
Solving LBBD Master Problems with Constraint
Programming and Domain-Independent Dynamic
Programming
Jiachen Zhang #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

J. Christopher Beck #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Abstract
We investigate using Constraint Programming (CP) and Domain-Independent Dynamic Programming
(DIDP) to solve the master problem in Logic-based Benders Decomposition (LBBD) models, in
particular addressing the challenge of feasibility cut formulation. For CP, we exploit key variable
manipulation, constraint-based expressions, and global constraints to construct three combinatorial
cut encodings. For the state-based DIDP model, we propose two cut encoding approaches: using
additional preconditions of state transitions or adding state constraints. Each of these approaches
can be modeled using integer numeric variables or set variables, resulting in four novel encodings.
We apply the three CP variants and four DIDP variants to simple assembly line balancing problems
with sequence-dependent setup times type-1 (SUALBP-1). Experimental results show all approaches
outperform a mixed-integer programming (MIP) based master problem and the state-of-the-art
monolithic MIP model, with the three CP variants being superior to all of the DIDP approaches.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases constraint programming, domain-independent dynamic programming, logic-
based Benders decomposition, assembly line balancing, sequence-dependent setup

Digital Object Identifier 10.4230/LIPIcs.CP.2024.32

Funding J. Christopher Beck: Natural Sciences and Engineering Research Council of Canada.

1 Introduction

Logic-Based Benders Decomposition (LBBD) is one of the most powerful and convenient
patterns of problem decomposition for solving combinatorial optimization problems [15].
While the most common combination within the Constraint Programming (CP) literature uses
Mixed Integer Programming (MIP) for master problems and CP for subproblems [14], LBBD
is compatible with various modeling and solving techniques. For example, subproblems have
been modeled and solved with Satisfiability Modulo Theories (SMT) [22], Binary Decision
Diagrams [11], and problem-specific algorithms [10, 29]. However, work investigating modeling
and solution methods other than MIP for master problems in LBBD is sporadic [8]. In this
paper, we explore the modeling and solving LBBD master problems with methods different
from MIP.

As a constraint-based formalism, CP can readily accept cuts encoded as linear constraints.
However, linear constraints tend to propagate weakly, resulting in poor master problem
performance. The encoding methods proposed in this paper are more combinatorial and
focus on key decision variables in the global constraints of the master problem CP model.
As CP is competitive with MIP across a number of optimization problems [21], when the
master problem is of the form that is better solved with CP, a CP-based master problem may
outperform a corresponding MIP master problem if a good cut formulation can be achieved.

© Jiachen Zhang and J. Christopher Beck;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jasonzjc@mie.utoronto.ca
https://orcid.org/0000-0002-3305-4983
mailto:jcb@mie.utoronto.ca
https://orcid.org/0000-0002-4656-8908
https://doi.org/10.4230/LIPIcs.CP.2024.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Solving LBBD Master Problems with CP and DIDP

Domain-Independent Dynamic Programming (DIDP) is a recent exact framework to
model and solve combinatorial optimization problems [19, 20]. Its success on well-known
problems motivates us to investigate using DIDP for master problems in the LBBD framework.
Since a DIDP model is defined as a state-transition system, encoding Benders cuts in DIDP
differs fundamentally from the constraint-based encoding in MIP and CP.

As a case study, we use assembly line balancing problems with sequence-dependent setup
times type-1 (SUALBP-1) [9]. The natural decomposition for this problem is to solve the
Simple Assembly Line Balancing Problem type-1 (SALBP-1) as the master problem and to
solve a traveling salesman problem with precedence constraints as a subproblem. Previous
work shows that both CP and DIDP can outperform MIP for SALBP-1 [21], thus this choice
allows us to test whether cuts can be formulated to maintain this advantage.

Our contributions are summarized as follows.
1. We formulate three alternative representations of feasibility cuts for SUALBP-1 for a

CP-based master problem.
2. We propose four approaches to encode Benders feasibility cuts in a DIDP model of LBBD

master problems based on using integer or set variables to encode preconditions or state
constraints. We apply these approaches to SUALBP-1 and develop four feasibility cut
encodings for a DIDP-based master problem.

3. We obtain superior results for SUALBP-1 in solving master problems with CP and DIDP
rather than MIP, with CP outperforming DIDP. We provide statistical analysis and
insights on our seven novel cut formulations.

This paper is organized as follows. The background is covered in Section 2. The three
novel CP feasibility cut formulations for SUALBP-1 are introduced in Section 3. The four
encoding methods of Benders feasibility cuts in DIDP and their instantiations for SUALBP-1
are presented in Section 4. The experimental results are presented in Section 5. We discuss
the proposed approaches and results in Section 6, followed by our conclusions.

2 Background

2.1 Logic-Based Benders Decomposition
Logic-Based Benders Decomposition (LBBD) applies to problems that can be formulated as

min
x,y

{f(x, y)|C(x, y), x ∈ Dx, y ∈ Dy} (1)

where x and y are decision variables in the domains Dx and Dy, while f(x, y) and C(x, y)
represent the objective function and a set of constraints for these variables, respectively [13].
The variables are divided into two groups and, once some of the variables are fixed by solving
a master problem and setting x = x, the remaining subproblem is defined, often in the form
of multiple independent subproblems. The subproblem (SP) has the form

SP (x) = min
y

{f(x, y)|C(x, y), y ∈ Dy}. (2)

LBBD analyzes the SP solution to infer a function Bx(x) that provides a lower bound on
f(x, y) for any given x ∈ Dx. The bound is sharp for x = x, i.e., Bx(x) = SP (x) [15].

Each iteration of LBBD begins by solving a Master Problem (MP):

MP (X) = min
x,β

{β|β ≥ Bx(x), ∀x ∈ X, x ∈ Dx} (3)

where the inequalities β ≥ Bx(x) are Benders cuts obtained from the subproblem solutions
given x = x. X is the set of master problem solutions and is usually empty initially.

J. Zhang and J. C. Beck 32:3

Defining ϕ∗ as the optimal value of the original problem (1), the optimal MP value MP (X)
is a lower bound on ϕ∗. If x is an optimal MP solution, the corresponding subproblem is
then solved to obtain SP (x) as an upper bound on ϕ∗, and a Benders cut β ≥ Bx(x) for the
master problem, with x added to X. The process repeats until the lower and upper bounds
converge, i.e., until MP (X) = minx∈X SP (x). The convergence is guaranteed after a finite
number of iterations, if Dx is finite [13].

In general, there are two LBBD variants, distinguished by subproblem types. When
a subproblem is an optimization problem, we deduce a lower bound on ϕ∗ in the form of
a Benders optimality cut [31]. When a subproblem is a feasibility problem, a set of MP
solutions are pruned by the corresponding Benders feasibility cut [1] according to the SP
solution associated with x. In this work, we focus on encoding Benders feasibility cuts.

2.2 Domain-Independent Dynamic Programming
A DIDP model is described by Dynamic Programming Description Language (DyPDL), a
solver-independent formalism to define a dynamic programming (DP) model [20]. In DyPDL,
a problem is represented by states and transitions between states. A solution of the problem
corresponds to a sequence of transitions satisfying particular conditions.

