
The Complexity of Symmetry Breaking Beyond
Lex-Leader
Markus Anders #

TU Darmstadt, Germany

Sofia Brenner #

TU Darmstadt, Germany

Gaurav Rattan #

University of Twente, Enschede, The Netherlands

Abstract
Symmetry breaking is a widely popular approach to enhance solvers in constraint programming,
such as those for SAT or MIP. Symmetry breaking predicates (SBPs) typically impose an order on
variables and single out the lexicographic leader (lex-leader) in each orbit of assignments. Although
it is NP-hard to find complete lex-leader SBPs, incomplete lex-leader SBPs are widely used in
practice.

In this paper, we investigate the complexity of computing complete SBPs, lex-leader or otherwise,
for SAT. Our main result proves a natural barrier for efficiently computing SBPs: efficient certification
of graph non-isomorphism. Our results explain the difficulty of obtaining short SBPs for important
CP problems, such as matrix-models with row-column symmetries and graph generation problems.
Our results hold even when SBPs are allowed to introduce additional variables. We show polynomial
upper bounds for breaking certain symmetry groups, namely automorphism groups of trees and
wreath products of groups with efficient SBPs.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases symmetry breaking, boolean satisfiability, matrix models, graph isomorphism

Digital Object Identifier 10.4230/LIPIcs.CP.2024.3

Related Version Preprint: https://arxiv.org/abs/2407.04419

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148).
Sofia Brenner : Received funding from the German Research Foundation DFG (SFB-TRR 195
“Symbolic Tools in Mathematics and their Application”).

1 Introduction

The search space of a constraint program can exhibit a large amount of symmetry. This
simple yet far-reaching observation forms the core principle behind the use of symmetry
based approaches in the realm of constraint programming [23, 44]. Such methods prune
the symmetric parts of the search space to save computational costs. Ideally, they ensure
that at most one solution exists per equivalence class of candidate solutions. Over the last
two decades, numerous methods have been proposed to exploit symmetries of constraint
programs. In particular, many approaches have been developed for Boolean satisfiability
solvers [14, 1, 13, 17, 27, 30, 16, 43, 38] as well as mixed integer programming [35, 39, 40].
Symmetry-based solving remains an active and fruitful area of interest, especially from a
practical perspective: for example, the defining feature of arguably one of the most successful
entries in the SAT competition 2023 was symmetry breaking [11, 10].

© Markus Anders, Sofia Brenner, and Gaurav Rattan;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 3; pp. 3:1–3:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anders@mathematik.tu-darmstadt.de
mailto:brenner@mathematik.tu-darmstadt.de
https://orcid.org/0009-0006-8512-2569
mailto:g.rattan@utwente.nl
https://orcid.org/0000-0002-5095-860X
https://doi.org/10.4230/LIPIcs.CP.2024.3
https://arxiv.org/abs/2407.04419
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 The Complexity of Symmetry Breaking Beyond Lex-Leader

How symmetries should be used best remains unclear. Approaches can be roughly divided
into two different categories: in dynamic and static approaches. In a dynamic approach,
symmetries are used during the execution of a solver [43, 18, 16, 38]. A typical example is
that the solver incorporates a branching rule that makes use of the symmetries directly [43].

The second approach is the static use of symmetries, which is the main focus of this paper.
Here, additional constraints, so-called symmetry breaking predicates (SBPs), are added to
a given problem instance. The notion of SBPs was first introduced in the seminal paper
of Crawford, Ginsberg, Luks and Roy [14]. Their goal was to generate polynomial-sized
SBPs for SAT formulas in conjunctive normal form (CNF). However, since their framework
is rooted in group theory, many results neatly generalize to other constraint languages.

The framework of Crawford et al., as well as the majority of the subsequent work in
this area, uses so-called lex-leader predicates to achieve complete symmetry breaking. Using
incomplete lex-leader predicates is arguably one of the most successful approaches to symmetry
breaking in practice [1, 17]. On a complexity-theoretic level, however, Crawford et al. proved
that computing a predicate true of only the lex-leader in each equivalence class of Boolean
assignments is NP-hard. Subsequent results showed that this even holds true for restricted
classes of groups [34], as well as orders similar to lex-leader [29, 46].

One may wonder whether there are other kinds of SBPs that are efficiently computable.
Here, other kinds of SBPs simply means that they do not make use of a lexicographic ordering
of the assignments. In principle, choosing any canonical representative among symmetric
assignments is permissible, lex-leader or otherwise. This question is motivated, for instance,
by the realm of graph isomorphism (GI). There, choosing the lex-leader is also known to be
NP-hard [7], and the best theoretical and practical approaches make use of other mechanisms.

Concerning practical symmetry breaking, only a few, though surprisingly different,
approaches of generating non-lex-leader SBPs have been explored. In [22], the global
cardinality constraint [42] is used in conjunction with lex-leader constraints to efficiently
handle (particular) wreath symmetry. In [13], SAT symmetry breaking constraints for graph
problems are produced similarly to the canonical labeling algorithm nauty [37]. In [25],
minimal SAT symmetry breaking constraints are generated for small groups.

In general, however, the complexity of SBPs remains largely unexplored, even for fairly
restricted kinds of symmetries. Perhaps the most glaring example is the problem of breaking
row-column symmetries, which arise in the so-called matrix models [20]. These models allow
the decision variables to be arranged in a matrix such that interchanging any two rows or any
two columns is a symmetry of the model. Matrix models arise in multiple areas of constraint
programming such as scheduling, combinatorial problems, and design [21]. Perhaps the most
well-known matrix model is the pigeonhole principle problem, for which it is NP-hard to
compute the lex-leader or similar assignments [14]. While the problem of devising SBPs for
such models has received much attention [20, 29, 23], the known results do not explain the
lack of compact SBPs for matrix models.

Our Results
The objective of this paper is to further investigate the exact complexity of computing static
symmetry breaking predicates. Given a group of symmetries on the variables of a formula,
how hard is it to generate a complete symmetry breaking predicate? The ultimate goal of
our work is to obtain a classification of symmetry groups, in terms of the complexity of
computing SBPs. Such a classification could help inform practitioners as to which cases can
be handled easily, and which ones are more challenging.

M. Anders, S. Brenner, and G. Rattan 3:3

In order to simplify the exposition, our setting of choice is that of Boolean satisfiability
testing (SAT). However, in the same vein as [14], our results are founded in a general group-
theoretic setting, so they should easily transfer to many branches of constraint programming:
we consider computing symmetry breaking predicates for a given permutation group, instead
of a particular SAT formula exhibiting such symmetry.

Our results can be divided into hardness results and upper bounds. The high-level idea
for the hardness results can be summarized as follows: We show that if symmetry breaking is
feasible for certain expressive groups, such as matrix groups or Johnson actions, then graph
isomorphism is in coNP. The containment GI ∈ co-NP is a major unresolved problem [31],
even for the restricted case of group isomorphism [5]. While GI ∈ co-NP seems to have no
other major complexity theoretic consequences and is seemingly not “implausible”, it still
poses a barrier to compact SBPs.

The idea of our reductions is to encode the input graphs as binary strings in a suitable
way, then guess a canonizing permutation, and use the symmetry-breaking constraint to
verify that the result is indeed the canonical form: By definition, the symmetry-breaking
constraint is true of precisely the canonical forms. The graphs are non-isomorphic exactly
when the canonical forms are different. As a strengthening, we show that this holds even
when the symmetry breaking constraint uses additional variables as their values can be
guessed as well.

We now explain our hardness results in greater detail.

Matrix Models. Our first result tackles the difficulty of breaking row-column symmetries in
matrix models. As mentioned above, this problem has received much attention in symmetry
breaking literature.

▶ Theorem 1. Suppose there exists a polynomial time algorithm for generating complete
symmetry breaking predicates for row-column symmetries. Then GI ∈ co-NP holds, i.e., graph
non-isomorphism admits a non-deterministic polynomial time algorithm.

Our theorem explains the difficulty of obtaining compact symmetry breaking predicates
for matrix models, in the sense that it would imply polynomial time algorithms for certifying
graph non-isomorphism. Section 3.1 contains a detailed description of our result.

Johnson Actions. We identify yet another class of groups for which symmetry breaking
is hard, namely the (k, t)-Johnson groups. These are symmetric groups Sym(k) acting on
t-subsets of [k] for fixed t < k. It is well-known that these actions form an important sub-case
of Babai’s quasi-polynomial algorithm for graph isomorphism [5].

▶ Theorem 2. Let t > 1 be a fixed positive integer. Suppose that we can generate complete
symmetry breaking predicates for all (k, t)-Johnson groups in polynomial time (in terms of
the domain size). Then GI ∈ coNP holds.

Section 4 contains a formal description of this result. In fact, it follows from Theorem 16,
which proves a stronger statement.

Certificates for Canonization. We strengthen our hardness results of Theorem 1 and
Theorem 2 as follows. We allow an algorithm to produce more expressive SBPs:
1. The SBP can be given as a Boolean circuit.
2. The SBP is allowed to introduce additional variables. Essentially, this gives the predicate

access to additional non-determinism. The SBP may introduce an arbitrary number of
additional variables, as long as the overall size is polynomial.

CP 2024

3:4 The Complexity of Symmetry Breaking Beyond Lex-Leader

Despite allowing more powerful SBPs, we conclude a stronger hardness implication: an
efficient algorithm for such predicates implies an efficiently verifiable graph canonical form
(see Theorem 13 and Theorem 15). Note that an efficient verifier for graph canonical forms
implies an efficient verifier for graph non-isomorphism (Lemma 12), but the converse is
unknown. For this result, we observe that SBPs for a permutation group G on the domain
[n] essentially solve a particular decision version of the string canonization problem w.r.t. G
on strings of length n. String canonization is a fundamental problem of interest in the graph
isomorphism community [7, 5, 6]. Section 3.2 contains a detailed description. Moreover,
we prove that the hardness results also hold for all subgroups of polynomial index (see
Lemma 18).

