
Strengthening Relaxed Decision Diagrams for
Maximum Independent Set Problem: Novel
Variable Ordering and Merge Heuristics
Mohsen Nafar1 #

Bielefeld University, Germany

Michael Römer #

Bielefeld University, Germany

Abstract
Finding high-quality bounds is key to devising efficient exact solution approaches for Discrete
Optimization (DO) problems. To this end, Decision Diagrams (DDs) provide strong and generic
bounding mechanisms. This paper focuses on so-called relaxed DDs which, by merging nodes,
over-approximate the solution space of DO problems and provide dual bounds the quality of which
hinges upon the ordering of the variables in the DD compilation and on the selection of the nodes to
merge. Addressing the Maximum Independent Set Problem, we present a novel dynamic variable
ordering strategy relying on induced subgraphs of the original graph, and a new tie-based merge
heuristic. In a set of computational experiments, we show that our strategies yield much stronger
bounds than the standard state-of-the-art approaches. Furthermore, implementing our heuristics in
a DD-based branch-and-bound, we reduce the solution times by around 33 % on average and by
more than 50 % on hard instances.

2012 ACM Subject Classification Theory of computation → Discrete optimization

Keywords and phrases Decision Diagram, Dynamic Programming, Maximum Independent Set
Problem, Dual Bound

Digital Object Identifier 10.4230/LIPIcs.CP.2024.21

Funding This research was funded by the Return Programme of the Federal State of North Rhine
Westphalia (NRW Rückkehrprogramm).

1 Introduction

As becomes clear from the recent survey [6], Decision Diagrams (DDs) form a versatile tool
for discrete optimization (DO), as they allow a compact representation of the solution space
of DO problems in the form of a layered graph and provide generic mechanisms to obtain
primal and dual bounds. Specifically, given a Dynamic Programming (DP) formulation of
a DO problem, one can create a so-called exact DD such that the set of all paths in the
DD corresponds to the set of feasible solutions to the DO problem. While the size of such
an exact DD grows exponentially in the number of decision variables, there are two types
of approximate DDs for which the number of nodes only grows linearly as the width of
each DD layer is not allowed to exceed a threshold: Restricted DDs, which are obtained by
removing feasible nodes (which are associated with states defined by the DP formulation),
provide an under-approximation of the solution space, and relaxed DDs, which are obtained
by merging nodes associated with non-equivalent states, provide an over-approximation of
the solution space. As proposed in [3], relaxed and restricted DDs can be used within an
exact branch-and-bound algorithm entirely based on DDs; the authors show that this method

1 Corresponding author

© Mohsen Nafar and Michael Römer;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohsen.nafar@uni-bielefeld.de
https://orcid.org/0000-0002-0895-2837
mailto:michael.roemer@uni-bielefeld.de
https://orcid.org/0000-0001-8369-7939
https://doi.org/10.4230/LIPIcs.CP.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

achieves an excellent performance on DO problems such as the Maximum Independent
Set Problem (MISP), the Maximum Cut Problem and the 2-Satisfiability Problem. For
an in-depth discussion of DD-based solution approaches illustrated using a wide variety of
DO problems, we refer to the monograph [1]. For an efficient open source implementation
of DD-based branch-and-bound algorithm in Rust, we refer to the solver DDO presented
in [10]. An alternative to the classical DD-based branch-and-bound with an open source
implementation in the Julia language is Peel and Bound [16, 17].

The performance of DD-based branch-and-bound algorithms is highly dependent on
the quality of the bounds of the approximate DDs involved. These approximate DDs are
typically compiled using the so-called top-down approach, in which the DD is constructed
layer by layer. For a given DO problem and a given maximum DD width, the strength of
the approximate DD bounds depends on two key heuristic decisions within the compilation
process: (i) the variable ordering, that is, the order in which the variables are considered in
the top-down compilation, and (ii) the node selection, that is, the selection of the nodes in a
DD layer to be removed (for restricted DDs) or to be merged (for relaxed DDs) in case the
maximum width of a layer is exceeded.

The first decision, that is, devising a good variable ordering, is relatively straightforward
for certain problems such as the 0/1-Knapsack Problem. For other problems such as the
MISP, however, finding a good variable ordering turns out to be more intricate and has
been considered by various authors, see e.g. the review in [6]. In particular, it has been
shown that for the MISP it is useful to determine the variable ordering dynamically, that
is, to decide upon the next variable to consider based on information becoming available
during the DD compilation, e.g. in order by minimizing the number of nodes appearing
in the next layer, or by performing some lookahead steps, see e.g. [1] for a comparison
of different generic strategies. The MISP was also considered in several papers proposing
to use Machine Learning to support the dynamic ordering of variables: As an example,
in [5] the authors use Deep Reinforcement Learning to determine the variable ordering.
They show that for a given maximum width of each layer, the ML-supported approach can
substantially improve the bounds compared to the standard variable ordering heuristics
considered in the literature. In two follow-up works [15, 4], the authors show that despite
the fact that the ML-based compilation of approximate DDs is slower than the standard
approaches, this bound improvement leads to a significant overall speed-up of an exact
DD-based branch-and-bound solver.

