
Learning Lagrangian Multipliers for the Travelling
Salesman Problem
Augustin Parjadis #

Polytechnique Montréal, Canada

Quentin Cappart # Ñ

Polytechnique Montréal, Canada

Bistra Dilkina #Ñ

Center for Artificial Intelligence in Society, University of Southern California, Los Angeles, CA, USA

Aaron Ferber #Ñ

Center for Artificial Intelligence in Society, University of Southern California, Los Angeles, CA, USA

Louis-Martin Rousseau #Ñ

Polytechnique Montréal, Canada

Abstract
Lagrangian relaxation is a versatile mathematical technique employed to relax constraints in an
optimization problem, enabling the generation of dual bounds to prove the optimality of feasible
solutions and the design of efficient propagators in constraint programming (such as the weighted
circuit constraint). However, the conventional process of deriving Lagrangian multipliers (e.g., using
subgradient methods) is often computationally intensive, limiting its practicality for large-scale or
time-sensitive problems. To address this challenge, we propose an innovative unsupervised learning
approach that harnesses the capabilities of graph neural networks to exploit the problem structure,
aiming to generate accurate Lagrangian multipliers efficiently. We apply this technique to the
well-known Held-Karp Lagrangian relaxation for the traveling salesman problem. The core idea
is to predict accurate Lagrangian multipliers and to employ them as a warm start for generating
Held-Karp relaxation bounds. These bounds are subsequently utilized to enhance the filtering process
carried out by branch-and-bound algorithms. In contrast to much of the existing literature, which
primarily focuses on finding feasible solutions, our approach operates on the dual side, demonstrating
that learning can also accelerate the proof of optimality. We conduct experiments across various
distributions of the metric traveling salesman problem, considering instances with up to 200 cities.
The results illustrate that our approach can improve the filtering level of the weighted circuit global
constraint, reduce the optimality gap by a factor two for unsolved instances up to a timeout, and
reduce the execution time for solved instances by 10%.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Theory of
computation → Constraint and logic programming; Computing methodologies → Machine learning

Keywords and phrases Lagrangian relaxation, unsupervised learning, graph neural network

Digital Object Identifier 10.4230/LIPIcs.CP.2024.22

Supplementary Material
Software (Code source): https://github.com/corail-research/learning-hk-bound

Acknowledgements We sincerely thank the anonymous reviewers for their constructive feedback.
Their comments helped us better position our contribution within the field. Furthermore, their
insights have provided guidance for our future research directions.

© Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustin.parjadis-de-lariviere@polymtl.ca
mailto:quentin.cappart@polymtl.ca
https://qcappart.github.io/
https://orcid.org/0000-0002-8742-0774
mailto:dilkina@usc.edu
https://viterbi.usc.edu/directory/faculty/Dilkina/Bistra
https://orcid.org/0000-0002-6784-473X
mailto:aferber@usc.edu
https://aaron-ferber.github.io/
https://orcid.org/0000-0002-7422-0044
mailto:louis-martin.rousseau@polymtl.ca
https://hanalog.ca/
https://orcid.org/0000-0001-6949-6014
https://doi.org/10.4230/LIPIcs.CP.2024.22
https://github.com/corail-research/learning-hk-bound
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Learning Lagrangian Multipliers for the Travelling Salesman Problem

1 Introduction

The travelling salesman problem (TSP) has been the subject of extensive research and has
broad practical applications. Due to its NP-hard nature, numerous approaches have been
proposed to solve it efficiently, ranging from exact to heuristic methods. Exact solvers not
only need to identify the optimal solution but also to prove that it is optimal, often via a
dual bound. Held and Karp (1970) [25] proposed a relaxation that provides strong dual
bounds in practice. For instance, these bounds are used in Concorde, the state-of-the-art
TSP solver [3] or in the design of global constraints in constraint programming [6, 5]. An
associated branch-and-bound algorithm using this relaxation was subsequently proposed by
Held and Karp (1971) [26], which enabled the optimality proof for several open benchmark
instances at the time of its publication. Briefly, this algorithm leverages a combinatorial
structure, referred to as minimum 1-tree, that can serve as a valid relaxation for the TSP
and obtain dual bounds. However, this algorithm is based on a few heuristic design choices
which have an important impact on the tightness of the relaxation. One is the procedure to
generate the bounds from Lagrangian multipliers (explained in the next section), which can
be assimilated as a hill-climbing algorithm. Starting from initial bounds, the algorithm refines
the bound iteratively with local perturbations until convergence. There are two drawbacks
to this process. First, it requires several potentially costly iterations to get accurate bounds,
and second, it only converges to local minima. Our research hypothesis is that this procedure
can be improved thanks to a learning-based approach. The idea is to train a model in
an unsupervised fashion with similar TSP instances and to use it to predict Lagrangian
multipliers that can be used to obtain a valid dual bound instead of computing it iteratively.
In the field of constraint programming, Lagrangian decomposition has been also considered
to provide dual bounds [8, 23], but without resorting to a learning-based component. We
also note that other algorithms have been considered to improve the bounds for arborescence
problems in constraint programming [28].

Machine learning has helped guide heuristic components in branch-and-bound [31, 38,
22, 57], constraint programming [13], SAT solving [49], local search [56], and non linear
optimization [20]. We refer to the survey of Bengio et al. (2021) [7] for an extended literature
review on this topic. Most of such works operate on the branching decisions (e.g., selecting the
next variable to branch on) or on the primal side. However, learning to improve the quality
of relaxations by means of better dual bounds has been much less considered in the literature.
To our knowledge, this has only been addressed for the restricted use case of solvers based on
decision diagrams [11], for combinatorial optimization over factor graphs [15] (e.g., see the
max-sum labeling problem [54] and soft arc consistency [14] for relevant applications) and
for learning relaxations of integer linear programs [1]. This last work is contemporaneous to
ours.

Additionally, recent work in decision-focused learning (DFL) [40] has approached settings
where the problem formulation is not fully specified at the time of decision-making. Thus,
these approaches train gradient-based deep learning models to predict the missing components,
with a key component being to determine how to train the deep learning model to improve the
downstream decision quality. As training for deep networks is done using gradient descent,
the difficulty lies in deriving methods for differentiating the output of the optimization
model with respect to its predicted inputs. Our proposed approach seeks to predict the
parameters of the Held-Karp relaxation such that the resulting relaxed solution provides a
dual bound as tight as possible. This is achieved by deriving gradients for the relaxation
to learn parameters that directly optimize the related bound. Differentiation has been

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:3

successfully deployed for quadratic programs [2], linear programs [55, 18, 39], mixed integer
linear programs [19], MAXSAT [52], and blackbox discrete optimization [44, 42], among
others discussed in these surveys [46, 35]. However, this approach is the first to consider
using differentiable optimization together with learning to improve the filtering of a global
constraint.

