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Abstract
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due
to CP’s struggle with implementing “meaning” and ML’s difficulty with structural constraints.
This paper proposes a solution by combining both approaches and embedding a Large Language
Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages struc-
tural constraints. This approach builds on GenCP, an improved version of On-the-fly Constraint
Programming Search (OTFS) using LLM-generated domains. Compared to Beam Search (BS), a
standard NLP method, this combined approach (GenCP with LLM) is faster and produces better
results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities
for enhancing text generation under constraints.
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1 Introduction

How can we perceive Constraint Programming beyond its traditional role in solving com-
binatorial optimization problems? Once Eugene Freuder wrote Constraint programming
represents one of the closest approaches computer science has yet made to the Holy Grail of
programming: the user states the problem, the computer solves it [13].

Nevertheless, some real-world problems are still beyond the reach of the current CP
paradigm. This is particularly true when real-world problems involve vague notions such as
“meaning” and “melody” for text and music. These are not easy to model in CP with the
classical toolbox, mainly because these notions are hard to define formally. For instance, it is
unclear how to formalize an objective function or a constraint to get closer to a meaningful
sentence, a melodious song or a captivating painting. On the other hand, recent results
in Machine Learning (ML), such as transformer-based models [39], have demonstrated the
power of these techniques to capture a significant part of these vague concepts through
data-driven statistical learning (e.g., Large Language Model (LLM) like the GPT series [8],
stable-diffusion [33], ChatMusician [41]). In the article, we demonstrate that ML, and in
particular LLM, can help CP to model and solve problems where such vague concepts can
be found.
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25:2 Combining CP Reasoning with LLM Predictions

In recent years, there has been a growing interest in text generation under constraints
thanks to the rise of transformer-based models, like OpenAI ChatGPT ([8]) and Meta
LLaMa ([37]). Nevertheless, even fine-tuned prompted LLMs fail to generate several con-
strained outputs (see the tasks introduced in [40]). The goal of this paper is to present a
new method for the task of text generation under constraints. This interest has a strong
chance of continuing to grow insofar as many brands wish to integrate these technologies, in
particular with their customers, and want to have control and guarantees on the behavior of
these conversational agents. Hence, it may impact several critical marketing aspects (e.g.,
brand representation, legal issues, data privacy, . . . ). Therefore, CP has the potential to
become a strong safeguard of this kind of generative model.

For the task of text generation under constraints, ML techniques face limitations when
they have to manage structural constraints, such as limits on the number of words or
characters (e.g. Text Summarization, Text Simplification, Text style transfer, Question
Answering, Storytelling, Poetry or Lyrics Generation, Subtitle) [15]. CP succeeds on these
types of constraints, making the combination of CP and ML a natural fit for the task of text
generation under constraints.

This paper proposes such a combination, to tackle a class of problems where neither CP
and ML succeeds on their own (Fig. 1).
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Figure 1 Our approach aspires to explore the in-between area. In the blue (left-hand side) region,
LLM guided searches solve weakly constrained problems [27, 32, 17] and in the green (right-hand
side) region, CP-based generation tackles strongly constrained problems [36, 5, 6, 4, 31, 30, 29].

Combining Combinatorial Optimization (CO) and ML is a very active research area [2],
however there is no easy way to integrate the ML “expertise” into CP as a constraint of the
model [1, 26] and vice versa [18]. Furthermore, there are many incentives to strengthen the
interactions between ML and CO [21, 22, 35]. Usually, the main motivation comes from the
performance perspective, where the idea is to improve a solver’s performance with ML (e.g.,
finding branching heuristics thanks to Reinforcement Learning [9] or finding better bounds
with Clustering [28]). This paper tackles it from the modeling point of view. Modeling is a
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crucial part of CO works. In the end, the model must account for the underlying solver that
runs it. More in detail, here, the paper focuses on the interaction between CP and ML, more
precisely through an ML-augmented CP approach [23].

In the context of text generation under constraints, the domain of a variable represents a
word. The base idea of the paper consists in letting ML manage the domain of variables and
CP manage the constraints and the number of variables. In this manner, the sentence formed
by variables has high chances to have a meaning and all the constraints will be satisfied.
In traditional CP, the domains can not be managed by ML because they have to be set
beforehand. However, it is possible to rely on On-the-fly Constraint Programming Search
(OTFS) [34], a CP based method where variables, domains and constraints are generated
during the search for a solution.

