
Computing Small Rainbow Cycle Numbers with
SAT Modulo Symmetries
Markus Kirchweger # Ñ

Algorithms and Complexity Group, TU Wien, Austria

Stefan Szeider #Ñ

Algorithms and Complexity Group, TU Wien, Austria

Abstract
Envy-freeness up to any good (EFX) is a key concept in Computational Social Choice for the fair
division of indivisible goods, where no agent envies another’s allocation after removing any single
item. A deeper understanding of EFX allocations is facilitated by exploring the rainbow cycle
number (Rf (d)), the largest number of independent sets in a certain class of directed graphs. Upper
bounds on Rf (d) provide guarantees to the feasibility of EFX allocations (Chaudhury et al., EC
2021).

In this work, we precisely compute the numbers Rf (d) for small values of d, employing the SAT
modulo Symmetries framework (Kirchweger and Szeider, CP 2021). SAT modulo Symmetries is
tailored specifically for the constraint-based isomorph-free generation of combinatorial structures.
We provide an efficient encoding for the rainbow cycle number, comparing eager and lazy approaches.
To cope with the huge search space, we extend the encoding with invariant pruning, a new method
that significantly speeds up computation.

2012 ACM Subject Classification Mathematics of computing → Extremal graph theory; Software
and its engineering → Constraint and logic languages; Hardware → Theorem proving and SAT
solving; Mathematics of computing → Graph enumeration

Keywords and phrases EFX, rainbow cycle number, SAT modulo Symmetries, combinatorial search

Digital Object Identifier 10.4230/LIPIcs.CP.2024.37

Category Short Paper

Supplementary Material
Software (Source Code): https://github.com/markirch/sat-modulo-symmetries/
Software (Documentation): https://sat-modulo-symmetries.readthedocs.io/

Funding The authors acknowledge the support from the Austrian Science Fund (FWF), project
10.55776/P36688, and the Vienna Science and Technology Fund (WWTF), project ICT19-065.

1 Introduction

The quest for a fair division of indivisible goods, a fundamental challenge in economics,
computer science, and social choice theory, hinges on developing allocation protocols that
balance fairness and efficiency. Envy-freeness is among the most celebrated concepts in
this domain, a criterion that ensures no agent prefers another’s allocation over their own.
However, the indivisibility of goods often precludes the possibility of genuinely envy-free
allocations, prompting researchers to explore various relaxations of this ideal. Envy-freeness
up to any good (EFX) is a particularly prominent and well-studied relaxation, which requires
that no agent should envy another’s allocation after the hypothetical removal of any single
good from the latter’s allocation [2, 4, 5, 6, 7, 8].

Despite its conceptual appeal, the existence of EFX allocations remains unresolved in
general settings, marking it as one of the most intriguing open problems in discrete fair
division. This has led to a vibrant area of study that seeks to establish the existence of

© Markus Kirchweger and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on Principles and Practice of Constraint Programming (CP 2024).
Editor: Paul Shaw; Article No. 37; pp. 37:1–37:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mk@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/markus.kirchweger
https://orcid.org/0000-0002-1838-8344
mailto:sz@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/szeider
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2024.37
https://github.com/markirch/sat-modulo-symmetries/
https://sat-modulo-symmetries.readthedocs.io/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

such allocations and explores the combinatorial structures underlying these problems. A key
development in this research trajectory is the exploration of the rainbow cycle number Rf (d).
This combinatorial constant, which will be defined more formally in Section 2, is the largest
integer k such that a directed k-partite graph exists in which every vertex of each block has
an incoming edge from any other block, each block has size at most d and the whole graph
contains no rainbow cycle, i.e., a cycle that runs through every block at most once. Bounds
on Rf (d) directly influence the feasibility and construction of approximate EFX allocations
with minimal discarded goods. Variants Ri(d) and Rp(d) of the rainbow cycle number (see
Section 2 for definitions) have also been studied [3].

Determining Rf (d) and its variants is a natural question of extremal graph theory, in
particular to zero-sum combinatorics, independently of its application to EFX-allocations [1, 7].
The first upper bound Rf (d) ∈ O(d4) was shown by Chaudhury et al. [7]. This bound was
later improved to d2+o(1) [3], and O(d · log(d)) [1, 17].

