye23c.html.

62 Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language models
using declarative prompting. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
45548–45580. Curran Associates, Inc., 2023. URL: https://proceedings.neurips.cc/paper_
files/paper/2023/file/8e9c7d4a48bdac81a58f983a64aaf42b-Paper-Conference.pdf.

63 Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoyanov, Greg Durrett, and Ramakanth
Pasunuru. Complementary explanations for effective in-context learning. In Anna Ro-
gers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association
for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages
4469–4484, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-acl.273.

64 Ying-Jung Yvonne Yeh and Min-Hung Chen. Examining the primacy and recency effect
on learning effectiveness with the application of interactive response systems (irs). Technol.
Knowl. Learn., 27(3):957–970, 2022. doi:10.1007/s10758-021-09521-6.

65 Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 9134–9148, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi:10.18653/v1/2022.emnlp-main.622.

CP 2024

https://doi.org/10.48550/arXiv.2301.02459
http://papers.nips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2303.03846
https://doi.org/10.18653/v1/2023.acl-long.79
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/8e9c7d4a48bdac81a58f983a64aaf42b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8e9c7d4a48bdac81a58f983a64aaf42b-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.18653/v1/2023.findings-acl.273
https://doi.org/10.1007/s10758-021-09521-6
https://doi.org/10.18653/v1/2022.emnlp-main.622

20:22 Constraint Modelling with LLMs Using In-Context Learning

Table 4 Performance of various LLMs on LGPs using CP generation with R-MMR (λ = 0.5).

LLM #Shots #Err Accuracy (%)
Model Solution Declaration

gpt-3.5-turbo-0125 4 6 71.00 74.00 87.98
gpt-4-0125-preview 4 16 61.00 64.00 73.85
deepseek-coder-33b-instruct 4 1 73.00 77.00 92.60
Mixtral-8x7B-Instruct-v0.1 4 19 52.00 52.00 70.01
Qwen1.5-72B-Chat 4 15 64.00 66.00 80.32
gpt-3.5-turbo-0125 8 4 74.00 77.00 90.49
gpt-4-0125-preview 8 10 77.00 82.00 85.87
deepseek-coder-33b-instruct 8 2 77.00 77.00 93.66
Mixtral-8x7B-Instruct-v0.1 8 18 58.00 61.00 74.90
Qwen1.5-72B-Chat 8 7 62.00 65.00 86.00

A Various LLMs

We also present preliminary results when running our methodology on LGPs for direct
CP modelling using various LLMs in Table 4. We used the OpenAI 9, Together AI 10 and
DeepSeek11 APIs for these experiments. As a code-tuned LLM, the deepseek-coder-33b-
instruct managed to produce the fewest models with errors. Additionally, gpt-4-0125-preview
achieved the highest solution accuracy when prompted with 8 in-context examples.

B Model Equivalence Algorithm

To assert the equivalence of two constraint models, we first create a one-to-one mapping
between their decision variables based on syntactic similarity. We then construct the
conjunction of all constraints for each model. Assuming the two models are not equivalent,
we add to a new combined model the negation of the equivalence formula between the two
models, as defined in Equation (18). If the resulting model is unsatisfiable, the two models
are considered equivalent. Otherwise, they are not. The detailed steps are provided in
Algorithm 1.

C Errors in the generated CP model

C.1 0-shot
An example with a syntax error of a zero-shot attempt to directly model the first problem
from the NL4Opt dataset with gpt-3.5-turbo-0125 is shown in Figure 5.

C.2 4-shot
An example with a syntax error on an LGP when prompting statically with 4 examples in
the context is briefly shown in Figure 6.

9 https://platform.openai.com/docs/api-reference
10 https://docs.together.ai/reference/chat-completions
11 https://platform.deepseek.com/docs

https://platform.openai.com/docs/api-reference
https://docs.together.ai/reference/chat-completions
https://platform.deepseek.com/docs

K. Michailidis, D. Tsouros, and T. Guns 20:23

Algorithm 1 Model Equivalence.