The main contribution of this paper is to propose a new version of OTFS, called GenCP,
where the generative function of the domain of variables is modified to allow CP variable
domains to be computed by an LLM embedded in it, during the search for a solution. More
in detail, ML is used during process solving but it is also used as an explicit part of the
problem definition (i.e., domains are predicted by the LLM and can replace entirely static
variable domains definition of a CSP.). Thus it bridges CP and ML through solving and
modelling.

The potential of the approach is showcased for the problem of text generation under
constraints, against one the most used techniques in the Natural Language Processing (NLP)
field: Beam Search (BS). Both methods (BS and GenCP) are compared on constrained
sentences generation tasks extracted from benchmarks recently introduced [40]. The approach
highlights how CP can provide guarantees when combined with LLM predictions.

The paper is organized as follows: Sec. 2 serves as background, Sec. 3 shows how to extend
OTFS to GenCP and how to implement an interaction between GenCP and LLM. Sec. 4
presents the experimental results in which the new approach is demonstrated on the task
of text generation under constraints. Finally, Sec. 5 delves into further discussion, offering
additional insights into this work and providing perspectives for future research endeavors.

2 Background

This section introduces the necessary background on LLM and CP.

2.1 LLM Predictions Strategies

2.1.1 Decoding Strategies Combined with LLMs

Large Language Models (LLMs), such as the GPT series, generate text by predicting the
next token (word or character) given the history of previously generated words. Decoding in
LLMs refers to the strategy used to select the next words to be generated.

2.1.2 Greedy Decoding

The simplest decoding strategy is greedy decoding. Here, the LLM selects the words with the
highest probability at each time step. Although simple and efficient, this approach does not
guarantee the best overall sequence, as it does not consider the effect of the current selection
on future tokens.

CP 2024



25:4 Combining CP Reasoning with LLM Predictions

2.1.3 Beam Search
Beam Search (BS) [25, 32, 17] is a refined version of greedy decoding. A beam is a candidate
sequence of words. Instead of selecting the single best token at each time step, it usually
keeps track of the k most likely sequences (beams) at each step.

Although BS usually achieves better results than greedy decoding, it assumes that high-
ranking token sequences consist of high-ranking tokens, which may only sometimes be the
case. For a more stochastic and diverse output, top-k sampling and top-p sampling (also
known as nucleus sampling) are used. In top-k sampling, the model selects from the top k

highest probability predictions, while in top-p sampling, it dynamically selects the number of
top predictions to cover p percent of the total probability mass.

2.1.4 Perplexity
Perplexity is an entropy metric derived from Shannon’s information theory [7]. Since an LLM
computes the probability of text, then it can compute text perplexity. It can be expressed as
the geometric mean of the inverse conditional likelihood of the sequence [20]. Let Sn be the
sequence of a succession of words of size n: Sn = w1w2..wn. The perplexity (PPL) of Sn is
computed as follows:

PPL(Sn) = n

√
1

P (w1w2w3...wn) ,

where probability P (·) is given by the LLM. PPL can be interpreted as the “how likely a
text is generated by a given model” [15]. Usually, it is used to evaluate the LLM itself by
checking that good samples are recognized as such (i.e., low PPL values).

In NLP, the evaluation of text is still an open problem, and human evaluation remains
the gold standard. Numerous metrics have been developed to address this issue. Among
them, PPL remains an objective criterion associated with text produced by a given model.
PPL is also much more convenient to use than pure probability. Its range is [1; +∞[ . The
lower, the better.

2.2 Constraint Programming
Constraint Programming (CP) is a paradigm for solving combinatorial problems that draws
on a wide range of techniques from artificial intelligence and operations research. In CP
a problem can be defined as a Constraint Satisfaction Problem (CSP). A CSP is a triplet:
⟨X, D, C⟩, where:

X = {X1, X2, ..., Xn} is the set of variables of the problem.
D = {DX1 , DX2 , ..., DXn} is the set of domains, where each domain DXi corresponds to
the set of possible values for the variable Xi.
C = {c1, c2, ..., cm} is the set of constraints of the problem. A constraints represent a
property of the problem.

