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Abstract
The success of Constraint Programming relies partly on the global constraints and implementation
of the associated filtering algorithms. Recently, new ideas emerged to improve these implementations
in practice, especially regarding the all different constraint.

In this paper, we consider the cardinality constraint with costs. The cardinality constraint is
a generalization of the all different constraint that specifies the number of times each value must
be taken by a given set of variables in a solution. The version with costs introduces an assignment
cost and bounds the total sum of assignment costs. The arc consistency filtering algorithm of this
constraint is difficult to use in practice, as it systematically searches for many shortest paths. We
propose a new approach that works with upper bounds on shortest paths based on landmarks. This
approach can be seen as a preprocessing. It is fast and avoids, in practice, a large number of explicit
computations of shortest paths.
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1 Introduction

In Constraint Programming (CP), a problem is defined on variables and constraints. Each
variable is provided with a domain defining the set of its possible values. A constraint
expresses a property that must be satisfied by a set of variables. CP uses a specific resolution
method for each constraint.

The success of CP relies on the use of high-performance filtering algorithms (also known as
propagators). These algorithms remove values from variable domains that are not consistent
with the constraint, i.e. that do not belong to a solution of the constraint’s underlying
sub-problem. The most well-known propagator is that of the all different (alldiff) constraint,
which specifies that a set of variables must all take different values. The efficiency in practice
of that propagator strongly depends on its implementation. Thus, algorithms proposing
practical improvements on Régin’s algorithm [15] are still appearing [22, 21].

In this article, we consider another constraint introduced by Régin that is also popular [3,
12, 18, 7, 4]: the cardinality constraint with costs [14]. We propose to try to speed up its
filtering algorithm when there is nothing to deduce. This is often the case at the start of the
search, particularly as the optimal value is far from known. In addition, at this stage, the
gains can be significant since few values have been removed from the domains, and so the
complexity of the algorithms is greater. This approach can be particularly interesting with
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27:2 Efficient Implementation of the Global Cardinality Constraint with Costs

aggressive restarting methods and could simplify the use of CP: there is less need to worry
about the inference strength of constraints versus their cost. We can worry less about the
type of filtering to be used and consider the arc consistency right away.

The global cardinality constraint (gcc) [16] is a generalization of the alldiff constraint. A
gcc is specified in terms of a set of variables X = {x1, ..., xp} which take their values in a
subset of V = {v1, ..., vd}. It constrains the number of times a value vi ∈ V is assigned to
variables in X to belong to an interval [li, ui].

A gcc with costs (costgcc) is a generalization of a gcc in which a cost is associated with
each value of each variable. Then, each solution of the underlying gcc is associated with a
global cost equal to the sum of the costs associated with the assigned values of the solution.
In a costgcc constraint the global cost must be less than a given value, H.
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Figure 1 Example of a global cardinality constraint with costs. Source [14]. The sum of
assignment costs must be less than or equal to 11. On the left, the original problem and on the
right, the same problem after deleting all arcs that cannot belong to a solution.

Cardinality constraints with costs has proved useful in many real-life applications, such
as routing, scheduling, rostering, or resource allocation problems. The total costs are often
used for expressing preferences, time or cost.

Figure 1 gives an example of a costgcc constraint and the associated filtering algorithm.
There are 7 workers represented by the variables Peter, Paul, Mary, John, Bob, Mike, Julia

and 5 tasks represented by the values A, B, C, D, E. Each worker has the ability to perform
certain tasks and must perform exactly one of them. There is an arc from a worker to
a task if the worker can perform the task, its cost corresponding to the time it takes the
worker to perform the task. A task has a capacity defining the number of times it must
be performed. For example, A must be performed between 1 and 2 times. The objective
is to find an assignment whose sum of costs is less than 11. The best possible assignment
has a cost of 7, so it is a solution. On the right-hand side of Figure 1, all arcs that cannot
belong to a solution have been removed. For example, the arc (Peter, B) can be deleted.
If B is assigned to Peter, then the maximum capacity of B will be exceeded, so the arc
(Mary, B) or (John, B) cannot be part of the solution. If (John, B) is kept, then a value
must be assigned to Mary, the only possibility is (Mary, A) with a cost of 3. The cost of
all assignments is now 12, which is more than 11, so this is not a solution. Similarly, if
(Mary, B) is kept, then the only possibility for John is (John, A) with a cost of 3 and the
total cost is 12, which is too high.
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The filtering algorithm associated with a costgcc constraint [14] can be described as
repetitive. First, it computes a maximum flow at minimum cost to determine whether the
constraint is consistent (i.e., admits a solution). Then, to find out whether a variable x can
be instantiated with a value a, it tries to pass a unit of flow through the arc representing
the assignment of a to x so that the total cost of the flow is less than H. This operation
involves computing min-cost flow through an arc from a given min-cost flow. This can be
done by searching for a shortest path between x and a in the residual graph of the min-cost
flow. Furthermore, it has been shown that it is possible to avoid computing a shortest path
for each value of each variable and that computing one shortest path per assigned value
(which is less than the number of variables) is sufficient [14]. Unfortunately, the algorithm is
repeated for each assigned value, which often proves prohibitively expensive.