The second decision, that is, the node selection decision, was also investigated by many
authors. Following the monograph [1], a generic and often highly efficient strategy is to
sort the states according to some criterion (e.g. the length of the partial path ending at
each node), to keep the “best” nodes until the maximum width is reached and to merge
the remaining nodes with the last node in the list to form one large “tail node”. In [8],
the authors propose a classification-based mechanism to predict the most promising node
selection heuristic for each layer of a relaxed DD. The paper [9] proposes a tie-breaking
strategy to deal with the problem of identical criterion values in sorting-based approaches.
Other node selection approaches do not rely on sorting nodes (and creating a single large
node) but aim at grouping nodes to merge according to some similarity measure. As an
example, [12] proposes to use so-called collector nodes that aim at merging states that have
the same value with respect to a labeling function. A similar approach was recently used
in [7] who merge nodes based on partitioning the state space for a single machine scheduling
problem with release times, deadlines setup times and rejection. Another technique for
top-down compilation of relaxed DDs which is based on DD reduction is proposed in [13]. In

M. Nafar and M. Römer 21:3

that paper, the authors partition the nodes in a lookahead layer, which is then used to reduce
the target layer, i.e. the layer whose width exceeds the given maximum width. Finally, the
paper [14] proposes using clustering approaches to group the nodes according to the state
attributes and to form a single merged node for each group.

Contribution. Dealing with relaxed DDs for the MISP, this paper proposes both a new
dynamic variable ordering strategy and a new heuristic to select which nodes to merge.
The variable ordering strategy exploits the problem structure of the MISP by relying on
graph-theoretical properties that can be inferred from the states of the partially compiled
DDs. The new merge heuristic aims at reducing the approximation error in sorting-based
merge strategies resulting from merging the whole tail into a single large node by introducing
an additional merged node from nodes around the maximum width border having the
same value of the sorting criterion. In a set of computational experiments with randomly
generated graph instances with 100 vertices and different densities, we observe that each
of the proposed approaches independently provides significantly stronger DD relaxations
for the MISP than DDs compiled with standard approaches. When combined, i.e. using
our proposed variable ordering and merge heuristic at the same time, the bounds become
much stronger. Furthermore, implementing these heuristics in a DD-based branch-and-bound
algorithm, the solution time reduces by 33% on average compared to a branch-and-bound
using standard variable ordering and merge strategies. The solution time reduction grows
with the hardness of the instances; for the hardest instances, the solution time reduction
amounts to more than 50%.

2 Exact and Approximate Decision Diagrams

A decision diagram D = (N , A) is a layered directed acyclic graph with node set N and
arc set A. The paths in D represent solutions to a discrete optimization problem P with
a maximization objective function f and an n-dimensional vector of decision variables
x1, · · · , xn ∈ {0, 1}. N is partitioned into n + 1 layers N1, . . . , Nn+1, where N1 = {r} and
Nn+1 = {t} for a root r and a terminal t. Each arc a = (u, u′) connects nodes of two
consecutive layers ℓ(u), ℓ(u′) = ℓ(u) + 1 and is associated with a decision d(a) representing
the assignment xℓ(u) = d(a). This means that a path p = (a1, . . . , an) starting from r and
ending at t represents the solution x(p) = (d(a1), . . . , d(an)). We denote the set of all r-t
paths with P, and we refer to the solutions to P represented by P with Sol(D). Moreover,
each arc a has length w(a) and

∑n
i=1 w(ai) provides the length w(p) of path p. We refer to

D as exact if Sol(D) = Sol(P) if for each path p ∈ P we have w(p) = f(x(p)); then a longest
path in D forms an optimal solution to P.

To deal with the exponential growth of the DD size, DD-based solution approaches such
as DD-based branch-and-bound [2] rely on so-called approximate DDs that can be used to
obtain upper or lower bounds for the solutions of P. There are two types of approximate
DDs: in a restricted DD D, one aims at considering only promising nodes and arcs, meaning
that Sol(D) ⊆ Sol(P), and thus, the longest path in a restricted DD provides a lower bound
to P. The second type of approximate DD, which is the one we focus on in this paper, is
the relaxed DD providing an upper bound: in a relaxed DD, we have Sol(D) ⊇ Sol(P), that
is, the set of paths may contain paths associated with infeasible solutions to P. Regarding
the objective function value, every path in a relaxed DD needs to satisfy w(p) ≥ f(x(p)). In
both restricted and relaxed DDs, a common approach to control the size of the DD is to
impose a maximum width W for each layer in the DD which is enforced by removing nodes
(in a restricted DD) or merging nodes (in a relaxed DD).

CP 2024

21:4 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

A common approach to compile an exact DD is to provide a Dynamic Programming (DP)
formulation of P and to compile the DD in a top-down fashion. To do so, every node u

is associated with a state Su and every arc a is associated with a state transition induced
by the decision d(a) associated with a. Su is an element of the state space S; the state
Sr associated with the r is the so-called initial state. The state Sv of the target node v of
the arc depends on the state Su of the arc’s source node as well as on d and is computed
by the state-transition function f(Su, d). The objective function contribution of a decision
are computed by a reward function g(Su, d). Finally, the set of out-arcs of a node u is
determined by the set of feasible decisions X(Su) given state Su. The top-down compilation
then proceeds layer-by-layer until reaching layer Nn; all arcs emanating from that layer point
to the terminal node t. In a DD compiled in the sketched top-down fashion, any pair of
nodes in a layer has different states, that is, partial paths ending in the same state point to
the same node.