It is known that for all d, Ri(d) ≤ Rp(d) ≤ Rf (d), Ri(d) ≥ d, and it has been conjectured
that Rf (d) = d; however, this conjecture has only been established so far for d ≤ 3 in the
general setting, and for d ≤ 6 for Ri(d) [23]. Computing Rf (d) for d > 3 is challenging since
the number of combinatorial objects to consider explodes.

In this paper, we develop a constraint-based approach within the SAT modulo Symmetries
(SMS) framework to obtain the upper bounds of Rf (d), which allows us to show Rf (4) = 4 and
Rp(5) = 5. SMS is a recently proposed framework for graph generation modulo isomorphisms
under constraints [21]. SMS combines a conflict-driven (CDCL) SAT solver with a custom
propagator (since recently via the IPASIR-UP interface [12]) to determine whether a partial
assignment encoding a graph can be extended to a canonical, fully defined graph. By
employing dynamic symmetry breaking, SMS efficiently searches the vast combinatorial
space, avoiding the exploration of isomorphic copies.

We provide an efficient propositional encoding for the rainbow cycle numbers, comparing
eager and lazy approaches to ensure the absence of rainbow cycles. The eager approach
adds constraints to the encoding at the beginning, while the lazy approach uses a custom
propagator to check for the presence of rainbow cycles during the search.

To cope with the huge search space, we introduce the novel technique of invariant pruning,
which significantly speeds up the computation by strengthening the encoding with graph
invariants not known a priori. Invariant pruning exploits the fact that one can observe a
significant speedup if a graph invariant is explicitly stated in the encoding and proceeds along
a complete decision tree on values for the invariant under consideration (in our concrete
setting, it is the maximum degree).

We also employ further symmetry-breaking techniques within the SMS framework to
avoid exploring isomorphic copies of graphs in the search space. The applicable permutations
for symmetry breaking are described, and the set of all such permutations is represented
using ordered partitions. When invariant pruning is applied, the permutations used for
symmetry breaking are further restricted to maintain the invariant properties.

Experimental results demonstrate the effectiveness of our approach, with invariant pruning
providing a speedup of almost two orders of magnitude in some cases. The time spent in
the propagator to ensure the absence of rainbow cycles is only a small fraction of the total
computation time. The results also indicate that restricting the functions to permutations
significantly decreases the search space compared to the general case.

M. Kirchweger and S. Szeider 37:3

2 Preliminaries

For a positive integer n, we write [n] = {1, 2, . . . , n}, Fn for the set of all functions from [n]
to [n], and Sn for the set containing all permutations over [n]. We assume familiarity with
fundamental notions of propositional logic [22].

Graphs. We review basic notions from graph theory that are relevant to our discussion.
All considered graphs are directed and simple (i.e., without parallel edges or self-loops, but
pairs of edges in the opposite direction are allowed). A graph G consists of a set V (G) of
vertices and a set E(G) of edges; we denote the edge from u ∈ V (G) to v ∈ V (G) by (u, v).
The order of a graph G is the number of its vertices, |V (G)|. We write Gn to denote the
class of all graphs with V (G) = [n]. The adjacency matrix of a graph G ∈ Gn, denoted
by AG, is the n × n matrix where the element AG(v, u) at row v and column u is 1 if
(v, u) ∈ E(G) and 0 otherwise. We write N−

G (v) for the in-neighborhood of a vertex v in G,
i.e., N−

G (v) = { u ∈ V (G) | (u, v) ∈ E(G) }. The indegree is given by d−
G(v) = |N−

G (v)|.

Fixed point cycles and rainbow cycles. A function f ∈ Fd has a fixed point if f(x) = x

for some x ∈ [d]. A d-labeled graph is a pair (G, f) such that G ∈ Gn and fe ∈ Fd for each
e ∈ E(G); f is an edge labeling of G. A fixed point cycle of a d-labeled graph (G, f) is a
simple cycle (v1, v2, . . . , vk), i.e., (v1, v2), (v2, v3), . . . , (vk, v1) ∈ E(G) and vi ≠ vj for i ̸= j,
such that f(vk,v1) ◦ · · · ◦ f(v2,v3) ◦ f(v1,v2) has a fixed point.

