
Learning Precedences for Scheduling Problems
with Graph Neural Networks
Hélène Verhaeghe1 #Ñ

DTAI, KU Leuven, Belgium

Quentin Cappart # Ñ

Polytechnique Montréal, Canada

Gilles Pesant #

Polytechnique Montréal, Canada

Claude-Guy Quimper #

Université Laval, Quebec, Canada

Abstract
The resource constrained project scheduling problem (RCPSP) consists of scheduling a finite set of
resource-consuming tasks within a temporal horizon subject to resource capacities and precedence
relations between pairs of tasks. It is N P-hard and many techniques have been introduced to
improve the efficiency of CP solvers to solve it. The problem is naturally represented as a directed
graph, commonly referred to as the precedence graph, by linking pairs of tasks subject to a precedence.
In this paper, we propose to leverage the ability of graph neural networks to extract knowledge from
precedence graphs. This is carried out by learning new precedences that can be used either to add
new constraints or to design a dedicated variable-selection heuristic. Experiments carried out on
RCPSP instances from PSPLIB show the potential of learning to predict precedences and how they
can help speed up the search for solutions by a CP solver.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Machine learning; Mathematics of computing → Combinatorial optimization

Keywords and phrases Scheduling, Precedence graph, Graph neural network

Digital Object Identifier 10.4230/LIPIcs.CP.2024.30

Funding This research received funding from IVADO and the Canada First Research Excellence Fund
/ Apogée fund PostDoc-2022-2378128196 and in part by NSERC Discovery Grants 218028/2017. It
also received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 101070149, project Tuples.

Acknowledgements We thank the anonymous reviewers for their constructive criticism which helped
us improve the original version of the paper.

1 Introduction

Scheduling problems arise in many fields, from assembling planes to scheduling maintenance
tasks. Constraint programming (CP) has been successfully used to solve many types of
scheduling problems [35, 29]. This is mainly due to the combination of global constraints
and efficient dedicated heuristics used when solving such problems. When they are subject to
precedence constraints, scheduling problems are often N P-hard [20]. Nevertheless, every such
precedence may help to improve the inferences made by global constraints. Precedences are
naturally represented as a directed graph by linking two tasks subject to a precedence. Graph
neural networks (GNNs) [28] are designed to learn from graph-structured data, including

1 The first author was affiliated to Polytechnique Montréal during the majority of this work.

© Hélène Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helene.verhaeghe@kuleuven.be
https://hverhaeghe.bitbucket.io/
https://orcid.org/0000-0003-0233-4656
mailto:quentin.cappart@polymtl.ca
https://qcappart.github.io/
https://orcid.org/0000-0002-8742-0774
mailto:gilles.pesant@polymtl.ca
https://orcid.org/0000-0001-9797-0780
mailto:claude-guy.quimper@ift.ulaval.ca
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Learning Precedences for Scheduling Problems with GNNs

deciding whether an edge is present. A natural question our paper tries to answer is then:
Can GNNs help us identify additional precedences? And as a follow-up question: How useful
can these learned precedences be?

Following this idea, this paper proposes to leverage the ability of GNNs to learn new
precedences between tasks for the standard resource constrained project scheduling problem
(RCPSP) [26]. These precedences are used to enhance the solving process of a CP solver,
both by adding new constraints in the model and by designing a dedicated variable-selection
heuristic. The learning is carried out from a precedence graph representation of the RCPSP
and the GNN is trained using best-so-far solutions found by solving, up to a fixed time limit,
a set of instances specially considered for training. The models are trained and evaluated
on RCPSP instances from PSPLIB [19]. The results obtained show the promise of learning
to predict precedences and their relevance for speeding up the search for solutions by a CP
solver.

Our approach shows that it is possible to learn precedences using a simple GNN architec-
ture. In synergy with the dynamic metaheuristic SBPS [9, 36] and VSIDS [24], the learned
precedences manage to improve our baseline (i.e., solving the problem without any additional
precedences). Using the learned preferences as additional constraints allows to get better
bounds, but comes with the drawback of potentially deteriorating the optimum for each
wrong precedence added. Using the preferences as a piece of information to drive the search
preserves the optimum while leading to better first solutions.

The paper is structured as follows. The next section presents the technical background
regarding existing solving processes for the RCPSP, graph neural networks, and the learning
of heuristics. Then the methodology we introduce to learn and leverage precedences is
described. Finally the experiments carried out and the results obtained are discussed.

2 Technical Background and Related Work

2.1 Resource Constrained Project Scheduling Problem
An instance of the resource constrained project scheduling problem (RCPSP) [26] consists
of a finite set of n tasks (or activities) T to be executed with the help of a finite set of m

resources R. Each resource r ∈ R has a finite capacity Cr, and each task i ∈ T has a starting
time si, an ending time ei, and is executed without interruption during pi units of time
(i.e. we have si + pi = ei) while using cir units of each resource r. In addition, there are
precedences between some pairs of tasks. We say that task i precedes task j if the execution
of i should be finished before starting the execution of j (i.e., we have ei ≤ sj).

We call precedence graph of an RCPSP instance the directed graph P = (V, E) where
there exists an injective function M : T → V mapping each task to a vertex. If and only if
task i precedes task j, there exists an arc going from M(i) to M(j). We call the transitive
closure of an RCPSP instance the set of precedences which also contains all the transitive
precedences: given task i, j and k, if the instance defines that i precedes j and j precedes k,
we know by transitivity that i precedes k. We call “i precedes k” a transitive precedence. The
transitive closure precedence graph is thus the precedence graph representing the transitive
closure of the instance. The cumulative constraint is one of the main components of solving
RCPSP problems using CP. Its filtering algorithms [35, 29] prevent the resources from being
overloaded.

Many heuristics are efficient in solving the RCPSP problem [8]. The most effective
are variable state independent decaying sum (VSIDS) [24] and solution-based phase saving
(SBPS) [9, 36]. The heuristic VSIDS uses counters for each variable. Each counter is

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:3

incremented when a constraint involving the variable is generated. The choice of variable
and value is based on the values of these counters. On the other hand, SBPS is only a
value-selection heuristic. Each time a solution is found, the values are stored and when a
variable is selected, the value to branch on is the one used in the last solution found. We
note that both heuristics can be used together.