Coming back to the TSP, the design of learning-based solving approaches has also
sparked a great interest in the research community [16, 34, 37]. In an industrial context,
this methodology is relevant for practitioners who are solving similar problem instances
every day and want to leverage historical decisions, e.g. in last-mile package delivery [41].
Graph neural networks (GNN) is a neural architecture [47, 33] widely considered for the
TSP [29]. More generally, GNNs also play a crucial role in the success of applying deep
learning to combinatorial optimization [30, 12]. They allow for the extraction of rich hidden
representations by successively aggregating the weights of neighboring nodes in a graph, on
which many combinatorial problems are defined.

Based on this context, the contribution of the paper is an approach based on unsupervised
learning and graph neural networks to generate appropriate Lagrangian multipliers for the
TSP, which are then used to improve the Held-Karp relaxation. We highlight that, compared
to most of the related work, we do not learn a primal heuristic but a learning-based strategy
that derives valid and tight dual bounds. Additionally, we integrate this mechanism inside a
branch-and-bound algorithm with domain filtering and constraint propagation [5] to improve
exact TSP solving. Experiments are carried out on three distributions of metric TSPs and
the results show that our approach can improve the filtering level of the weighted circuit
global constraint, reduce the optimality gap by a factor of two for unsolved instances up to a
timeout, and reduce the execution time for solved instances by 10%.

The following section briefly overviews the Held-Karp relaxation principle for the TSP.
Building upon this, we next describe the proposed learning approach for generating bounds
through unsupervised learning on the Lagrangian multipliers of the Held-Karp relaxation.
Finally, we discuss the training and integration of dual-bound generation within a branch-
and-bound algorithm to evaluate their impact.

2 Held-Karp Lagrangian Relaxation

Finding optimal solutions for large TSP instances requires sophisticated approaches due to the
combinatorial explosion of the solution space. With branch-and-bound, optimization bounds
are employed to prune the search tree and accelerate the search, allowing solvers to prove
optimality without exploring the entire tree. To achieve this, the Held-Karp relaxation [25]
offers a robust dual bound based on a variant of minimum spanning trees.

Let G = (V, E) be a complete graph with a cost attached to each edge. A minimum
1-tree is a minimum spanning tree of G\{1} to which we add the node 1 along with the two
cheapest edges connecting it to the tree. We note that the choice of node 1 is arbitrary,
depending on the labeling of V . A minimum 1-tree can be obtained by solving the integer
program presented in Equations (1) to (5). Constraints (2) and (3) define the 1-tree structure
and Constraint (4) enforces the elimination of sub-tours. This problem involves finding a
minimum spanning tree that can be solved in O(E log V) by Kruskal’s algorithm. Here, δ(v)
denotes the edges containing node v ∈ V and µe, νe denotes the two nodes linked by an edge
e ∈ E. We use ce ∈ R to represent the cost of an edge e ∈ E, and xe ∈ {0, 1} is the decision
variable indicating whether edge e is included in the 1-tree.

CP 2024

22:4 Learning Lagrangian Multipliers for the Travelling Salesman Problem

min
∑
e∈E

cexe (1)

s. t.
∑

e∈δ(1)
xe = 2 (2)

∑
e∈E

xe = |V | (3)∑
µe∈S
νe∈S
µe<νe

xe ≤ |S| − 1 ∀S ⊂ V \{1} ∧ |S| ≥ 3 (4)

xe ∈ {0, 1} ∀e ∈ E (5)

Let us note that every tour in G is a 1-tree, and if a minimum 1-tree is a tour, it is an
optimal solution to the TSP. Therefore any minimum 1-tree is a valid relaxation for the TSP,
which is an interesting property to leverage. However, a solution of this integer program is
not ensured to be a tour. To do so, a new set of constraints must be enforced.∑

e∈δ(v)

xe = 2 ∀v ∈ V \{1} (6)

These constraints force each node to have only two edges, an incoming and an outgoing
one, and turn the problem in finding a minimum-cost Hamiltonian cycle, which is NP-hard.
To obtain a valid 1-tree relaxation efficiently, one can then move these constraints (one for
each node) into the Objective (1) and penalize their violations with associated Lagrangian
multipliers θv ∈ R for each v ∈ V \{1}. The updated objective function is as follows.

min
∑
e∈E

cexe −
∑

v∈V \{1}

θv

(
2 −

∑
e∈δ(v)

xe

)
(7)

Intuitively, each node having a degree other than two will be penalized. An optimal 1-tree
relaxation can be found by optimizing over the θv variables. To do so, an iterative approach
has been proposed by Held and Karp [25, 26]. The idea is to adjust the Lagrangian multipliers
θ step-by-step to build a sequence of 1-trees which provides increasingly better bounds. An
overview of the process is proposed in Figure 1.

G(V, E)

∀v ∈ V : θv = 0

HK relaxation 1-tree Tθ(c′) Bound HK(θ)
∀(i, j) ∈ E :

c′
i,j = ci,j + θi + θj

∀v ∈ V : θv = C ×
(
2 − deg(v)

)

Figure 1 Approach of Held and Karp [25, 26] - Iterative process for improving θ multipliers.

First, an initial minimum 1-tree is computed by finding a minimum spanning tree on
G\{1} and adding the two cheapest edges incident to node 1. If the optimal 1-tree is a tour,
it corresponds to the optimal TSP solution. Otherwise, some constraints are penalized as at
least one node has a degree greater than 2. The main idea of Held and Karp [25, 26] is to
penalize such nodes by modifying the cost ci,j of edges (i, j) ∈ E, based on the values of θi

and θj (i.e., the multipliers of adjacent nodes). Let c′
i,j ∈ R be the modified costs. They are

computed as follows.

c′
i,j = ci,j + θi + θj ∀(i, j) ∈ E (8)

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:5

A property proved by Held and Karp [25, 26] is that the optimal TSP tour is invariant
under this perturbation, whereas the optimal 1-tree is not. This gives room to improve the
solution by finding better multipliers. Equation (9) proposes a standard choice to compute
the multipliers, where C ∈ R is an arbitrary constant and deg(v) denotes the degree of node
v ∈ V in the current 1-tree.

