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Abstract
A bottleneck in the more wide-spread use of approaches such as Large Neighborhood Search is the
need for domain-specific knowledge. To this end, a number of generic LNS methods have previously
been proposed that automate the selection of variables in the neighborhood with the aim of reducing
the expertise requirement. Recently a new generic approach, Improved Variable-Relationship Guided
LNS (iVRG), was proposed that showed promising initial results. This method combines static
information regarding problem structure and dynamic information from search performance in its
neighborhood selection.

In this work, we first show the generalisability of the approach by comparing it on two widely
studied problems, car sequencing and steel mill slab, where it outperformed existing generic ap-
proaches. We then provide a detailed examination of iVRG, investigating its key components
(static/dynamic information, the use of a Tournament Selection operator) to assess their individual
impact and provide insight into iVRGs overall behavior.
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1 Introduction

Large neighborhood search [15] is a metaheuristic approach that works by iteratively improv-
ing an initial solution through optimising subsets of variables. Each iteration involves the
selection and relaxation (unassignment) of a neighborhood of variables (destroy phase). The
problem is then optimised (repair phase) with the neighborhood restricted to only those
variables that can be searched over, all other variables are fixed to their values in the current
solution. This has led to significant advances in terms of problem size that can be handled
by such optimisation algorithms, enabling them to explore vast solution spaces efficiently.
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There are a number of components that must be chosen for a given implementation
of the basic LNS framework: the method to select the variables in a given neighborhood,
the size of the neighborhood, and the solution approach (typically an exact method such
as CP/MIP). However, the more general applicability of LNS to a wide range of problem
domains remains a challenge as it often requires domain-specific insights to effectively design
the neighborhood selection mechanism. To address this limitation a number of domain-
independent neighbourhood selection approaches have been proposed down through the
years [12, 7, 6, 10]. These approaches involve strategies that can adapt to various problem
domains without relying on domain-specific knowledge.

Despite the importance of domain-independent neighbourhood selection approaches recent
research in the area of generic neighborhood selection operators has been relatively scarce
with much of the focus on adaptive LNS approaches [13, 5, 20]. These approaches use a
portfolio of heuristics with the system adapting weights based on search performance to
decide on the probability of selecting a given heuristic in the next iteration. The quality of
these approaches is sensitive to the diversification of heuristics included in the portfolio. More
recently there has also been a focus on machine learning approaches for learning neighborhood
selection, albeit primarily restricted to mixed integer programming (MIP) [10, 22].

In this paper, we present an analysis of a recently proposed domain-independent neigh-
bourhood selection approach, Improved Variable-Relationship Guided LNS (iVRG) [19]. This
approach showed promising results, albeit only evaluated on Google’s Machine Reassign-
ment Problem (MRP). We delve into its key components, including the use of structural
relationships, search state information, and a tournament selection mechanism.

To provide a robust comparative analysis, we empirically compare iVRG with two state-of-
the-art generic neighbourhood selection approaches: Propagation Guided LNS (PG-LNS) [12]
and Cost Impact Guided LNS [6]. The former was originally evaluated using the Car
Sequencing Problem (CSP), while the latter was tested on the Steel Mill Slab Problem
(SMSP). We extend our previous analysis [19] to these two problem domains to assess the
generalisability of iVRG. We then investigate the impact of the different components of the
iVRG approach, the use of structural information, the use of search state information, and
finally the use of tournament selection within the heuristic.

2 Related Work

2.1 Propagation Guided Large Neighbourhood Search

Perron et al. [12] proposed using propagation information to identify strongly connected
neighbourhoods. To generate this information the basic PG-LNS approach starts from all
variables unassigned and initially chooses a variable at random. It then repeatedly chooses a
variable to assign until a predefined neighborhood size is reached. The variable to assign
is chosen randomly from the top ten variables ranked according to their domain reduction
after assigning the previously selected variable. If this list is empty, selection reverts to a
random choice from the remaining relaxed variables.

