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Abstract
MD5 and SHA-1 are fundamental cryptographic hash functions proposed in 1990s. Given a message
of arbitrary finite size, MD5 produces a 128-bit hash in 64 steps, while SHA-1 produces a 160-bit
hash in 80 steps. It is computationally infeasible to invert MD5 and SHA-1, i.e. to find a message
given a hash. In 2012, 28-step MD5 and 23-step SHA-1 were inverted by CDCL solvers, yet no
progress has been made since then. The present paper proposes to construct 31 intermediate inverse
problems for any pair of MD5 or SHA-1 steps (i, i + 1), such that the first problem is very close to
inverting i steps, while the 31st one is almost inverting i + 1 steps. We constructed SAT encodings
of intermediate problems for MD5 and SHA-1, and tuned a CDCL solver on the simplest of them.
Then the tuned solver was used to design a parallel Cube-and-Conquer solver which for the first
time inverted 29-step MD5 and 24-step SHA-1.
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1 Introduction

A cryptographic hash function maps a message of arbitrary finite size to a hash of a fixed
size [25]. A secure cryptographic hash function must be resistant to preimage attacks, i.e.
it must be computationally infeasible to invert it by finding a message for a given hash.
MD5 [37] and SHA-1 [11] are among the most influential and widespread cryptographic hash
functions. Given a message, MD5 produces a 128-bit hash. MD5’s core component is a
compression function that operates on a 128-bit internal state in 64 steps. On each step, the
state is modified by mixing with one 32-bit message word. SHA-1 has a similar design, but
it produces a 160-bit hash, while its compression function operates in 80 steps. Nowadays
both MD5 and SHA-1 are used in practice, e.g. to verify the data integrity. Partially this is
because they are still preimage resistant.

It is well known that a cryptographic hash function’s resistance can be practically analyzed
by algorithms for solving the Boolean satisfiability problem (SAT) [6]. Since it is infeasible
to invert MD5 and SHA-1, their weakened versions are usually considered, where some
last steps are omitted. In 2007, 26-step MD5 was inverted [10], while for 27- and 28-step
MD5 it was done in 2012 [22]. In 2008 and 2012, 22- and 23-step SHA-1 were inverted,
respectively [42, 22]. In all these cases it was done via Conflict-Driven Clause Learning [24]
(CDCL) solvers. Since 2012, no further progress has been made towards inverting 29-step
MD5 or 24-step SHA-1 because the corresponding computational problems are extremely
hard. This paper aims to fill these gaps.

When the number of steps of a cryptographic hash function is reduced, the inverse
problem can be further simplified by reducing the number of known hash bits [35, 4]. For
example, in case of MD5, 29 steps and 64 known hash bits instead of 128 can be considered.
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31:2 Inverting Step-Reduced SHA-1 and MD5

However, even if this inverse problem is solved, it is not clear if any progress compared to
inversion of 28-step MD5 has been made as a result. It is also possible to weaken an inverse
problem by partially assigning some bits in a message [8]. However, again, it is unclear
whether such weakening contributes to progress or not.

This paper proposes a new type of intermediate inverse problems. Consider an arbitrary
cryptographic hash function such that its compression function is divided into steps and on
each step a k-bit message word m is mixed with an internal state. Note that most existing
cryptographic hash functions, including MD5 and SHA-1, match this condition. Consider
a pair (i, i + 1) of steps. The idea is to construct k − 1 intermediate inverse problems by
simplifying step i + 1, while the first i steps are not modified. In the first problem, in step
i + 1 the k-bit message word m is replaced by a k-bit word, where k − 1 rightmost bits are
0s, while the remaining bit is equal to the leftmost bit in m. In the second problem, k − 2
rightmost bits are 0s, while 2 remaining bits are equal to that in m and so on. Finally, in
the (k − 1)-th problem, only the rightmost bit in m is replaced by 0. As a result, for a
state-of-the-art CDCL solver the first intermediate problem is slightly harder than inverting
i steps, then the hardness gradually increases towards inverting i + 1 steps.

We construct SAT encodings of 31 intermediate inverse problems between 28- and 29-step
MD5 for one regular hash. Some of them are solved via the CDCL solver Kissat on a
computer in reasonable time. Kissat’s parameters are tuned on several simplest problems,
and as a result more intermediate problems are solved. A parallel Cube-and-Conquer solver
based on the same tuned Kissat inverts 29-step MD5. For SHA-1, its own tuning is
performed, and as a result the parallel solver inverts 24 steps.

The paper is organized as follows. Preliminaries on MD5 and SHA-1 are given in Section 2.
Intermediate inverse problems are proposed in Section 3. SAT encodings are presented in
Section 4. Experiments on the default Kissat are discussed in Section 5. Section 6 presents
an algorithm for tuning Kissat. Section 7 describes how Cube-and-Conquer based on the
tuned Kissat inverted 24-step SHA-1 and 29-step MD5. Finally, related work is discussed
and conclusions are drawn.