A solution is an assignment of all the variables to a value present in their respective domains,
such that all the constraints are satisfied.

2.2.1 Avoiding Static Definition of the CSP
In traditional CP, for the task of text generation under constraints, a variable represents a
word. Since the domains of variables have to be set beforehand, they will be of enormous size,
containing every word/declination of words for a given language. Furthermore, constraints
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between succession of words may lead to a combinatorial explosion. Since traditional CP
is not well suited, this work focuses on OTFS, a CP based method recently introduced by
Régin and De Maria [34]. Instead of having the variables/domains/constraints set before the
search, OTFS generates the variables/domains/constraints during the search for a solution,
avoiding the problem stated above and being expendable to permit the integration of an
LLM. The new version of OTFS is called GenCP.

3 Method: LLM alongside OTFS

The approach of this paper extends OTFS by having an embedded LLM generate the domains
of variables. Figure 2 graphically depicts the interplay between those components. The
approach also adds a minor improvement in the form of helping functions, to differentiate
between implicit constraints (prevent infinite loops, ensure a variable represents a word, etc.)
and explicit constraints (constraints of the problem). In the next subsection, the new version
of OTFS called GenCP is described.

Pr obl em
Def i ni t i on

ML

St at e

CP Sol ut i ons

Pr edi ct i ons

Deci s i on

Figure 2 This scheme presents the integration of ML into CP performed by GenCP. It is freely
inspired by Sec. 3.2.3 of Bengio et al.’s survey [2], which introduces an architecture for ML alongside
Optimization Algorithms. The similarity is highlighted because the master algorithm (here, GenCP)
repeatedly queries an ML model (here, an LLM) to obtain a prediction as a subroutine. In the
context of this paper, the decision (search or propagation) has an impact on the problem definition
(the CSP) because it may generate new variables, domains, or constraints during the solving process.
The state is the current assignment of the variables.

3.1 New version of OTFS: GenCP
In traditional CP it is not common to generate new variables/domains/constraints during the
search, while OTFS is based on this idea. OTFS begins with an empty or partially defined
CSP (the CSP has less variables/domains/constraints than the CSP in traditional CP) and
will generate variable/domains/constraints during the search for solutions.

GenCP is a new version of OTFS that makes two changes to the original version: 1) the
function that generates the domain genD calls an LLM to generate the domain of the current
variable. 2) Helping functions are added to represent implicit constraints.

Here is GenCP applied to text generation under constraints. An GenCP model can be
defined as a pair of sets {M, F}, where:

CP 2024



25:6 Combining CP Reasoning with LLM Predictions

M = {X, D, C} represents the model of the problem.
X represents the variables. The variables represent words.
D represents the domain of the variables. A domain di ∈ D contains a list of predicted
words by an LLM.
C represents the explicit constraints (constraints of the problem). A constraint ci ∈ C

represents rules over text (e.g., number of words, number of characters, forbidden words,
or symbols).
F = {G, B, H} is a set of functions.
G represents the set of generative functions: these functions explain to the solver how to
generate variables/domains/constraints.
B represents the set of Boolean functions: these functions tell the solver when a solution
is found.
H represents the set of helping functions: these functions are used to represent implicit
constraints, for example ensuring that when a variable is generated, it helps obtaining a
solution (to prevent the solver from attaining an infinite loop of generating variables).

3.1.1 Generative Functions

The set of generative functions G = {genV, genD, genC} is such that:
genV generates a new variable with an empty domain and adds it to X.
genD calls the LLM with the current sentence formed by the model and sets the domain
of the previously generated variable to the output.
genC generates the constraint(s) relevant to the current variables of the model to C. The
constraints generated depend on the problem (e.g., generate a sentence that does not
contain the letter “e”).

3.1.2 LLM integration

A variable is generated with an empty domain. To generate the domain of variables, genD

calls an LLM using callLLM(sentence, parameters, k), where:
sentence is the current sentence represented by the variables of the model.
parameters represents sampling parameters (top_k, top_p...). For this paper, top_k is
used exclusively for both GenCP and BS: the LLM answers k words ranked by probability,
highest to lowest.
k is the number of words asked to the LLM.

