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Abstract
The enhanced performance of today’s MaxSAT solvers has elevated their appeal for many large-scale
applications, notably in software analysis and computer-aided design. Our research delves into
refining anytime MaxSAT solving by repeatedly identifying and solving with an exact solver smaller
subinstances that are chosen based on the graphical structure of the instance. We investigate various
strategies to pinpoint these subinstances. This structure-guided selection of subinstances provides an
exact solver with a high potential for improving the current solution. Our exhaustive experimental
analyses contrast our methodology as instantiated in our tool MaxSLIM with previous studies and
benchmark it against leading-edge MaxSAT solvers.

2012 ACM Subject Classification Hardware → Theorem proving and SAT solving; Theory of
computation → Discrete optimization; Theory of computation → Automated reasoning; Theory of
computation → Constraint and logic programming; General and reference → Experimentation

Keywords and phrases maximum satisfiability, large neighborhood search (LNS), SAT-based local
improvement (SLIM), incomplete MaxSAT, graphical structure, metaheuristic

Digital Object Identifier 10.4230/LIPIcs.CP.2024.26

Supplementary Material
Software (Source Code/Results): https://doi.org/10.5281/zenodo.12516816

Funding Austrian Science Fund (FWF), project 10.55776/P36420.

Acknowledgements Part of this work was carried out while taking part in the Dagstuhl Seminar
23261 “SAT Encodings and Beyond,” as well as in the extended reunion of the program “Satisfiability:
Theory, Practice, and Beyond” in the spring of 2023 at the Simons Institute for the Theory of
Computing at UC Berkeley.

1 Introduction

MaxSAT solvers (solvers for the partial weighted maximum satisfiability problem) have
proven to be indispensable tools with an expansive range of applications, including problems
that arise in software analysis [37], post-silicon fault localization [38], the identification
of concurrency bugs and suggestions for fixes [13], and malware detection in smartphone
apps [10]. Additional applications and case studies [20, 22] highlight MaxSAT’s versatility
in computer-aided design and related areas. While the focus in the past was on creating
superior exact MaxSAT solvers tailored for identifying optimal solutions, there has been a
noticeable shift towards the significance of anytime MaxSAT solvers in recent times. Unlike
exact solvers that seek optimal results, anytime solvers prioritize finding commendable
solutions in a shorter time frame and, when interrupted, output the best solution found so
far. Hickey and Bacchus [12] introduced a technique using Large Neighborhood Search [36]
that integrates the capabilities of exact and anytime solvers, harnessing the advantages of
both.
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26:2 Structure-Guided Local Improvement for Maximum Satisfiability

In our paper, we further develop the methodology of combining exact and anytime
MaxSAT solvers, leveraging the local characteristics of the MaxSAT instance’s graphical
structure to direct the search and dissection of the problem. We embody our innovative
approach in the tool MaxSLIM, which supports an array of strategies for choosing local
subinstances grounded on the incidence graph’s graphical structure of the MaxSAT instance.
Each strategy starts from a small number of variables and strategically extends the set of
variables by tracing out a subgraph in the graphical model until a predefined budget is
reached. These selection strategies use a preference metric to select the starting variable and
to decide which variable to add next. We consider several different metrics in our framework.
MaxSLIM uses a new MaxSAT solver specifically designed for solving local instances, or,
alternatively, can use any other MaxSAT solver for this purpose.

Our comprehensive experimental evaluation on the instances from the 2023 MaxSAT
Evaluation1 showcases the efficacy of considering the graphical structure in the MaxSAT
instances. The insights derived from a wide-ranging set of experiments conclusively indicate
that integrating the graphical structure not only elevates the performance but does so in
a significant and robust manner. The consistent and notable performance enhancements
highlight the value and effectiveness of this integrated approach.

Related Work

As mentioned above, Hickey and Bacchus [12] proposed an anytime MaxSAT solver based on
the Large Neighborhood Search (LNS) metaheuristic [36, 25] called MaxSAT-LNS. Similar
to MaxSLIM, MaxSAT-LNS also tries to improve a sub-optimal solution using LNS. In each
round of LNS, a weighted random subset of variables is selected and their values fixed. Then,
a separate solver is run to find an improved assignment for the remaining variables. Fixing
a few assignments can imply many other assignments via unit propagation, making the
problem of completing the assignment comparatively easy. The main difference to MaxSLIM
is that MaxSAT-LNS selects subinstances without utilizing the graphical structure of the
instance.

SAT-Based Local Improvement (SLIM) is a specific type of LNS tailored for the use with
(Max)SAT solvers. As such, SLIM is an anytime meta-heuristic that embeds (Max)SAT
encodings into heuristic algorithms. In the past, SLIM has been used for a variety of
problems, such as graph decomposition problems [11, 15, 16, 26], Bayesian Network structure
learning [27, 28, 29], decision tree induction [33, 35], graph coloring [32, 34], and circuit
minimization [14, 30, 31]. The common aspect between all these SLIM instantiations is that
the initial solution (to be improved by iteratively solving local instances) was too large to be
computed directly by a SAT-based solver. Hence initial solutions were computed by other,
often greedy heuristic methods.

Other SAT-based LNS approaches exist for timetabling [9] and cell placement [8]. Cell
placement follows the metaheuristic Local Search with SAT Oracle (LSSO) where the user
supplies problem specific neighborhood generators and the remaining algorithm is fixed,
apart from hyperparameters that control the search. These LNS instantiations, like most
other, define the neighborhood based on global properties of the instance. The search is then
performed over the whole instance, while restricting how much the solution can change. In
contrast, SLIM instantiations look at the structure of the instance and local properties. The
search space for the local instances is then unrestricted, apart from ensuring consistency

1 https://maxsat-evaluations.github.io/2023/

https://maxsat-evaluations.github.io/2023/
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with the global solution. One big advantage of the SLIM approach is that it can be applied
to instances that are too large to encode as a whole, as it is only necessary to encode the
local instances.

Given the large volume of research, we focus the discussion of anytime MaxSAT solving
on the state-of-the-art solvers used in our experiments. SATLike [6] is a dynamic local search
algorithm that is used in several anytime solvers. SATLike uses a dynamic weighting scheme
that is used to pick variables that are then flipped in the hope of finding a good feasible
solution. NuWLS [7] is based on the SATLike algorithm and proposes a different weighing
scheme. Its implementation NuWLS-c uses another anytime MaxSAT solver (TT-Open-
WBO-Inc) for the initial solution. NuWLS-c won the MaxSAT Evaluations 2022 and 2023.
NoSAT MaxSAT [5] is another anytime solver based on SATLike and most recently NuWLS,
but in contrast to other anytime solvers, relies solely on local search without invoking a
SAT solver. TT-Open-WBO-Inc [24] uses either Open-WBO-Inc’s [18] Boolean multilevel
optimization (BMO) [17] for weighted instances, or a SAT-based bit-vector optimization
algorithm (BVO) [21] for unweighted instances. Instead of calling a SAT solver, TT-Open-
WBO-Inc’s BVO and BMO algorithms call a local search solver that searches for solutions
close to the best known solution. The local solver achieves this by polarity saving and
incremental SAT calls [23]. Loandra [4] uses preprocessing and linear search (SAT-UNSAT).
The linear search is sped up by preprocessing the instance using core-guided search: the
core-guided search runs for a limited time, after which the reformulated instance is passed
to the linear search. These solvers follow, broadly speaking, two approaches: local search
(NuWLS, NoSAT, TT-Open-WBO-Inc) and simplifying the whole instance (Open-WBO-Inc,
Loandra) in order to make finding a good feasible solution easier. In contrast, MaxSLIM
looks at much larger neighborhoods than local search and does not modify the instance itself.
Instead it tries to repeatedly extract easier subproblems.