A graph G ∈ Gn is ℓ-partite if there is a partition B = {B1, . . . , Bℓ} of V (G) such that no
edge of G has both its ends in the same B ∈ B. We call the sets in B blocks. Let G ∈ Gn be
an ℓ-partite graph and B the corresponding partition of V (G). A rainbow cycle is a directed
cycle that contains at most one vertex of each block in B.

Next, we describe the connection between d-labeled graphs with fixed point cycles and
ℓ-partite graphs with rainbow cycles allowing us to focus on the latter. Each d-labeled graph
(G, f) with G ∈ Gℓ can be transformed into an ℓ-partite graph H ∈ Gℓ·d such that (G, f) has
a fixed point cycle if and only if H has a rainbow cycle. The idea is to introduce for each
vertex in V (G) a block with d vertices representing the set [d]. The edges in E(H) indicate
the mapping, i.e., if f(i,j)(x) = y then there is an edge from the vertex associated with y in
the j-th block to the vertex associated with x in the i-th block. More formally

E(H) = { ((j − 1) · d + f(i,j)(x) , (i − 1) · d + x) | (i, j) ∈ E(G), x ∈ [d] }

with the partition Bd,ℓ := { {d · (i − 1) + 1, . . . , d · i} | i ∈ [ℓ] }.

▶ Example 1. We give an example for d = 2 and ℓ = 3. There, we have B2,3 =
{{1, 2}, {3, 4}, {5, 6}}.

1

2 3

1
7→

1,
2

7→
2 1

7→
2

, 2
7→

2

1 7→ 1, 2 7→ 1

1 7→ 2, 2 7→ 1

1
7→

1
, 2

7→
11

7→
2,

2
7→

2

1

2

3

4

5

6

CP 2024

37:4 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

On the left side, we see a d-labeled graph. The graph itself is the complete directed graph
on 3 vertices. On the right side, we see the corresponding 3-partite graph. The rectangles
indicate the blocks. The cycle (2, 5) forms a rainbow cycle because at most one vertex of
each block is in the cycle. This also indicates that f(3,1) ◦ f(1,3) has 2 as a fixed point.

The number Rf (d) is the largest integer, such that the edges of the complete directed
graph of order Rf (d) can be labeled with fe ∈ Fd without a fixed point cycle. Equivalently,
there exists an Rf (d)-partite graph such that each block has size d, each vertex has exactly
one incoming edge from each other block, and there is no rainbow cycle [3]. Rf (d) is also
known as a rainbow cycle number. Rp(d) and Ri(d) are defined similarly, except for Rp(d), the
edge labelings are restricted to permutations and for Ri(d), the edge labelings are restricted
to functions of the form x 7→ x + k mod d for k ∈ N. These numbers are related as follows:
Ri(d) ≤ Rp(d) ≤ Rf (d) [3]. Further, it is known that Ri(d) ≥ d [7], given by the edge
labeling f :

f(i,j)(x) =
{

x if i < j,

x + 1 mod d otherwise.

EFX. Let [n] be the set of agents, M the set of indivisible goods, and vi : 2M → R≥0 an
evaluation function for each i ∈ [n]. An allocation A = (A1, . . . , An) assigns the goods to
the agents, i.e., Ai ⊆ 2M for i ∈ [n] such that Ai ∩ Aj = ∅ for i = j and

⋃
i∈[n] Ai = M .

An allocation A is envy-free if vi(Ai) ≥ vi(Aj) for all i, j ∈ [n], in other words, no agent
prefers the goods of another agent. An EFX (envy-freeness up to any good) allocation is an
allocation such that vi(Ai) ≥ vi(Aj \ {g}) for all i, j ∈ [n], g ∈ Aj . An α-EFX allocation for
some α ∈ (0, 1] is an allocation A such that vi(Ai) ≥ α · vi(Aj \ {g}) for all i, j ∈ [n], g ∈ Aj .
In a partial-EFX allocation, not all goods need to be assigned, i.e.,

⋃
i∈[n] Ai ⊆ M .

The relation between the rainbow cycle number and partial α-EFX allocations is given
by the following theorem:

▶ Theorem 2 ([7]). Let ε ∈ (0, 1/2] and let g(y) be the smallest integer d such that
d·Rf (d) ≥ y. Then, there is always a partial (1−ε)-EFX allocation with at most 4n/(ε·g(2nε))
many unallocated items.