2 Preliminaries

This section gives preliminaries on the cryptographic hash functions MD5 and SHA-1.

Cryptographic Hash Function

A cryptographic hash function h maps a message of arbitrary finite size to a hash of finite
size [25]. An obligatory property of any cryptographic hash function is that the mapping
must be easy to compute, but hard to invert. Consider the following types of resistance.
1. Collision resistance: it is infeasible to find any two messages x and x′ such that x ̸=

x′, h(x) = h(x′).
2. Preimage resistance: for any given hash y, it is infeasible to find such a message x′ that

h(x′) = y.
3. Second-preimage resistance: for any given message x, it is infeasible to find x′ such that

x′ ̸= x, h(x) = h(x′).

A secure cryptographic hash function must possess all three properties. There are two
types of preimage attacks: (i) practical preimage attack implies solving an inverse problem,
i.e. finding a preimage (message) for a certain hash; (ii) theoretical preimage attack is an
algorithm for solving an inverse problem with lower complexity than brute force.
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The main component of most cryptographic hash functions is a compression function
that maps an input of fixed size to a shorter output of fixed size. In order to show that
such a cryptographic hash function is not secure, it is sufficient to break the resistance of its
compression function. In this paper we focus on studying the practical preimage resistance
of compression functions of cryptographic hash functions MD5 and SHA-1.

MD5

The Message Digest 5 (MD5) cryptographic hash function was proposed in 1992 [37]. It is
a more secure version of MD4 proposed in 1990 [36]. Given a message of arbitrary finite
size, padding is applied to obtain a message that can be divided into 512-bit blocks. Then a
128-bit hash is produced in accordance with the Merkle-Damgard construction [26, 9], i.e.
the compression function is iteratively applied to the blocks.

Given a 512-bit message block, MD5 compression function produces a 128-bit output.
The function consists of four rounds, sixteen steps each, and operates by transforming data
in four 32-bit registers A, B, C, D. For the first message block, the registers are initialized
with the constants specified in the standard. Otherwise, the registers are initialized with an
output produced at the previous iteration. The message block is divided into sixteen 32-bit
words. In each step, three registers are updated by permuting the current values, while the
remaining register is updated by mixing one message word, the current values of all four
registers, an additive constant, and a result of the previous step. The mixing is partially
done by a round-specific function, while additive constants are step-specific. As a result,
all sixteen words take part in each round. When all steps are executed, the registers are
incremented by the values they had after the initialization, and the output is produced as a
concatenation of A, B, C, D.

Consider a pseudocode of an MD5 step in Algorithm 1. Here g, 0 ≤ g ≤ 15 is a message
word index, 1 ≤ i ≤ 64 is a step number, ⊞ is addition modulo 232, and ≪ is circular left
bit rotation.

Algorithm 1 The i-th step of MD5.
Input: Current registers’ values A, B, C, D; step number i; message word index g; shift
amount s; round function Func.
Output: Updated values A, B, C, D.

1: temp← Func(B, C, D) ⊞ A ⊞ K[i− 1] ⊞ M [g]
2: A← D

3: D ← C

4: C ← B

5: B ← B + (temp ≪ s)

Inputs for all 64 steps are specified in [37]. The round functions are as follows: (x ∧ y) ∨
(¬x ∧ z); (x ∧ z) ∨ (y ∧ ¬z); x⊕ y ⊕ z; y ⊕ (x ∨ ¬z).

In 2004, the first MD5 collisions were published [44]. Regardless, it is still preimage
resistant and second-preimage resistant.

SHA-1

The Secure Hash Algorithm 1 (SHA-1) cryptographic hash function was proposed in 1995
as another more secure extension of MD4 [11]. The main differences compared to MD5 are
listed below.

CP 2024



31:4 Inverting Step-Reduced SHA-1 and MD5

1. A 160-bit hash is produced.
2. The compression function operates in 80 steps (4 rounds, 20 steps each) and returns a

160-bit output.
3. Five 32-bit internal registers A, B, C, D, E.
4. Additive constants are round-specific.
5. New round functions: (x ∧ y) ∨ (¬x ∧ z); x⊕ y ⊕ z; (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z); x⊕ y ⊕ z.
6. Instead of using parts of the message M directly in transformations, W is used such that

W [t] = M [t], 0 ≤ t ≤ 15, and W [t] = (W [t− 3]⊕W [t− 8]⊕W [t− 14]⊕W [t− 16]) ≪ 1
if 16 ≤ t ≤ 79.

Consider a pseudocode of a SHA-1 step in Algorithm 2.

Algorithm 2 The i-th step of SHA-1.
Input: Current registers’ values A, B, C, D, E; step number i; round index q; round function
Func.
Output: Updated values A, B, C, D, E.