In case of approximate DDs, after having created all nodes of a given layer, one reduces
its size to W by removing or merging nodes. Nodes are merged by redirecting the incoming
arcs of the nodes to be merged to a single merged node. In order to ensure that no feasible
completions of any of the merged nodes is lost, one requires a problem-specific merge operator
⊕ for the states associated with the two nodes, see [11] for a discussion of the conditions a
valid merge operator needs to satisfy.

Algorithm 1 displays the pseudocode for a top-down compilation procedure for DD
construction. The procedure takes a DP formulation DP (comprising the definition of the
state space S including the initial state Sr, the functions X, f and g), a DD D containing
only the root node and the maximum width W . Calling the algorithm with an unlimited
width W will yield an exact DD and depending on the operation performed in line 11, it
will result in a restricted or relaxed DD. In addition to these, the algorithm requires node
selection (for restricting and/or relaxing the layers) and variable ordering heuristics (an
order for considering the decision variables for layer by layer construction, since every layer
corresponds to one decision variable). In order to allow for a dynamic variable ordering,
Algorithm 1 introduces the set unfixed of variables that have not been considered so far in
the compilation as well as the the generic procedure NextVariable which chooses the next
variable according to a given variable ordering strategy. Note that in case of a static variable
ordering strategy, NextVariable simply returns the next variable according to a pre-specified
order.

Algorithm 1 Top-Down DD Compilation.

1: CompileTopDown (DP , D, W)
2: unfixed = set of all decision variables
3: for k = 1 to n do
4: xk = NextVariable (Nk, unfixed)
5: unfixed = unfixed/{xk}
6: for all u ∈ Nk do
7: for all d ∈ X(Su) do
8: v = GetOrAddNode (Nk, f(Su, d))
9: AddArc (u,v,d)

10: if |Nk+1| > W then
11: RelaxLayer/RestrictLayer (Nk+1)
12: return D

As mentioned in the introduction, the strength of the bounds obtained with approximate
DDs compiled using a top-down approach crucially depends on the strategies used to
determine the variable ordering (determined in line 4 of Algorithm 1), and on the strategies

M. Nafar and M. Römer 21:5

for selecting the nodes to remove or merge (line 11 of Algorithm 1). In this paper, we
devise new heuristics for both of these decisions for the compilation of relaxed DDs for the
Maximum Independent Set Problem which will be discussed next.

3 Decision Diagrams for the Maximum Independent Set Problem

In this section, we briefly introduce the Maximum Independent Set Problem (MISP) and its
DP formulation. We then illustrate how this DP formulation can be used to construct exact
and relaxed DDs.

3.1 The Maximum Independent Set Problem
Given a graph G = (V, E) with n vertices, where V = {v1, v2, · · · , vn} is the set vertices
and E is the set of edges, the Maximum Independent Set Problem (MISP) asks for the
largest subset I ⊆ V such that no two vertices in I are connected via an edge, i.e. I = {v ∈
V |(u, v) /∈ E, ∀u ∈ I}.

Example. Fig. 1 shows an example that will serve for illustration purposes in the remainder
of this paper. It shows a graph G with five vertices. As can be easily verified, there
are multiple optimal solutions, each of which contains two vertices, e.g. I = {v1, v4} or
I = {v3, v5} or I = {v2, v3}.

Figure 1 Example Graph G for a Maximum Independent Set Problem.

In order to be able to compile a decision diagram for MISP we need to formulate the
MISP in terms of a DP. To begin with, a state Su associated with a node u in the DD
corresponds to a subset of the vertices V of the original graph G, namely with the vertices
that are still available to be part of an independent set. The initial state Sr associated with
the root node r thus corresponds to V , the terminal state corresponds to the empty set.
Each layer j in the DD is associated with the decision variable xj which consists in adding
the j-th vertex v(j) (according to the chosen variable order) in the original graph G to the
independent set or not. Given a state Su and a decision d(a) (d = 1 means adding the vertex
to the solution, d = 0 not adding it) associated with arc a = (u, u′) emanating from node u,
the state transition function fj(Su, d(a)) determines the state of node u′ in the next layer
j + 1 of the DD. Specifically, fj(Su, 0) = Su/{v(j)}, and fj(Su, 1) = Su/{Γ(v(j))} where
Γ(v(j)) is the set of vertices adjacent to v(j) in V . Note that if v(j) /∈ Su, the decision d = 1
is not feasible, and thus the DD will not contain an arc a emanating from u with d(a) = 1.
The reward function gj(Su, d) is gj(Su, 0) = 0 and gj(Su, 1) = 1.

Example (continued). Fig. 2 shows an exact DD for the MISP on graph G from Fig. 1 with
the variable order according to the indexes of the vertices in V , that is, v(j) = vj∀v ∈ V .
Every node of the DD is framed using blue color, where its corresponding state (i.e. a
subset of the vertices in V) is placed inside its frame. Small orange labels next to each

CP 2024

21:6 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

node are their partial objective value. Each dashed red and solid green arc show the
assignment of value 0 and 1 to the corresponding decision variable, respectively. The exact
DD in this example has a width of 4, and one of the longest r-t-paths with length 2 is
[x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1], giving us an optimal solution, namely {v4, v5} with
the value 2.

Figure 2 Exact DD for the MISP example graph G.