2 Preliminaries

A propositional formula in conjunctive normal form (CNF formula) is a set of clauses, each
clause is a set of literals, each literal is a propositional variable or a negated propositional
variable. We consider a CNF formula as the conjunction of its clauses and each clause as a
disjunction of its literals. For a literal ℓ ∈ {x,¬x} we define var(ℓ) = x, for a clause C we define
var(C) = { var(ℓ) : ℓ ∈ C } and for a CNF formula F we define var(F ) =

⋃
C∈F var(C). An

assignment is a mapping τ : X → {0, 1} defined on a set X of variables; we write var(τ) = X.
We extend τ to literals by setting τ(¬x) = 1 − τ(x). We implicitly use the equivalency
¬¬v = v. For an assignment τ , we put lit(τ) = {x : x ∈ var(τ), τ(x) = 1 }∪{¬x : x ∈ var(τ),
τ(x) = 0 }. An assignment τ is total for a CNF formula F if var(τ) = var(F ). All future
references to assignments address assignments which may or may not be total, unless explicitly
specified. For two assignments τ1, τ2 with var(τ1) ∩ var(τ2) = ∅ we define τ1 ∪ τ2 to be the
assignment with var(τ1 ∪ τ2) = var(τ1) ∪ var(τ2) and (τ1 ∪ τ2)(x) = τi(x) for x ∈ var(τi).

An assignment τ satisfies a clause C if it sets at least one literal of C to 1. An assignment
satisfies a CNF formula if it satisfies all its clauses. For a clause C and an assignment τ , we
write C[τ ] = { ℓ ∈ C : var(ℓ) /∈ var(τ) }. For a CNF formula F and an assignment τ , F [τ ]
denotes the CNF formula obtained from F by removing all clauses that are satisfied by τ and
removing from the remaining clauses all literals that τ sets to 0, that is F [τ ] = {C[τ ] : C ∈ F,

τ does not satisfy C }. Thus τ satisfies F if and only if F [τ ] = ∅.
For an assignment τ and a CNF formula F , UPF (τ) denotes the assignment obtained

from τ by unit propagation over F . This means, we iteratively extend τ to literals ℓ that are
forced because there exists a clause C ∈ F where C[τ ] = {ℓ}.

CP 2024
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An instance of the Maximum Satisfiability problem, or MaxSAT instance F is a triple
consisting of two CNF formulas Fh and Fs and a weight function w : C ∈ Fs → N. The
clauses of Fh are hard, the clauses of Fs soft. A solution to F is an assignment τ that
satisfies Fh. The cost of a solution τ , denoted cost(F , τ), is the sum of weights of the soft
clauses not satisfied by τ . An optimal solution is one with minimum cost over all solutions,
thereby maximizing the sum of weights of the satisfied soft clauses, therefore the name
MaxSAT. In an unweighted instance, every soft clause has weight 1.

We write var(F) = var(Fh) ∪ var(Fs) and Fτ = (Fh[τ ], Fs[τ ], w′) where w′ is defined for
C ∈ Fs[τ ] by w′(C) =

∑
C′ ∈ Fs with C = C′[τ ] w(C ′).

We distinguish between two types of MaxSAT solvers, exact solvers which provide optimal
solutions and anytime solvers which aim at providing good solutions within a given time
bound and thus are not concerned with the optimality of the solutions. Anytime algorithms
can be interrupted at any point of time, upon which they immediately output the best
solution found so far and terminate. MaxSAT solvers can be both exact and anytime: a
solver’s classification expresses if a solver’s focus is on proving optimality or finding good
solutions, as none of the existing solvers is good at both aspects. A subtype of exact solvers
are exact incremental solvers. These solvers are run multiple times on almost the same
MaxSAT instance. In between each run, the MaxSAT instance can be modified. Further, for
each run, the user can specify a temporary variable assignment using assumptions.

3 MaxSLIM

In this section, we describe MaxSLIM, our variant of SLIM for MaxSAT. MaxSLIM expects
a MaxSAT instance – the global instance – as input. Then, either a global solution τ is
provided, or MaxSLIM computes one using a heuristic. MaxSLIM improves this global
solution by repeatedly extracting local instances, as discussed in the next section, and solving
them using a local solver. Whenever the local solver finds a solution with lower cost, we
found an improvement for the global solution. The local solver is subject to a local timeout
and is stopped whenever this timeout elapses.

Alongside our structural approach, we also discuss the details of MaxSAT-LNS’s neigh-
borhood definition.

3.1 Local Instances
Given a MaxSAT instance F = (Fh, Fs, w) and weight function w, we iteratively construct a
set L ⊆ var(F) of candidate variables that induce our local instance. The candidate variables
are selected using a strategy, the topic of Section 3.3. Given a total assignment τ of F ,
we define τ |var(F )\L as the restriction of τ to var(F ) \ L, and let τL̄ = UPFh

(τ |var(F)\L).
Hence, τ |var(F )\L is the assignment after fixing the value of all non-candidate variables and
performing unit propagation and L induces the local instance FL = F [τL̄].
FL is expected to be much smaller than F . We call the variables in var(FL) free variables,

which are a subset of the candidate variables. Given a solution π for FL, we obtain a new
global solution by completing τL̄ to a total assignment using π: τ ← τL̄ ∪ π.

The updated τ is indeed a solution for F : all hard clauses not part of FL are by definition
satisfied by τL̄ and the hard clauses in FL are satisfied by π. A similar argument holds for
the soft clauses. The global cost decreases exactly by the value the local cost decreases.
Therefore, any improvement for the local instance also improves the global solution.

We specify the budget in terms of the number of free variables. Hence, we want to choose
L such that |var(FL)| ≤ b for some budget b. This ensures that the local instances do not
take too long to solve. MaxSAT-LNS uses a similar method: it incrementally fixes the values
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of some variables, until the number of unassigned variables is below a specific threshold. Our
focus on the free variables as opposed to the fixed variables, allows us to follow the instance’s
structure, as is our next topic.