A DyPDL model is a tuple ⟨V, S0, T , B, C, h⟩, where V is the set of state variables, S0

is a state called the target state, T is the set of transitions, B is the set of base cases, C is
the set of state constraints, and h is the set of dual bounds. A state variable is either an
element, set, or numeric variable. A numeric state variable v may have a preference such as
less (more), i.e., a state having smaller (larger) v dominates another state if the other state
variables have the same value in the two states. Such a variable is called a resource variable.

Given a set of state variables V = {v1, ..., vn}, a state is a tuple of values S = (d1, ..., dn)
where di ∈ Dvi

for i = 1, ..., n, i.e., a state is a complete assignment to state variables. We
denote the value di of variable vi in state S by S[vi]. Intuitively, the target state is the start
of the state transition system and a base state is a goal, i.e., the end of the state transition
system. State constraints are relations on state variables that must be satisfied by all states.

A transition τ is a 4-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ where effτ is the set of effects,
costτ is the cost, preτ is the set of preconditions, and forcedτ ∈ {⊤, ⊥}, where ⊤ represents
true and ⊥ represents false. The preconditions of a transition define when we can use it
while the effects of a transition define what the state variables become if the transition
fires. For detailed DIDP models of various optimization problems, please see existing DIDP
papers [20, 21].

2.3 SUALBP-1
The Simple Assembly Line Balancing Problem (SALBP) is a well-studied production planning
problem [5]. As setup operations such as tool changes, curing, or cooling processes are often
required between consecutive tasks in real production lines [18], SUALBP incorporates setup
times into SALBP [2], as shown in Fig. 1.

Problem Definition

SUALBP-1 consists of n assembly tasks, partially ordered with precedence constraints,
that require processing on m ordered assembly stations. The tasks on a machine must all
sequentially execute within the cycle time c. In SUALBP-1, the cycle time c is fixed and
the objective is to minimize the number of stations m. Though all stations can perform all
assembly tasks, if a task is assigned to station j, all its successors as defined by the precedence

CP 2024

32:4 Solving LBBD Master Problems with CP and DIDP

Figure 1 Example of SUALBP-1.

constraints must be assigned to the same or subsequent stations (i.e., j, j + 1, j + 2, ..., m).
Tasks assigned to the same station must also be sequenced to satisfy the precedence constraints,
if any. The deterministic processing time of a task is provided a priori. However, the setup
before a task (forward setup) is dependent upon the previous task in the processing sequence
of the station it is assigned to. There is also a sequence-dependent setup (backward setup)
from the last task on a machine to the first task on the same machine to model the setup
required between the end of a cycle and the start of the next one.

The setups are not symmetric, i.e., the setup time from task i to j might be different from
that from task j to i. Nevertheless, the setups satisfy the triangle inequality. The decisions
to be made for SUALBP-1 are (i) the assignment of tasks to stations; and (ii) the sequence
of the tasks assigned to each station. We use the notation proposed by Esmaeilbeigi et al. [9],
as shown in the Table 1 for SUALBP-1. To obtain all the parameters in the table, we adapt
the preprocessing techniques in the literature [20, 9, 31].

SUALBP-1 has been solved with a number of approaches including MIP [9] and heurist-
ics [25]. The state-of-the-art MIP model is the Second Station-Based Formulation (SSBF) [9]
defined in Appendix A. The model uses two-indexed binary variables to encode task assign-
ment, three-indexed binary variables to represent the precedence relations of pairs of tasks
on a station, and auxiliary variables to help express the objective and constraints.

There is no existing LBBD approach specifically designed for SUALBP-1. The closest
work is an LBBD algorithm for mixed-model assembly line balancing problem with sequence-
dependent setups [1] that can be adapted (with significant simplification) to SUALBP-1. We
discuss this model in Section 5.

In our parallel work currently under review [30], new state-of-the-art results are found
with a monolithic DIDP model. Since our focus is on cut encoding in LBBD, we return to
these results in the discussion.

Table 1 Notation and definition for SUALBP-1 [9].

Notation Definition
i, j ∈ V index and set of tasks
k ∈ K index and set of stations
ti execution time for task i ∈ V

Pi (P ∗
i) set of direct (all) predecessors of task i ∈ V

Si (S∗
i) set of direct (all) successors of task i ∈ V

c the cycle time
m (m) upper (lower) bound on the number of stations
τij (µij) forward (backward) setup times from task i ∈ V to task j

τ i (µ
i
) the smallest forward (backward) setup time from any task to task i ∈ V

ti a lower bound of the time contribution by task i, i.e., ti = ti + min(τ i, µ
i
)

J. Zhang and J. C. Beck 32:5

3 CP-LBBD for SUALBP-1

In this section, we present three LBBD formulations for SUALBP-1 with CP master problems
and Benders feasibility cuts.

3.1 CP Master Problem
SUALBP-1 fixes the cycle time (maximum station time) and seeks to minimize the number
of stations used. In the LBBD framework, we decompose the problem to an assignment
master problem and a scheduling subproblem for each station.

In all our approaches, the master problem assigns tasks to stations, minimizing the
number of stations used, and ensuring that the precedence constraints between tasks and the
cycle time limit are not violated. Without any Benders cuts, this master problem is identical
to the Simple Assembly Line Balancing Problem type-1 (SALBP-1) [4].

For SALBP-1, Kuroiwa and Beck [20] improved the CP model proposed by Bukchin
and Raviv [6] by using Pack global constraint. Our models differ from theirs in two ways:
(1) ti is replaced by ti for task i to model a subproblem relaxation in the master problem
and (2) three different combinatorial formulations of Benders feasibility cuts are used, one
formulation in each model.

We define Ei as a lower bound on the number of stations required to schedule task i, Li

as a lower bound on the number of stations between the station of task i and the last station,
inclusive, and dij as a lower bound on the number of stations between the stations of tasks i

and j, inclusive:

Ei =
⌈ ti +

∑
j∈P ∗

i
tj

c

⌉
, Li =

⌊ ti − 1 +
∑

j∈S∗
i

tj

c

⌋
, dij =

⌈ ti + tj − 1 +
∑

v∈S∗
i

∩P ∗
j

tv

c

⌉
.

Let z be an integer decision variable representing the number of stations, xi be an integer
decision variable for the station that task i is assigned to, and yk be an integer decision
variable for the sum of the lower bound time contribution of tasks scheduled in station k.
Then the CP model for the master problem, CP-MP, is as follows:

min z (4a)
s.t. Pack({yk|k ∈ K}, {xi|i ∈ V }, {ti|i ∈ V }), (4b)

0 ≤ yk ≤ c, ∀k ∈ K, (4c)
Ei − 1 ≤ xi ≤ z − 1 − Li, ∀i ∈ V, (4d)
xi + dij ≤ xj , ∀j ∈ V, ∀i ∈ P ∗

j , ∄v ∈ S∗
i ∩ P ∗

j : dij ≤ div + dvj . (4e)

The Pack global constraint [27] ensures that for tasks “packed” onto stations, yk =∑
i∈V,xi=k ti. Constraints (4c) and (4d) state the domains of yk and xi. Constraint (4b) and

(4c) together ensure that the total task time on each station does not exceed the cycle time.
Constraint (4e) is an enhanced version of the precedence constraint using dij .

3.2 CP Formulations for Benders Feasibility Cuts
For SUALBP-1, we develop three combinatorial CP formulations for Benders feasibility cuts
by using key variable manipulation, a Count_Different expression, and a Pack constraint.

