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Abstract
Significant research efforts have focused on black-box variable selection, with less attention given
to value heuristics. An ideal value heuristic enables depth-first-search to prioritize high-quality
solutions first. The Bound-Impact Value Selection achieves this goal through a look-ahead strategy,
trying every value of the selected variable and ranking them based on their impact on the objective.
However, this method is generally too computationally intensive for the entire search tree. We
introduce two simple yet powerful modifications to improve its scalability. First, a lighter fix point
computation involving only the constraints on the shortest path in the constraint graph between the
variable and the objective. Second, a reverse look-ahead strategy optimistically fixes the objective
variable to its minimum in order to prioritize the remaining values. These two ideas have been
empirically validated on a range of academic problems and in the XCSP3 competition, demonstrating
significant improvements in scalability.
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1 Introduction

The Constraint Programming (CP) paradigm enables to solve combinatorial problems in
a declarative way. The Holy Grail vision of CP is that the user simply has to state the
problem [5]. However, for practical efficiency, this vision has been adjusted to the long-
standing CP mantra: CP = Model + Search. The capability to program problem-specific
searches remains crucial in CP to minimize the search tree size. Over time, the emphasis on
search programming has diminished due to the development of effective black-box search
strategies by the CP community [7, 4, 13, 20, 27]. A common search procedure involves a
two-step decision-making process at each node: selecting an undecided variable and then
choosing a value to assign from the domain on the left branch, which is removed upon
backtracking. Despite extensive work on deriving efficient problem-independent variable
selection heuristics based on the first-fail principle, few black-box strategies have been
proposed for value selection. In the context of optimization problems, a simple yet effective
generic method is the Bound-Impact Value Selector (BIVS) [12]. This look-ahead heuristic
iterates over each value in the domain of a variable, successively assigning the variable to
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each of these values. After each assignment is made, the fixpoint filtering by the constraints
is computed. The impact on the objective–specifically, the lower bound increase in the case of
a minimization problem–is then measured. The value that yields the to the smallest increase
for minimization problem is selected for the left assignment.1

Although BIVS finds solutions of better quality compared to other naive strategies, such
as picking the minimum value in the domain of a variable, its computational cost does not
always compensate its benefits in guiding the search toward promising directions. This is
especially true for problems with large domain sizes or when a large number of constraints
are involved in the fixpoint computation. To overcome this shortcoming, one tradeoff is
to consider only the smallest and largest values from the domain, instead of every value,
especially if the domain size is too large. This is the default value selection performed in
Choco-solver [26].

Our contribution introduces two ideas to reduce the computational cost of BIVS. The first,
called the Restricted Fixpoint is to compute the fixpoint on a restricted set of constraints.
Specifically, we measure the impact only on a fixpoint that involves the constraints along
the shortests paths from the selected variable to the objective variable in a constraint graph,
where node constraints are connected to node variables in their scope.

The second improvement, called Reverse Look-Ahead starts from the objective assignment.
Instead of sequentially fixing the selected variable to each value, we suggest optimistically
setting the objective variable to its lower bound (assuming minimization) and then computing
the fixpoint. The selected value is one of those that remain. If infeasibility is detected, we
increase the objective bound and continue until no domain is empty.

The two proposed improvements are designed to be non-intrusive, meaning that they can
be implemented without necessitating modifications to the solver’s architecture.

The paper is organized as follows. Section 2 presents first the main concepts necessary to
understand BIVS, before introducing the two ideas to lower the cost of BIVS, namely the
Restricted Fixpoint and Reverse Look-Ahead. Their performances are assessed in section 3.

2 Reducing BIVS Cost

The search heuristic is generally decomposed in two stages for efficiency reason: the variable
is selected, then the value in the domain of the variable. For the variable selection, many
ideas inspired by the first-fail principle “to succeed, try first where you are most likely to
fail” [16] have been proposed such as choosing the variable with the smallest ratio of size
of domain versus number of failures when running the fixpoint on them (dom/wdeg) [7, 4],
the variable involved in the most recent failures [13, 20, 21], the variable whose assignment
has the largest estimated search space reduction [27], the variable with the most frequent
domain changes [24, 4] etc.