3.2 Relaxed Decision Diagrams for the MISP
As previously explained, a relaxed DD over-approximates the solution space of the problem
under consideration, resulting in a dual bound. This relaxation is obtained by merging nodes
with non-equivalent states. In order to obtain a valid relaxation, this merge process must
ensure that no feasible solution is lost, that is, that the whole feasible solution space of the
problem is included in the space represented by the relaxed DD. Merging two nodes u and
u′ into a node M involves two steps: First, all incoming arcs to nodes u and u′ must be
redirected to merged node M . Second, the state SM of the new node must be determined in
a way that the solution space of the tail problem starting from M contains the tail problem
solutions of both nodes u and u′. As explained above, the state SM = Su ⊕ Su′ , where ⊕ is
a so-called merge operator. As discussed e.g. in [1], a valid merge operator for MISP is ∪,
that is, SM is given by the union of the vertex sets (subsets of V in the problem graph G)
forming the states Su and Su′ .

Figure 3 Merging two nodes in a relaxed DD for the MISP.

M. Nafar and M. Römer 21:7

Fig. 3 illustrates the merge of two nodes into a single node. Observe that the state of
the resulting merged node is the union of states of the two nodes on top. Moreover, recall
that while a state in MISP is a subset of the vertices, it can be interpreted to represent an
induced subgraph of the original graph on those vertices. Therefore, the edge between v2
and v4 which did not exist in any of the two induced subgraphs of the nodes to be merged
now will be included in the induced subgraph of the state of the merged node. Actually, this
augmented interpretation of the DD states for the MISP carries more information about
the DD nodes – this fact will later be used to develop the new variable ordering heuristic
proposed in this paper.

Figure 4 Relaxed DD for graph G, where variables are ordered according to their indices in the
original graph and W = 2. Its obtained gap is 100%.

Example (continued). Fig. 4 represents the relaxed DD for graph G where W = 2, using
the variable ordering given by indexes of the vertices, i.e. v(1) = v1, v(2) = v2, v(3) =
v3, v(4) = v4, v(5) = v5, in Fig. 1 that was also used for the exact DD. It turns out that the
resulting dual bound has the value of 4 which is two times the optimum value.

4 A New Dynamic Variable Ordering for the MISP

The order of the decision variables according to which the DD is being compiled heavily
affects both the size of an exact DD, and quality of the bounds from approximate DDs with
a fixed maximum width. In the examples above, we used a static variable ordering, that is,
an ordering that is specified before the compilation of the DD and that is independent of the
configuration of the layers during the compilation process. However, it turns out that the
best variable ordering strategies for the MISP are dynamic, that is, they use information of
the partially compiled DD to choose the next decision variable (in case of MISP, the next
vertex).

In the following, we will first consider the dynamic variable ordering strategy most
commonly used for the MISP in the literature. Then, we propose a novel dynamic variable
ordering strategy that exploits the information gained by interpreting the DD states in terms
of induced subgraphs.

CP 2024

21:8 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

4.1 Standard Strategy: Minimum Number of States (MIN)

In this ordering, vertices are assigned a value that corresponds to the number of times they
appear in the states of the nodes in the current layer Nk. Then, the vertex exhibiting the
minimum number appearances is selected as the next vertex (variable) to be considered in
the top-down compilation of the DD. Algorithm 2 shows the corresponding heuristic which
is called Minimum Number of States (MIN). The worst-case time complexity to perform this
selection is O(W · |V |) per layer. In this algorithm, Nk is the current layer and unfixed is the
set of the vertices to which no decision has been assigned yet.

Algorithm 2 NextVariableMIN (Nk, unfixed).

1: NS := a dictionary where keys are unfixed variables (associated with vertices of G) and
values 0

2: for x ∈ unfixed do
3: for all S ∈ Nk do
4: if v(x) ∈ S then
5: NS[x]+=1
6: return the unfixed variable with minimum NS

Example (continued). Using the MIN variable ordering in the top-down compilation of
a relaxed DD with W = 2 for the example graph G from Fig. 1 results in the following
variable order: [v(1) = v1, v(2) = v2, v(3) = v5, v(4) = v3, v(5) = v4]. Following this order
of variables (vertices), the corresponding relaxed decision diagram which provides a dual
bound with value 3 is illustrated in Figure 5.

Figure 5 Relaxed DD for graph G, compiled via MIN and W = 2, yielding a gap of 50%.

The intuition behind the effectiveness of the MIN variable ordering strategy is that a
node u only has an outgoing 1-arc for the variable associated with a vertex v if v ∈ Su. As a
result, a vertex appearing only a few times in the states of the layer under consideration will
result in a small number of outgoing arcs of the layer and thus in a small number of nodes in
the next layer.

M. Nafar and M. Römer 21:9

4.2 A New Strategy: Current Degree Sum (CDS)

Now, we present a new dynamic variable ordering heuristic which is based on the interpretation
of node states as induced subgraphs of the original graph introduced in Section 3. Previously,
we mentioned that the intuition behind the MIN strategy is to improve the quality of the
dual bounds in a relaxed DD by controlling the growth of the layers by choosing a variable
that will result in less feasible decisions to be taken. Adding to this, the idea behind our new
strategy is to reduce the “destructive” effect of the subsequent merge operations: We aim at
choosing the variable order in a way that the difference between the states to be merged in a
layer is somewhat small such that the resulting merged state is not too different from the
states of the nodes to be merged.

