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Abstract
We give a polynomial time algorithm that solves a CSP over Z with linear inequalities of the form
ca1 x − ca2 y ≤ b where x and y are variables, a1, a2 and b are parameters, and c is a fixed constant.
This is a step in classifying the complexity of CSP(Γ) for first-order reducts Γ from (Z, <, +, 1).
The algorithm works by first reducing the infinite domain to a finite domain by inferring an upper
bound on the size of the smallest solution, then repeatedly merging consecutive constraints into new
constraints, and finally solving the problem using arc consistency.
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1 Introduction

Many computational problems in theoretical computer science can be formulated as a
Constraint Satisfaction Problem or CSP. In these problems the goal is to find an assignment
of values to a set of variables from a given domain that satisfies some given constraints that
impose relations on subsets of variables. After fixing a domain and the allowed constraint
types, we are left with a computational problem and want to determine its computational
complexity. In general, we are interested in determining whether a given CSP is solvable in
polynomial time or NP-hard.

For Boolean domains, Schaefer’s dichotomy theorem gives a full classification [9]. This
result has recently been extended to arbitrary finite domains [3, 12]. For infinite domains,
there is no known dichotomy and this is an area of active research [1]. We focus on TVPI,
the infinite-domain CSP which consists of linear inequalities with two variables per inequality.
In general, this CSP is NP-complete [6, Theorem F], but it admits many subclasses whose
tractability is unknown.

Inequalities in TVPI consist of the form ax + by ≤ d for variables x, y and integer
coefficients a, b, d. Several tractable subclasses of TVPI focus on restricting the linear
coefficients a and b. Restricting to {±1}, we obtain the tractable UTVPI [5]. Restricting to
{±1, ±2}, we obtain the class BTVPI, which was recently shown to also be tractable [10].

An intractable subclass of TVPI is the CSP that concerns monotone inequalities, where
the coefficients a and b have different signs [6]. This class admits a pseudo-polynomial time
algorithm using a rounded version of a technique known as Fourier-Motzkin elimination,
which iteratively combines pairs of inequalities into new inequalities [4]. Another technique
used in constraint programming is arc consistency, which iteratively reduces variable domains
until a fixed state is found. Similarly to FM-elimination, finding a fixed state is NP-hard in
general [2] but admits a pseudo-polynomial time algorithm [11].
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Our contribution is an algorithm that combines these techniques into a polynomial-time
algorithm for another subclass of TVPI. Our class concerns monotone inequalities whose
coefficients are restricted to powers of c for some fixed constant c > 0. That is, inequalities
of the form ca1x − ca2y ≤ b. After dividing by cmin(a1,a2), we may assume that a1 or a2 is
zero. Formally, for any c ∈ N we define Rc as the set of inequalities of the form x ≤ cay + b

or cax + b ≤ y with a ∈ N and b ∈ Z, and then consider CSP(Z; Rc). In order to keep the
size of the coefficients polynomial, we require that each a is given in unary. To simplify some
arguments, we view the CSP(Z, Rc) instance as a directed, weighted graph with colored arcs.
We model a constraint of the form x ≤ cay + b as a red arc from x to y with weight −a, and
a constraint of the other form as a blue arc from x to y with weight a.

The paper is structured as follows. In Section 2 we give a high-level outline of the
algorithm and its main ideas. In Section 3 we give a detailed explanation of all the substeps.
Finally, in Section 4 we combine all these steps to show that our algorithm is correct and
satisfies the claimed runtime. To begin, we fix a value for c and an instance of CSP(Z, Rc).
For this instance, let n be the number of variables, m the number of constraints, and W the
maximal value of any coefficient in any constraint. Since each a is given in unary, log(W ) is
polynomial in the input size.

2 Algorithm outline

The algorithm consists of four main ideas. The first one is boundedness: if the instance
admits an integer solution, then the size of the “smallest” integer solution will not be too
large. More precisely, we will prove that there exists an integer Ω, whose size is polynomial
in the input, such that: if there exists an integer solution to the CSP, then there exists an
integer solution where every variable is bounded in absolute value by 2Ω. In particular, this
implies that to solve the CSP we only need to look for solutions in a bounded subset of Z.
Let IΩ := {−2Ω, −2Ω + 1, . . . , 2Ω} be this subset.