θv = C ×
(
2 − deg(v)

)
∀v ∈ V (9)

Finally, a new minimum 1-tree is computed from the graph with the updated costs c′
i,j .

We note this 1-tree as Tθ(c′) where c′ = {c1, . . . , c|E|} is the set of all modified costs, and
θ = {θ1, . . . , θ|V |} is the set of all multipliers. We also use the notation cost

(
Tθ(c′)

)
to refer

to the total cost of the 1-tree. This process is reiterated, and a new 1-tree Tθ(c′) is obtained
until no improvement is obtained (i.e., when a local minimum is reached). The cost of the
optimal 1-tree gives a lower bound on the objective value as follows.

HK(θ) = cost
(
Tθ(c′)

)
− 2

|V |∑
i=1

θi (10)

This bound, HK(θ), is commonly referred to in the literature as the Held-Karp bound. This
is a valid lower bound as if the related solution is not a tour, the optimal TSP tour will have
a higher value. Otherwise, the optimal tour would have been obtained as tours are 1-trees.
This approach is typically incorporated into a branch-and-bound algorithm, using this bound
to prune the search. While computing a 1-tree is generally computationally efficient, the
iterative adjustment of the θ multipliers can be computationally expensive. Our contribution
is dedicated to mitigating this issue thanks to an unsupervised learning process.

Example. Figure 2 illustrates the Held-Karp relaxation for a graph with an optimal TSP tour
value of 62 (a). A 1-tree is computed on the original graph without Lagrangian multipliers,
which yields a bound of 50 (b). Considering Equation (9) with C = 2, we obtain the following
multipliers: {θ1 : 0, θ2 : 4, θ3 : 0, θ4 : −2, θ5 : −2}. The corresponding penalized 1-tree with
Lagrangian multipliers modifying the edge costs provides a bound of 59, which is tighter (c).

1

2

3

4

5

20

22

15
40

14

10

16 7

12
5

(a) Initial TSP instance. The
optimal cost is 62.

1

2

3

4

5

20

22

15
40

14

10

16 7

12
5

(b) Minimum 1-tree under the
initial costs. Lower bound ob-
tained is 50 (gap of 20%).

1

2

3

4

5

18

20

11
38

12

14

16 9

14
9

θ2 : 4

θ1 : 0

θ3 : 0 θ4 : −2

θ5 : −2

(c) Minimum 1-tree with modified
costs. Lower bound obtained is 59
(gap of 5%).

Figure 2 Illustration of a single iteration of Held-Karp relaxation for an arbitrary TSP instance.

In constraint programming, the weighted circuit constraint [4] ensures that a set of
variables Y forms a Hamiltonian circuit on a graph, while also satisfying a specified condition
on the total cost z of the circuit. This can be intuitively understood as a conjunction of

CP 2024

22:6 Learning Lagrangian Multipliers for the Travelling Salesman Problem

a circuit constraint [36] and a second constraint enforcing the circuit to be lower than a
threshold. Briefly, the standard filtering algorithms for this constraint typically involve: (1)
identifying edges that must be included in any feasible solution, (2) eliminating edges that
cannot be part of any solution, and (3) determining the minimum possible value of the cost
threshold z. This information is then used for narrowing the domains of the variables Y .
Given that establishing bounds consistency for this constraint is NP-hard, Benchimol et
al. (2012) [5] proposed a filtering algorithm that uses relaxations of the weighted circuit
constraint, specifically leveraging the Held-Karp relaxation. A stronger relaxation, such as a
1-tree that provides a tighter lower bound, allows for more extensive filtering. This in turn
improves the efficacy of the weighted circuit propagator, which is the focus of this paper.
More broadly, this propagator is part of the cost-based filtering family, which utilizes valid
bounds for effective filtering. Generally, a tighter bound leads to more efficient filtering
within this framework.

3 Learning Held-Karp Multipliers

The Held-Karp bound HK(θ) has two interesting properties: (1) it can be parameterized
thanks to the θ Lagrangian multipliers, and (2) it is always valid, meaning it will never exceed
optimal TSP cost. Both properties open the opportunity to use a learning-based approach
to compute the bound. To do so, we propose to build a model Φw : G(V, E) → R|V | able to
directly predict all the θ multipliers for a TSP instance given as input (i.e., a graph). The
model is parameterized with p parameters w = {w1, . . . , wp}. There are two benefits to this.
First, it eliminates parts of the iterative process of Held and Karp [25] depicted in Figure 2
and saves execution time. Second, it allows us to obtain tighter bounds. The process is
illustrated in Figure 3.

G(V, E)

∀v ∈ V : θv = Φw(G)

HK relaxation 1-tree Tθ(c′) Bound HK(θ)
∀(i, j) ∈ E :

c′
i,j = ci,j + θi + θj

∇wHK(θ) with θ = Φw(G)

Figure 3 Our contribution - Unsupervised learning approach to obtain θ multipliers through
backpropagation.

The goal is to find model parameters w yielding the highest possible bound. This corres-
ponds to a maximization problem that can be solved by gradient-based optimization. The
obtained bound is provably valid, regardless of the trained model’s accuracy thanks to the
second property. We consider this a major strength of our contribution, as obtaining guaran-
tees with machine learning for combinatorial optimization is known to be a challenge [35].
We formulate the bound maximization problem and its gradient below.

max
w

HK
(
Φw(G)

)
7−→ ∇wHK(Φw(G)) (11)

However, computing the gradient of this expression is not trivial, as the bound is obtained
by means of the 1-tree combinatorial structure Tθ(c′) (see Equation (10)). As the tree is
parameterized by θ, the chain rule can be applied to clarify the dependencies between model
parameters w and Lagrangian multipliers θ.

∇wHK
(
Φw(G)

)
= ∂HK(Φw(G))

∂θ
× ∂θ

∂w
(12)

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:7

The right term corresponds to the differentiation of the predictive neural network model and
is easily obtained by backpropagation. However, the left term requires to differentiate the
expression depicted in Equation (10) for all θi with i ∈ V .

∂HK(.)
∂θ

=
∂cost

(
Tθ(c′)

)
∂θ

− 2
∂
∑|V |

i=1 θi

∂θ
(13)

The cost of the 1-tree (i.e., cost
(
Tθ(c′)) corresponds to the weighted sum of the selected edges

(i.e., variables xi,j for each (i, j) ∈ E). The cost c′
i,j defines the weights.

