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Abstract
Researchers recently extended Distributed Constraint Optimization Problems (DCOPs) to
Communication-Aware DCOPs so that they are applicable in scenarios in which messages can
be arbitrarily delayed. Distributed asynchronous local search and inference algorithms designed
for CA-DCOPs are less vulnerable to message latency than their counterparts for regular DCOPs.
However, unlike local search algorithms for (regular) DCOPs that converge to k-opt solutions (with
k > 1), that is, they converge to solutions that cannot be improved by a group of k agents), local
search CA-DCOP algorithms are limited to 1-opt solutions only.

In this paper, we introduce Latency-Aware Monotonic Distributed Local Search-2 (LAMDLS-2),
where agents form pairs and coordinate bilateral assignment replacements. LAMDLS-2 is monotonic,
converges to a 2-opt solution, and is also robust to message latency, making it suitable for CA-DCOPs.
Our results indicate that LAMDLS-2 converges faster than MGM-2, a benchmark algorithm, to a
similar 2-opt solution, in various message latency scenarios.
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1 Introduction

A promising multi-agent approach for addressing distributed applications, where agents
aim to achieve mutual optimization goals, is by modeling them as Distributed Constraint
Optimization Problems (DCOPs) [12, 16, 5]. An illustrative example of such an application
is a smart home, where various smart devices must coordinate to create a schedule that
optimizes user preferences and satisfies constraints [6, 19]. In this context, decision-makers
are represented as “agents” that assign “values” to their respective “variables”, and the
objective is to optimize a global objective in a decentralized manner.

DCOPs are NP-hard [12] and, thus, considerable research effort has been devoted to
developing incomplete algorithms for finding good solutions quickly [23, 10, 24, 3, 4, 20, 8, 14].
Distributed local search algorithms such as Distributed Stochastic Algorithm (DSA) [24]
and Maximum Gain Message (MGM) [10] are two of the most popular incomplete DCOP
algorithms.
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Most state-of-the-art local search DCOP algorithms (including DSA and MGM) are
synchronous. However, the general setting in which agents operate is inherently asynchronous.
Synchronization is achieved through message exchanges in each iteration of the algorithm, in
which an agent receives messages sent by its neighbors in the previous iteration, performs
computation, and sends messages to all its neighbors [24, 26]. This ensures that at iteration k,
an agent has access to all information sent to it during iteration k−1. The synchronous design
enables the attainment of some desirable properties. For example, MGM agents achieve
monotonicity on the quality of the solutions found by modifying their value assignments
while ensuring that neighboring agents do not concurrently replace their assignments [10].

There exists a class of local search DCOP algorithms that guarantee that the solutions
found are k-opt (i.e., they cannot be improved by a group of k agents) [15]. MGM is a
1-opt algorithm and MGM-2 is an extension that is a 2-opt algorithm. Unfortunately, their
synchronous designs take advantage of the overly simplistic communication assumptions in
the DCOP model, which do not reflect real-world scenarios. Notably, the assumption that all
messages arrive instantaneously or with negligible and bounded delays is impractical, given
that real-world networks may suffer from delays due to congestion and limited bandwidth.

To address these limitations, researchers introduced Distributed Asynchronous Local
Optimization (DALO), an asynchronous k-opt algorithm for solving DCOPs [9]. Unfortunately,
its design lacks robustness in scenarios with message delays, restricting its applicability.
Specifically, agents try to form groups by asking others to commit to the process they initiate,
ensuring an up-to-date local view when computing local optimization. Because neighboring
agents attempt to form groups simultaneously, a randomly set local timer is used. Agents can
only commit to other groups if a lock request is sent during this timer’s duration. However,
this design fails when the local timer is not coordinated with the magnitude of message
delays, resulting in agents rejecting each other’s requests. Additionally, DALO’s design does
not adequately handle messages not arriving in the order that they were sent. This raises
concerns about the algorithm’s guaranteed properties under such conditions.

Recent studies [17, 18] explored the performance of local search algorithms for solving
DCOPs in the presence of imperfect communication, where messages can be delayed. They
demonstrated the significant impact of message latency on the performance of synchronous
distributed local search algorithms, especially on property guarantees and convergence
rates of MGM. Consequently, a 1-opt Latency Aware Monotonic Distributed Local Search
(LAMDLS) algorithm was proposed [18]. LAMDLS uses an ordered coloring scheme to
prevent neighboring agents from replacing assignments concurrently while preventing agents
from waiting for messages as they do in MGM. As a result, LAMDLS demonstrates a quicker
convergence rate compared to MGM.

Building on the success of LAMDLS, we advance the research on distributed algorithms
that are robust to message delays by proposing LAMDLS-2, which allows agents to form
pairs and coordinate their value assignment selection, while maintaining monotonicity and
converging to a 2-opt solution. LAMDLS-2 enables sequential change of values among paired
agents. Agents utilize a unique pairing selection process and an ordering scheme that allows
concurrent value modifications for unconstrained pairs. We further discuss a scheme that
will allow to generation of a similar monotonic k-opt algorithm for any 1 ≤ k ≤ n in future
studies. We prove the monotonicity of LAMDLS-2 and its convergence to a 2-opt solution.
Our empirical results indicate that LAMDLS-2 converges significantly faster, in environments
with a variety of latency patterns, compared to MGM-2, an existing 2-opt DCOP algorithm.
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2 Background

We present background on Distributed Constraint Optimization Problems (DCOPs), k-opt
algorithms, including the 2-opt algorithm MGM-2, Communication-Aware DCOPs (CA-
DCOPs), and Latency-Aware Monotonic Distributed Local Search (LAMDLS).

