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Abstract
As a broadly applied technique in numerous optimization problems, recently, local search has been
employed to solve Pseudo-Boolean Optimization (PBO) problem. A representative local search solver
for PBO is LS-PBO. In this paper, firstly, we improve LS-PBO by a dynamic scoring mechanism,
which dynamically strikes a balance between score on hard constraints and score on the objective
function.

Moreover, on top of this improved LS-PBO, we develop the first parallel local search PBO solver.
The main idea is to share good solutions among different threads to guide the search, by maintaining
a pool of feasible solutions. For evaluating solutions when updating the pool, we propose a function
that considers both the solution quality and the diversity of the pool. Furthermore, we calculate
the polarity density in the pool to enhance the scoring function of local search. Our empirical
experiments show clear benefits of the proposed parallel approach, making it competitive with the
parallel version of the famous commercial solver Gurobi.
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1 Introduction

With the recent impressive progress in high-performance Boolean Satisfiability (SAT) and
Maximum Boolean Satisfiability (MaxSAT) solvers, increasing real-world problems are solved
with the Conjunctive Normal Form (CNF) encoding. However, in practice, CNF is ineffective
in dealing with cardinality constraints, resulting in its size growing dramatically [3]. As a rich
subject in various fields, Pseudo-Boolean Optimization (PBO) provides a better formalization
than CNF in expressive power, with the use of Linear Pseudo-Boolean (LPB) constraints.
Meanwhile, LPB constraints stay close to CNF and can benefit from advances in SAT
solving [33]. The PBO problem is to find an assignment satisfying all LPB constraints that
maximizes the objective function given.

Briefly, there are three categories of complete algorithms to solve the PBO problem. The
first one is the linear search, which extends the PB solver by adding a constraint enforcing
to find a better solution (in terms of the objective function value) when finding a solution
satisfying all constraints [2]. Several well-known PBO solvers are based on this idea, including
Sat4j [22], RoundingSAT [14], and HYBRID [12]. The second one is Branch-and-Bound,
which focuses on the techniques to estimate the lower bounds of the objective value, as the
search can be pruned whenever the lower bound is greater than or equal to the upper bound.
The symbolic techniques to determine the lower bounds include Maximum Hitting Set [11]
and Linear Programming Relaxation [26]. The third one is to call the SAT solvers after
encoding PB constraints into the CNF formula, such as MINISAT+ [13] and OpenWBO [31].
Moreover, mixed-integer programming (MIP) solvers can be directly applied to solve the
PBO problem, as PB constraints can be treated as 0-1 linear constraints, representative
solvers include SCIP [5] and Gurobi [17].

Complete algorithms often suffer from the scalability issue, which motivates the develop-
ment of incomplete algorithms. A typical incomplete approach is local search, which has been
successfully used in many problems, including SAT [25, 1, 6], MaxSAT [23, 9], etc. Neverthe-
less, the literature on local search algorithms to solve PBO problem is quite limited. The first
local search-based PBO solver was proposed in [24], called LS-PBO. This local search solver
introduced a constraint weighting scheme and a scoring function considering both hard and
soft constraints to select Boolean variables to flip. Later, LS-PBO was improved by using a
unit propagation-based method to produce better initial assignments [19], resulting in the
DeciLS-PBO solver. Very recently, on top of LS-PBO, Chu et. al. developed NuPBO [10],
which established the latest state-of-the-art local search based PBO solving. Additionally,
Iser et. al. proposed an oracle-based local search approach in the context of PBO [18], which
outperforms on various benchmark domains clearly the recent pure stochastic local search
approach.

Recently, with the evolution of multi-core processors, parallel solving received growing
interest. The SAT competition2 set up a parallel track from 2009, while Satisfiability Modulo
Theories (SMT) competition3 introduces parallel tracks in 2021. In short, parallel algorithms
contain two major directions. The first one is based on the concept of divide-and-conquer,
which divides the problem into several sub-problems, and each thread solves sub-problems. For
example, Treengeling [15] is a representative SAT solver of this kind. Meanwhile, commercial
solvers, such as CPLEX4 and Gurobi [17] also implement their parallel versions via this
approach. The other parallel approach is to integrate different solvers, including a solver with

2 http://www.satcompetition.org/
3 https://smt-comp.github.io/
4 http://www.cplex.com/

http://www.satcompetition.org/
https://smt-comp.github.io/
http://www.cplex.com/
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different configurations, and each thread runs a solver. This approach is commonly known
as portfolio, which is simple but effective. The portfolio-based parallel SAT solvers, such as
PRS [8], P-mcomsps [16], and Pakis [36], dominate the parallel track of SAT competitions
in recent years. The parallel MaxSAT solvers [29, 30] based on the portfolio method also
demonstrate a strong ability to efficiently solve a large number of problem instances due to
the use of complementary search strategies and sharing learned clauses between threads.