SAT modulo Symmetries. SAT Modulo Symmetries (SMS) [21] is a recently proposed
framework for graph generation modulo isomorphisms under constraints. The original work
is restricted to undirected graphs, but later work extends it to directed graphs [20]. SMS
combines a conflict-driven (CDCL) SAT solver with a custom propagator to determine
whether a partial assignment (which encodes a graph) can be extended to a canonical
fully defined graph; if not, the solver immediately backtracks. A canonical graph is a
distinguished member of its isomorphism class – in SMS, this is typically the graph with the
lexicographically smallest adjacency matrix1. SMS thus employs what is known as dynamic
symmetry breaking [11, 24]. For undirected graphs, prior work has addressed static symmetry
breaking [9, 10, 15, 16].

An important concept in the context of SMS are partially defined graphs. A partially
defined graph is a graph G where E(G) is split into two disjoint sets D(G) and U(G). D(G)
contains the defined edges, U(G) contains the undefined edges. A (fully defined) graph is

1 We refer to the original work [20] for the precise canonical form.

M. Kirchweger and S. Szeider 37:5

a partially defined graph G with U(G) = ∅. Similarly to Gn, let Pn denote the class of all
partially defined graphs G with V (G) = [n]. During solving, the presence or absence of
some edges is not known, hence a partially defined graph is a suitable way to represent the
current solver state. Based on that, the SMS framework additionally enables adding custom
propagators to refute partially defined graphs during search.

3 Encoding

In this section, we describe propositional encodings Fd,ℓ which are satisfiable if and only if
Rf (d) ≥ ℓ for d, ℓ ∈ N. In the satisfiable case, we can extract a directed graph from a model
of the formula. Using these formulas, we compute the exact number Rf (d) using several SAT
calls. In this work, we are only interested in validating the conjecture Rf (d) = d for small d.
For that, showing unsatisfiability of Fd,d+1 is sufficient.

Given d, ℓ ∈ N, the number of vertices in the searched-for directed graph is nd,ℓ := d · ℓ.
The variables ei,j for i, j ∈ [nd,ℓ], i ̸= j, denote whether the edge (i, j) is present.
First, we ensure that the resulting graph is ℓ-partite with respect to the partition Bd,ℓ:

partitiond,ℓ =
∧

B∈Bd,ℓ

∧
i,j∈B,

i<j

¬ei,j .

Each vertex in each block has exactly one incoming edge from each other block. In our
encoding, the direction of edges is reversed, as it is faster in our experiments in combination
with SMS. We encode that each vertex in each block has exactly one outgoing edge to each
other block as follows:

functiond,ℓ :=
∧

B1∈Bd,ℓ

∧
i∈B1

∧
B2∈Bd,ℓ,
B1 ̸=B2

(
∨

j∈B2

ei,j ∧
∧

j1,j2∈B2,
j1<j2

(¬ei,j1 ∧ ¬ei,j2)).

To ensure that no rainbow cycle is present, we distinguish between an eager and a lazy
approach. In the first case, we add an encoding to the formula Fd,ℓ at the beginning. We
also refer to this as the static approach. The lazy approach uses a propagator to ensure the
absence of a rainbow cycle during search.

3.1 Using a propagator to ensure acyclicity
Given a partially defined graph G ∈ Pd·ℓ and the partition Bd,ℓ, we want to decide whether
a rainbow cycle is present. We use a second SAT solver to check the presence of a rainbow
cycle. In the satisfiable case, we use the model to compute a rainbow cycle, which is then
excluded by a single clause, ensuring that at least one of the directed edges in the cycle is
not present. We design the encoding dependent on the edge variables and use assumptions
to fix the graph we want to test. We consider all undefined edges to be absent, because this
doesn’t introduce additional cycles.

We use variables si for i ∈ [nd,ℓ] to indicate whether vertex i is part of the selected cycle.
Only one vertex of each block can be selected:∧

B∈Bd,ℓ

∧
i,j∈B,i<j

(¬si ∨ ¬sj).

Additionally, we ensure that each selected vertex has exactly one incoming and one outgoing
edge to another selected vertex. This is done by using additional variables sei,j , which
indicate whether the directed edge (i, j) is present and both vertices are selected:

sei,j ↔ (ei,j ∧ si ∧ sj).

CP 2024

37:6 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

With these additional variables, we ensure that the indegree and outdegree of the induced
subgraph given by the selected vertices is exactly 1. Selecting a minimal rainbow cycle
results in a model of the formula. Note that the encoding allows multiple disjoint cycles to
be selected, but in this case, we only select one cycle from the model.