2.1 Distributed Constraint Optimization Problems (DCOPs)
A DCOP is a tuple ⟨A,X ,D,R⟩, where A is a finite set of agents {A1, A2, . . . , An}; X is a
finite set of variables {X1, X2, . . . , Xm}, where each variable is held by a single agent (an
agent may hold more than one variable); D is a set of domains {D1, D2, . . . , Dm}, where each
domain Di contains the finite set of values that can be assigned to variable Xi and we denote
an assignment of value d ∈ Di to Xi by an ordered pair ⟨Xi, d⟩; and R is a set of constraints
(relations), where each constraint Rj ∈ R defines a non-negative cost for every possible value
combination of a set of variables and is of the form Rj : Dj1 ×Dj2 × . . .×Djk

→ R+∪{0}. A
binary constraint refers to exactly two variables and is of the form Rij : Di×Dj → R+ ∪ {0}.

A binary DCOP is a DCOP in which all constraints are binary. Agents are neighbors if they
are involved in the same constraint. A partial assignment (PA) is a set of value assignments
to variables, in which each variable appears at most once. vars(PA) is the set of all variables
that appear in partial assignment PA (i.e., vars(PA) = {Xi | ∃d ∈ Di ∧ ⟨Xi, d⟩ ∈ PA}).
A constraint Rj ∈ R of the form Rj : Dj1 × Dj2 × . . . × Djk

→ R+ ∪ {0} is applicable to
PA if each of the variables Xj1 , Xj2 , . . . , Xjk

is included in vars(PA). The cost of a partial
assignment PA is the sum of all applicable constraints to PA over the value assignments in
PA. A complete assignment (i.e., solution) is a partial assignment that includes all variables
(vars(PA) = X ). An optimal solution is a complete assignment with minimal cost.

For simplicity, we assume that each agent holds exactly one variable (i.e., n = m) and we
focus on binary DCOPs. These assumptions are common in DCOP literature (e.g., [16, 22]).

2.2 k-opt and Region-opt Algorithms
Most local search DCOP algorithms are synchronous [24, 10, 26]. In MGM, a step (in which
agents decide on value replacements) includes two synchronous iterations. First, agents
receive their neighbors’ updated value assignments and seek improving alternatives for their
assignments. Next, agents share their maximal gain from a value replacement. An agent
replaces its assignment if its gain exceeds all its neighbors’ reported gains. MGM guarantees
that agents compute cost reductions using up-to-date information and prevents simultaneous
assignment changes by neighbors. This leads to monotonic global cost improvement. MGM
also guarantees convergence to a 1-opt solution.

k-opt generalizes the 1-opt solution concept to any case where k agents cannot improve a
solution [10, 15]. An algorithm ensuring this must allow all possible coalitions of k agents to
seek improving assignments. A well-known algorithm that guarantees the convergence to
a 2-opt solution (k = 2) is MGM-2. In MGM-2, agents pair with neighbors to coordinate
bilateral assignment replacements. MGM-2’s step has five synchronous iterations. In the first
three, agents attempt to form pairs, exchange information, and identify the best bilateral
gains for these pairs. Unpaired agents select the highest unilateral gain possible. In the
remaining two iterations, as in standard MGM, each agent evaluates whether its gain (or
the gain of its pair) is larger than the gain of all its neighbors. An agent that is part of a
pair, must receive the approval of its partner, that their gain is larger than the gain of the
partner’s neighbors as well.

CP 2024
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A general k-opt algorithm was proposed by Pearce an Tambe [15] and further generalized
to region-optimal algorithms by Vinyals et al. [21]. A region is defined by groups of agents
that are monitored by the same agent. Commonly, these groups are classified according to
two parameters: Their size (k) and the distance of the agents from the monitoring agent (t).
In each step of the algorithm, monitoring agents select a group from their region, aggregate
their information, select an alternative assignment, calculate the corresponding gain, and
propagate it to the neighbors of all agents in the group. Groups with a larger gain than the
gains reported by their neighbors replace their assignments.

2.3 Communication-Aware DCOPs (CA-DCOPs)

CA-DCOPs [18, 27] extend standard DCOPs by using a Constrained Communication Graph
(CCG) to model the communication latency between pairs of agents. Thus, they can model
any pattern of imperfect communication. Specifically, each edge e in the CCG represents
the imperfect communication between a pair of agents and is associated with a latency
distribution function.