2.2 Graph Neural Network

A graph neural network (GNN) [28] is a specific neural network architecture dedicated to
computing a vector representation, also referred to as embedding, for each node of a graph
given as input [28, 38] (e.g., a precedence graph). This is carried out by aggregating several
times information from neighboring nodes. Each aggregation operation is referred to as
a layer of the GNN and involves weights that must be learned. This operation can be
performed in many ways, and there exist in the literature different variants of GNNs, such
as graph attention network [34] or gated graph sequence neural network [21]. Our work
is based on the well-known GraphSAGE architecture [15], which can efficiently generate
representations for graphs unseen during the training phase. Formally, let G = (V, E) be a
graph where V is the set of vertices, and where E is the set of edges. A GNN is composed of
K layers. Let hk

v ∈ Rd be a d-dimensional vector representation of a node v ∈ V at layer
k, and let hk+1

v ∈ Rl be a l-dimensional vector representation of v at the next layer. We
highlight that the dimension of the representation can be different at each layer (d for the
layer k, and l for the layer k + 1). The inference process of a GNN consists in computing the
next representation (hk+1

v) from the previous one (hk
v) for each node v. The fundamental

equations of GraphSAGE are given in Equations (1) to (3):

ak+1
v = AGGREG

(
hk

u

∣∣∣ u ∈ N(v)
)

∀v ∈ V (1)

ck+1
v = g

(
Θk × CONCAT

(
hk

v , ak+1
v

))
∀v ∈ V (2)

hk+1
v = ck+1

v

∥ck+1
v ∥2

∀u ∈ V (3)

Three operations are carried out. First, Eq. (1) aggregates information from neighbors for
each node. This is often done by taking the mean of each value (mean-pooling) or their sum
(sum-pooling). A key aspect of GraphSAGE aggregation is that the neighborhood function
N(v) gives a fixed-size random subset of nodes sampled from the whole neighborhood of
node v. A new subset is randomly sampled at each layer. Second, Eq. (2) concatenates the
current representation of a node hk

v ∈ Rd with the aggregated representation of its neighbors
ak+1

v ∈ Rd. This vector is then linearly transformed by weight matrix Θk ∈ Rl×2d which is
learned during the training phase through backpropagation. A non-linear transformation g

such as ReLU is subsequently performed [13]. Third, the value obtained (ck+1
v) is normalized

using the Euclidean norm, and the node representation at layer k + 1 is obtained (hk+1
v).

The process terminates after K layers, and a final representation (hK
v) is obtained for each

node v in the graph. Such representations can after that be used for different graph-related
tasks, such as classification [11], link prediction [22, 39, 2], or combinatorial tasks [3]. In
another context, GNNs are increasingly considered in combinatorial optimization [3], either
directly as an end-to-end solver [17], or as a mechanism to enhance existing solvers [12, 4].

CP 2024

30:4 Learning Precedences for Scheduling Problems with GNNs

Task pi cir1 cir2 succ

A 2 1 2 B C D
B 3 2 2 E
C 1 1 2
D 2 2 1 C
E 1 1 1 C A

D

C

B
E

2 .33 .5

2 .66.25

1 .33 .5

3 .66 .5 1 .33.25

G
N
N

+
M
L
P

A

D

C

B
E

2 .33 .5

2 .66.25

1 .33 .5

3 .66 .5 1 .33.25

S
o
l
u
t
i
o
n

(a) (b) (c) (d) (e)

Figure 1 Overview of the methodology introduced (on a toy example with |R| = 2). (a) An
RCPSP instance, with Cr1 = 3 and Cr2 = 4. (b) The instance is transformed into a graph with the
features of each node (time, normalized usage of r1, and r2). The blue arcs are the candidate arcs.
(c) The GNN takes the graph as input and outputs an embedding used by the MLP to provide the
prediction. (d) New predicted edges for the graph. (e) Prediction is used to find a solution.

2.3 Learning Heuristics in Constraint Programming
Designing branching heuristics for CP thanks to machine learning has already been considered
in related works, either to learn a variable-selection or a value-selection heuristic. For
instance, [30] proposed to combine reinforcement learning and graph neural networks to
learn the next variable to branch for constrained satisfaction problems. In [32], graph
neural networks were leveraged to initialize such a heuristic for a hybrid CP-SAT solver.
Learning has also been considered for online settings by [10]. Concerning the value-selection
heuristic, [4] introduced a framework able to leverage models trained with reinforcement
learning inside a CP solver. It is done thanks to a recursive formalization. This idea has
been further extended by [5, 23] who proposed to carry out the learning inside the solver. A
general framework for learning value heuristics, and relevant features for training the model,
has been also introduced by [7]. Compared to these works that aim to generate heuristics for
a large range of problems and do not achieve state-of-the-art performance, our contribution is
focused on scheduling problems and strive to improve upon competitive CP models. To do so,
features specific in scheduling (i.e., precedence graphs) are leveraged. Recently, [31] proposed
an approach close to ours. In their paper, they construct a graph with nodes representing
either a task or a resource. Using GNNs, they predict the starting time of each of the tasks,
then construct an ordering of the tasks based on these predicted starting times and finally
use an algorithm (serial schedule generation scheme) to construct a feasible solution with
respect to this ordering. They tackle classical RCPSPs and stochastic RCPSPs.

3 Enhancing CP with Learned Precedences

This section introduces the core contribution of the paper. It describes the complete
methodology we designed to learn relevant precedences and how they can be used to speed up
a CP solver. The methodology is based on the hypothesis that the knowledge of precedences
belonging to a high-quality solution is information that is relevant to solving instances
faster. Inside a CP solver, this can be achieved by enabling additional propagation (e.g.,
with additional constraints), or by directing the search. An overview of the methodology is
illustrated in Fig. 1. The following sections describe each part of the methodology.

3.1 Step 1: Training Set Construction
The first step is to build a relevant dataset to train the model. To do so, the main idea is
to: (1) solve a large number of RCPSP instances with an expensive solving process (e.g.,
a CP solver), (2) consider all the precedences obtained in the solutions generated, (3) use

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:5

A

D

C

B

E

(a) Instance.
A

D

C

B

E

(b) T(Instance).
A

D

C

B

E

(c) Solution.
A

D

C

B

E

(d) T(Solution).

A

D

C

B

E

(e) Neutral arcs.
A

D

C

B

E

(f) Avoided arcs.
A

D

C

B

E

(g) Positive arcs.
A

D

C

B

E

(h) Negative arcs.

