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Abstract
The BinPacking constraint models the requirements of many logistics, resource allocation, and
production scheduling applications. This paper explores new avenues based on the impressive
computational power of modern GPUs to propagate the BinPacking constraint. This work showcases
how the perspective of massive parallelization can lead to novel approaches, such as the use of a
portfolio of lower bounds, to enhance the pruning of the BinPacking constraints. It delivers insights
into the design choices and challenges presented by GPU platform for constraint propagation.

The paper evaluates a GPU-accelerated propagator against both sequential and parallel CPU
versions, as well as state-of-the-art approaches. Comparisons across various benchmarks from the
literature show strong performances with respect to both CPU versions and the standard pruning
approach. When compared to techniques based on Linear Programming, our approach proves
valuable for large instances or when spending extensive time to obtain the best possible bound is
not convenient.
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1 Introduction

The Bin Packing Problem (BPP) consists of packing a set of items into the minimal number
of bins, each with a fixed capacity. It has a fundamental role in logistics, resource allocation,
and production scheduling applications. Because of its relevance, the Bin Packing Problem
has been extensively studied over the last decades, both theoretically and practically. We
refer interested readers to [10, 36] for a comprehensive review.

The BPP is NP-Hard in the strong sense [17] and it is challenging to solve even for a
fixed number of bins [21] or a constant number of different item sizes [19]. Techniques based
on Integer Linear Programming (ILP) are highly effective and represent the state-of-the-art
for solving the BPP. When the BPP is a component of a larger problem, applying such
techniques becomes challenging, and Constraint Programming (CP) emerges as a valuable
alternative. There, the BPP often appears in its decision version, where the items must be
packed into a fixed number of bins.

The decision variant is modeled in CP using the BinPacking constraint [38]. Its filtering
algorithm employs an approximated knapsack reasoning to exclude or commit items to bins,
and a feasibility check to prune the search if the remaining unpacked items cannot fit in the
residual space. The check is performed using a lower bound on the number of bins necessary
to pack the items.

The contributions of this paper are as follows:
1. describe a propagator architecture based on parametric families of lower bounds and

their role in a portfolio setting;
2. demonstrate how the large number of bounds from those parametric families should be

computed in parallel to derive the most value. In particular, the paper demonstrates that
sampling bounds in a sequential or multi-core implementation is substantively weaker;

3. provide an implementation of a GPU-accelerated portfolio of lower bounds within a
constraint propagator of a standard CP solver;

4. deliver an empirical evaluation comparing sequential, multi-threaded, and GPU-
accelerated computation of those lower bounds, with other state-of-the-art approaches on
different benchmarks.

The rest of the paper is organized as follows. Section 2 contains some general background
about Constraint Satisfaction/Optimization Problems and General-Purpose computing on
Graphics Processing Units (GPGPU). Section 3 summarizes related works on the BinPacking
constraint, and on lower bounds for the Bin Packing Problem. Section 4 details the design pro-
cess and implementation of the BinPacking propagator enhanced with the GPU-accelerated
portfolio of lower bounds. Section 5 presents the results of our approach and the other
techniques in the literature. Finally, Section 6 concludes the paper.

2 Background

2.1 Constraint Satisfaction/Optimization Problems
A Constraint Satisfaction Problem (CSP) is defined as a triplet ⟨X, D, C⟩, where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains, and C is a set of
constraints. Each domain Di ∈ D is a finite set of values. Each constraint c ∈ C involves a
subset of m variables vars(c) = {xi1 , . . . , xim

} ⊆ X, depending on its semantic. A constraint
defines a relation c ⊆ Di1×· · ·×Dim . A solution is an assignment σ : X →

⋃n
i=1 Di such that

σ(xi) ∈ Di holds for every variable, and ⟨σ(xi1), . . . , σ(xim
)⟩ ∈ c holds for every constraint.
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A Constraint Optimization Problem (COP) is a quadruplet ⟨X, D, C, f⟩ where ⟨XD, C⟩
is a CSP and f : D1 × · · · ×Dn → R is an objective function to be (w.l.o.g.) minimized. The
goal is to find a solution σ∗ that minimizes f(σ(x1), · · · , σ(xn)).

A constraint solver searches for solutions of a CSP/COP by alternating non-deterministic
choices and constraints propagation. The first is employed to choose the next variable and
which value, from its current domain, to assign to it. The second is a method to filter the
domain of the variables, removing values that are not part of any solution. Non-deterministic
choices are typically implemented through backtracking and heuristic decisions that follow
an ordering among variables and values. Constraint propagation is commonly implemented
through a queue that tracks constraints that need to be re-evaluated. When a value is
removed from a variable’s domain, the constraints involving such variable are enqueued. The
re-evaluation consists of extracting the constraint from the queue and applying the associated
filtering algorithm or propagator. This iterative cycle continues until the queue is empty [23].

Filtering algorithms offer trade-offs between filtering power and computational complexity.
Highly effective algorithms have been developed for global constraints. These constraints
model a substantial portion of a CSP/COP and naturally arise in many problems.