Intuitively, a vertex with a lower degree in a given graph is likely to belong to a higher
number of independent sets in that graph than a vertex with a larger degree. Therefore,
it can be beneficial to decide about such vertices (i.e. vertices with smaller degree) sooner
than later, because it can result in exploration of the search space that is closer to the
optimum solution. Since the graph-theoretical information of vertices in a MISP evolves a
lot during the compilation (every subproblem corresponding to a node/state is associated
with an induced subgraph of the original graph on the members of that state), it is crucial
to recompute them for each state and then take the best decision.

Current Degree Sum (CDS) is a novel variable ordering that can account for all of these
intuitions, i.e. resulting in a lower number of feasible decisions, reducing the destructive
effect of subsequent merge operations, and providing a better chance of resulting in partial
solutions (tail solutions) closer to optimum. Recall that every state in a DP formulation
of MISP is represented via a subset of the vertices of the original graph. Considering the
induced subgraph on members of these states, every member (i.e. a vertex) has a degree
which might be different from its degree in another state (induced subgraph), we call it the
current degree of a vertex, i.e. dgS

v reads degree of vertex v in state S. The strategy is to
sum up the current degrees of each vertex, i.e.

∑
S∈Nk

dgS
v in the layer under consideration,

and to choose the vertex with minimum sum.
Algorithm 3 shows the process for CDS variable ordering, which has a worst-case time

complexity of O(W · |V |2) per layer.

Algorithm 3 NextVariableCDS procedure (Nk, unfixed).

1: CDS = a dictionary where keys are unfixed variables and values 0
2: for all S ∈ Nk do
3: for x ∈ S do
4: for y ∈ S do
5: if x is adjacent to y then
6: CDS[x]+ = 1
7: return the unfixed variable with minimum CDS

Example (continued). Using CDS variable ordering in the top-down compilation of a
relaxed DD with W = 2 for the example graph G from Fig. 1 results in the following
order of variables / vertices: [v(1) = v3, v(2) = v4, v(3) = v2, v(4) = v1, v(5) = v5]. The
corresponding relaxed decision diagram provides a dual bound with value 2 which is exactly
the optimum value of the original problem (see Fig. 6).

CP 2024

21:10 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

Figure 6 Relaxed DD for graph G compiled using CDS and W = 2, yielding a gap of 0%.

5 A New Merge Heuristic

The second important decision during the top-down compilation of relaxed DDs that has a
huge impact on the quality of the achievable dual bounds is to select the nodes to merge
in case the maximum width is exceeded. A (heuristic) strategy for taking this decision is
also called a merge heuristic. In this section, we will first describe a problem-agnostic merge
heuristic that is commonly used in the literature and then propose a new merge heuristic.

5.1 Standard Strategy: SortObj Merging (SO)

A highly generic merge heuristic for the top-down compilation of relaxed DDs that we will
subsequently refer to as SortObj (SO) works as follows: First, all nodes in the layer the
size of which exceeds the given maximum width W are sorted according to their objective
function values. Then, the first W − 1 nodes, i.e. the nodes having the highest objective
values, will remain in the layer, and the rest of the nodes, which we refer to the tail (of the
sorted list) will be merged into a single node called Mtail.

Fig. 7 shows an example of SortObj being applied in a layer with 12 nodes, the maximum
width is W = 8. In the figure, the nodes are sorted according to their objective values
(written inside the orange boxes under the nodes). When applying SortObj, the first 7
nodes, i.e. {A, B, C, D, E, F, G}, will be retained in the layer and the rest of the nodes, i.e.
{H, I, J, K, L}, will be merged and form the merged node Mtail that will replace all the nodes
in the tail. The vertical dashed line in the figure marks the border between the nodes to be
retained and those that are merged into Mtail.

M. Nafar and M. Römer 21:11

Figure 7 SortObj merging heuristic where W = 8.

5.2 A new Strategy: Border Tie Merging (BT)

Here, we present a new merge heuristic which is based on identifying certain ties that may
arise in the layers of relaxed DDs. This merging heuristic that we call Border Tie merging
and denote by BT is described after the following definition:

▶ Definition 1 (Border Tie). Let the nodes in a layer of a DD be sorted according to some
criterion C and SortC be its corresponding sorted list, and let W be the given maximum
width. A subsequence of SortC in which all nodes have the same criterion value and which
includes SortC [W − 1] and SortC [W] is called a Border Tie.

Note that the smallest border tie includes at least 2 nodes, i.e. SortC [W − 1] and
SortC [W]. Furthermore, there can exist at most one border tie in a layer. The criterion we
use in border tie merging for the MISP is the same as in SortObj, that is, objective function
value associated with each node.

A merged node in MISP is a “two-sided” over-approximation of all the nodes in the merge:
From one side it over-approximates the states of the merged nodes by forming a super-set of
their states. From the other side, redirecting the in-arcs causes an over-approximation of the
longest path from root to the merged node. The intuition behind this new merge heuristic is
to control the approximation error caused by the merge operation from one side, i.e. the
over-approximation of the length of the partial solution caused by redirecting the in-arcs.
Therefore, if we merge the nodes that have the same objective value (the lengths of their
partial solutions are the same), then we can control the over-approximation error from one
side. Moreover, we reckon that this merging heuristic will be a perfect fit for CDS, since
one of the intuitions behind the design of CDS was to keep the diversity of the states in
layers in a small range so as to control the destructive effect of the merge, that is the other
side of the over approximation in MISP. Therefore, it is expected that coupling these two
heuristics, i.e. BT and CDS, will strengthen the dual bounds obtained via relaxed DDs for
MISP as they decrease the over-approximation error from both sides.