A complementary approach, Reverse PG-LNS, was also proposed. This starts from all
variables being assigned and repeatedly unassigns a variable until the desired neighborhood
size is achieved. The variable to unassign is chosen randomly from a list of the ten variables
with the highest closeness score accumulated from the previous selected variables. This score
is based on the impacts computed in PG-LNS.
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2.2 Cost-Impact Guided LNS
Cost-Impact Guided Large Neighbourhood Search (CIG-LNS) [6] selects variables for relaxa-
tion based on their impact on the cost (objective function). This cost impact is determined
by observing the variations in the lower bound that occur when each variable is assigned a
value. These variations are captured through dives, where a dive is the re-application of the
current solution in a rearranged order. An additional parameter α is incorporated into each
variable’s score to control the level of diversification. The parameter value is in the range
[0, 1], with 0 equating to pure random selection and 1 being that the cost alone is used.

3 Improved Variable-Relationship Guided LNS

Improved Variable-Relationship Guided LNS [19] is a neighborhood selection operator that
uses the structural relationships between variables to guide search towards connected neighbor-
hoods. It combines this static information with dynamic information from search to prioritize
variables with a higher likelihood of enhancing the solution, and uses tournament selection
to only consider a subset of variables for selecting the next variable for the neighborhood.
The latter serves to both increase diversification, and to reduce computational effort (since
heuristic information is only computed for the subset of variables).

3.1 Structural Relationship
The structural relationship is incorporated in neighborhood selection by considering only
variables linked to the most recently relaxed variable. Specifically, the probability of selecting
a variable j subsequent to the relaxation of variable i is determined by the following formula:

1
|Ci|

∗
∑

c∈Ci,j

1
|Vc|

where Ci,j denotes the set of constraints involving both variables j and i, while |Vc| is the
arity of constraint c, and |Ci| is the number of constraints involving variable i. The logic of
using constraint arity is that the relevance of the relationship between any two variables due
to a constraint diminishes as the number of variables sharing that constraint increases. At
its most extreme, when a constraint includes all variables, it fails to offer meaningful insight
into the strengths of the relationships between those variables. Note since these are static
values, this need only be computed once at the start of an LNS run on an instance.

However, there are also problems where variables without such a direct relationship can
still contribute greatly to solution improvement when selected together (e.g. swapping their
bins in a bin packing problem). For these problems, forcing all neighborhood variables to be
connected may impede performance. Therefore, iVRG uses the combination of structural
relationship and search state information (SSI) for half of the neighborhood variables, and
otherwise only uses SSI.

3.2 Search State Information
There are a number of different forms of search state information (SSI) that could be used,
e.g. variables that are in conflict during search, variables whose selection resulted in large
improvements during search, etc. In previous work on iVRG [19], two aspects of SSI were
combined. The first is the Variable Cost, that centered on the principle that the most
impactful neighborhood selections involve high-cost variables. This heuristic measures a
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variable’s contribution to the overall cost by computing the impact on the objective function of
its removal from the current solution. The second SSI component is focused on diversification,
maintaining a count of the number of iterations the variable was relaxed in. The heuristic
considers the Variable Cost divided by the frequency of selection across previous iterations.

3.3 Tournament Selection

Tournament selection within the iVRG framework selects the variable with best SSI value
from a subset of variables. This subset can be either selected based on their structural
relationship to the previously relaxed variable (using the formula defined in Section 3.1), or
randomly selected. As previously mentioned, variables that don’t share a constraint can also
contribute to solution improvement when selected together. Therefore, half the tournaments
have the subset of variables selected randomly for the tournament, and the other half use
the relationship to the previously relaxed variable.

4 Problem Description

The Steel Mill Slab Problem (SMSP) [8, 14] involves assigning steel orders to slabs while
minimising slab wastage. Each slab has a maximum weight capacity, and orders have specific
weight and colour. The challenge is to efficiently group orders onto slabs in a way that we
have a maximum of two colours per slab while minimising the total waste.

The Car Sequencing Problem (CSP) was initially formulated as a satisfaction problem [1,
16], involving the assignment of a sequence of cars to a limited number of slots in a production
line where each bay installs specific options and has a limited capacity. Many optimisation
variants with different objective functions have since been proposed (e.g. [11, 3]). In this
work we consider the variant proposed by Souza et al. [18] that defines the objective function
in terms of minimising the total number of options in the cars not placed in the production
line.