We use the IPASIR-UP [12] interface to integrate this propagator.

3.2 Static encoding
We present an encoding exponential in size to ensure that no rainbow cycle is present. One
possibility is enumerating all potential cycles and, for each, add a clause to ensure that at
least one edge is not present. We use a more compact version using additional variables
pu,v,B′ for Bu, Bv ∈ Bd,ℓ, u ∈ Bu, v ∈ Bv, Bu ≠ Bv, and B′ ⊆ Bd,ℓ \ {Bu, Bv}. The variables
indicate whether there is a colorful path from u to v, i.e., a path only using at most one
vertex from each block, only containing vertices in Bu ∪ Bv ∪

⋃
B∈B′ B.

We have the following constraints using Bv as shorthand for indicating the block containing
vertex v:

pu,v,∅ ↔ eu,v: this is the base case.
(eu,v ∧ pv,w,B′) → pu,w,B′∪{Bv} if Bu ̸∈ B′: this ensures that if there is a directed edge
from u to v and a colorful path from v to w not using the block containing u, then there
is a colorful path from u to w additionally using block Bv.
pu,v,B′ → pu,v,B′∪{B} for B ∈ B′ \ {Bu, Bv}: adding additional blocks preserves rainbow
paths.
¬eu,v ∨ ¬pv,u,B′\{Bu,Bv}: this guaranties that no rainbow cycle is present.

For very small values of d and ℓ, the static approach is still valid, although the number of
variables and clauses is exponential.

3.3 Invariant pruning
We introduce the new technique of invariant pruning in the context of SMS. A graph invariant
is a property of a graph invariant under graph isomorphisms. Examples of invariants are the
maximum indegree and the maximum outdegree. The goal is to strengthen the formula by
computing invariants that are unknown beforehand.

We explain invariant pruning for the rainbow cycle problem regarding the invariant
maximum indegree. Let ∆ be an upper bound on the maximum indegree, for example, the
number of vertices. Instead of solving the formula directly, we fix the first vertex, i.e., the
vertex with label 1, to have exactly indegree ∆ and all other vertices indegree ≤ ∆ in addition
to the standard formula Fd,ℓ. If this formula is unsatisfiable, then the maximum indegree is
at most ∆ − 1, since for any vertex v, there is permutation mapping the vertex v to the first
vertex and preserving the partition.

Now, either one solves Fd,ℓ with the restriction that the maximum indegree is at most
∆ − 1 or again tries to refute the case of a vertex having indegree exactly ∆ − 1 by fixing the
first to have indegree ∆ − 1.

In our experiments, we continue pruning the invariant until we reach a certain value at
which solving the formula becomes fast. As we see in the experiments in Section 4, this gives
a tremendous speedup.

It is intriguing that explicitly demonstrating the impossibility of certain invariants using
a SAT solver and then solving the formula proves faster than solely running the solver on the
original formula. This phenomenon might stem from the solver finding it easier to identify a
“bad” property when it is already associated with a vertex and does not appear arbitrarily.

M. Kirchweger and S. Szeider 37:7

Table 1 Results for computing Rf (d) and Rp(d) in seconds. For “prop”, we additionally provide
the fraction of time spent in the cycle-propagator.

Rf (d) Rp(d)

d static prop static prop
3 0.03 0.07 (23%) 0.01 0.02 (13%)
4 1603.10 1374.23 (22%) 0.23 1.30 (18%)
5 t.o. t.o. 1160.23 1236.24 (14%)

3.4 Symmetry breaking
An important part of solving graph search problems with constraint-based methods is
symmetry breaking to avoid isomorphic copies in the search space. The vertices can be
permuted arbitrarily except the partition Bd,ℓ must be preserved. The applicable permutations
can be described as follows:

{ π ∈ Snd,ℓ
| ∀B ∈ Bd,ℓ ∃B′ ∈ Bd,ℓ : π(B) = B′ }.

In other words, the image of each block maps to another block.
We break all these symmetries using SMS. Let O = [B1, . . . , Bm] be an ordered partition,

li =
∑

j<i Bi and ui =
∑

j≤i Bi. We associate with an ordered partition O the set of
permutations

Perm(O) = { π ∈ Snd,ℓ
| li ≤ π(i) ≤ ui for all i ∈ [nd,ℓ] }.