Figure 2 Example of all the types of arcs for the same toy example as in Figure 1.

this information as data to train the model. The expected outcome is to obtain quickly
precedences occurring in high-quality solutions of unseen instances, without requiring the
execution of the expensive solving process. The learning is supervised as it requires a
ground truth. Let P = (V, E) be a precedence graph as defined previously (for example, the
precedence graph defined in Fig. 2a), and let D : {(x(i), y(i)), . . . , (x(n), y(n))} be the training
set we need to build to train the model. In the machine learning terminology, x(i) corresponds
to a specific input (i ∈ {1, . . . , n}), and y(i) corresponds to the target value associated to
that input.

Let sP be a solution of P , obtained by any solving process (Fig. 2c is the optimal solution
in our example). We note that this solution corresponds to a more constrained precedence
graph than P , with the same number of nodes, and more edges. A first important design
choice is to determine which solutions should be considered for the training?

A natural idea is to take the optimal solution of previously solved instances. However, this
is barely feasible in practice, as it assumes that there exists a solving process able to prove
the optimality of these solutions in a reasonable time, which is intractable for challenging
instances. For such a reason, we relaxed this idea and considered the best solution obtained
instead, up to a predetermined timeout as the base for our first training set.

Then, we define T (sP) as the transitive closure of sP (for example, Fig. 2d). This
corresponds to a precedence graph P ′ = (V ′, E′) where V ′ = V and E′ ⊇ E. Before their
integration in the training set, the solutions are transformed by their transitive closure (for
example, Fig. 2d). This is done to reduce the diameter of the graphs. The intuition behind
this design choice is that high-diameter graphs usually require deeper and more expensive
GNNs to be efficient [6]. Each node V ′ is decorated with two types of features, recording
information about the instances. They are as follows:
1. The processing time pi of the task linked to node i ∈ V ′.
2. The normalized usage of each resource r, i.e. the usage of the task i (cir) divided by the

total availability of this resource within the instance (Cr).
As the instances we considered involve four resources each, we have five features for each
node. Other features were considered (e.g., the proportion of the different resources used) but
were not selected in the final model as they did not improve the performance. Finally, let us
consider the set of pairs between vertices in P ′. Each pair corresponds to a specific relation
between two tasks in a solution. We identified four possible relations. Given P = (V, E) (i.e.,

CP 2024

30:6 Learning Precedences for Scheduling Problems with GNNs

the transitive closure precedence graph of the instance) and P ′ = (V ′, E′) (i.e., the graph
corresponding to the transitive closure precedence graph of a solution sP , also referred to as
T (sP)), the four relations are as follows:
1. Neutral arcs (e.g., Fig. 2e): these arcs correspond to the ones included in E. Intuitively,

such arcs relate to specific settings of the problem. They define the structure of the graph
but are not relevant for computing the training loss.

2. Avoided arcs (e.g., Fig. 2f): considering all the arcs (v, u) ∈ E, the avoided arcs correspond
to the set of arcs (u, v). Intuitively, we know that these arcs will never be part of a
feasible solution because of the structure of the problem. Such arcs are not relevant for
the loss either.

3. Positive arcs (e.g., Fig. 2g): these arcs correspond to the ones included in the set E′ \ E.
It corresponds to the additional precedences that are present in the solution obtained
and missing in the initial graph. They are the arcs we want to be able to predict and
should be used for the training.

4. Negative arcs (example Fig. 2h): these arcs correspond to all the other arcs that do not
belong to any of the last three sets. Such arcs represent negative samples that can be
used for training. The model should be able to predict that these arcs should not be part
of a good solution.

In our first experiments, we considered only two categories and every arc was part of the
loss computation. However, it quickly became evident that neutral and avoided arcs degraded
the stability of the learning loss. This is what led us to consider these four categories. Only
considering part of the arcs (i.e., the positive and negative ones) for the computation of loss
is referred to as masking in the machine learning community [16]. It helps reduce the impact
of noisy data. In our case, neutral and avoided arcs are arcs from which no information is
learned and for which no prediction will be asked. However, they cannot be discarded totally
as they are an inherent part of the problem and must be considered for the optimization
phase. This forms our first training set, based on one best-so-far solution per instance
considered.

In our experiments, we also considered a second training set based on multiple best-so-far
solutions. This one is an extension of the previous one. Based on the first best-so-far gathered
after a first time-out, we let the solver run for a second time-out, searching for at most
K solutions with the same (or better, in case it was only a best-so-far) optimum. These
solutions are then aggregated by keeping the precedences present in a majority of the solution
(majority defined by a given threshold percentage). This aggregated solution allows us to get
rid of the potentially noisy precedences, created by some tasks that have room to move a
bit within the schedule, and focus on the ones more mandatory in an optimal solution. In
this training set, the neutral and avoided arcs are the same, the positive arcs are the ones
presents in the majority of the solutions and the negative are the remaining ones.

In summary, to perform the learning, a specific input x(i) corresponds to the graph
obtained from the transitive closure of a precedence graph of a solution (or aggregate
solution), with features associated to each vertex, and the related target y(i) is a real value
0 (negative) and 1 (positive) for each unmasked pair of vertices (i.e., a possible learnable
precedence link).

3.2 Step 2: Link Prediction with GNNs
Provided with training data and supervised labels, the next step is to build a function
f : P (V, E) → [0, 1]V ×V taking a precedence graph annotated with the node features as
input and giving as output a probability for each link (u → v) ∈ V × V to correspond to a

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:7

precedence occurring in a high-quality solution of the instance. We designed this function
using two neural networks: (1) a graph neural network computing an embedding for each
node, and (2) a fully connected neural network computing a probability for each link.

First, the graph neural network is a function f1 : P (V, E) → V × Rd which computes a
d-dimensional vectorized representation for each vertex v ∈ V . The architecture is based on
three SAGEConv layers (Equations (1) to (3)). The hidden dimension of each layer has a
fixed size of d, and a ReLU non-linearity is used for the first two layers. The result is a graph
where each node is represented by an d-dimensional embedding. We set d = 16.

Second, the link prediction is carried out by a function f2 : Rd × Rd → [0, 1] which
computes a value for a pair of vertices (u → v). This value corresponds to the probability
of this link being part of a good solution. The function is parametrized as a simple 2-layer
fully-connected neural network with a ReLU activation for the hidden layer. The hidden
dimension also has a size of 16. A sigmoidal transformation is finally applied to the output
of the last layer to obtain a value between 0 and 1 (i.e., a probability).