2.2 General-Purpose Computing on Graphics Processing Units
Performance in modern hardware is the by-product of parallel computing resources in the
form of multi-core central processing units (CPUs) and general purpose graphical processing
units (GPUs). Modern commodity hardware features CPUs with up to 64 cores (e.g., AMD
Ryzen Threadripper 7980X) and GPUs with up to 16384 cores per card (e.g., NVIDIA
GeForce RTX 4090). Yet, the number of cores in CPUs and GPUs are orders of magnitude
apart, the programming models are wildly different and GPUs impose restrictions on code
to deliver performance.

The massive parallelism of GPUs is a golden opportunity. To harness such computing
power, it is crucial to employ approaches and algorithms that align with the underlying
architecture of the GPU. Recent studies indicate that GPUs can be used for computational
logic, including applications like Satisfiability [8, 7], Answer Set Programming [12, 13], and
Constraint Programming [41, 42].

GPU-accelerated applications rely on APIs that expose parallel computing primitives.
The most prominent is CUDA, a C/C++ API, introduced by NVIDIA for its own GPUs [28].
In a typical GPU-accelerated application, the GPU handles only the most computationally
demanding tasks. The CPU executes the main application logic and choreographs the GPU(s)
activities such as data transfers as well as computing tasks known as kernels. The components
of an NVIDIA GPU utilized for general-purpose computing are depicted in Figure 1. A
current high-end GPU2 is equipped with 128 Streaming Multiprocessors (SM), each housing
128 computational units named CUDA Cores, and 128 KB of fast memory. This memory
serves as L1 cache and/or scratchpad memory, in which case it is referred to as shared
memory. In the middle and lower tiers of the memory hierarchy, there is an L2 cache of 72
MB and the global memory with a capacity of 24 GB.

The CUDA execution model is Single-Instruction Multiple-Thread (SIMT), where a
C/C++ function known as kernel is executed by many threads. Each thread utilizes its own
unique index to identify the data to use or to modify its control flow. When different threads
follow distinct control flows, it leads to thread divergence. In such scenarios, threads are

2 NVIDIA GeForce RTX 4090
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... ... ...

L2 cache

Global memory

Streaming Multiprocessor

L1 cache \ Shared memory

CUDA Core

...

Figure 1 High level architecture of an NVIDIA GPU.

serialized, causing significant performance deterioration. Threads are organized into blocks,
which are dispatched to the Streaming Multiprocessors. Each Streaming Multiprocessor
executes the threads using its CUDA Cores, allowing efficient intra-block operations through
shared memory. Communication between blocks is possible only through the use of global
memory. To successfully leverage GPUs to accelerate expensive computations, it is essential
to understand that they are designed to heavily trades raw execution speed for massive
parallelization [20]. This often necessitates reformulating the problem to expose parallelism
or exploiting shared memory to reduce costly global memory accesses.

In contrast, execution on multi-core CPUs relies on a small number of independent
computing threads that execute fast, can have diverging behaviors with no performance
penalties. Such an architecture can more readily adopt sequential code with the trade-off
being the small number of threads (dozens rather than tens of thousands).

3 Bin Packing

Let I = (c, W ) be an instance of the Bin Packing Problem (BPP) with n items of weights
W = [w1, . . . , wn], and bins of capacity c. The underling optimization problem can be
formalized as follows:

minimize
n∑

j=1
yj

subject to
n∑

i=1
wixij ≤ cyj j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

yj ∈ {0, 1} j = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n

where the variable yj indicates whether the jth bin is used and the variable xij indicates
whether the ith item is packed in the jth bin.

One of the most effective approaches to solving the BPP involves adopting a graph-
theoretical perspective. In the Arc-Flow method [9], a graph is constructed such that arcs
represent items, and a path from the source s to the sink t represents a set of items that
can be packed into a bin (see Figure 2). A solution corresponds to a minimum flow that
utilizes one arc for each item w ∈ W . This flow problem is formulated and solved using
an Integer Linear Programming (ILP) model with a robust linear relaxation, albeit with a
pseudo-polynomial number of variables and constraints.
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Algorithm 1 Simplified propagator for the BinPacking constraint.

Procedure: propagate(c, W, k, X, L)
1 for j ← 1 to k do
2 doLoadCoherence(j, X, W, L)
3 doBasicLoadTightening(j, X, W, L) // Basic filtering
4 for i ∈ {i | j ∈ xi ∧ |xi| > 1} do
5 doBasicItemEliminationCommitment(i, j, X, W, L)

6 for j ← 1 to k do // Knapsack filtering
7 if ¬isBinPackable(j, X, W, L) then Fail
8 doKnapsackLoadTightening(j, X, W, L)
9 for i ∈ {i | j ∈ xi ∧ |xi| > 1} do

10 doKnapsackItemEliminationCommitment(i, j, X, W, L)