Let J be the set of subproblems leading to Benders cuts. Consider subproblem j ∈ J
corresponding to station k, let Ij be the set of tasks assigned to the station that cannot all be
scheduled within the cycle time, then the j-th Benders feasibility cut based on manipulation
of the key decision variables, i.e., the station assignment specified by xi, is as follows:

CP 2024

32:6 Solving LBBD Master Problems with CP and DIDP

∑
i∈Ij

(xi = k) ≤ |Ij | − 1, ∀k ∈ K. (5)

Chu and Xia defined a valid Benders cut as a logical expression having two properties [7]:
Property 1: The cut must exclude the current MP solution if it is not globally feasible.
Property 2: The cut must not remove any globally feasible solutions.

Property 1 ensures finite convergence if the MP variables have finite domains. Property 2
assures optimality since the cut never removes globally feasible solutions.

▶ Proposition 1. Cut (5) is valid.

Proof. As xi = k specifies the station assignment and there are |Ij | tasks in Ij , the cut
prevents the tasks in Ij from being all assigned to the same station and satisfies Property 1.
Since the solutions removed by this encoding are all infeasible globally with the set of tasks
Ij assigned to any station, Property 2 is satisfied. ◀

The constraint-based expression Count_Different takes a list of (more than one) variables
as input and returns the number of distinct values of these variables [17]. The j-th cut based
on Count_Different is as follows:

Count_Different({xi|i ∈ Ij}) ≥ 2. (6)

▶ Proposition 2. Cut (6) is valid.

Proof. This constraint guarantees that the number of distinct values in {xi|i ∈ Ij} is at
least 2 and implies (5). Thus, Properties 1 and 2 are satisfied. ◀

The j-th cut based on the global constraint Pack is as follows:

Pack({wk|k ∈ K}, {xi|i ∈ Ij}, {1i|i ∈ Ij}), (7)

where 0 ≤ wk ≤ |Ij | − 1 and 1i = 1, ∀i ∈ Ij .

▶ Proposition 3. Cut (7) is valid.

Proof. Since 1i has unit length and wk ≤ |Ij |−1, this cut assures that no more than |Ij |−1
tasks in Ij are assigned to any station and satisfies Property 1. Similar to the proof for
Proposition 1, Property 2 is satisfied. ◀

The CP-LBBD models with cut (5), (6), and (7) are referred to as CP-LBBDa, CP-LBBDc,
and CP-LBBDp, corresponding to “assignment”, “count”, and “pack”, respectively.

4 DIDP-LBBD for SUALBP-1

In this section, we present the DIDP model for the master problem for SUALBP-1, four
general encoding methods for Benders feasibility cuts, and their instantiation to the Benders
cuts for SUALBP-1.

4.1 Master Problem
As stated in Section 3.1, the master problem is equivalent to the SALBP-1. Our DIDP
formulations for the master problem (with Benders cuts) of SUALBP-1 are inspired by an
existing DIDP model for SALBP-1 [20], which is defined as follows.

J. Zhang and J. C. Beck 32:7

State variables.
U : set variable for unscheduled tasks. In the target state (i.e., the initial state), U = V .
r: integer resource variable for the remaining time (cycle time minus used time) of the
current station. In the target state, r = 0. A larger r is better.

Base case. A base case is a set of conditions to terminate the recursion. The base case of
the DIDP model is U = ∅.

Transitions.
Assigni = ⟨U → U\{i} ∧ r → r − ti, 0, i ∈ U ∧ ti ≤ r ∧ U ∩ P ∗

i = ∅, ⊥⟩: assign task
i to the current station.
Open = ⟨r → c, 1, (i /∈ U ∨ r < ti ∨ U ∩ P ∗

i ̸= ∅) | ∀i ∈ V, ⊥⟩: open a new station.

Note that we use ti instead of ti in the master problem to estimate the setup times that
are exactly calculated in the subproblems.

Theoretically, the transition Open can be used at any state. However, a state with a
closed station that can accommodate an unscheduled task is dominated by an otherwise
identical one that schedules such a task. Thus, a dominance rule, stating that a station
can only be opened if no task can be assigned to the current station, is encoded in the
preconditions for transition Open. This dominance rule plays an important role in the
efficiency of the DIDP model [20] but presents a complication for our cut formulations (see
Section 4.3.2).

Recursive function. We use f(U, r) to represent the cost of a state. Let U1 = {i ∈ U | r ≥
ti ∧ U ∩ P ∗

i = ∅} be the set of tasks with all their predecessors scheduled that can fit on the
current station. The recursive function of the DIDP model is as follows:

compute f(V, 0) (8a)

f(U, r) =

0 if U = ∅, (i)
1 + f(U, c) else if U1 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti) else, (iii)

(8b)

f(U, r) ≤ f(U, r
′
), if r ≥ r

′
, (8c)

f(U, r) ≥ max

⌈

∑
i∈U

ti−r

c ⌉, (i)∑
i∈U w2

i + ⌈
∑

i∈U w
′2
i − l2⌉, (ii)

⌈
∑

i∈U w3
i − l3⌉. (iii)

(8d)

The term (8a) is to compute the cost of the target state. Equation (8b) is the main
recursion of the DIDP model. Specifically, (8b-i) refers to the base case, while (8b-ii)
corresponds to opening a new station and (8b-iii) refers to assigning task i to the current
station. Inequality (8c) formulates state domination due to the resource variable: if other

Table 2 Numeric constants for calculating a knapsack-based dual bound.

ti (0, c/2) c/2 (c/2, c] ti (0, c/3) c/3 (c/3, c/2) 2c/3 (2c/3, c]

w2
i 0 0 1 w3

i 0 1/3 1/2 2/3 1
w

′2
i 0 1/2 0

CP 2024

32:8 Solving LBBD Master Problems with CP and DIDP

variables are equal, a state with a larger remaining time dominates. (8d-i), (8d-ii), and (8d-iii)
are valid dual bounds proposed by Scholl and Klein [26] with numeric constants w2, w

′2, w3

indexed by a task i and depending on ti, as shown in Table 2.

4.2 Feasibility Cut Encoding in DIDP-LBBD
Let x be the decision variables in the master problem and let x be the optimal solution
of the latest MP iteration. Let Ij be the set of MP variable indices that appear in the
j-th subproblem, then the Benders feasibility cut obtained from this subproblem is of the
following form:∑

i∈Ij

(xi = xi) ≤ |Ij | − 1. (9)

This form is often formulated as a linear constraint in the MIP master problem and we call
it the j-th cut.

In DIDP, however, a cut of form (9) cannot be directly represented with state variables.
Thus, instead of adding only a constraint to the DIDP model, we add a new state variable
for each cut, with relevant transitions updating the variable value. New preconditions or
state constraints are also added.