1: temp← (A ≪ 5) ⊞ Func(B, C, D) ⊞ E ⊞ K[q] ⊞ W [i− 1]
2: E ← D

3: D ← C

4: C ← B ≪ 30
5: B ← A

6: A← temp

In 2017, the first SHA-1 collisions were published [43], but it is still preimage resistant
and second-preimage resistant.

3 Intermediate Inverse Problems for MD5 and SHA-1

This section first proposes a new type of intermediate inverse problems for cryptographic
hash functions, then it describes how such problems can be constructed for MD5 and SHA-1.

Intermediate Inverse Problems

Consider an arbitrary cryptographic hash function h such that its compression function f

is divided into r steps, and on each step an internal state is mixed with a k-bit word m,
where m is either a message word (like in MD5) or a mix of messages’ words (like in SHA-1).
Besides MD5 and SHA-1, most existing cryptographic hash functions match this condition,
e.g. MD4, RIPEMD-160, and SHA-256.

During preliminary experiments, for different triples (cryptographic hash function, SAT
encoding, CDCL solver) we attempted to invert modified step-reduced functions, where
the last step was weakened in different ways. It turned out that if m is not used, then the
last step does not really make the inverse problem harder for the solver. Based on this
observation, let us propose the following notation.

Consider i-step and (i + 1)-step reduced versions of h, where 1 ≤ i ≤ r − 1. Construct
k − 1 intermediate step-reduced cryptographic hash functions, where the first i steps are
used as usual, while step i + 1 is weakened as follows. In the j-th intermediate function,
1 ≤ j ≤ k−1, the word m in step i+1 is replaced by the word mweak such that the rightmost
k− j bits in mweak are equal to 0s, while the remaining j bits are equal to the leftmost j bits
in m. Note that this is not the same as replacing m by mweak in the whole h – if m is used
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in several steps, then the proposed action affects only step i + 1. In the j-th intermediate
inverse problem it is needed to find a message given a hash produced by the j-th intermediate
step-reduced hash function.

The intention behind this approach is that for a state-of-the-art CDCL solver the first
intermediate problem will be slightly harder than the inversion of i steps, then the hardness
gradually increases towards the inversion of i + 1 steps.

Note that if for the j-th intermediate inverse problem between steps i and i+1 a preimage
is found for a hash, then with probability 1

2k−j the preimage inverts the same hash produced
by unmodified i + 1 steps because k − j bits of the corresponding word m can be considered
as random bits that can coincide with k − j 0s with the mentioned probability. This is the
first take away of the proposed approach – sometimes it is sufficient to solve an intermediate
inverse problem to invert i + 1 steps.

Intermediate Inverse Problems for MD5

During preliminary experiments, we tried to weaken step i + 1 of the MD5 compression
function for different values of i by deleting Func(B, C, D) from the sum in the first line of
Algorithm 1. However, it did not lead to simpler inverse problems from a state-of-the-art
CDCL SAT solver point of view. It was also tried to delete other addends in the first line’s
sum, to delete the addend B from the fifth line’s sum, and to omit shifting in the fifth line.
It turned out, that the only action that significantly decreases the hardness is deleting the
addend M [g] in the first line. Moreover, if M [g] is deleted, then inverting i + 1 steps is
almost similar to inverting i steps for a CDCL solver.

A pseudocode of an MD5 step weakened according to the proposed idea is presented in
Algorithm 3. Here weakM is a 32-bit word, and as a result of two shifts in the first line its
rightmost 32 − j bits are equal to 0, while the remaining j bits are equal to the leftmost
j bits in M [g]. Then weakM is used instead of M [g]. Therefore, to form 31 intermediate
inverse problems with increasing hardness, j should be varied from 1 to 31.

Algorithm 3 The (i + 1)-th weakened step of MD5.
Input: Current registers’ values A, B, C, D; step number i; message word index g; shift
amount s; round function Func; intermediate hash function number j.
Output: Updated values A, B, C, D.

1: weakM ← (M [g]≫ (32− j))≪ (32− j)
2: temp← Func(B, C, D) ⊞ A ⊞ K[i] ⊞ weakM

3: A← D

4: D ← C

5: C ← B

6: B ← B + (temp ≪ s)

In the rest of the paper, the j-th intermediate hash function between MD5 steps i and
i + 1, 1 ≤ i ≤ 63, is called (i j/32)-step MD5. Note, that according to this notation j = 32
corresponds to (i + 1)-step MD5.

Intermediate Inverse Problems for SHA-1

Consider a pair (i, i + 1), 1 ≤ i ≤ 79, of SHA-1 steps. Similar to the previous subsection, the
idea is to weaken step i + 1, while the first i steps are used as usual. During preliminary
experiments, it was tried to omit operations in Algorithm 2 for different values of i. The
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picture is the same as for MD5 – when the usage of W is omitted, from the SAT solving
point of view the inverse problem becomes the same as the inverse of the first i steps. Yet
omitting any other operation, including the usage of the round function, does not make the
problem easier. Based on these results, intermediate inverse problems are formed in the same
way as for MD5, see Algorithm 4.