Quasi-Polynomial Upper Bound. Realizing that symmetry breaking reduces to string
canonization allows us to express an upper-bound on the size of circuit SBPs for general
permutation groups. The result is mainly of theoretical interest, but we believe that this
could have useful consequences in SBP heuristic design. The theorem immediately follows
from the quasi-polynomial time algorithm of Babai [6], see Section 3.2 for more details.

▶ Theorem 3. Given a permutation group G ≤ Sym(n), there is a quasi-polynomial time
(in n) algorithm producing a complete symmetry breaking circuit of quasi-polynomial size.

We complement these results concerning hard families by focusing on polynomial upper
bounds, i.e., the question for which families of groups symmetry breaking is easy:

Polynomial Upper Bounds. In Section 5, we examine how group-theoretic structure can
help to design SBPs. Our results show how we can assemble SBPs for a group from the
SBPs of its constituents, in context of natural operations such as disjoint direct products
and wreath products. This extends the results of [24], where the existence of lex-leader
constraints for constituents is assumed to assemble constraints for direct products and wreath
products. (The paper also treats cyclic, dihedral and alternating groups.)

The following theorem is the main consequence of our results in this section.

▶ Theorem 4. Assume that G ≤ Sym(n) is the automorphism group of a tree T . Then G

admits a complete symmetry breaking predicate of linear size. Given the tree T , it can be
computed in polynomial time.

Automorphism groups of trees are special cases of so-called wreath products. Such groups
naturally occur, for example, whenever models exhibit hierarchical structure. Intuitively, the
structure can be split into parts with the same symmetry group (the base group), which are
permuted by the so-called top group. Essentially, we combine symmetry breaking constraints
for the base group and the top group to a symmetry breaking constraint for the wreath
product by using the predicate for base group to make every part canonical, and the constraint
of the top group to fix an ordering of the parts. For the general case of wreath products the
problem is far more technical, but we obtain the following result (see Section 5 for details).

▶ Theorem 5. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that a
complete symmetry breaking circuit for G can be computed in polynomial time. Moreover,
suppose that for every partition P of [m], the partition stabilizer S of P in H and a complete
symmetry breaking circuit for S can be computed in polynomial time. Then there is a
complete symmetry breaking circuit for the wreath product W := G ≀H that can be computed
in polynomial time.

M. Anders, S. Brenner, and G. Rattan 3:5

quasi-polynomial circuit

“easy”

|G| ≤ poly(n)

automorphism
groups of trees

Sn, An

row-interchangeability

P

Slog n × Slog n

|G : H| ≤ poly(n),
where H hard

?

“hard”

row-column sym-
metry

proper Johnson

|H : G| ≤ poly(n),
where H hard

NP → GI ∈ coNP

Figure 1 Complexity of computing symmetry breaking predicates for the stated families of
groups in SAT. All groups can be handled in quasi-polynomial time using a circuit. The symbol G

refers to the permutation group of consideration. The parameter n refers to the domain size of the
permutation group, or, the number of variables of the formula. For “easy” families of groups, a
CNF predicate can be computed in polynomial time. For “hard” families of groups, the existence of
polynomial time symmetry breaking, even allowing the use of additional variables, implies that GI is
in coNP. Blue outlines indicate novel results proven in this paper.

In summary, Figure 1 provides a concise description of our progress towards a complexity
classification for the problem of generating SBPs for permutation groups.

2 Preliminaries

2.1 Boolean Circuits and Satisfiability
Boolean Circuits. A Boolean circuit ψ is a circuit consisting of input gates, one output
gate, and {AND,OR,NOT}-gates connecting them in the usual way. We refer to the input
gates as the variables Var(ψ). The size of a circuit refers to the number of gates.

An assignment of ψ is a function θ : V → {0, 1} where V ⊆ Var(ψ). The assignment
is complete whenever V = Var(ψ) and partial otherwise. A circuit is evaluated using an
assignment θ : V → {0, 1}, by replacing each input gate v ∈ V with θ(v), with the usual
meaning. The resulting circuit is ψ[θ]. Whenever θ is complete, the value of the output gate
can be determined in linear time, and hence either ψ[θ] = 0 or ψ[θ] = 1 holds.

If ψ[θ] = 1 we call θ a satisfying assignment, whereas if ψ[θ] = 0 we call θ a conflicting
assignment. A circuit ψ is satisfiable if and only if there exists a satisfying assignment to ψ.

Conjunctive Normal Form. In practice, a SAT instance ψ is typically given in conjunctive
normal form (CNF), which we denote with ψ = {{l1,1 ∨· · · ∨l1,k1}∧· · · ∧{lm,1 ∨· · · ∨lm,km}}.
Each element C ∈ ψ is called a clause, whereas a clause itself consists of a set of literals. A
literal is either a variable v or its negation v.

A symmetry, or automorphism, of ψ is a permutation of the variables φ : Var(ψ) → Var(ψ)
which maps ψ back to itself, i.e., ψφ ≡ ψ, where φ is applied element-wise to the variables in
each clause. The permutation group of all symmetries of ψ is Aut(ψ) ≤ Sym(Var(ψ)).

Another common way to define symmetries is to define them on the literals of the formula,
allowing the use of so-called negation symmetries (see [44]). In any case, symmetries can be
efficiently computed in practice using state-of-the-art symmetry detection tools [37, 28, 15, 2].

CP 2024

3:6 The Complexity of Symmetry Breaking Beyond Lex-Leader

2.2 Permutation Groups

We briefly introduce some notation and results for permutation groups. For further back-
ground material on permutation groups, we refer to [19]. Throughout, we use the notation
[n] := {1, . . . , n} for n ∈ Z>0 and set [0] := ∅.

Let Ω be a nonempty finite set. Let Sym(Ω) denote the symmetric group on Ω, i.e., the
group of permutations of Ω. A permutation group is a subgroup G of Sym(Ω), denoted by
G ≤ Sym(Ω). We also say that G acts on Ω. A permutation group is always specified by the
abstract isomorphism type of G (for instance, G could be cyclic of order 10), together with
the action of G on Ω. For g ∈ G and ω ∈ Ω, we write ωg for the image of ω under g and
ωG = {ωg : g ∈ G} for the orbit of ω under G. The support of G consists of those elements
in Ω that are moved (i.e., not fixed) by some element of G. For a partition P = (Ω1, . . . ,Ωr)
of Ω (i.e., Ω = Ω1 ∪̇ · · · ∪̇ Ωr), the partition stabilizer of P in G consists of all elements g ∈ G

that setwise stabilize Ω1, . . . ,Ωr, i.e. for all i ∈ [r], {ωg : ω ∈ Ωi} = Ωi. The index of a
subgroup H of G is |G : H| := |G|/|H|.

Two permutation groups G ≤ Sym(Ω) and H ≤ Sym(∆) are permutation isomorphic
if there exists a bijection λ : Ω → ∆ and a group isomorphism α : G → H such that
λ(ωg) = λ(ω)α(g) for all ω ∈ Ω and g ∈ G. Note that this notion is stronger than G and H

being isomorphic (as abstract groups) as the same abstract group can give rise to different
group actions. For instance, Sym(k) admits so-called Johnson actions on different domains:

Johnson Groups. Let k be a positive integer and t ∈ [k − 1]. A permutation π ∈ Sym(k)
induces a permutation π̂ on the domain

([k]
t

)
of t-subsets of [k], mapping a t-subset A to

Aπ̂ = {aπ : a ∈ A}. This way, Sym(k) becomes a permutation group S
(t)
k on a domain of

size
(

k
t

)
. The groups S(t)

k are called Johnson groups and the action is called a Johnson action.
We call a Johnson group proper if t ̸∈ {1, k − 1} holds.

Usually, the analogous action of the so-called alternating groups is also called a Johnson
action. Due to our results in Section 4.3, it suffices to only consider the symmetric groups.

Wreath products. Let G ≤ Sym(Ω) and H ≤ Sym(∆) be permutation groups. The
wreath product G ≀ H consists of the set G∆ × H, endowed with the multiplication rule(
(gδ)δ∈∆, h

)(
(g′

δ)δ∈∆, h
′) =

(
(gδg

′
δh−1)δ∈∆, hh

′). We call G the base group and H the top
group. The group G ≀H acts on Ω × ∆ by (ω, δ)((gδ)δ∈∆,h) = (ωg

δh , δh). This action is called
the imprimitive action of the wreath product.

2.3 Graph Isomorphism and String Canonization

Graphs. A finite, undirected graph Γ = (V,E) consists of a set of vertices V ⊆ N and
an edge relation E ⊆

(
V
2
)
. Unless stated otherwise, the set of vertices V is {1, . . . , n} and

m := |E| denotes the number of edges. We may refer to the set of vertices of Γ with V (Γ),
and to the set of edges with E(Γ). The adjacency matrix of Γ is the n× n-matrix A = (aij)
with aij = 1 if {i, j} ∈ E(Γ), and aij = 0 otherwise. Unless stated otherwise, we assume our
graphs are given as adjacency matrices.

A graph Γ is bipartite if V (Γ) = A ∪̇B can be partitioned into two independent sets
A = {a1, . . . , ak} and B = {b1, . . . , bℓ}. In this case, we may obtain an bipartite adjacency
matrix M = (mij) by setting mij = 1 if ai and bj are adjacent, and mij = 0 otherwise.

M. Anders, S. Brenner, and G. Rattan 3:7

Lexicographic ordering. For {0, 1}-strings θ, θ′ of the same length, we write θ ⪯lex θ
′ if θ

is smaller or equal to θ′ with respect to the lexicographic ordering. Likewise, we define a
lexicographic ordering of matrices with entries in {0, 1} of a fixed size by interpreting them
as strings, reading them row by row.