The second idea is to use arc consistency. If we know a domain of possible values for some
variable x, then any arc between x and some other variable y translates this into a domain
of possible values for y. By starting with the initial domain x ∈ IΩ for every variable x and
repeatedly checking consistency along all arcs, we will eventually settle in a state where some
domain is empty or where all arcs are consistent. Now, the instance has a solution if and only
if all domains are nonempty: if a domain is empty the instance is obviously unsolvable, and
if all domains are nonempty then we can set every variable to the smallest remaining value.
This is a solution, since the smallest remaining value on the larger side of the inequality is
(by arc consistency) larger than some remaining value on the smaller side of the inequality,
and thus also larger than the smallest remaining value of that side. In more technical terms,
min is a polymorphism.

Since the complete domains can be exponentially large, we only keep track of a description
of them. It suffices to only consider integer lower bounds, so for every variable x we keep
track of a lower bound x ≥ ℓ, ℓ ∈ Z which increases during the arc consistency steps. A
domain is now considered empty if we find a lower bound of at least 2Ω. One arc consistency
step now goes as follows: loop over every arc (x, y). The current lower bound at the starting
vertex x implies a new lower bound on the end vertex y. If this lower bound is stricter then
the bound we had for y, update y with the new bound.

This arc consistency procedure terminates in at most n2Ω+1 iterations: every iteration
increases one of the n lower bounds by at least one, and each lower bound is contained in IΩ.
Unfortunately, this is still exponentially many. To reduce the required number of iterations,
we introduce the third main idea: edge shortening.
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If we have an arc from x to y and an arc from y to z, then any lower bound on x implies
a lower bound on y which in turn gives a lower bound on z. In some cases (but not all!)
we could have obtained this lower bound on z directly from the one on x by adding a new
constraint between x and z which is functionally equivalent to the path from x to z via y.
This means that if we would have added this new arc before applying the arc consistency
procedure, we would have needed one iteration less to obtain the lower bound on z.

By this reasoning, we see that the arc consistency algorithm improves if we first preprocess
the graph to introduce as many new arcs as possible. We do this by performing multiple
edge shortening iterations. In one iteration we check every pair of consecutive arcs and,
if possible, add a new arc. We will later show how to determine when this arc exists and
what its parameters are. We will also prove that one edge shortening iteration reduces the
required number of arc consistency steps by (roughly) one third and that after enough edge
shortening iterations, the required number of arc consistency steps reduces to just two.

The problem with edge shortening is that we might introduce exponentially many new
arcs and that the arcs might have exponentially large parameters. To solve this, we apply
the fourth main idea: compression. We will show that any set of constraints S can be
transformed into a new set S′ whose total bitsize is polynomial in Ω such that any variable
assignment s ∈ (IΩ)n satisfies S if and only if it satisfies S′. The intuition is that since we
only concern solutions bounded by 2Ω, then the set of variable assignments that satisfy an
arc whose coefficients are much larger that 2Ω can also be described using an arc with smaller
coefficients. Furthermore, we only need at most one arc of each weight between every two
variables: if there are multiple arcs of the same weight, we only need the one with the most
restrictive constant term.

Overall, we obtain the following algorithm:
1. Perform the boundedness step: compute Ω.
2. Alternate between edge shortening iterations and compression steps polynomially many

times (we later specify exactly how many).
3. Perform two arc consistency steps.
4. If there is a lower bound of at least 2Ω, output NO SOLUTION. Otherwise, output the

current values of the lower bounds.

In the next section, we will describe the four main steps in more detail and prove why
they work.

3 Main steps

Boundedness

We will first show how to construct the global bound Ω using results from literature. Our
goal is to apply the main theorem of [8], which states that if a CSP consisting of linear
equations over the integers has n variables, m constraints, and coefficients bounded by a,
and admits a solution consisting of positive integers, then it admits one where each integer
in the solution is at most n(ma)2m+1.