1: function ModelsEquivalent(m1, m2)
2: vars1← GetVariables(m1), vars2← GetVariables(m2)
3: if length(vars1) ̸= length(vars2) then
4: return False
5: end if
6: mapping ← CreateMapping(vars1, vars2) ▷ Map variables based on syntax

matching of their names
7: conj1←

∧
c∈m1.constraints c

8: conj2←
∧

c∈m2.constraints c

9: negatedImplications← mapping ∧ ((conj1 ∧ ¬conj2) ∨ (¬conj1 ∧ conj2))
10: if IsUnsatisfiable(negatedImplications) then
11: return True ▷ Models are equivalent
12: else
13: return False ▷ Models are not equivalent
14: end if
15: end function

1 import cpmpy . solvers
2

3 # Define the variables
4 num_sled_dog_trips = intvar (0, 10) # Number of sled dog trips
5 num_truck_trips = intvar (0, 10) # Number of truck trips
6

7 # Define the objective function to maximize the number of fish transported
8 total_fish_transported = 100* num_sled_dog_trips + 300* num_truck_trips
9

10 # Define the constraints
11 cost_sled_dog_trips = 50* num_sled_dog_trips # Cost of sled dog trips
12 cost_truck_trips = 100* num_truck_trips # Cost of truck trips
13 total_cost = cost_sled_dog_trips + cost_truck_trips <= 1000 # Total cost

constraint
14

15 # Number of sled dog trips must be less than the number of truck trips
16 num_sled_dog_trips <= num_truck_trips
17

18 # Define the LP problem
19 problem = cpmpy . Model (
20 cpmpy . maximize (total_fish_transported),
21 [total_cost]
22)
23

24 # Solve the LP problem
25 cpmpy . solvers . cplex (problem)
26

27 # Error : module ’cpmpy ’ has no attribute ’maximize ’

Figure 5 Generated code with syntax error. Configuration: gpt-3.5-turbo-0125, 0-shot.

CP 2024

20:24 Constraint Modelling with LLMs Using In-Context Learning

1 from cpmpy import *
2

3 # Code omitted
4

5 # Clue 4: Of the runner who paid $9 and the contestant who ordered fettuccine ,
one was Margie and the other was Velma :

6 m += ((margie == price9) & (velma == fettuccine)) | ((margie == fettuccine) &
(velma == price9)

7

8 # Error : ’)’ expected

Figure 6 Generated code with syntax error. Configuration: gpt-3.5-turbo-0125, 4-shot static
ICL.

Table 5 Mixed CP Dataset. Configuration: gpt-3.5-turbo-0125, 4-shot static in-context examples
selection.

Pathway Solution Accuracy (%)
Direct 16.67
CP 50.00
+ BM 50.00
+ NER 44.44

D Mixed CP Dataset: Supplementary Results

Adding to the main results presented in the paper, Table 5 shows results for all four pathways
and Table 6 displays the solution-level accuracy of the direct CP modelling pathway for all
seven example retrieval strategies.

E Datasets Metadata

In this section, we present details of the datasets that we utilized in the experimental part.
Table 7 describes the NL4Opt dataset. All values refer to the average number across each
instance in the dataset. Regarding the LGPs, they contain on average 12 entities (or decision
variables) and 4.55 clues per instance, while each instance has one unique solution. Table 8
outlines the type of each clue along with an example and its constraint representation. Finally,
Table 9 provides some information about the instances of the mixed CP dataset that we
curated.

Table 6 Mixed CP Dataset. Configuration: gpt-3.5-turbo-0125, 4 examples in the context, direct
CP modelling pathway.