3.2 Local Instance Selection
The goal of local instance selection (i.e., selection of the candidate variables) is that we would
like to reach many unsatisfied soft clauses that can be satisfied by changing the assignment of
the free variables. This poses two challenges. The first challenge is identifying the right soft
clauses: improvements usually require that some satisfied soft clauses become unsatisfied in
exchange for satisfying some previously unsatisfied soft clauses of higher total weight. Once
the soft clauses are identified, we know which variables need to become free. The second
challenge is identifying the other variables required to free the soft clauses’ variables. This
gives us the candidate variables for our local instance. This task is hard to perform efficiently,
as unit propagation behaviour is very instance-specific and hard to predict.

We address these challenges by considering the incidence graph (also known as the clause-
variable incidence graph) for our local instance selection. While other graphical models for
MaxSAT instances exist (such as the primal graph or the resolution graph), our research
shows that the incidence graph is best suited for our method: (i) the incidence graphs
contains all the information available in the primal graph and resolution graph, and (ii) the
neighborhood of a variable shows which clauses are impacted in case we change the variable’s
value. The incidence graph GF is the graph with the set of vertices V (GF ) = var(F)∪Fh∪Fs

and the set of edges E(GF ) = { {u, C} : C ∈ Fh ∪ Fs, u ∈ var(C) }. Hence, the incidence
graph is a bipartite graph that connects the clauses with the variables they contain, negated
or unnegated. We annotate the edges with the polarity of the variable in the clause. Given
a global solution τ for F and a set L ⊆ var(F), we define the restriction of the incidence
graph GF,L to unsatisfied clauses. For this definition, we assume that the assignment to the
candidate variables changed and use

τ ′(x) =
{

1− τ(x) if x ∈ L,

τ(x) otherwise.

Then

V (GF,L) = var(F) ∪ {C ∈ Fs ∪ Fh : C not satisfied by τ ′ } and
E(GF,L) = E(GF ) ∩ (V (GF,L)× V (GF,L)).

Local instance selection searches for connected subgraphs of the incidence graph that allow
for improvements. We focus on connected subgraphs as after changing an assignment to a
variable x, unit propagation can only affect variables within the same connected subgraph
as x. The restricted incidence graph focuses this search by considering only those clauses
that become unsatisfied after changing x.

MaxSLIM constructs local instances using strategies for exploring GF,L. Each strategy is
a different greedy algorithm that picks variables by maximizing a metric. Each metric s(.)
defines a score for each variable or soft clause x, denoted by s(x).

Algorithm 1 shows the general approach. In each iteration, we initially start from a single
unsatisfied soft clause C ∈ Fs. The soft clause is chosen according to the metric and we
avoid repeatedly choosing the same soft clause by keeping track of our previous choices in D.
Hence, we start with initial set L0 = var(C) of candidate variables. We then extend this set
to Li+1 = Li ∪ S – where S depends on the strategy used – until |var(FLi+1)| exceeds our

CP 2024
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Algorithm 1 MaxSLIM.
Input: A MaxSAT instance F = (Fh, Fs, w), a metric s(.), a strategy σ for selecting local
instances, and a budget b.
Output: A solution τ .

1: τ ←solve(F) // τ can also be passed as a parameter.
2: D ← ∅ // D keeps track of visited soft clauses.
3: while within global timeout do
4: i← 0
5: Cs ← arg maxC∈Fs\D,C∩τ=∅ s(C)
6: L0 ← var(Cs)
7: D ← D ∪ {Cs}
8: while var(Li) ̸= var(F) and |var(FLi

)| < b do
9: Extend Li to Li+1 using the strategy σ.

10: i← i + 1
11: end while
12: τLi+1 ← solve(FLi+1)
13: if cost(FLi+1 , τLi+1) < cost(FLi+1 , τ) then
14: τ ← τ |var(F)\var(FLi+1 ) ∪ τLi+1

15: Update metric.
16: D ← ∅
17: end if
18: if D = {C ∈ Fs : C ∩ lit(τ) = ∅ } then
19: D ← ∅
20: end if
21: end while
22: return τ

budget or we have added all variables. Then L := Li+1. Whenever we tried all soft clauses
or found an improvement, we reset D. Hence, MaxSLIM runs either until the global timeout
is reached or the budget allows solving the whole instance.

3.3 Strategies
Given a global instance F = (Fh, Fs, w), a global solution τ for F , and a metric s :
var(F) ∪ Fs → R (which can depend on τ), we use one of the following strategies for
extending Li to Li+1, where ties are always broken arbitrarily:

Variable Strategy: Let Nc = {C : u ∈ Li, {u, C} ∈ E(GF,Li
) } and Nv = {u : C ∈

Nc, {u, C} ∈ E(GF,Li) }\Li, i.e., Nv is the set of variables which occur in some clause to-
gether with at least one variable in Li. This strategy sets Li+1 = Li∪{arg maxu∈Nv

s(u)}.
I.e., this strategy adds as many high-scoring variables to the local instance as possible.
k-Adjacency Strategy: This strategy picks a variable v = arg maxv∈Li

s(v) and then
extends Li to Li+1 by adding the k best variables of distance 2 from v in GF,Li . The
idea behind this strategy is that high-scoring candidate variables are only useful if they
become free. Adding variables that occur together in a clause with the high-scoring
variables increases the chances of the high scoring candidate variables becoming free.
Fast Strategy: This strategy does not use a metric to avoid sorting and priority queues.
Let v ∈ Li be an arbitrary vertex and Nv be defined as in the Variable Strategy, then
Li+1 = Li ∪Nv. Hence, all variables occurring together with any variable in Li are added.
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This strategy tries to maximize the speed with which local instances are constructed.
Which strategy is best depends on the structure of the instance, as we will discuss in our
experiments. We discuss further strategies and results in Appendix A.

Next, we will discuss the different metrics used by the strategies.

3.4 Metrics
The metrics try to identify variables and soft clauses that have a high probability of contrib-
uting to an improvement. For brevity, only some metrics are discussed here and more metrics
and results can be found in Appendix B. We heavily use the concept of units: variable v

is a unit of clause C with respect to an assignment τ if {v} = var(lit(τ) ∩ C). Hence, if
a clause has a unit, changing the unit’s assignment will make the clause unsatisfied. We
define unit(v) = {C ∈ Fs ∪ Fh : {v} = var(lit(τ) ∩ C) }. Hence, unit(v) are exactly those
clauses that become unsatisfied if we change the value of v. Particularly for instances with
homogenous soft clause weights, many soft clauses end up having the same metric score. For
this reason, we use arg minv∈C |unit(v)| – smaller is better – as a tie breaker, whenever the
score of two soft clauses is the same.

We consider the following metrics:
Unit Metric: For each variable v ∈ var(F) the score is

s(v) = −|unit(v) ∩ Fh| −
∑

C∈unit(v)∩Fs

w(C).

This metric prefers variables where changing the assigned value would unsatisfy as few
clauses as possible. For a soft clause Cs the score is minv∈var(Cs) s(v).
Satisfying Metric:

s(v) =
∑

Ch∈Fh,Cs∈Fs,
v∈var(Fh),

Ch∩τ={ℓ},¬ℓ∈Cs


0, if lit(τ) ∩ Cs ̸= ∅;
0, if v = var(ℓ);
w(Cs), otherwise.