CSP(Rc) is different: our constraints are inequalities instead of equalities and the solution
may contain negative integers. Fortunately, we can easily transform it into this standard form
[7, Section 2.2] by using slack variables for the inequalities and expressing each unbounded
variable as the difference between two positive variables. This modification adds m + n

additional variables and n additional constraints, so the resulting CSP has 2n + m variables,
m + n constraints, and coefficients bounded by W .

CP 2024
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We can now apply the above theorem and find a new solution to the modified instance
where each variable is positive and bounded by Ω′ := (2n + m)((m + n)W )2(m+n)+1. This
translates into a solution of the original instance where each variable may be negative
again but still has an absolute value of at most Ω′. We conclude that Ω := log(Ω′) =
O((m + n)(log(W (m + n)) suffices. Overall, we obtain the following proposition.

▶ Proposition 1. There exists an integer Ω ∈ N, which only depends on and is polynomial
in n, m and log(W ), such that: if our CSP(Z, Rc) instance has at least one integer solution,
then there exists an integer solution where each variable has an absolute value of at most 2Ω.

Arc consistency

The second step is to apply arc consistency by propagating lower bounds along the constraint
arcs. On a blue arc cax + b ≤ y, a lower bound x ≥ ℓ implies a lower bound y ≥ caℓ + b. On
a red arc x ≤ cay + b a lower bound x ≥ ℓ implies a lower bound y ≥

⌈
ℓ−b
ca

⌉
. This chains

across consecutive arcs: for any path p, a lower bound on the starting vertex results in a
lower bound on the ending vertex. In general, we can identify any path with a valid lower
bound by propagating the trivial lower bound x ≥ −2Ω on the starting vertex x along the
path.

Conversely, every lower bound that can be obtained using arc consistency corresponds to
a path; every arc consistency step effectively appends one arc to the path. Hence, we obtain
an equivalence between paths and lower bounds. When viewing a path in the context of a
lower bound chain, we will refer to it as a propagation path. We now give some properties of
propagation paths.

▶ Proposition 2. Propagation paths satisfy the following properties.
(i) Let x ≥ ℓ be some lower bound reachable by propagation paths. The length of the

shortest propagation path resulting in this lower bound (or a better one) is at most
n2Ω+1.

(ii) Let p be a propagation path of length k ending in some lower bound x ≥ ℓ. Then, the
arc consistency procedure will find this lower bound (or a better one) in at most k

iterations.

Proof. We prove the parts in order.
(i) If a propagation path of minimal length contains a vertex multiple times, then the

corresponding lower bound on that vertex should increase otherwise the subcycle
between these occurences is redundant and the path is not minimal. So, every vertex
occurs at most |IΩ| = 2Ω+1 times, which bounds the length of the path to n2Ω+1.

(ii) We use induction on the length of p. If p has length zero, then the lower bound must
be the initial lower bound x ≥ −2Ω which is found before any arc consistency iteration.
Now suppose p has length k > 0. Let x′ ≥ ℓ′ be the bound that corresponds to p with
the final constraint removed. By the induction hypothesis, after k − 1 steps of the arc
consistency procedure we will have found a bound x′ ≥ ℓ′ or better. One more arc
consistency iteration will then propagate this lower bound into a lower bound of at
least ℓ for x. ◀

A corollary of this proposition is termination of the arc consistency procedure: every
lower bound that can be found by lower bound propagation will be found in at most n2Ω+1

iterations, so after at most this many iterations the procedure terminates.
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Edge shortening

We will now describe in which cases we can concatenate consecutive arcs into a new arc.

▶ Proposition 3. Let e1 and e2 be two consecutive arcs. Let x, y, z be their endpoints such
that e1 runs from x to y and e2 runs from y to z. Suppose that e1 and e2 are colored in one
of the following ways: (red, red), (blue, blue), or (blue, red). Then there exists an arc e3
from x to z such that the set of integer values for x and z that satisfy the constraint from e3
is the same as the set of integer values for x and z for which there exists an integer value for
y such that both the constraints e1 and e2 are satisfied.