The Machine Reassignment Problem (MRP) considered here was proposed by Google
for the 2012 Roadef Challenge.1 The problem requires optimising the reallocation of a set
of processes to a set of machines with the goal of minimising a multi-objective function:
weighted sum of objective function components. The problem further involves a number
of constraints related to capacity, conflicting subsets of processes, as well as spread and
dependency amongst groups of processes. Due to its complexity and specificity, the MRP
has been the focus of many works [2].

The problem type instances were chosen based on what each approach (PG-LNS, CiG-
LNS and iVRG) had used for their evaluation in their respective publications. They also
represent a diverse set of combinatorial optimisation challenges with varying constraints
and complexities (the low propagation of the SMSP, the higher constrained solutions of the
CSP, and the density and size of the MRP instances). This variety ensures a comprehensive
evaluation of each heuristic’s adaptability and scalability. Figure 1 shows the structure of a
sample instance for each of the problem types. We note that the SMSP is very sparse, with
disconnected components. The MRP on the other hand is extremely dense, while the CSP is
somewhat in the middle of the other two problem types in terms of its density.

1 https://www.roadef.org/challenge/2012/files/problem_definition_v1.pdf

https://www.roadef.org/challenge/2012/files/problem_definition_v1.pdf
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(a) SMSP. (b) CSP. (c) MRP.

Figure 1 Problem structure (variable relationship) of sample instances: (a) Steel Mill Slab
Problem, (b) Car Sequencing Problem, and the (c) Machine Reassignment Problem.

5 Experimental Setup

The experiments were run on a machine running Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-
70-generic) with 16 cores and 32Gb of RAM. All runs had a runtime cutoff of 2 minutes per
instance for the 2 smaller problem types: the Car Sequencing Problem and the Steel Mill
Slab Problem. While for the more complex Machine Reassignment Problem, the cutoff was 5
minutes per instance. Those runtimes were chosen to be consistent with the values used in
previous literature. The MRP was introduced in the ROADEF 2012 with a runtime cutoff of
5 minutes and most of the papers that addressed this problem focused on this setting. The
runtime used in the original PG-LNS paper [12] for their CSP experiments was 2 minutes. In
the paper that introduced CIG-LNS [6] the authors used an iteration-limit of 1000 for their
SMSP experiments rather than a time-limit, therefore we used 2 minutes for the SMSP in
these experiments, which generated more than 2000 iterations on average for each approach.

Gecode2 was the CP solver used for subproblem optimisation in the two smallest instance
types. However as it could not handle the large MRP, a dedicated solver was implemented
for this problem type. Furthermore, as the approaches have stochastic components, the
presented results are the average of 10 runs with different seeds. Table 1 presents the
parameter configurations that were used to run the experiments. The failure threshold / first
solution improvement were the stopping conditions used by the CP solver per iteration.

Table 1 Configurations parameters for the benchmark experiments.

Parameter Value

Runtime 120 seconds (SMSP, CSP); 300 seconds (MRP)
Neighbourhood Size 10 variables
Tournament Size 10 variables
Failure Threshold 200

It should be noted that for PG-LNS we implemented the best configuration presented
in [12], that iterates through the following three neighborhood operators: Propagation
Guided; Reverse Propagation Guided; and purely random selection. However, we defined the

2 https://www.gecode.org
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neighbourhood size based on the number of relaxed variables instead of the search space size,
in order to compare all approaches on the same neighbourhood size. Similarly for CIG-LNS,
we implemented the optimal configuration identified in [6]. In particular the value of α

was set to 0.5, and a dive was performed after every 10 unsuccessful LNS iterations and
subsequent to each improve solution.

5.1 Benchmark Instances
For the MRP, the three sets of instances from the 2012 Roadef challenge [9] were used (A,B
and X), where each set has 10 instances. The A instance set is composed of smaller instances
with a maximum of 1k variables and domains of size 100. The other two sets of instances are
more complex and larger, with up to 50k variables and domains of up to 5k. For the CSP,
three sets of hard instances proposed by Caroline Gagne and available on the CSPLib [16]
were used. There are 10 instances in each set and the total number of cars per instance
(equal to the number of variables, and to domain size -1) is 200, 300 and 400, respectively,
for the three sets. Finally, for the Steel Mill Slab Problem, the same set of instance used
in [6] was used. This set involves 80 instances, each with 111 variables and domain size 111,
divided into four groups based on the number of slab capacities available (2,3,4 and 5).