11 lb← getLowerBound(c, W, k, X) // Feasibility check
12 if lb > k then Fail

In CP, the decision version of the BPP, where the items must be packed in at most k

bins, is modeled as:

xi = {1, . . . , k} i = 1, . . . , n

lj = {0, . . . , c} j = 1, . . . , k

BinPacking(W = [w1, . . . , wn], X = [x1, . . . , xn], L = [l1, . . . , lk])

where the variable xi represents the bins in which the ith item can be packed, and the
variable lj represents the loads that the jth bin can have. The BinPacking constraint was
introduced in [38] and a simplified version of its filtering algorithm is listed in Algorithm 1.
The following offers a brief description of each call in Algorithm 1:
doLoadCoherence Adjust the minimum/maximum load of a bin based on the total weight

of the items and the load of the other bins.
doBasicLoadTightening Adjust the minimum/maximum load of a bin based on the sum of

the items that are or can be packed in the bin.
doBasicItemEliminationCommitment An item is committed to a bin if it is needed to reach

a valid load. An item is excluded from a bin if packing it would lead to an excessive load.
isBinPackable Checks whether a bin is packable based on an approximated knapsack rea-

soning to reach an admissible load.
doKnapsackLoadTightening Adjust the minimum/maximum load of a bin with an approxi-

mated knapsack reasoning.

0 2 3 4 5 6 7 8 9

t

s

Figure 2 Graph underling Arc-Flow for an instance with c = 9 and W = [4, 4, 3, 3, 2, 2].
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(a) Partial Solution.
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(b) Reduced Solution
with R0 (merge items).

4

11

(c) Reduced Solution
with RMin (Reduce bins
by smallest virtual item).

4

1

4
5

(d) Reduced Solution
with RMax (Enlarge bins
and virtual items).

Figure 3 Illustrations of a partial packing of the instance I = (5, [4, 2, 1, 1, 1, 1]), and reductions
R0 = (5, [4, 3, 2, 1]), RMin = (3, [4, 1, 1]), RMax = (7, [5, 4, 4, 1]). Virtual items are colored in blue.

getLowerBound A partial packing is considered feasible if a lower bound on the number
of bins does not exceed the number of available bins. This lower bound, referred to as
L2 (see Section 3.2), is calculated on a reduced instance derived from the current partial
packing (see Section 3.1).

The literature contains various enhancement of the BinPacking constraint. The authors
of [35, 30, 11] introduced and refined a cardinality reasoning, well suited when there are
constraints on the number of items in each bin or when the items have similar weights. In [3],
it was employed a tight lower bound derived from the linear relaxation of the Arc-Flow
model.

3.1 Reductions
Given a partial packing of an instance I = (c, W ), a reduction R provides an instance
IR = (cR, WR) such that a lower bound for IR is valid for the partial packing. Such partial
packing is inferred from the variables X.

The standard reduction, knows as R0, maintains the same capacity, all the unpacked
items, and introduces virtual items representing the items packed in each bin (see Figure 3b).
Other reductions similar to R0 are possible. For instance, [14] introduced RMin and RMax.
The first decreases the capacity of the bins and the virtual items by the size of the smallest
virtual item (see Figure 3c). The second increases the capacity of the bins and the virtual
items by a common quantity, so that two virtual items can not fit in the same bin. This is
achieved when each virtual item is bigger than half of the bin capacity (see Figure 3d).

3.2 Lower bounds
Given an instance, I = (c, W ), a lower bound L(I) estimates the minimum number of bins
necessary to store the items. The simplest lower bound is referred to as L1, and is calculated
as follows:

L1(I) =
⌈

1
c

∑
w∈W

w

⌉

where the total weight of the items is divided by the bin capacity, and the ceiling function is
applied. This approach is equivalent to naively packing the items, cutting those that do not
entirely fit.
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cλ w

fMT(w, λ)

c

cλ w

fRAD2(w, λ)

c

Figure 4 fMT (left) and fRAD2 (right) for λ = c 4
15 . Weights that have been increased/decreased

are shown in green/red.

An improvement of L1, called L2, was introduced in [25] and addresses the cases where
big items cannot be packed together. It is defined as:

L2(I) = max
0≤λ≤ c

2

L2(I, λ)

where

L2(I, λ) = |W1|+ |W2|+ max

(
0,

⌈
1
c

( ∑
w∈W3

w −

(
c |W2| −

∑
w∈W2

w

))⌉)
W1 = {w | w ∈W ∧ c− λ < w}
W2 = {w | w ∈W ∧ c

2 < w ≤ c− λ}
W3 = {w | w ∈W ∧ λ ≤ w ≤ c

2}

The lower bound L2(I, λ) classifies the items as big (W1), medium-big (W2), medium-small
(W3), while it ignores the smallest items. Note how the definition of the sets are parameterized
by λ. Then all the big and medium-big items are packed in different bins since they are all
bigger than c

2 . The medium-small items are packed as in L1, using the available space in
the bins where there is a medium-big item before considering other bins. Finally, the small
items are just dropped. A direct implementation of L2 is pseudo-polynomial, since L2(I, λ)
has to be calculated exactly once for each λ ∈

[
0, c

2
]
, i.e., Θ(c) times. A linear complexity

can be achieved when the items are sorted in decreasing weight [24, 22]. Note how L2(I)
defines a family of lower bounds, with one member for each λ ∈

[
0, c

2
]
.