Algorithm 4 The (i + 1)-th weakened step of SHA-1.
Input: Current registers’ values A, B, C, D, E; step number i; round index q; round function
Func; intermediate hash function number j.
Output: Updated values A, B, C, D, E.

1: weakW ← (W [i]≫ (32− j))≪ (32− j)
2: temp← (A ≪ 5) ⊞ Func(B, C, D) ⊞ E ⊞ K[q] ⊞ weakW

3: E ← D

4: D ← C

5: C ← B ≪ 30
6: B ← A

7: A← temp

4 SAT Encoding

In this study, inverse problems for step-reduced SHA-1 and MD5 compression functions are
considered as was done earlier in [22, 35]. This section describes the corresponding SAT
encodings.

SHA-1 Encoding

Several SAT encodings of the SHA-1 compression function have been proposed so far [42,
35, 22, 28]. However, it is well known that at the moment the best one is Vegard Nossum’s
encoding [35]. Compared to the competitors, it produces more compact CNFs which are
easier for CDCL solvers [35]. That is why Nossum’s encoding has been used in many further
studies, e.g. [34, 43].

Recall that in each SHA-1 step 5-ary addition is performed, see Section 2. In the Nossum’s
encoding, the column addition algorithm is applied, and each column sum is expressed via a
pseudo-Boolean constraint which in turn is encoded in the clausal form using the ESPRESSO
logic minimizer. Vegard Nossum implemented his encoding in the form of the program
sha1-sat, which is available online1. Given the number of SHA-1 steps and a hash, the
program produces the corresponding inverse problem in the CNF form.

For the present study, sha1-sat was extended to maintain intermediate inverse problems
proposed in Section 3. Assume that (i + 1)-step SHA-1 is considered, where a combination
of message words, the word W [i], is used as an addend, see Section 3, and the corresponding
CNF is produced by sha1-sat. To encode the j-th intermediate inverse problem between
steps i and i + 1, the following additional actions are performed:
1. An additional 32-bit word weakW is introduced in the form of 32 Boolean variables.
2. The rightmost 32 − j bits of weakW are assigned to 0 via adding unit clauses to the

CNF.

1 https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat
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3. The equality conditions for the leftmost j bits of weakW and the corresponding j bits of
W [i] are added in the form of j × 2 binary clauses.

4. 32 Boolean variables of weakW are used instead of W [i]’s 32 variables in the clauses
where the addition is encoded in step i + 1.

By using the modified program, CNFs for intermediate inverse problems were constructed
between the following pairs of SHA-1 steps: (21, 22), (22, 23), and (23, 24) for 10 hashes: 160
0s, 160 1s, and 8 random ones. Also, for 21, 22, 23, and 24 steps, CNFs for standard inverse
problems were generated for the same 10 hashes. In Table 1, the characteristics of CNFs for
23, 23 16/32, and 24 steps are shown.

Table 1 Characteristics of CNFs that encode inverse problems for the main considered step-
reduced versions of SHA-1 and MD5.

Hash Steps Variables Clauses Literals
SHA-1 23 4 288 132 672 873 727
SHA-1 23 16/32 4 480 138 812 913 700
SHA-1 24 4 448 138 764 913 620
MD5 28 7 168 92 520 506 320
MD5 28 16/32 7 424 95 818 524 312
MD5 29 7 392 95 770 524 232

MD5 Encoding

Recently, several SAT encodings of the MD5 compression function have been proposed. The
encodings from [10, 22] are not available. The encodings from [40, 46] are available, but we
decided to extend sha1-sat to support MD5.

In MD5, in each step 4-ary addition is performed, so the corresponding pseudo-Boolean
constraint were constructed and encoded in the clausal form using ESPRESSO. As for the
round functions (see Section 2), clausal forms of three of them were taken from the SHA-1
encoding, while for the remaining one the clausal form was constructed manually.

CNFs for intermediate inverse problems were constructed between steps (27, 28) and
(28, 29) for the same 10 hashes as for SHA-1. In Table 1, the characteristics of main CNFs
are shown.

5 Solving Intermediate Inverse Problems by Kissat

First, we decided to study how a state-of-the-art sequential CDCL solver behaves on inter-
mediate inverse problems in case of MD5 and SHA-1. Kissat of version 3.0 [5] was chosen
because this solver and its modifications have showed excellent results in the last three SAT
Competitions. Of course, other CDCL solver can be also tried, for example, those which are
oriented on cryptanalysis [41, 32, 21]. All described experiments were performed on a PC
equipped with the 16-core CPU AMD 3950X and 64 Gb of RAM.