Proof. We begin with the case where e1 and e2 are both red. Let x ≤ ca1y + b1 and
y ≤ ca2z + b2 be the inequalities associated with e1 and e2, respectively. These inequalities
combine into

x ≤ ca1y + b1 ≤ ca1 (ca2z + b2) + b1 = ca1+a3z + ca1b2 + b1

We now define e3 as this constraint: a3 := a1 + a2 and b3 = ca1b2 + b1. One direction is
easy: if for some tuple of integer values for x and z there exists a y such that e1 and e2 are
satisfied, then this tuple by construction satisfies e3 as well. For the inverse direction, let
(vx, vz) be a tuple of integer values for x and z that satisfy e3. Then, we can set y to the
value vy := ca2vz + b2 which is integer. Now, the triplet (vx, vy, vz) satisfies e1 and e2: e1
rewrites to the inequality for e3 and e2 is satisfied by construction.

The other two cases are very similar. If e1 and e2 are both blue, we have the inequalities
ca1x + b1 ≤ y and ca2y + b2 ≤ z which merge into ca1+a2x + ca2b1 + b2 ≤ z, so we set e3 to
this inequality. If (vx, vz) is a tuple of integer assignments for x and z that satisfies e3, then
we can set vy := ca1vx + b1 to find a triplet of integer assignments for e1 and e2.

Finally, if e1 is blue and e2 is red, then we have the inequalities ca1x + b1 ≤ y and
y ≤ ca2z + b2. These merge into ca1x + b1 ≤ ca2z + b2. This is not yet the proper form to
become a valid constraint, but we can modify it a bit. We consider two cases: either a1 > a2
or a1 ≤ a2. In the first case, we can rewrite the inequality to ca1−a2x + b1−b2

ca2 ≤ z. Since z

and ca1−a2x are always integer, this inequality is equivalent to ca1−a2x +
⌈

b1−b2
ca2

⌉
≤ z. This

inequality has the proper form for a blue edge: a3 := a1 − a2 is a nonnegative integer and
b3 :=

⌈
b1−b2

ca2

⌉
is integer as well.

In the case where a1 ≤ a2 we can do something analogous: we instead rewrite the equation
to x ≤ ca2−a1y +

⌊
b2−b1

ca1

⌋
to obtain an equation for a red edge. The correctness proof of the

(blue, red) case is also analogous: if vx and vz are integer values for x and z that satisfy e3,
then we can set y to ca1x + b1 or ca2z + b2 (both work!) to obtain a triple that satisfies e1
and e2. ◀

▶ Remark 4. The case (red,blue) does not work since we cannot always set y to an integer
value. For example, in the case c = 2 one might think that the arcs x ≤ 2y and 2y ≤ z

combine into the arc x ≤ z, but this does not satisfy the requirements: setting x and z both
to 1 satisfies the inequality x ≤ z but there is no integer value for y that satisfies x ≤ 2y ≤ z.

We will now consider the effect of edge shortening on the length of propagation paths.

▶ Proposition 5. Let x ≥ ℓ be a lower bound that is reachable by a propagation path of length
k. Then, apply one iteration of the edge shortening procedure. Now, the bound x ≥ ℓ will be
reachable by a propagation path of length at most ⌈2k/3⌉.

CP 2024
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Proof. The main idea is the following observation: for any three consecutive arcs, the edge
shortening iteration will shorten at least one pair. Indeed, if the first pair is (red, blue),
the only configuration in which we cannot apply edge shortening, then the second pair will
be (blue, blue) or (blue, red) which are both shortable. Now let p be the path of length k

used to reach the lower bound and partition it into triplets of consecutive arcs. Then, after
applying the edge shortening operation, we can replace every triplet with just two arcs: the
arc obtained from the shortening and the arc not used in the shortening. Overall, this will
reduce p to a path of length ⌈2k/3⌉, where the ceiling function is required to account for the
(at most two) leftover arcs that do not fit in the triplets. ◀

▶ Corollary 6. Let x ≥ ℓ be a lower bound that is reachable by a propagation path. After poly-
nomially many edge shortening iterations, this lower bound will be reachable by a propagation
path of length at most 2.