2.4 Latency-Aware Monotonic Distributed Local Search (LAMDLS)

LAMDLS [17] is monotonic and 1-opt (like MGM). By allowing agents to consider value
assignment replacements using a partial order, it effectively mitigates the impact of message
latency and facilitates faster convergence. To establish the partial order structure it uses
the Distributed Ordered Color Selection (DOCS) algorithm. DOCS divides the agents into
subsets, where agents in each subset have the same color. Colors are ordered (i.e., there is
a mapping from colors to the natural numbers from 1 to NC, where NC is the number of
colors). The neighbors of each agent must hold a different color than its own, and the agent
must know which neighbors are ordered before it and which after. During the algorithm
execution, each agent keeps track of its neighbors’ computation steps, updates them with its
selection, and performs the k-th iteration when neighbors with a lower color index complete
k iterations and those with a higher index complete k− 1 iterations. LAMDLS demonstrates
a faster convergence rate compared to MGM, with the difference becoming more noticeable
as the magnitude of message delays increases [18].

3 LAMDLS-2

Latency-Aware Monotonic Distributed Local Search 2 (LAMDLS-2) is a monotonic algorithm
that converges to a 2-opt solution. 2-opt algorithms, such as MGM-2, achieve this property by
allowing all pairs of agents to make an attempt to improve any assignment that the algorithm
traverses, unless it is revised before they get their chance. The main difference in LAMDLS-2
is the method used to generate pairs that will cooperatively suggest an assignment revision.
In contrast to MGM-2, where a query response process is used to determine pairs, LAMDLS-2
uses DOCS to find an ordered coloring scheme for determining the pairs. Once DOCS selects
an order, the pairs are generated deterministically accordingly, and there are no additional
messages required for the pairing process. Thus, message latency has smaller deteriorating
effects on this algorithm compared to MGM-2. In order to make sure that all pairs of agents
get their chance to improve the current assignment, DOCS is performed iteratively, using
random agent indexes. This results in random orderings, which eventually allow all possible
pairs to be generated. We present the algorithm in more details below.
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Algorithm 1 LAMDLS-2.

Input: N(i)
1: valuei ← selectRandomValue()
2: sci ← 1
3: for each Aj ∈ N(i) : vN(i)[j]← 1
4: docsIdi ← i

5: for each Aj ∈ N(i) : docsIdsN(i)[j]← j

6: coi, coN(i) ← DOCS(i,docsIdsN(i))
7: while stop condition not met:
8: pairPhase(sci, vN(i),coi,coN(i),docsIdsN(i))
9: docsIdi ← random(0,1)

10: sendDocsId(N(i),docsIdi)
11: docsIdsN(i) ←recieveAllDocsIds()
12: coi, coN(i) ←DOCS(docsIdi,docsIdsN(i))

LAMDLS-2 is composed of two alternating phases: Ordering and Pair Selection. Al-
gorithm 1 presents the pseudocode performed by an agent Ai. In the ordering phase, agents
select ordered colors using the DOCS algorithm (lines 6 and 12). In the pair selection phase,
agents select partners and collaboratively adjust assignments using the pairPhase function
(line 8). The algorithm’s input includes the set N(i) that includes Ai’s neighbors.

The algorithm starts with agent Ai randomly selecting valuei for its value assign-
ment (line 1). In addition, Ai maintains a step counter sci, which is incremented each
time Ai selects a value assignment, and a step counter for each of its neighbors in the set
vN(i). Entry vN(i)[j] is updated when a value assignment update from a neighbor Aj is
received. Both sci and entries in vN(i) are initialized to 1 (lines 2-3).

3.1 Ordering Phase
In the ordering phase, agents use the DOCS algorithm to select ordered colors, as in
LAMDLS [18]. Following DOCS, Ai receives its selected color coi, and the colors coN(i) are
selected by its neighbors. In contrast to LAMDLS, where agents use their indexes within the
DOCS procedure to select colors, in LAMDLS-2 the agents use random values (docsIdi). Ai

retains the docsId’s of its neighbors in the set docsIdsN(i). Once Ai has completed the pair
selection phase, before re-starting DOCS, it selects a new value for docsIdi and waits for the
docsId values of its neighbors to be updated in docsIdsN(i) (lines 9-11). Hence, each time
DOCS operates, it uses different values for docsId and docsIdsN(i) and, thus, the probability
that it would generate distinct values for coi and coN(i) is very high. In line 6, DOCS is
initiated before the pair selection phase. Thus, initial values for the docsIds are according to
the agents’ indexes. The use of randomized docsId values in DOCS results in diverse and
randomized ordered color selections in the different steps of the algorithm.

Algorithm 2 details the execution of the DOCS method by some agent Ai. At the
initiation of the algorithm, Ai holds its own docsIdi and the docsIds of its neighbors (in
docsIdsN(i)). When the algorithm terminates Ai holds the color it selected (coi) and the
colors of its neighbors (coN(i)). The algorithm begins by initializing the variables coi and
coN(i) (lines 1-2). If the value of docsIdi is the smallest among the values in docsIdsN(i),
Ai sets the value of coi to 1 and sends this information to its neighbors. Afterward, Ai

remains idle until it receives updated information about the colors selected by its neighbors
(line 7). The algorithm terminates when Ai becomes aware of the colors of all its neighbors

CP 2024
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Algorithm 2 LAMDLS-2 color selection DOCS.