4.2.1 Counting-based Encoding
Our first two encoding methods are based on integer numeric variables in DIDP. Let gj be
an integer numeric variable that counts the active variable-value pairs in the left-hand side
(LHS) of the cut (9), i.e., gj =

∑
i∈Ij (xi = xi). In the target state, the value of gj is 0. Let

F j be the function that updates the value of gj according to transitions. If the effects effτ

of transition τ imply that xi = xi for some i ∈ Ij and xk ̸= xk for some k ∈ Ij , we have
F j(τ) = |Uj

τ | − |Dj
τ |, where U j

τ (Dj
τ) is the set of the variable indices of the variable-value

pairs that are changed from inactive (active) to active (inactive) by transition τ with respect
to the j-th cut, with i ∈ U j

τ and k ∈ Dj
τ . Let S be the state where the preconditions of

transition τ are satisfied, and let S′ = S[[τ]] be the state reachable from S by τ , we have
S′[gj] = S[gj] + F j(τ).

In practice, the implementation of F depends on the problem and we define the encoding
for SUALBP-1 later in Section 4.3. With the LHS of cut (9) modeled, we use preconditions
or state constraints to model the right-hand side (RHS).

Precondition-based Encoding. Our first method for modeling the RHS of (9) is based on
preconditions. Specifically, for the cut with the form (9), we add a precondition for each
transition in the DIDP model that can modify the LHS variables as follows:

S[gj] + F j(τ) ≤ |Ij | − 1, (10)

where τ is the transition. If the precondition is violated, the transition τ is not permitted.

State Constraint-based Encoding. Our second method for modeling the RHS of (9) is
based on state constraints that need to be satisfied by all states. The state constraint for the
j-th cut is as follows:

S[gj] ≤ |Ij | − 1, (11)

where S is any state. A state constraint is evaluated after a state is created but a precondition
would prevent the state from being created.

J. Zhang and J. C. Beck 32:9

4.2.2 Set-based Encoding
Our second two encoding methods are based on set variables in DIDP. Let Ωj be a set
variable that keeps track of the active variable-value pairs in the LHS of the cut (9). More
specifically, the set variable Ωj contains an element ei iff xi = xi is satisfied in a state. In
the target state, Ωj = ∅. Let Oj be the function that updates the value of Ωj according
to transitions. If the effects effτ of transition τ imply that xi = xi for some i ∈ Ij and
xk ̸= xk for some k ∈ Ij , let U j

τ be the set containing all such i and Dj
τ be the set containing

all such k, we have Oj(τ) = (S[Ωj] ∪ Uj
τ)\Dj

τ . Let S be a state and S′ = S[[τ]] be the state
reachable from S by τ , we have S′[Ωj] = Oj(τ). Similar to the counting-based encoding, we
use preconditions or state constraints to model the RHS.

Precondition-based Encoding. For the cut (9), we add a precondition for each transition
that can modify Oj(τ) in the DIDP model as follows:

Ij ⊈ Oj(τ), (12)

where τ is the transition. Oj(τ) gives the value of Ωj after the transition and may contain
items that are not in Ij . The precondition prevents Ωj from including all the items in Ij .

State Constraint-based Encoding. The state constraint for the j-th cut is as follows:

Ij ⊈ S[Ωj], (13)

where S is any state.

4.2.3 Weakness of the DIDP Encoding
There is a fundamental weakness in the aforementioned DIDP encodings compared to
constraint-based models: adding a cut expands the search space. All four DIDP encoding
methods rely on adding a new state variable to the MP to keep track of the changes to the
LHS of (9) caused by transitions. After adding a new state variable corresponding to the
j-th cut, the original state space size is multiplied by the cardinality of the Ij . We return to
this point in Section 6.

4.3 Encoding DIDP-LBBD Cuts for SUALBP-1
The formulations above can be used for any cut of the form (9). Here we formally present
four cut formulations for SUALBP-1.

4.3.1 Counting-based Precondition Encoding
For cut j ∈ J , recall that Ij is the set of tasks assigned to the station that cannot be
scheduled within the cycle time. Define function F j such that F j(i) = 1 if i ∈ Ij and 0
otherwise. In order to encode this cut, we add a new state variable gj with its value being 0
at the target state. We then modify the recursive formulation (8b) as follows.

f(U, r, {gj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {0 | ∀j ∈ J}) else if U2 = ∅, (ii)
mini∈U2 f(U\{i}, r − ti, {gj + F j(i) | ∀j ∈ J}) else. (iii)

(14)

where U2 = {i ∈ U | r ≥ ti ∧ U ∩ P ∗
i = ∅ ∧ (∀j ∈ J , gj + F j(i) ≤ |Ij | − 1)}.

CP 2024

32:10 Solving LBBD Master Problems with CP and DIDP

▶ Proposition 4. The counting-based precondition encoding is valid.

Proof. For any cut j ∈ J , gj counts the number of variable-value pairs that appear in the
current station. With transition Open, the current station changes to the next station and
gj = 0, as shown in (14-ii). As shown in (14-iii), with transition Assigni for any i, since
F j is non-negative and gj + F j(i) ≤ |Ij | − 1 is the precondition stated in U2, we have
S[gj] ≤ |Ij | − 1 at any state S of the DIDP model. This guarantees that the same set of
tasks are never assigned to the same station and satisfies Property 1. Since the solutions
removed by this encoding are the solutions with the set of tasks Ij assigned to any station,
they are all infeasible globally as the task processing times and setup times are independent
of stations, and thus Property 2 is satisfied. ◀

4.3.2 Counting-based State Constraint Encoding
We keep the modified effects and use state constraints instead of preconditions to enforce the
logic of feasibility cuts. The recursive formulation (8b) becomes:

f(U, r, {gj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {0 | ∀j ∈ J}) else if U2 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti, {gj + F j(i) | ∀j ∈ J}) else if U1 ̸= ∅. (iii)

(15)

In (15-iii), there is no precondition preventing a task assignment that violates Benders cut.
Instead, state constraints are added to prune the resulting states as follows:

gj ≤ |Ij | − 1, ∀j ∈ J . (16)

However, as noted, there is an interaction between the cut and the dominance rule associated
with the preconditions of transition Open: if we maintain the original precondition on Open

(i.e., U1 = ∅), then a state where only tasks that violate the cut can be scheduled will result
in a dead-end. The transitions satisfying (15-iii) will fire and the resulting states will all
violate the state constraints. Thus, no state is reachable from the current state. However,
a new station should be opened in the state when no tasks can be scheduled. To ensure
the correctness of the model, either we remove the dominance and allow Open at any time,
or we maintain it by allowing Open when no tasks, including those violating cuts, can be
scheduled (the new preconditions become U2 = ∅). We select the latter option to maintain
the efficiency of the proposed DIDP model.

▶ Proposition 5. The counting-based state constraint encoding is valid.

Proof. Similar to the proof for Proposition 4, we have S[gj] ≤ |Ij | − 1 at any state S of the
DIDP model. Property 1 and Property 2 are hence satisfied. ◀

4.3.3 Set-based Precondition Encoding
To encode this cut, we add a new state variable Ωj with its value being ∅ at the target state.
We then modify the recursive formulation (8b) in the DIDP model of the master problem to
address all the Benders feasibility cuts:

f(U, r, {Ωj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {∅ | ∀j ∈ J}) else if U3 = ∅, (ii)
mini∈U3 f(U\{i}, r − ti, {Ωj ∪ {i} | ∀j ∈ J}) else. (iii)

(17)

where U3 = {i ∈ U | r ≥ ti ∧ U ∩ P ∗
i = ∅ ∧ (∀j ∈ J , Ij ⊈ Ωj ∪ {i})}.