It turned out that inverse problems for 22-step SHA-1 are simple for Kissat, while for 23
steps the problems are quite hard, but still can be solved in reasonable time. That is why 33
inverse problems were considered: the one for 22 steps, 31 intermediate problems between
steps 22 and 23, and the one for 23 steps. As stated in Section 4, we generated 10 instances
for each problem – 1 for 160 1s hash, 1 for 160 0s hash, and 8 for random hashes, i.e. 330
instances in total. With the time limit of 24 hours, 303 SHA-1 instances out of 330 were
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Figure 1 Boxplots of Kissat3 runtimes on intermediate inverse problems for SHA-1.

solved. Figure 1 shows the runtimes for SHA-1 in the logarithmic scale, where the unsolved
instances’ values were set to 24 hours. In the figure, the five-number statistics is presented
in the form of boxplots: outliers are plotted as small circles, whiskers correspond to the
minimum and the maximum (excluding outliers), the median is plotted in green, while a box
is plotted from the first quartile to the third quartile.

As for MD5, 330 instances between steps 27 and 28 were generated in the same way.
With the time limit of 24 hours, all MD5 instances were solved, see Figure 2.

According to the results, in case of MD5 the hardness of the intermediate inverse problems
grows almost linearly. In case of SHA-1 there is a clear leap between steps 22 1/32 and 22
2/32, then the hardness remains more or less the same, and finally the second leap happens
between steps 22 27/32 and 22 28/32. Note, that 24 out of 27 unsolved instances were parts
of the last 5 series, i.e. starting from 22 28/32 steps. Similar experiments were held between
steps 21-22 of SHA-1 and 26-27 of MD5 and the patterns were the same there.

Based on these results, the second take away of the approach, proposed in Section 3, is
formulated: a runtime estimation for an unreachable step can be calculated by extrapolating
runtimes of the previous step and (some) intermediate problems.

As mentioned in Section 2, it is sufficient to invert any hash to break the preimage
resistance of a cryptographic hash function. However, in practice this should be a regular
hash, say all 0s or all 1s, otherwise it may be hard to justify this choice and prove that it
was not done for a random pair of input and output. In this paper, 128 1s and 160 1s are
chosen for MD5 and SHA-1, respectively. Further they are called 1-hashes. Instances of
intermediate inverse problems between steps 28-29 of MD5 and steps 23-24 of SHA-1 were
generated for 1-hashes. Recall that at most 28-step MD5 and 23-step SHA-1 are inverted in
the literature. Out of 31 intermediate problems, 6 were solved by Kissat within the time
limit of 24 hours in case of MD5. In particular, the intermediate problems with j of 1, 3,
5, 8, 9, and 10 were solved. Yet only one intermediate problem with j = 20 was solved for
SHA-1. It means that (28 10/32)-step MD5 and (23 20/32)-step SHA-1 are inverted, and
this is already a clear progress compared to the literature, but in the next sections we are
going further.

The third take away is as follows: by solving intermediate inverse problems, some progress
can be achieved compared to the state of the art.
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Figure 2 Boxplots of Kissat3 runtimes on intermediate inverse problems for MD5.

6 Parameterization Algorithm

A hypothesis behind the proposed method is that simple intermediate inverse problems can
be leveraged to parameterize Kissat (or, in other words, tune its parameters’ values) to
solve hard intermediate problems faster or just solve within the time limit if it is not yet
so. On the one hand, the tuning simplifies problems which are already simple, and it is not
guaranteed that it will help solving hard problems. On the other hand, all corresponding
CNFs have a very similar structure. We decided to test this hypothesis in practice.

Parameterization of SAT solvers is a well-developed field, see [18]. Formally, the general
problem is to automatically identify a parameter configuration (a set of parameters’ values)
that maximizes the performance of a SAT solver across a set of instances [18]. Among the
main parameterization algorithms for SAT are: ParamILS [20], SMAC [19], and GGA [2]. A
recent implementation of GGA is PyDGGA [1] while that for SMAC is SMAC3 [23]. In this
study, for this purpose an extension of a simple yet powerful (1+1) evolutionary optimization
algorithm ((1+1)-EA [30]) is used to have a full control over the tuning process. Another
reason is that evolutionary optimization algorithms have been successfully applied recently
to speed up parallel SAT solving [39, 47].

In short, (1+1)-EA works as follows: a Boolean vector of size k is given, and a series
of k independent Bernoulli trials [29] with the success probability 1/k is performed. If
i ∈ {0, . . . , k − 1} corresponds to a successful trial, then the i-th value is flipped. The
obtained vector is compared with the best one via an objective function, then a new vector
is generated and so on. It is clear that only binary parameters can be tuned via (1+1)-EA.