Since the parameters and k are not modified after the definition of the model,
callLLM(sentence, parameters, k) will be simply referred to as callLLM(sentence).

3.1.3 Helping Functions

Helping functions represent implicit constraints, like avoiding infinite loops. In our current
implementation, the set of functions H contains the following functions:

Ho: it orders the domain of variables depending on the problem.
HonlyW ords: it ensures that any word predicted by the LLM is a complete word and not
the suffix or prefix of a word and it filters out any symbol or special character.
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Figure 3 This graph illustrates the main steps in GenCP solving.

Algorithm 1 GenCP(M, F), M = {X, D, C}, F contains the generative and boolean
functions.

1: S = ∅; if M is not empty then go to 3.;
2: generativeFunctions(M);
3: helpingFunctions(M); if M.X.containsEmptyV ariable() then go to 8.;
4: saveState(M);
5: propagation(M); if M.X.containsEmptyV ariable() then go to 8.;
6: if not booleanFunctions(M) then go to 2.;
7: S.add(M);
8: if backtrack(M) then go to 4.; else return S;

3.1.4 Description of the new approach
The main steps of GenCP are depicted in Fig. 3 and Algorithm 1:
1. GenCP begins with an initial state. If the initial state is empty, the generative functions

are called (2.), otherwise the helping functions are called (3.).
2. The generative functions genV/genD/genC are called (genD calls the LLM).
3. The helping functions are called to manage implicit constraints, backtracking if necessary

(e.g., if the LLM generated an empty domain).
4. The current state of the model M is saved.
5. The propagation is called, if it fails the model backtracks (8.), else it calls the boolean

functions (6.).
6. The Boolean functions are called to check if a solution has been found. If a solution

is found, it is saved (7.) and the model backtracks (8.), otherwise the model calls the
generative functions (2.).

7. The current sentence formed by the variables is saved as a solution.
8. GenCP backtracks to a previously saved state (4.) of the model and changes the choices

made during propagation (5.). If no previous state was saved, then backtracking fails (9.).
When backtracking to a previously saved state, the model deletes all variables, their
respective domains, and the constraints associated with them, that are not present in
the previously saved state.

9. GenCP outputs the solution(s) that were saved or it indicates that no solution was found.

CP 2024



25:8 Combining CP Reasoning with LLM Predictions

3.1.5 Enforce variability
Variability between two sentences is the number of words that are not equal at each position,
for example:

“The little boy is” and “The little cat is” have a variability of 1.
“My name is John” and “John is my name” have a variability of 4.

To force a greater variability between solutions (greater than 2), a special backtrack
called backtrackTo(n) is used. Let the set of variables X = {x1, . . . , xn, xn+1 . . . , xm}. The
function backtrackTo(n) deletes the variables xn+1 to xm and causes a backtrack. For
example, consider the sentence “I like to swim in the summer.”. With backtrackTo(2), “to
swim in the summer.” is deleted and the value of variable x2 = “like′′ is changed. The next
solution might be “I want to break free.”.

3.1.6 Ordering
For some tasks, not following the ordering strategies of the LLM (like top-k and top-p) can
lead to better/faster solutions. Two other orderings are considered: PPL valuation and
length of a word (depending on the average word length in the given language).

3.2 Modeling Example
Here is a simple example of how the search of GenCP works: for this paper the generative
functions only generate variables one at a time but it is important to note that these functions
can generate multiple variables, domains and constraints at once. Let us suppose GenCP has
to generate a sentence beginning by “The” and containing between 10 and 15 words with
exactly 60 characters. The following functions are needed:

currentSentence(M): outputs the current sentence the variables form.
callLLM(sentence): described in 3.1.2. Here k is equal to 10 (each time the LLM is
called, it will output 10 words).
contains(sentence, word): outputs yes if the sentence contains the word and no otherwise.
nbChar(sentence): outputs the number of characters in the sentence.

The obtained model is {M, F}, where:
M = {X, D, C}:
X = {x1}.
D = {d1 = {“The”}}.
C = ∅.
F = {G, B, H}.
G = {genV, genD, genC} is a set of functions, each function follows these steps:

generate x|X|+1 and add it to X with an empty domain d|X|+1.
d|X|+1 = callLLM(currentSentence(M)).
cremoveover60char((currentSentence(M),d|X|+1).
The constraints remove the words that make the current sentence exceed 60 characters
from the domain of the current variable.

