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—— Abstract

This paper presents a SAT encoding, called vertex elimination encoding (VEE), for the Hamiltonian
Cycle Problem (HCP). The encoding maps a Hamiltonian cycle in the reduced graph after vertex
elimination to a Hamiltonian cycle in the original graph. While VEE is not competitive for large
dense graphs due to its large encoding sizes, it can be utilized to reduce graphs when they are sparse.
This paper compares VEE with the distance encoding, and shows that the hybridization of these
two encodings is effective for the benchmarks. For the knight’s tour problem, in particular, the
hybrid encoding solves some middle-sized instances that were beyond the reach for previous eager
SAT encodings.
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1 Introduction

The Hamiltonian Cycle Problem (HCP), a classic problem in graph theory, seeks to find
a cycle in a given directed graph that includes each and every vertex exactly once. With
the availability of fast Satisfiability (SAT) solvers, various studies have been conducted to
encode the HCP into SAT to leverage the solving power[2, 3, 6, 9, 10, 11]. The HCP can
be encoded with degree and no-sub-cycle constraints. Most of the reported SAT encodings
focus on how to translate no-sub-cycle constraints into SAT. Despite some successes, current
SAT-based solvers are not yet competitive on many problems with other solvers, such as
Constraint Programming (CP) and Answer Set Programming (ASP) solvers.

Vertex elimination [8] is a problem-solving technique used in various graph problems. The
idea of the technique is to simplify complex graphs by removing certain vertices from a graph
while preserving important properties. Recently, an encoding based on vertex elimination has
been proposed for encoding acyclicity of directed graphs into SAT [7]. While this encoding is
effective for sparse graphs, it is infeasible for large dense graphs due to its explosive encoding
sizes. An improved encoding, which combines the vertex elimination encoding and the leaf
elimination encoding, has been found to outperform both encodings on various types of
graphs [13].

The vertex elimination technique can be applied to the HCP based on the observation
that, if there exists a Hamiltonian cycle in a graph, then there must also exist a Hamiltonian
cycle in a smaller graph obtained by removing a vertex. This paper proposes an encoding
based on vertex elimination, called VEE, for the HCP. Let G be a directed graph, v be a
vertex of G, and G’ be the graph obtained after v is eliminated from G. While the existence
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of a Hamiltonian cycle in G guarantees the existence of a Hamiltonian cycle in G’, it is not
inversely true, as vertex elimination may introduce cycles into G’. VEE generates constraints
to ensure that the existence of a Hamiltonian cycle in G’ guarantees the existence of a
Hamiltonian path in G between two adjacent vertices of the eliminated vertex v.

The encoding size of VEE is prohibitively huge for a large dense graph. In the worst case,
it requires O(n?) variables and generates O(n*) clauses. Following the idea of the hybrid
encoding for acyclicity of graphs [13], this study also compares a hybrid encoding, which
combines VEE and the distance encoding [11]. The hybrid encoding iteratively applies VEE
as long as the graph meets a certain sparsity threshold, and switches to distance encoding
when the smallest degree exceeds the threshold. The experimental results show that the
hybrid encoding has the best overall performance, and solves some problems that were beyond
the reach for previous eager SAT encodings.

2 The HCP and Distance Encoding

Given a base directed graph G = (V, E), where V is a set of vertices, and E is a set of
directed edges, called arcs, the HCP seeks to find a subgraph Hg = (Hy, Hg), where
Hy CV, Hg C E, and the arcs in Hg form one cycle that connects all the vertices in Hy .
To represent H¢, this paper uses a binary variable, called a characteristic variable, for each
vertex v in V', denoted as b, and each arc (u,v) in E, denoted as b,,. A vertex v is said to
be an in-vertez if b, = 1. Similarly, an arc (u,v) is said to be an in-arc if by, = 1.

The graph H¢ is completely determined by the characteristic variables as follows:

Hy={v|veV, b =1}
Hg = {(u,v) | (u,v) € E, by, =1}

If an arc is in, then both of its incident vertices must also be in: for each arc (u,v) € E,
buy = by A by.

The modeling of HCP with characteristic variables on vertices and arcs is generic, and
the circuit(L) and subcircuit (L) constraints available in CP systems [1], where L is
a list of domain variables representing the base graph, can be converted to constraints on
characteristic variables. Let the length of L be n. In circuit(L), all the vertices are
assumed to be included in the resulting Hamiltonian cycle, therefore, b, = 1 for each vertex
in 1..n. In subcircuit (L), the vth variable in L is bound to v iff b, = 0 for v € 1..n.

The HCP can be decomposed into degree constraints and no-sub-cycle constraints. Let
k be the cardinality of Hy: k = ) i, b,. The degree and no-sub-cycle constraints are
only enforced when k > 1. Various encodings are possible based on the framework. The
following gives an adapted distance encoding [11], which can be traced back to the standard
decomposer used in MiniZinc [5] and the integer programming formulation [4].