A general approach to enhance L1, derived from duality theory, is based on Dual Feasible
Functions (DFFs) [1]. Intuitively, a function f : N0 → N0 is dual feasible if, for every subset
WS ⊆W , the following holds:∑

w∈WS

w ≤ c ⇒
∑

w∈WS

f(w) ≤ f(c)

Consider the fMT(w, λ) definition below that keeps the same capacity, while defining new
weights for items. It increases the weights of large items (c − λ < w) to c, decrease the
weights of small items (w < λ) to 0, and leave the weights of medium items unchanged
(λ ≤ w ≤ c − λ), i.e., they are w. Note that increasing the weight to c is equivalent to
allocating an entire bin for the item, while decreasing the weight to 0 disregards the item.
The function, shown in Figure 4, depends on an integer parameter λ:

fMT(w, λ)
0≤λ≤ c

2

=


c if c− λ < w

w if λ ≤ w ≤ c− λ

0 if w < λ

CP 2024
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The lower bound obtained by combining L1 with fMT is:

LMT(I) = max
0≤λ≤ c

2

⌈
1

fMT(c, λ)
∑

w∈W

fMT(w, λ)
⌉

(1)

and it is equal to L2 [16]. Other DFFs have been proposed, each with a different design
for revising weights. For brevity, we report only some of them and refer interested readers
to [6, 1] for a comprehensive review, and to [31, 32] for further insights.

fRAD2(w, λ)
c
4 <λ≤ c

3

=


0 if w < λ⌊

c
3
⌋

if λ ≤ w ≤ c− 2λ⌊
c
2
⌋

if c− 2λ < w < 2λ

c− fRAD2(c− w, λ) if 2λ ≤ w

fFS1(w, λ)
1≤λ≤100

=

wλ if w(λ+1)
c ∈ N⌊

w(λ+1)
c

⌋
c otherwise

fCCM1(w, λ)
1≤λ≤ c

2

=


2
⌊

c
λ

⌋
− 2

⌊
c−w

λ

⌋
if w > c

2⌊
c
λ

⌋
if w = c

2

2
⌊

w
λ

⌋
if w < c

2

fVB2(w, λ)
2≤λ≤c

=


2 max

(
0,
⌈

cλ
c

⌉
− 1
)
− 2 max

(
0,
⌈

(c−w)λ
c

⌉
− 1
)

if w > c
2

max
(
0,
⌈

cλ
c

⌉
− 1
)

if w = c
2

2 max
(
0,
⌈

wλ
c

⌉
− 1
)

if w < c
2

fBJ1(w, λ)
1≤λ≤c

=
{⌊

w
λ

⌋
(λ− c mod λ) if w mod λ ≤ c mod λ⌊

w
λ

⌋
(λ− c mod λ) + w mod λ− c mod λ otherwise

Interestingly, these five definitions are all parametric in λ and define 5 additional families,
most with Θ(c) members (except fFS1). To get the best possible bound, one would need to
compute the bounds for each family and across all parameter values in that family. To reduce
the sequential computational burden, one could resort to only computing some families, or
computing only a subset of different λ values in each admissible range. Alternatively, one
can adopt parallel techniques as all families and all λ values can be computed independently.
The next section studies this tradeoff.

4 Design and Implementation

To determine the most convenient DFF to use, we examined the lower bounds derived from
various DFFs on the Falkenauer and Scholl instances (see Section 5). The results in Table 1
confirm fCCM1 as the best overall function [6], while the generally weak fRAD2 proves effective

Table 1 Statistics for different DFF-based lower bounds on the Falkenauer and Scholl instances.

DFF Only Opt Total Opt Only Best Total Best Sum
fMT 2 1151 0 55 120184

fRAD2 10 189 0 36 105345
fFS1 2 742 0 45 119504

fCCM1 40 1219 1 60 120270
fVB2 1 973 0 40 119786
fBJ1 47 1101 0 50 120039
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Algorithm 2 Sequential DFFs-based getLowerBound function.
Function: getLowerBound(c, W, k, X)→ lb

1 lb← 0
2 for R ∈ {R0, RMin, RMax} do
3 (cR, WR)← R(c, W, X)
4 for f ∈ {fCCM1, fMT, fBJ1, fVB2, fFS1, fRAD2} do
5 Lf ← 0
6 (λ, λ, δ)← getParametersMinMaxStep(f, cR, 256)
7 for λ← λ to λ by δ do
8 sum←

∑
wR∈WR

f(wR, λ)
9 Lf ← max(Lf ,

⌈
sum

f(cR,λ)

⌉
)

10 lb← max(lb, Lf )
11 if lb > k then return lb // Infeasibility detected, early return

12 return lb

when stronger functions are suboptimal [31]. Since no DFF family dominates, it is apparent
that restricting ourselves to choosing a single family is not productive. Instead, a portfolio of
independent DFFs should be computed with parallel resources to deliver stronger pruning at
virtually no cost (in term of wall-clock time). Recall that the calculation of a single family
of lower bound is still pseudo-polynomial and can be costly for large c values. Ideally, one
would consider only a minimal subset of parameters guaranteed to lead to the tightest bound,
but this is only possible for LMT [16]. In practice, for the CPU implementations, we consider
a sampling of 256 equispaced λ values for each family as it proved empirically adequate for
obtaining effective bounds.