5.2 Evaluation Metrics
The metrics used for our evaluation on the three different problem types are a normalized
scoring metric to assess the quality of the solution, and a similarity metric to assess the
diversity of the neighborhoods. Note all three problem types are minimisation.

The score metric is that used in ROADEF’12 [9]. The metric measures the distance the
solution found is from the best known solution, but also considers how much improvement
was made from the initial solution. It is calculated ((Cost − BK)/initialCost) ∗ 100,
where Cost denotes the cost of the solution found, BK is the best known cost for the problem
instance [21, 2, 17, 4], and initialCost is the cost of the initial solution. For fair comparison,
note that the same initial solution was used for all algorithms for a given run on a given
instance. This score was chosen because the solution costs have a huge difference in the scale,
e.g. the best known solution for MRP instance A2_1 is 151 and for A2_2 is 720671511.

The similarity metric represents the average percentage of intersection (common variables
in neighborhoods) observed across the first 1,000 iterations of the LNS, as illustrated in the
equation below. In the case where an approach did not manage to perform 1,000 iterations
in the defined runtime (which occurred only for PG-LNS on the largest MRP problem sets),
the metric represents the average percentage of intersection in all iterations.

Similarity = 1(1000
2

) 999∑
i=0

999∑
j=i+1

|N [i] ∩ N [j]|
|N [i]| .

6 Results

6.1 Comparison of different domain-independent neighborhood
operators for LNS

We first investigated if the performance previously shown on MRP [19] would hold on the
SMSP and the CSP. We compared the three generic neighborhood selection heuristics and a
pure random approach (Rand), in terms of average score, similarity and number of iterations



F. Souza, D. Grimes, and B. O’Sullivan 39:7

across problem sets. The results are given in Table 2, showing that iVRG consistently
outperformed the other approaches on all problem sets. CIG-LNS and PG-LNS had varying
performance across the problem types, with the latter outperforming the former on the CSP
but the opposite the case for the other two problem types. Indeed in our experiments the
random approach outperformed both on the SMSP, albeit by a small amount.

Somewhat surprisingly we find that iVRG has the highest similarity in the two smallest
problem types. However, we note that it was not significantly higher than the other approaches.
Indeed all approaches contain a strong random component, but a very low similarity is
not necessarily a good characteristic, for example to try to maintain a balance between
diversification and intensification of search.

An analysis of the number of iterations performed by the different approaches also provides
insights. Firstly, PG-LNS and CIG-LNS suffered from scalability. In particular for the MRP,
the number of iterations performed on the instance sets B and X, which had instances with
up to 50k variables and domains of maximum size 5k, were more than 80% less than on the
A set. In comparison, Rand and iVRG had less than 50% drop in iterations. The cost of
computing the cost-impact / propagation-impact was prohibitive for these large instances.

The iterations on the other two problem sets demonstrate the two extreme cases in
neighborhood selection that we wish to avoid, both of which are heavily influenced by a
lack of relationship amongst variables in the selected neighborhood. In one case there is no
search space to search, as the only consistent values the relaxed variables can take are the
values they take in the current solution. Therefore, there are many iterations performed,
with few nodes explored. This can be seen for the CSP, with Rand and CIG-LNS performing
nearly an order of magnitude more iterations than PG-LNS and iVRG. Indeed analysis of
the average nodes explored per iteration shows that Rand and CIG-LNS explored around
10 nodes per iteration on average, compared to 200-300 for PG-LNS and iVRG. We also
note that both the latter two approaches were significantly better in terms of score on this
problem type compared to the former two.