Relational Structures. As a generalization of graphs, we define a t-ary relational structure
R = (U,A), where U is a universe and A is a t-ary relation on U . A t-ary relational structure
is symmetric if for every t-tuple (u1, . . . , ut) ∈ A and for every σ ∈ Sym(t), it holds that
(uσ(1), . . . , uσ(t)) ∈ A.

Graph Isomorphism. Two graphs Γ1 = (V1, E1),Γ2 = (V2, E2) are said to be isomorphic,
whenever there exists a bijection φ : V1 → V2 such that φ(Γ1) = (V φ

1 , E
φ
1) = (V2, E2) = Γ2

holds. Here, V φ
1 and Eφ

1 means applying φ element-wise to each element in V1, and each
element of each tuple in E1, respectively. We call φ an isomorphism between Γ1 and Γ2. We
may write Γ1 ∼= Γ2 to denote isomorphism. A corresponding computational problem follows:

▶ Problem 6 (GI). Given two graphs Γ1,Γ2, does Γ1 ∼= Γ2 hold?

Regarding certification, it is easy to see that GI is in NP. On the other hand, graph
isomorphism is known to be in coAM, i.e., there are efficient randomized proofs for non-
isomorphism [9]. As mentioned in the introduction, whether graph isomorphism is in coNP
is a long-standing open problem [31].

Analogously, we may define isomorphism for t-ary relational structures R1 = (U1, A1)
and R2 = (U2, A2): R1 and R2 are isomorphic if there exists a bijection π : U1 → U2 such
that for every (u1, . . . , ut) ∈ A1, it holds that (uπ

1 , . . . , u
π
t) ∈ A2 and vice-versa.

String Canonization. We next define the string canonization problem [7, 32]. The string
canonization problem asks, given a permutation group G ≤ Sym(Ω) and a string σ : Ω → Σ on
a finite alphabet Σ, for a canonical representative of σG. In particular, it computes a function
F : G × ΣΩ → ΣΩ where G denotes the set of all permutation groups G ≤ Sym(Ω), and for all
σ1, σ2 ∈ ΣΩ it holds that (1) F (G, σ1) ∼=G σ1 and (2) if σ1 ∼=G σ2 then F (G, σ1) = F (G, σ2).
Here, ∼=G means that σ1 can be permuted to σ2 using an element of G. A corresponding
computational problem follows:

▶ Problem 7 (s-scanonF). Given a permutation group G ≤ Sym(Ω), a finite alphabet Σ
and a string σ ∈ ΣΩ, compute the canonical representative F (G, σ).

The graph isomorphism problem polynomial time reduces to s-scanon, but the converse is
unknown. However, there is an F such that there is a quasi-polynomial time algorithm which
solves the string canonization problem [6]. It turns out that the string canonization problem
is intimately related to symmetry breaking, which we discuss thoroughly in Section 3.2.

A crucial special case of string canonization is graph canonization. As the name suggests,
it computes canonical forms for graphs. Let f be a graph canonization function, i.e., for
graphs Γ,∆, it holds that (1) Γ ∼= ∆ iff f(Γ) = f(∆), and, (2) f(Γ) ∼= Γ. Here, the symbol ∼=
denotes the graph isomorphism relation. The corresponding computational problem follows:

▶ Problem 8 (s-gcanonf). Given a graph Γ, compute the canonical representative f(Γ)
within the isomorphism class of Γ.

Indeed, this problem is a special case of string canonization: G can be chosen as a Johnson
group of appropriate order and the strings encode the given graphs (see [6]).

CP 2024

3:8 The Complexity of Symmetry Breaking Beyond Lex-Leader

2.4 Notions of Symmetry Breaking
Next, we define our notions of symmetry breaking. Let ψ be a CNF formula. Typically,
symmetry breaking is defined specifically for the automorphism group Aut(ψ) of ψ. However,
it turns out that often, our symmetry breaking predicates only depend on the structure
of Aut(ψ) and its action on the set of variables Var(ψ). In particular, they do not depend
on the specific shape of the formula ψ. Hence, we define symmetry breaking only using an
arbitrary permutation group G ≤ Sym(Ω) and without referring to a precise formula ψ.

Symmetry Breaking Constraints. We begin with a discussion of complete symmetry
breaking. Indeed, we find that in the literature two different notions are in use.

The first of these notions is what we will refer to simply as complete symmetry breaking.
The idea is that a complete symmetry breaking constraint must ensure that in each orbit of
complete assignments, all but one canonical representative is conflicting [14].

Formally, we let θfull(Ω) := {θ | θ : Ω → {0, 1}} denote the set of all complete assignments
to Ω. We let G ≤ Sym(Ω) act on θfull(Ω) in the natural way. A Boolean circuit ψ with
Var(ψ) ⊆ Ω is called a complete symmetry breaking circuit for G, whenever for each orbit
O ⊆ θfull(Ω) under G, there is

a τ ∈ O such that ψ[τ] is satisfying,
for all τ ′ ∈ O with τ ̸= τ ′ the formula ψ[τ ′] is conflicting.

If ψ is restricted to be a CNF formula, we refer to ψ as a symmetry breaking predicate.
This notion is typically used in the context of general-purpose symmetry breaking, such as
for example in [14, 1, 17, 25]. We remark that in [25], this notion is referred to as an isolator.

The second notion in use in the literature is isomorph-free generation. It is usually
considered in the realm of dynamic symmetry breaking. However, a notion for predicates can
be defined: a predicate is supposed to ensure that in each orbit of partial assignments, all
but one canonical representative is conflicting. Intuitively, isomorph-free generation ensures
that no isomorphic branches are ever considered in the search. Isomorph-free generation
immediately also ensures complete symmetry breaking. It is typically used in the context
of generation tasks, such as in [36, 30], but it has also been considered for general-purpose
symmetry breaking [27].

The focus of this paper is on complete symmetry breaking and not on isomorph-free
generation.

Symmetry Breaking as a Computational Problem. We define a corresponding computa-
tional problem for symmetry breaking.

▶ Problem 9 (Symmetry Breaking). Given a permutation group G ≤ Sym(Ω), compute a
complete symmetry breaking circuit for G.

There are two variations of this problem that we discuss throughout the paper: the
first of which concerns the group G. Usually, G is the automorphism group of a given
CNF formula ψ, i.e., G = Aut(ψ). In this case, the problem might become easier, since
automorphism groups and a given formula may admit further structural arguments. However,
considering symmetry breaking for arbitrary permutation groups G opens up the possibility
of using symmetries beyond syntactic ones, even though it might be unclear how they could
be obtained. Furthermore, results are independent of the specific structure of SAT instances.

The second variation concerns the output: we may expect a CNF predicate, or a Boolean
circuit. Computing a CNF predicate may be harder, since circuits are more expressive. We
believe that all variations of the problem are of potential interest. Therefore, it seems best
to attempt to use the problem definition which yields the strongest possible statement.

M. Anders, S. Brenner, and G. Rattan 3:9

3 Row-Column Symmetries

In this section, we analyze the complexity of computing symmetry breaking predicates for
row-column symmetry. Section 3.1 describes the hardness of obtaining SBPs for breaking row-
column symmetries. In particular, we provide a proof of Theorem 1. Section 3.2 establishes
the connection between symmetry breaking and decision string canonization. Lastly, in
Section 3.3, we strengthen our results to work for circuit SBPs and SBPs with extra variables.

3.1 Hardness of Breaking Row-Column Symmetries
We begin with a formal definition of row-column symmetry.

Row-Column Symmetry. Let m,n be two positive integers, and Ω := [n] × [m]. The
row-column symmetry group G is defined to be the group Sym([n]) × Sym([m]), where
Sym([n]) naturally acts on the first component of Ω, and Sym([m]) on the second component.
Informally, we can view Ω as a matrix with n rows and m columns. The group G ≤ Sym(Ω)
then consists of all the possible row transpositions and all possible column transpositions,
along with their arbitrary compositions.

A matrix model is a constraint program whose decision variables can be arranged as
a matrix above such that its automorphism group is the row-column symmetry group for
this matrix arrangement. For such programs, it is typical to index their variable set by
Ω = {xij | i ∈ [n], j ∈ [m]}.

The following lemma states a one-to-one correspondence between assignments to a
matrix model and bipartite graphs. Let Γ(U, V) denote a bipartite graph with a designated
left-partition U and a right-partition V , where U and V are non-interchangeable.

▶ Lemma 10. There exists a one-to-one correspondence between the set of all Boolean
assignments to the variables {x11, . . . , xnm} of a matrix model and the set of all bipartite
graphs Γ([n], [m]) with designated left and right partitions.

Proof. Interpret the truth-value of xij as the indicator for whether there exists an edge
between i ∈ [n] and j ∈ [m]. ◀

We proceed with the proof of Theorem 1.

Proof of Theorem 1. We devise a polynomial time verifier for checking purported certificates
for non-isomorphism, assuming that we can compute a row-column symmetry breaking
predicate in polynomial time.

Bipartite Graphs Suffice. It will be more convenient for us to work with bipartite graphs
instead of general graphs, in the spirit of standard reductions in isomorphism literature [47].
To every graph Γ, we can always associate a bipartite graph bip(Γ), namely the vertex-edge
incidence graph as follows. The graph bip(Γ) has a designated left partition consisting of
V (Γ), a designated right partition consisting of E(Γ), and the edges of bip(Γ) are defined
by vertex-edge incidence. Moreover, bip(Γ) is a vertex-ordered graph: the left partition
inherits the ordering from the graph Γ, and the right partition E(Γ) is ordered according
to the ordering induced by the ordering of V (Γ). Observe that the mapping Γ 7→ bip(Γ) is
injective. Moreover, it is easy to verify that two graphs Γ and ∆ are isomorphic if and only
if the bipartite graphs bip(Γ) and bip(∆) are isomorphic via a bijection which maps the
left-partition (right-partition) of bip(Γ) to the left-partition (right-partition) of bip(∆).