Figure 8 Border Tie merging heuristic where W = 8.

CP 2024

21:12 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

Fig. 8 shows the border tie merge heuristic applied to a layer with 12 nodes where W = 8.
Note that the first two nodes in the list have the same objective value and therefore form a
tie; however, their tie does not play a role in border tie merging heuristic. The border tie
heuristic first identifies the nodes in the border tie (i.e., {F, G, H, I}) and merges them into
a single merged node called Mtie. The nodes on the left side of the border tie are unchanged
and remain in the layer. Finally, the nodes in the tail of the list, if there exist any, will be
merged into Mtail. Note the following special cases regarding the tail of the sorted list may
arise:

1. the tail is empty: in this case, Mtie is the only one merged node in the relaxed layer,

2. the tail comprises a single node: Mtie is the only one merged node in the relaxed layer,
and the single tail node is unchanged and remains in the relaxed layer.

6 Computational Results

In this section, we present the results of computational experiments with two different
dynamic variable ordering approaches (i.e. MIN, CDS) and two merge heuristics (i.e. SO,
BT) and their combinations for the MISP. First, we assess the performance of the different
strategy combinations with respect to the time-bound trade-off when compiling relaxed
DDs. Second, we investigate the effects of these strategy choices for compiling relaxed DDs
on the performance of an otherwise standard DD-based branch-and-bound algorithm [3].
For performing the experiments, we created nine instance sets, each of which contains 20
randomly generated graphs with 100 vertices. The instances set differ with respect to the
graph density which ranges from 0.9 to 0.1. We implemented all approaches in the Julia
programming language and ran the experiments on a Windows machine with 16GB RAM
and an 11th Gen Intel(R) Core(TM) i7-11800H processor with 2.30 GHz.

6.1 Results on Dual Bounds

Fig. 9 shows the average dual gaps provided by using the strategy combinations (MIN,SO),
(CDS, SO), (MIN,BT), and (CDS, BT) in relaxed DDs for the MISP on graph instances with
different densities. The gaps reported in this figure are computed as dual bound−optimum

optimum × 100
and then averaged over the 20 instances. Moreover, all relaxed DDs are compiled using
given maximum widths W ∈ {50, 100, 200, 500, 1000}; the X-axis displays the time needed
for compiling the relaxed DDs in ms. Every sub-plot in this figure corresponds to one density.
In the sub-plots red-dashed, blue-solid, green-solid, and black-solid curves show (MIN,SO),
(CDS, SO), (MIN,BT), and (CDS, BT) performances, respectively.

From the figure it is clear that all combinations involving our new heuristics, i.e. (CDS,
SO), (MIN,BT), and (CDS, BT), provide stronger dual bounds than the standard strategy,
i.e. (MIN,SO). Looking into the plots reveals that as the density decreases, the instances
become harder and the performance difference between standard method and our proposed
methods increases, meaning that for harder instances our strategies provide significantly
stronger bounds. Moreover, (CDS, BT) which is the combination of our proposed dynamic
variable ordering with our proposed merge heuristic clearly outperforms the other approaches.

M. Nafar and M. Römer 21:13

20 40 60 80 100

10

20

30

40

50

60

GA
P

%

(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.9

20 40 60 80 100 120 140
10

20

30

40

50

60

70 (CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.8

0 20 40 60 80 100 120 140 160
10

20

30

40

50

60
(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.7

0 25 50 75 100 125 150 175 200
10

20

30

40

50

60

70

GA
P

%

(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.6

0 50 100 150 200

20

30

40

50

60 (CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.5

0 50 100 150 200 250

20

30

40

50

60 (CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.4

0 50 100 150 200 250 300 350
Time (millisecond)

15
20
25
30
35
40
45
50
55

GA
P

%

(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.3

0 100 200 300 400
Time (millisecond)

15

20

25

30

35

40
(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.2

0 100 200 300 400 500 600
Time (millisecond)

10

15

20

25

30
(CDS,BT)
(MIN,BT)
(CDS,SO)
(MIN,SO)

Density = 0.1

Figure 9 Gap-time performance of different strategies when being used in compiling relaxed DDs.

Table 1 shows the average size of the relaxed DDs built using different strategy com-
binations for a given maximum width W = 1000. A comparison between (MIN,SO) and
(CDS,SO) supports one of the intuitions behind the design of CDS, i.e. reducing the de-
structive effect of merge operation by controlling the diversity of the states (subproblems /
induced subgraphs). While MIN, which was designed to decrease the width of the layers,
provides smaller relaxed DDs than those compiled using CDS, the relaxed DDs compiled
via CDS are stronger, hinting at the successful control of the diversity of the states when
using CDS. Another interesting observation is that when comparing the combinations that
include BT to those that do not is the significant drop of the sizes of the DDs compiled
having BT as their merge heuristic. It shows that although the DDs compiled using this
heuristic contain more merged nodes (in some layers they can contain up to two merged
nodes whereas in SortObj every layer has at most 1 merged node) and one might expect
worse bound quality, it actually results in stronger dual bounds (see Fig. 9).

6.2 Performance within a DD-based Branch-and-Bound
We now present the results of implementing the proposed variable ordering and merge
heuristics and their combinations in a DD-based branch-and-bound algorithm proposed in [3].
In the implemented branch-and-bound algorithm, the primal bounds are obtained using
restricted DDs. For the compilation of the restricted DDs, no advanced approaches are
used: The variables are ordered only once according to their degree in the original graph

CP 2024

21:14 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

Table 1 Average size of relaxed DDs compiled via different methods with W = 1000.