Similar design considerations were done about the reduction(s) to employ. The analysis
in [14] suggest using both RMin and RMax. However, preliminary experiments showed that
R0 is beneficial in some instances, so we considered all of them.

4.1 Sequential CPU Implementation

A sequential DFFs-based implementation of the function getLowerBound (see Algorithm 1)
is listed in Algorithm 2. It has a nested loop structure where the loop at line 2 consider the
three reductions presented in Section 3.1, the loop at line 4 consider the six DFFs in the
portfolio, and the loop at line 7 samples the rage of parameters. That results in computation
that sequentially calculates 3 ∗ 6 ∗ 256 = 4608 lower bounds.

4.2 Parallel CPU Implementation

The nested loop structure of Algorithm 2 is easily parallelizable since all iterations are
independent. The only data that need to be atomically updated is the maximum lower bound
at line 10.

The outermost 2 loops execute the main body of the function (lines 5–10) 18 times (i.e.,
3 reductions and 6 DFFs). To easily run on commodity CPU with about 10 cores, it is
appropriate to use one thread per DFF to executes the main body sequentially for all 3
reductions. This approach uses 6 threads, each calculating 3 ∗ 256 = 768 lower bounds. It
provides a sublinear speedup of 2x when compared to the fully sequential implementation
(see Section 5). While it is possible to also parallelize all 3 reductions on a machine with at
least 18 cores, it did not seem to be a promising avenue.

CP 2024
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The parallel implementation is obtained using OpenMP [29], a C/C++ API that enable
transparent multi-threading by simply adding annotations, or directives, to the loops. We
use the omp parallel for num_threads(6) to parallelize the DFF loop, and the directive
reduction(max:lowerbound) to correctly update the maximum lower bound.

4.3 Considerations for a GPU architecture

To successfully leverage GPUs it is fundamental to understand the weakness and strengths
of their architecture. The efficiency of a CPU stems from its low latency, which indicates
the time required to execute individual operations. Mechanisms such as branch prediction,
multiple levels of fast cache, and high clock speeds all contribute to making each of the “few”
CPU threads extremely fast. In contrast, the efficiency of a GPU is grounded in its high
throughput, which represents the number of operations executed per unit of time. The vast
number of threads, coupled with rapid context switching, makes the GPU highly effective in
performing extensive workloads, compensating for its high latency.

There are various approaches to accelerate propagation algorithms with GPUs. One
approach is to parallelize the most prominent algorithm(s). While this seems appealing,
it is hard to accomplish for two reasons. First, such algorithms are often designed with
a sequential model in mind, making them challenging to parallelize. Data dependencies
between iterations as well as the need to synchronize for data structure updates are at the
heart of the problem. The second reason is the GPUs high latency, mainly due to the “simple”
memory hierarchy where a L1 cache miss results in costly off-chip memory access, as well
as the time required to move data and control to and from the GPUs. The optimal point
to offload a computation to the GPU changes based on several factors, including hardware
characteristics. It is often the case that data transfer negates the benefits of parallelization.
This overhead disappears once the GPU workload is large enough. Empirically, it is generally
not helpful to offload the propagation of algorithms with a time complexity of O(n2) or lower.

Another strategy involves utilizing the GPU to reduce the computational cost of strong
filtering algorithms [42]. This idea can be applied to the BinPacking constraint by employing
the GPU to perform a complete knapsack reasoning instead of an approximated one. Using
the Dynamic Programming (DP) approach presented in [43] it is possible to obtain a stronger
filtering that replace all the basic and knapsack filtering in Algorithm 1. We developed a GPU-
accelerated implementation of this pseudo-polynomial method, leveraging bitwise operations
and processing each bin in parallel. Empirical results revealed no significant gains in terms of
explored nodes (within the time limits) compared to the approximated reasoning. Scalability
tests further indicate that the GPU-accelerated implementation becomes faster than an
optimized implementation of the approximated filtering when the number of bins is in the
order of hundreds. This evidence indicates that theoretically interesting implementations may
encounter overheads that outweigh the computational benefits. Ultimately, the disappointing
results pushed this second strategy aside.

GPUs can also enhance pruning. In the case of the BinPacking constraints, this translates
into improving the feasibility check to obtain the best possible lower bounds at a reduced
computational cost. The tightest available lower bound is derived from the linear relaxation
of the Arc-Flow model (see Section 3), which involves solving a sparse linear system. Since
this task is notoriously challenging to effectively accelerate with GPUs [20], we explored the
next option: considering all the parameters and all the DFF families.
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Algorithm 3 GPU-accelerated DFFs-based getLowerBound function.
Function: getLowerBound(c, W, k, X)→ lb