Therefore, it suffices to verify non-isomorphism certificates for bipartite graphs.

CP 2024

3:10 The Complexity of Symmetry Breaking Beyond Lex-Leader

Certificate. Given two bipartite graphs Γ and ∆, our chosen certificate of non-isomorphism
is a pair of bijections (σ, π), where σ : V (Γ) → V (Γ) and π : V (∆) → V (∆).

Verifier. Given such a certificate (σ, π), our polynomial time verifier proceeds as follows:
1. Compute a symmetry breaking predicate δn,m(x11, . . . , xnm) in time poly(n,m).
2. Check if both Γσ and ∆π satisfy δn,m(x11, · · · , xnm), when viewed as Boolean assignments.

If both of them satisfy δn,m, continue; otherwise reject.
3. Check whether Γσ ̸= ∆π, otherwise reject.
4. Declare Γ and ∆ to be non-isomorphic.
It is easy to verify that all of the steps above are polynomial time computations.

Correctness of Verifier. It remains to be shown that (1) for every pair of non-isomorphic
graphs, there exists a polynomial sized certificate accepted by the verifier above, and (2) for
every pair of isomorphic graphs, the verifier always rejects any certificate.

For (1), let Γ and ∆ be two non-isomorphic graphs. Let Γ∗ be the unique satisfying
assignment of δn,m in the orbit of Γ (similarly define ∆∗) under row-column symmetries. Let
σ be an isomorphism from Γ to Γ∗ (similarly define π). Since Γ ̸∼= ∆, it must hold that Γ∗

and ∆∗ lie in different orbits, and hence Γ∗ ≠ ∆∗. Since the certificate satisfies all conditions
of the verifier, the verifier correctly certifies Γ and ∆ to be non-isomorphic.

For (2), suppose Γ and ∆ are isomorphic. Then they lie in the same orbit under the
action of row-column symmetry on the Boolean assignments to the matrix model. Given any
certificate (σ, π), the requirement of Γσ and ∆π having to satisfy δn,m implies that Γσ = ∆π.
But then such a certificate is rejected by the verifier in the third step. Hence, the verifier
correctly refuses to certify that Γ and ∆ are non-isomorphic. ◀

It is not clear whether the converse of Theorem 1 holds. In fact, even a P-time algorithm
for graph isomorphism may not be sufficient to yield symmetry breaking algorithms for
row-column symmetries. In what follows, we address this situation with a closer examination
of the complexity of symmetry breaking.

3.2 A Decision Version of String Canonization
We now introduce a decision variant of the string canonization problem, which only decides
whether a given string is the canonical string:

▶ Problem 11 (d-scanonF). Given a group G ≤ Sym(Ω), a finite alphabet Σ and a string
σ ∈ ΣΩ, decide whether σ = F (G, σ) holds, i.e., whether σ is the canonical representative
within its isomorphism class σG.

Let us consider a CNF formula ψ. We consider the case of the string canonization problem
where Σ = {0, 1} and the group G ≤ Sym(Var(ψ)) consists of symmetries of ψ. Note that
any two given assignments σ1 and σ2 of ψ can be interpreted as strings, and σ1 ∼=G σ2 holds
if and only if they are in the same orbit of G.

We observe that an algorithm for d-scanon accepts precisely one assignment per orbit
of G. But this just means that if we translate such an algorithm into a Boolean circuit, the
resulting circuit is a symmetry breaking circuit.

Clearly, d-scanonF polynomial time reduces to s-scanonF . Since s-scanon can be
solved using a quasi-polynomial time algorithm [6], Theorem 3 follows immediately.

Analogously, we may define a decision version of the graph canonization problem, denoted
as d-gcanonf . Recall that graph canonization is a special case of string canonization. In
the following, we prove that the decision canonization problem is tightly related to graph
isomorphism in terms of its non-deterministic complexity.

M. Anders, S. Brenner, and G. Rattan 3:11

▶ Lemma 12. Let f be a canonical form such that d-gcanonf is in NP. Then, GI ∈ coNP.

Proof. Assuming d-gcanon is in NP gives us access to a class of polynomial-sized certificates
and a polynomial time verifier for these certificates, such that the following hold. If a
given graph Γ is the canonical representative of its isomorphism class, then there must be a
certificate σ such that the verifier accepts (Γ, σ). If Γ is not the canonical representative,
then for all certificates σ the verifier rejects (Γ, σ).

Based on this, we provide a non-deterministic polynomial time algorithm for graph
non-isomorphism of two graphs Γ and ∆.

Certificate. The certificate consists of two permutations φ1 ∈ Sym(V (Γ)), φ2 ∈ Sym(V (∆)),
a certificate σ1 for decision canonization of Γ, as well as σ2 for decision canonization of ∆.

Verifier. Given two graphs Γ,∆ and certificate (φ1, φ2, σ1, σ2), the verifier proceeds as
follows. (Step 1) Run the decision canonization verifier for (Γφ1 , σ1) and (∆φ2 , σ2). If both
are accepted, proceed, otherwise reject. (Step 2) Accept if Γφ1 ̸= ∆φ2 , otherwise reject.

Correctness of Verifier. Note that whenever we reach Step 2 of the verifier, the procedure
guarantees that Γφ1 is a canonical form of Γ and ∆φ2 of ∆. Hence, Γ ∼= ∆ holds if and only
if Γφ1 = ∆φ2 holds. It immediately follows that the algorithm accepts if and only if Γ and ∆
are non-isomorphic. ◀

3.3 Hardness of Symmetry Breaking with Additional Variables
Consider the situation where one is allowed to use additional variables from a set Ω′ to write
down symmetry breaking constraints. In principle, this expands our domain Ω of variables
used to Ω ∪̇ Ω′. Since the introduction of new variables Ω′ changes the set of assignments, we
need to adjust our definition of complete symmetry breaking.

Symmetry Breaking with Additional Variables. A Boolean circuit ψ is called a complete
symmetry breaking circuit with additional variables for G ≤ Sym(Ω), whenever for each orbit
τ ⊆ σfull(Ω) under G, there is

a τ ′ ∈ τ such that ψ[τ ′] is satisfiable,
for all τ ′′ ∈ τ with τ ′ ̸= τ ′′ the circuit ψ[τ ′′] is unsatisfiable.

A point of contention in the above definition might be whether ψ[τ ′] should actually have
exactly one satisfying assignment. This would ensure that there is precisely one satisfying
assignment per orbit, while our definition only suffices to ensure a unique satisfying assignment
when restricted to the variables of ψ. In this paper, we stick to the above definition.

Using additional variables is typically not considered in the literature, most likely because
this might substantially alter the difficulty of the underlying instance. Introducing additional
variables is however intriguing: it gives the symmetry breaking predicates access to non-
determinism, and hence might enable substantially more powerful constraints.

Hardness with Additional Variables. We show hardness results for symmetry breaking
even if we are allowed to introduce new variables.

▶ Theorem 13. Suppose there exists a polynomial time algorithm for generating complete
symmetry breaking circuits with additional variables for row-column symmetries. Then, it
holds that d-gcanon ∈ NP and hence GI ∈ coNP.

CP 2024

3:12 The Complexity of Symmetry Breaking Beyond Lex-Leader

Proof sketch. It suffices to show that there exists a canonical form f such that d-gcanonf

∈ NP (see Lemma 12). Again, we encode the input graph as a bipartite graph as in the proof
of Theorem 1. The main argument follows by an inspection of the proof of Theorem 1: we
observe that a certificate can also guess an assignment to the additional variables introduced
by the SBP. We then simply verify that the adjacency matrix of the input graph and the
assignment to the additional variables is accepted by the symmetry breaking circuit. ◀

The formal details of the proof can be found in Appendix A.

4 Johnson Actions

Next, we consider the so-called Johnson groups. Johnson groups are groups which naturally
occur in problems encoding graph generation tasks [30]. We begin this section by describing
a correspondence between Johnson groups and symmetric relational structures. Then, we
provide a formal proof of Theorem 2. Lastly, we show how to derive SBPs for a group G,
given SBPs for a small index subgroup H ≤ G (Lemma 18).

4.1 Johnson Groups and Relational Structures
Johnson Families. Let k be a positive integer. For t ∈ [k− 1], let Xt

k be the set of variables
indexed by t-element subsets of [k]. In particular, we have |Xt

k| =
(

k
t

)
. For fixed t ≥ 1, we

call the group family S(t)
k ≤ Sym(Xt

k) the Johnson family of arity t.
Johnson groups form a subclass of the so-called groups of Cameron type. These groups

as well as their natural action can be recognized in polynomial time (see [8]).

Relational Structures and Johnson Groups. To a symmetric t-ary relational structure R,
we associate an assignment fR : Xt

k → {0, 1} with f(xS) = 1 for a t-subset S of [k] if S is a
hyperedge in R, and f(xS) = 0 otherwise. Conversely, given f : Xt

k → {0, 1}, we define a
symmetric t-ary relational structure Rf on the universe [k] whose relation is the set of all
tuples (a1, . . . , at) with f({a1, . . . , at}) = 1.

This defines a one-to-one correspondence between assignments of Xt
k and symmetric t-ary

relational structures. The following result formalizes the correspondence (see also [33]).

▶ Lemma 14. Let R and R′ be two symmetric t-ary relational structures on the universe
[k]. Then R and R′ are isomorphic if and only if the assignments fR and fR′ of the set Xt

k

lie in the same orbit under the action of the Johnson group S(t)
k ≤ Sym(Xt

k).