B = {endNbWords, endNbCharacters, endLLM} is a set of functions, each function
behaves as follows:

|X| >= 10 ∧ |X| <= 15.
nbChar(currentSentence(M)) == 60.
contains(callLLM(currentSentence(M)), “.′′).
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H = {Hho}:
Hho : order(d|X|+1).
To help attain the goal of 60 characters, the domain of the current variable is ordered
such that before the 10th word the solver tries the longer words first and at the 10th
word the solver tries the shorter words first.

With the above representation of the problem, GenCP is asked for 4 solutions,
backtrackTo(2) is used and the LLM is asked for 10 words maximum per call. The obtained
solutions are:
1. The following is an article by the author of the above book.
2. The first time you see the movie version of your book on TV.
3. The New York Times has an article on the new book by Tim Wu.
4. The new year is here and we are ready to make the next step.

3.3 Illustrated Example
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Figure 4 Illustrations of GenCP as a simplified framework with three variables and predictions
of 3 values per LLM call, on a simple problem: generate a sentence that does not contain the
letter e. For each variable, the predefined constraint ci “the letter e is forbidden” is generated. A
predefined domain with one word is defined for the first variable: A. The current sentence formed by
the variable “A” is not a solution (callLLM(“A′′) does not answer a period (“.”)), so a new empty
variable x2 is generated. GenCP calls the LLM with the sentence “A” to predict the domain of x2.
The LLM model predicts three values: [ man, house, boy ]. c2 is generated, causing the domain of
x2 to be filtered accordingly: house is removed. x2 is then assigned to boy, GenCP generates the
variable x3 and calls the LLM with the sentence “A boy” to predict a new domain. Unfortunately,
the domain of x3 is empty, either because the LLM answered an empty domain or because this
domain was entirely filtered during propagation. Hence, GenCP backtracks to x2 and the value of
x2 is changed to man. In the same fashion as before, GenCP generates the variables x3, and gives
“A man” to the LLM that predicts: [ drinks, and, helps ]. c3 is generated, filtering helps because
it contains an e. The process continues until the domain of the next predicted variable contains a
period (a solution is found) or the solver fails.

Fig. 4 illustrates GenCP as a simplified framework with three variables and predictions
of 3 values per LLM call, on a simple problem: generate a sentence that does not contain
the letter e.

CP 2024
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4 Experiments

4.1 Experimental Conditions

4.1.1 Baseline
The experiments presented by Yao et al. are partially reproduced [40]. In particular, the
constrained sentence generation tasks described in Tab. 1. Five LLMs were selected: GPT4,
GPT4-O, Mistral Next, Claude 3.5, and Gemini. The four LLMs are prompted with the
same example command given in [40]. For example, “Please create a sentence of exactly 82
characters.” for the Sent-1 task1. Tab. 2 gives an overview of the performance of the five
LLMs on the four tasks. The satisfaction rate is based on ten trials per task per model. In
addition, Tab. 2 also shows that the LLMs perform well on the lexically constrained scenario
task-4 with a 90+% satisfaction rate over ten trials. Also, as Yao et al. previously showed
in their paper, LLMs struggle to produce constrained sentences involving counting (e.g.,
words and characters). They provide a nice picture of current LLM satisfaction capabilities
by introducing new benchmarks. Unfortunately, the Yao et al. article only provides the
benchmarks and some hints on reproducing them. However, it does not give any hints on
how to solve the tasks associated with the benchmarks (see the original article for more
details [40]).