∂HK(.)
∂θ

=
∂
(∑∈E

(i,j) c′
i,jxi,j

)
∂θ

− 2
∂
∑|V |

i=1 θi

∂θ
(14)

Let us consider a specific multiplier θi associated to node i ∈ V and let us unroll the cost as
c′

i,j = ci,j + θi + θj (see Equation (8)). The partial derivative of θi is non-zero only for the
node itself and its adjacent edges, i.e. (i, j) ∈ δ(i).

∂HK(.)
∂θi

=
∂
∑∈δ(i)

(i,j) (ci,j + θi + θj)xi,j

∂θi
− 2∂θi

∂θi
(15)

=
∂
∑∈δ(i)

(i,j) θixi,j

∂θi
− 2∂θi

∂θi
(16)

=
∑

(i,j)∈δ(i)
xi,j − 2 (17)

This gives the partial derivative for each θi and allows us to maximize a bound obtained by
a neural network directly with gradient ascent. Interestingly, this signal is non-zero when
the degree of the node is different than 2 in the 1-tree. This is aligned with the intuition
that we want to adjust the multipliers of conflicting nodes.

We note that the derivative obtained is correct only locally and not globally. Indeed, the
cost function in Equation (13) is an optimization problem consisting in finding a minimum
1-tree (i.e., setting variables x) from the current costs c′ and that the values of x will depend
on θ. We experimented with a globally valid derivative by computing all insertion and
replacement costs to integrate them in the derivative of x, but this resulted latter in an
unstable training, likely because of the non-convexity of the optimization landscape. For such
a reason, we carried out a subgradient ascent on a locally valid derivative instead. Variations
of variables x are then taken into account in the subsequent gradient ascent step. We have
empirically observed increased stability as a result of this procedure.

The training procedure is formalized in Algorithm 1. It gives as output the parameters w

of the trained neural network Φw. We note that this training loop can be easily improved
with standard techniques in deep learning, such as mini-batches or using another gradient-
based optimizer, such as Adam [32]. Unlike gradient descent, we aim to maximize the
bound, explaining the + term at Line 10. We highlight that the training is unsupervised
as it does not require ground truth on known tight bounds for training the model, nor the
corresponding Lagrangian multipliers. In each iteration of the algorithm, the values of x will
change as the multipliers (θ) are updated. This explains how the variations of x are implicitly
considered during each subgradient ascent step. Finally, two aspects of the methodology
require clarification: the architecture of the network Φw and how the training set D is built.
Both are discussed in the following sections.

CP 2024

22:8 Learning Lagrangian Multipliers for the Travelling Salesman Problem

Algorithm 1 Training phase from an input graph G(V, E).
1: ▷ Pre: D is the set of instances used for training.
2: ▷ Pre: Φw is the differentiable model to train.
3: ▷ Pre: w are randomly initialized parameters.
4: ▷ Pre: K is the number of training epochs.

5: for k from 1 to K do
6: G := SampleFromTrainingSet(D)
7: θ := Φw(G)
8: Tθ(c′) := HeldKarpRelaxation(G, θ)
9: HK

(
θ
)

:= cost
(
Tθ(c′)

)
− 2

∑|V |
i=1 θi

10: w := w + ∇wHK
(
Φw(G)

)
11: end for
12: return w

3.1 Training Set Construction

The training is carried out from a dataset D consisting of a set of graphs G(V, E) serving as
TSP instances. The graphs can either be obtained from historical problem instances (e.g.,
previous routing networks and costs for a delivery company) or randomly generated. Each
graph has six features fi for each node i ∈ V and three features ki,j for each edge (i, j) ∈ E.
The features we used are presented in Table 1 and in Table 2. We have incorporated the
features we believe are important for this task, but we have not analyzed the individual
impact of each feature. One strength of deep neural networks is their ability to learn to
disregard features that are not beneficial for the task. Although most of the features are
relatively standard, k2

i,j and k3
i,j introduce the notions of mandatory and forbidden edges.

In the context of a branch-and-bound algorithm, some decision variables are fixed after
branching operations. An edge is mandatory if it must be part of the TSP solution (i.e.,
xi,j = 1) and it is forbidden if it cannot be in the solution (i.e., xi,j = 0). This information
is crucial as we plan to compute bounds several times during a branch-and-bound execution,
with the intention of leveraging partial solutions to get better bounds.

Table 1 Summary of the features on nodes i for each i ∈ V used in an input graph G(V, E).

Symbol Formalization Description

f1
i , f2

i ∈ R2 xPos(i), yPos(i) 2-dimensional coordinate of the node.
f3

i ∈ R 1
|V |

∑|V |
j=1 ∥coord(i) − coord(j)∥2 Average euclidean distance with the other nodes.

f4
i ∈ R minj ̸=i (f3

1 , . . . , f3
j , . . . , f3

|V |) Distance to the nearest node in the graph.
f5

i ∈ N+ deg(i) Degree in terms of incoming and outgoing edges.
f6

i ∈ {0, 1} 1 iff i = 1, 0 otherwise Indication if it is the excluded node in G\{1}.

A direct observation is that there are no fixed edges at the root node of a branch-and-
bound tree, and consequently, for none of the instances in the training set. This causes a
distributional shift between instances used for the training (only at the root node) and the
ones occurring at the testing phase (also inside the branch-and-bound tree). To address
this limitation, we propose to enrich the training set with partially solved TSP instances
extracted from explored branch-and-bound nodes. In practice, it is done by fixing a threshold
k ∈ N+ on the number of nodes to consider in the training set. This makes the computation
tractable as it avoids considering all the nodes of an exponentially sized tree search.

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:9

Table 2 Summary of the features on edges (i, j) for each (i, j) ∈ E used in an input graph
G(V, E).

Symbol Formalization Description

k1
i,j ∈ R ci,j The cost of the edge.

k2
i,j ∈ {0, 1} 1 iff (i, j) is forbidden, 0 otherwise Binary value indicating if the edge is forbidden.

k3
i,j ∈ {0, 1} 1 iff (i, j) is mandarory, 0 otherwise Binary value indicating if the edge is mandatory.