The degree constraints require every vertex to be in a cycle if £ > 1:

For each v € V:

k>1Aby = Y buy=1 (D-1)
(u,v)EE

k>1Aby = > by =1 (D-2)
(v,w)eEE

For each vertex in Hy, constraint (D-1) forces it to have exactly one incoming arc, and
constraint (D-2) forces it to have exactly one outgoing arc.
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With constraints (D-1) and (D-2), the graph represented by the characteristic variables
may contain sub-cycles. One well-known technique used in MIP and SAT encodings for HCP
to prevent sub-cycles is to map vertices to different positions. The distance encoding chooses
a vertex as the starting vertex, and treats each vertex’s position as the distance from the
starting vertex. For each vertex v, the distance encoding uses a binary variable s, to indicate
if v is the starting vertex, and an integer-domain variable d, (0 < d,, < n — 1) to indicate v’s
distance from the starting vertex, where n is the number of vertices in the base graph G.
The following constraints are imposed on the variables:

k>1— ) s, =1 (D-3)
veV

For each v € V:
Sy — by (D-4)
Sy —>dy =0 (D-5)

Constraint (D-3) ensures that there is a unique starting vertex if k£ > 1. Constraint (D-4)
states that the starting vertex is an in-vertex, and constraint (D-5) forces the starting vertex’s
distance to be 0.

In addition to the above constraints, constraint D-6, given below, ensures that vertices
are positioned successively:

For each (u,v) € E: byy A =8y = dy =dy, +1 (D-6)

For each in-arc (u,v), if v is not the starting vertex, then v is the successor of u. There are
several different ways to encode the successor constraint d, = d,, + 1 [11]. The binary adder
encoding is used in this study.

Constraints (D-1) through (D-6) guarantee that the last-positioned vertex is connected
back to the starting vertex, as the last vertex must have distance k& — 1 and the degree
constraints force it to be connected back to the starting vertex.

3 Vertex Elimination Encoding for HCP

Let G = (V, E) be a directed graph with no self-loops and v be a vertex in V, the vertex
elimination operation on v produces a directed graph G' = (V' E’):

V=V {o)
E'= B\ {(u,v) | (u,0) € E}
\{(v,w) | (v,w) € E}
U{(u,w) | u € nbs™ (v), w € nbs™ (v),u # w}
where
nbs™ (v) = {u | (u,v) € E}
nbst(v) = {w | (v,w) € E}.
The operation eliminates v’s incident arcs, and adds the arc (u,w) into E’ for each u in
nbs~ (v) and each w in nbs™(v) (u # w) if the arc is not contained in E. An arc in E’ is said
to be new if it is not in F and is newly added by vertex elimination.

As the resulting graph G’ preserves the acyclicity of G [7], vertex elimination has the
following properties:

CP 2024
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G G’

Figure 1 Vertex elimination introduces a new cycle.

If there exists a Hamiltonian cycle in the original graph G, then there must also exist a
Hamiltonian cycle in the resulting graph G’ after vertex elimination.

The existence of a Hamiltonian cycle in the resulting graph G’ does not guarantee the
existence of a Hamiltonian cycle in the original graph G as vertex elimination may
introduce cycles. Figure 1 gives an example, where graph G has no Hamiltonian cycles,
but the resulting graph G’ has Hamiltonian cycles after v is eliminated from G.!

Recall that a Hamiltonian cycle H¢ of a graph G is represented by characteristic variables
associated with the vertices and the arcs. Let G’ = (V’, E’) be the graph obtained after
vertex v is eliminated from graph G = (V| E), and let the characteristic variables for G’ be
b., where z is a vertex or an arc. The characteristic variables for vertices are unchanged after
a vertex is eliminated, so for each vertex v € V', b, = b,. For each arc (u,w) € E' N E, if
(u,v) ¢ E or (v,w) ¢ E, then by, =b.,,. This means that for arcs that are not incident to
the eliminated vertex v, G’ inherits the characteristic variables from G.

Let k be the cardinality of Hg and k' be the cardinality of Hg:. The following constraint
must hold: k =k’ +b,. A Hamiltonian cycle H(, can be mapped to a Hamiltonian cycle Hg
if and only iff Hgs corresponds to a Hamiltonian path in G between a neighbor w in nbs™(v)
and a neighbor u in nbs™ (v) of the eliminated vertex v (u # w). The vertex elimination
encoding (VEE) ensures the mapping from Hgs to Hg with constraints.

In Hg, there must be exactly one incoming arc to the eliminated vertex v and exactly one
outgoing arc from v if k¥ > 1 and v is in Hy . This is ensured by the degree constraints (VE-1)
and (VE-2):

E>1Aby— Y buy =1 (VE-1)
(u,v)EE

k>1Ab, — Z byw = 1 (VE-2)
(vyw)eEE

Also, there cannot exist cycles of size 2 involving v if k' > 1.