In this paper, we introduce a new approach avoiding this repetitive aspect as much as
possible. Our approach is based on several observations:

Finding a min-cost flow for each assignment is not necessary. Finding that there exists a
flow whose cost is less than H is enough.
It is not necessary to compute any path exactly because we are only interested in their
costs, not the path. Further, the exact value of the cost is not necessary either. An upper
bound below a maximum cost is sufficient.
The use of landmarks (i.e., particular nodes) have proved their worth in speeding up
computations of the shortest paths between large elements (millions of nodes) [6]. Let x

and y be two nodes of a graph and p be another node called landmark, then we have:
d(x, p) + d(p, y) ≥ d(x, y) where d(i, j) is the shortest path distance from i to j. Thus,
by selecting one or several good landmarks p we can find a good upper bound of d(x, y)
for each pair of nodes x, y.
Calls to the filtering algorithm often do not remove any value. This means that the
margin (i.e., slack between H and the min-cost flow value) is often large relative to the
data, so using the upper bound should give good results.

On the basis of the above, we propose to introduce preprocessing in order to reduce the
effective shortest path computations as proposed by Régin’s algorithm. Our approach is to
search for landmarks and use them to compute upper bounds on paths to avoid unnecessary
explicit shortest path computations. We consider several types of landmarks to integrate
the structure of the graph, such as landmarks at the periphery (outline) of the graph or at
the center. The advantage of this approach is its low cost because only two shortest paths
are required per landmark. We also introduce a way to quickly detect whether a costgcc
constraint is arc consistent.

The paper is organized as follows. Section 2 recalls some preliminaries on constraint
programming, graph and flow theory. Section 3 describes Régin’s algorithm because our
method is based on it. Section 4 introduces upper bounds on shortest paths based on
landmarks and, in Section 5, the arc consistency algorithm is accordingly adapted. Section 6
details some landmark selection methods. Section 7 gives some experiments on classical
problems showing that our approach dramatically reduces the number of computed shortest
paths.

2 Preliminaries

The following definitions, theorems and algorithms are based on the following papers and
books: [14, 2, 10, 17, 1].

CP 2024
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Constraint Programming

A finite constraint network N is defined as a set of n ∈ N variables X = {x1, . . . , xn}, a set of
current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set of possible values for
variable xi, and a set C of constraints between variables. We introduce the particular notation
D0 = {D0(x1), . . . , D0(xn)} to represent the set of initial domains of N on which constraint
definitions were stated. A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir

)
is a subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir ) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir

. An element of D0(xi1) × · · · × D0(xir
)

is called a tuple on X(C) and is denoted by τ . In a tuple τ , the assignment of the ith

variable is denoted by τi. var(C, i) represents the ith variable of X(C). A value a for a
variable x is often denoted by (x, a). Let C be a constraint. A tuple τ on X(C) is valid if
∀(x, a) ∈ τ, a ∈ D(x). C is consistent iff there exists a tuple τ of T (C) which is valid. A
value a ∈ D(x) is consistent with C iff x ̸∈ X(C) or there exists a valid tuple τ of T (C) with
(x, a) ∈ τ .

The costgcc constraint is formally defined as follows.

▶ Definition 1 ([14]). A global cardinality constraint with costs is a constraint C

associated with a cost function on X(C) cost, an integer H and in which each value
ai ∈ D(X(C)) is associated with two positive integers li and ui

T (C) = { τ such that τ is a tuple on X(C)
and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui

and Σ|X(C)|
i=1 cost(var(C, i), τ [i]) ≤ H }

It is denoted by costgcc(X, l, u, cost, H).

To understand how arc consistency on a costgcc is established, some concepts from graph
theory and flow theory are required.

Graph theory

A directed graph or digraph G = (X, U) consists of a node set X and an arc set U , where
every arc (x, y) is an ordered pair of distinct nodes. We will denote by X(G) the node set
of G and by U(G) the arc set of G. The cost of an arc is a value associated with the arc.
When costs are associated with arcs, one should talk about weighted directed graphs.

A path from node x1 to node xk in G is a list of nodes [x1, ..., xk] such that (xi, xi+1) is
an arc for i ∈ [1..k − 1]. The path is called simple if all its nodes are distinct. The cost of a
path P , denoted by cost(P ), is the sum of the costs of the arcs contained in P . A shortest
path from a node s to a node t is a path from s to t whose cost is minimum.

Flow theory

Let G be a digraph where each arc (x, y) is associated with three information: lxy the lower
bound capacity, uxy the upper bound capacity and cxy the cost of the arc.

A flow in G is a function f satisfying the following two conditions:
For any arc (x, y), fxy represents the amount of some commodity that can “flow” through
the arc. Such a flow is permitted only in the indicated direction of the arc, i.e., from x to
y. For convenience, we assume fxy = 0 if (x, y) ̸∈ U(G).
A conservation law is fulfilled at each node: ∀y ∈ X(G) :

∑
x fxy =

∑
z fyz.