Input: docsIdi, docsIdsN(i)

Output: coi, coN(i)

1: coi ← None
2: for each Aj ∈ N(i) : coN(i)[j]← None

3: if min(docsIdi, docsIdsN(i)) then:
4: coi ← 1
5: send (N(i),coi,valuei)
6: while not aware of all colors:
7: when color from Aj:
8: update (coj , coN(i)[j])
9: update (valuej)

10: if coi is None and can select color then:
11: coi ← selectMinAvilableColor(coN(i))
12: valuei ← selectValueUnilaterally(coN(i))
13: send (N(i),coi,valuei)
14: return coi, coN(i)

and selects a color for coi (line 6). Upon receiving updated information about the colors
selected by its neighbors, Ai updates coN(i). Then it checks if it can select a color. If a color
was not chosen previously and Ai receives the colors of all its neighbors with smaller indices
in docsIdsN(i), it selects the color with the smallest number that hasn’t been chosen by any
of its neighbors and sends this color to its neighbors. This process ensures that eventually,
the color selected by each agent is different from the colors selected by its neighbors. To
accelerate the convergence process of LAMDLS-2, agents can select values while they select
their colors (line 12).

3.2 Pair Selection Phase
Like MGM-2, LAMDLS-2 achieves monotonicity and convergence to a 2-opt solution by
allowing agents to form pairs and select the best mutual assignment, while their neighbors
avoid replacing their assignments at the same time. The main difference from MGM-2 is
the use of the ordered color scheme by agents to decide when to suggest pairing with their
neighbors, which neighbor they should make suggestions to, and whether to accept such
suggestions from their neighbors. Agent Ai selects Aj as its partner and shares all relevant
information, including its current assignment, the content of its domain, its neighbors, their
assignments, and its constraints. Then, when allowed, Aj proceeds to calculate the bilateral
value assignments for both Ai and itself and notifies Ai about its updated value assignment.
The phase concludes when the agent makes a selection of its value assignment (denoted by
valuei). If the pairing process is successful, Aj selects the value assignment for both Ai and
Aj . However, if the pairing process fails (i.e., Ai is not paired with any other agent), Ai can
unilaterally select its assignment. Following each selection of a value assignment, there is an
update of the agent’s step counter (sci), accompanied by a message sent to its neighbors,
which includes valuei and sci.

Below, we provide a more detailed description of the Pair Selection phase and present its
pseudocode in Algorithm 3. Agent Ai divides its neighbors into two sets, PC(i) and FC(i),
based on the input variables coi and coN(i). PC(i) includes neighbors with color indices
smaller than coi, while FC(i) includes neighbors with larger color indices. This division is
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Algorithm 3 LAMDLS-2 Pair Selection Phase.

Input: N(i),sci, vN(i),coi,coN(i),docsIdsN(i)

1: varConsist← [sci, vN(i),coi,coN(i)]
2: sn, nInfo← None

3: sn←offer(varConsist,sn,docsIdsN(i))
4: while phase not completed:
5: when receive message from Aj:
6: if message is of type value then:
7: update(valuesN(i)[j],vN(i)[j])
8: if message.sender is sn :
9: valuei ← selectValueUnilaterally()

10: else:
11: sn←offer(varConsist,sn,docsIdsN(i))
12: if message is of type reply then:
13: updateValue(message.getValue(i))
14: if message is of type offer then:
15: nInfo←getOfferInfo(message,docsIdsN(i))
16: reply(varConsist,nInfo)
17: sci ← sci + 1
18: sendLocalInfo(N(i),valuei,sci)

used to determine the selected neighbor (sn) that Ai shares its information with. Agents
take into consideration coi, coN(i), sci, and vN(i) while deciding when to initiate partnerships
and how to respond to partnership requests. LAMDLS-2 agents exchange three types of
messages during the pair selection phase:

Value (lines 6-11): Triggers an update of vN (i), which allows agents to initiate partner-
ships and reply to them.
Reply (lines 12-13): Contains the value assignment found by the neighbor the agent
paired with.
Offer (lines 14-16): Contains the relevant information sent when an agent offers a
neighbor to form a pair.

Upon receiving a value message, Ai updates its local view (line 7) and then considers
two scenarios that may be triggered: Either rejecting or initiating an offer. If the sender
of the value message is the agent (sn) to whom Ai has made an offer in the current phase
(lines 8− 9), Ai considers the value message as a rejection of its offer. Conversely, if Ai did
not initiate an offer during the current phase, a value message reception may prompt an
offer initiation due to an update in vN(i), as Ai examines the necessary condition to offer
(lines 10− 11).

In the offer function, Ai checks its eligibility to make an offer when the condition
sci = scj − 1 is met for every Aj ∈ PC(i). The offer function is activated under two
circumstances. The first occurs when a value is received from the neighbor Aj . This results
in an update of scj , which might satisfy the condition that will allow Ai to offer. The second
is tied to the base case that initiates the phase for agents meeting the condition due to
pc = ∅ (line 3). When the agent decides to make an offer, it selects a neighbor (sn) using a
deterministic process. The chosen neighbor must meet the following conditions: Its color
index is larger by one from the color index of Ai (coi + 1 = coN(i)[sn]), and the value of
vN(i)[sn] equals sci. If multiple agents meet these conditions, the neighbor with the smallest
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(a) Identity index. (b) Random index.