An ordered partition describes a range to which each vertex can be mapped. For example
Perm([{2, 3}, {1}]) = {{2 7→ 1, 3 7→ 2, 1 7→ 3}, {2 7→ 2, 3 7→ 1, 1 7→ 3}}.

SMS allows breaking symmetries given by a set of ordered partitions. The set of all
applicable permutations for d, ℓ ∈ N can be represented as follows:

{ [{(π(1) − 1) · d + 1, . . . , π(1) · d}, . . . , {(π(ℓ) − 1) · d + 1, . . . , π(ℓ) · d}] | π ∈ Sℓ }.

The permutation π ∈ Sℓ describes how the blocks are swapped; the vertices within the block
can be permuted arbitrarily.

Note that the presented symmetry breaking is not necessarily compatible with invariant
pruning and needs to be adapted slightly. For the example of fixing the indegree of the first
vertex, we must further restrict the permutations applicable for symmetry breaking. The
first vertex is restricted to map to itself, which also fixes the first block.

4 Experimental Results

In this section, we present the results of our computations. We perform several experiments
on a cluster of machines with Intel Xeon E5-2640 v4 processors at 2.40GHz, running Ubuntu
18.04 on Linux 4.15. The source code is available on GitHub2 and the documentation on
Read the Docs3. All experiments are executed with a single thread.

2 https://github.com/markirch/sat-modulo-symmetries
3 https://sat-modulo-symmetries.readthedocs.io/applications/#computing-small-rainbow-

cycle-numbers

CP 2024

https://github.com/markirch/sat-modulo-symmetries
https://sat-modulo-symmetries.readthedocs.io/applications/#computing-small-rainbow-cycle-numbers
https://sat-modulo-symmetries.readthedocs.io/applications/#computing-small-rainbow-cycle-numbers

37:8 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

56789101112
Maximum indegree

10 1

100

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Results for invariant pruning for d=4
static
prop

7891011121314151617181920
Maximum indegree

10 1

100

101

102

103

104

105

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Results for invariant pruning for d=5
static
prop

Figure 1 Results for computing Rf (d) using invariant pruning.

Table 1 summarizes the duration in seconds for computing Rf (d) and Rp(d), i.e., showing
unsatisfiability for Fd,d+1. “prop” refers to the version using an external propagator for
ensuring the absence of a rainbow cycle (Section 3.1) and “static” to the static encoding
(Section 3.2). The results Rf (4) = Rp(4) = 4, and Rp(5) = 5 were not known before.

As a sanity check, we also enumerate all graphs up to isomorphism encoded by F3,3. It
results in 64 graphs, two of which encode permutations. For F4,4 we stop after enumerating
more than 3 million graphs. This also means that there are many extremal graphs. To
highlight the importance of symmetry breaking, we run the SAT encoding for Rp(4) without
SMS, which doesn’t terminate within a day, whilst with SMS, the computation terminates in
less than 3 seconds.

We see that the time spent in the propagator is not a bottleneck of the computation. For
both Rf (d) and Rp(d), the static and propagator version perform relatively similar for the
hardest solved case. The result also shows that restricting the functions only to permutations
decreases the search drastically.

Next, we provide results computing Rf (d) using invariant pruning. As invariant, we use
the maximum indegree. Note that the outdegree is already known to be ℓ − 1, i.e., exactly d

for the case ℓ = d + 1. The results are summarized in Figure 1. The figure gives for given
fixed maximum indegree the time in seconds to refute this case. We use a logarithmic y-axis.
We see that the cases with high indegree are refuted relatively quickly.

For d = 4, we can determine within 0.95 seconds that the maximum indegree is strictly
smaller than 5 using the static approach and 2.99 seconds using the propagator. The case
where the maximum indegree is ≤ 4 is solved in 36.17 and 31.25 seconds, respectively. This
means we have a speedup of almost two orders of magnitude using invariant pruning. For
d = 5, we can restrict the indegree to ≤ 6 within 5 days, but refuting the remaining cases is
not feasible yet.

We test a second invariant with invariant pruning, namely the maximum indegree of a
vertex with respect to only one block, i.e.,

max
v∈V (G)

max
B∈Bd,ℓ\{Bv}

|{ u | (u, v) ∈ E(G) }|.