The cost of a flow f is cost(f) =
∑

(x,y)∈U(G) fxycxy.
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The feasible flow problem consists in computing a flow in G that satisfies the capacity
constraint. That is finding f such that ∀(x, y) ∈ U(G) lxy ≤ fxy ≤ uxy. The minimum cost
flow problem consists in finding a feasible flow f such that cost(f) is minimum.

A min cost flow can be computed thanks to the augmenting shortest path algorithm. The
main idea of the basic algorithms of flow theory is to proceed by successive improvement of
flows that are computed in a graph in which all the lower bounds are zero and the current
flow is the zero flow (i.e., the flow value is zero on all arcs).

First, assume that there is no lower capacity. So, consider that all the lower bounds are
equal to zero and suppose that you want to increase the flow value for an arc (x, y). In this
case, the zero flow is a feasible flow. Let P be a shortest path from y to x different from
(y, x), and val = min({uxy} ∪ {uab s.t. (a, b) ∈ P}). Then we can define the function f on
the arcs of G such that fab = val if (a, b) ∈ P or (a, b) = (x, y), and fab = 0 otherwise. This
function is a flow in G and fxy > 0. Now, from this flow we can define a particular graph
without any flow value and all lower bounds equal to zero, the residual graph.

▶ Definition 2. The residual graph for a given flow f , denoted by R(f), is the digraph
with the same node set as in G and with the arc set defined as follows:
∀(x, y) ∈ U(G):

fxy < uxy ⇔ (x, y) ∈ U(R(f)) and has cost rcxy = cxy and upper bound capacity
rxy = uxy − fxy.
fxy > lxy ⇔ (y, x) ∈ U(R(f)) and has cost rcyx = −cxy and upper bound capacity
ryx = fxy − lxy.

All the lower bound capacities are equal to 0.

Then, we can select an arc and apply the previous algorithm on this arc in order to
increase its flow value. By dealing only with shortest path we can guarantee that the
computed flow will have a minimum cost.

Now consider the lower capacities. In this case, we can use the algorithm mentioned by
Régin:

Start with the zero flow fo. This flow satisfies the upper bounds. Set f = fo, and apply
the following process while the flow is not feasible:
1) pick an arc (x, y) such that fxy violates the lower bound capacity in G (i.e., fxy < lxy).
2) Find P a shortest path from y to x in R(f) − {(y, x)}.
3) Obtain f ′ from f by sending flow along P ; set f = f ′ and goto 1)
If, at some point, there is no path for the current flow, then a feasible flow does not exist.
Otherwise, the obtained flow is feasible and is a minimum cost flow.

3 Filtering Algorithm

Our work builds on top of the original costgcc filtering (i.e., [14]). Before presenting how we
speed up the algorithm for costgcc, let us briefly review the original algorithm.

There is a relation between a costgcc and the search for min-cost flow in a particular
graph.

▶ Definition 3 ([14]). Given C = costgcc(X, l, u, cost, H). The value graph of C is the
bipartite graph GV (C) = (X(C), D(X(C)), U) where (x, a) ∈ U if a ∈ Dx. The value
network of C is the directed graph N(C) with lxy the lower bound capacity, uxy the upper
bound capacity and cxy the cost on arc from the node x to the node y. N(C) is obtained from
the value graph GV (C) by:

CP 2024
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Orienting each edge of GV (C) from values to variables. ∀x ∈ X(C) : ∀a ∈ D(x) : lax = 0,
uax = 1 and cax = cost(x, a).
Adding a node s and an arc from s to each value. ∀a ∈ D(X(C)): lsa = la, usa = ua and
csa = 0.
Adding a node t and an arc from each variable to t. ∀x ∈ X(C) : lxt = 1, uxt = 1 and
cxt = 0.
Adding an arc (t, s) with lts= uts=|X(C)| and cts=0.

▶ Property 4 ([14]). A costgcc C is consistent iff there is a minimum cost flow in the value
network of C whose cost is less than or equal to H.

Figure 2 represents the residual graph of the value network of the costgcc constraint
defined in Figure 1. This is the graph computed from a flow resulting of the min cost
flow algorithm applied on the value network. In the residual graph, the optimal solution
corresponds to the arcs oriented from the variables to the values. The optimal cost value is 7.

For clarity, in the remainder, we consider that C = costgcc(X, l, u, cost, H) is a costgcc
constraint and that f is min cost flow in N(C). We also assume that the arc consistency of
the underlined gcc of C has been established.

The consistency of a value relates to the existence of a particular path in the residual
graph of the min cost flow.

▶ Property 5 ([14]). A value a of a variable x is not consistent with C iff the two following
properties hold:

fax = 0
dR(f)(x, a) > H − cost(f) − rcax

where dR(f)(x, a) is the shortest path between x and a in the residual graph of f , and rcax is
the residual cost of the arc (a, x).

To establish arc consistency, the previous property could be checked for each value of
each variable. However it is possible to reduce the number of computed shortest paths.