Figure 1 Two different numerical graph color partitions.

value in docsIdsN(i) is chosen. If sn is found, Ai sends an offer message containing all
relevant information for a bilateral value assignment selection. The function returns sn for
future examination of whether the offer was accepted or rejected. If no neighbor satisfies
the conditions to qualify as sn, Ai unilaterally selects a value assignment and indicates that
the phase is completed. After sending an offer message, Ai enters an idle state, awaiting a
reply from sn. Upon receiving a reply message, Ai is informed of the offer’s acceptance.
Subsequently, Ai updates its valuei based on the bilateral decision made by sn (line 13).

Upon receiving an offer message, Ai stores the shared information and uses the reply
function (line 15). Ai has the option to either accept the offer or reject it. Ai can only
accept a single offer per step. If Ai accepts the offer, it proceeds to calculate values for itself
and its partner using its local information and the information received from its partner
and sends a reply message back to it. However, if Ai declines the offer, indicating that
it has already formed a bilateral value assignment change with a different agent, it sends
a message containing its value to inform the sender that the offer was rejected. If Ai

receives multiple offers, it selects as a partner the offering agent with the lowest index in
docsIdsN(i). Let PO(i) denote the set of agents that sent offers to Ai in the current pair
selection phase. An offer can be accepted by Ai if the following condition is met: for each
agent Aj ∈ PC(i)\PO(i), sci = scj − 1. Until this condition is met, Ai will remain idle and
wait for messages to arrive.

3.3 Demonstration of LAMDLS-2
In the following sub-section, we describe the beginning of a high-level trace of LAMDLS-2,
when operating on the constraint graph presented in Figure 1. In this graph, each node
represents an agent, and the corresponding colors (selected using DOCS) of the agents are
displayed beneath the nodes. Specifically, each node represents an agent Ai,docsId, where i

is the agent’s index and docsId is a randomly assigned value that is drawn before the next
step.

After agents randomly select values for their assignments, each agent initializes its docsId.
They also set the entries of docsIdsN(i) with the identity indices of their respective neighbors,
e.g., A1: docsId1 = 1 and docsIdsN(1) = [⟨A3 : 3⟩, ⟨A4 : 4⟩, ⟨A5 : 5⟩]

First Step
After initiation, agents proceed to execute DOCS. Figure 1 (a) presents the outcome of the
color selection process carried out by DOCS. This process utilizes the values of docsId of the
agents, therefore the outcome is dependent on their selection. In the example at hand, agents
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A1 and A2 do not have neighbors with smaller indices, so they select the color 1 (blue) and
communicate this information to their neighbors. Among these neighbors, agents A3 and A4
do not have other neighbors with smaller indices, so they choose the color 2 (red) and send
messages including this information to their neighbors. Finally, agents A5 and A6 select the
color 3 (purple). This completes the color selection phase.

When the pair selection phase begins, both A1 and A2, which selected the color 1, can
choose a neighbor and send an offer along with the relevant information. They are eligible
because PC(1) = ∅ and PC(2) = ∅. A1 must select a neighbor with the smallest docsId

color among its neighbors with color 2. It has two neighbors with color 2, A3 and A4), and
among them, A3 has a smaller docsId, thus, it sends the offer to A3. A2 selects A4, since it
is its only neighbor with color 2.

Upon receiving an offer, A3 is eligible to respond, given that A1 is its only neighbor.
A3 selects values for itself and for A1, updating sc3 to 2. It then sends a reply to A1, who
adjusts its assignment and updates sc1 to 2, notifying all its neighbors including A4.

After receiving an offer from A2, A4 must wait for an update from A1 (which is included
in PC(4)). Following this update, A4 selects values for itself and for A2, increments sc4 to
2, responds to A2 and informs its neighbors of the new selected value. Subsequently, A2
updates its value, sc2 becomes 2, and it informs its neighbors too.

At this point, agents with colors 1 and 2 have already chosen value assignments. Upon
receiving this information, A5 updates vN(5) = [⟨A4 : 2⟩, ⟨A5 : 2⟩]. Thus, when receiving a
value message that finalizes the update of vN(5), A5 is eligible to offer, given that sc5 = 1 and
sc1 = sc4 = 2. While attempting to find a suitable partner, A5 will pick a value unilaterally
since no agent in coN(5) holds color 4 (which is one greater than co5 = 3). Similarly, A6 will
also independently select its value assignment. This finalizes the second phase of the first
step.

Second Step
At the beginning of the second step, agents select random docsIds and send messages that
inform their neighbors of their selection.

Next, agents execute DOCS using the random docsIds selected and generate the color
selection that is depicted in Figure 1 (b), as described next: Agents A4 with docsId4 = 0.1
and A3 with docsId3 = 0.5 do not have neighbors with smaller docsId values, leading them
to select color 1 (blue) and communicate this decision to their neighbors. Agents A2 with
docsId2 = 0.2 and A5 with docsId5 = 0.4 can then select the color 2 (red) and convey it to
their neighbors. Eventually, agents A6 with docsId6 = 0.3 and A1 with docsId1 = 0.6 select
color 3 (purple) and inform their neighbors.