We call this the block degree. If the block degree is determined to be 1, then this is equivalent
to the edge labelings being permutations. For d = 5, using the previous results that the
maximum indegree is ≤ 6, we compute that the block degree is ≤ 2 within 5 days.

Following previous work [18, 19], we verify the reasoning of the solver using DRAT
proofs [14] for all our experiments and check the correctness of the symmetry-breaking clauses
with a separate script. This is done by first letting the solver run, including propagators, and

M. Kirchweger and S. Szeider 37:9

storing all additionally produced clauses. Next, we feed the original formula, enhanced with
the additional clauses, to a SAT solver to produce a DRAT proof, which can then be checked
by a DRAT proof checker [25]. Note that it is also possible to use a recently introduced
incremental proof format [13] to produce proofs including clauses from propagators without
the necessity of running a SAT solver twice.

5 Conclusion

We have investigated the computation of exact rainbow numbers using a constraint-based
approach with SAT modulo Symmetries, focusing on the efficacy of invariant pruning to
expedite the search process. While our study has primarily examined two invariants, further
exploration could uncover additional invariants that might prove beneficial in efficiently
handling the case d = 5.

A point of improvement for invariant pruning is reusing learned clauses from different
invariants by using assumptions for asserting a certain invariant and using one solver
incrementally.

An interesting avenue for future research is to evaluate the impact of invariant pruning
on various graph generation and enumeration problems. Additionally, we see a potential for
the applicability of invariant pruning techniques to solve other highly symmetric formulas
not directly tied to graphs.

References
1 Hannaneh Akrami, Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, and Ruta Mehta.

EFX allocations: Simplifications and improvements. CoRR, abs/2205.07638, 2022. doi:
10.48550/arXiv.2205.07638.

2 Georgios Amanatidis, Evangelos Markakis, and Apostolos Ntokos. Multiple birds with one
stone: Beating 1/2 for EFX and GMMS via envy cycle elimination. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 1790–1797. AAAI Press, 2020. doi:10.1609/AAAI.V34I02.5545.

3 Benjamin Aram Berendsohn, Simona Boyadzhiyska, and László Kozma. Fixed-point cycles and
approximate EFX allocations. In 47th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of
LIPIcs, pages 17:1–17:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.MFCS.2022.17.

4 Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. Almost full EFX exists for four
agents. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event,
February 22 - March 1, 2022, pages 4826–4833. AAAI Press, 2022. doi:10.1609/AAAI.V36I5.
20410.

5 Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. ACM Trans. Economics
and Comput., 7(3):12:1–12:32, 2019. doi:10.1145/3355902.

6 Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three agents. J.
ACM, 71(1):4:1–4:27, 2024. doi:10.1145/3616009.

7 Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu Misra.
Improving EFX guarantees through rainbow cycle number. In EC ’21: The 22nd ACM
Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages
310–311. ACM, 2021. doi:10.1145/3465456.3467605.

CP 2024

https://doi.org/10.48550/arXiv.2205.07638
https://doi.org/10.48550/arXiv.2205.07638
https://doi.org/10.1609/AAAI.V34I02.5545
https://doi.org/10.4230/LIPICS.MFCS.2022.17
https://doi.org/10.4230/LIPICS.MFCS.2022.17
https://doi.org/10.1609/AAAI.V36I5.20410
https://doi.org/10.1609/AAAI.V36I5.20410
https://doi.org/10.1145/3355902
https://doi.org/10.1145/3616009
https://doi.org/10.1145/3465456.3467605

37:10 Computing Small Rainbow Cycle Numbers with SAT Modulo Symmetries

8 Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A
little charity guarantees almost envy-freeness. SIAM J. Comput., 50(4):1336–1358, 2021.
doi:10.1137/20M1359134.

9 Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking symmetries
in graphs: The nauty way. In Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings,
volume 9892 of Lecture Notes in Computer Science, pages 157–172. Springer Verlag, 2016.
doi:10.1007/978-3-319-44953-1_11.

10 Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Constraints for sym-
metry breaking in graph representation. Constraints, 24(1):1–24, 2019. doi:10.1007/
s10601-018-9294-5.

11 Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International
Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,
2012, pages 49–56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.