For each (u,v) € E, if (v,u) € E:
E'>1— —byy V by, (VE-3)

Constraint (VE-3) ensures that the existence of Hg entails the existence of a Hamiltonian
path in G between two distinct adjacent vertices of v.

1 The edges are assumed to be doubly directed.
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A new arc (u,w) that is included in E’ but not in F indicates a path from u to w via the
eliminated vertex v. The following constraints are imposed on the newly added arcs.

For each (u,w) € (E' \ E): b, — buv A byw (VE-4)
S b, <1 (VE-5)
(u,w)eEE'—E

Constraint (VE-4) ensures that, if an arc (u,w) in E' — E is included in Hgy, then both (u, v)
and (v, w) must be included in Hg. Constraint (VE-5) bans multiple such paths, making
the case in Figure 1 impossible.

If there is an incoming arc (u,v) to the eliminated vertex v and an outgoing arc (v, w)
from v in Hg, then the arc (u,w) must occur in Hgs but not in Heg.

For each (u,v) € E, (v,w) € E, u # w:
buo A by = bl (VE-6)
buw A byw — "y (VE-T)

Constraints (VE-6) and (VE-7) ensure that a Hamiltonian cycle Hg can be mapped to a
Hamiltonian cycle Hg by removing the arc (u, w) from Hg and adding the arcs (u,v) and
(v, w).

Recall that G’ inherits the characteristic variables from G for the arcs that are not
incident to the eliminated vertex v. The following constraint constrains the characteristic
variables of the arcs that are incident to v:

For each (u,v) € E, (v,w) € E, u # w:
_‘buv \ _‘bvw — buw = b;w (VE—8)

Constraint (VE-8) ensures the correspondence of Hgr to a Hamiltonian path in G.

The correctness of VEE is guaranteed by the fact that a Hamiltonian cycle in G’
corresponds to a Hamiltonian path from a neighbor w in nbs*(v) to a neighbor u in nbs™ (v)
of the eliminated vertex v (u # w), and the path can be extended to a cycle by adding the
arcs (u,v) and (v, w).

The encoding size, which is dominated by constraint (VE-8), depends on the sparsity of
the graph. In the worst case, which happens when the graph is complete, VEE generates
O(n?) new variables for the characteristic variables of E'? and adds O(n3) clauses in each
step, where n is the size of V. Overall, VEE requires O(n?) variables and O(n*) clauses.

4 Hybrid Encoding

Due to the formidable encoding sizes of VEE for large dense graphs, VEE is generally not a
feasible encoding for HCP. Nevertheless, VEE can be utilized to reduce a graph when the
graph is sparse, and a compact encoding can be employed to encode the resulting dense
graph. This idea follows the hybrid encoding for acyclicity of graphs [13].

Any encoding for HCP can be hybridized with VEE. This paper uses the distance encoding
(DIST). The hybrid encoding iteratively applies VEE until a sparsity condition becomes false,
and after then, it switches to DIST.

2 As every vertex is incident to the eliminated vertex, E’ inherits no variables from E.
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The sparsity condition can be defined in many different ways. Let n be the number of
vertices in the original base graph, d be the smallest out-degree of the vertices in the current
graph,? and o be the total number of eliminated vertices so far. The sparsity condition used
in the experiment is: d x ¢ < n. For instance, when d = 1, the condition is always true, and
VEE is used; when d = 2, the condition becomes false when more than half of the vertices
have been eliminated.

5 Experimental Results

All the encodings presented in the paper have been implemented in Picat? (version 3.6#3),
which employs Kissat® as the underlying SAT solver. This experiment uses the same
elimination ordering as the one used in [7, 13], namely, choosing a vertex with the smallest
degree. The SAT encodings of the basic constraints can be found in [11, 12].

This study has compared VEE, DIST, the hybrid encoding (HYBRID) on the benchmark
suite used in [11], which consists of several instances of the knight’s tour problem and several
HCP instances taken from the Flinders challenge set® with numbers of vertices ranging
from 338 to 1584. For these benchmarks, k, which indicates the cardinality of the resulting
Hamiltonian cycle, is set to be n, the number of vertices in the base graph. All the CPU
times reported below were measured on Linux Ubuntu with an Intel i7 3.30GHz CPU and
32G RAM. The time limit used was 20 minutes per instance.

Table 1 compares the encodings on CPU time, which includes both the translation and
solving times (the entry TO indicates timeout). The column instance shows the instances,
where ktxx are knight’s tour instances, and graphxxx are the instances taken from the
Flinders challenge set. The other three columns give the times taken by the three encodings
for the instances.