3.2 Graph Neural Network Architecture
A TSP instance exhibits a natural graph structure. For this reason, we built the model
Φw with a graph neural network [47, 33] (GNN). This architecture has been widely used
in related works for the TSP, thanks to their ability to handle instances of different size,
to leverage node and edge features, etc. In its standard version, GNNs are dedicated to
computing a vector representation of each node of the graph. Such a representation is
commonly referred to as an embedding. The embedding of a specific node is computed by
iteratively transforming and aggregating information from the neighboring nodes. Each
aggregation operation is referred to as a layer of the GNN and involves weights that must be
learned. This operation can be performed in many ways, and there exist in the literature
different variants of GNNs. An analysis on the performances of various architectures is
proposed by Dwivedi et al. (2023) [17]. Our model is based on the edge-featured graph
attention network [53] which is a variant of the well-known graph attention network [50]
dedicated to handle features on the edges. The whole architecture is differentiable and is
trained with backpropagation.

Let G(V, E) be the input graph, fi ∈ R6 be a vector concatenating the 6 features of a
node i ∈ V , and ki,j ∈ R3 be a vector concatenating the three features of an edge (i, j) ∈ E.
The GNN architecture is composed of L layers. Let hl

i ∈ Rd be a d-dimensional vector
representation of a node i ∈ V at layer l ∈ {1, . . . , L}, and let hl+1

i ∈ Rd′ a d′-dimensional
vector representation of i at the next layer. The inference process consists in computing the
next representation (hl+1

i) from the previous one hl
i for each node i. The first representation

is set with the initial features of the node, i.e. h1
i = fi for each i ∈ V . The computation is

formalized in Equations (18) to (20), where wl
1 and wl

2 are two weight tensors that need to
be trained for each layer.

hl+1
i = ReLU

(∑
j∈N (i)

αl
(i,j)w

l
1hl

j

)
∀i ∈ V ∧ ∀l ∈ {1, . . . , L − 1} (18)

αl
(i,j) = Softmax

(
LeakyReLU

(
wl

2 ×
(
hl

i

∥∥ki,j

∥∥hl
j

)))
(19)

θv = FCNN
(
h

|L|
i

)
∀i ∈ V (20)

Equation (18) shows the message passing operation in a layer. Each node i aggregates
information of all its neighbors N (i). The aggregation is subject to parameterized weights
wl

1 and a self-attention score αl
i,j . This score allows the model to put different weights on the

incoming messages from neighboring nodes. We note that the attention integrates information
about the node itself (hl

i), its neighbor (hl
j), and the features attached to the adjacent edge

(ki,j). Such information is concatenated (.∥.) into a single vector. Non-linearities are added
after each aggregation and the final node embeddings h

|L|
i are given as input to a fully-

connected neural network (FCNN) outputing the corresponding θi multiplier for each i ∈ V .
The GNN has 3 graph attention layers with a hidden size of 32 and the fully-connected
neural network has 2 layers with 32 neurons.

CP 2024

22:10 Learning Lagrangian Multipliers for the Travelling Salesman Problem

4 Experimental Evaluation

The goal of the experiments is to evaluate the efficiency of the approach to speed-up a
TSP solver based on branch-and-bound and constraint programming [5]. To do so, the
learned bounds are integrated into the Held-Karp relaxation used by the weighted circuit
constraint [4] and are used to filter unpromising edges. The model is used only for the 10
first nodes expanded in the branch-and-bound tree (parameter k). We refer to HK for the
standard solver of Benchimol et al. (2012) [5] and to HK+GNN for the one we introduce. We
also considered a version using the learned multipliers but without the Held-Karp refinement
(i.e., GNN without HK) but the results showed that the bounds obtained only with the
learned multipliers alone were far from the optimal bound and are not included in the next
experiments. Combining the learned bounds with the Held-Karp refinement is thus required.

4.1 Experimental Protocol
This section outlines the experimental protocol employed to evaluate the efficacy and reliability
of our approach. It details the specific datasets, hardware configurations, software tools, and
performance metrics used across various testing scenarios.

4.1.1 Datasets
Five datasets of different complexity are considered. They correspond to variants of the
metric TSP (i.e., the graphs are complete and the distances are euclidean) on which the
cities are localized with different patterns.
1. Random100 (and 200): the cities (100 or 200) are uniformly generated in the [0, 1]2 plan.
2. Clustered100 (and 200): inspired by Fischetti and Toth (1989) [21], five clusters are

uniformly generated in the [0, 1]2 plan. Then, the cities (100 or 200) are uniformly
generated inside the 0.1-radius circles for each cluster.

3. Hard: introduced by Hougardy and Zhong (2021) [27], these 50 instances ranging from 52
to 199 cities have been generated to have a large integrality gap and are provably hard to
solve for branch-and-bound methods.

A test set of 50 instances is built for each configuration and is used for evaluation. For
the last dataset, as it is relatively small, only 6 instances are taken for evaluation.

4.1.2 Implementation
The graph neural network has been implemented with deep graph library [51] and Pytorch [43].
During the training, the minimum spanning trees have been computed with NetworkX [24].
We used the C++ implementation of Benchimol et al. (2012) [5] for the branch-and-
bound solver. The interface between the python and the C++ code has been done with
native functions from both languages. The solver used to compute the optimal solution is
Concorde [3]. The implementation and the datasets used are released on Github1.

4.1.3 Training
The training phase corresponds to the execution of Algorithm 1. A specific model is trained
for the five configurations. The training sets for Random and Clustered have 100 instances
sampled from the given generating scheme. For the Hard dataset, 40 instances uniformly

1 https://github.com/corail-research/learning-hk-bound

https://github.com/corail-research/learning-hk-bound

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:11

sampled from the 50 available instances are taken. For each instance, 10 subgraphs are
generated (parameter k) and are added to the training set. They correspond to partially
solved instances that could be found inside the branch-and-bound tree. We highlight that
we do not need to label the training instances with known multipliers as the learning is
unsupervised. Training time is limited to 4 hours on a AMD Rome 7502 2.50GHz processor
with 64GB RAM. No GPU has been used. Models are trained with a single run and we
observed the convergence of the loss function on a validation set of 20 instances. The Adam
optimizer with a learning rate of 10−3 has been used.

4.1.4 Hyperparameters
The branch-and-bound has been configured with the standard settings and most of the
hyperparameters follow the recommended values. No hyperparameter tuning has been
carried out due to our limited resources. We think that our results can be improved with
a more thorough calibration (e.g., slightly changing the number of layers), but as our goal
was not to build the most efficient neural network but rather to show the promise of using
them to get valid multipliers, we have not carried out this operation. A notable exception is
the threshold k on the maximum number of nodes which has an important impact on the
performances. We tested values in {1, 5, 10, 20, 50} and selected k = 10 as it provided the
best results and trade-off between accuracy and computation time.