12 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and
Armin Biere. IPASIR-UP: user propagators for CDCL. In Meena Mahajan and Friedrich
Slivovsky, editors, 26th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume 271 of LIPIcs, pages 8:1–8:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.8.

13 Katalin Fazekas, Florian Pollitt, Mathias Fleury, and Armin Biere. Certifying incremental
SAT solving. In LPAR 2024: Proceedings of 25th Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Port Louis, Mauritius, May 26-31, 2024, volume 100 of
EPiC Series in Computing, pages 321–340. EasyChair, 2024. doi:10.29007/PDCC.

14 Marijn J. H. Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229, 2016.
URL: http://arxiv.org/abs/1610.06229.

15 Marijn J. H. Heule. Optimal symmetry breaking for graph problems. Math. Comput. Sci.,
13(4):533–548, 2019. doi:10.1007/S11786-019-00397-5.

16 Avraham Itzhakov and Michael Codish. Breaking symmetries with high dimensional graph
invariants and their combination. In Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research - 20th International Conference, CPAIOR 2023, Nice, France,
May 29 - June 1, 2023, Proceedings, volume 13884 of Lecture Notes in Computer Science,
pages 133–149. Springer, 2023. doi:10.1007/978-3-031-33271-5_10.

17 Shayan Chashm Jahan, Masoud Seddighin, Seyed Mohammad Seyed Javadi, and Mohammad
Sharifi. Rainbow cycle number and EFX allocations: (almost) closing the gap. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023,
19th-25th August 2023, Macao, SAR, China, pages 2572–2580. ijcai.org, 2023. doi:10.24963/
IJCAI.2023/286.

18 Markus Kirchweger, Tomáš Peitl, and Stefan Szeider. Co-certificate learning with SAT modulo
symmetries. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 1944–1953.
ijcai.org, 2023. doi:10.24963/IJCAI.2023/216.

19 Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. A SAT attack on Rota’s Basis
Conjecture. In Theory and Applications of Satisfiability Testing - SAT 2022 - 25th International
Conference, Haifa, Israel, August 2-5, 2022, Proceedings, 2022. doi:10.4230/LIPIcs.SAT.
2022.4.

20 Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. SAT-based generation of planar
graphs. In Meena Mahajan and Friedrich Slivovsky, editors, The 26th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2023), July 04-08, 2023, Alghero,
Italy, LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
SAT.2023.14.

https://doi.org/10.1137/20M1359134
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1109/ICTAI.2012.16
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.29007/PDCC
http://arxiv.org/abs/1610.06229
https://doi.org/10.1007/S11786-019-00397-5
https://doi.org/10.1007/978-3-031-33271-5_10
https://doi.org/10.24963/IJCAI.2023/286
https://doi.org/10.24963/IJCAI.2023/286
https://doi.org/10.24963/IJCAI.2023/216
https://doi.org/10.4230/LIPIcs.SAT.2022.4
https://doi.org/10.4230/LIPIcs.SAT.2022.4
https://doi.org/10.4230/LIPICS.SAT.2023.14
https://doi.org/10.4230/LIPICS.SAT.2023.14

M. Kirchweger and S. Szeider 37:11

21 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation and
enumeration. ACM Trans. Comput. Log., 25(3), 2024. doi:10.1145/3670405.

22 Hans Kleine Büning and Theodor Lettman. Propositional logic: deduction and algorithms.
Cambridge University Press, Cambridge, 1999.

23 Tamás Mészáros and Raphael Steiner. Zero sum cycles in complete digraphs. Eur. J. Comb.,
98:103399, 2021. doi:10.1016/J.EJC.2021.103399.

24 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. CDCLSym: in-
troducing effective symmetry breaking in SAT solving. In Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS 2018, vol-
ume 10805 of Lecture Notes in Computer Science, pages 99–114. Springer, 2018. doi:
10.1007/978-3-319-89960-2_6.

25 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing –
SAT 2014, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer Verlag,
2014. doi:10.1007/978-3-319-09284-3_31.

CP 2024

https://doi.org/10.1145/3670405
https://doi.org/10.1016/J.EJC.2021.103399
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1007/978-3-319-09284-3_31

	1 Introduction
	2 Preliminaries
	3 Encoding
	3.1 Using a propagator to ensure acyclicity
	3.2 Static encoding
	3.3 Invariant pruning
	3.4 Symmetry breaking

	4 Experimental Results
	5 Conclusion