The opposite case is where there is too large a search space, due to lack of propagation
when values assigned. This is the case for the SMSP where the variables are not strongly
connected, as shown in Figure 1a. Here, iVRG performed many more iterations than the
others, with average nodes per iteration of 100 for iVRG compared to approximately three
times as many by the other approaches. Given the failure threshold of 200, this shows that
the solver was able to improve most neighborhoods chosen by iVRG, but rarely was able to
improve any of the neighborhoods chosen by the other methods for the SMSP.

Table 2 Comparison of iVRG, PG-LNS, CIG-LNS, and Random Selection on the three problem
types: Steel Mill Slab (SMSP), Car Sequencing (CSP), and Machine Reassignment (MRP).

Problem Group Score Similarity #Iterations (x1000)
Rand PG CIG iVRG Rand PG CIG iVRG Rand PG CIG iVRG

SMSP

2 10.23% 10.24% 10.79% 5.51% 9.01% 10.10% 9.62% 10.24% 1.7 1.7 1.6 4.4
3 10.80% 11.81% 11.59% 5.17% 9.01% 10.06% 9.76% 10.26% 2.0 1.9 1.9 4.3
4 5.51% 5.97% 5.68% 2.81% 9.01% 10.11% 9.85% 10.12% 2.3 2.3 2.3 7.6
5 4.78% 5.57% 4.58% 2.13% 9.01% 10.17% 10.05% 10.08% 2.7 2.7 2.6 7.6
Overall 7.83% 8.40% 8.16% 3.91% 9.01% 10.11% 9.82% 10.17% 2.2 2.1 2.1 6.0

CSP

200 9.71% 5.36% 8.97% 4.43% 5.00% 5.01% 5.26% 5.51% 78.2 12.7 131.7 18.4
300 10.36% 5.46% 9.57% 3.83% 3.33% 3.34% 3.44% 3.64% 52.4 9.1 87.3 12.8
400 11.58% 5.67% 10.11% 3.86% 2.50% 2.50% 2.55% 2.72% 32.9 6.3 55.5 9.1
Overall 10.55% 5.50% 9.55% 4.04% 3.61% 3.61% 3.75% 3.95% 54.5 9.3 91.5 13.4

MRP

A 3.69% 5.25% 3.17% 2.33% 4.56% 5.11% 8.80% 5.06% 87.3 7.6 98.7 70.1
B 0.31% 0.94% 0.36% 0.26% 0.26% 0.26% 3.14% 0.35% 52.2 0.8 13.6 44.0
X 0.46% 0.62% 0.41% 0.34% 0.29% 0.25% 3.69% 0.38% 53.9 0.8 15.7 34.9
Overall 1.49% 2.27% 1.31% 0.98% 1.70% 1.87% 5.21% 1.93% 64.5 3.0 42.7 49.7
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6.2 Analysis of iVRG Components

Given the performance of iVRG in the previous section, we next investigated the contribution
of each of its three main components to this performance. In particular we compared iVRG
against the following iVRG versions: without tournament selection (NonT ); without using
search information (NonS); and finally without using the structural relationship (NonR).
For NonS, variables were chosen randomly, albeit maintaining the structural relationship
with previously selected variables in the neighborhood.

The results are presented in Table 3, and show that overall the use of structural rela-
tionship had the biggest impact. NonR consistently had the biggest drop in performance
compared to iVRG. Tournament selection was the next most important, with significant
drops in performance on the CSP and the MRP. Somewhat surprisingly, the results of NonS
demonstrate that the search state information has only a relatively small impact on iVRG
performance across all three problem sets, compared to the other two components.

Interestingly, we find a stronger correlation between similarity and performance here than
in the previous table. NonR has consistently higher similarity than iVRG. This indicates
a more diverse neighborhood selection in iVRG due to the effect of variable relationships,
which restrict the variables available to relax to a different group (based on relationships of
the first chosen variable) every iteration.

NonT also had higher similarity for all except the sparse SMSP problems, with these
problems being the only ones where NonT had comparable performance with iVRG. Of
course, tournament selection has less impact on smaller instances. Note that under the
current settings of 10 for both neighborhood size and tournament size, 100 variables are
considered in each LNS iteration when choosing the neighborhood, and SMSP instances had
only 111 variables.