Proof. Suppose that R and R′ are isomorphic via a bijection π : [k] → [k]. Then, the induced
action π̂ on t-subsets of [k] defines an element of S(t)

k with fR′ = f π̂
R. Conversely, suppose

that fR′ = f π̂
R for some π̂ corresponding to the induced action of π : [k] → [k]. It is easy to

check that π is an isomorphism between R and R′. ◀

4.2 Johnson Families of Fixed Arity are Hard
In this section, we show that polynomial time symmetry breaking for Johnson families of
fixed arity t ≥ 2 implies GI ∈ coNP.

▶ Theorem 15. Suppose there exists a polynomial time algorithm for generating complete
symmetry breaking circuits with additional variables for the Johnson family of arity 2. Then,
d-gcanon ∈ NP and hence GI ∈ coNP.

M. Anders, S. Brenner, and G. Rattan 3:13

Proof. We again make use of Lemma 12, proving that polynomial time symmetry breaking
circuits with additional variables for Johnson groups give rise to a non-deterministic polyno-
mial time algorithm for decision graph canonization. Using similar arguments to Theorem 13,
this follows from Lemma 14 and the fact that for two relational structures R,R′ it holds that
R = R′ if and only if fR = fR′ . ◀

We generalize Theorem 15 to arbitrary arity.

▶ Theorem 16. Let t ≥ 2 be a fixed arity. Suppose there exists a polynomial time algorithm
for generating complete symmetry breaking circuits with additional variables for the Johnson
family of arity t. Then, d-gcanon ∈ NP and hence GI ∈ coNP.

Proof sketch. Lemma 12 ensures that it suffices to prove d-gcanon ∈ NP. By Lemma 14,
it suffices to solve d-gcanon in non-deterministic polynomial time using a non-deterministic
polynomial time oracle for decision canonization for uniform, symmetric t-ary relational
structures. This is achieved by defining an isomorphism-invariant encoding of graphs into
t-ary symmetric relational structures, essentially extending every graph edge to a t-ary
relation by adding t− 2 bogus vertices. ◀

The remaining reduction is standard and can be found in Appendix C.

▶ Remark 17. In contrast, observe that the Johnson family for t = 1 consists of the symmetric
groups Sym(n) in their natural action on n points. For these groups, complete symmetry
breaking can be achieved with a CNF predicate of linear size (see Section 5).

4.3 Subgroups of Small Index and Large Primitive Groups
In this section, we consider symmetry breaking for a permutation group G ≤ Sym(n) and a
subgroup H of G. Mostly, we are interested in the case that H has polynomial index in G.
We first show that a symmetry breaking constraint for H gives rise to symmetry breaking
constraint for G:

▶ Lemma 18. There exists a polynomial p such that the following holds: if there is a complete
symmetry breaking circuit for a group H ≤ Sym(n) which can be computed in time t, then
complete symmetry breaking circuit with additional variables for G ≤ Sym(n) with G ≥ H

can be computed in time t · p(n|G : H|).

Proof. Let ψ be a symmetry breaking circuit for H. We now devise a symmetry breaking
circuit for G. For simplicity, we fix a system of representatives R of the right cosets of H
in G, which can be computed in time polynomial in |G : H| (see [26]).

Certificate. The certificate σ = {(θr, hr) : r ∈ R} consists of assignments θr : Var(ψ) →
{0, 1} and an element hr ∈ H for every r ∈ R.

Verifier. Given an assignment θ : Var(ψ) → {0, 1} and a certificate σ = {(θr, hr) : r ∈ R},
we proceed as follows:
1. For all r ∈ R, verify that θhr

r = θr holds.
2. For all r ∈ R, verify that ψ[θr] is satisfying. Verify that ψ[θ] is satisfying.
3. For all r ∈ R, check whether θ ⪯lex θr holds. If this is the case, accept θ, otherwise reject.
Clearly, the runtime of this procedure is polynomial in t and |G : H|.

CP 2024

3:14 The Complexity of Symmetry Breaking Beyond Lex-Leader

Correctness of Verifier. Let ∆ be a G-orbit of assignments. Note that ∆ is a disjoint union
of H-orbits ∆1, . . . ,∆k. In each ∆i, there exists a unique assignment αi such that ψ[αi] is
satisfying. Let θ be the lexicographically minimal element in {α1, . . . , αk}. Note that we
have θG =

⋃
r∈R (rθ)H as every element of G can be decomposed as hr for h ∈ H and r ∈ R.

For r ∈ R, there exists ir ∈ [k] with (rθ)H = ∆ir
. Hence, there exists hr ∈ H with αhr

ir
= θr.

By construction, θ together with the certificate σ = {(αir , hr) : r ∈ R} is accepted by the
verifier.

Now suppose that θ, θ′ ∈ ∆ are accepted by the verifier, and let σθ = {(θr, hr) : r ∈ R} and
σθ′ = {(θ′

r, h
′
r) : r ∈ R} denote corresponding certificates. Due to the decomposition of θG

and since ψ[θr] and ψ[θ′
r] are satisfying for all r ∈ R, we have {α1, . . . , αk} = {θr : r ∈ R} =

{θ′
r : r ∈ R}. Since the verifier accepts both θ and θ′, they coincide with the lexicographically

minimal element in {α1, . . . , αk}, so θ = θ′ follows. ◀

It should be noted that while the above lemma gives a valid upper bound, the resulting SBP
is not practical: The SBP simply uses the additional variables to determine the representative
for all cosets, and then determines a minimal one among them. This requires trying out all
the symmetric choices, defeating the purpose of the SBP. However, the result can also be
read as a hardness result. For example, for the matrix models studied in Section 3, we can
restrict the group on each axis of the model as follows, while still being able to retrieve our
hardness result (see Theorem 13):

▶ Corollary 19. Consider a family of permutation groups Gm,n = Xm × Yn with Xm ≤
Sym(m) and Yn ≤ Sym(n), acting component-wise on [m] × [n]. Assume that | Sym(m) :
Xm| < poly(m) and | Sym(n) : Yn| < poly(n) holds. Then, efficient complete symmetry
breaking with additional variables for Gm,n implies GI ∈ coNP.

Our main interest in studying subgroups of small index is sparked by a result on the
structure of so-called large primitive groups, which forms an important building block of the
quasi-polynomial isomorphism test for general graphs [5]. Roughly speaking, every primitive
group G ≤ Sym(n) with |G| ≥ n1+log2 n contains a normal subgroup N with |G : N | ≤ n

exhibiting a natural Johnson action. If the converse of Lemma 18 holds, we can thus employ
our results on Johnson groups to study the complexity of symmetry breaking for large
primitive groups.

5 Upper Bounds

Complementing the results from the previous sections, we show that certain families of groups
can be efficiently handled. We begin by recalling three simple cases.

Groups of Polynomial Order. The first case pertains to groups where the order is polynomial
in the size of the original formula. For these groups, we can explicitly write a constraint that
breaks each element of the group [14]. The resulting constraint is complete and of polynomial
size in the formula.

Symmetric Groups. Symmetric groups in their natural action can be handled by imposing
an ordering on the assignments. For Sym(n), this can be achieved by the predicate ψn =
x1 ≤ x2 ≤ · · · ≤ xn.

A slight extension of symmetric groups are known and used in practice, namely row-
interchangeability subgroups [17, 40]. We say that a permutation group G ≤ Sym(Ω)
exhibits row-interchangeability if Ω can be arranged in an n × m-matrix X = (xij) such

M. Anders, S. Brenner, and G. Rattan 3:15

that G consists precisely of the permutations of the rows of X. This symmetry can be
broken by lexicographically ordering the rows in any assignment θ : X → {0, 1} (viewed as an
n×m-matrix). Formally, for i ∈ [n−1], let λk

i := (
∧

r∈[k−1](xir = x(i+1)r)) → (xik ≤ x(i+1)k).
Then λn,m :=

∧n−1
i=1

∧m
k=1 λ

k
i is a symmetry breaking predicate for G.

Disjoint direct decomposition. A direct product G = G1 × · · · × Gr of permutation
groups is called a disjoint direct decomposition if the subgroups G1, . . . , Gr have pairwise
disjoint supports. Disjoint direct products naturally arise and have been successfully used in
practice [17]. The finest disjoint direct decomposition can be computed in polynomial time
for general permutation groups [12], and in quasi-linear time for automorphism groups of
graphs [3]. For the sake of completeness, we argue that disjoint direct decompositions can be
exploited without giving up on complete symmetry breaking.

▶ Lemma 20. Let G ≤ Sym(Ω) be a permutation group with a disjoint direct product
decomposition G = G1 × · · · ×Gr. For i ∈ [r], let Ωi denote the support of Gi and assume
that a complete symmetry breaking predicate γi for Gi, viewed as a permutation group on Ωi,
is given. In particular, we require Var(γi) ⊆ Ωi. Then γ := γ1 ∧ · · · ∧ γr is a complete
symmetry breaking predicate for G.

Proof. Let F ⊆ Ω be the set of points fixed by G. Then Ω = Ω1 ∪̇ . . . ∪̇ Ωr ∪̇F . An
assignment θ : Ω → {0, 1} can be viewed as a tuple (θ1, . . . , θr, θF) of assignments defined on
Ω1, . . . ,Ωr, F , respectively, and we have θG = θ1

G1 × · · · × θr
Gr × {θF }. Hence θ satisfies γ if

and only if θi satisfies γi for every i ∈ [r]. Thus, γ is a complete symmetry breaking predicate
for G. ◀

The size of the constraint γ is linear in the size of the constraints γ1, . . . , γr.

Wreath Products. We now turn our attention to so-called wreath products. They naturally
occur as the automorphism groups of tree-like structures and can be detected as the induced
action on a block system [45]. Tree-like appendages are already detected and exploited by
practical symmetry detection algorithms [4], and thus these wreath products seem readily
available.

Indeed, certain cases of wreath products can be efficiently handled in symmetry breaking.
Specifically, we show that automorphism groups of trees can be taken care of (see Theorem 4).