This metric identifies variables in unsatisfied soft clauses that cannot be changed to a
different value, as they alone satisfy some hard clause. Giving the other variables in
these hard clauses a high score and thereby changing their value can enable MaxSLIM to
satisfy more soft clauses. For a soft clause Cs, s(Cs) =

∑
v∈var(Cs) s(v).

NuWLS Metric: This metric uses the initial weighting scheme of NuWLS [7]. For
unweighted instances, each soft clause Cs has score s(Cs) = 1000, for weighted instances,
with wa being the average weight over all soft clauses, s(Cs) = w(Cs) · 3000

wa
.

For the purposes of computing the variable score, let s(C) = 1 for all C ∈ Fh. The score
for a variable v is defined as

s(v) =
∑

Cs∈Fs,Cs∩lit(τ)=∅

s(Cs)−
∑

C∈unit(v)

s(v).

This metric weighs the clauses that will be satisfied by changing the variable’s value
against the clauses that will become unsatisfied.

Instead of using the metric scores directly as discussed, we use weighted random sampling,
similar to MaxSAT-LNS: We use a constant factor c such that s(x) + c > 0 for all x ∈
Fs ∪ var(F) and then, for each x ∈ var(F) ∪ Fs, we set s(x)← log ux · 1

s(x)+c , where ux is a
randomly generated number between 0 and 1. Sampling causes MaxSLIM to explore more
diverse local instances, leading to more improvements over time.

CP 2024
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Variables: a, b, c, d, e, f

Soft Clauses: a, b, c

c1 : ¬a ∨ ¬b c2 : ¬a ∨ ¬c

c3 : a ∨ d c4 : ¬d ∨ e

c5 : d ∨ ¬f c6 : e ∨ f

c7 : b ∨ ¬f c8 : c ∨ e

τ(a) = 1
τ(b) = 0
τ(c) = 0
τ(d) = 0
τ(e) = 1
τ(f) = 0

(a) An unweighted MaxSAT instance and ex-
ample assignment τ .

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

(b) The respective in-
cidence graph.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1

(c) Initial iteration in
local instance selection.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1 c2

c3
c|-1

d| 0

(d) Second iteration.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1 c2

c3
c|-1

d| 0
c4

e|-2

(e) Third iteration.

c1 c2

c3

c4

c5 c6

c7 c8

a|-1

b|-1

c|-1

d| 0

e|-2

f|-2

b|-1

a|-1
c1 c2

c3
c|-1

d| 0
c4

e|-2

(f) Last iteration.

Variables: a, b, c, d

Soft Clauses: a, b, c

c1 :¬a ∨ ¬b

c2 :¬a ∨ ¬c

c3 :¬a ∨ d

π(a) = 0
π(b) = 1
π(c) = 1
π(d) = 0

(g) The corresponding local in-
stance and an optimal assign-
ment π.

Figure 1 Local instance selection using the Unit Metric, Variable Strategy, and a budget of 4. A
red edge indicates that the variable occurs negated in a clause and a blue edge indicates that the
variable occurs unnegated.

▶ Example 1. Figure 1 shows an example for local instance selection. Figure 1a shows an
unweighted MaxSAT instance with three unary soft clauses and a sub-optimal assignment τ .
The corresponding incidence graph is shown in Figure 1b. The graph also shows the polarity
of the variable using the edge color, blue for positive and red for negative. The example uses
the Unit Metric: the weight for the variables is given with the variable name in the graph
vertices. a has weight −1 as it alone satisfied c3 under τ , while d has weight 0 because it only
satisfies c4, which is also satisfied by e under τ . Local instance selection starts in Figure 1c
using the Variable Strategy, for clarity we do not use weighted random sampling. Initially,
b and c could be chosen as they occur in unsatisfied soft clauses and have highest weight.
Here, b is chosen arbitrarily as the initial soft clause and variable. The gray vertices have
been explored by the strategy and only the variables corresponding to explored vertices are
considered as candidate variables in the next iteration. Since a is the only such variable, it is
added next in Figure 1d. In the next two iteration, the variables with the highest weights
are selected, until we hit our budget of 4. We now have selected four candidate variables
that are also free variables and the corresponding local instance is shown in Figure 1g. The
improved assignment to the local instance can then be completed to a global assignment
using the original assignments to e and f .

3.5 Local Solvers
MaxSLIM can use any MaxSAT solver as the local solver, whether it is an anytime or an
exact solver. Next, we will discuss the advantages of different solver types and then discuss
our own solver developed for MaxSLIM.
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Anytime solvers seem like a straightforward choice, as we only require improved solutions,
not necessarily optimal ones. Unfortunately, anytime solvers often struggle to show optimality.
Hence, they often run for the full local timeout, where an exact solver can determine within
seconds that no improvement is possible. While current implementations of anytime solvers
do not offer the option to start from a known solution, the underlying algorithms themselves
would support it in principle.

Exact solvers are indeed often faster in showing that no improvement is possible. The
main disadvantage when using exact solvers is that they often do not find (good) intermediate
solutions, whenever the local run does not finish. There are methods like stratification [2, 17]
that find upper bounds for weighted instances during solving, but the upper bounds are
often not tight until late in the solving process. Further, exact solvers cannot profit much
from an already known solution, apart from hardening [2] which only works for weighted
instances. Incremental exact solvers would support encoding the instance only once and
reusing learned information across multiple local instances. Unfortunately, our experiments
show that the large number of assumptions (up to hundreds of thousands and more) required
for expressing the local instances slows down an incremental solver. Further, the large
number of assumptions makes it hard for the solver to learn cores or clauses that are useful
for another local instance. We could not observe any improvement of using an incremental
solver over a non-incremental exact solver.

In MaxSLIM, we use our own exact solver based on the OLL algorithm [1, 19] with
some specific adaptations. For brevity, we discuss the main differences to a plain OLL
implementation, without giving the details of OLL itself. For this description, we assume
that each soft clause consists of only one literal, as this can always be achieved by introducing
auxiliary variables.

A simple method that works for all solvers is using the fact that any improved solution
has to satisfy at least one additional soft clause. Let FL,s be the set of soft clauses of a local
instance FL and FL,u = {C ∈ FL,s : C ∩ lit(τ) = ∅ }. We can now add a single disjunction
stating that at least one soft clause in FL,u has to be satisfied. This has at least one of
two effects: any solution the local solver finds is different from the current solution, which
can lead to improvements in subsequent local runs, and more often, adding this disjunction
increases the optimal cost of the local instance. The increase in optimal cost, in turn, makes
it easier and faster to determine whether no improvement is possible.

The second change is upper bound search, where our solver actively tries to find improved
non-optimal solutions. In each OLL iteration, we assume that exactly one additional soft
clause in FL,u is satisfied. If the subsequent SAT call returns satisfiable, we have reduced
our upper bound and found a better solution. Otherwise, we proceed as usual: we extract a
core and increase our lower bound. This way, we may find improved solutions, even if the
solver does not find an optimal solution.