Once the variable to branch on has been selected, a value must be assigned to it. In
opposition to the first-fail principle, the succeed-first principle is used instead [14, 10]. The
idea is to select the value being most likely to participate in a solution. Compared to variable
selection, only a few generic selectors have been proposed for picking a value, which is why
choosing the smallest value from the domain of a variable remains a popular default choice
[19, 29]. Two exceptions are Belief Propagation (BP) [25], aimed at driving the search
towards areas with a large number of solutions, or Bound-Impact Value Search (BIVS) [12],
choosing the value with the best impact on the objective. Even though those two methods

1 This idea is similar to Strong Branching in Mixed-Integer Linear Programming solvers [2].
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do reduce a lot of the search space, their computational cost is too large to make them the
default choice in most solver during the whole search procedure. Moreover, BP is better
suited for constraint satisfaction problems rather than optimization problems. Research on
machine learning for value selection heuristics [22, 9] is limited by extensive data requirements
for lengthy training phases. While Objective Landscapes methods [18] collecting pre-search
impacts work well in stable settings like scheduling, they falter in dynamic scenarios where
impacts fluctuate with other assignments. An effective alternative is phase-saving, selecting
values from previous solutions [11], though it relies on a default heuristic when no prior value
is applicable.

Our work revisits the BIVS algorithm, detailed in Algorithm 1, to reduce its computational
cost while maintaining its effectiveness in finding high-quality solutions. BIVS examines
each value v in the domain of the selected variable x ∈ X (line 3), assigning v to x (line 5)
and running the fixpoint algorithm (line 6). If the fixpoint is error-free and improves the
objective’s lower bound (⌊D(obj)⌋), the value is considered for retention (line 7). The process
is encapsulated within saveState(X , C) and restoreState(X , C) operations (lines 4 and 10),
ensuring that the solver’s state is reset before each new trial2. While this method is effective
in steering the search towards high-quality solutions, the time complexity for selecting a
value for variable x in the BIVS algorithm is Θ(F · |D(x)|), with F as the fixpoint algorithm’s
complexity. As [4] notes, controlling this high computation cost is challenging. We propose
two methods to reduce this complexity: one by lowering the cost of the fixpoint algorithm
and the other by reducing the frequency of its calls. However, these changes do not guarantee
identical outcomes as the original BIVS.

Algorithm 1 Bound-Impact Value Selector (assuming minimization), adapted from [12].

Input :X : variables, C: constraints, x: branching variable, obj: objective variable
Ouput : bestV, the value to assign to the variable x.

1 bestV ← ⌊D(x)⌋
2 bestBound ←∞
3 for v ∈ D(x) do
4 saveState(X , C)
5 D(x)← {v}
6 success ← fixpoint(X , C)
7 if success and ⌊D(obj)⌋ < bestBound then
8 bestBound ← ⌊D(obj)⌋
9 bestV ← v

10 restoreState(X , C)
11 return bestV

2.1 Restricted Fixpoint Computation
The Restricted Fixpoint (RF) approach assesses the impact on the objective by focusing
solely on a limited set of constraints. Specifically, it considers only the constraints that are
located on the shortest paths from the selected variable to the objective variable within a
bipartite variables-constraints graph. In this graph, variables and constraints are nodes,

2 See [23] for state saving and restoration with a trail.
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connected by edges if the variable is within the scope of the constraint. For each variable,
we precompute all constraints on these paths. This method reduces computation costs as it
involves fewer constraints, but it may be less informative and risk missing potential failures.

▶ Example 1. Consider the Traveling Salesman Problem (TSP), where a salesman needs
to visit a set of cities, each city being visited exactly once, while minimizing the traveled
distance. Given n cities and a distance matrix d ∈ Zn×n, a commonly used CP model
is minimize TotD such that Circuit(S), Di = Element(di,∗, Si) ∀i ∈ {0..n − 1}, and
TotD = Sum(D). It introduces two variables per city: Si is the visit occurring after the city
i in the tour, and Di the distance between city i and its successor Si. The circuit constraint
enforces every city to be visited within a single tour. The distance Di between a city i and
its successor Si corresponds to the Si-th entry within the line i in the distance matrix d,
enforced with an element constraint. The sum of traveled distance TotD is the objective
to minimize. A TSP with 4 cities is shown in Figure 1 and the graph in Figure 3. When
selecting values for S0 using RF with BIVS, only 2 constraints are considered per iteration,
compared to 6.

0 3

12

20
12

16

Figure 1 A TSP instance with 4 cities to visit.
The distances are shown on the edges.