4.1.5 Evaluation Metrics
Five metrics are reported in the results: (1) the execution time to prove the optimality of a
solution, (2) the number of instances solved to optimality, (3) the percentage of edges filtered
before branching through the propagation, (4) the optimality gap for unsolved instances, and
(5) the primal-dual integral. This last metric measures the convergence of the dual bound
and the primal bound over the whole solving time [10]. At each iteration, we record the best
primal and dual bounds during the whole solving process. Then, the primal-dual integral
value consists in taking the area between the two resulting curve obtained. Intuitively, the
smaller the better. Each instance is solved only once per experiment as no randomness is
involved in the execution. We clarify that our objective is not to compete with Concorde,
which is capable of optimally solving all the instances we consider. Instead, our goal is to
enhance the filtering of the weighted circuit constraint. This constraint can then be used
to more complex variants of the Traveling Salesman Problem, such as the TSP with time
windows.

4.2 Empirical Results
This section presents the results obtained from our experimental analysis. These findings are
compiled to provide a quantitative evaluation of the performance and effectiveness of our
approach under different scenarios. Each experiment is designed to test a specific hypothesis.
Finally, a discussion about current limitations are proposed.

4.2.1 Main Results: Quality of the Learned Bounds
Table 3 summarizes the results for HK and HK+GNN on the five datasets. Values are averaged
for each configuration. First, we can observe that our approach gives consistently better
results on all the metrics compared to the baseline. As expected, it provides better filtering on
the edges. This is reflected by a higher number of solved instances, a reduced execution time,

CP 2024

22:12 Learning Lagrangian Multipliers for the Travelling Salesman Problem

and a reduced optimality gap for unsolved instances. The primal-dual integral confirms that
tighter dual bounds are obtained during the search. Second, we notice that the improvements
on the Hard dataset are more modest. This can be explained by the fact that they are
designed to be challenging. It is consequently more difficult to get improvements on these
ones. We note that the time savings obtained with our methods could not provide to a
potential faster calculation of the multipliers. The reason is that the cost of computing the
multipliers is higher with our method as we combine both the prediction and the iterative
HK process (HK+GNN). The speed-up is consequently due to an improved filtering.

Table 3 Comparison of our approach (HK + GNN) with the standard branch-and-bound of
Benchimol et al. (HK). The primal bound is 2% above the optimal solution cost computed with
Concorde. The statistics considered are: the execution time up to a timeout of 1,800 seconds (Time),
the number of instances solved to optimality with proof (# solved), the primal-dual integral (PDI),
the percentage of edges filtered (Filt.) and the optimality gap for unsolved instances (Gap). The
relative improvement compared to the baseline is also depicted.

Configuration
Branch-and-bound with standard Held-Karp (HK) Branch-and-bound with our approach (HK+GNN)

Time (sec.) # solved PDI Filt. (%) Gap (%) Time (sec.) # solved PDI Filt. (%) Gap (%)

Random100 559 41/50 1127k 75.9 0.88 497 (- 11%) 46/50 (+ 5) 965k (- 14%) 77.7 (+ 2%) 0.48 (- 45%)

Random200 1800 0/50 4.71m 67.8 1.82 1800 0/50 (+ 0) 4.26m (- 10%) 70.6 (+ 4%) 0.59 (- 68%)

Clustered100 643 38/50 497k 17.7 0.19 590 (- 8%) 40/50 (+ 2) 470k (- 5%) 20.3 (+ 15%) 0.08 (- 58%)

Clustered200 1800 0/50 922k 9.9 0.68 1800 0/50 (+ 0) 690k (- 25%) 12.6 (+27%) 0.38 (- 44%)

Hard 1800 0/6 9.59M 6.4 0.32 1800 0/6 (+ 0) 9.36M (- 2%) 6.5 (+1%) 0.31 (- 3%)

4.2.2 Analysis: Focus on Individual Instances
Figure 4 provides an analysis of the optimality gap for the three hardest configurations by
means of scatter plots. Each dot corresponds to a specific instance. When a dot is upper
than the diagonal, it means that our approach provided better results than the baseline.
Unlike the previous experiments, it provides insights about the robustness of the method.
For the majority of the instances, our approach gave better or similar results, except for one
instance in the Hard dataset.

(a) Results on Random200. (b) Results on Clustered200. (c) Results on Hard.

Figure 4 Scatter plots comparing the optimality gap (%) for HK and HK + GNN on the three
hardest configurations.

4.2.3 Analysis: Addressing the Optimality Proof
This next experiment evaluates the ability of proving the optimality of a solution only once
this solution has been found. Concretely, instead of taking a reasonable upper bound of
2%, we assume that the optimal solution has been found and we use it as a perfect upper

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:13

bound. The idea is to mimic results achieved by a good primal heuristic and to close the
search by proving the optimality of the solution provided with this information. Results
are summarized in Table 4. In such a situation, the improvements with the baseline are
still positive, especially for the largest and hardest configurations. This shows the potential
of learning dual bounds to accelerate optimality proofs and the synergies with approaches
operating in the primal side.

Table 4 Comparison of our approach (HK + GNN) with the standard branch-and-bound of
Benchimol et al. (HK) for optimality proof. Compared to Table 3, the primal bounds are now the
cost of the optimal solution.

Configuration
Branch-and-bound with standard Held-Karp (HK) Branch-and-bound with our approach (HK+GNN)

Time (sec.) # solved PDI Filt. (%) Gap (%) Time (sec.) # solved PDI Filt. (%) Gap (%)

Random100 209 48/50 591k 92.1 0.05 203 (- 3%) 48/50 (+ 0) 544k (- 7%) 92.2 (+ 0%) 0.05 (- 0%)

Random200 1800 0/50 4.44m 85.6 1.16 1800 0/50 (+ 0) 4.11m (- 7%) 89.1 (+ 4%) 0.43 (- 62%)

Clustered100 112 48/50 103k 25.4 0 110 (- 1%) 49/50 (+ 1) 100k (- 3%) 25.5 (+ 0%) 0 (- 0%)

Clustered200 1800 0/50 713k 14.5 0.43 1800 0/50 (+ 0) 644k (-9%) 16.8 (+15%) 0.30 (- 30%)

Hard 1800 0/6 7.59M 17.8 0.26 1800 0/6 (+ 0) 7.02M (- 7%) 18.0 (+ 1%) 0.19 (- 24%)

4.2.4 Analysis: Generalization Ability

This last experiment analyzes how the models are able to generalize to new configurations,
either for a higher number of cities or with another generation scheme. Concretely, we
considered four configurations (Random100, Random200, Clustered100 and AllDataset, the
latter being trained on the instance of all datasets) and evaluated them on Clustered200.
The idea of this experiment is to compare the generalization ability of models trained on
specific datasets (Random100, Random200 and Cluster100). Results on AllDataset provide an
idea of the best performances that the specific models can achieve. Results are presented in
Table 5. Although the performance of the specific model is not reached, we observe that the
models trained on the other distributions are still able to outperform the standard model.
Training a model on all datasets (AllDataset) allows to improve upon out-of-distribution
models but does not achieve the performance of the specialized model. This confirms the
intuitive benefit to know beforehand the distribution of the instances to solve.