4 Experimental Evaluation

In our experimental evaluation, we address several research questions:
Q1: Is there a benefit of a structured approach compared to an unstructured one like

MaxSAT-LNS? (Section 4.2)
Q2: Is there a benefit of local improvement compared to just running the initial solver for

the entire time? (Section 4.3)
Q3: How does MaxSLIM compare to other anytime solvers? (Section 4.4)
Q4: What strategies/metrics work best? (Section 4.5)

We first introduce our experimental setup and then examine the results concerning these
questions.
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4.1 Experimental Setup
4.1.1 Cluster
The experiments were run on servers with two AMD EPYC 7402 CPUs, each having 24 cores
running at 2.8 GHz, and using Ubuntu 18.04. Each run had 64 GB of memory. We used
GCC 11 to compile all the solvers. We use timeouts of 5, 30 and 60 minutes.

4.1.2 Comparison
We compare our implementation of MaxSLIM against MaxSAT-LNS2, as well as the MaxSAT
Evaluation 2023 solvers NuWLS-c (static), TT-Open-WBO-Inc (Glucose for unweighted,
IntelSAT for weighted), Loandra, and NoSAT MaxSAT3. We utilize the same scoring system
as the MaxSAT Evaluation: let cbest be the cost of the best known solution for the given
instance, and csolver be the cost of the solution the given solver found, the score is calculated
with cbest+1

csolver+1 . The solvers finding the best solution get a score of 1. The lowest cost among
all our experiments provides the baseline. Hence, values in different tables are comparable.

We perform three runs per solver and configuration, using three specific random seeds for
reproducibility, whenever the solver supports it. The random seeds themselves have been
initially randomly generated. If not stated otherwise, we give the average of the three runs.

We generate an initial solution using NuWLS-c, the winner of the MaxSAT Evaluation
2023, and aim for a comparability between MaxSLIM, MaxSAT-LNS, and NuWLS-c using
the following setup. Instead of running NuWLS-c separately for 5, 30, and 60 minutes, we
only run it for the 60 minute-runs and extract the current best solution after 1, 5, 30, and
60 minutes. These extracted solutions are then used as the initial solution for MaxSLIM
and MaxSAT-LNS: for the 5 minute runs, MaxSLIM and MaxSAT-LNS get NuWLS-c’s best
solution after one minute as an input; for 30 and 60 minute timeouts we give MaxSLIM
and MaxSAT-LNS the NuWLS-c’s best solution after 5 minutes as the initial solution. We
compensate for this by running MaxSLIM and MaxSAT-LNS for only 4, 25, and 55 minutes
instead of 5, 30 and 60 minutes. This setup means that MaxSLIM, MaxSAT-LNS, and
NuWLS-c always start from the same solution. Instances where no initial solution could be
computed are omitted from the results.

We note that it is common that anytime solvers use other anytime solvers: TT-Open-
WBO-Inc uses NuWLS-c, and NuWLS-c uses TT-Open-WBO-Inc [5]. Further, we did not
try to create the best anytime solver, but evaluate how well our structured approach works.
Interleaving our approach more with the other solvers would yield better results, but makes
it hard to identify how much our approach contributes. Possible improvements are using
NuWLS for those instances that do not allow local improvements, or optimizing the timeout
for the initial solution.

4.1.3 Instances
We used the instances from the 2023 MaxSAT Evaluation’s anytime track4. The set contains
179 unweighted and 160 weighted instances. Our experiments show that EvalMaxSAT-SCIP,
the winner of the unweighted track and close third-best solver in the weighted track, was able
to solve 39 of the unweighted instances and 48 of the weighted instances within one hour.

2 https://github.com/rgh000/MaxSAT_LNS
3 https://maxsat-evaluations.github.io/2023/descriptions.html
4 https://maxsat-evaluations.github.io/2023/benchmarks.html

https://github.com/rgh000/MaxSAT_LNS
https://maxsat-evaluations.github.io/2023/descriptions.html
https://maxsat-evaluations.github.io/2023/benchmarks.html


A. Schidler and S. Szeider 26:11

We restrict the results to those instances where we could find an initial solution. This
avoids giving NuWLS-c a better score on instances where NuWLS-c does not find an initial
solution, but later finds a solution within the timelimit. Hence, we avoid lowering MaxSLIM’s
and MaxSAT-LNS’s score in case of NuWLS-c’s poor performance.

4.1.4 Configuration
We solve local instances using our OLL solver limited to a local timeout of 55 seconds. This
admits local instance selection and solving the local instance to finish within a minute. As
the budget, we initially use |var(F)|

10 many variables, but not more than 25 000. Every five
consecutive failures of finding an improvement, we increase the budget by another |var(F)|

10 .
Whenever the budget reaches the total number of variables, we run the local solver without
a timeout on the whole instance. We use the Variable Strategy and either the Unit Metric
for unweighted, or the NuWLS Metric for weighted instances.

Table 1 Virtual best average scores for different combinations of solvers. Virtual best scores take
for each instance the best solution over the specified solvers.

Unweighted Weighted
Solvers 5 m 30 m 60 m 5 m 30 m 60 m

MaxSLIM 0.886 0.920 9.927 0.833 0.911 0.917
MaxSLIM & MaxLNS 0.896 0.930 0.936 0.849 0.927 0.933
MaxSLIM & NuWLS 0.901 0.937 0.940 0.888 0.928 0.933
All Solvers 0.929 0.970 0.980 0.947 0.976 0.981

4.2 Comparison of SLIM and LNS (Q1)
The comparison between MaxSAT-LNS and MaxSLIM in Tables 2 and 3 shows that MaxSLIM
performs overall better than MaxSAT-LNS for all timeouts and scores. This suggests that the
structured approach has an advantage over randomly selecting the local instances. In contrast
to all the other solvers, MaxSAT-LNS and MaxSLIM both have a large variance between
the runs. This suggests that weighted random sampling introduces a significant diversity
among the local instances. The virtual best results in Table 1 show that MaxSAT-LNS and
MaxSLIM are not very complementary. Interestingly, the difference between the virtual best
and MaxSLIM’s score is constant over the timeouts, suggesting that some improvements
were only found by MaxSAT-LNS.

4.3 Comparison of MaxSLIM and NuWLS-c (Q2)
One crucial question is whether MaxSLIM is better than running the anytime solver used
for the initial solution for the entire duration. The results in Table 2 show that MaxSLIM
performs better on unweighted instances, where it is better on all metrics for all timeouts.

The results are different for weighted instances as shown in Table 3. Here, MaxSLIM
performs worse for the 5-minute runs. The weighted instances contain on average three times
more variables and hard clauses, as well as ten times more soft clauses compared to the
unweighted instances. This increase in size decreases the performance of the solvers and leads
to a poor initial solution. NuWLS-c is then faster at finding improvements than MaxSLIM.
This is clearly visible in the much better results on higher timeouts, where MaxSLIM is able
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Table 2 Comparison between MaxSLIM, MaxSAT-LNS (MaxLNS), NuWLS-c (NuWLS), TT-
Open-WBO-Inc (TT-OpenWI), Loandra, and NoSAT MaxSAT (NoSAT) for unweighted instances.
The score is obtained by taking for each instance the best scoring run, the worst scoring run, and the
average over all three runs. Best shows on how many instances the solver found the best solution.