Both networks are trained together with standard backpropagation using Adam optim-
izer [18]. Once trained, the model is used to predict new arcs from a precedence graph of an
RCPSP instance. A confidence threshold θ ∈ [0, 1] is then used to determine whether a new
precedence should be added. Let ŷ(u→v) be the prediction obtained for a pair (u → v) that
is not neutral nor avoided. For each pair we consider the arc to be positive if the prediction
is greater than the threshold (i.e., ŷ(u→v) ≥ θ).

3.3 Step 3: Solving the RCPSP with New Precedences
We propose two uses of the learned preferences: (1) as new constraints in the CP model, and
(2) as an information for directing the search.

First, each learned precedence (between task i and j) can be directly integrated into
the model as an additional constraint (ei ≤ sj). This practice is ubiquitous in constraint
programming. The expected goal is to reduce the search space. It relates to streamlined
constraint reasoning [14] where a partition of the search space is done using additional cutting
constraints. Despite the simplicity of this approach, it comes with the critical drawback that
we have no mechanism to recover from prediction errors, as adding incorrect precedence
as constraints may prune the optimal solution. Consequently, the solution obtained with
this first option corresponds only to an upper bound, and we lose the ability to obtain an
optimality proof.

A second option is to use the new precedences to direct the search. We propose to do it
by introducing an easy ad-hoc problem dedicated to finding an appropriate task ordering
(i.e. a topological order on the precedence graph). The problem is defined as follows. A
variable oi is defined for each task i, with a domain ranging from 0 to n − 1. For each
precedence from the instance (i.e., the neutral arcs) and each precedence learned, a constraint
enforcing the precedence is added (oi < oj if i precedes j). All the variables are also subject
to an allDifferent constraint. Solving this problem gives an ordering satisfying all the
precedences learned. By integrating randomness within the search heuristic, bias toward
some solutions can be removed [33]. This ordering can then be used as a static variable
ordering heuristic to solve the instance. As no additional constraint is added to the initial
model, there is no risk to prune the optimal solution, and we are still able to prove optimality.

However, both options are subject to a critical concern. They are consistent only if there
is no cycle obtained from the learned precedences (i.e., a < b, b < c, and c < a). In such a
situation, the model obtained (either with additional constraints or with the ad-hoc problem)
is unsatisfiable. We addressed this difficulty by adding each precedence in a graph structure

CP 2024

30:8 Learning Precedences for Scheduling Problems with GNNs

maintaining the transitive closure in polynomial time. Candidate precedences are tested
one by one, in order of decreasing score, and added only if they do not create a cycle. This
ensures that a solution is always possible whether we add the learned precedences to the
model or we use them to construct a topological order.

4 Experiments

For our experiments, we used the instances available on the PSPLIB website2. The best
bound found so far by the community (referred by UB in our figures3) can be found on the
website. PSPLIB is composed of four sizes of instances (30, 60, 90, or 120 tasks). For each
size, the instances were generated by varying a given number of parameters [19] (min/max
durations of the tasks, min/max number of successors, etc.). For a given set of settings, 10
instances were generated by the benchmark authors. It is thus composed of four sizes times
48 (60 for the 120 tasks) combinations of values for the parameters times 10 generations per
set of parameters, yielding a total of 2040 instances. We split the instances as follows:
1. The SEEN set, composed of all but 5 of the 48 (60 for the 120 tasks) series for each of

the four sizes. Among these, we select 8 instances among the 10 composing each series
(1472 instances) in total. The positive and negative arcs of the best-so-far solutions of
these instances are split by a k-cross-validation to train the GNN and the MLP.

2. The UNSEEN sent, composed of the remaining 2 among the 10 instances from the series
selected for the SEEN set. They form the validation set as they are similar to the ones
seen by the learning process but still unseen.

3. The UNKNOWN set, composed of the 5 remaining series of 10 instances for each of the
four sizes (200 instances in total). They constitute the generalization set as the learning
process has not seen them and has seen no other instances generated with the same set
of parameters.

In some cases, we analyzed the results by size. It is then indicated within the name, i.e.
UNSEENJ90 is the instances of 90 tasks within the UNSEEN group or UNSEEN≤J60 for the
instances of 60 tasks or less. We note that the results we report always use the same splits
for comparison purposes, e.g. if a specific instance belongs to UNSEENJ90, it is included
in UNSEENJ90 in every experiment. We also used the same split for each solution in the
dataset, e.g. an instance solved with a specific timeout and options will always have the
same k folds for the cross-validation.

Our neural architecture is implemented in Python using Deep Graph Library [37] and
Pytorch [25]. Our experiments were run on a computing cluster equipped with a AMD Rome
7532 CPU. For reproducibility purposes, the environment, the splits, the models, and the
outputs of the runs have been stored and added to a publicly available repository4.

4.1 Baseline CP Model for the RCPSP and Training Set
Our base CP model to solve the RCPSP is the following. For each task, the start time of
task i is represented by variable5 si, whose domain spans from 0 to horizon6. For each
resource, we add a cumulative constraint. In addition, a precedence constraint (si + pi ≤ sj

2 https://www.om-db.wi.tum.de/psplib/
3 as of March 2024
4 https://github.com/363734/LearningPrecRCPSP
5 The PSPlib files define two additional dummy tasks: 0 and n + 1. We do not define variables for them.
6 We used the horizon defined within the PSPlib files.

https://www.om-db.wi.tum.de/psplib/
https://github.com/363734/LearningPrecRCPSP

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:9

if task i precedes task j) is added to the model for each precedence. The CP solver used is
Chuffed (branch develop, commit b2152f3). The cumulative constraint used is the global
one implemented within chuffed with the parameters tt_filt_on, ttef_check_on and
ttef_filt_on. These parameters activate the timetabling filtering algorithm, the time-table-
edge-finder check, and the time-table-edge-finder filtering algorithm [35]. The search heuristic
used is min-min-value which corresponds to selecting the variable with the smallest minimal
value and selecting its minimal value first (i.e., selecting the task that could be scheduled the
earliest). We also consider two options influencing the search heuristic: sbps and vsids.