We propose an integer extension of (1+1)-EA that is further called (1+1)-EA-Int. The
pseudocode is presented in Algorithm 5. This algorithm operates with parameters of arbitrary
finite sizes by applying the categorical distribution – a discrete probability distribution that
describes the possible results of a random variable that can take on one of n possible
categories, each with specified probability [31]. Assume that P is a set of parameters
values. To choose a new value for the i-th parameter, the function categ_dist(xi, Pi) is
called, where xi is the current value of the i-th parameter and Pi, |Pi| = k is a set of
possible values of the i-th parameter. In this function, a weights vector w of length k is

CP 2024



31:10 Inverting Step-Reduced SHA-1 and MD5

formed. First, wi is assigned to 0. Assume that maxdist = max(i − 1, k − i − 2), then
wi−1 = wi+1 = 2maxdist, wi−2 = wi+2 = 2maxdist−1 and so on. As a result, at least one
of two elements w0, wk−1 becomes 1. Finally, the probabilities are assigned to parameters
values as follows: ( w0∑k−1

j=0
wj

, w1∑k−1
j=0

wj

, . . . , wk−1∑k−1
j=0

wj

). The idea is that the closer a value to

the current one, the higher the probability is, yet any value (except the current one) can be
chosen with non-zero probability.

Algorithm 5 (1+1)-EA-Int.

Input: parameters values P , a start configuration x0, an objective function f .
Output: the best found configuration xbest with the objective function’s value f best.

1: n← param_num(x0)
2: ⟨xbest, f best⟩ ← ⟨x0, f(x0)⟩
3: checked_conf ← {}
4: while not termination criteria do
5: xcur ← xbest

6: for i← 0 to n− 1 do
7: with probability 1

n xcur
i ← categ_dist(xcur

i , Pi).
8: if xcur in checked_conf then
9: continue

10: f cur ← f(xcur)
11: checked_conf.add(xcur)
12: if f cur < f best then
13: ⟨xbest, f best⟩ ← ⟨xcur, f cur⟩
14: return ⟨xbest, f best⟩

Consider an example. Assume that a parameter has possible values 1, 2, 5, 10, 25, while its
current value is 10. Since maxdist = max(3−1, 5−3−2) = 2, it follows that w = (1, 2, 4, 0, 4),
and the probabilities are ( 1

11 , 2
11 , 4

11 , 0, 4
11 ).

Note, that additionally in Algorithm 5 all checked configurations are remembered to avoid
redundant calculations since the objective function is costly.

In all experiments, given a sample of CNFs and a parameter configuration, the objective
function f is the sum of Kissat’s runtimes on the CNFs, when the configuration is applied
to the solver. The goal is to minimize the function on the space of parameter configurations.

7 Inverting by Parameterized Solvers

In this section, the parameterization algorithm proposed in Section 6 is applied to tune
Kissat on simple intermediate inverse problems to invert 24-step SHA-1 and 29-step MD5.

Experimental Setup

We implemented the parameterization algorithm from Section 6 in Python, where the objective
function is calculated in parallel – 1 configuration per CPU core. The implementation is
available online2. The extended version of sha1-sat (see Section 4) and all generated CNFs

2 https://github.com/olegzaikin/paramsat

https://github.com/olegzaikin/paramsat
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are available online as well3. The same PC as in Section 5 was used in the experiments.
The termination criteria were as follows: at most 24 (or 72 in some cases) hours and 1 000
calculations of the objective function.

There are 90 parameters in Kissat 3.0, yet 50 of them were excluded from the consideration
since in preliminary experiments they did not affect the performance. The remaining 40
parameters are presented in Table 2. All these parameters are integer, and their ranges are
specified in the solver’s documentation [5]. As a start configuration x0 in Algorithm 5 the
default Kissat’s configuration was leveraged.

Table 2 Varied parameters of Kissat.

backbone eliminateclslim reluctantlim sweepdepth
backbonerounds eliminateocclim restartint sweepfliprounds
bumpreasonslimit eliminaterounds restartmargin sweepmaxclauses
bumpreasonsrate emafast shrink sweepmaxdepth
chronolevels emaslow stable sweepvars
compactlim mineffort substituteeffort target
decay minimizedepth substituterounds tier1
definitioncores modeinit subsumeclslim tier2
definitionticks reducefraction subsumeocclim vivifytier1
eliminatebound reluctantint sweepclauses vivifytier2

Inverting 24-step SHA-1

In preliminary experiments it turned out that a training set must contain at least 10 CNFs
to obtain a configuration that works better on harder intermediate inverse problems. For
SHA-1, the training set consisted of 16 CNFs: the last 15 intermediate inverse problems
between steps 21-22 and inverting 22-step SHA-1, all for 1-hash. These CNFs were chosen
because the objective function’s value on them is reasonable: 1 hour 58 minutes on 1 CPU
core. For comparison, on the first 16 intermediate inverse problems between steps 22-23 the
corresponding value is 44 hours.

The parameterization algorithm was run three times with seeds 0, 1, and 2 and the time
limit of 24 hours. It stopped after 11, 12, and 16 hours, respectively, because the limit on
the objective function calculations (1 000) had been reached. The best result was found with
seed of 1: the best configuration was updated 13 times, and on the final one the objective
function’s value was 22 minutes (compared to 1 hour 58 minutes on the default configuration).
Table 3 contains those 12 parameters which changed their values in the found configuration.