Table 1 Four tasks on sentence generation used to compare BS and GenCP extract from [40].

name words count character count lexical constraints

sent-1 = 82
sent-2 = 10 X3 = soft, X7 = soft,X10 = math
sent-3 ≥ 20 ∀i, |Xi| ≤ 6
sent-4 soft, beach, math

Table 2 Number of successes (#s), Number of fails (#f) and satisfaction rate (%sat) for each
model (GPT-4, GPT-4.0, Mistral Next, Claude 3.5, Gemini) for each task (sent-1, sent-2, sent-3,
sent-4).

name GPT-4 GPT-4.0 Mistral Next Claude3.5 Sonnet Gemini
#s #f %sat #s #f %sat #s #f %sat #s #f %sat #s #f %sat

sent-1 1 9 10% 0 10 0% 0 10 0% 1 9 10% 0 10 0%
sent-2 0 10 0% 0 10 0% 0 10 0% 0 10 0% 0 10 0%
sent-3 1 9 10% 5 5 50% 0 10 0% 9 1 90% 1 9 10%
sent-4 9 1 90% 9 1 90% 10 0 100% 10 0 100% 1 9 10%

4.1.2 Hardware & Implementation
The experiments were performed on a laptop with Windows 10 Professional, 32 GB RAM,
and Intel 16 CPU cores. The approach and the BS are implemented in Java 17 for easier
comparisons.

1 https://chatgpt.com/share/b2834735-f7d8-468a-ba54-7da19dd6723c

https://chatgpt.com/share/b2834735-f7d8-468a-ba54-7da19dd6723c
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4.1.3 LLM choice
LLaMa [37] is responsible for the predictions of words as domains for the variables, mainly
because an efficient implementation in C++ was recently released2. It allows running a
model on a personal laptop and CPU (only) efficiently. Thanks to quantization [16] (model
weight compression), the 7B parameters model (in Float16) of 13GB original size, in 4-bit
quantization (Q4) drops to 3.9GB of RAM. However, the biggest model of LLama 65B
(120GB), even in Q4, needs 38.5 GB of RAM. Thus, the LLaMa v1 model used in the
experiments is LLaMa 7B Q4 with low temperature (i.e., ≤ 1, temp = 0.8).

When asked for k words, this version of LLaMa will take the same amount of time to
ouput 1 word and 1000 words. To minimize the importance of k, callLLM outputs more
than k words, a beam/variable only keeps k “valid” words. A “valid” word is a word that
does not violate a constraint on its own. For example, a word that does not violate the
constraint “does not contain the letter e”.

4.1.4 Beam Search Technical Remarks
In the current implementations two halting conditions are defined for BS:

First solution: when the current beam contains at least one solution, BS is stopped and
output the solutions.
All solutions: when the current beam contains at least one solution but another beam
can continue to generate words without violating a constraint (for instance, it does not
contain enough characters to satisfy a length constraint), the beam solutions are saved
and BS continues with the remaining beams.

4.1.5 Benchmarks Settings
BS and GenCP are compared on some recent benchmarks described in Sec. 4.1.1.

To guarantee GenCP and BS to be judged on the generation of sentences of the same
quality, a solution is a sentence that satisfies all the constraints of the current task and,
when given this sentence, the LLM predicts a period (“.”). Not to alter BS too much, words
are ordered by probability (PPL is not used) and, since BS sentences have low variability,
GenCP is used without backtrackTo(n).

BS and GenCP are compared on the following criteria:
Time in seconds.
Number of solutions. GenCP was stopped when it found the same number of solutions as
BS on a task. 0/1 means that BS found no solution while GenCP found one solution.
The ratio solutions/outputs as a constraint satisfaction rate.
For BS only, the number of bad outputs (number of outputs that are not a solution).
For GenCP only, the number of backtracks.

4.2 Result Analysis
The results show that GenCP can be used to solve efficiently text generation under constraints
problems. GenCP is faster than BS and all the outputs are solutions, contrary to BS where
some outputs are not solutions.

2 https://github.com/ggerganov/llama.cpp
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Although the results suggest that GenCP succeeds in all tasks (see Tab. 3), it becomes
particularly interesting when considering size constraints (e.g., sentences with a precise
number of words or characters). It obtains sentences that satisfy the constraint with a low
PPL score on sent-1 and sent-3 tasks.

GenCP also succeeds in producing sequences obeying lexical constraints in sent-2 and
sent-4. However, the PPL and a human evaluation on these sentences show a substantial
deterioration in term of quality (i.e., meaningfulness).

Therefore, regarding sent-1 and sent-3 tasks, GenCP is to be preferred, whereas for sent-4
and sent-2 tasks, LLMs prompted alone or joint with BS is still adequate.