0 3

12

Figure 2 When fixing D(T otD) to {48}, all
successors points towards their nearest city. This
violates the Circuit constraint.

S0 S1 S2 S3 D0 D1 D2 D3 TotD

Circuit Element0 Element1 Element2 Element3 Sum

Figure 3 Constraints and variables of the TSP instance from Figure 1. Variables and constraints
in blue are located on the shortest path to the objective T otD when considering variable S0.

2.2 Reverse Look-Ahead
The Reverse Look-Ahead (RLA) strategy reduces the number of calls to the fixpoint com-
putation by restricting optimistically the domain of the objective and observing the effects
on the variable to D(x), rather than fixing x directly. It is similar to the Destructive Lower
Bound used in scheduling [17] and can also tighten bounds on the objective.

Algorithm 2 outlines RLA. A value δ controls the domain size of the objective variable
during the fixpoint computation, starting with a value of 1 to fix the objective to its minimum
value. Several iterations may be performed, each increasing δ until the fixpoint computation
succeeds. At this point, the minimum value from the domain of x is returned at line 11. The
value of δ doubles at each iteration, resulting in an exponential evolution. Note that when
the fixpoint computation fails, the lower bound of the domain of the objective variable can
be safely increased (line 14).
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Algorithm 2 Reverse Look-Ahead (assuming minimization).

Input :X : variables, C: constraints, x: branching variable, obj: objective variable
Ouput : success: boolean indicating node expandability, v: assigned value for x

1 δ ← 1
2 success ← true
3 while success do
4 saveState(X , C)
5 ⌈D(obj)⌉ ← min(⌈D(obj)⌉, ⌊D(obj)⌋ − 1 + δ)
6 success ← |D(obj)| > 0
7 if success then
8 if fixpoint(X , C) then
9 v ← ⌊D(x)⌋

10 restoreState(X , C)
11 return (true, v)
12 else
13 restoreState(X , C)
14 ⌊D(obj)⌋ ← ⌊D(obj)⌋+ δ

15 success ← |D(obj)| > 0
16 δ ← δ ∗ 2
17 else
18 restoreState(X , C)
19 return (false, 0)

▶ Example 2. Consider the same situation as Example 1, shown in Figure 1. The initial
fixpoint yields D(Di) = {12, 16, 20} ∀i ∈ {0..n − 1} and D(TotD) = {48, . . . , 60}. When
using RLA to choose a value for S0, the following iterations occur:
1. The fixpoint is triggered with D(TotD) = {48}. This means that the successor of every

city must be the closest city, violating the Circuit constraint (cf Figure 2). The iteration
fails and the lower bound of the objective is now set to 49 for the sub-tree to consider.

2. δ = 2 and D(TotD) = {49, 50}. Similarly, this fails and sets the lower bound to 51.
3. δ = 4 and D(TotD) = {51, . . . , 54}. The fixpoint proceeds without failure, resulting in
D(S0) = {2, 3}. Value 2, the nearest neighbor, is picked and the state is restored while
keeping the lower bound of the objective to 51. Finally, 2 is returned (lines 9 to 11).

The time complexity of RLA is Ω(F) in the best case, if only one iteration needs to be
performed, and O(F · log2 |D(obj)|) in the worst case. Moreover, RF can also be used with
RLA, meaning that the complexity of the fixpoint can be lowered.

▶ Example 3. We reuse the model from Example 2. Initially, RLA restricts D(TotD) = {48}
and runs the RF. This scenario suggests all successors should be nearest neighbors, which is
infeasible given the Circuit constraint (see Figure 2). However, when considering only the
shortest path constraints (the Sum constraint and one Element constraint, cf Figure 3), the
failure is missed. Consequently, the domain of S0 becomes {2} (its closest neighbor), and 2
is returned. Compared to the scenario in Example 2, only one iteration has been performed
(being less costly) but the heuristic itself could not tighten the bounds of the objective.

CP 2024
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3 Experiments

To assess the performances of our methods, we consider two main settings. The first one
analyzes three classical discrete problems easily modeled with CP. The second one reports the
performances on various optimization problems, using the XCSP3 2023 competition [8, 3].

All experiments were conducted using two Intel(R) Xeon(R) CPU E5-2687W. The
implementation was done in Java in the Choco-Solver (version 4.10.5), a state-of-the-art
general purpose constraint programming solver [26]. In all settings, instances needing more
than 32GB were discarded. The variable selection used is DomWDeg [7] combined with last
conflict [20], a popular default selection. The timeout was set to 30 minutes.