1 [IR0 , IRMin , IRMax ]← calcReductions([R0, RMin, RMax] , (c, W, X))
2 lb← 0
3 cudaMemcpyCpuToGpu([lb, IR0 , IRMin , IRMax ]) // Asynchronous API
4 for (cR, WR) ∈ {IR0 , IRMin , IRMax} do
5 for f ∈ {fCCM1, fMT, fBJ1, fVB2, fFS1, fRAD} do
6 (λ, λ)← getParametersMinMax(f, cR)
7 nT hreads← λ− λ + 1
8 cudaLaunchKernel(calcDffLowerBound, nThreads, [f, cR, WR, . . . ]) // Async API

9 cudaMemcpyGpuToCpu(lb) // Asynchronous API
10 waitGpu() // Synchronous API
11 return lb

4.4 GPU Implementation

We handled each combination reduction-DFF with a separate kernel, and each of the λ−λ+1
parameter with a different thread (see Figure 5). The GPU-accelerated implementation
of the method getLowerBound is outlined in Algorithm 3. The first operation copies the
reduced instances and the initial lower bound into the GPU’s global memory. The amount
of transferred data is minimal, and encoded as an array of integers. After that, 18 kernels
are launched, each with the appropriate number of threads and several arguments, including
the DFF and reduction that they must consider. Finally, the highest lower bound is copied
back from the GPU and returned.

The heart of the parallelization is the kernel calcDffLowerBound, listed in Algorithm 4.
The line 2 shows how each thread uses its index to identify the parameter it works on. The
barrier at line 4 ensures the initialization of Lf , and prevents race conditions on its value.
Lines 5–6 calculates the value of Lf (cR, WR). Finally, the barrier at line 7 guarantees that
all parameters are considered before updating the best lower bound.

The pseudocode abstracts out some implementation details that are worth mentioning.
From Section 2.2, we recall that the threads of a kernel are organized into blocks, each
executing in a Streaming Multiprocessor with its own on-chip shared memory. This fast
memory reduces accesses to the slower global memory in two ways. First, it caches cR and
WR, ensuring fast access for subsequent lower bound calculations. Second, it maintains
Lf enabling faster atomic max operations (line 6) that run concurrently between blocks.
However, the final atomic max operation (line 8) must be performed on global memory, as it
is the only means of communication among blocks and kernels.

λ

calcDffLowerBound

· · · λ

· · ·

λ · · · λ

· · ·

λ · · · λ

· · ·

· · ·

λ

Thread

· · · λ

· · ·

λ · · · λ

· · ·

λ · · · λ

· · ·

LRAD2(IRMax)LRAD2(IRMin)LRAD2(IR0)LCCM1(IRMax)LCCM1(IRMin)LCCM1(IR0)

Figure 5 Parallelism of the GPU accelerated getLowerBound.
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Algorithm 4 Pseudocode of the calcDffLowerBound kernel.

Procedure: calcDffLowerBound(f, cR, WR, k, lb, λ, λ)
1 if lb ≤ k then
2 λ← λ + getThreadIdx()
3 Lf ← 0 // Only one thread
4 threadsBarrier()
5 sum←

∑
wR∈WR

f(wR, λ)
6 Lf ← max(Lf ,

⌈
sum

f(cR,λ)

⌉
) // Atomic operation

7 threadsBarrier()
8 lb← max(lb, Lf ) // Only one thread, atomic operation

4.5 Solver integration

There are no limitations that prevent the GPU-accelerated getLowerBound to be used in the
BinPacking propagator of a standard CP solver. However, there are a couple of aspects that
facilitates such task. Unsurprisingly, it is easiest to integrate in solvers written in C/C++
since CUDA is a C/C++ API, and no wrappers or bindings are needed. Moreover, kernels
can be compiled with(in) the solver, without the need to compile them separately and load
them at runtime. From the usability prospective, it would be convenient that the solver is
compatible with the high-level constraint modelling language MiniZinc [27]. By using its
annotation mechanism, it is possible to communicate to the solver which implementation
of getLowerBound to use. For example, when a BinPacking constraint is added, it can
be annotated with ::parallel to use the CPU parallel version, or with ::gpu to use the
GPU-accelerated implementation.

We implemented the different versions of getLowerBound, along with the relative annota-
tions, within a solver compatible with MiniZinc [39]. Such solver is based on MiniCPP [18],
a C++ implementation of MiniCP [26]. We choose MiniCP(P) because it is open-source,
well documented, and reasonably simple to modify.

5 Experiments

This section presents a comparison between propagators that use different lower bounds for
the feasibility check. We evaluate our linear time complexity implementation of L2 (i.e, L2),
our sequential (i.e., DFFs-CPU-Seq), parallel (i.e., DFFs-CPU-Par), and GPU (i.e., DFFs-GPU)
DFFs-based implementations, and the implementation from [3] which uses the Arc-Flow
based lower bound (i.e., Arc-Flow). We select two BPP benchmarks from the literature
[15, 37], and generate new instances similar to the ones proposed in [5] and [4]. This results
in a total of 2072 instances [40] organized as follows:
Falkenauer This benchmark has two classes of 80 instances each. The ‘U’ instances have

items with weights uniformly distributed in [20, 100], n ∈ {120, 250, 500, 1000} and c = 150.
The ‘T’ instances are characterized by triplets of items that must be packed in the same
bin in any optimal solution. For this class n ∈ {60, 120, 249, 501} and c = 1000.