Using this model and options we generated, for each instance of PSPLIB, the best-so-far
(bsf) solution after several timeouts (1 second, 1 minute, 10 minutes, and 1 hour) to be able
to compare the influence of the quality of the dataset over the whole process. As expected,
for a given fixed timeout, the solver manages to solve smaller instances to optimality. For a
timeout of 1 second, the simple model (i.e., without sbps/vsids) manages to get the best bsf
in general. The trend reverses when increasing the timeout to 10 minutes or more, where the
model with sbps and vsids leads to better bsf solutions and more optimal solutions proven.
This difference is due to the overhead of the sbps and vsids techniques. The sbps option
alone allows to reach good solutions rapidly but has difficulties to prove optimality (chuffed
is even warning the user when using sbps that it must be used with an activity-based search
to optimize its efficiency). Using both options is also better at closing instances when a
bigger timeout is allowed. In the rest of our experiments, we will focus on the solutions
from the model with both or no options used. These best-so-far solutions are used both as
training data and for comparing the methods.

4.2 Performance of the Training
We tried multiple configurations to train our model.

Training with one best-so-far per instance
Concerning the training set with one best-so-far solution per instance, we have: the timeout
used to generate the dataset (1 second, 1 minute, 10 minutes or 1 hour), the options chosen
(with or without sbps/vsids), and the subset of graphs chosen for training (SEEN≤J30,
SEEN≤J60, SEEN≤J90 or SEEN≤J120). The learning rate is also tuned to 10−2, 10−3 or
10−4. The training is carried out for 1, 000 epochs. We performed a k-cross-validation with
k = 10. For each of the k runs, the one with the best loss is selected. The final model is the
one with the best loss among the k runs. Training takes from around k × 10 min (smallest
training set) to k× 1-2 hours (bigger ones). The evaluation of our training is done using the
following metrics.

Precision (prec): fraction of predicted positive arcs that are truly positive;
Recall (rec): percentage of positive arcs correctly predicted as positive;
True negative (tn): percentage of negative arcs correctly predicted negative;
F1-score (f1): harmonic mean of the precision and recall.

As a general observation, there are generally more negative arcs than positive ones.
Discarding some negative ones (at random) to reach equality between the two sets improves
the precision of our method by a few percent (up to 3 − 4%). This technique is commonly
referred to as under-sampling.

A preliminary analysis of the learning curves and evolution of the metrics on the training
set and testing set along the learning allowed us to discard some parameters. The learning
rate of 10−4 led to a too-slow learning and bad metrics value even after 1000 epochs compared

CP 2024

30:10 Learning Precedences for Scheduling Problems with GNNs

Table 1 Validation metrics of the two chosen models. Learning rate 10−2, training set SEEN≤J120

generated with a timeout of 1 hour, without Sbps/Vsids for model A, with Sbps/Vsids for model B.

Model A (“without”) Model B (“with”)
f1 prec rec tn f1 prec rec tn

SEENJ120 0.79 0.89 0.71 0.91 0.71 0.82 0.62 0.87
UNSEENJ120 0.78 0.89 0.70 0.92 0.71 0.83 0.62 0.87

UNKNOWNJ120 0.80 0.90 0.72 0.92 0.72 0.84 0.64 0.87
ALLJ120 0.79 0.89 0.71 0.91 0.71 0.83 0.62 0.87

Table 2 Validation metrics of models trained on smaller instances. Same training characteristic
as Model B, except training set (SEEN≤J60 and SEEN≤J90). (to be compared with second column
of Tab. 1).

Model B-SEEN≤J60 Model B-SEEN≤J90

f1 prec rec tn f1 prec rec tn

SEENJ120 0.72 0.82 0.64 0.86 0.71 0.83 0.62 0.87
UNSEENJ120 0.72 0.83 0.64 0.87 0.71 0.83 0.62 0.88

UNKNOWNJ120 0.73 0.83 0.65 0.87 0.73 0.83 0.64 0.87
ALLJ120 0.72 0.83 0.64 0.87 0.71 0.83 0.62 0.87

to the others. The learning rate of 10−2 and 10−3 led to very similar results. While the
learning curves of 10−2 oscillated more, the validation metrics were generally slightly better
(1% increase). The datasets generated with Sbps/Vsids require fewer epochs to start
stabilizing (i.e., having a loss close to the best loss among all the epochs) compared to the
models generated on datasets without it.

Table 1 displays the result of the validation of the two most promising models. The table
is organized into four rows for the evaluation of each subset of graphs (SEEN, UNSEEN,
UNKNOWN and ALL) and each main column corresponds to one model. The same learning
rate (10−2), the same timeout (1h) for the dataset, and the same dataset (SEEN≤J120) are
used in both models, the only distinction being the model used to create the dataset (without
sbps/vsids for Model A and with for Model B).

In this table, we can first see that our model provides good precision but a weaker recall.
In other words, the model does not make many false positives but more false negatives. This
is a good prospect for our application as only predicted positive arcs lead to an impact on
the model. A second observation is that the models trained with the dataset generated using
the options sbps/vsids are globally worse than their counterparts. This is probably due
to the quality of the solution. As our problem is N P-hard [1], it is expected that learning
true optimal solutions is difficult. When examining the validation results of the other models
(the ones trained on benchmarks with a smaller timeout to generate the instances), we could
observe the same trend as during learning, where using the 1-hour benchmarks provides
better results.

We also look at the generalization capabilities of our architecture. Table 2 displays the
results of two models against Model B, trained with the same characteristics as Model B,
except for the instances size of the training sets, either only using the SEEN≤J60 or the
SEEN≤J90. The metrics are computed for all sub-groups of different sizes. We can see that
the models have good generalization capacities and have similar metrics to the one trained
on SEEN≤J120.

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:11

Table 3 Validation metrics of Model C-SEEN≤J60, trained on multi-solution aggregate instances.
Same training characteristic as Model C-SEEN≤J60, except the training set is not composed of
one solution per instance, but, for each instance, of the precedences present in 70% of at most 100
solutions generated using an additional 10 minutes timeout.

Model C-SEEN≤J60

f1 prec rec tn

ALLJ30 0.67 0.80 0.57 0.86
ALLJ60 0.68 0.79 0.59 0.84
ALLJ90 0.67 0.78 0.59 0.83
ALLJ120 0.72 0.83 0.64 0.87

One can also notice a large gap between the metrics of smaller size compared to the
j120 ones. This gap is not only present for these models with these characteristics but also
present for all models trained with the “with spbs/vsids” training set but not in the one
without. We speculate it is due to the accuracy of the solutions in the training set. In the
“with spbs/vsids” benchmark, a majority of the solutions of instances with up to 90 tasks are
optimal ones, while on the 120-task instances, it is no longer the case. Precedences within
optimal solutions seem harder to predict, as the results of Table 1 were already showing.