▶ Corollary 6 ([14]). Given any variable x and b the value of x such that fbx = 1. Then, the
value a of x is not consistent with C iff the two following properties hold:

fax = 0
dR(f)(b, a) > H − cost(f) − rcax − rcxb

An example of the application of Property 5 is given in Figure 2. The length of the shortest
path from Julia to E has a cost of −1 (see blue arcs) and the cost of the arc (E, Julia) is
rcEJulia = 1. Thus we have dR(f)(Julia, E) = −1 and H −cost(f)−rcEJulia = 11−7−1 = 3,
so we have −1 ≤ 3. From Property 5 it means that (E, Julia) is consistent. The shortest path
from Peter to B is dR(f)(Peter, B) = 1 and the cost of the arc (B, Peter) is rcBP eter = 4
(see red arcs). Hence, we have H − cost(f) − rcBP eter = 11 − 7 − 4 = 0, so 1 > 0. (B, Peter)
is inconsistent, the arc is then removed.

4 Upper Bounds of Shortest Paths

Although Corollary 6 reduces the number of computations required to establish the arc
consistency of the constraint, it systematically computes a large number of shortest paths.
Precisely, the algorithm involves computing the shortest path between each assigned value
and all other values which makes it difficult to use in practice. In addition, the constraint is
often arc consistent, rendering any computation useless. The aim of our approach is therefore
to reduce the number of operations computed unnecessarily.
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Figure 2 Example of computation of the consistency for the arcs (E, Julia) and (B, P eter).
The value B is not consistent with P eter. Thus, the dotted arc can be removed from the graph.

We present a much more applied approach, based on the fact that Corollary 6 relies on
the existence of a path of length less than a given value. It is not necessary to know the path
precisely, or even to know its value. An upper bound is sufficient.

We can therefore immediately establish the following proposition:

▶ Proposition 7. Let B+(x, a) ≥ dR(f)(x, a) be any upper bound on the length of the shortest
path from x to a. If

B+(x, a) ≤ H − cost(f) − rcax

then the value a of a variable x is consistent with C.

A good way of obtaining an upper bound on a distance between two points is to use the
triangle inequality. Here we are talking about the triangle inequality with respect to the
shortest path distances in the graph, not an embedding in Euclidean space or some other
metric, which need not be present.

▶ Property 8. Let x, y, and p be three nodes of a graph. According to the triangle inequality
computed on shortest paths, we have:

d(x, p) + d(p, y) ≥ d(x, y)

Here, p is a particular node called landmark.

Upper bounds obtained by the triangular inequality have been shown to be useful for
guiding the computation of shortest paths. The ALT algorithm, yielding excellent results in
practice for computing shortest paths in a very large graph, is based on this technique [6].

Property 5 and Corollary 6 can be rewritten for landmarks:

▶ Proposition 9. Given any variable x such that fbx = 1, a any value of x and p any
landmark. If one of the two condition is satisfied

dR(f)(x, p) + dR(f)(p, a) ≤ H − cost(f) − rcax

dR(f)(b, p) + dR(f)(p, a) ≤ H − cost(f) − rcax − rcxb

then the value a of x is consistent with C.

CP 2024
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Figure 3 Example of landmark use. Nodes B and s, shown in red, are selected as landmarks.

The residual graph may have several strongly connected components. Each component
must be treated separately. Thus, at least one landmark per component must be selected.

Thanks to the use of upper bounds we can go even further. It is possible to compute the
consistency of all values of variables of a strongly connected component by checking a single
condition.

▶ Definition 10. Consider S a strongly connected component of R(f), p a landmark in S,
x ∈ S a variable, and a a value of x. We define:

dmax
R(f)(·, p) = maxx∈S(dR(f)(x, p))

dmax
R(f)(p, ·) = maxx∈S(dR(f)(p, x))

rcmax = maxx∈S,a∈D(x)(rcax)

This leads to the following proposition:

▶ Proposition 11. Given S a strongly connected component of R(f) and p a landmark in
S. If

dmax
R(f)(·, p) + dmax

R(f)(p, ·) ≤ H − cost(f) − rcmax

then all the values of all the variables involved in S are consistent with C.

The advantage of this method is that if the condition is satisfied, we can guarantee that
all the values of a strongly connected component are consistent by computing only two
shortest paths per landmark.

Figure 3 gives an example of a residual graph on which Proposition 9 or 11 can be
applied. There are 2 strongly connected components {Peter, A, Mary, Paul, B, John} and
{Julia, D, s, E}. At least 2 landmarks are required (one for each component). We select B

and s arbitrarily.
Thanks to Proposition 11 we see that the maximum shortest path through s is the

path from D to Julia with dmax
R(f)(·, S) = d(D, s) = 0 and dmax

R(f)(s, ·) = d(s, Julia) = 1.
Furthermore, the longest arc of this strongly connected component is rcmax = rcEJulia = 1.
Thus we have d(D, s) + d(s, Julia) = 1 and H − cost(f) − rcEJulia = 3, so we have 1 ≤ 3.
This confirms that all the values of variables in the strongly connected component of s are
consistent with the constraint. If the Proposition 11 can guarantee that all values of variables
are consistent in this strongly connected component then we can easily deduce that the
Proposition 9 can also do it.