In the pair selection phase, agent A4 selects A2 as its partner and forwards an offer (since
docsId4 < docsId5, i.e., 0.2 < 0.4). Agent A3 changes its value independently, as its only
neighbor A1 has color 3. Upon receiving a value message from A4, A5 can send an offer to
A1. After A1 receives a value update from A4, it can respond to A5. Notably, in the previous
step, the pair A5 and A1 did not form a partnership. When A6 receives value messages
from A2 and A4 (PC(6) = {A2, A4}), it attempts to select a neighbor. Failing to do so (no
neighbors in FC(6)), it selects a value on its own.

3.4 Theoretical Properties
We now prove that LAMDLS-2 is monotonic and convergence to a 2-opt solution. Our
monotonicity proof stems from previous studies that proved the monotonicity of MGM,
MGM-2, and LAMDLS [11, 18] based on the fact that, in DCOP algorithms, when a single
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agent or a pair of agents improve their local state, while their neighbors remain idle, the
global cost improves as well. Thus, it remains to show that when an agent or a pair of agents
improve their local state in LAMDLS-2, their neighbors are idle until the messages regarding
the assignment replacements that were performed by the agent or pair of agents arrive.

▶ Lemma 1. In a DCOP (with symmetric constraints), when an agent Ai is the only agent
replaces its assignment, while none of its neighbors (NC(i)) replace their assignments, and
this replacement results in a local gain, it also results in an improvement of the global cost.

Proof. Denote the global cost before Ai’s assignment replacement by gc and the local gain
following Ai’s assignment replacement by LRi. Since the problem is symmetric, the sum
of local gains of Ai’s neighbors is also equal to LRi. Since we assumed that LRi > 0,
gc > gc− 2LRi. ◀

▶ Lemma 2. When some agent Ai initiates a partnership offer, all agents in N(i) that
do not partner with Ai avoid replacing their assignments until Ai completes its assignment
replacement.

Proof. For Ai to be active, sci must be equal to k (i.e., it has not been incremented since
the color selection phase) and, for each agent Ai′ ∈ PC(i), sci′ = k + 1. Thus, when Ai

sends an offer, all agents in PC(i) have already incremented their step counters. In addition,
for each agent Aj′ ∈ FC(i) (i.e., Ai ∈ PC(j′)), until sci is incremented, Aj′ cannot send an
offer or replace its assignment. ◀

▶ Lemma 3. When agent Ai initiates a partnership offer to Aj, agents in N(j) do not
replace their assignments until Aj completes its assignment replacement.

Proof. Agents in FC(j) cannot offer or reply to an offer until scj is incremented. On the
other hand, for the agents in PC(j), there are two cases:

Ai′ ∈ PC(j)(i ̸= i′) did not offer to Aj . Then, Aj will not reply and replace assignments
until sci′ is incremented, which can happen only after Ai′ replaces its assignment. Thus,
it cannot happen concurrently with the assignment replacement of Aj .
Ai′ ∈ PC(j)(i ̸= i′) did offer to Aj . Then, either Aj pairs with it, or it sends a rejection
reply only after it completed the assignment replacement. Thus, they do not replace
assignments concurrently. ◀

▶ Proposition 4. LAMDLS-2 is monotonic (i.e., each assignment replacement improves the
global cost of the complete assignment held by the agents).

Proof. Follows immediately from Lemma 2 and Lemma 3. While agents replace their value
assignments, none of their neighbors can replace their assignments. ◀

▶ Proposition 5. At each pair selection phase, every agent that receives an offer will reply
(positively to one of the offering agents and negatively to the rest).

Proof. We prove by induction, using an order on all agents that can receive an offer (i.e., all
agents except for the ones with the color 1; we will assume that the colors are numbered from
1 to NC). When colors are selected, the step counters of all agents are equal (e.g., sci = k

for all i). Agents of the same color have a different docsId. Thus, the order between every
two agents that can receive an offer is determined first according to their color (small colors
come first). If the colors are equal then the tie is broken using their docsId (smaller comes
first).
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Recall that the conditions for an agent Aj to reply to an offer are that all agents in PC(j)
either offered to Aj or their step counter equals scj + 1. Assume that Ai is the agent with
the smallest docsId among the agents with color 2. It will receive offers from all its neighbors
with color 1. Thus, it will be able to select a neighbor to reply positively to its offer, and all
its other neighbors will get a negative reply and unilaterally select an assignment.

The agent with the second smallest docsId that received an offer (Aj) with color 2 can
have two types of neighbors with color 1: Ones that sent an offer to Ai and ones that sent
an offer to Aj . The ones that sent an offer to Ai, after they receive the reply from Ai, will
attempt to replace their assignment and increase their step counter. After receiving all
indications regarding the increase of the step counters of these agents, Aj can reply to the
agents that sent it an offer.

Assume that later on during the algorithm run, Ai is the agent that received an offer,
with sci = k, and with the smallest color index and the smallest docsId among the agents
that received an offer and did not yet reply (i.e., if agent Ai′ received an offer and did not
yet reply, then either coi′ > coi or coi′ = coi&docsIdi′ > docsIdi). Since there are no agents
with a color smaller than coi that received an offer and did not reply, then there is no agent
that sent an offer with a color index smaller than coi − 1, which a reply was not sent to it.
Thus, the members of PC(i) include two types of agents: Agents that sent an offer to Ai

and agents that a reply for the offers they sent was already sent to them. Thus, once all the
offers from agents of the first type and the indications on the increase in the step counter of
the agents from the second type arrive, Ai will be able to reply to the offers sent to it. ◀

An immediate correlation from Proposition 5 is that the algorithm terminates its phases
and does not deadlock. The ordering phase uses the DOCS algorithm and its correctness
and termination have been established in previous studies [2, 18]. The pair selection phase
must terminate because every agent that receives an offer must reply, and thus, all agents
can perform the assignment selection method and increase their step counter.