Training with an aggregate of multiple best-so-far per instance

A natural question is to ask if choosing only one solution per instance impacts the prediction
as often, there exist multiple optimal solutions for such problems. In general, there can exist
multiple optimal solutions when not all the paths in the precedence graphs are critical (i.e.,
paths where each task starts exactly when the one preceding it ends). If the resources allow
it, starting these tasks a little bit later can lead to another optimal solution. For some of
these solutions, this does not change the precedences, but in some cases, it could slightly
modify some of them.

To test whether our predictions had a bias while trained on a single solution for each
instance, we generated, for the J30 and J60 instances, up to 100 optimal solutions (we gave
an additional time out of 10 minutes to generate up to 100 solutions with the same best so
far optimal value as the one found after 1 hour). From these 100 solutions, we keep only
the precedences present in a majority (70%) of the solutions and trained on this subset. We
thus have precedences most likely present in many solutions. We choose to focus on the
smaller instances as they have shown to generalize well in training (Tab. 2). Also, as for
most of them, the initial timeout of 1 hour reached the optimal solution. This training set
is composed of real optimal solutions and not best-so-far solutions. Furthermore, as they
are the easiest instances to solve, the 10-minute timeout allowed for the computation of 100
solutions was enough for a majority of them.

We trained a Model C-SEEN≤J60 on this benchmark, using the same configuration as
Model B and Model B-SEEN≤J60 (learning rate of 0.001, 10-fold cross-validation, under-
sampling and training set generated using Sbps/Vsids active). The validation metrics
(Tab. 3) are very similar to the ones present in Tab. 2. From a training point of view, there
does not seem to be an impact.

CP 2024

30:12 Learning Precedences for Scheduling Problems with GNNs

0.0 0.2 0.4 0.6 0.8 1.0
predicted value

0.0

0.2

0.4

%
 o

f i
ns

ta
nc

es
J120

Model A

(a) Edges predicted by Model A.

0.0 0.2 0.4 0.6 0.8 1.0
predicted value

0.0

0.2

0.4

%
 o

f i
ns

ta
nc

es

J120
Model B

(b) Edges predicted by Model B.

Figure 3 Distribution of the learned edges.

Table 4 Number of improvements/deteriorations compared to the baselines (J120 instances only).

θ
Predictions used as constraints Predictions used for ordering

to=1s to=1m to=10m to=1h to=1s to=1m to=10m to=1h

Predictions from Model A used on a model without Sbps/Vsids
0.5 0/600 0/600 0/600 0/600 24/391 4/373 6/360 8/349
0.55 0/600 0/600 0/600 0/600 28/387 4/367 2/358 7/348
0.75 0/599 0/600 0/599 1/598 26/394 4/370 4/362 3/357
0.95 1/585 0/584 2/584 3/582 22/405 5/372 9/357 8/350
0.99 4/559 6/557 5/554 4/553 27/399 6/371 5/359 7/350

Predictions from Model B used on a model without Sbps/Vsids
0.5 0/600 0/600 0/599 0/599 31/392 7/371 7/365 7/355
0.55 0/600 0/599 1/599 0/598 21/404 6/367 6/363 9/360
0.75 1/597 0/597 2/594 3/594 31/388 6/372 7/358 7/352
0.95 5/554 4/556 2/553 3/550 23/404 9/365 11/357 9/349
0.99 21/487 5/497 7/495 6/493 25/393 7/373 5/362 8/356

Predictions from Model A used a model with Sbps/Vsids
0.5 480/94 124/476 7/593 4/596 439/0 185/6 5/0 1/0
0.55 483/98 122/478 9/590 7/592 440/11 188/5 6/3 1/3
0.75 470/114 116/480 13/586 12/587 431/3 186/5 7/4 2/5
0.95 416/163 106/474 17/564 24/561 413/50 166/50 6/20 2/12
0.99 411/163 108/454 24/533 28/526 413/45 172/39 6/25 1/13

Predictions from Model B used a model with Sbps/Vsids
0.5 475/110 116/484 10/590 8/590 445/0 186/4 5/1 2/2
0.55 447/127 116/483 11/588 10/590 421/25 176/19 7/7 2/4
0.75 457/113 114/481 15/580 14/577 454/0 191/1 7/1 2/2
0.95 413/159 111/449 26/525 21/532 433/26 179/27 6/14 2/8
0.99 419/152 125/386 26/469 34/459 433/26 179/25 8/17 2/8

4.3 Performance for Solving the RCPSPs
We decided to focus the presentation of our results on the ALLJ120 as it contains the most
open instances and thus the most interesting. We analyzed the results split among the
SEENJ120, UNSEENJ120, and UNKNOWNJ120 and did not find a significant difference
between them, allowing us to confirm no sign of overfitting, as hinted by Tab. 1, hence why
we present the results on ALLJ120 only.

Distribution of predictions
We analyzed first the distribution of the prediction done among the edges of the J120 case in
Fig. 3, for both Model A (Fig. 3a) and Model B (Fig. 3b). We can see that our process is
confident on the outcome for most of the edges. Normally, we select as a positive prediction

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:13

Table 5 Generalization ability (to be compared with the last line of Tab. 4).

θ
Model B-SEEN≤J60

1s 1m 10m 1h 1s 1m 10m 1h

0.99 Predictions used as constraints Predictions used for ordering
421/141 119/398 27/484 35/481 430/17 187/18 6/10 1/4

the precedence with a prediction score of at least 0.5. Given the distribution of the edges
and the fact that the recall score is not that high, we would want to verify if increasing the
threshold of the selected prediction could impact the final results. To this end, we decided to
test multiple thresholds θ: 0.5, 0.55, 0.75, 0.95, and 0.99.

Comparison to Baseline

We run Model A and Model B to predict the edges of the full J120 benchmark. These
predictions are then filtered given the threshold and then used either as additional constraints
or to create an ordering-based heuristic, both to be used with the model with the Sbps/Vsids
options or without the options (Tab. 4). The tables gather, for each threshold, each timeout,
each usage, and each generative model, the number of instances among the 600 where there
is an improvement/deterioration of the bound compared to the baseline (i.e., the model with
the same options used and the same timeout but without the learned approach).

Multiple observations can be made by comparing these numbers. First, using our ordering-
based technique without a Sbps/Vsids heuristics does not provide good results. This can
be explained by the fact it has already been observed that static ordering performs generally
slower than dynamic ones [27], allowing an easier deterioration of the bound. Another
observation is that using precedence as an additional constraint leads to many deterioration.
This is a logical consequence of the fact that adding new constraints creates a restriction and
thus, if one of these constraints is wrong, removes the optimum. We can see that increasing
the threshold mitigates this effect, as expected. Solutions based on the use of prediction
from Model A are also generally a bit less good than when using Model B. A model trained
on a more qualitative training set is thus preferable.