J. Zhang and J. C. Beck 32:11

▶ Proposition 6. The set-based precondition encoding is valid.

Proof. For any cut j ∈ J , Ωj keeps track of the variable-value pairs that appear in the
current station. With transition Open, the current station changes to the next station and
Ωj = ∅, as shown in (17-ii). As shown in (17-iii), with transition Assigni for any i, since the
effects never remove any element from Ωj and Ij ⊈ Ωj ∪ {i} is the precondition stated in U3,
we have Ij ⊈ S[Ωj] at any state S of the DIDP model. This guarantees that the same set of
tasks would never appear in the same station and satisfies Property 1. Similar to the proof
for Proposition 4, Property 2 is satisfied. ◀

4.3.4 Set-based State Constraint Encoding
The recursive formulation (8b) becomes:

f(U, r, {Ωj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {∅ | ∀j ∈ J}) else if U3 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti, {Ωj ∪ {i} | ∀j ∈ J}) else if U1 ̸= ∅. (iii)

(18)

The added state constraint is:

Ij ⊈ Ωj , ∀j ∈ J . (19)

Similar to (15), we maintain the dominance specified by the preconditions of the transition
Open by inserting the case violating state constraints (19) into the preconditions (the new
preconditions become U3 = ∅).

▶ Proposition 7. The set-based state constraint encoding is valid.

Proof. Similar to the proof for Proposition 6, Property 1 and Property 2 are satisfied. ◀

The DIDP-LBBD models with recursive formulation (14), (15), (17), and (18) re-
placing (8b) are referred as DIDP-LBBDcP re, DIDP-LBBDcCon, DIDP-LBBDsP re, and
DIDP-LBBDsCon, respectively, where “c” and “s” correspond to “count” and “set” and “Pre”
and “Con” map to “precondition” and “constraint”.

5 Experimental Evaluation

In this section, we compare the performance of our CP-LBBD, DIDP-LBBD, and MIP-LBBD
models against the state-of-the-art MIP model [9] (see Appendix A) on the 788 instances of
the SBF2 data set [25].1

5.1 MIP-LBBD Master Problem
We use a MIP-LBBD model as the baseline LBBD approach. For the master problem, instead
of a simplified MIP formulation proposed by Akpinar et. al [1] we use the state-of-the-art
NF4 MIP formulation [23] for SALBP-1 and replace ti by ti to express the subproblem

1 https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/

CP 2024

https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/

32:12 Solving LBBD Master Problems with CP and DIDP

relaxation. For the Benders cuts, linear constraints [1] are directly applied. As Ij is the
set of MP variable indices that appear in the j-th subproblem, the corresponding Benders
feasibility cut in the MIP form is as follows:∑

i∈Ij

xik ≤ |Ij | − 1, ∀k ∈ K, (20)

where xik is the decision variable used in the MP MIP formulation and xik = 1 if task i is
assigned to station k and 0 otherwise.

5.2 Solving the Subproblem
In the LBBD framework for SUALBP-1, the MP solution assigns tasks to each station.
Thus, each subproblem is a constraint satisfaction problem to find a schedule of the tasks,
considering the precedence relation between tasks, the sequence-dependent setup times,
and the cycle time. The task processing times are not included in the subproblem as they
are constant after the task assignment is given; the sum of processing times is therefore
subtracted from the cycle time when evaluating feasibility. The subproblem has the structure
of the Travelling Salesman Problem (TSP) with precedence constraints. For this constrained
TSP variant, our preliminary investigations showed that DIDP outperforms CP and MIP
and we hence use DIDP as the sole subproblem solver. The state variables, base cases, and
the recursive function are as follows.

State variables. For station j, the DIDP model has the following state variables:
U : set variable for unscheduled tasks. In the target state, U = Ij .
s: element variable for the current task, with its value in Ij . In the target state, s = ds,
where ds is a dummy task with setup times from and to any other tasks set to zero.
f : element variable for the first task, with its value in Ij . In the target state, f = ds.

Base cases. The base case of the DIDP model is: U = ∅ ∧ s = ds.

Recursive function. We use V(U, s, f) to represent the cost of a state. Let P j∗
i be the set

of predecessors of task i on station j. Let U4 = {i ∈ Ij | Ij ∩ P j∗
i = ∅}.

compute V(Ij , ds, ds) (21a)

V(U, s, f) =

0 if U = ∅ ∧ s = ds, (i)
µsf + V(U, ds, ds) else if U = ∅ ∧ s ̸= ds, (ii)
µsi + mini∈U4 V(U\{i}, i, f) else if U4 ̸= ∅ ∧ s ̸= ds, (iii)
mini∈U4 V(U\{i}, i, i) else, (iv)

(21b)

V(U, s, f) ≥ max
{

µ
f

+
∑

i∈U τ i, if s = ds, (i)
0, else. (ii)

(21c)

Case (21b-i) refers to the base case, while (21b-iv) corresponds to assigning the first task
to the current empty station. Case (21b-iii) represents assigning the next task to the current
station and adding the corresponding setup time. (21b-ii) represents closing the station and
adding the setup time to the first task. (21c) is the dual bound [20].

Although this DIDP model is designed for optimization problems, since some DIDP
solvers support anytime solving [21], by setting a primal bound, the search can be stopped
after a solution satisfying all the constraints and having a total cost no greater than the
cycle time minus the total processing time is found.

J. Zhang and J. C. Beck 32:13

Figure 2 Ratio of instances solved and proved optimal over time for SUALBP-1.

5.3 Experiment Setting
We use the SBF2 data set proposed by Zohali et al. [31] and follow their clustering of the
instances into four classes:

Data set A: small (132 instances) with up to 25 tasks.
Data set B: medium (140 instances) with 28 to 35 tasks.
Data set C: large (188 instances) with 45 to 70 tasks.
Data set D: extra-large (328 instances) with 75 to 111 tasks.

Each class has four different settings according to a parameter α that specifies the ratio of
the average setup time to the average task processing time: 0.25, 0.50, 0.75, and 1.00.

For the DIDP models, we use the state-of-the-art solver based on CABS [21] in didp-rs
v0.7.3.2 For the CP models, we use CP Optimizer 22.1.1 [17]. For the MIP models, we use
Gurobi 11.0.1 [12]. All the experiments are implemented in Python 3.10.11. Each instance is
run for 1800 seconds on a single thread on a Ubuntu 22.04.2 LTS machine with Intel Core i7
CPU and 16 GB memory.

5.4 Experiment Results
The results on SUALBP-1 are shown in Fig. 2.3 Better performance is indicated by curves
closer to the top left corner of the graph. First note that all of our proposed techniques
outperform the current state of the art. CP-LBBDa achieves the best performance at the
time limit with 69% of instances proved to optimality. CP-LBBDc performs best before 1500
seconds. In particular, CP-LBBDc achieves 63% in 300 seconds while CP-LBBDa is two
times slower to achieve that level. This performance difference indicates the speedup brought
by the constraint-based expression Count_Different. CP-LBBDp, though trailing the other
two CP-LBBD models significantly, performs better than DIDP-LBBD, MIP-LBBD, and
MIP approaches. These results imply that direct manipulation of core decision variables xi

in the CP model is advantageous compared to global constraints, especially when using a
global constraint requires extra variables such as wk in the Pack constraint.