▶ Proposition 6. LAMDLS-2 converges to a 2-opt solution.

Proof. According to Proposition 4, LAMDLS-2 is monotonic. Thus, since the problem is
finite, it must converge to some solution. To prove that the solution it converges to is 2-opt,
we need to establish that following convergence, every pair of neighboring agents will get a
chance to form a pair and check all their alternative assignments. For agent Ai to form a
pair with agent Aj , one of them (without loss of generality we select Ai) needs to send an
offer to the other (Aj), and Aj needs to respond positively. This happens in two conditions:
(1) coi = coj − 1; or (2) for any agent Aj′ with coj = coj′ , docsIdj < docsIdj′ . Since colors
and docsIds are selected randomly, this situation will eventually occur. ◀

4 Extension to a Region-Optimal Algorithm

Similar to how MGM-2 was extended to k-opt and then to region-opt algorithms, we propose
an extension of LAMDLS-2 to LAMDLS-ROpt. In LAMDLS-ROpt, an agent initiating
ad-hoc coalition formation takes on a mediator role. Unlike LAMDLS-2, where this agent
includes its information in the offer message sent to the selected neighbor, in LAMDLS-ROpt,
the mediator sends an offer message to neighboring agents within the coalition it aims to
form. This message invites them to join and prompts other specified neighbors to join as well.
The information of the agents in the forming coalition is sent back to the monitoring agent,
who selects an alternative assignment for the group. The group replaces the assignment if
the mediator is ordered before the mediators of neighboring groups according to the ordered
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color and docsId scheme. This process is similar to the region-optimal algorithm RODA [7].
The difference is in its repeated selection of mediators, the selection of members in the groups
included in the mediators’ regions, and the order in which groups replace assignments, in a
designated sequence, according to the ordered color scheme used in LAMDLS and LAMDLS-
2. We leave for future work the investigation of the performance of LAMDLS-ROpt in
comparison with RODA.

5 Experimental Evaluation

We present a comprehensive study that compares the proposed LAMDLS-2 algorithm to
MGM-2, solving a variety of DCOP benchmarks in environments with different patterns of
message latency.

5.1 Experimental Design

In our experiments, we use the same asynchronous simulator used by researchers for CA-
DCOP algorithms.1 The experiments were conducted on a Windows Server 2019 Standard
operating system, with an Intel Xeon Silver 4210 CPU 2.20GHz.

We follow the approach used in the literature [17, 18] to evaluate the quality of the
solutions of the algorithms, as a function of the asynchronous advancement of the algorithm,
in terms of non-concurrent logic operations (NCLOs) [25, 13]. The utilization of NCLO
ensures implementation independence and avoids double counting of simultaneous actions.

In each experiment, we randomly generated 100 different problem instances with 50 agents
and we reported the average solution quality of the algorithms examined. To demonstrate
the convergence of the algorithms, we present the sum of costs of the constraints involved in
the assignment that would have been selected by each algorithm every 10, 000 NCLOs.

We simulated three types of communication scenarios: (1) Perfect communication; (2)
Message latency selected from a uniform distribution U(0, UB), where UB is a parameter
indicating the maximum latency; and (3) Message latency selected from a Poisson distribution
with λ = |MSG| and then scaling it by a factor of m, where |MSG| represents the number
of messages that are currently delivered in the system, and m is a scaling factor indicating
the magnitude of the latency. This scenario is the evaluation of the impact of bandwidth
load. Latency was also measured in terms of NCLOs.

We evaluated our algorithms on three problem types that are commonly used in the
DCOP literature:

Uniform Random Problems. These are random constraint graph topologies with
densities 0.2 and 0.7. Each variable had a domain of 10 values, and constraint costs were
uniformly selected between 1 and 100.
Graph Coloring Problems [24, 4]. Each variable has three values (colors). Equal
assignments between two neighbors incurred random costs from U(10, 100), while non-
equal assignments had 0 cost. The density was set at 0.05.
Scale free Network Problems [1]. Initially, 10 agents were randomly selected and
connected. Additional agents were sequentially added, connecting to 3 other agents with
probabilities proportional to the existing agents’ edge counts. Similar to the first type,
variables had a domain of 10 values, and constraint costs ranged from 1 to 100.

1 The simulation’s code is available at https://github.com/benrachmut/CADCOP_CP_2024.

https://github.com/benrachmut/CADCOP_CP_2024
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Figure 2 Solution quality as a function of NCLOs. Message delays are sampled from a uniform
distribution.