Scholl These instances are divided into three sets of 720, 480, and 10 instances. The
instances in Set 1 have weights uniformly distributed to expect a number of items
per bin not larger than three, n ∈ {50, 100, 200, 500}, c ∈ {100, 120, 150}. For the
instances in Set 2 the number of expected items per bin is between three and nine items,
n ∈ {50, 100, 200, 500}, c = 1000. Set 3 contains big instances with weights uniformly
distributed in the range [20000, 35000], n = 200 and c = 100000.
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Weibull These instances are based on the Weibull probability distribution. It can model
various distributions found in different problem domains by adjusting the shape parameter
k > 0 and the scale parameter λ > 0. Similarly to [5], we generated 92 sets of weights W

with the parameters n ∈ {100, 200}, k ∈ {0.5, 0.6, . . . , 5.0}, and λ = 1000. For each set
W , we generate 6 instances (c, W ) with c = σ ·max(W ) for σ ∈ {1.0, 1.2, . . . , 2.0}. The
total number of instances is 552, with capacity ranging between 1300 and 92500.

Scaled Non-IRUP These instances are derived from instances which do not satisfy the
Integer Round-Up Property (IRUP). Intuitively, an instance is IRUP if the roundup value
of the (strongest) linear relaxation yields to the optimal number of bins. We considered
50 of the instances in [4]. For each instance (c, W ) and s ∈ {3, 4, 5}, we derived (cs, Ws)
such that cs = s ∗ c and Ws is the list containing s times the set {s ∗ w | w ∈W}. The
total number of instances is 150, with n ∈ {45, 60, 75} and c in the range [921, 5240].

The model and search heuristic are the same as in previous works [38, 3], where a
minimum number of bins is established and an attempt to find a solution is made. If such a
solution does not exist, the number of bins is increased, and a new attempt is made. All
implementations use the decreasing best fit search heuristic. In this strategy, the items are
considered in descending order of weight and assigned to the first bin within their domain
that has the smallest residual capacity sufficient to accommodate the item. Additionally,
two symmetry-breaking rules are applied on backtracking: first, the bin is removed from the
domain of all items of the same size, and second, all the bins with the same load are removed
from the domains of these items. Finally, a dominance rule is applied before a choice point:
if an item completely fills the remaining capacity of a bin, it is assigned to that bin.

The implementations L2, DFFs-CPU-Seq, DFFs-CPU-Par, and DFFs-GPU include a couple
of additional techniques. First, another dominance rule is applied before a choice point:
if among the set of candidate items that can be packed in a bin, only one can be packed,
then the heaviest item is assigned to the bin [34]. Second, the symmetry breaking described
in [33] is enforced with an additional constraint. Cardinality reasoning was considered but set
aside in preliminary experiments, as it did not yield notable differences in terms of explored
nodes while adding some overhead. This can be attributed to the combined effects of strong
pruning and the absence of cardinality constraints in our benchmarks

The experiments are performed with 10 minutes timeout to ensure a reasonable benchmark
time. The test system features an Intel Core i7-10700K (8 Cores), 32 GB of RAM, and an
NVIDIA GeForce RTX 3080 (8704 CUDA Cores). The system operates on Ubuntu Linux
22.04 LTS and uses CUDA 11.8 and GCC 11.4 for our implementations, along with OpenJDK
11.0 and CPLEX 22.1 for Arc-Flow.

Results and Analysis

The analysis focuses on instances solved within the 10 minutes time limit. Table 2 reports,
for each approach and benchmark, the number of solved instances, the average time per
instance, the total solving time, and the total number of visited nodes. Instances that time
out are not contributing anything to the total time, average time or nodes column.

Global Analysis. Falkenauer T instances highlight the contrast between fast and slow
pruning. DFF-GPU quickly solved 73% of the instances, while Arc-Flow solved 85% of them
taking, on average, 3x more time. The other DFFs-based approaches fall in the middle, and
L2 is last.
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Table 2 Statistics for the solved instances of different lower bound methods.

Benchmark (Instances) Lower Bound Solved Avg Time [s] Time [s] Nodes
L2 38 19 733 623305

DFFs-CPU-Seq 46 44 2045 105856
DFFs-CPU-Par 47 28 1315 154440

DFFs-GPU 58 11 650 448780
Arc-Flow 68 31 2120 5235

L2 30 17 496 481984
DFFs-CPU-Seq 56 43 2382 106646
DFFs-CPU-Par 57 39 2198 122521

DFFs-GPU 60 31 1888 357108
Arc-Flow 79 16 1303 16012

L2 637 6 4057 7126695
DFFs-CPU-Seq 696 6 3961 593028
DFFs-CPU-Par 698 5 3398 1361855

DFFs-GPU 703 3 1952 3997093
Arc-Flow 717 6 4097 116135

L2 332 2 771 2777677
DFFs-CPU-Seq 391 8 3035 273011
DFFs-CPU-Par 391 4 1421 273011