Intuitively, a wreath symmetry occurs if the domain can be partitioned into equally-sized
parts with identical symmetries that can be permuted among each other. The corresponding
symmetry group is made of a group describing the possible permutations of the points within
a part, and a group describing the permutation of the parts. Formally, let G ≤ Sym(n) and
H ≤ Sym(m), and consider the imprimitive action of G ≀H on X := {xij : i ∈ [n], j ∈ [m]}.
Explicitly, it is given by x

((g1,...,gm),h)
ij = xgh(j)(i) h(j). For θ : X → {0, 1} and j ∈ [m], let

θj := θ|{x1j ,...,xnj} and write θ = (θ1, . . . , θm).

Wreath Products with CNF. Let us first focus on CNF predicates. Recall the predicate
λm,n from the beginning of this section. The following result shows that a symmetry breaking
predicate for a permutation group G can be “lifted” to a predicate for G ≀ Sym(m):

▶ Lemma 21. Assume that γ is a complete symmetry breaking predicate for G ≤ Sym(n) and
set γj := γ(x1j , . . . , xnj) for all j ∈ [m]. Then ν :=

∧
j∈[m] γj ∧ λm,n is a complete symmetry

breaking predicate for W := G ≀ Sym(m).

CP 2024

3:16 The Complexity of Symmetry Breaking Beyond Lex-Leader

Proof. Let θ : X → {0, 1} be an assignment. For every j ∈ [m], there exists gj ∈ G such
that θgj

j satisfies γ. Write θ′ := θ((g1,...,gm),1). There exists h ∈ Sym(m) with θ′
h−1(1) ⪯lex

· · · ⪯lex θ
′
h−1(m). Hence, the assignment θ′(1,h) ∈ θW satisfies ν.

On the other hand, consider assignments θ, θ′ : X → {0, 1} satisfying ν, and assume θ′ =
θ((g1,...,gm),h) for

(
(g1, . . . , gm), h

)
∈ W . For all j ∈ [m], this implies θ′

j = θ
gh−1(j)
h−1(j) ∈ θh−1(j)

G.
As θ′

j and θh−1(j) satisfy γ, they coincide, so we may choose g1 = · · · = gm = 1. Since θ and
θ′ satisfy λm,n, we have θ1 ⪯lex · · · ⪯lex θm and θ′

1 ⪯lex · · · ⪯lex θ
′
m. This yields θ′

j = θj for
all j ∈ [m], so θ = θ′ follows. ◀

▶ Remark 22. The size of the predicate ν given in Lemma 21 is in O(s(γ)m+ nm), where
s(γ) denotes the size of γ. Note that if s(γ) ∈ O(n) holds, then the size of ν is linear in the
domain size nm of the wreath product.

▶ Corollary 23. The predicate ν =
∧

j∈[m](x1j ≤ · · · ≤ xnj) ∧ λm,n is a complete symmetry
breaking predicate for Sym(n) ≀ Sym(m).

Combining the results for direct disjoint decompositions and wreath products, it readily
follows that automorphism groups of trees can be handled efficiently (see Theorem 4).

Proof of Theorem 4. The group G can be constructed by iterated disjoint direct decomposi-
tions and wreath products in which the top group is a full symmetric group [41]. Combining
Lemma 20 and Proposition 21 thus yields a symmetry breaking predicate for G. Inductively,
it follows from Remark 22 that the size of this predicate is linear. ◀

Wreath Products with Circuits. Using circuits and a few further assumptions, we treat
general wreath products W := G ≀H.

▶ Theorem 5. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that a
complete symmetry breaking circuit for G can be computed in polynomial time. Moreover,
suppose that for every partition P of [m], the partition stabilizer S of P in H and a complete
symmetry breaking circuit for S can be computed in polynomial time. Then there is a
complete symmetry breaking circuit for the wreath product W := G ≀H that can be computed
in polynomial time.

Proof sketch. It suffices to give a polynomial-time algorithm for symmetry breaking for W .
Let θ : X → {0, 1} be an assignment and write θ = (θ1, . . . , θm) as before. We obtain the
elements of θG≀H by applying elements of G to θ1, . . . , θm and permuting the resulting strings
using an element of H.

Based on this, the representative θ = (θ1, . . . , θm) of an orbit is chosen as follows: We
may require that all of θ1, . . . , θm are accepted by the symmetry breaking circuit for G. It
remains to fix a unique permutation of θ1, . . . , θm under an element of H. There, we proceed
in a way resembling the lexicographic ordering used in the proof of Lemma 21: We require
that the symmetry breaking circuit for H accepts the string s1 consisting of the first entries
of θ1, . . . , θm. There might still be multiple permutations of θ1, . . . , θm with the same string
of first entries. We thus proceed with the string of second entries s2, but only taking those
permutations in H into account that fix the string of first entries. Thus we require that the
symmetry breaking circuit for H ∩ S1 accepts s2, where S1 is the stabilizer of s1. The latter
can be expressed as a partition stabilizer. We continue this way up to the last position and
accept θ as the orbit representative if none of the intermediate verifications fails. ◀

M. Anders, S. Brenner, and G. Rattan 3:17

The full proof of this theorem is a mere formalization of this idea. A detailed description as
well as a discussion of correctness can be found in Appendix B. In general, it is unknown
whether partition stabilizers can be efficiently computed (see [26]). However, for H = Sym(m),
the stabilizer of P = (Ω1, . . . ,Ωr) is simply given by Sym(Ω1) × · · · × Sym(Ωr) ≤ Sym(n),
and hence readily computable. This also holds if the order of H is small. There, we obtain
the following consequence of the preceding result:

▶ Corollary 24. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that
a complete symmetry breaking circuit for G can be computed in polynomial time and that
|H| ∈ poly(n,m) holds. Then a complete symmetry breaking circuit for G ≀H can be computed
in polynomial time.

6 Conclusion and Future Work

We laid the foundation for a systematic study of the complexity of symmetry breaking. A
central tool in our investigation was the relation to the string canonization problem (see
Section 3). In particular, we showed that polynomial time symmetry breaking for the
row-column symmetry group, even with circuits and additional variables, implies GI ∈ coNP
(see Theorem 1). The same applies to proper Johnson actions (see Theorem 2). On the other
hand, we showed that symmetry breaking in polynomial time is possible for several families
of groups, including certain classes of wreath products (see Section 5).

Clearly, the dividing line between permutation groups that are “hard” instances for
symmetry breaking, and those which admit efficient symmetry breaking, needs to be further
explored. Among others, the following questions immediately arise:
1. Given a permutation group G and a subgroup H of polynomial index, does H admit

efficient symmetry breaking if G does (i.e., does the converse of Lemma 18 hold)?
2. How difficult are permutation groups of intermediate size, in particular groups of quasi-

polynomial order in the size of the domain?

A positive answer to Question 1 would not only contribute to further decomposition
results, but it is particularly relevant as large primitive permutation groups are known to
contain normal subgroups of small index exhibiting a Johnson action.

References
1 Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient symmetry-breaking

for boolean satisfiability. In Proceedings of the 40th Design Automation Conference, DAC 2003,
Anaheim, CA, USA, June 2-6, 2003, pages 836–839. ACM, 2003. doi:10.1145/775832.776042.

2 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In
29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference), volume 204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.6.

3 Markus Anders, Pascal Schweitzer, and Mate Soos. Algorithms transcending the sat-symmetry
interface. In 26th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, pages 1:1–1:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.1.

4 Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a preprocessor for symmetry
detection. In 21st International Symposium on Experimental Algorithms, SEA 2023, July
24-26, 2023, Barcelona, Spain, volume 265 of LIPIcs, pages 1:1–1:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SEA.2023.1.

CP 2024

https://doi.org/10.1145/775832.776042
https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.4230/LIPICS.SAT.2023.1
https://doi.org/10.4230/LIPICS.SEA.2023.1

3:18 The Complexity of Symmetry Breaking Beyond Lex-Leader

5 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016. doi:10.1145/2897518.
2897542.

6 László Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1237–1246. ACM, 2019. doi:10.1145/
3313276.3316356.

7 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC ’83, pages 171–183, New York, NY,
USA, 1983. Association for Computing Machinery.

8 László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 409–420. ACM, 1987. doi:10.1145/28395.28439.

9 László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276,
1988. doi:10.1016/0022-0000(88)90028-1.

10 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance
and symmetry breaking for combinatorial optimisation. J. Artif. Intell. Res., 77:1539–1589,
2023. doi:10.1613/JAIR.1.14296.

11 Bart Bogaerts, Jakob Nordström, Andy Oertel, and Çağrı Uluç Yıldırımoğlu. BreakID-kissat
in SAT competition 2023 (system description). In Proceedings of SAT Competition 2023:
Solver, Benchmark and Proof Checker Descriptions, Department of Computer Science Series
of Publications B, Finland, 2023. Department of Computer Science, University of Helsinki.

12 Mun See Chang and Christopher Jefferson. Disjoint direct product decompositions of permu-
tation groups. J. Symb. Comput., 108:1–16, 2022. doi:10.1016/j.jsc.2021.04.003.

13 Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking symmetries
in graphs: The nauty way. In Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings,
volume 9892 of Lecture Notes in Computer Science, pages 157–172. Springer, 2016. doi:
10.1007/978-3-319-44953-1_11.

14 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning (KR’96), Cambridge, Massachusetts,
USA, November 5-8, 1996, pages 148–159. Morgan Kaufmann, 1996.

15 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting
structure in symmetry detection for CNF. In Proceedings of the 41th Design Automation
Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004, pages 530–534. ACM, 2004.
doi:10.1145/996566.996712.

16 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Theory and Applications of Satisfiability
Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages
83–100. Springer, 2017. doi:10.1007/978-3-319-66263-3_6.

17 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume
9710 of Lecture Notes in Computer Science, pages 104–122. Springer, 2016. doi:10.1007/
978-3-319-40970-2_8.