Table 5 Analysis of the generalization. The different models are used to solve Clustered200
graphs.

Model Branch-and-bound with HK+GNN

PDI Filt. (%) Gap (%)

Clustered200 690k 12.6 0.38

HK without GNN 922k 9.9 0.68

Clustered100 817k 11.1 0.54
Random100 845k 10.4 0.61
Random200 784k 11.3 0.49
AllDataset 722k 12.0 0.45

CP 2024

22:14 Learning Lagrangian Multipliers for the Travelling Salesman Problem

4.2.5 Discussion: Application to Non-Euclidean Instances

Previous experiments have shown promising results for various configurations of metric TSPs.
However, it is important to note that the performance on other types of TSP instances,
such as asymmetric or non-Euclidean TSPs, which are known to be more challenging, has
not been evaluated in this paper. Consequently, it remains uncertain whether the observed
performance will extend to these more complex instances. Exploring this further constitutes
an interesting avenue for future research. Such an analysis can be facilitated using the
instances available in TSPLib [45], providing a robust framework for testing under more
diverse conditions.

4.2.6 Discussion: Considering the Training Time

As is common practice with machine learning tools, our framework assumes that we can
train a model offline before its deployment to solve new instances, ideally following a similar
distribution. In such cases, the training time can be disregarded, as it will be amortized
over a large number of future instances. However, this assumption does not hold in all
realistic scenarios where training time cannot be separated from solving time. In such
situations, while our approach remains applicable, the time required to train the model
must be considered and can be prohibitive. To address this, an initial analysis could involve
monitoring how the learned bounds improve with training time. This would provide a more
detailed understanding and help identify when training can be stopped to proceed directly to
the solving phase. Intuitively, this approach may offer slightly less effective filtering compared
to HK+GNN, but it is aimed to result in a reduced total execution time.

5 Conclusion

Learning-based methods have been extensively considered to provide approximate solutions
to combinatorial optimization problems, such as the travelling salesman. However, learning
to obtain dual bounds has been less considered in the literature and is much more challenging
as there is no trivial way to ensure that the obtained bounds are valid. This paper introduces
an unsupervised learning approach, based on graph neural networks and the Held-Karp
Lagrangian relaxation, to tackle this challenge. The core idea is to predict accurate Lagrangian
multipliers and employ them as a warm start for generating Held-Karp relaxation bounds.
These bounds are subsequently used to enhance the filtering level of the weighted circuit
global constraint and improve the performances of a branch-and-bound algorithm. The
empirical results on different configurations of the TSP showed that the learning component
can significantly improve the algorithm. We believe that the methodology can be integrated
into existing CP solvers. To do so, one will need to refactor the weighted circuit global
constraint implemented in the related solver to add the learned bounds. Although centered
on the TSP, we note that weighted circuit global constraint could be used for other, and
more challenging, TSP variants including time windows or time-dependent costs. Analyzing
how these variants can be handled efficiently is part of our future work. Also, we believe that
the methodology can be easily reused for other propagators using Lagrangian relaxation,
such as for the AtMostNValue [9] or for the general framework of CP-based Lagrangian
relaxation [48].

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:15

References
1 Ahmed Abbas and Paul Swoboda. DOGE-train: Discrete optimization on GPU with end-to-end

training. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20623–20631,
2024.

2 Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 136–145. JMLR.org, 2017.

3 David L. Applegate, Robert E. Bixby, Vašek Chvatál, and William J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press, 2006. URL: http:
//www.jstor.org/stable/j.ctt7s8xg.

4 Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP. Mathem-
atical and computer Modelling, 20(12):97–123, 1994.

5 Pascal Benchimol, Willem-Jan van Hoeve, Jean-Charles Régin, Louis-Martin Rousseau, and
Michel Rueher. Improved filtering for weighted circuit constraints. Constraints, 17:205–233,
2012.

6 Pascal Benchimol, Jean-Charles Régin, Louis-Martin Rousseau, Michel Rueher, and Willem-
Jan Van Hoeve. Improving the Held and Karp approach with constraint programming. In
International Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming, pages 40–44. Springer, 2010.

7 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

8 David Bergman, Andre A Cire, and Willem-Jan van Hoeve. Improved constraint propagation
via lagrangian decomposition. In International Conference on Principles and Practice of
Constraint Programming, pages 30–38. Springer, 2015.

9 Frédéric Berthiaume and Claude-Guy Quimper. Local alterations of the lagrange multipliers
for enhancing the filtering of the atmostnvalue constraint. In International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages
68–83. Springer, 2024.

10 Timo Berthold. Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614, 2013.

11 Quentin Cappart, David Bergman, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Augustin Parjadis. Improving variable orderings of approximate decision diagrams using
reinforcement learning. INFORMS Journal on Computing, 34(5):2552–2570, 2022.

12 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and
Petar Velickovic. Combinatorial optimization and reasoning with graph neural networks.
Journal of Machine Learning Research, 24(130):1–61, 2023. URL: http://jmlr.org/papers/
v24/21-0449.html.

13 Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3677–3687, 2021.

14 Martin C Cooper, Simon De Givry, Martı Sánchez, Thomas Schiex, Matthias Zytnicki, and
Tomas Werner. Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

15 Yanchen Deng, Shufeng Kong, Caihua Liu, and Bo An. Deep attentive belief propagation:
Integrating reasoning and learning for solving constraint optimization problems. Advances in
Neural Information Processing Systems, 35:25436–25449, 2022.

16 Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the TSP by policy gradient. In International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 170–181. Springer, 2018.