3.1 Fundamental Problems
Three fundamental problems are studied. (i) The TSP and the instances from TSPLib [28].
(ii) The JobShop and the instances from [30]. (iii) The Quadratic Assignment Problem and
the instances from [1]. For each model, the standard models are used. The JobShop model
branches on precedences like in [15]. For each model a custom white-box value heuristic is
used called Greedy in the results. In total, the value selectors analyzed are:
Min choosing the smallest value in the domain of the variable.
BIVS the original algorithm as proposed in [12], using the author’s implementation in

Choco-solver. In this implementation, when the domain size of a variable is larger than
100, only the minimum and maximum values of the domain are considered by BIVS.

BIVS+RF indicates BIVS but with the restricted fixpoint, presented in section 2.1.
RLA depicts the Reverse Look-Ahead.
RLA+RF depicts the Reverse Look-Ahead using the restricted fixpoint.
One criterion used to compare the value selection heuristics is the primal gap introduced
in [6]. It gives a value between 0 and 1 measuring the gap between the value of a solution
found obj and the best found solution objopt. A value close to 0 means that the solution
found is the best one found, while a value of 1 indicates that no solution was found.

10−1 100 101 102 103

Time (s)

0

25

50

75

100

P
ri

m
a
l

G
a
p

(%
)

TSP

10−1 100 101 102 103

Time (s)

0

25

50

75

100

QAP

100 101 102 103

Time (s)

0

25

50

75

100

JobShop

RLA RLA+RF Min Greedy BIVS BIVS+RF

Figure 4 Primal gap in percentage over time.

Heuristic performance varies by problem (Figure 4). For TSP, RLA+RF matches the
greedy heuristic, while BIVS+RF lags slightly due to considering bounds for domain sizes
over 100; without this restriction, BIVS+RF performs comparably to RLA+RF. In QAP,
BIVS and its RF variant outperform others, with RF significantly speeding up BIVS. For
JobShop, RLA surpasses BIVS but is less effective than MIN due to the cost of fixpoint calls.
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Figure 5 Comparison of BIVS and BIVS+RF regarding the time to find the first feasible solution
(top, in seconds) and its corresponding gap (bottom, in percentage). Each dot represents an instance
across problems: TSP (left), QAP (center), and JobShop (right). Dots on the diagonal indicate
equal performance between methods. Dots above the diagonal show that BIVS was slower or found
poorer solutions. Crosses denote timeouts by at least one method, resulting in a 100% gap.

The addition of RF to BIVS results in speedups for TSP and QAP, maintaining average
solution quality across instance sizes, as shown in Figure 5 and supported by Figure 4
where BIVS falls behind BIVS+RF. Conversely, RF slows performance on JobShop. On
this problem, the cost of scanning all constraints and potentially deactivating some, to save
time on the two iterations performed by BIVS (as the precedence variables have a domain of
size 2) does not offer benefits compared to considering all constraints.

3.2 XCSP3

We consider instances from the XCSP3 COP 2023 competition [8, 3]. The instances requiring
more than 32GB were discarded, leaving 18 problems and 232 instances.

Table 1 displays gap and number of solutions found per problem, with the average gap
over time shown in Figure 6. Performance varies greatly across problems, with no single
heuristic outperforming others universally. However, adding RF to BIVS reduces the average
gap and aids in finding solutions missed otherwise. Similar benefits, though smaller, are
observed with RLA. On average, RLA outperforms BIVS, with RF enhancing both methods.
Min excels in finding feasible solutions, mostly attributed to its constant time complexity,
allowing for better learning from variable selection.

Moreover, Figure 6 presents two Virtual Best Solver entries: “VBS (old)” computed
from previous selectors available in Choco (BIVS, Min, middle, Max and random domain
selection) and “VBS (new)” adding RLA and RF-based methods. The 3.87% increase in
the final gap demonstrates that RLA and RF explore the search space differently than
traditional heuristics, enhancing portfolio efficiency. The figure also compares BIVS(+RF)
with BIVS⋆(+RF), where the latter considers all domain values – not just the bounds when
the domain size exceeds 100 – showing improved performance with RF, suggesting the
removal of the domain size consideration. Both BIVS+RF and BIVS⋆+RF outperform their
non-RF versions, indicating their superior efficiency. Notably, the average gap by BIVS+RF
at 100.0s is matched by BIVS only at 938.32s, demonstrating its significant speed advantage.