2 https://didp.ai/
3 Disaggregated results for datasets A, B, C, and D are presented in Fig. 7-10 in Appendix B.

CP 2024

https://didp.ai/

32:14 Solving LBBD Master Problems with CP and DIDP

Figure 3 Mean cumulative number of cuts
added over iterations. Figure 4 Mean MP runtime over iterations.

The DIDP-LBBD models find and prove optimal solutions for more instances in a shorter
computation time than MIP-LBBD and MIP. In 60 seconds, all four DIDP-LBBD models find
and prove optimality on 50% of the instances. MIP cannot achieve the same performance in
1100 seconds. At 1800 seconds, DIDP-LBBD has found and proved optimality for around 60%
of the problem instances compared to 57% and 54% for MIP-LBBD and MIP, respectively.

Focusing on the LBBD models, the relative rankings are: CP-LBBD, DIDP-LBBD, and
MIP-LBBD, which demonstrates the promise of CP-LBBD and DIDP-LBBD. Though the
three CP-LBBD variants differ substantially in Fig. 2, there is no significant performance
difference among the four DIDP-LBBD variants. Note that the subproblem solve time is
very short, e.g., 0.001s.

5.5 Algorithm Analysis

For the SBF2 data set, 394 of the 788 instances are proved optimal by each of the eight
LBBD models. The mean cumulative numbers of cuts added for the 394 instances are shown
in Fig. 3.4 We can see that DIDP-LBBD models have significantly fewer iterations and cuts
than CP-LBBD and MIP-LBBD. We believe that this difference is due to the existence of
multiple optimal solutions of the master problem: different models find different optimal
solutions and different Benders cuts, leading to different numbers of MP runs. While CP and
DIDP models require many fewer iterations on average, we found no evidence that this is a
systematic difference but rather the arbitrary impact of which optimal solutions are found.

The mean MP runtimes of the 394 instances over iterations for all the eight LBBD models
are shown in Fig. 4. CP-LBBD and MIP-LBBD have relatively consistent MP runtime
across different iterations. For DIDP-LBBD models, although starting from small magnitude,
the MP runtimes increase drastically as the iterations increase. As discussed in Section 4.2.3,
with more state variables added to the DIDP model of the master problem, the state space
of the model is enlarged and needs more search effort to find and prove optimality, hence
the MPs become more time-consuming to solve. This performance degradation can partially
explain the worse results of DIDP-LBBD compared to CP-LBBD.

4 The behaviors of DIDP-LBBDcP re and DIDP-LBBDcCon are exactly the same in terms of cuts added.
The behaviors of DIDP-LBBDsP re and DIDP-LBBDsCon are the same, too. Thus, their plots overlap.

J. Zhang and J. C. Beck 32:15

(a) CP-LBBDc and CP-LBBDa. (b) CP-LBBDp and CP-LBBDa.

Figure 5 Number of nodes of the MPs in CP-LBBD models for the SBF2 dataset.

(a) CP-LBBDc and CP-LBBDa. (b) CP-LBBDp and CP-LBBDa.

Figure 6 Runtime of the MPs in CP-LBBD models for the SBF2 dataset.

In order to investigate the differences among the three CP-LBBD models, for all 788
instances in the SBF2 dataset, we added the cuts generated by CP-LBBDa model at each
MP iteration to all models, in the corresponding cut forms, with a time limit of 3600
seconds. Thus for each MP iteration, the three models solve identical problems except for
the differences in the form of the cuts.

Fig. 5 and 6 show scatter plots for the number of nodes and the runtimes. All four
graphs show a substantial cluster in the lower-left corner demonstrating broadly similar
performance. However, both CP-LBBDc and, to a greater extent, CP-LBBDp exhibit a
number of instances with a large number of nodes and large runtimes when CP-LBBDa has
relatively small values of these measures.

These graphs are consistent with the overall results of the CP models in Figure 2. In
terms of the number of nodes generated, the graphs suggest that the difference comes less
from a systematic performance difference among the models and more from a small number
of outliers with large node counts for CP-LBBDc and CP-LBBDp. In contrast, the runtime

CP 2024

32:16 Solving LBBD Master Problems with CP and DIDP

graphs for CP-LBBDp and, to a lesser extent, CP-LBBDc show vertical clusters of instances
with relatively low CP-LBBDa runtimes implying that the higher computational effort of
the global constraint based models does not pay off in terms of performance.

A different perspective on the results in Fig. 5 and 6, is shown by the runtime vs. number
of nodes of the MPs in three CP-LBBD models in Fig. 11 in Appendix C. Since the three
models solve identical problems except for cut forms, the results reflect the runtime each of
the three CP-LBBD models needs for exploring the same number of nodes and also coincide
with the performance rankings of CP-LBBD models from a regression perspective.

6 Discussion

Global constraints in CP can increase domain propagation and the overall solving performance
but have a limit, after which the improved propagation, if any, is not worth the effort
required [24]. This dynamic may be observed by the worse results of CP-LBBDp compared
to CP-LBBDa and CP-LBBDc. By contrast, CP-LBBDa and CP-LBBDc manipulate the
main decision variables more directly while not inducing much larger constraint models.

The validity of the proposed four DIDP cut encoding methods depends on the effective
extraction of the useful information, i.e., the change of the variable-value pairs in the Benders
cuts. Such information is often hidden in the transitions of DIDP models. Thus, it is difficult
to create a cut encoding using the existing state variables. An important question is to
understand if this state-space expansion is an inherent weakness for DIDP and, indeed,
state-based models in general. There exists similar work examining the addition of trajectory
constraints to AI planning problems which similarly expand the state space [16, 3].

In a parallel work, a monolithic DIDP model for SUALBP-1 performs better than all the
LBBD models presented here [30]. This is a surprising result as the state of the art for similar
problems with sequence-dependent setup times is typically based on decomposition [31, 28].
Further research is required to understand why DIDP models for SUALBP-1 do not follow
this pattern. We speculate that the relaxation of the setup time in the MP hurts performance
compared to the monolithic DIDP model because setup time can be directly accounted for
in the transitions.

7 Conclusions

In this paper, we proposed novel logic-based Benders decomposition (LBBD) models with
master problems modeled and solved with constraint programming (CP) and domain-
independent dynamic programming (DIDP), using simple assembly line balancing problem
with sequence-dependent setup times type-1 (SUALBP-1) as a testbed. We developed three
CP-based master problem formulations with Benders feasibility cuts formulated as key variable
manipulation, constraint-based expressions, and global constraints. In the state transition
system of DIDP, we proposed four encoding methods for Benders feasibility cuts by exploiting
the integer or set variables and preconditions or state constraints. Experimental results on
SUALBP-1 show superior performance for the CP-LBBD models and good performance of
the four DIDP-LBBD models, compared to MIP-LBBD and monolithic MIP models. This
work demonstrates the promise of decomposition-based approaches employing CP and DIDP
approaches.

J. Zhang and J. C. Beck 32:17

References
1 Sener Akpinar, Atabak Elmi, and Tolga Bektaş. Combinatorial benders cuts for assembly line

balancing problems with setups. European Journal of Operational Research, 259(2):527–537,
2017.

2 Carlos Andres, Cristobal Miralles, and Rafael Pastor. Balancing and scheduling tasks in
assembly lines with sequence-dependent setup times. European Journal of Operational Research,
187(3):1212–1223, 2008.