For the first strongly connected component, Proposition 9 and 11 do not guarantee the
consistency of the values of the variables. It is therefore necessary to compute exact shortest
paths between values and variables.
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Algorithm 1 Arc Consistency Algorithm for a Strongly Connected Component.
arcConsistencyWithLandmarks(f, Rf , S, P );
for p ∈ P do

d(p, ·)← shortestP athR(f)(p, ·) // shortest path in R(f) ;
d(·, p)← shortestP ath

R(f)(p, ·) // shortest path in R(f), the reverse graph of R(f) ;

// Check of Proposition 11 ;
rcmax ← maxx∈S,a∈D(x)(rcax) ;
for p ∈ P do

dmax
R(f)(·, p)← maxx∈S(dR(f)(x, p)) ;

dmax
R(f)(p, ·)← maxx∈S(dR(f)(p, x)) ;

if dmax
R(f)(·, p) + dmax

R(f)(p, ·) ≤ H − cost(f)− rcmax then
// all values of all variables of S are consistent ;
return ;

∆← {a such that fsa > 0} ;
for value b ∈ ∆ do

for x such that fbx = 1 do
δ(b)← {a such that a ∈ D(x) and a ̸= b} ;
computeP ath← false ;
// Check of Proposition 9 ;
for a ∈ D(x) while not computeP ath do

dpmin← minp∈P (dR(f)(x, p) + dR(f)(p, a));
if dpmin > H − cost(f)− rcax then

computeP ath← true ;

// Check for an explicit shortest path computation ;
if computeP ath then

dR(f)(b, ·)← shortestP ath(b, ·) ;
for a ∈ D(x) do

if dR(f)(b, a) > H − cost(f)− rcax − rcxb then remove a from D(x);

5 Improved Filtering Algorithm

We can now describe Algorithm 1, which eliminates values that are inconsistent with the
constraint. The algorithm takes as parameters a min cost flow f , its residual graph R(f), a
strongly connected component represented by its set of nodes S and P a set of landmarks
of S. This algorithm must therefore be called for each strongly connected component. The
algorithm begins by checking whether Proposition 11 holds. If true, then the algorithm
stops, since this means that all the values of the variables in the connected component S are
consistent. Otherwise, it is necessary to check each value potentially inconsistent individually.
So, for each of those values Proposition 9 is checked. If it is satisfied, then the value is
consistent, otherwise an explicit shortest path is computed to determine whether the value is
consistent or not.

When testing Corollary 6, we could refine the algorithm by identifying the nodes for which
we need to search for a shortest path from b to them, but this is not interesting in practice as
the shortest path algorithm will quickly find that they are at an acceptable distance from b.

Practical improvements

One can compute landmarks only when they are needed. This consideration is effective in
practice and a simple modified version of the basic algorithm is possible. This modification
proceeds by iteration over the landmarks. Consider V the set of values for which a shortest
path must be computed.

CP 2024



27:10 Efficient Implementation of the Global Cardinality Constraint with Costs

The following process is defined: The landmark p is considered. Proposition 11 is checked
according to p. If it is satisfied then V is emptied (all values are consistent) otherwise the
values V that satisfies Proposition 9 according to p are removed from V , because they are
consistent.

This process is repeated while V is not empty and some landmarks remain. In other
words, the landmarks are successively considered while the status of some values is not
determined.

If there are no more landmarks to compute, then, and only then, shortest paths are
explicitly computed for the value in V . In practice, it is frequent to find that all values are
consistent without using all the landmarks. This practical improvement means that not all
landmarks need to be systematically computed.

Note that the landmark approach subsumes all the practical improvements proposed by
Régin.

As far as the shortest path algorithm is concerned, it is interesting to remove the negative
costs from the residual graph in order to use Dijkstra’s algorithm, as mentioned by Régin. It
only requires one shortest path computation [14].

Complexity

Let SP be the complexity of computing a shortest path from one node to all others. Régin’s
algorithm has a complexity of Ω(δ × SP ) in the best case and O(δ × SP ) in the worst case,
where δ is the number of assigned values. With landmarks, the complexity in the best case is
in Ω(FindP + |P | × SP ) where |P | is the number of landmarks and FindP is the complexity
of finding the landmarks. This complexity is obtained when Proposition 11 detects that every
value is consistent. Note that, this detection can happen on the first landmark and so we
can have |P | = 1. In the worst case, the complexity is the same as that of Régin’s algorithm,
provided that |P | is in O(δ) and FindP is in O(δ × SP ). As with the ALT method, we
consider several landmarks in order to have a better chance of finding landmarks that avoid
explicit shortest path computations.

6 Landmark Selection

There are different methods for selecting landmarks.

Random

A landmark is randomly selected. This method is fast to find landmarks, so we used it to
compare to other methods.

Outline

The method is based on an approximation of the outlines of a graph.

▶ Definition 12. The outlines of a graph G are defined by one or more pairs of nodes
(x, y) with x, y ∈ X that maximize the minimum distance between x and y among all pairs
of nodes in the graph.