Density Average DD Size (nodes)
(MIN,SO) (CDS,SO) (MIN,BT) (CDS,BT)

0.1 73513 76190 58059 59069
0.2 71324 73190 56393 57173
0.3 68484 69470 54020 55253
0.4 65088 66580 51870 53049
0.5 62053 63355 50456 51356
0.6 58946 59661 47715 47505
0.7 55058 56040 43606 45629
0.8 50808 51466 35334 36025
0.9 45770 47272 37578 41607

in increasing order; the node selection follows the SortObj heuristic. We are dealing with a
relatively pure implementation of a DD-based branch-and-bound that does not make use of
advanced techniques but basically follows the description in the monograph [1]. All relaxed
and restricted DDs in the branch-and-bound are compiled with a maximum width W = 100.

Table 2 Average solution time of DD-based branch-and-bound for strategy combinations.

Density Time (Seconds)
(MIN,SO) (CDS,SO) (MIN,BT) (CDS,BT)

0.1 872.3 821.9 445.8 320.9
0.2 126.4 94.0 85.5 56.4
0.3 31.0 26.8 24.3 17.0
0.4 10.1 9.3 8.6 5.9
0.5 4.3 3.5 4.0 2.5
0.6 1.92 1.70 1.57 1.4
0.7 1.11 1.01 0.93 0.89
0.8 0.73 0.70 0.81 0.66
0.9 0.60 0.56 0.65 0.61

Table 2 shows the average solution time of DD-based branch-and-bound using relaxed
DDs constructed via different strategies (all instances are solved to optimality). The results
reveal that all combinations involving our new strategies are able to reduce the solution time
considerably in comparison to the baseline combination (MIN,SO).

Table 3 Solution time reduction in percent of different strategy combination in comparison to
the baseline, i.e. (MIN,SO).

Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
(CDS,SO) 5.7 25.61 13.42 8.4 18.3 11.4 9.0 4.1 6.6 11.43
(MIN,BT) 48.8 32.3 21.4 15.6 6.2 18.2 16.2 -10.9 -8.3 15.52
(CDS,BT) 63.2 55.3 45.2 42.0 40.6 25.52 19.8 9.5 -1.6 33.30

Table 3 summarizes the solution time reductions of each combination per density
compared to the baseline. As becomes clear from the table, using our proposed heuristics
individually, i.e. (CDS,SO) and (MIN,BT), reduces the solution time by 11% and 15% on

M. Nafar and M. Römer 21:15

average. However, if we use both heuristics at the same time, i.e. (CDS,BT), the solution
reduction increases to 33% on average. In all cases, as the hardness of the instances increases
(that is, the graph density decreases), the superiority of the proposed methods becomes more
significant, such that the best combination, i.e. (CDS,BT), has a solution time reduction of
more than 50% compared to the baseline for instances with density 0.2 and 0.1.

Table 4 Average number of sub-problems solved in the DD-based branch-and-bound for different
strategy combinations.

Density Node Size (Sub-problem Solved in B&B)
(MIN,SO) (CDS,SO) (MIN,BT) (CDS,BT)

0.1 63880 39051 34183 17150
0.2 15454 6623 9088 3816
0.3 5906 3053 3830 1700
0.4 2609 1581 1814 802
0.5 1452 796 947 450
0.6 702 397 440 266
0.7 399 256 283 195
0.8 291 210 245 173
0.9 247 174 224 178

Another interesting aspect of a branch-and-bound algorithm is the number of subproblems
that are solved until an optimal solution is reached. We report the average number of the
subproblems solved in the DD-based branch-and-bound using different methods in Table 4.

Table 5 Reduction of the number of the solved subproblems in percent in DD-based branch-and-
bound using different strategy combinations in comparison to the base line, i.e. (MIN,SO).

Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Average
(CDS,SO) 38.8 57.1 48.3 39.4 45.2 43.3 35.7 27.7 29.6 40.6
(MIN,BT) 46.4 41.1 35.1 30.4 34.7 37.3 29.0 15.8 9.3 31.0
(CDS,BT) 73.1 75.30 71.2 69.2 68.9 62.0 51.0 40.3 27.6 59.8

Table 5 summarizes the reduction of the number of subproblems solved in DD-based
branch and bound using different combinations of strategies. A comparison between the
methods shows that although (MIN,BT) have better dual gaps and better solution times
than (CDS,SO), it requires more subproblems to be solved. This can be a sign that in a
DD-based branch-and-bound, having good quality bounds is not the only factor for having a
good solution time: If it was the only factor, we should have seen a smaller number of solved
subproblems for (MIN,BT) as it gives better bounds than (CDS,SO). This suggests that
perhaps the reason for this can be one of the intuitions behind the design of CDS, which was
to move in the direction of having solutions that potentially have more intersections with
optimal solutions. However, when combining CDS and BT, the algorithm has the benefits of
the both, i.e. good quality bounds and a reduction of the number of solved subproblems by
50% on average.