CP 2024
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Table 1 Performances between the methods for each problem. Each column shows the average
primal gap over all instances, in percentage, and the instances where at least one feasible solution was
found, in parentheses. Best results are highlighted in bold if at least one heuristic was outperformed.

Problem (#instances) Min BIVS BIVS+RF RLA RLA+RF
AircraftAssemblyLine (20) 95.00 (1) 90.00 (2) 100.00 (0) 95.00 (1) 95.00 (1)
CarpetCutting (20) 61.29 (9) 57.17 (9) 65.48 (8) 62.67 (8) 54.48 (11)
GBACP (20) 78.86 (11) 61.43 (8) 79.69 (10) 69.54 (9) 85.51 (9)
GeneralizedMKP (15) 49.74 (15) 6.78 (14) 6.81 (14) 26.57 (12) 20.26 (13)
HCPizza (10) 33.56 (10) 34.91 (10) 34.43 (10) 34.67 (10) 34.62 (10)
Hsp (18) 0.00 (18) 5.56 (17) 5.56 (17) 5.56 (17) 0.00 (18)
KMedian (15) 50.84 (8) 57.32 (7) 43.96 (9) 56.01 (7) 50.84 (8)
KidneyExchange (14) 44.63 (14) 85.71 (3) 51.11 (10) 43.68 (13) 52.79 (10)
LargeScaleScheduling (9) 66.76 (6) 66.83 (6) 66.83 (6) 45.56 (5) 34.44 (6)
PSP1 (8) 100.00 (0) 100.00 (0) 87.50 (1) 100.00 (0) 100.00 (0)
PSP2 (8) 87.50 (1) 87.50 (1) 87.62 (1) 87.50 (1) 87.66 (1)
ProgressiveParty (7) 57.14 (3) 57.14 (3) 57.14 (3) 57.14 (3) 57.14 (3)
RIP (12) 5.06 (12) 6.31 (12) 4.59 (12) 3.24 (12) 4.78 (12)
Rulemining (9) 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0) 100.00 (0)
SREFLP (15) 7.27 (15) 3.08 (15) 7.44 (15) 8.78 (15) 7.72 (15)
Sonet (16) 1.40 (16) 2.28 (16) 3.42 (16) 2.42 (16) 3.15 (16)
TSPTW1 (8) 87.81 (1) 100.00 (0) 87.84 (1) 87.81 (1) 87.50 (1)
TSPTW2 (8) 75.19 (2) 87.50 (1) 75.19 (2) 75.42 (2) 75.24 (2)
All (232) 52.02 (142) 51.04 (124) 50.23 (135) 49.85 (132) 49.52 (136)
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Figure 6 Average primal gap over time on the XCSP3 instances, in percentage. The right part
shows only 4 selectors compared to the left part, and their y-scale differs.

4 Conclusion

Deriving effective, generic value heuristics that balance speed and informativeness remains
challenging. Bound-Impact Value Search (BIVS) stands out among these approaches, yet its
cost limited its applicability in certain scenarios. By incorporating a restricted fixpoint in
the look-ahead process and employing a reverse look-ahead strategy, we significantly reduced
costs, making previous restrictions on BIVS usage less relevant. The methods we proposed
do not require any training, are well suited for black-box settings, and substantially improve
performance. When utilized alone or within a portfolio approach, these strategies continue
to enhance the efficiency of solving constrained optimization problems.
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A Additional overview of the XCSP3 results

Figure 7 shows the cumulated number of instances solved to optimality over time. Table 2
shows the number of optimality proven and best bound founds, for each problem. We can
also see that the best heuristic changes depending on the problems, highly impacting the
overall readings (for instance BIVS being the best methods regarding the number of best
bounds is mostly due to its good performances on the SREFLP problem).

For ranking the solvers in the XCSP3 competition, one criterion used is a score, telling
the number of times a method gave the best known results, compared to its competitors.
For each instance and each heuristic:

1 point is awarded for proving the unsatisfiability of an instance;
0 point is won for proving a solution with a worse bound than its competitors
1 point for proving the optimality of a solution
1 point is won for providing (a solution with) the best bound on an instance without
proving optimality. In case where another solver proved the optimality of this bound,
only 0.5 points are granted.

https://doi.org/10.4230/LIPIcs.CP.2023.25
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Figure 7 Cactus plot showing the cumulated number of XCSP3 instances solved to optimality
for each method.