To find the pair of nodes representing the outline, we use a well-known 2-approximation.
First, we perform a shortest-path search starting from an arbitrary node x, then select the
node y, which is the furthest node from x, as a landmark. Next, the shortest paths from
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y are computed, and z the node furthest from y is selected as the second landmark. The
outline is therefore (y, z) and the landmarks y and z. The complexity of finding a landmark
depends on the complexity of computing the two shortest paths, and is therefore in O(SP ).

Center

The method is based on an approximation of the center of a graph.

▶ Definition 13. The center of a graph G is defined by one or more nodes x ∈ X that
minimize the maximum distance from them to any other node in the graph.

As the definition of the outlines and the center are similar, the selection of landmarks is also
similar. We search for the outlines (x, y) with x, y ∈ X and select as the center the node z

that lies halfway between x and y. The landmark is z. The complexity is the same as for the
previous method, O(SP ).

Outline & center

The method is based on both outlines and center of a graph, that is a pair of outlines and a
center are selected as described earlier.

Maximum degree

The method is based on the node’s degree. We select as a landmark the node x ∈ X that
maximizes (deg+(x) + deg−(x)) × min(deg+(x), deg−(x)), where deg+(x) (resp. deg−(x)) is
the number of outgoing arcs of x (resp. incoming arcs to x). We used this formula to choose
nodes with a large number of predecessors and successors. We also expect to choose nodes
with a good balance between predecessors and successors. To find landmarks we traverse
every node once, giving a complexity of O(|X|).

All these methods must be applied for each strongly connected component.

7 Experimentation

The experiments were carried out on a computer with an Intel Core i7-3930K CPU 3,20
GHz processor, 64 GB of memory and running under Windows 10 Pro. All algorithms were
implemented in Java (openjdk-17) in an internal CP solver.

The results relate to the solving of four problems, the traveling salesman problem (TSP) [9],
the StockingCost problem [8], the flexible job shop scheduling problem (FJSSP) [13, 20] and
a problem of assigning child to activities (CHILD) [19]. The TSP data are the instances (77)
of the TSPLIB [5] having less than 1,500 cities. Some of them involve more than a million of
edges. The StockingCost data are those used in a Houndji’s paper [8], this is random data
distributed define as 100 instances with 500 periods. Precisely, the StockingCost instances
have 500 variables and 500 values. The FJSSP data come from two different sources, given
by Pelleau [13] and Weise [20]. There are 370 instances with between 5 and 20 variables
linked to a few values (between 5 and 10), and most instances have between 50 and 300 arcs.
The CHILD instance contains only real-life data from [19]. There are 623 children and 317
activities. Each child must be assigned to one activity. One activity can be associated with
multiple children.

For each instance of each problem, we measure the information relating to the establish-
ment of the arc consistency of the costgcc constraint at the root of the search tree. The
mean of the results for each data set are reported in the tables.

CP 2024
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The H value of the TSP instances comes from the heuristic of Lin-Kernighan [11]. Most
of the time, this value is the optimal value. For the instances StockingCost, FJSSP and
CHILD the regular H is the smallest value such that there exists at least one solution and
the big H is twice as large as the regular H.

It is important to pay close attention to the relationship between the value of H and the
value of the minimum-cost flow. Indeed, the costgcc constraint sometimes represents a lower
bound of the optimal solution, and this lower bound can be more or less distant from the
optimal solution. So if H is the value of the optimal solution, then the min-cost flow may
well have a much lower value. This is particularly true for the TSP problem.

Shortest paths are computed by using Dijkstra’s algorithm and strongly connected
components are computed by using Tarjan’s algorithm.

The following abbreviations are used for the landmark selection methods: C for the center
selection, O for the outline selection, C & O for the combination between center and outline,
Deg for the selection based on the maximum degree and R for the random selection. In
addition, line 5+ contains the minimum values for a number of landmarks ranging from 5 to
10.

7.1 Results Tables
We consider a shortest path calculation to be the calculation of the shortest paths from one
node to all the others.

The number of shortest paths calculated is an important parameter for distinguishing
between algorithms. Some shortest path computations cannot be avoided, particularly those
required to detect inconsistent values. However, some shortest path computations are useless,
as they do not allow us to establish the inconsistency of any value. Precisely, if the shortest
path computation from b In Corollary 6 does not lead to any deletion of values then this
path computation is useless.

Table 1 compares the number of shortest path computations performed by Régin’s
algorithm and by our approach as a function of the number of landmarks allowed in. The
number of shortest paths required to compute landmarks are included.

Table 2 shows the average number of useless shortest path computations for each dataset.
We consider that shortest path computations for landmarks are always useless, so they are
always included. That is why there are never 0 computations with landmarks.

Table 3 gives the time required by each method.

7.2 Results Analysis
Table 1 shows that our approach generally computes significantly fewer shortest paths than
Régin’s algorithm for all landmarks selection methods. For the TSP instances, we compute on
average between 2 and 47 times fewer shortest paths than Régin’s algorithm. The difference
is significant for all instances except for the StockingCost instances with Regular H. It should
be noted that our approach is always better or equivalent and allows us to detect quickly
whether the constraint is arc consistent in certain cases.