Table 3 Comparison of BS and GenCP on the tasks of Tab. 1. Task considered (sent-i), Number
of solutions (#sols), Time in seconds (s), Number of bad output (#badoutput), satisfaction rate
(%sat) and Number of backtracks (#bk).

Experiments BS GenCP

sent-i k #sols s #badoutput %sat s %sat #bk

1 5 1 108 9 10% 103 100% 45
10 0 182 18 0% 177 100% 84
20 1 399 58 1% 46 100% 13
50 1 1123 109 ≈ 0% 47 100% 13

2 5 5 34 0 100% 38 100% 38
10 10 69 0 100% 36 100% 25
20 20 140 0 100% 58 100% 40
50 49 354 1 99% 134 100% 100

3 5 0 248 5 0% 36 100% 4
10 2 510 8 20% 55 100% 6
20 4 1030 16 20% 164 100% 38
50 20 2633 30 66% 1174 100% 374

4 5 25 279 3 89% 308 100% 118
10 30 513 8 78% 311 100% 114
20 45 1123 14 76% 321 100% 104
50 89 2928 40 68% 388 100% 27

Table 4 GenCP results for k = 50 when given approximately the same amount of time as BS
in Tab 3. Number of solutions (#sols), Time in seconds (s), Memory usage in megabytes (MB),
Number of backtracks (#bk).

Experiments GenCP

sent-i k #sols s MB #bk

1 50 2 1123 136 79
2 50 355 222 208 222
3 50 488 2633 378 624
4 50 830 2929 676 680
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4.2.1 Beam Search
BS and GenCP are compared in Tab. 3. In all tables, the number of backtracks is denoted
by #bk. BS is slower than GenCP and has lower satisfaction rate (number of outputs that
are solutions / total number of outputs), denoted by %sat. This is due to multiple facts:
1. Beam Search can not guarantee to find every solution.
2. Beam Search chooses the next word depending on the probability of the LLM.
3. At each step, BS considers k sentences, each sentence asks k words to the LLM, so each

step considers k2 words. BS orders these words decreasingly by probability and only
keeps the k first.

Facts 2 and 3 explain why increasing k does not guarantee to find the same/more solutions,
it might even cause BS to find less solutions.

Let us suppose k = 5, BS found one solution, and at depth 4, the candidate needed to find
this solution was ranked 5 out of 25. Let us suppose now k is increased to 6: at each step BS
will consider 36 candidates and take the 6 best ones. BS considers 11 more candidates than
with k = 5; if at depth 4, the candidate needed to find the previous solution is now ranked 7
instead of 5, BS will not consider it and k = 6 will not find the solution found with k = 5.

4.2.2 GenCP

Table 5 Output sentences of GenCP on the experiments of Tab 1 associated with the task (sent-i),
k, backtrackT o (bkT o), and Perplexity (PPL). In sent-4* a constraint was added so that “soft”,
“beach”, “math” have to be separated by at least three words. Sentences with high perplexity were
chosen to showcase the importance of low perplexity.

Experiments GenCP

sent-i k bkT o(n) PPL sentence generated

1 50 NO 8 The following is an article by Dr David Hillon the subject of the role of prayer.
2 13 The New York Times has an article on the new book by former President George Bush.
3 6 The following information is taken from the website of the National Park Services.

2 50 NO 189 The following soft skills are required beach resort jobs math.
2 169 The National soft drink association has beach balls and math.
3 107 The most soft and comfortable of beach wear is math.

3 50 NO 8 The first time you see the movie The Big Short is like being hit by an ice cube in the face.
2 5 The world is full of great ideas and the best way to get them out there is by using the power of the web.
3 5 The first step in the right path is to know what you want and where you are going in life.

4* 50 NO 347 The following is an article by Dr math and science teacher beach high school in soft.
2 593 The term of the contract is for math and science teachers beach to be able soft.
3 48 The following data is based on the math and physics of beach waves and the soft sand.

Tab. 4 shows the capability of GenCP to generate more solutions than BS. GenCP is
given the same time as BS for the same task and k = 50, GenCP obtains more solutions
than BS. Note that for sent-1, without backtrackTo GenCP only obtains 2 solutions in 1123
seconds, while with backtrackTo(6) GenCP obtains 11 solutions in 1123 seconds.