Table 2 Performances between the methods for each problem. Each column shows first the
number of instances where optimality was proven, and then number of best bounds found, in
parentheses.Best results are highlighted in bold if at least one heuristic was outperformed.

Problem (#instances) Min BIVS BIVS+RF RLA RLA+RF
AircraftAssemblyLine (20) 0 (1) 0 (2) 0 (0) 0 (1) 0 (1)
CarpetCutting (20) 2 (4) 4 (9) 2 (4) 3 (6) 2 (4)
GBACP (20) 0 (1) 0 (7) 0 (1) 0 (2) 0 (0)
GeneralizedMKP (15) 0 (1) 0 (10) 0 (12) 0 (0) 0 (1)
HCPizza (10) 0 (9) 0 (3) 0 (4) 0 (2) 0 (3)
Hsp (18) 17 (18) 16 (17) 17 (17) 17 (17) 17 (18)
KMedian (15) 0 (2) 0 (2) 0 (5) 0 (1) 0 (3)
KidneyExchange (14) 2 (3) 1 (2) 2 (8) 2 (4) 2 (4)
LargeScaleScheduling (9) 0 (0) 0 (0) 0 (0) 0 (3) 0 (3)
PSP1 (8) 0 (0) 0 (0) 0 (1) 0 (0) 0 (0)
PSP2 (8) 0 (1) 0 (1) 0 (0) 0 (1) 0 (0)
ProgressiveParty (7) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)
RIP (12) 2 (4) 2 (3) 3 (6) 3 (6) 3 (5)
Rulemining (9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
SREFLP (15) 1 (3) 1 (12) 1 (1) 1 (2) 1 (1)
Sonet (16) 1 (13) 1 (11) 1 (8) 1 (11) 1 (8)
TSPTW1 (8) 0 (0) 0 (0) 0 (0) 0 (0) 0 (1)
TSPTW2 (8) 1 (1) 0 (1) 1 (1) 1 (1) 1 (1)
All (232) 29 (64) 28 (83) 30 (71) 31 (60) 30 (56)

The evolution of the score over time is shown in Figure 8. The score of an heuristic at time t

may decrease, for instance if the method provided the best bound to an instance before time
t, but a better solution was provided at t by another selector.
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Figure 8 XCSP3 score over time on the XCSP3 instances, for each method.

B TSP, QAP and JobShop description

This section describes the models used for the TSP, the QAP and the Jobshop, as well as
the decision variables considered and the greedy heuristics that were implemented.
TSP: the model is the same as in Example 1
JobShop: a scheduling problem where jobs must be planned, each job being decomposed

into tasks having precedence between them, and each tasks being assigned to a given
machine. No task can overlap on a machine and the goal consists in minimizing the
completion time of the latest task.

QAP: an assignment problem where facilities must be opened at given locations, in order to
minimize the sum of distances multiplied by the flow between facilities.

Note that, for all those problems, a first solution satisfying the constraints can always
be easily derived. In the case of the TSP, any permutation of nodes corresponds to a valid
tour for the salesman. The same reasoning holds for any permutation of facility location
for the QAP. Regarding the JobShop, it suffices to provide a timing horizon long enough
so that a schedule can always be constructed. Those first solutions being easy to construct,
we have implemented a custom greedy value selection heuristic for those problems in order
to compare white-box approaches to our own black-box approaches. More precisely, the
variables considered for selection and the greedy value selection are as follows:
TSP: the decision variables are the n successor variables in a TSP tour. The greedy value

selection consists in visiting the closest city.
JobShop: the decision variables to consider are the precedences between two tasks executed

on the same machine. Each variable is a boolean telling, for a given machine, whether a
tasks comes before of after another one. Once all precedences between tasks are fixed, the
makespan can be assigned to its lower bound in order to produce a valid solution. Given
a precedence variable, the greedy heuristic consists in choosing the value producing the
most slack, the slack describing how much time is still available between the two tasks.

QAP: with n facilities, the n decision variables are the locations where the facilities will
be opened. Given a facility not assigned to a location, the greedy heuristic choose its
location as the one minimizing the weighted flow with the other facilities already placed.
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