Strategy Solution Accuracy (%)
Static 50.00
Random 38.89
SIM 55.56
R-SIM 55.56
MMR 61.11
R-MMR 55.56
LSRR 50.00

K. Michailidis, D. Tsouros, and T. Guns 20:25

Table 7 NL4Opt information. To calculate the average number of optimal solutions for the train
split, we did not take into consideration some outlier instances that had over 100 optimal solutions.
All constraints and objectives are linear in this dataset. For more details please refer to the original
paper [46].

Split (#) #Decision Var. #Constraints #Obj. Terms #Optimal Solutions
Train (713) 2.09 2.79 2.05 1.13
Test (289) 2.02 2.92 1.43 1.20

Table 8 LGPs clue types. In our CP models, we treat all puzzle entities as decision variables.
Also refer to the other works employing LGPs [39, 24].

Type Clue Example Constraint Expression (CPMpy [21])

Equivalence The Luzagueil is a chardonnay luzagueil == chardonnay

XOR The Annata Branco is either
the 1992 wine or the syrah.

Xor([annata == vintage1992,
annata == syrah])

Pairwise
XOR

Of the pinot gris and the 1984
bottle, one is the Luzagueil and
the other is the Zifennwein

Xor([(pinot_gris == luzagueil) &
(vintage1984 == zifennwein),
(pinot_gris == zifennwein) &
(vintage1984 == luzagueil)])

AllDifferent The four people are Deep
Shadow, the superhero who
started in 2007, the hero who
started in 2009 and Matt
Minkle

AllDifferent([deep_shadow, _2007,
_2009, matt_minkle])

Arithmetic
Comparison

The pinot gris was bottled 4
years after the merlot

[((v1 == pinot_gris) & (v2 == merlot))
.implies(vintage_to_int[v1] ==
vintage_to_int[v2] + 4)
for v1 in vintages for v2 in vintages]

CP 2024

20:26 Constraint Modelling with LLMs Using In-Context Learning

Table 9 Mixed CP Dataset information.

Instance #Dec.
Vars

#Const. Optimisation #Vars per
Constraint

#(Optimal)
Solutions

Five Floors 5 7 No 2 1
Bank Card 4 3 No 4 1
Guards and Apples 6 6 No 2 1
Magic Square 16 11 No 5 10
Thick as Thieves 6 7 No 3 1
Money Change 6 1 Yes 6 1
Colour Simple 6 9 Yes 2 >50
Movie Scheduling 9 26 Yes 2 3
Subset Sum 6 1 No 6 1
Subsets 100 20 4 No 15 >50
Maximal Ind. Sets 8 24 Yes 2 2
Exodus 20 9 No 10 17
People in a Room 17 13 No 9 >50
Kidney Exchange 64 24 Yes 8 1
Farmer and Cows 25 10 No 25 >50
Grocery 4 2 No 4 1
Climbing Stairs 20 22 No 12 >50
Hardy 1729 4 5 No 4 >50

F An LGP example

In Figure 7 we showcase an example from the LGPs dataset [39].

K. Michailidis, D. Tsouros, and T. Guns 20:27

The Luzagueil is a chardonnay. The Annata Branco is either the 1992 wine or the syrah. The
Friambliss is a syrah. Of the pinot gris and the 1984 bottle, one is the Luzagueil and the other is
the Zifennwein. The pinot gris was bottled 4 years after the merlot. Vintages: 1984, 1988, 1992,
1996. Wines: Annata Branco, Friambliss, Luzagueil, Zifennwein. Types: chardonnay, merlot,
pinot gris, syrah.