18 Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/28395.28439
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1613/JAIR.1.14296
https://doi.org/10.1016/j.jsc.2021.04.003
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1145/996566.996712
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8

M. Anders, S. Brenner, and G. Rattan 3:19

Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,
2012, pages 49–56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.

19 John D. Dixon and Brian Mortimer. Permutation Groups. Graduate Texts in Mathematics.
Springer New York, 1996. URL: https://books.google.de/books?id=4QDpFN6k61EC.

20 Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson,
and Toby Walsh. Breaking row and column symmetries in matrix models. In Principles and
Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Ithaca,
NY, USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer
Science, pages 462–476. Springer, 2002. doi:10.1007/3-540-46135-3_31.

21 Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kızıltan, Ian Miguel, and Toby Walsh.
Matrix modelling. Technical Report APES-36-2001, APES group (2001), 2001.

22 Pierre Flener, Justin Pearson, and Meinolf Sellmann. Static and dynamic structural symmetry
breaking. Ann. Math. Artif. Intell., 57(1):37–57, 2009. doi:10.1007/S10472-009-9172-3.

23 Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint programming.
In Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence,
pages 329–376. Elsevier, 2006. doi:10.1016/S1574-6526(06)80014-3.

24 Andrew Grayland, Chris Jefferson, Ian Miguel, and Colva M. Roney-Dougal. Minimal ordering
constraints for some families of variable symmetries. Annals of Mathematics and Artificial
Intelligence, 57:75–102, 2009.

25 Marijn J. H. Heule. Optimal symmetry breaking for graph problems. Math. Comput. Sci.,
13(4):533–548, 2019. doi:10.1007/S11786-019-00397-5.

26 D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of Computational Group Theory. Discrete
Mathematics and Its Applications. CRC Press, 2005. URL: https://books.google.de/books?
id=i2UjAASZ33YC.

27 Tommi A. Junttila, Matti Karppa, Petteri Kaski, and Jukka Kohonen. An adaptive prefix-
assignment technique for symmetry reduction. J. Symb. Comput., 99:21–49, 2020. doi:
10.1016/J.JSC.2019.03.002.

28 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for
canonical labeling. In Theory and Practice of Algorithms in (Computer) Systems - First
International ICST Conference, TAPAS 2011, Rome, Italy, April 18-20, 2011. Proceedings,
volume 6595 of Lecture Notes in Computer Science, pages 151–162. Springer, 2011. doi:
10.1007/978-3-642-19754-3_16.

29 George Katsirelos, Nina Narodytska, and Toby Walsh. On the complexity and completeness
of static constraints for breaking row and column symmetry. In Principles and Practice of
Constraint Programming - CP 2010 - 16th International Conference, CP 2010, St. Andrews,
Scotland, UK, September 6-10, 2010. Proceedings, volume 6308 of Lecture Notes in Computer
Science, pages 305–320. Springer, 2010. doi:10.1007/978-3-642-15396-9_26.

30 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In
27th International Conference on Principles and Practice of Constraint Programming, CP,
volume 210 of LIPIcs, pages 34:1–34:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CP.2021.34.

31 Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem: Its
Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser/Springer, 1993.
doi:10.1007/978-1-4612-0333-9.

32 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)
90009-5.

33 Eugene M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA, pages 652–658. ACM, 1999. doi:10.1145/301250.301427.

CP 2024

https://doi.org/10.1109/ICTAI.2012.16
https://books.google.de/books?id=4QDpFN6k61EC
https://doi.org/10.1007/3-540-46135-3_31
https://doi.org/10.1007/S10472-009-9172-3
https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1007/S11786-019-00397-5
https://books.google.de/books?id=i2UjAASZ33YC
https://books.google.de/books?id=i2UjAASZ33YC
https://doi.org/10.1016/J.JSC.2019.03.002
https://doi.org/10.1016/J.JSC.2019.03.002
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-15396-9_26
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1145/301250.301427

3:20 The Complexity of Symmetry Breaking Beyond Lex-Leader

34 Eugene M. Luks and Amitabha Roy. The complexity of symmetry-breaking formulas. Ann.
Math. Artif. Intell., 41(1):19–45, 2004. doi:10.1023/B:AMAI.0000018578.92398.10.

35 François Margot. Pruning by isomorphism in branch-and-cut. Math. Program., 94(1):71–90,
2002. doi:10.1007/S10107-002-0358-2.

36 Brendan D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26(2):306–324, 1998.
doi:10.1006/JAGM.1997.0898.

37 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

38 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. Cdclsym: Introducing
effective symmetry breaking in SAT solving. In Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part I, volume 10805 of Lecture Notes in Computer
Science, pages 99–114. Springer, 2018. doi:10.1007/978-3-319-89960-2_6.

39 James Ostrowski, Jeff T. Linderoth, Fabrizio Rossi, and Stefano Smriglio. Constraint orbital
branching. In Integer Programming and Combinatorial Optimization, 13th International
Conference, IPCO 2008, Bertinoro, Italy, May 26-28, 2008, Proceedings, volume 5035 of Lecture
Notes in Computer Science, pages 225–239. Springer, 2008. doi:10.1007/978-3-540-68891-4\
_16.

40 Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry handling
methods for mixed integer programs. Math. Program. Comput., 11(1):37–93, 2019. doi:
10.1007/s12532-018-0140-y.

41 G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische
Verbindungen. Acta Mathematica, 68(none):145 – 254, 1937. doi:10.1007/BF02546665.

42 Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In William J.
Clancey and Daniel S. Weld, editors, Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 1, pages 209–215. AAAI
Press / The MIT Press, 1996. URL: http://www.aaai.org/Library/AAAI/1996/aaai96-031.
php.

43 Ashish Sabharwal. Symchaff: exploiting symmetry in a structure-aware satisfiability solver.
Constraints An Int. J., 14(4):478–505, 2009. doi:10.1007/S10601-008-9060-1.

44 Karem A. Sakallah. Symmetry and satisfiability. In Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 509–570. IOS Press,
2021. doi:10.3233/FAIA200996.

45 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

46 Toby Walsh. On the complexity of breaking symmetry. CoRR, abs/2005.08954, 2020. arXiv:
2005.08954.

47 Viktor N Zemlyachenko, Nickolay M Korneenko, and Regina I Tyshkevich. Graph isomorphism
problem. Journal of Soviet Mathematics, 29:1426–1481, 1985.

https://doi.org/10.1023/B:AMAI.0000018578.92398.10
https://doi.org/10.1007/S10107-002-0358-2
https://doi.org/10.1006/JAGM.1997.0898
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-540-68891-4_16
https://doi.org/10.1007/978-3-540-68891-4_16
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/BF02546665
http://www.aaai.org/Library/AAAI/1996/aaai96-031.php
http://www.aaai.org/Library/AAAI/1996/aaai96-031.php
https://doi.org/10.1007/S10601-008-9060-1
https://doi.org/10.3233/FAIA200996
https://doi.org/10.1017/CBO9780511546549
https://arxiv.org/abs/2005.08954
https://arxiv.org/abs/2005.08954

M. Anders, S. Brenner, and G. Rattan 3:21

Appendix

A Proof of Theorem 13

Proof. It suffices to show that there exists a canonical form f such that d-gcanonf ∈ NP
(see Lemma 12).

Certificate. Given a graph Γ = (V,E), we consider the row-column symmetry group
with n = |V | rows and m = |E| columns. More precisely, we assume V = [n]. We let
δn,m(x11, . . . , xnm, y1, . . . , yp) denote the symmetry breaking circuit as computed by the
polynomial time algorithm for row-column symmetry. Obviously, p ∈ poly(m,n). Our
chosen certificate for decision canonization is σ, where σ is an assignment to the variables
V = Var(δn,m(x11, . . . , xnm, y1, . . . , yp)).

Bipartite Reordering. We observe a technicality of our reduction: d-gcanon expects as
input a graph, whereas our row-column symmetry breaking circuits essentially solve the
decision canonization for bipartite graphs. We proceed using the same encoding for graphs
into bipartite graphs as discussed previously (see proof of Theorem 1). The order of a graph
Γ is fully determined by the order of its vertices. However, observe that when only restricting
the order of the left partition, the corresponding bipartite graph bip(Γ) may still differ in the
order of the edges, i.e., in the order of the right partition. Indeed, the symmetry breaking
circuit may choose to accept any of these orderings of the right partition. We define the set
bip′(Γ) of bipartite graphs, where the left partition is ordered according to V (Γ), and all
potential reorderings of the right partition are contained. Note that

⋃
∆∈ΓSym(V (Γ)) bip′(∆)

covers all reorderings of the corresponding bipartite graphs.

Verifier. Given a certificate σ, our polynomial time verifier proceeds as follows:
1. For each column c in the matrix of xij variables, verify that the assignment has precisely

two true variables in the column c. Formally, there exist i, j ∈ [n] with i ̸= j such that
σ(xic) = 1 and σ(xjc) = 1, and for all k ∈ [n] with j ̸= k ̸= i it holds that σ(xic) = 0.

2. Check that Γ corresponds to the bipartite graph as given by the assignment σ: for each
edge {v1, v2} ∈ E, we verify that there exists a column c such that xv1c = 1 and xv2c = 1.

3. Check if σ satisfies δn,m(x11, · · · , xnm, y1, . . . , yp). If it satisfies δn,m, accept, otherwise
reject.

By assumption, δn,m(x11, . . . , xnm, y1, . . . , yp) can be computed in polynomial time. Clearly,
all the other steps can be computed in polynomial time as well.

Correctness of Verifier. We need to argue that for each isomorphism class of graphs
ΓSym(V (Γ)), there is precisely one ordered graph G accepted by the verifier.