The LLM-enhanced GenCP avoids the drawbacks of BS and proposes an alternative
approach to text generation under constraints for the following reasons:

GenCP can guarantee to find every solution (if any). Increasing k guarantees to find at
least the same solutions previously found and potentially finds new solutions. Furthermore,
it can offer more solutions than BS.
All the outputs answered by GenCP are solutions (all the constraints are satisfied).
GenCP offers more options for improvement, for example to ensure better variability
(backtrackTo explained in 3.1.5 can be used) or other orderings than probability (3.1.6).
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4.2.3 Variability and Perplexity
Tab. 5 demonstrates the importance of enforcing variability and perplexity. When GenCP
generated solutions for Tab. 3 and 4, the maximum variability was 4. Tab. 5 shows that
with backtrackTo(2)/backtrackTo(3), sentences generated are almost completely different
thanks to high variability (10+ for sent-3 for example).

Tab. 5 purposefully contains sentences with high perplexity to illustrate that this leads
to a degradation in the sentence quality (i.e., low meaning).

All the sentences generated for sent-4 had the words “soft”, “beach” and “math” next to
each other. To showcase the capability of GenCP to improve sentences, sent-4* was created:
it is the same as sent-4 except that “soft”, “beach” and “math” must contain at least three
words between them.

5 Discussion & Perspectives

5.1 GPU and CPU Interplay
The article shares a proof-of-concept showing that interesting results can be obtained using
CPU resources combined with a small quantized LLM in a CP solver. However, LLMs, in
general, work best with much larger computational resources and require GPU resources.
Even though smaller models (e.g., Mistral 8x7B) sometimes manage to take top places in
specific scenarios. The top spots in the LLM Elo rankings feature gigantic models [10]. Given
their size, clusters of GPU are quickly mandatory. Hence, it would be interesting to study in
more detail how the joint use of resources (for instance, CPU for solver and GPU for LLM)
could improve the results of the paper and correspond to more real-world usage in industry.

5.2 Token Management
In this article, GenCP ignores tokens and works at the word level (pre-token). It is possible
to handle tokens by adapting the problem modeling. Indeed, it is possible to consider a word
as a meta-variable X1 composed of several decision variables (e.g., X11 , X12 , X13 ...). This is
useful and straightforward, as it is not clear in advance how the tokenizer will cut the words.
For instance, let us consider the following sentence: The first step in the recruitment of a new
hire is to make sure that the job requisition is clear. Let us look at the assignments of the
variables (space separates meta-variables, and semicolon decision variables): The; first; step;
in; the; rec;ruit;ment; of; a; new; h;ire; is; to; make; sure; that; the; job; requ;is;ition; is;
clear;. The word recruitment needs three decision variables because it is composed of three
tokens (i.e., rec, ruit and ment). It is easy to manage in GenCP because it can generate as
many variables as required. Nevertheless, the evolution of the CSP (generation of variables
and domains) is rather technical and, therefore, depends on the tokenizer.

5.3 CSP Modeling
The idea that a CSP can evolve in response to external information is not new (e.g., Dynamic
Constraint Network [12]). This dynamic vision of CSPs has been motivated by several real-
world problems, particularly in product configuration [19]. GenCP proposes ML integration
in modeling by letting LLMs manage operations for CSP domains during the resolution
process. The “outside the world” information [3] is given by the LLM. The article shows that
LLMs can contribute to CSP modeling for generation tasks. However, how ML/LLMs can be
used for CSP modeling in general for any problem remains an open problem [14, 24, 38, 11].
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6 Conclusion

This paper showed that combining CP solving of structural constraints and ML understanding
of vague notions (like meaning) on the task of text generation under constraints obtains
promising results. This paper presents GenCP, a new method that extends OTFS to make
the domains manageable by LLM predictions. The results show that GenCP can generate
meaningful sentences that ensure various properties like the number of words, number of
characters, mandatory keywords, or some forbidden characters. The results also show that
GenCP has 100% satisfaction rate and takes less time to output solutions of the same
quality than a well-known technique in the field of text generation under constraints: Beam
Search. GenCP provides multiple improvements thanks to ordering, enforcing variability and
perplexity, allowing thus to obtain overall higher quality solutions than BS.
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