In the best case, our approach does not compute any shortest paths other than those
required to determine landmarks. Our approach can compute more shortest paths only when
there is no inconsistent arc and the extra computation is due to the landmarks. The number
of useless path computations is also reduced by our method (See Table 2).

For computation times, we find the same kind of results as before (See Table 3). The
gain average factors evolve between 1 and 57.
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Table 1 Establishment of the arc consistency of a costgcc constraint: average number of computed
shortest paths depending on the number of landmarks and the landmark selection method.

Régin Landmark
Number

C O C & O Deg R

TSP (≤ 100
cities)

57.6

1 31.7 36.3 36.2 27.7 27.7
2 35.3 39.9 39.8 32.5 29.5
3 38 42.7 42.5 32.5 28.5
4 41.6 46.3 46.1 32 30.1

5+ 44.8 50 50.2 32 32.2

TSP (> 100 &
< 250 cities)

163.3

1 42.2 45 47.9 40.5 40.5
2 44.4 47.4 46.3 41.6 41.6
3 46 49.3 48.2 41.2 41.2
4 48.6 51.9 50.8 42.3 42.3

5+ 50.2 54.1 52.2 43.1 43.3

TSP (≥ 250
cities)

662.7

1 18.1 19.8 19.8 17.8 17.8
2 18.5 21.4 21.4 18.1 18.1
3 18.5 21 19.3 16.3 16.2
4 18.8 21.6 19.9 16.4 16.3

5+ 19 21.8 20.1 16.7 16.4

StockingCost
(Regular H)

493.3

1 496.9 497.3 496.9 495.3 495.3
2 500.8 501.2 500.8 497.3 497.2
3 504.7 505.1 504.7 499.2 499.1
4 508.6 509 508.6 501.2 501

5+ 512.5 512.9 512.6 503.2 503

StockingCost
(Big H)

493.3

1 4 4 4 2 2
2 4 4 4 2 2
3 4 4 4 2 2
4 4 4 4 2 2

5+ 4 4 4 2 2

FJSSP
(Regular H)

10.4

1 8.3 5.1 4.8 2 6.3
2 8.3 5.1 4.8 2 5.3
3 8.3 5.1 4.8 2 4.6
4 8.3 5.1 4.8 2 4

5+ 8.3 5.1 4.8 2 4

FJSSP (Big H)
10.4

1 4.5 4.3 4.3 2 3.2
2 4.5 4.3 4.3 2 2.8
3 4.5 4.3 4.3 2 2.6
4 2.9 4.3 4.3 2 2.4

5+ 2.9 4.3 4.3 2 2.4

CHILD
(Regular H)

108

1 112 112 112 109 110
2 116 116 116 111 112
3 120 120 120 113 114
4 124 124 124 115 116

5+ 128 128 128 117 118

CHILD (Big
H)

108

1 4 4 4 2 2
2 4 4 4 2 2
3 4 4 4 2 2
4 4 4 4 2 2

5+ 4 4 4 2 2

7.2.1 Landmark Number and Selection Method

We can see that the results do not change much as a function of the number of landmarks.
The major part of problems have best or equivalent results with 4 landmarks, but the
difference is minimal. When it is not mentioned 4 landmarks are used.

CP 2024
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Table 2 Establishment of the arc consistency of a costgcc constraint: number of average shortest
paths computed uselessly with 4 landmarks.

Régin C O C & O Deg R

TSP (≤ 100 cities) 35.8 19.7 24.4 24.3 8.3 8.2
TSP (> 100 & < 250 cities) 131.1 16 19.7 18.6 10.1 10.1

TSP (≥ 250 cities) 649.8 5.9 8.6 6.9 3.4 3.3
StockingCost (Regular H) 0 3.2 7.6 11.2 7.8 7.6

StockingCost (Big H) 493.3 4 4 4 2 2
FJSSP (Regular H) 0 8.3 5.1 4.8 4 4

FJSSP (Big H) 10.1 2.9 4.3 4.3 2 2.4
CHILD (Regular H) 0 16 16 16 8 8

CHILD (Big H) 108 4 4 4 2 2

Table 3 Establishment of the arc consistency of a costgcc constraint: computation times (in ms)
and ratio. Experimentation with 4 landmarks.

Régin C O C & O Deg R

TSP (≤ 100
cities)

Mean 7.3 5.9 6 6.6 5.7 4.5
Median 3.4 3.6 4.4 4.1 3.6 3.3
Ratio 1.2 1.2 1.1 1.3 1.6

TSP (> 100 &
< 250 cities)

Mean 76.6 29.8 30.6 30.2 28.6 31.1
Median 51.2 14.3 16 17 15.4 14.3
Ratio 2.6 2.5 2.5 2.7 2.5

TSP (≥ 250
cities)

Mean 12124.9 278.9 275.2 275.4 213 265
Median 2310.2 126.8 117.7 90.6 89.1 85.9
Ratio 43.5 44.1 44 56.9 45.8

StockingCost
(Regular H)

Mean 603.83 511.8 617.9 626.2 580.3 639.4
Median 585.7 553.3 186.9 186.4 248 166.4
Ratio 1.2 1 1 1 0.9