Interestingly, we can also notice that with shorter timeouts, using the ordering-based
method manages to improve more bounds, as it can guide the search towards better solutions
first. The restriction-based one improves more bounds with bigger timeouts, as by reducing
the search space, it can potentially reach part of the search space that was not reached
before within the timeout. This, however, works only if the restriction does not select bad
precedences, as shown by the important number of deteriorations.

Generalization Ability

Figure 5 compares the results of Model B against Model B-SEEN≤J60. Our validation results
on this model show that it had similar accuracy to Model B. To confirm it, we made the
predictions on all J120 instances and solved them using the model with Sbps/Vsids. Our
results show that it generalizes very well as the results are comparable to the ones of Model B
with the same other parameters (last line of Tab. 4).

CP 2024

30:14 Learning Precedences for Scheduling Problems with GNNs

100 200 300 400 500
obj

0.0

0.2

0.4

0.6

0.8

1.0
%

 o
f i

ns
ta

nc
es

Subset of J120 (112 instances)

UB
Sirene
orde + SGS 0.5
orde + SGS 0.55
orde + SGS 0.75
orde + SGS 0.95
orde + SGS 0.99

Figure 4 SGS-based solution.

100 200 300
obj

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f i
ns

ta
nc

es

Subset of J120 (112 instances)

UB
Sirene
model B with orde 0.50
model B with prec 0.99

Figure 5 Comparison with Sirene [31].

Schedule Generation Scheme (SGS)
A third way to use the prediction is to use an SGS, as done in [31]. Given an ordered set
of tasks, the SGS greedily constructs a schedule, ensuring the resources and precedences
constraints are respected. Fed with an ordering corresponding to the optimal solution, the
SGS can reconstruct the optimal solution. Figure 4 displays, in a cactus plot, the bound
of the solutions found after applying the SGS on our ordering produced by the prediction
of Model B with the various thresholds. We compare to the Sirene algorithm [31], using
the same SGS. For the comparison, we used the results stored on their public repository.
These bounds are available for 408 instances among the Psplib benchmark and were used
to generate Figures 4 and 5 of their paper. Figure 4 focuses on the J120 among these (112
among the 600). The discrepancy between their method and our use of the SGS can be
explained by the fact that their method works on a global view. By extracting an ordering
from a close-to-a-solution, they guarantee that if some part of the schedule is right, it will
stay the same after using the SGS. In our case, it only works if there are no errors within the
predicted arcs. Observing that there is not much improvement in the solutions after using
the SGS on our ordering with different thresholds confirms that there are predictive errors
even when the learning process is sure of its prediction.

Comparison to Sirene
Sirene [31] is the closest approach also using GNN found in the literature. While the two
methods are very close to each other, they are in fact complementary. Sirene focuses on a
more global type of prediction (i.e., a potential solution to be corrected) while we focus on a
more local prediction (i.e., new precedence between tasks to be used). Another conclusion
we share is that improving the bounds obtained in our training set is difficult. In their
case, they improve drastically the runtime while obtaining no bound improvement (Fig. 5)
compared to their baseline. In our case, we managed to improve a few bounds (Tab. 4), and
especially improve the quality of early solutions. It confirms the potential of GNNs to replicate
statistical distribution (here the distribution of solutions provided in our training sets) but
not to be able to solve the problem given and reason on it. Another limitation compared to
Sirene is that our current approach as our model is targeted to 4-resource problems. In our
opinion, for instances with more features, we think an aggregation of multiple predictions for
multiple sub-problems defined by selecting four features of the instance is a possible solution
to get around this limitation. Fig. 5 shows a cactus plot, comparing the best-known upper
bound (UB) to the makespan (from PSPLIB website), Sirene, the predictions of Model

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:15

Table 6 Results when training on an aggregate of multiple solutions (to be compared with Fig.5).

θ
Model C-SEEN≤J60

1s 1m 10m 1h 1s 1m 10m 1h

0.99 Predictions used as constraints Predictions used for ordering
436/108 154/332 46/427 48/424 451/0 193/1 7/2 0/2

B with θ = 0.5 used for ordering on a model using Sbps/Vsids and time of 1 hour and
the predictions of Model B with θ = 0.99 used for additional constraint on a model using
Sbps/Vsids and timeout of 1 hour.

Impact of multiplicity of optimal solution
Table 6 shows the result when Model C-SEEN≤J60 is used to predict precedences on the J120
instances. We also used them either in addition to the model either to create an ordering,
both being used with the Sbps/Vsids generic heuristics when solving. When comparing to
Fig. 5, one can see that using an aggregate of multiple solutions can help to improve the
results. This comes from the fact that the precedences learned are the ones present in many
optimal solution at once thus directing to any of these solutions the same way.

However, the drawback of this training set is that it requires multiple solutions. By using
the generalization abilities of our model we were able to keep the additional computations
cost relatively low. However, doing the same with bigger instances in the training set (by
training on SEEN≤J120 like Model A and Model B) would be intractable as for many of the
bigger instances, generating one good solution sometimes takes up to one hour, generating
several of them would then be too tedious.

5 Conclusion and Perspective

This paper proposed a novel approach based on graph neural networks to predict new
precedences for the resource-constrained project scheduling problem. The learned precedences
can then be used either as additional constraints to get a stronger filtering or as a heuristic
to drive the search. A high precision in the precedences learned has been obtained after the
training. Our experiment on the PSPLIB benchmark confirms that, due to the N P-hardness
of the problem, a high recall is difficult to reach, but that we can nevertheless speed up
the solving process when using a dynamic ordering. An improvement of our baseline (i.e.,
best-so-far after given time-out) has been observed in our experiment but remains difficult
to achieve. The quality of the prediction depends on the quality of the training set. Using
aggregates of multiple solutions allows learning of more crucial precedences. Our experiments
shows also a good generalization as models trained on instances with less or equal than 60
tasks can achieved similar results on instances with 120 tasks as models trained on instances
with less or equal than 120 tasks. Our method is solver agnostic and could even be combined
with other metaheuristics such as a large neighborhood search.