The tuned and the default Kissat3 were run with the time limit of 24 hours on 64 CNFs:
31 intermediate ones between steps 22-23, 1 for 23 steps, 31 intermediate ones between
steps 23-24, and 1 for 24 steps. The results are presented as a cactus plot in Figure 3. The
default version solved 30 intermediate problems between steps 22-23, while the tuned version
solved all 31 of them. Both versions inverted 23 steps. Out of 31 intermediate problems
between steps 23-24, the default version solved 1 problem, while the tuned one coped with 5
problems. All in all, the tuned version solved 5 more problems, and on most problems it was
significantly faster.

3 https://github.com/olegzaikin/sha1-sat

CP 2024
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Table 3 The best Kissat’s configuration found for SHA-1.

Parameter Default value Found value
backbonerounds 100 10
definitionticks 1 000 000 100
eliminatebound 16 32
eliminateclslim 100 10
emafast 33 10
minimizedepth 1 000 100
restartmargin 10 20
stable 1 2
sweepfliprounds 1 5
sweepmaxclauses 4 096 2 147 483 647
sweepvars 128 64
vivifytier1 3 2
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Figure 3 Comparison of the default Kissat with its tuned version on intermediate inverse
problems for steps 22-24 of SHA-1, 1-hash.

According to Figure 3, the hardness of the intermediate inverse problems increases quite
smoothly in case of SHA-1, that is why it was decided not to run any additional tuning
since 5 out of 31 intermediate inverse problems between steps 23-24 were already solved by
the tuned solver. To invert 24-step SHA-1, experiments were run on the supercomputer
“Akademik V.M. Matrosov”4. Each supercomputer’s node is equipped with a 36-core CPU
and 128 Gb RAM. At most 5 nodes (180 cores) were taken for one task.

To parallelize hard intermediate problems, the Cube-and-Conquer [13] approach was
applied, where a given problem is split via lookahead into subproblems, which are solved by
a CDCL solver. The lookahead solver march_cu [14] was used to split the inverse problem
for 24-step SHA-1 into 166 subproblems via the cutoff parameter n=3467. Then the same
tuned Kissat was run on the subproblems in the form of a 167-core task with the time limit
of 3 days. For this purpose, the MPI program conquer_mpi was run5, which used 1 core

4 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
5 https://github.com/olegzaikin/EnCnC

http://hpc.icc.ru
https://github.com/olegzaikin/EnCnC
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for the master process and 166 cores for computing processes. Table 4 presents a solution
that was found in 23 hours. The default Kissat was also run on the same subproblems on
the supercomputer, yet no solution was found within 3 days.

Table 4 A preimage of 160 1s produced by 24-step SHA-1.

0xa6c5c463 0x182655e0 0x2c5ba5f0 0xe0028033
0x8c3779b1 0x98635880 0xc5b822e 0x297efce7
0x59987038 0xd764eca9 0x7ed9801d 0xdde4f1e0
0x524e678 0xa8ce47dc 0xa813fd76 0x8b58e09f

Inverting 29-step MD5

For MD5 as a training set the first 16 intermediate inverse problems between steps 27-28 were
chosen. The parameterization algorithm was run with seeds 0, 1, and 2 with the time limit
of 24 hours, and it stopped after 4, 3, and 2 hours, respectively. The best result was achieved
on seed 0: the best configuration was updated 8 times, and on the final one the objective
function’s value was 4 minutes (compared to 14 minutes on the default configuration).

The tuning was run one more time starting from the found configuration. This time
the training set contained the last 15 intermediate problems between steps 27-28, and the
problem for 28 steps. The reason was that on these 16 CNFs on the found configuration the
objective function value was 5 hours 27 minutes, that is still reasonable, while on the default
configuration it was 18 hours 37 minutes. The time limit was increased to 3 days, and the
algorithm was run three times with seeds 3, 4, and 5. In all cases the time limit was reached:
the objective function was calculated 584, 698, and 973 times, respectively. The best result
was found with seed 5: the best configuration was updated 8 times, and the final objective
function’s value was 1 hour 30 minutes. Table 5 contains those 16 parameters which changed
their values in the found configuration compared to the default one.

Table 5 The best Kissat’s configuration found for MD5.

Parameter Default value Found value
chronolevels 100 1 000
decay 50 32
definitionticks 1 000 000 100
eliminatebound 16 2
eliminateocclim 2 000 1 000
emaslow 100 000 75 000
minimizedepth 1 000 100
restartmargin 10 20
shrink 3 0
stable 1 2
substituterounds 2 32
subsumeclslim 1 000 10 000
sweepmaxclauses 4 096 2 048
target 1 2
tier2 6 10
vivifytier2 6 5

CP 2024
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The tuned and the default Kissat3 were run on the PC with the time limit of 24 hours
on 32 CNFs: 31 intermediate inverse problems between steps 28-29, and the inverse problem
for 29 steps. The results are presented as a cactus plot in Figure 4. The default version
solved 6 intermediate problems for j of 1, 3, 5, 8, 9, and 10, while the tuned one solved 10
problems for j of 1, 2, 3, 5, 6, 7, 8, 9, 11, and 13. As a result, (28 13/32)-step MD5 was
inverted. The figure clearly shows that the tuned version’s performance is much better.
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Figure 4 Comparison of the default Kissat with its tuned version on intermediate inverse
problems for steps 28-29 of MD5, 1-hash.