3 Jorge A Baier, Fahiem Bacchus, and Sheila A McIlraith. A heuristic search approach to
planning with temporally extended preferences. Artificial Intelligence, 173(5-6):593–618, 2009.

4 Ilker Baybars. A survey of exact algorithms for the simple assembly line balancing problem.
Management science, 32(8):909–932, 1986.

5 Christian Becker and Armin Scholl. A survey on problems and methods in generalized assembly
line balancing. European journal of operational research, 168(3):694–715, 2006.

6 Yossi Bukchin and Tal Raviv. Constraint programming for solving various assembly line
balancing problems. Omega, 78:57–68, 2018.

7 Yingyi Chu and Quanshi Xia. Generating benders cuts for a general class of integer pro-
gramming problems. In Jean-Charles Régin and Michel Rueher, editors, Proceedings of the
First International Conference on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR 2004), volume 3011, pages
127–136. Springer, Berlin Heidelberg, 2004.

8 Maryam Daryalal, Hamed Pouya, and Marc Antoine DeSantis. Network migration problem: A
hybrid logic-based benders decomposition approach. INFORMS Journal on Computing, 2023.

9 Rasul Esmaeilbeigi, Bahman Naderi, and Parisa Charkhgard. New formulations for the setup
assembly line balancing and scheduling problem. OR spectrum, 38:493–518, 2016.

10 Michael Forbes, Mitchell Harris, Marijn Jansen, Femke van der Schoot, and Thomas Taimre.
Combining optimisation and simulation using logic-based benders decomposition. arXiv
preprint arXiv:2107.08390, 2021.

11 Cheng Guo, Merve Bodur, Dionne M Aleman, and David R Urbach. Logic-based benders de-
composition and binary decision diagram based approaches for stochastic distributed operating
room scheduling. INFORMS Journal on Computing, 33(4):1551–1569, 2021.

12 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. Accessed on 2024-04-10.
URL: http://www.gurobi.com.

13 John Hooker. Logic-Based Methods for Optimization: Combining Optimization and Constraint
Satisfaction. John Wiley & Sons, Inc., New York, 2000.

14 John N Hooker. Planning and scheduling by logic-based benders decomposition. Operations
research, 55(3):588–602, 2007.

15 John N Hooker and Greger Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96(1):33–60, 2003.

16 Chih-Wei Hsu, Benjamin W Wah, Ruoyun Huang, and Yixin Chen. Constraint partitioning
for solving planning problems with trajectory constraints and goal preferences. In Proceedings
of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pages
1924–1929, 2007.

17 IBM. IBM ILOG CPLEX Optimizer. Accessed on 2024-04-20. URL: https://www.ibm.com/
products/ilog-cplex-optimization-studio/cplex-cp-optimizer.

18 Naveen Kumar and Dalgobind Mahto. Assembly line balancing: a review of developments
and trends in approach to industrial application. Global Journal of Researches in Engineering
Industrial Engineering, 13(2):29–50, 2013.

19 Ryo Kuroiwa and J. C. Beck. Domain-independent dynamic programming. arXiv preprint
arXiv:2401.13883, 2024.

20 Ryo Kuroiwa and J Christopher Beck. Domain-independent dynamic programming: Generic
state space search for combinatorial optimization. In the 33rd International Conference on
Automated Planning and Scheduling (ICAPS), 236–244., 2023.

CP 2024

http://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer

32:18 Solving LBBD Master Problems with CP and DIDP

21 Ryo Kuroiwa and J Christopher Beck. Solving domain-independent dynamic programming
problems with anytime heuristic search. In the 33rd International Conference on Automated
Planning and Scheduling (ICAPS), 245–253., 2023.

22 Florin Leutwiler and Francesco Corman. A logic-based benders decomposition for microscopic
railway timetable planning. European Journal of Operational Research, 303(2):525–540, 2022.

23 Marcus Ritt and Alysson M Costa. Improved integer programming models for simple assembly
line balancing and related problems. International Transactions in Operational Research,
25(4):1345–1359, 2018.

24 Francesca Rossi, Peter Van Beek, and Toby Walsh. Constraint programming. Foundations of
Artificial Intelligence, 3:181–211, 2008.

25 Armin Scholl, Nils Boysen, and Malte Fliedner. The assembly line balancing and scheduling
problem with sequence-dependent setup times: problem extension, model formulation and
efficient heuristics. OR spectrum, 35:291–320, 2013.

26 Armin Scholl and Robert Klein. Salome: A bidirectional branch-and-bound procedure for
assembly line balancing. INFORMS journal on Computing, 9(4):319–334, 1997.

27 Paul Shaw. A constraint for bin packing. In International conference on principles and practice
of constraint programming, pages 648–662. Springer, 2004.

28 Tony T Tran, Arthur Araujo, and J Christopher Beck. Decomposition methods for the parallel
machine scheduling problem with setups. INFORMS Journal on Computing, 28(1):83–95,
2016.

29 Tony T Tran and J Christopher Beck. Logic-based benders decomposition for alternative
resource scheduling with sequence dependent setups. In ECAI 2012, pages 774–779. IOS Press,
2012.

30 Jiachen Zhang and J. C. Beck. Domain-independent dynamic programming and constraint
programming approaches for assembly line balancing problems with setups. arXiv preprint
arXiv:2403.06780, 2024.

31 Hassan Zohali, Bahman Naderi, and Vahid Roshanaei. Solving the type-2 assembly line
balancing with setups using logic-based benders decomposition. INFORMS Journal on
Computing, 34(1):315–332, 2022.

A Monolithic MIP Model of SUALBP-1

Table 3 Additional parameters for SUALBP-1 [9].

Notation Definition
E set of all precedence relations

Ei earliest station for task i ∈ V , e.g., Ei = ⌈
ti+

∑
j∈P ∗

i

tj

c
⌉

Li latest station for task i ∈ V , e.g., Li = m + 1 − ⌈
ti+

∑
j∈F ∗

i

tj

c
⌉

KD(KP) set of definite (possible) stations, i.e., KD = {1, ..., m}, KP = {m + 1, ..., m}, and
K = KD ∪ KP

F Si set of stations to which task i ∈ V can be assigned, i.e., F Si = {Ei, Ei + 1, ..., Li}
F Tk set of tasks which can be assigned to station k ∈ K, i.e., F Tk = {i ∈ V |k ∈ F Si}
Ai set of tasks that cannot be assigned to the station to which task i is assigned, e.g.,

Ai = {j ∈ V |F Sj ∩ F Si = ∅}
F F

i (P F
i) set of tasks which may directly follow (precede) task i in forward direction, i.e.,

F F
i = {j ∈ V − (F ∗

i − Fi) − P ∗
i − Ai − {i}} and P F

i = {j ∈ V |i ∈ F F
j }

F B
i (P B

i) set of tasks which may directly follow (precede) task i in backward direction, i.e.,
F B

i = {j ∈ V − F ∗
i − Ai} and P B

i = {j ∈ V |i ∈ F B
j }

J. Zhang and J. C. Beck 32:19

To present the monolithic MIP model of SUALBP-1, additional parameters are required,
as shown in Table 3. Since the SSBF model can be adapted to both SUALBP-1 and
SUALBP-2, we name it SSBF-1 [9]. The decision variables are:

xik: binary variable with value 1, iff task i ∈ V is assigned to station k ∈ FSi.
zi: integer variable for encoding the index of the station task i ∈ V is assigned to.
uk: binary variable with value 1, iff any task is assigned to station k.
gijk: binary variable = 1, iff task i is performed immediately before task j on station k.
hijk: binary variable = 1, iff task i is the last and task j is the first task on station k.
ri: integer variable representing the rank of task i in a sequence of all tasks. The sequence
is composed of the task sequences on all the active stations.