DFFs-GPU 440 2 827 1235237
Arc-Flow 423 69 29287 278014

L2 – – – –
DFFs-CPU-Seq – – – –
DFFs-CPU-Par – – – –

DFFs-GPU 3 1 4 4322
Arc-Flow – – – –

L2 371 6 2350 13082358
DFFs-CPU-Seq 395 6 2381 342116
DFFs-CPU-Par 397 4 1782 669801

DFFs-GPU 417 6 2636 18149205
Arc-Flow 286 105 30046 11103

L2 82 52 4303 63979492
DFFs-CPU-Seq 82 71 5836 4214685
DFFs-CPU-Par 90 61 5520 8329009

DFFs-GPU 116 52 6071 41873760
Arc-Flow 108 7 1866 6388

Falkenauer T (80)

Falkenauer U (80)

Scholl 1 (720)

Scholl 2 (480)

Scholl 3 (10)

Weibull (552)

Scaled Non-IRUP (150)

In the Falkenauer U instances, Arc-Flow demonstrates a good balance between speed and
strength, solving almost all instances in a short amount of time. The DFFs-based approaches
have similar performance, suggesting that the computation of lower bounds is negligible.
This happens when failures occur earlier in the propagation, during the knapsack reasoning.

In the Scholl 1 instances, the gap between Arc-Flow and the DFF-based approaches
diminishes notably. DFFs-GPU outpaces the CPU approaches by a factor of 2x and 1.7x on
average. Notably, while achieving tighter bounds, DFFs-GPU explores, on average, 14x and
5x more nodes per second compared to the CPU implementations. It has the lowest runtime
per instance and completes 703 instances in half the time of all other contenders.

On Scholl 2, DFFs-GPU clearly dominates the field. It solves the most instances (440 out
of 480), completes 35 times faster than the second best (Arc-Flow) and clearly improves on
its parallel and sequential brethren (2x to 4x faster).

Scholl 3 instances are characterized by huge capacities and highlight the benefits of the
GPU approach. It was the only method able to solve any instance leveraging tighter bounds
than L2, DFFs-CPU-Seq, and DFFs-CPU-Par, while also being faster than Arc-Flow.

The Weibull instances, whose capacities range from medium to large, favor faster compu-
tation over strong pruning. In terms of instances solved, DFFs-GPU comes first, followed by
the other DFFs-based approaches, then L2, and Arc-Flow last. While DFFs-CPU-Par ekes
out a win on time per instance, it solves 10% fewer instances than its GPU version. Such
instances account for the higher DFFs-GPU average solving time. Considering the exploration
speed, DFFs-GPU visited, on average 48x more nodes than the sequential version and 18x
more nodes than the multi-core version.
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Figure 6 Plots of the empirical cumulative distribution for the benchmarks.

The Scaled Non-IRUP instances stress-tests the lower bound capabilities of solvers. While
DFFs-GPU solves the most instance and is followed by Arc-Flow, observe that the hardness is
not a function of the number of items. Indeed, Arc-Flow times-out on small instance with 45
items, but takes the crown on instances with 60 or 75 items. The remaining contenders are
much weaker as an additional 22% of the instance solved by DFFs-GPU remain out of reach
for L2 and the sequential DFF implementation, further highlighting the value of a GPU.

Cumulative Analysis. Instance hardness in each benchmark suite is far from uniform. All
methods can quickly solve some instances, yet they sharply diverge on others. Cumulative
plots for six benchmark classes appear in Figure 6 (School 3 is omitted as DFF-GPUs alone
could solve instances). The logarithmic horizontal axis is the solving time, while the vertical
axis indicates the percentage of instances solved in that time. The DFFs-GPU is the green
curve and it is readily apparent that it is the north-most, left-most curve in the plots. Indeed,
it generally solves more instances significantly faster. The Scaled Non-IRUP instances exhibit
an interesting behavior where DFFs-GPU and Arc-Flow switch roles twice as the most effective
technique. DFF-GPUs is the top-most curve for most values along the x axis.
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Table 3 Statistics for DFFs-GPU without optimizations.

Version Solved Time [s] Nodes

DFFs-GPU 1571 1359 1582808
DFFs-GPU-NoDom 1544 2457 83559849

DFFs-GPU-NoSymBrk 1526 3970 143491180

Ablation Analysis. An ablation study was conducted on instances solved by DFFs-GPU in
less than 60 seconds (see Table 3). The most effective technique is the symmetry breaking
constraint derived from [33], which is quite general as it applies to variations of the BPP.

6 Conclusions and Future works

This paper revisits the BinPacking constraint from a parallel prospective and demonstrates
how a parallel mindset leads to novel approaches. It presents a feasibility check based
on a portfolio of lower bounds derived from Dual Feasible Functions (DFFs). Sequential,
multi-threaded, and GPU-accelerated implementations are described and compared.

The results highlight the role of GPUs and how to achieve an effective balance between
computational cost and pruning strength. It allows to handle large instances or situations
where it is not practical to spend excessive time at nodes of the search tree. From an
analytical standpoint, it would be interesting to identify DFFs that lead to tight bounds in
cases where the current ones fall short. Practically, a valuable extension is to explore the
effectiveness of multidimensional DFFs [2] on 2D, 3D and Vector Packing Problems.
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