Proof. Let k be the length of the initial propagation path used to obtain the lower bound
x ≥ ℓ. By Proposition 2(i), k is at most n2Ω+1. Every edge shortening iteration replaces
k with ⌈2k/3⌉. In particular, if k ≥ 3 then ⌈2k/3⌉ ≤ 2k/3 + 2/3 ≤ 2k/3 + 2k/9 = 8k/9.
So, after log9/8(n2Ω+1) iterations, k will be reduced to at most 3. One more iteration
then reduces k to at most 2. This shows that after log9/8(n2Ω+1) + 1 iterations, which is
polynomially many, the lower bound x ≥ ℓ is reachable by a path of length 2. ◀

▶ Remark 7. We cannot apply more edge shortening iterations to reduce the length even
further: if a propagation path of length 2 is colored in the colors (red, blue) then additional
edge shortening iterations have no effect on this path.

Compression

We now show how to bound the number and size of parallel edges.

▶ Proposition 8. Let S be a set of constraints. If we restrict each variable x to the domain
x ∈ IΩ, then we can modify S into an equivalent set of constraints S′ satisfying:

(i) The (absolute) weight of each edge is bounded by Ω + 1.
(ii) There is at most one edge of each weight between any two variables.
(iii) The constant coefficient of each constraint is at most 22Ω+2.

In particular, the total bitsize of S′ is polynomially bounded in Ω.

Proof. We only consider red arcs; blue arcs are analogous but with the direction of the
inequalities reversed. Let e be a red arc, say x ≤ cay + b. We perform three simplification
steps on e to satisfy the three required properties.

(i) Suppose e satisfies a > Ω + 1. If c = 1, the value of a does not matter so we can set
it to 0. If c ≥ 2, then there is at most one value of y such that the right hand side
cay + b falls in the interval |x| ≤ 2Ω. Let vy be this value, and let vx := cavy + b be
the corresponding upper bound for x. The set of pairs (x, y) satisfying the constraint
can now be described as: y < vy is impossible, y = vy implies x ≤ vx, and if
y > vy, there are no restrictions on x. This can also be achieved with the constraint
x ≤ 2Ω+1(y − vy) + vx = 2Ω+1y − 2Ω+1vy + vx which does have weight Ω + 1 so we
simply replace e with this new constraint. This argument is visualized in Figure 1: it
shows the shape of the feasible region for some constraints, and in particular it shows
that the feasible region for a constraint with a > Ω + 1 has the same shape as one with
a = Ω + 1.
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(ii) Suppose there is another edge e′ of the same weight, say x ≤ cay + b′. Assume without
loss of generality that b ≤ b′. Then the inequality for e′ follows directly from the one
for e, so e′ is redundant and can be removed from S.

(iii) Suppose that |b| ≥ 22Ω+2, and recall that |x| ≤ 2Ω, |y| ≤ 2Ω and 0 ≤ a ≤ 2Ω+1. We
find that the left hand side of x ≤ cay + b is at most 2Ω in absolute value while the
right hand side is at least 22Ω+2 − 2Ω+1 · 2Ω = 22Ω+1 in absolute value. This shows that
the constraint is either always satisfied or always unsatisfied (depending on the sign of
b). So, we find that either the instance is infeasible or the constraint can be removed
without affecting feasibility. ◀

x

y

x

y

x

y

Figure 1 Some possible shapes for the feasible region of a single constraint. The square is the
domain (IΩ)2 and the wiggled line is the inequality. From left to right, the coefficients satisfy
1 < a < Ω + 1, a = Ω + 1 and a > Ω + 1.

4 Combining the parts

We will now give a formal proof of correctness for the algorithm described in Section 1 using
the propositions from Section 3. This is split into two theorems, one for correctness and one
for the runtime.

▶ Theorem 9. The algorithm described in Section 1 returns an integer solution to the
CSP(Rc) instance if one exists. Otherwise, it will output NO SOLUTION.