The SSBF-1 MIP model proposed by Esmaeilbeigi et al. [9] is as follows.

min
∑

k∈KP

uk + m (22a)

s.t.
∑

k∈F Si

xik = 1, ∀i ∈ V, (22b)

∑
k∈F Si

k · xik = zi, ∀i ∈ V, (22c)

∑
i∈F Tk∩F F

i

gijk +
∑

i∈F Tk∩F B
i

hijk = xik, ∀i ∈ V, ∀k ∈ FSi, (22d)

∑
i∈F Tk∩P F

j

gijk +
∑

i∈F Tk∩P B
j

hijk = xjk, ∀j ∈ V, ∀k ∈ FSj , (22e)

∑
i∈F Tk

∑
j∈(F Tk∩F B

i
)

hijk = 1, ∀k ∈ KD, (22f)

∑
i∈F Tk

∑
j∈(F Tk∩F B

i
)

hijk = uk, ∀k ∈ KP, (22g)

ri + 1 + (n − |F ∗
i | − |P ∗

j |) · (
∑

k∈(F Si∩F Sj)

gijk − 1) ≤ rj , ∀i ∈ V, ∀j ∈ F F
i , (22h)

ri + 1 ≤ rj , ∀(i, j) ∈ E , (22i)
zi ≤ zj , ∀(i, j) ∈ E , (22j)∑
i∈F Tk

tixik +
∑

i∈F Tk

∑
j∈(F Tk∩F F

i
)

τijgijk +
∑

i∈F Tk∩P B
i

µijhijk ≤ c, ∀k ∈ KD, (22k)

∑
i∈F Tk

tixik +
∑

i∈F Tk

∑
j∈(F Tk∩F F

i
)

τijgijk +
∑

i∈F Tk∩P B
i

µijhijk ≤ c · uk, ∀k ∈ KP, (22l)

∑
i∈F Tk\{j}

xik ≤ (n − m + 1) · (1 − hjjk), ∀k ∈ K, ∀j ∈ FTk, (22m)

uk+1 ≤ uk, ∀k ∈ KP\{m}. (22n)
gijk ∈ {0, 1}, ∀k ∈ K, ∀i ∈ FTk, ∀j ∈ (FTk ∩ F F

i), (22o)
hijk ∈ {0, 1}, ∀k ∈ K, ∀i ∈ FTk, ∀j ∈ (FTk ∩ F B

i), (22p)
|P ∗

i | + 1 ≤ ri ≤ n − |F ∗
i |, ∀i ∈ V, (22q)

xik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ FSi, (22r)
ri, zi ∈ Z+, ∀i ∈ V, (22s)

CP 2024

32:20 Solving LBBD Master Problems with CP and DIDP

The objective (22a) minimizes the number of stations. Constraint (22b) ensures that a
task is assigned to a station. Constraint (22c) links xik and zi. Constraints (22d) and (22e)
assure that a task on station k is followed and preceded by exactly one other task in the
cyclic sequence of this station. According to constraints (22f) and (22g), in each cycle exactly
one of the relations is a backward setup. Constraints (22h) and (22i) establish the precedence
relations among the tasks within each station. Note that the constraint (22h) is inactive if
tasks i and j are assigned to different stations. We add the constraint (22j) to make sure
that the precedence relations among the tasks of different stations are satisfied. Knapsack
constraints (22k) and (22l) ensure that no station time exceeds the cycle time. Constraint
(22m) guarantees that only task j is allocated to station k when hjjk = 1. Constraint (22n)
guarantees that stations are used in the correct order and no empty station is in the middle
of used stations. Constraints (22o) to (22s) specify the domain of the variables.

Note that the decision variables ri and zi are set to continuous in [9]. However, doing
so results in infeasible solutions being labeled as feasible for some problem instances. In
addition to the MIP model, Esmaeilbeigi et al. [9] developed pre-processing techniques to
reduce the number of variables and constraints. We implement all these techniques, as well.

B Approach Performances for Separate Datasets

The performance of each approach on datasets A, B, C, and D separately are presented in
Fig. 7 - 10, respectively. As shown in Fig. 7, all approaches except MIP solve all problems
in dataset A to proved optimality in a few seconds. For dataset B (Fig. 8), all approaches,
including MIP, are competitive and behave similarly. For dataset C, MIP-LBBD has the
worst performance while surprisingly it outperforms all DIDP-LBBD approaches and MIP
for dataset D, as shown in Fig. 9 and 10. We can also see the performance degradation of
DIDP-LBBD when solving larger problems.

Figure 7 Ratio of instances solved and proved
optimal over time for dataset A.

Figure 8 Ratio of instances solved and proved
optimal over time for dataset B.

C Analysis of CP-LBBD

In Section 5.5, for all 788 instances in the SBF2 dataset, we added the cuts generated by
CP-LBBDa model at each MP iteration to all models, in the corresponding cut forms, with a
time limit of 3600 seconds. The runtime over the number of nodes of the MPs in CP-LBBD

J. Zhang and J. C. Beck 32:21

Figure 9 Ratio of instances solved and proved
optimal over time for dataset C.

Figure 10 Ratio of instances solved and
proved optimal over time for dataset D.

models for the SBF2 dataset is shown in Fig. 11. The regression lines demonstrate the
performance rankings of the three CP-LBBD models in terms of the runtime required to
explore the same number of nodes.

Figure 11 Runtime vs. number of nodes of the MPs in CP-LBBD models for the SBF2 dataset.

CP 2024

	1 Introduction
	2 Background
	2.1 Logic-Based Benders Decomposition
	2.2 Domain-Independent Dynamic Programming
	2.3 SUALBP-1

	3 CP-LBBD for SUALBP-1
	3.1 CP Master Problem
	3.2 CP Formulations for Benders Feasibility Cuts

	4 DIDP-LBBD for SUALBP-1
	4.1 Master Problem
	4.2 Feasibility Cut Encoding in DIDP-LBBD
	4.2.1 Counting-based Encoding
	4.2.2 Set-based Encoding
	4.2.3 Weakness of the DIDP Encoding

	4.3 Encoding DIDP-LBBD Cuts for SUALBP-1
	4.3.1 Counting-based Precondition Encoding
	4.3.2 Counting-based State Constraint Encoding
	4.3.3 Set-based Precondition Encoding
	4.3.4 Set-based State Constraint Encoding

	5 Experimental Evaluation
	5.1 MIP-LBBD Master Problem
	5.2 Solving the Subproblem
	5.3 Experiment Setting
	5.4 Experiment Results
	5.5 Algorithm Analysis

	6 Discussion
	7 Conclusions
	A Monolithic MIP Model of SUALBP-1
	B Approach Performances for Separate Datasets
	C Analysis of CP-LBBD