One of our perspectives is to study whether the learned precedences are dependent on
the training benchmark. Another is to reflect on how we can make predictions on instances
with a different number of resources than trained for. Among our perspectives is also to
apply this methodology to other variants of scheduling problems such as the RCPSP with
time windows and the job shop scheduling problem. We also expect this could generalize to
other combinatorial problems with an underlying graph structure such as job-shop scheduling
problems.

CP 2024

30:16 Learning Precedences for Scheduling Problems with GNNs

References
1 Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling subject to resource

constraints: classification and complexity. Discrete applied mathematics, 5(1):11–24, 1983.
2 Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.
3 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and

Petar Velickovic. Combinatorial optimization and reasoning with graph neural networks.
Journal of Machine Learning Research, 24(130):1–61, 2023.

4 Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

5 Félix Chalumeau, Ilan Coulon, Quentin Cappart, and Louis-Martin Rousseau. Seapearl: A
constraint programming solver guided by reinforcement learning. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 18th International Conference,
CPAIOR 2021, Vienna, Austria, July 5–8, 2021, Proceedings 18, pages 392–409. Springer,
2021.

6 Mark Cheung. Geometric Deep Learning: Impact of Graph Structure on Graph Neural Networks.
PhD thesis, Carnegie Mellon University, 2022.

7 Geoffrey Chu and Peter J Stuckey. Learning value heuristics for constraint programming.
In Integration of AI and OR Techniques in Constraint Programming: 12th International
Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings 12, pages 108–123.
Springer, 2015.

8 Bert De Reyck et al. A branch-and-bound procedure for the resource-constrained project
scheduling problem with generalized precedence relations. European Journal of Operational
Research, 111(1):152–174, 1998.

9 Emir Demirović, Geoffrey Chu, and Peter J Stuckey. Solution-based phase saving for cp: A
value-selection heuristic to simulate local search behavior in complete solvers. In Principles
and Practice of Constraint Programming: 24th International Conference, CP 2018, Lille,
France, August 27-31, 2018, Proceedings 24, pages 99–108. Springer, 2018.

10 Floris Doolaard and Neil Yorke-Smith. Online learning of variable ordering heuristics for
constraint optimisation problems. Annals of Mathematics and Artificial Intelligence, pages
1–30, 2022.

11 Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

12 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural
information processing systems, 32, 2019.

13 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

14 Carla Gomes and Meinolf Sellmann. Streamlined constraint reasoning. In International
Conference on Principles and Practice of Constraint Programming, pages 274–289. Springer,
2004.

15 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

16 Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi
Sugiyama. Masking: A new perspective of noisy supervision. Advances in neural information
processing systems, 31, 2018.

17 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

H. Verhaeghe, Q. Cappart, G. Pesant, and C.-G. Quimper 30:17

18 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

19 Rainer Kolisch and Arno Sprecher. Psplib-a project scheduling problem library: Or software-
orsep operations research software exchange program. European journal of operational research,
96(1):205–216, 1997.

20 Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

21 Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence
neural networks. In International Conference on Learning Representations, 2016.

22 Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A:
statistical mechanics and its applications, 390(6):1150–1170, 2011.

23 Tom Marty, Tristan François, Pierre Tessier, Louis Gautier, Louis-Martin Rousseau, and
Quentin Cappart. Learning a generic value-selection heuristic inside a constraint programming
solver. In 29th International Conference on Principles and Practice of Constraint Programming
(CP 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

24 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation
Conference, pages 530–535, 2001.

25 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

26 A Alan B Pritsker, Lawrence J Waiters, and Philip M Wolfe. Multiproject scheduling with
limited resources: A zero-one programming approach. Management science, 16(1):93–108,
1969.

27 Patrick Prosser. The dynamics of dynamic variable ordering heuristics. In Principles and
Practice of Constraint Programming—CP98: 4th International Conference, CP98 Pisa, Italy,
October 26–30, 1998 Proceedings 4, pages 17–23. Springer, 1998.

28 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

29 Andreas Schutt, Thibaut Feydy, and Peter J Stuckey. Explaining time-table-edge-finding
propagation for the cumulative resource constraint. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 10th International
Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings 10,
pages 234–250. Springer, 2013.

30 Wen Song, Zhiguang Cao, Jie Zhang, Chi Xu, and Andrew Lim. Learning variable ordering
heuristics for solving constraint satisfaction problems. Engineering Applications of Artificial
Intelligence, 109:104603, 2022.

31 Florent Teichteil-Königsbuch, Guillaume Povéda, Guillermo González de Garibay Barba, Tim
Luchterhand, and Sylvie Thiébaux. Fast and robust resource-constrained scheduling with graph
neural networks. In Sven Koenig, Roni Stern, and Mauro Vallati, editors, Proceedings of the
Thirty-Third International Conference on Automated Planning and Scheduling, July 8-13, 2023,
Prague, Czech Republic, pages 623–633. AAAI Press, 2023. doi:10.1609/ICAPS.V33I1.27244.

32 Ronald van Driel, Emir Demirović, and Neil Yorke-Smith. Learning variable activity initialisa-
tion for lazy clause generation solvers. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 18th International Conference, CPAIOR 2021, Vienna,
Austria, July 5–8, 2021, Proceedings 18, pages 62–71. Springer, 2021.

CP 2024

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1609/ICAPS.V33I1.27244

30:18 Learning Precedences for Scheduling Problems with GNNs

33 Mathieu Vavrille, Charlotte Truchet, and Charles Prud’homme. Solution sampling with
random table constraints. Constraints, pages 1–33, 2022.

34 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Repres-
entations, 2018.

35 Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources.
In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems: 8th International Conference, CPAIOR 2011, Berlin, Germany, May
23-27, 2011. Proceedings 8, pages 230–245. Springer, 2011.

36 Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher dfs et lns pour
les cop. Proceedings of JFPC’17, pages 39–45, 2017.

37 Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

38 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Le Song. Graph neural networks. Springer,
2022.

39 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
neural information processing systems, 31, 2018.

	1 Introduction
	2 Technical Background and Related Work
	2.1 Resource Constrained Project Scheduling Problem
	2.2 Graph Neural Network
	2.3 Learning Heuristics in Constraint Programming

	3 Enhancing CP with Learned Precedences
	3.1 Step 1: Training Set Construction
	3.2 Step 2: Link Prediction with GNNs
	3.3 Step 3: Solving the RCPSP with New Precedences

	4 Experiments
	4.1 Baseline CP Model for the RCPSP and Training Set
	4.2 Performance of the Training
	4.3 Performance for Solving the RCPSPs

	5 Conclusion and Perspective