MaxLNS MaxSLIM NuWLS TT-OpenWI Loandra NoSAT

5-Minutes 164 Instances

Score Min 0.859 0.876 0.876 0.872 0.806 0.576
Score Average 0.871 0.887 0.885 0.876 0.820 0.589
Score Max 0.887 0.899 0.895 0.881 0.835 0.602
Best 32 42 33 32 42 15

30-Minutes 171 Instances

Score Min 0.895 0.902 0.910 0.896 0.884 0.577
Score Average 0.907 0.919 0.917 0.907 0.892 0.591
Score Max 0.928 0.937 0.925 0.917 0.900 0.606
Best 36 39 30 28 41 13

60-Minutes 171 Instances

Score Min 0.898 0.907 0.911 0.902 0.887 0.587
Score Average 0.912 0.923 0.918 0.913 0.900 0.601
Score Max 0.930 0.940 0.926 0.925 0.912 0.617
Best 39 41 30 29 41 14

to find improvements overlooked by NuWLS-c. Even on the 5-minute timeout, MaxSLIM
finds many improvements, overlooked by NuWLS-c, as highlighted by the high virtual best
score in Table 1.

The gap between the virtual best and the best score behaves similar to the comparison
with MaxSAT-LNS. Except for the 5-minute weighted run, the gap remains almost constant
over the timeouts, suggesting that some improvements are not found by MaxSLIM. One type
of instance where NuWLS-c performs better are instances, where improvements are only
possible on (almost) the full instance, since solving these instances with an exact solver is
slow.

4.4 Other Solvers (Q3)

Tables 2 and 3 also show the results for the other solvers from the 2023 MaxSAT Evaluation.
Striking is the large variance for every solver, showing that luck plays a significant role in the
score. MaxSLIM’s variance stays comparatively high even for the longer timeouts, indicating
that longer timeouts could result in further significant improvements.

In the unweighted case, MaxSLIM is the best solver over the different timeouts, but it
clearly distinguishes itself from NuWLS-c only for the best score, as the average score is only
better by a small margin.

The weighted case is similar to the comparison with NuWLS-c for the same reasons.
Hence, MaxSLIM performs best for the longer timeouts, where the improvements become
harder to find.
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Table 3 Comparison between MaxSLIM, MaxSAT-LNS (MaxLNS), NuWLS-c (NuWLS), TT-
Open-WBO-Inc (TT-OpenWI), Loandra, and NoSAT MaxSAT (NoSAT) for weighted instances.
The score is from taking for each instance the best scoring run, the worst scoring run, and the
average over all three runs. Best shows on how many instances the solver found the best solution.

MaxLNS MaxSLIM NuWLS TT-OpenWI Loandra NoSAT

5-Minutes 154 Instances

Score Min 0.797 0.813 0.857 0.862 0.818 0.307
Score Average 0.818 0.833 0.868 0.872 0.843 0.319
Score Max 0.839 0.851 0.882 0.881 0.868 0.331
Best 32 29 31 22 35 0

30-Minutes 159 Instances

Score Min 0.877 0.895 0.889 0.881 0.882 0.327
Score Average 0.894 0.911 0.889 0.888 0.893 0.338
Score Max 0.914 0.929 0.912 0.895 0.906 0.348
Best 34 42 17 17 33 0

60-Minutes 159 Instances

Score Min 0.881 0.903 0.896 0.889 0.887 0.330
Score Average 0.899 0.917 0.906 0.897 0.898 0.341
Score Max 0.918 0.933 0.914 0.906 0.910 0.352
Best 35 41 19 20 34 0

Hence, MaxSLIM is generally competitive, but needs more local search for better perform-
ance on short weighted runs. The virtual best score over all solvers in Table 1 shows that
the approaches are quite complementary, as the virtual best for 5-minutes would outperform
the single best after one hour.

4.5 Impact of the Configuration (Q4)
An interesting question is how the hyperparameters impact MaxSLIM’s performance. We ran
the same configuration used in the previous experiments and varied only a single parameter.
The virtual best scores over all the configurations discussed in this section are 0.926 for
unweighted and 0.867 for weighted instances. Hence, a good dynamic configuration could
severely improve MaxSLIM’s performance.

Table 4 shows the results of disabling some of MaxSLIM’s features.
The upper bounding search does have a noticeable impact. Nonetheless, disabling it

yields better results on some instances. The varying performance comes from the fact that
the upper bounding search is slower than normal search whenever the local instance cannot
be improved.

Weighted random sampling performs in a similar manner, but improves the performance
overall more than upper bounding search. There is no clear indication as to when sampling
is beneficial and when it is not.

Local search has the biggest impact on the results. Whenever we take the first solution
from the initial solver, instead of letting it run the full minute, the performance degrades
significantly. This is particularly impactful on weighted instances. MaxSLIM is comparatively
slow, but can find improvements not visible to local search. Local search is complementary,
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Table 4 Performance of different disabled features of MaxSLIM over a 5-minute timelimit.
Improved shows how many input solutions were improved. Better and Worse show on how many
instances the configuration did better or worse than the baseline.

Unweighted Weighted
Configuration Score Improved Better Worse Score Improved Better Worse

Baseline 0.887 97 - - 0.833 105 - -

No Upper Bounding Search 0.878 94 16 32 0.825 101 16 33
No Weighted Sampling 0.875 88 22 40 0.819 103 15 40
No Initial NuWLS Solution 0.817 - 20 94 0.650 - 10 102

as it is very good at finding improvements fast, but often gets stuck when improvements
become hard to find. Hence, not running local search severely degrades the performance for
short runtimes.

Next, we discuss results on using different strategies and metrics.

4.5.1 Strategies
Table 5 shows the results of comparing different strategies. The results show that the Variable
Strategy is overall the best strategy, while the 5-Adjacency finds many solutions missed by
the Variable Strategy. The Fast Strategy performs overall worst, but performs better on
some very large instances. In general, different strategies perform complementarily.

Table 5 Performance of different strategies. Best Score shows on how many instances MaxSLIM
found the best solution using the given strategy. Unique Best shows on how many instances the
best solution could only be found using the given strategy. The timelimit was 5 minutes.

Unweighted Weighted
Strategy Score Improved Best Unique Score Improved Best Unique

Variable 0.887 97 44 5 0.833 105 34 14
5-Adjacency 0.887 94 48 13 0.822 107 40 18
Fast 0.873 79 28 5 0.817 99 24 10

In Table 6 are several statistics for each strategy. We can see that the relative time spent
on constructing local instances is indeed significantly lower for the fast strategy, and about
the same for all other strategies. Interestingly, the number of local instances is much higher
for the Variable and 5-Adjacency Strategy. This shows that the fast strategy extracts many
local instances that do not lead to an improvement, but require long solving times.