It can be seen that, among the three encodings, HYBRID performs the best on the
knight’s tour instances, while DIST performs the best on all of the Flinders instances, except
for graph254 and graph48. While VEE fails to solve 8 of the instances (6 of the kt instances
and 2 of the Flinders instances) and DIST fails to solve 4 of the instances (3 of the kt
instances and 1 of the Flinders instances), HYBRID solves every instance within the time
limit.

VEE is not competitive on the knight’s tour instances because of the large encoding
sizes. For example, for kt30, the 30x 30 instance, the generated CNF code by VEE contains
23,299,909 clauses with 7,648,642 variables. For the Flinders instances, on the other hand,
VEE is quite competitive, winning on two of the instances, because the graphs are much
more sparse than the kt graphs. One of the reasons why HYBRID performs better on the
knight’s tour graphs than the Flinders graphs could be the structures of the graphs. While
the knight’s tour graphs are quite dense when the encoder switches from VEE to DIST,
the Flinders graphs remain quite sparse at the switching times. For instance, for kt30, the
smallest degree is 8 at the switching time after 120 out of the 900 vertices are eliminated; for
graph237, the smallest degree is 3 at the switching time after 493 out of the 1476 vertices
are eliminated.

As the graphs in all the benchmarks are undirected, a vertex’s degree is defined as its out-degree.
http://picat-lang.org

https://github.com/arminbiere/kissat

http://fhcp.edu.au/fhepces
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Table 1 A comparison on CPU times(seconds).

Instance VEE | DIST | HYBRID
kt12 28.75 7.11 0.32
kt14 135.80 5.77 1.23
kt16 614.23 | 118.45 2.72
kt18 1050.80 16.55 3.65
kt20 TO 20.70 6.16
kt22 TO 19.60 19.21
kt24 TO 76.31 46.03
kt26 TO TO 116.14
kt28 TO TO 192.73
kt30 TO TO 200.98

graph162 TO | 33.89 39.47

graphl71 45.38 5.35 50.29

graph197 78.64 | 13.16 488.38

graph223 TO | 80.05 200.71

graph237 125.66 | 12.27 237.51

graph249 62.48 1.89 61.04

graph252 182.27 | 18.57 468.85

graph254 84.55 TO 338.34

graph255 245.61 | 31.30 66.49

graph48 0.75 | 217.88 64.96

HYBRID is able to solve some middle-sized instances of the knight’s tour problem that
were beyond the reach for eager SAT encodings.” For example, it solves the 40x40 instance
in 2711 seconds. In contrast, DIST fails to solve the 40x40 instance in 24 hours, and VEE
fails to translate the instance to CNF. While HYBRID clearly advances the state of the art
for the knight’s tour problem, it is still not comparable with CP and ASP solvers, which can
solve much larger instances than 40x40, thanks to their reachability-checking capabilities
during search.

6 Discussion and Conclusion

This paper presents a SAT encoding, called vertex elimination encoding (VEE), for the HCP.

The encoding maps a Hamiltonian cycle in the reduced graph after vertex elimination to a
Hamiltonian cycle in the original graph. While VEE, in its current form, is not competitive
for large dense graphs due to its large encoding sizes, it can be utilized to reduce graphs
when they are sparse. This paper compares VEE with the distance encoding, and shows that
the hybridization of these two encodings is effective for the benchmarks. For the knight’s
tour problem, in particular, the hybrid encoding solves some middle-sized instances that
were beyond the reach for previous eager SAT encodings.

The HCP is significant due to its broad applications across various disciplines, and
researchers continue to explore various techniques to encode HCP into SAT in order to
leverage the solving power of the cutting-edge SAT solvers. Most of the previous SAT
encodings focus on how to translate no-sub-cycle constraints into SAT. VEE is novel in the
sense that it is the first encoding based on vertex elimination for the HCP, and, unlike the
previous encodings, it does not need to deal with no-sub-cycle constraints.

7 Lazy encodings (e.g., [3, 9]), which incrementally generate sub-cycle elimination clauses, may be able to
solve some large instances.
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VEE sheds new light on future explorations in encoding the HCP into SAT. The encoding
presented in the paper generates O(n*) clauses for a complete graph with n vertices. One
future exploration is to improve the encoding so that it has a lower order of an encoding size.
Another future exploration is to hybridize multiple encodings with VEE. Once a graph is
reduced by vertex elimination, the resulting graph can be encoded with any encoding. For
very dense graphs, the bijection encoding [2], which uses an edge constraint for each non-arc
pair of vertices, could be more efficient. It is always a challenge to devise the best heuristic
for switching from VEE to another encoding. While the simple heuristic used in this paper
has achieved encouraging results, it is not meant to be the best. As training data can be
easily generated by running the solver under different settings, it could be viable to devise a
near-optimal switching heuristic using machine learning.
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