Proof. We first show that if the algorithm returns some variable assignment, then this is
indeed a solution. The final step asserts that all values of this assignment are at most 2Ω, so
by Proposition 8 the correctness is not affected by the compression steps. We now claim that
the returned variable assignment satisfies all constraints of the modified instance obtained
from the edge shortening iterations and compression steps: suppose to the contrary that
there is an unsatisfied constraint. This means that one additional arc consistency step would
have updated some lower bound to a new value, and most importantly that this new lower
bound is a bound reachable by propagation paths. Propositions 3 and 8 show that this lower
bound is also reachable in the original instance. Proposition 2(i) shows that the length of
the shortest propagation path to reach this lower bound is at most n2Ω+1. Corollary 6 now
shows that the edge shortening steps reduce it to one of length at most 2. Proposition 2(ii)
then shows that this lower bound was already found in the two arc consistency steps. This is

CP 2024
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a contradiction: we conclude that the returned variable assignment satisfies all constraints of
the modified instance. Since all original constraints are either still present in the modified
instance or replaced by an equivalent or stricter constraint, the solution must also satisfy the
original instance. This completes the first half of the proof.

We now show that if a solution exists, the algorithm will find it. By the corollary after
Proposition 2, just using the arc consistency procedure would determine existence of a
solution in n2Ω+1 steps. In particular, the assigned values in this solution are the result of a
propagation path of length at most n2Ω+1. By Corollary 6, the edge shortening iterations
reduce all these propagation paths to paths of length at most two, so by Proposition 2(ii),
every assigned value will be found in the two arc consistency steps. Therefore, the solution
will be found by the algorithm. This completes the second half of the proof, and consequently
the full proof. ◀

▶ Theorem 10. The algorithm described in Section 1 runs in polynomial time.

Proof. We first note that Ω is polynomial in the size of the input. After each compression
step, Proposition 8 shows that the current instance contains at most 2Ω + 3 constraints
between any two variables, so at most (2Ω + 3)n2 in total, which is polynomially many.
Denote this value by N . Furthermore, the coefficients of every constraint have polynomial
bitsize of O(Ω), so most arc operations takes O(Ω) time.

Each edge shortening iteration adds at most one new arc for any two consecutive arcs,
taking O(Ω) time per arc pair and resulting in at most N2 new arcs after this step. The
compression step afterwards takes O(Ω) time per arc to reduce the number of arcs back down
to N again. Together, one edge shortening iteration and compression step take O(N2Ω)
time. One exception is the first compression step: since there are initially m arcs instead of
at most N , and coefficients are initially bounded by W instead of 2Ω, the first step takes
O(log(W )m2) time. Since these two steps are repeated log9/8(n2Ω+1) + 1 = O(Ω log(n))
times, the overall runtime of these steps is O(Ω2 log(n)N2 + log(W )m2); still polynomial.

Finally, each arc consistency step checks every arc at most once, so this adds an-
other O(NΩ) time to the computation. Overall, we conclude that the algorithm runs
in O(Ω2 log(n)N2 + log(W )m2) time. When transformed back to the original input pa-
rameters, this becomes O(Ω2 log(n)(Ωn2)2 + log(W )m2) = O(Ω4n4 log(n) + log(W )m2).
Since Ω = O((m + n) log(W (m + n))) the log(W )m2 vanishes and the total runtime is
O((m + n)4 log(W (m + n))4n4 log(n)). ◀

5 Discussion

To conclude the paper, we have shown that the CSP with constraints of the form cax + b ≤ y

and x ≤ cay + b is solvable in polynomial time. We stress that the given time complexity is
far from optimal; a better runtime analysis and some optimizations will reduce the runtime
significantly.

We end with some possible future research directions.
1. What are the implications on the infinite domain CSP-dichotomy over Z? In particular,

does our method generalize to CSPs whose parameters are restricted to a larger domain?
2. What is the complexity of the optimization variant of this CSP? The current algorithm

outputs a solution where all variable assignments are minimal and can easily be modified
into an algorithm where these are maximal. However, there is no simple reduction to find
the optimal solution where we want some variables to be large and others to be small.

3. How far can we reduce the time complexity of this algorithm?
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