Another interesting observation is that neither the number of local instances, nor the
number of improved local instances is a good indicator for performance. According to both
results, the Variable Strategy would not be the best strategy.

4.5.2 Metrics
Table 7 shows the results of comparing different metrics. The score between the best and the
worst metric generally does not vary much. The Unit Metric is in the absence of weights
the best overall metric. Unsurprisingly, for weighted instances, those metrics that use the
weights work better.
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Table 6 Strategy statistics averaged over all instances: average local instance size relative to the
full instance (LI Size), average ratio of free variables to candidate variable per local instance (F/C),
average fraction of runtime spent on local instance generation (LI Time Ratio), average fraction
of variables changed per improvement (Changes), average ratio of local instances that have been
solved optimally (Optimal Ratio), average number of local instances (#LI), average number of local
instances that led to an improvement (#Improved).

Strategy LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Variable 0.40 0.64 0.10 0.06 0.64 49.11 2.01
5-Adjacency 0.38 0.65 0.12 0.07 0.67 55.49 3.29
Fast 0.41 0.69 0.02 0.07 0.50 32.29 1.69

Weighted

Variable 0.23 0.52 0.21 0.12 0.42 33.33 3.27
5-Adjacency 0.28 0.57 0.24 0.10 0.44 29.71 3.55
Fast 0.35 0.60 0.12 0.12 0.35 23.16 1.54

The statistics in Table 8 show that the different metrics perform very similarly. Together
with the strategy statistics in Table 6 there are some interesting details regarding the
performance differences between weighted and unweighted instances. The local instances
for weighted instances are much smaller than for unweighted instances, while constructing
them takes significantly longer. The number of variables changed and optimal ratio also
show that it is harder to find the improvements for weighted instances. This further explains
the poorer performance on weighted instances compared to weighted instances.

Table 7 Performance of different metrics. Best Score shows on how many instances MaxSLIM
found the best solution using the given metric. Unique Best shows on how many instances the best
solution could only be found using the given metric. The timelimit was 5 minutes.

Unweighted Weighted
Metric Score Improved Best Unique Score Improved Best Unique

Unit 0.887 97 51 5 0.823 103 47 17
NuWLS 0.885 97 51 8 0.833 105 44 9
Satisfying 0.883 96 66 13 0.824 103 36 7

5 Conclusion

In this paper, we have proposed MaxSLIM as a structured approach to anytime MaxSAT
solving. It tackles the problem of anytime MaxSAT solving by iteratively extracting and
solving smaller subinstances whose selection is guided by the graphical structure of the
instance. This combines anytime and exact MaxSAT solvers in a novel way. Our experimental
evaluation shows the competitiveness of MaxSLIM as compared to state-of-the-art anytime
solvers which have been refined for several years, and other LNS approaches. MaxSLIM’s
trajectory of improvements over time is particularly attractive for applications with longer
runtimes.
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Table 8 Metric statistics averaged over all unweighted instances: average local instance size
relative to the full instance (LI Size), average ratio of free variables to candidate variable per local
instance (F/C), average fraction of runtime spent on local instance generation (LI Time Ratio),
average fraction of variables changed per improvement (Changes), average ratio of local instances
that have been solved optimally (Optimal Ratio), average number of local instances (#LI), average
number of local instances that led to an improvement (#Improved).

Metric LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Unit 0.40 0.64 0.10 0.06 0.64 49.11 2.01
NuWLS 0.40 0.63 0.10 0.07 0.63 49.78 2.16
Satisfying 0.42 0.66 0.11 0.06 0.57 47.00 1.78

Weighted

Unit 0.27 0.54 0.20 0.10 0.42 31.72 3.59
NuWLS 0.23 0.52 0.21 0.12 0.42 33.33 3.27
Satisying 0.27 0.57 0.22 0.10 0.39 30.87 3.40

Our evaluation uses a default configuration and our results show that choosing the
parameters – strategy, metric, timeouts – according to the application can significantly
improve MaxSLIM’s performance even further.

An interesting avenue for further research is to adapt other anytime solvers to integrate
better within MaxSLIM. This would allow us to interleave local improvement phases with
additional runs of the initial solver, starting from the best solution found so far. Such an
interleaved SLIM approach has shown to be surprisingly powerful for circuit minimization [30,
31]. The large variance when comparing the score of different runs for the same configuration,
as well as different configurations, indicates that interleaving MaxSLIM with itself, using
different strategies and metrics, may also be beneficial for the result. Although MaxSLIM can
be parallelized, results so far show that this is only beneficial on some instances, but further
improvements may be possible. As MaxSLIM can benefit from the tuning of its parameters,
we expect that further efficiency improvements can be obtained through automated algorithm
configuration, possibly even adjusting parameters during the run [3].
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A Strategies

We use the same definitions as in Section 3.3: given a global instance F = (Fh, Fs, w), a
global solution τ for F , and a metric s : var(F) ∪ Fs → R (which can depend on τ), we use
the following additional strategies for extending Li to Li+1, where ties are always broken
arbitrarily:

Adjacency Strategy: This strategy picks a variable v = arg maxv∈Li
s(v) and then extends

Li to Li+1 by adding all variables of distance 2 from v in GF,Li
. The idea behind this

strategy is that high scoring candidate variables are only useful if they become free.
Adding all variables that occur together in a clause with the high scoring variables,
increases the chances of the high scoring candidate variables becoming free.
Clause Strategy: This strategy picks an arbitrary clause C ∈ V (GF,Li

) with var(C)∩Li ̸= ∅
and then sets Li+1 = Li ∪ {arg maxv∈var(C)\Li

s(v)}. The idea here is that should we
change the assignment to any candidate variable, some clauses may become unsatisfied.
This strategy follows the chain of necessary assignment changes to ensure that all clauses
are satisfied.
Global Strategy: This strategy emulates MaxSAT-LNS’s neighborhood definition and does
not follow Algorithm 1: instead of starting from a soft clause, we use L0 = var(F) and
we stop once we are within our budget. In each iteration Li+1 = Li \ {arg minv∈Li

s(v)}.
This strategy ensures that the assignment of high scoring variables is preserved.

Different strategies explore the incidence graph differently and lead to different local
instances. Further, different strategies have different runtime complexities. The two factors
that influence runtime the most are sorting the variables to pick the variable of highest score
and how often we need to run unit propagation to calculate the number of free variables.
Hence, the Fast Strategy is indeed the fastest, followed by the Global Strategy, as the
latter requires sorting all variables only once. We will further discuss the runtimes in the
experimental results in the next section.

A.1 Strategy Results

Table 9 Performance of different strategies. Best Score shows on how many instances MaxSLIM
found the best solution using the given strategy. Unique Best shows on how many instances the
best solution could only be found using the given strategy. The timelimit was 5 minutes.