StockingCost
(Big H)

Mean 534.76 34.1 32.4 31.6 33.2 32.6
Median 519.1 33.8 32.4 31.9 32.8 30.1
Ratio 15.7 16.5 16.9 16 16.4

FJSSP
(Regular H)

Mean 0.4 0.5 0.3 0.4 0.4 0.5
Median 0.1 0.3 0.2 0.3 0.2 0.3
Ratio 0.8 1.7 0.75 1 0.8

FJSSP (Big H)
Mean 0.4 0.4 0.3 0.3 0.3 0.3

Median 0.1 0.2 0.2 0.2 0.2 0.2
Ratio 1 1.3 1.3 1.3 1.3

CHILD
(Regular H)

Time 65.1 69.2 54.4 67.6 75.9 65.4
Ratio 0.9 1.2 1 0.8 1

CHILD (Big
H)

Time 58.2 7 6.5 7.3 6 6
Ratio 8.3 9 8 9.7 9.7

Two methods of landmark selection appear to be more effective in practice: the method
based on maximum node degrees and the random node selection method. As there is little
difference between these two methods, and the former is more robust than the latter, we
recommend defining landmarks based on maximum degree nodes.

7.2.2 Impact of the practical improvement of Section 5

Thanks to this practical improvement all the authorized landmarks are not systematically used.
This is clearly seen for StockingCost and CHILD instances with big H. The computation of
a single landmark is sufficient to guarantee that all the values are consistent.
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7.2.3 StockingCost, FJSSP and CHILD problems
For the StockingCost, FJSSP and CHILD problems, the results strongly depends on the
value of H.

For the Regular H value the results are similar to those of Régin’s algorithm. In these
problems, Regular H is close to the optimal value of the min cost flow of the underlined
costgcc. Thus, there is less margin and therefore more inconsistent values. FJSSP instances
are also small and do not allow us to highlight the usefulness of landmarks. Indeed, in a
small instance, computing a landmark gives us access to less information than in a large
instance. In addition, for practical use, it is more interesting to save time on large instances
since they take longer to resolve than on small instances which are already quick to resolve.

For a Big H value the landmark method clearly outperforms Régin’s algorithm.
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Figure 4 Evolution of the average number of removed arcs for the CHILD, FJSSP and StockingCost
instances in function of the multiplier of H.
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Figure 5 Evolution of the average number of useless path computations for CHILD, FJSSP and
StockingCost instances in function of the multiplier of H. The experimentation involves 4 landmarks.

Figures 4 and 5 provide information on the relationship between H values and the number
of useless path computations. The landmark approach performs very well as soon as the
H value deviates a little from the optimal value, in other words, as soon as there is a little
margin and therefore fewer inconsistent values.

7.2.4 TSP results
The improvement brought about by our approach for instances from the TSP problem are
strong. This is mainly due to the relationship between the H value given by the TSP value
and the underlying costgcc constraint. In the case of the TSP, the optimal value of the min
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Figure 6 Evolution of the time in relation to the size of TSP instances. The landmarks are
selected with the degree method and 4 landmarks. The blue plot with circles is the time of the
Régin algorithm and the red with crosses is the time of the landmarks algorithm.

cost flow is lower than H, because the costgcc constraint only models a part of the problem
and in fact represents a real relaxation. So even with an optimal H value for TSP, there is a
margin for the costgcc constraint.

To better appreciate the performance of the landmarks, Figure 6 shows the evolution of
time in milliseconds as a function of the size of the TSP dataset instances. The blue plot
with circles shows the time taken by the Régin’s algorithm, while the red plot with crosses
shows the time taken by the algorithm using the maximum degrees and 4 landmarks. Clearly,
the use of landmarks is drastically faster than the Régin’s algorithm. The larger the instance,
the more useful landmarks become.

Figure 7 shows the evolution of the speed-up ratio (Régin time/Landmarks time) on
the instances of the TSP dataset. The landmark selection algorithm is based on maximum
degrees with 4 landmarks. We can also see in this graph that the more data there is, the
higher the gain factor. As mentioned above, this can be explained by the fact that in a large
structure, the landmarks contain a lot of information compared with a smaller structure.
In these experiments, note that if we omit the assigned variables there is only one strongly
connected component in the value network. Overall, we find that our algorithm significantly
speeds up the previous approach, up to about 80 times faster for large problems.

8 Conclusion

This paper proposes an efficient implementation of the arc consistency algorithm of the
cardinality constraint with costs. This constraint is present in many industrial problems and
the establishment of the arc consistency is often too slow to be used in practice, as it is based
on finding the shortest paths from the assigned values. We introduce a new method that
uses upper bounds on shortest paths based on triangular inequalities and landmarks. This
approach avoids the computation of many shortest paths and improves the computation time
of the arc consistency filtering algorithm. The larger the graph and the larger the margins,
the greater the improvement will be. In addition, we have introduced a sufficient condition,
which is quick to compute, for a costgcc constraint to be arc consistent.
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Figure 7 Evolution of the speedup ratio in relation to the size of TSP instances. The landmarks
are selected with the degree method and 4 landmarks.
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