Decision Variables:
Names of the wines: AnnataBranco, Friambliss, Luzagueil, Zifennwein (all different, 1 to 4)
Vintages of the wines: Vintage1984, Vintage1988, Vintage1992, Vintage1996 (all different, 1 to
4)
Types of the wines: Chardonnay, Merlot, PinotGris, Syrah (all different, 1 to 4)

Constraints:
The Luzagueil is a chardonnay: Luzagueil == Chardonnay.
The Annata Branco is either the 1992 wine or the syrah: Xor([AnnataBranco ==
Vintage1992, AnnataBranco == Syrah]).
The Friambliss is a syrah: Friambliss == Syrah.
Of the pinot gris and the 1984 bottle, one is the Luzagueil and the other is the Zifennwein:
Xor([(PinotGris == Luzagueil, Vintage1984 == Zifennwein), (PinotGris == Zifennwein,
Vintage1984 == Luzagueil)]).
The pinot gris was bottled 4 years after the merlot: v1 == PinotGris and v2 == Merlot =>
v1_to_int == v2_to_int + 4, for all v1, v2 in vintages.

1 from cpmpy import *
2

3 # Decision variables
4 # (variables with the same value will correspond to the same triplet of vintage ,

wine , and type)
5 # e.g. if annata == 1 and vintage1984 == 1 and chardonnay == 1, then Annata Branco

is a 1984 chardonnay
6 annata , friambliss , luzagueil , zifennwein = wines = intvar (1, 4, shape =4)
7 vintage1984 , vintage1988 , vintage1992 , vintage1996 = vintages = intvar (1, 4, shape

=4)
8 chardonnay , merlot , pinot_gris , syrah = types = intvar (1, 4, shape =4)
9 # Integer representation , for comparison constraints

10 vintage_to_int = { vintage1984 : 1984 , vintage1988 : 1988 , vintage1992 : 1992 ,
vintage1996 : 1996} # in years

11

12 # Helper functions (for formulating comparison constraints)
13 def bottled_exactly_after_than (var1 , var2 , diff):
14 """
15 Formulate the constraint that var1 was bottled exactly diff years after var2.
16 """
17 return [((v1 == var1) & (v2 == var2)). implies (vintage_to_int [v1] ==

vintage_to_int [v2] + diff) for v1 in vintages for v2 in vintages]
18

19 # Constraints
20 m = Model ()
21 # All entities are different per category
22 m += AllDifferent (wines)
23 m += AllDifferent (vintages)
24 m += AllDifferent (types)
25 # Clue 1: The Luzagueil is a chardonnay :
26 m += luzagueil == chardonnay
27 # Clue 2: The Annata Branco is either the 1992 wine or the syrah :
28 m += Xor ([annata == vintage1992 , annata == syrah])
29 # Clue 3: The Friambliss is a syrah :
30 m += friambliss == syrah
31 # Clue 4: Of the pinot gris and the 1984 bottle , one is the Luzagueil and the other

is the Zifennwein :
32 m += Xor ([(pinot_gris == luzagueil) & (vintage1984 == zifennwein), (pinot_gris ==

zifennwein) & (vintage1984 == luzagueil)])
33 # Clue 5: The pinot gris was bottled 4 years after the merlot :
34 m += bottled_exactly_after_than (pinot_gris , merlot , 4)

Figure 7 From top to bottom: Problem description, Blueprint Model, CPMpy model.

CP 2024

	1 Introduction
	2 Background
	2.1 Constraint Programming
	2.2 Large Language Models

	3 Methodology
	3.1 Problem Formulation
	3.2 LLMs as CP Solvers
	3.3 LLMs as CP Modellers
	3.3.1 Blueprint Model Generation
	3.3.2 Named Entity Recognition

	3.4 In-Context Examples Selection

	4 Experiments
	4.1 Setup & Datasets
	4.2 Data Annotations Generation
	4.3 Evaluation
	4.4 Results
	4.4.1 Intermediate Representations
	4.4.2 Examples Selection Strategy
	4.4.3 Number of In-Context Examples
	4.4.4 Mixed CP Dataset

	5 Conclusion & Future Work
	A Various LLMs
	B Model Equivalence Algorithm
	C Errors in the generated CP model
	C.1 0-shot
	C.2 4-shot

	D Mixed CP Dataset: Supplementary Results
	E Datasets Metadata
	F An LGP example