Unweighted Weighted
Strategy Score Improved Best Unique Score Improved Best Unique

Global 0.906 92 64 22 0.826 104 35 14
Variable 0.887 97 44 5 0.833 105 34 14
5-Adjacency 0.887 94 48 13 0.822 107 40 18
Clause 0.877 95 36 1 0.816 106 28 8
Adjacency 0.873 92 36 4 0.820 106 29 13
Fast 0.873 79 28 5 0.817 99 24 10

Table 9 shows the results of comparing different strategies. The results show that the
Variable Strategy is overall the best strategy, while the Global Strategy performs better for
unweighted instances. Nonetheless, every strategy has several instances where it is the only
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Table 10 Strategy statistics averaged over all instances: average local instance size relative to the
full instance (LI Size), average ratio of free variables to candidate variable per local instance (F/C),
average fraction of runtime spent on local instance generation (LI Time Ratio), average fraction
of variables changed per improvement (Changes), average ratio of local instances that have been
solved optimally (Optimal Ratio), average number of local instances (#LI), average number of local
instances that led to an improvement (#Improved).

Strategy LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Global 0.40 - 0.02 0.07 0.73 77.79 4.25
Variable 0.40 0.64 0.10 0.06 0.64 49.11 2.01
5-Adjacency 0.38 0.65 0.12 0.07 0.67 55.49 3.29
Clause 0.33 0.61 0.11 0.07 0.65 55.35 2.13
Adjacency 0.36 0.66 0.10 0.07 0.69 50.11 2.65
Fast 0.41 0.69 0.02 0.07 0.50 32.29 1.69

Weighted

Global 0.24 - 0.09 0.11 0.50 46.59 4.30
Variable 0.23 0.52 0.21 0.12 0.42 33.33 3.27
5-Adjacency 0.28 0.57 0.24 0.10 0.44 29.71 3.55
Clause 0.24 0.54 0.23 0.06 0.48 34.06 3.33
Adjacency 0.20 0.57 0.24 0.09 0.45 28.09 3.28
Fast 0.35 0.60 0.12 0.12 0.35 23.16 1.54

one that could find the best solution. The difference in score is significantly larger among
unweighted instances compared to weighted instances. Hence, it is easier to give a good
default strategy for unweighted instances than for weighted instances.

In Table 10 are several statistics for each strategy. We can see that the relative time
spent on constructing local instances is low for the Global Strategy and the Fast Strategy,
and about the same for all other strategies. Nonetheless, the number of local instances is
much higher for the global strategy than for the fast strategy. This shows that the fast
strategy extracts many local instances that do not lead to an improvement, but require long
solving times. This also explains the good performance of the global strategy on unweighted
instances: the high number of local instances shows that MaxSLIM increases the budget faster
than with the other strategies. Further, the global strategy is good at finding many small
improvements, which has more overall impact on unweighted instances than on weighted
instances.

Generally, the statistics are more homogenous for unweighted instances than for weighted
instances, which also explains the results in Table 9. Another interesting observation is that
neither the number of local instances, nor the number of improved local instances is a good
indicator for performance. According to both results, the Variable Strategy would be among
the worst strategies.

B Metrics

We use the definitions from Section 3.4: a variable v is a unit of clause C with respect to an
assignment τ if {v} = var(lit(τ) ∩ C) and unit(v) = {C ∈ Fs ∪ Fh : {v} = var(lit(τ) ∩ C) }.

We define the following additional metrics:

CP 2024
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Random Metric: Assigns each variable and soft clause a random score. This causes
widespread exploration over consecutive local instances, but does not consider which
parts of the instance are more promising.
Counting Metric: The score of a variable is the negative number of times it was selected
as a candidate variable. For a clause C, the score s(C) =

∑
v∈var(C) s(v). This metric

encourages exploration of all variables over time.
LNS Metric: The metric used by MaxSAT-LNS [12]. For a variable v, we define

s(v) =
∑

C∈Fs,
v∈var(C)


−w(C), if v ∈ var(C ∩ lit(τ));
w(C), if C ∩ lit(τ) = ∅;
0, otherwise.

We extend this scoring to a clause C by setting s(C) =
∑

v∈var(C) s(v).
Ratio Metric: The score for a variable v is the number of clauses that would be satisfied
if v’s assigment were changed divided by the number of clauses that would become
unsatisfied by the change. For a clause C the score is minv∈var(C) s(v).

B.1 Metric Results

Table 11 Performance of different metrics. Best Score shows on how many instances MaxSLIM
found the best solution using the given metric. Unique Best shows on how many instances the best
solution could only be found using the given metric. The time limit was 5 minutes.

Unweighted Weighted
Metric Score Improved Best Unique Score Improved Best Unique

Unit 0.887 97 51 5 0.823 103 47 17
NuWLS 0.885 97 51 8 0.833 105 44 9
Satisfying 0.883 96 66 13 0.824 103 36 7
LNS 0.882 96 56 12 0.823 103 41 14
Counting 0.881 92 45 2 0.822 104 38 7
Random 0.881 91 39 0 0.823 102 32 5
Ratio 0.879 92 46 3 0.822 103 32 6

Table 11 shows the results of comparing different metrics. The score between the best
and the worst metric generally does not vary much. Nonetheless, apart from the Random
Metric, every metric achieves several unique best scores. The Unit Metric is in the absence
of weights the best overall metric. Unsurprisingly, for weighted instances, those metrics that
use the weights work better.

Table 12 shows various statistics for these metrics. In general, most statistics do not vary
much between metrics, except for the number of improving local instances.
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Table 12 Metric statistics averaged over all unweighted instances: average local instance size
relative to the full instance (LI Size), average ratio of free variables to candidate variable per local
instance (F/C), average fraction of runtime spent on local instance generation (LI Time Ratio),
average fraction of variables changed per improvement (Changes), average ratio of local instances
that have been solved optimally (Optimal Ratio), average number of local instances (#LI), average
number of local instances that led to an improvement (#Improved).

Metric LI Size F/C LI Time Ratio Changes Optimal Ratio #LI #Improved

Unweighted

Unit 0.40 0.64 0.10 0.06 0.64 49.11 2.01
NuWLS 0.40 0.63 0.10 0.07 0.63 49.78 2.16
Satisfying 0.42 0.66 0.11 0.06 0.57 47.00 1.78
LNS 0.43 0.64 0.09 0.06 0.56 46.32 1.79
Counting 0.40 0.63 0.10 0.06 0.64 46.87 1.72
Random 0.40 0.63 0.10 0.06 0.63 46.79 1.76
Ratio 0.40 0.64 0.11 0.06 0.64 49.99 2.07

Weighted

Unit 0.27 0.54 0.20 0.10 0.42 31.72 3.59
NuWLS 0.23 0.52 0.21 0.12 0.42 33.33 3.27
Satisying 0.27 0.57 0.22 0.10 0.39 30.87 3.40
LNS 0.28 0.54 0.20 0.09 0.39 31.23 3.46
Counting 0.25 0.53 0.20 0.10 0.40 31.16 3.23
Random 0.25 0.53 0.20 0.08 0.38 30.40 3.15
Ratio 0.25 0.54 0.21 0.08 0.39 30.58 3.52
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