CP 2024

http://www.jstor.org/stable/j.ctt7s8xg
http://www.jstor.org/stable/j.ctt7s8xg
http://jmlr.org/papers/v24/21-0449.html
http://jmlr.org/papers/v24/21-0449.html

22:16 Learning Lagrangian Multipliers for the Travelling Salesman Problem

17 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023.

18 Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science,
68(1):9–26, 2022.

19 Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. MIPaaL: Mixed integer
program as a layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 1504–1511, 2020.

20 Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra
Dilkina, and Yuandong Tian. SurCo: Learning linear surrogates for combinatorial nonlinear
optimization problems. In International Conference on Machine Learning, pages 10034–10052.
PMLR, 2023.

21 Matteo Fischetti and Paolo Toth. An additive bounding procedure for combinatorial optimiz-
ation problems. Operations Research, 37(2):319–328, 1989.

22 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

23 Minh Hoàng Hà, Claude-Guy Quimper, and Louis-Martin Rousseau. General bounding mech-
anism for constraint programs. In Principles and Practice of Constraint Programming: 21st
International Conference, CP 2015, Cork, Ireland, August 31–September 4, 2015, Proceedings
21, pages 158–172. Springer, 2015.

24 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Lab. Los Alamos, NM
(United States), 2008.

25 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970. URL: http://www.jstor.org/stable/
169411.

26 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 18(1):6–25, 1971. doi:10.1007/BF01584070.

27 Stefan Hougardy and Xianghui Zhong. Hard to solve instances of the euclidean traveling
salesman problem. Mathematical Programming Computation, 13:51–74, 2021.

28 Vinasetan Ratheil Houndji, Pierre Schaus, Mahouton Norbert Hounkonnou, and Laurence
Wolsey. The weighted arborescence constraint. In International Conference on AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages
185–201. Springer, 2017.

29 Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. Constraints, 27(1-2):70–
98, 2022.

30 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6351–6361, 2017.

31 Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), February 2016. doi:10.1609/aaai.v30i1.10080.

32 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

33 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL: https:
//openreview.net/forum?id=SJU4ayYgl.

34 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

http://www.jstor.org/stable/169411
http://www.jstor.org/stable/169411
https://doi.org/10.1007/BF01584070
https://doi.org/10.1609/aaai.v30i1.10080
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

A. Parjadis, Q. Cappart, B. Dilkina, A. Ferber, and L.-M. Rousseau 22:17

35 James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end
constrained optimization learning: A survey. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4475–4482.
International Joint Conferences on Artificial Intelligence Organization, August 2021. Survey
Track. doi:10.24963/ijcai.2021/610.

36 Jena-Lonis Lauriere. A language and a program for stating and solving combinatorial problems.
Artificial intelligence, 10(1):29–127, 1978.

37 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

38 Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP, 25(2):207–236,
2017.

39 Jayanta Mandi, Emir Demirovic, Peter J Stuckey, and Tias Guns. Smart predict-and-optimize
for hard combinatorial optimization problems. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1603–1610, 2020.

40 Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns,
and Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark
and future opportunities. arXiv preprint arXiv:2307.13565, 2023.

41 Daniel Merchán, Jatin Arora, Julian Pachon, Karthik Konduri, Matthias Winkenbach, Steven
Parks, and Joseph Noszek. 2021 Amazon last mile routing research challenge: Data set.
Transportation Science, 2022.

42 Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: backpropagating
through discrete exponential family distributions. Advances in Neural Information Processing
Systems, 34:14567–14579, 2021.

43 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

44 Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek.
Differentiation of blackbox combinatorial solvers. In International Conference on Learning
Representations, 2019.

45 Gerhard Reinelt. TSPLIB — A traveling salesman problem library. ORSA journal on
computing, 3(4):376–384, 1991.

46 Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and
Thibaut Vidal. A survey of contextual optimization methods for decision-making under
uncertainty. European Journal of Operational Research, 2024.

47 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

48 Meinolf Sellmann. Theoretical foundations of CP-based lagrangian relaxation. In International
Conference on Principles and Practice of Constraint Programming, pages 634–647. Springer,
2004.

49 Daniel Selsam, Matthew Lamm, B Benedikt, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a SAT solver from single-bit supervision. In International Conference on
Learning Representations, 2018.

50 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International Conference on Learning Represent-
ations, 2018. URL: https://openreview.net/forum?id=rJXMpikCZ.

51 Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

CP 2024

https://doi.org/10.24963/ijcai.2021/610
https://openreview.net/forum?id=rJXMpikCZ

22:18 Learning Lagrangian Multipliers for the Travelling Salesman Problem

52 Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In International Conference on
Machine Learning, pages 6545–6554. PMLR, 2019.

53 Ziming Wang, Jun Chen, and Haopeng Chen. EGAT: Edge-featured graph attention network.
In Igor Farkaš, Paolo Masulli, Sebastian Otte, and Stefan Wermter, editors, Artificial Neural
Networks and Machine Learning – ICANN 2021, pages 253–264, Cham, 2021. Springer
International Publishing.

54 Tomas Werner. A linear programming approach to max-sum problem: A review. IEEE
transactions on pattern analysis and machine intelligence, 29(7):1165–1179, 2007.

55 Bryan Wilder. Melding the data-decisions pipeline: Decision-focused learning for combinatorial
optimization. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

56 Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining deep learn-
ing model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem.
Advances in Neural Information Processing Systems, 34:7472–7483, 2021.

57 Kaan Yilmaz and Neil Yorke-Smith. A study of learning search approximation in mixed
integer branch and bound: Node selection in SCIP. AI, 2(2):150–178, April 2021. doi:
10.3390/ai2020010.

https://doi.org/10.3390/ai2020010
https://doi.org/10.3390/ai2020010

	1 Introduction
	2 Held-Karp Lagrangian Relaxation
	3 Learning Held-Karp Multipliers
	3.1 Training Set Construction
	3.2 Graph Neural Network Architecture

	4 Experimental Evaluation
	4.1 Experimental Protocol
	4.1.1 Datasets
	4.1.2 Implementation
	4.1.3 Training
	4.1.4 Hyperparameters
	4.1.5 Evaluation Metrics

	4.2 Empirical Results
	4.2.1 Main Results: Quality of the Learned Bounds
	4.2.2 Analysis: Focus on Individual Instances
	4.2.3 Analysis: Addressing the Optimality Proof
	4.2.4 Analysis: Generalization Ability
	4.2.5 Discussion: Application to Non-Euclidean Instances
	4.2.6 Discussion: Considering the Training Time

	5 Conclusion