On the next stage, intermediate inverse problems with j of 20, 24, and 28 between steps
28-29, as well as the inverse problem for 29 steps were considered. For each problem, at most
180 cubes were generated, a 180-core task was formed, and the tuned Kissat was run on
each subproblem with the time limit of 24 hours on the supercomputer. On the first two
problems solutions were found in 4 and 7 hours, respectively, yet nothing was found for the
remaining two ones. It became clear that the inverse problem for 29 steps is quite hard,
so this problem was split via march_cu into 74 470 cubes using the threshold n = 5493.
These cubes were divided into 10 parts to form 10 7-days 180-core tasks with the time limit
of 15 000 seconds for each subproblem. The first two task were completed with no found
solution, yet in the third task a solution was found in 37 hours. The corresponding preimage
is presented in Table 6.

Table 6 A preimage of 128 1s produced by 29-step MD5-1.

0xe1051a9e 0x48120773 0x996a5457 0xaaa1d815
0x37d8149c 0x5f999c05 0x182ba14b 0xdfff1673
0xc5db0a2f 0x44430b2a 0xa269f5a2 0x69781b85
0x2b7f0939 0xc1ff3c22 0xc55e990f 0x96ba3fb8

Discussion

According to the results, the hypothesis proposed in Section 6 is experimentally confirmed,
and it gives the fourth take away: tuning a state-of-the-art CDCL solver’s parameters
on simple intermediate inverse problems allows faster solving of hard intermediate inverse
problems.
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Two found configurations for SHA-1 and MD5 differ quite a lot, but the following values
exist in both of them: definitionticks=100, minimizedepth=100, restartmargin=20, and
stable=2.

It seems realistic to invert 25-step SHA-1 via the proposed approach, but for 30-step
MD5 it is likely that additional effective algorithmic techniques are required.

Reproducibility

The preimages were hard to find, but their verification via direct computations takes a fraction
of a second. The correctness in case of 24-step SHA-1 was verified via the tool verify-
preimage from Nossum’s repository sha1-sat. As for MD5, it was done by modifying the
reference implementation from [37] written in C. First, padding (see Section 2), as well as all
steps but the first 29 ones must be deleted. Then the preimage should be given as an input.
As a result, 128 1s are produced.

8 Related Work

SAT-based cryptanalysis has been applied to cryptographic hash functions of the MD family
as follows. In [27], practical collision attacks on MD4 and MD5 were performed. In [10],
39-step MD4 was inverted, while for steps 40-43 it was done in [45]. 26-step MD5 was inverted
in [10], while for 27- and 28-step versions it was done in [22, 46]. As for the SHA family, the
situation is as follows. Step-reduced versions of SHA-0, SHA-256, and SHA-3 were inverted
in [22, 17, 34]. 22- and 23-step SHA-1 were inverted in [42, 22]. In [4], a weakened 24-step
SHA-1 was inverted, such that the number of known hash bits was reduced from 160 to
128. In [35], full-step version of SHA-1 was inverted, but most message bits were assigned
randomly, yet in [8] a similar result was achieved for SHA-256. Algebraic fault attacks on
SHA-1 and SHA-256 were proposed in [33]. Collisions for SHA-1 were found in [43].

The aforementioned SAT-based preimage attacks on step-reduced MD5 and SHA-1 are
practical. Also, theoretical preimage attacks on 62-step SHA-1 and full MD5 exist [12, 38].

Recently, Cube-and-Conquer has been successfully used to solve the Boolean Pythagorean
Triples problem [16], the Schur number five problem [15], Lam’s problem [7], and in model
finding [3].

9 Conclusions and Future Work

This paper proposed a new type of intermediate inverse problems between any two steps
(i, i + 1) of a cryptographic hash function from a wide class. First, these problems are useful
to make some progress if i steps can be inverted in reasonable time while the inversion of i + 1
steps is infeasible. Second, the simplest intermediate problems can be used to tune a CDCL
solver so it can cope with previously unattainable problems. Third, if some intermediate
inverse problems are solved, a runtime estimation for inverting i+1 steps can be calculated, so
the corresponding computational resources can be allocated for this purpose. Fourth, in some
cases it is not even needed to invert i + 1 steps directly since solutions of the intermediate
inverse problems can be simultaneously preimages of i + 1 steps.

The main result of the paper is inverting 29-step MD5 and 24-step SHA-1 for the first
time, thus making a clear progress in solving two hard computational problems.

In the future we are going to use more sophisticated parametrization algorithms and
apply the proposed technique to analyze other cryptographic hash functions.

CP 2024
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