The average iterations metric reveals the importance of the relationship information
in neighborhood selection in iVRG. Without this, iVRG suffers from the same pitfalls as
discussed in Table 2. The sparseness of the SMSP results in searching a large search space,
even with just 10 variables in the neighborhood, due to the lack of propagation. On the other
hand, it performs a much greater number of iterations on the two other problem sets, but
many of these required little or no search as again disconnected neighborhood variables in
much more constrained instances resulting in most variables being assigned without search.

Table 3 iVRG compared to iVRG without: Tournament Selection (NonT), search state informa-
tion (NonS), and variable-relationship (NonR).

Problem Group Score Similarity #Iterations (x1000)
iVRG NonT NonS NonR iVRG NonT NonS NonR iVRG NonT NonS NonR

SMSP

2 5.51% 6.23% 6.24% 10.38% 10.24% 9.92% 9.82% 22.42% 4.4 4.3 4.1 1.8
3 5.17% 4.93% 5.34% 14.41% 10.26% 10.03% 9.96% 21.57% 4.3 4.5 4.4 2.1
4 2.81% 2.79% 2.82% 13.68% 10.12% 9.88% 9.85% 21.27% 7.6 7.9 8.0 2.1
5 2.13% 2.06% 2.28% 17.38% 10.08% 9.90% 9.84% 20.97% 7.6 8.0 7.4 1.9
Overall 3.91% 4.00% 4.17% 13.96% 10.17% 9.93% 9.87% 21.56% 6.0 6.2 6.0 2.0

CSP

200 4.43% 10.47% 4.50% 9.59% 5.51% 12.57% 5.02% 6.03% 18.4 14.1 14.2 86.8
300 3.83% 11.11% 4.28% 10.71% 3.64% 10.92% 3.35% 4.02% 12.8 9.7 9.9 56.1
400 3.86% 9.57% 3.87% 11.32% 2.72% 7.21% 2.50% 3.06% 9.1 6.1 7.4 34.9
Overall 4.04% 10.38% 4.22% 10.54% 3.95% 10.23% 3.62% 4.37% 13.4 10.0 10.5 59.3

MRP

A 2.33% 6.04% 2.66% 5.85% 5.06% 23.83% 4.75% 10.90% 70.1 65.4 63.1 91.2
B 0.26% 0.74% 0.29% 0.39% 0.35% 20.10% 0.28% 0.61% 44.0 8.5 44.9 57.0
X 0.34% 0.90% 0.37% 0.46% 0.38% 20.83% 0.31% 0.67% 34.9 7.2 40.8 89.2
Overall 0.98% 2.56% 1.11% 2.23% 1.93% 21.59% 1.78% 4.06% 49.7 27.0 49.6 79.1
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The advantages of tournament selection is particularly prominent on the large MRP
B and X instances, where the cost of computing heuristic values and sorting across 1000s
of variables is prohibitive. Here, in the worst case, the SSI must be calculated for 50,000
variables, compared to 100 variables with tournament selection. This demonstrates that the
benefit of tournament selection is not only in terms of diversification, as shown by NonT
similarity scores, but also in terms of scalability.

7 Conclusion

We have demonstrated the generalisability of the recently proposed iVRG. It was shown to
significantly outperform similar approaches (PG-LNS and CIG-LNS) on three challenging
problem types of different characteristics. Additional analysis revealed that it is able to avoid
two of the main pitfalls of neighborhood selection, unlike the comparison approaches. The
main iVRG component from this respect was the use of static information regarding the
relationship of variables, in order to select neighborhoods with a high degree of connectivity.

An ablation study of the main components was then performed, considering the use
by iVRG of: static structural information; dynamic search state information; and finally
the use of tournament selection within the neighborhood operator. The results revealed
that the problem structure was the most important aspect, followed closely by tournament
selection. The former contributes to the algorithm’s ability to adapt for distinct problem
characteristics, effective even for problem such as Steel Mill Slab with a low level of relationship
between decision variables. Tournament selection was shown to be effective in increasing
diversification, and scalability. While, the search state information had relatively low impact
in iVRG compared to the other two components, it still yielded consistent improvements
over random selection. Indeed these two components are generic and could possibly result in
improved performance if plugged into other LNS approaches.
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