First, assume towards a contradiction that there is a Γ such that for all φ ∈ Sym(V (Γ)),
and all certificates, Γφ is rejected by the verifier. Consider the corresponding bipartite graph
bip(Γ). By assumption, we know that for all orderings of the left partition, all orderings
of the right partition are rejected by the verifier. Hence, all orderings of bip(Γ) under
Sym([n]) × Sym([m]) are rejected by the symmetry breaking circuit. Hence, δn,m can not be
a correct symmetry breaking circuit, which is a contradiction.

Next, assume towards a contradiction that there are two distinct isomorphic graphs Γ ∼= ∆
which are both accepted by the verifier. Since δn,m is a correct symmetry breaking circuit,
this may only occur if there are corresponding bipartite graphs Γ∗ ∈ bip′(Γ),∆∗ ∈ bip′(∆)
such that Γ∗ = ∆∗. However, this would immediately imply Γ = ∆. ◀

CP 2024

3:22 The Complexity of Symmetry Breaking Beyond Lex-Leader

B Proof of Theorem 5

▶ Theorem 5. Let G ≤ Sym(n) and H ≤ Sym(m) be permutation groups. Assume that a
complete symmetry breaking circuit for G can be computed in polynomial time. Moreover,
suppose that for every partition P of [m], the partition stabilizer S of P in H and a complete
symmetry breaking circuit for S can be computed in polynomial time. Then there is a
complete symmetry breaking circuit for the wreath product W := G ≀H that can be computed
in polynomial time.

Proof. Since we may turn a polynomial time algorithm into a polynomial-sized circuit, it
suffices to give a polynomial-time algorithm for symmetry breaking for W .

Let ψG denote the symmetry breaking circuit for G, and for any partition stabilizer S in H,
write ψS for the corresponding symmetry breaking circuit. For an assignment θ : X → {0, 1},
write θ = (θ1, . . . , θm) as before. For i ∈ [n], let ci(θ) be the string of length m consisting
of the i-th entries of θ1, . . . , θm. We define partitions P1, . . . , Pn of [m] as follows: let P1
denote the partition into the index sets of zero and one entries in c1(θ). For i ≥ 2, Pi is the
refinement of Pi−1 according to the zero-one-partition of ci(θ). For i ∈ [n], let Si denote the
partition stabilizer of Pi in H, and set S0 := H.

Description of Algorithm. Given an assignment θ = (θ1, . . . , θm), we define our algorithm
as follows:
1. If ψG[θi] is non-satisfying for some i ∈ [m], return false.
2. For i ∈ [n], compute the vectors ci(θ) as well as the partitions Pi and their stabilizers Si.
3. For i ∈ [n], check if ψSi−1 [ci(θ)] is satisfying. If this fails for some i ∈ [n], return false.

Otherwise, return true.

Correctness of Algorithm. By assumption, partition stabilizers in H as well as all the
necessary symmetry breaking circuits can be computed in polynomial time. The remaining
steps of the algorithm can clearly be computed in polynomial time.

Replacing the input assignment θ = (θ1, . . . , θm) by some element θ((g1,...,gm),1) ∈ θW , we
may assume that ψG[θ1], . . . , ψG[θm] are satisfying. By assumption, there exists h1 ∈ H such
that ψH [c1

(
θ(1,h1))] is satisfying. Moreover, there exists h2 ∈ S1 such that ψS1 [c2

(
θ(1,h2h1))]

is satisfying. Note that c1
(
θ(1,h2h1)) = c1

(
θ(1,h1)) holds due to h2 ∈ S1. Continuing, we

obtain an element θ′ := θ(1,hn−1···h1) ∈ θW for which the algorithm returns true.
On the other hand, suppose that θ = (θ1, . . . , θm) and θ′ = (θ′

1, . . . , θ
′
m) are assignments

in the same W -orbit accepted by the algorithm. Then ψG[θi] and ψG[θ′
i] are satisfying for

all i ∈ [m]. Since θ and θ′ lie in the same W -orbit, the strings θ1, . . . , θm and θ′
1, . . . , θ

′
m

coincide up to reordering. The ordering of the substrings is lexicographic with respect to a
successive application of H. This yields θ = θ′. ◀

C Proof of Theorem 16

▶ Theorem 16. Let t ≥ 2 be a fixed arity. Suppose there exists a polynomial time algorithm
for generating complete symmetry breaking circuits with additional variables for the Johnson
family of arity t. Then, d-gcanon ∈ NP and hence GI ∈ coNP.

Proof. Again, Lemma 12 ensures that it suffices to prove d-gcanon ∈ NP. From Lemma 14,
it follows that it suffices to solve d-gcanon in non-deterministic polynomial time using a
non-deterministic polynomial time oracle for decision canonization for uniform, symmetric
t-ary relational structures.

M. Anders, S. Brenner, and G. Rattan 3:23

Graph to t-ary Structure. Given a graph Γ = (V,E), we define a t-uniform relational
structure RΓ as follows. Let I ⊆ V be the set of isolated vertices. We have V (RΓ) = {ru : u ∈
V } ∪ {v1, . . . , vt−2, a, b}. Observe that we added t vertices, namely v1, . . . , vt−2, a, b. These
vertices will be called bogus vertices. We presume the order rv1 ≺ . . . ≺ rvn ≺ v1 ≺ . . . ≺
vt−2 ≺ a ≺ b for the symbols used in the construction. The hyperedges in RΓ are given by{

{ru, rw, v1, . . . , vt−2} : {u,w} ∈ E
}

∪
{

{ru, v1, . . . , vt−2, a} : u ∈ V \ I
}

∪
{

{v1, . . . , vt−2, a, b}
}
.

Observe that

degRΓ
(ru) = 0, u ∈ I

degRΓ
(ru) = degΓ(u) + 1, u ∈ V \ I

degRΓ
(vi) = |E| + |V \ I| + 1, i ∈ [t− 2]

degRΓ
(a) = |V \ I| + 1,

degRΓ
(b) = 1.

In particular, for u ∈ V \ I, we have 1 < degRΓ
(ru) ≤ |V \ I|.

Now let Γ and ∆ be graphs on n vertices. Without loss of generality, we may assume
that Γ and ∆ contain edges. We claim that Γ and ∆ are isomorphic precisely if RΓ and R∆
are isomorphic. Assume that there exists an isomorphism φ : RΓ → R∆. Denote the vertices
in RΓ and R∆ with an exponent Γ and ∆, respectively. By the above degree conditions,
we have φ(bΓ) = b∆ (here, the notation bΓ refers to node b of graph Γ). As bΓ is adjacent
to vΓ

1 , . . . , v
Γ
t−2, a

Γ (similarly in ∆), the degree conditions then imply φ(aΓ) = a∆. Now
the vertices vΓ

1 , . . . , v
Γ
t−2 are mapped bijectively to v∆

1 , . . . , v
∆
t−2. In particular, φ induces a

bijection between {rΓ
u : u ∈ V (Γ)} and {r∆

u : u ∈ V (∆)}. It is then easy to see that φ induces
an isomorphism between Γ and ∆.

On the other hand, if Γ and ∆ are isomorphic, RΓ ∼= R∆ follows from the fact that the
above construction is isomorphism-invariant: all additional bogus vertices universally appear
with all edges, as well as with all non-isolated vertices.

Furthermore, it is easy to see that if Γ ̸= ∆, then RΓ ̸= R∆ follows.

Certificate. Our certificate will consist of a permutation φ ∈ Sym(V (RΓ)), as well as a
certificate for decision canonization of t-ary structures σ.

Verifier. Our verifier proceeds as follows:
1. Using the decision canonization oracle for t-ary structures, continue if σ is a valid certificate

for Rφ
Γ , and reject otherwise.

2. If for all pairs of vertices v, v′ ∈ V (Γ) with v ≺ v′ it holds that φ(rv) ≺ φ(rv′), accept,
otherwise reject.

Correctness of Verifier. From the arguments above, we know that for all graphs ∆ in the
isomorphism class of Γ it holds that RΓ ∼= R∆. The oracle in Step 1 will accept precisely one
canonical t-ary structure Rφ

Γ in the isomorphism class of RΓ. In turn, the verifier accepts a
graph Γ, if and only if the order of the vertices is preserved in the canon Rφ

Γ (see Step 2).
We remark that there may also be different φ′ which map RΓ to the canon, which may not
preserve the order of V (Γ). Clearly, there is at least one graph Γ in each isomorphism class
that is accepted by the verifier.

CP 2024

3:24 The Complexity of Symmetry Breaking Beyond Lex-Leader

Assume there is another graph ∆ ̸= Γ with ∆ ∼= Γ which is also accepted by the verifier.
Since we know that R∆ ∼= RΓ holds, this means there is a φ′ ∈ Sym(V (R∆)) such that
Rφ′

∆ = Rφ
Γ holds. In particular, φ′ preserves the order of vertices in ∆. Recall that bogus

vertices can only ever be mapped to bogus vertices. Therefore, Rφ′

∆ = Rφ
Γ immediately implies

that the vertices of Γ and ∆ can be mapped, in order, onto each other, while preserving the
edge relation of the original graphs. In other words, ∆ = Γ holds, which is a contradiction to
the assumption that the verifier accepts ∆. ◀

	1 Introduction
	2 Preliminaries
	2.1 Boolean Circuits and Satisfiability
	2.2 Permutation Groups
	2.3 Graph Isomorphism and String Canonization
	2.4 Notions of Symmetry Breaking

	3 Row-Column Symmetries
	3.1 Hardness of Breaking Row-Column Symmetries
	3.2 A Decision Version of String Canonization
	3.3 Hardness of Symmetry Breaking with Additional Variables

	4 Johnson Actions
	4.1 Johnson Groups and Relational Structures
	4.2 Johnson Families of Fixed Arity are Hard
	4.3 Subgroups of Small Index and Large Primitive Groups

	5 Upper Bounds
	6 Conclusion and Future Work
	A Proof of Theorem 13
	B Proof of Theorem 5
	C Proof of Theorem 16