To put our results into perspective, let us briefly mention the results reported in [4],
where the authors compare the impact of their RL-based dynamic variable ordering strategy
to the MIN strategy within a standared DD-based branch-and-bound algorithm for solving
randomly generated MISP instances with a density of 0.3 and between 200 and 300 vertices.
It turns out that for instances that could be solved to optimality, the reduction in solution

CP 2024

21:16 Strengthening Relaxed DDs for MISP: Novel Variable Ordering and Merge Heuristics

time of their best approach compared to MIN is around 10%, whereas our reductions amount
to 13.42%, 21.4%, and 45.2% for (CDS,SO), (MIN,BT), and (CDS,BT) combinations,
respectively, for instances with density 0.3.

7 Conclusion

In this paper, we propose a novel dynamic variable ordering and a new merge heuristic
for the top-down compilation of relaxed DDs for the MISP. The dynamic variable ordering
strategy relies on the information obtainable from induced subgraphs of the original graph
and the merge heuristic merges the nodes among which there is a tie regarding their partial
objective value. Our computational experiments from applying the new strategies to a set of
randomly generated graph instances containing 100 vertices with densities ranging from 0.9
to 0.1 (20 instances per density) show that our proposed strategies, individually, are capable
of significantly strengthening the dual bounds compared to the standard strategy from the
literature where this strengthening becomes more significant when our methods are combined.
For the harder instances, i.e. lower densities, the performance gap is higher in our favor. In
the end, the implementation of the resulting relaxed DDs into a DD-based branch-and-bound
reduces the solution time by 33% on average and more than 50% on harder instances.

References
1 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Decision Diagrams

for Optimization. Springer Publishing Company, Incorporated, 1st edition, 2016.
2 David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John Hooker. Branch-and-bound

based on decision diagrams. In Decision Diagrams for Optimization, pages 95–122. Springer,
2016.

3 David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John N Hooker. Discrete
optimization with decision diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

4 Quentin Cappart, David Bergman, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Augustin Parjadis. Improving variable orderings of approximate decision diagrams using
reinforcement learning. INFORMS Journal on Computing, 34(5):2552–2570, 2022.

5 Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improv-
ing optimization bounds using machine learning: Decision diagrams meet deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1443–1451, 2019.

6 Margarita P Castro, Andre A Cire, and J Christopher Beck. Decision diagrams for discrete
optimization: A survey of recent advances. INFORMS Journal on Computing, 34(4):2271–2295,
2022.

7 Mathijs de Weerdt, Robert Baart, and Lei He. Single-machine scheduling with release times,
deadlines, setup times, and rejection. European Journal of Operational Research, 291(2):629–
639, 2021.

8 Nikolaus Frohner and Günther R Raidl. Merging quality estimation for binary decision diagrams
with binary classifiers. In International Conference on Machine Learning, Optimization, and
Data Science, pages 445–457. Springer, 2019.

9 Nikolaus Frohner and Günther R Raidl. Towards improving merging heuristics for binary
decision diagrams. In Learning and Intelligent Optimization: 13th International Conference,
LION 13, Chania, Crete, Greece, May 27–31, 2019, Revised Selected Papers 13, pages 30–45.
Springer, 2020.

10 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient framework
for mdd-based optimization. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 5243–5245, 2021.

M. Nafar and M. Römer 21:17

11 John N Hooker. Job sequencing bounds from decision diagrams. In International Conference
on Principles and Practice of Constraint Programming, pages 565–578. Springer, 2017.

12 Matthias Horn, Johannes Maschler, Günther R Raidl, and Elina Rönnberg. A*-based construc-
tion of decision diagrams for a prize-collecting scheduling problem. Computers & Operations
Research, 126:105125, 2021.

13 Mohsen Nafar and Michael Römer. Lookahead, merge and reduce for compiling relaxed decision
diagrams for optimization. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 74–82. Springer, 2024.

14 Mohsen Nafar and Michael Römer. Using clustering to strengthen decision diagram bounds
for discrete optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 8082–8089, 2024.

15 Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau, and David Bergman. Improving
branch-and-bound using decision diagrams and reinforcement learning. In Integration of
Constraint Programming, Artificial Intelligence, and Operations Research: 18th International
Conference, CPAIOR 2021, Vienna, Austria, July 5–8, 2021, Proceedings 18, pages 446–455.
Springer, 2021.

16 Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Peel-and-bound: Generating
stronger relaxed bounds with multivalued decision diagrams. In Christine Solnon, editor, 28th
International Conference on Principles and Practice of Constraint Programming, CP 2022,
July 31 to August 8, 2022, Haifa, Israel, volume 235 of LIPIcs, pages 35:1–35:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CP.2022.35.

17 Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Improved peel-and-bound:
Methods for generating dual bounds with multivalued decision diagrams. Journal of Artificial
Intelligence Research, 77:1489–1538, 2023.

CP 2024

https://doi.org/10.4230/LIPIcs.CP.2022.35

	1 Introduction
	2 Exact and Approximate Decision Diagrams
	3 Decision Diagrams for the Maximum Independent Set Problem
	3.1 The Maximum Independent Set Problem
	3.2 Relaxed Decision Diagrams for the MISP

	4 A New Dynamic Variable Ordering for the MISP
	4.1 Standard Strategy: Minimum Number of States (MIN)
	4.2 A New Strategy: Current Degree Sum (CDS)

	5 A New Merge Heuristic
	5.1 Standard Strategy: SortObj Merging (SO)
	5.2 A new Strategy: Border Tie Merging (BT)

	6 Computational Results
	6.1 Results on Dual Bounds
	6.2 Performance within a DD-based Branch-and-Bound

	7 Conclusion