(c) Scale Free (d) Graph Coloring

(a) Sparse Uniform (b) Dense Uniform

0 25 50 75 100 0.0 2.5 5.0 7.5 10.0

0 50 100 150 200 0 500 1,000 1,500

325

350

375

400

425

0

3

6

9

80

100

120

40

50

60

70

80

NCLO X 10^4

C
os

t X
 1

0^
2

Algorithm
LAMDLS−2
MGM−2

Pois(|MSG|)*m
0
20
50

Figure 3 Solution quality as a function of NCLOs. Message delays sampled from a Poisson
distribution linked to message volume.

5.2 Experimental Evaluation

Figure 2 presents a comparison between the results of two algorithms: The proposed
LAMDLS-2 (represented by the blue curve) and MGM-2 (represented by the red curve).
The comparison is performed on different problem types, as shown in each subgraph. The
graph illustrates the performance of both algorithms in terms of the average global cost
as a function of NCLOs. This enables the demonstration of the solution quality and the
convergence speed for each algorithm. Latency is sampled from a uniform distribution, and
the line type (solid, dashed, and dotted) corresponds to different magnitudes of latency,
where UB = {0, 5,000, 10,000}. The results demonstrate that the algorithms converge to
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Figure 4 Solution quality as a function of different matrices in environments with different
message delays.

solutions with similar quality, independent of message delays. This is expected because,
in both algorithms, agents wait for updated information from their neighbors before they
perform computation and replace assignments.

LAMDLS-2 demonstrates faster convergence than MGM-2 in scenarios with no message
delays, except when solving graph coloring problems, where both algorithms show similar
convergence rates. Moreover, LAMDLS-2 is more resilient to message delays than MGM-2.
Its convergence rate remains relatively stable even with increasing delay, while MGM-2
experiences a more substantial slowdown in convergence as the latency magnitude increases.
The most significant difference in the convergence rate between LAMDLS-2 and MGM-2
is observed in dense uniform problems (Figure 2(b)). Interestingly, LAMDLS-2 with the
longest delays UB = 10,000 converges faster than MGM-2 with no delays. When solving
graph coloring problems (Figure 2(d)), although the convergence rates are similar when
communication is perfect, LAMDLS-2 exhibits a much faster convergence rate compared to
MGM-2 when messages are delayed. These problems are characterized by low density among
the examined types, leading to rapid convergence for both algorithms. For sparse uniform
problems (Figure 2(a)), the impact of message delays on both LAMDLS-2 and MGM-2 is
consistent and proportional. However, LAMDLS-2 maintains its superiority over MGM-2 in
terms of convergence speed. When solving scale-free networks (Figure 2(c)), the negative
impact on convergence rates is more pronounced for MGM-2 compared to LAMDLS-2 as the
latency magnitude increases. Figure 3 presents the results of a similar experiment in which
message delays were sampled from a Poisson distribution with the parameter λ = |MSG| ·m,
where m = {0, 20, 50}. In this set of experiments, the resilience of LAMDLS-2 is pronounced
regardless of the type of problem being solved. The increase in the latency magnitude did
not significantly affect LAMDLS-2’s convergence rate, unlike the significant effect it had on
MGM-2.

The results in Figures 2 and 3 indicate a faster convergence rate of LAMDLS-2 in
comparison with MGM-2. To investigate the reasons for this advantage, we present in
Figure 4 the solution costs of the algorithms as a function of two additional elements in
the algorithms’ execution. These elements are the number of messages exchanged by the
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Figure 5 Average costs at convergence with error bars.

agents and the amount of time (in NCLOs) that agents were inactive (i.e., idle). Both
algorithms solve sparse uniform problems under various communication scenarios: Perfect
communication (PC) represented by the solid line, U(0,5,000) represented by the dashed line,
and Pois(|MSG|) · 20 represented by the dotted line. While the three presented subgraphs
illustrate the faster convergence rate of LAMDLS-2 compared to MGM-2, each of them
highlights a distinct advantage of LAMDLS-2. The faster convergence in terms of message
count indicates that LAMDLS-2 makes more economical use of the communication network.
The faster convergence in terms of idle time indicates that agents in LAMDLS-2 are more
active, and perform more concurrently.

In Figure 5, we present the average costs of both algorithms at convergence with SEM error
bars. Overlapping bars across sparse, dense, and scale-free networks suggest no significant
difference. Paired t-tests confirm this, with p-values above 0.05 (0.7514 for sparse, 0.8364 for
dense, and 0.4839 for scale-free). For graph coloring problems, there is a significant difference
(p-value 0.005), indicating diverse algorithmic performance in favor of LAMDLS-2.

6 Conclusions

We introduced Latency-Aware Monotonic Distributed Local Search 2 (LAMDLS-2), a dis-
tributed local search algorithm for solving DCOPs, which is monotonic and guarantees
convergence to a 2-opt solution. LAMDLS-2 converges faster, compared to MGM-2, a
synchronous distributed local search algorithm that converges to 2-opt solutions with similar
quality. We demonstrate that the algorithm not only converges faster but also makes more
economical use of the communication network and that the agents spend less time idle
during the algorithm run. The results indicate that LAMDLS-2 is more suitable for realistic
scenarios with message delays. Our approach, which is based on the ordered color scheme,
allows the agents to be more active in computing their assignments and spend less effort
in coordinating their actions. We also discussed how this approach can be extended to a
general k-opt algorithm, which we intend to implement in future work.
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