In this paper, at first, we improve the typical LS-PBO solver by introducing a new
dynamic scoring mechanism, which can somehow avoid the local optimum situation even
after flipping thousands of variables. This leads to an improved algorithm called DLS-PBO.
Then, based on the DLS-PBO, we develop ParLS-PBO, to the best of our knowledge,
the first parallel local search-based PBO solver. Our parallel solver runs different local
search procedures in the worker threads and maintains a solution pool, which collects good
feasible solutions from the working threads and in turn can be used to guide the local search
procedures. During the search process, the solution pool is updated by adding new solutions
and removing solutions from it. To update the solution pool, we propose a function to
measure the feasible solutions found by local search, which considers both the objective value
of the solution and the diversity of the solutions in the pool.

The most important part of our parallel solver is how to use the solution pool to help
the local search. In this work, this is done in two ways. Firstly, the solutions in the pool
can be directly used to help local search when it stagnates for a long time. Specifically, in
such a situation, a local search process of a thread restarts from a good feasible solution
picked from the pool. Secondly, we calculate the polarity density (the proportions of being
1 and 0) for each variable once a solution is added into the solution pool. This polarity
density information is used to enhance the scoring function of local search when picking the
variable to flip in each step. The intuition is when a certain polarity (either 1 or 0) of a
variable occurs in most high-quality solutions, it brings preference to assign the variable to
that polarity.

We carry out experiments to evaluate our algorithms DLS-PBO and ParLS-PBO on
both real-world applications encoded benchmark and standard benchmarks, compared with
state-of-the-art solvers including LS-PBO [24], DeciLS-PBO [19], NuPBO [10], SCIP [5],
HYBRID [12], PBO-IHS [35], Gurobi [17]), and FiberSCIP [34]. Our results show that our
parallel solver has significantly better performance than all sequential solvers, and competes
well with the parallel versions of Gurobi. Furthermore, ParLS-PBO shows good scalability
up to 32 threads as its performance improves with the number of threads.

The remainder of this paper is structured as follows. Section 2 introduces preliminary
knowledge. Section 3 analyzes the weakness of LS-PBO and introduces an improved solver
DLS-PBO. Section 4 presents the proposed parallel solver ParLS-PBO. Experimental studies
are presented in Section 5. Finally, we give some concluding remarks in Section 6.

2 Preliminaries

2.1 Pseudo-Boolean Optimization

A Boolean variable xi can take only two values false and true, or equivalently {0, 1}. A literal
li is either a variable xi or its negation ¬xi. Given a set of n Boolean variables {x1, . . . , xn},
a linear pseudo-Boolean constraint (LPB constraint) is formed as follows:

n∑
i=1

ai · li ▷ b, ai, b ∈ Z, ▷ ∈ {=, ≤, <, ≥, >}

CP 2024
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where ai is the coefficient for literal li, b is called as the degree of the constraint, and ▷ is
one of the classical relational operators. With a given assignment or partial assignment, the
constraint is satisfied if its left and right terms satisfy the relational operator. Otherwise, it
is unsatisfied.

Moreover, replacing all literals xi (respectively ¬xi) with negative coefficients with 1−¬xi

(respectively 1 − xi), a LPB constraint can be normalized into the following form [33]:

n∑
i=1

ai · li ≥ b, ai, b ∈ N+
0

Given a conjunction of LPB constraints, Pseudo-Boolean Solving (PBS) problem is a
decision problem to find an assignment such that all constraints are satisfied. Pseudo-Boolean
Optimization (PBO) problem is an optimized version of the PBS problem, aiming to find an
assignment satisfying all constraints with the minimal value of a given objective function. In
this paper, we focus on the PBO problem consisting of a conjunction of LPB constraints and
a linear objective function. Therefore, a PBO instance subjecting to m LPB constraints has
the following form:

min
{x1,...,xn}

n∑
i=1

ci · li, ci ∈ Z

subject to:
m∧

j=1

n∑
i=1

aji · li ≥ bj , aji, bj ∈ N+
0

where ci is the objective coefficient for literal li.

2.2 A Review of LS-PBO Solver

LS-PBO is a representative local search solver for PBO, and serves as the basis of other local
search PBO solvers. Briefly, it contains two main ideas: a Constraint Weighting Scheme and
Scoring Functions for guiding the search process.

To solve a standard PBO instance, LS-PBO proposed a soft objective constraint:
∑n

i=1 ci ·
li < obj∗, where obj∗ indicates the objective value of the best solution in the current run,
and other constraints are set as hard. LS-PBO uses a weighting technique to increase the
weights of falsified constraints, so that the search process is biased toward satisfying them.
Specifically, it used dynamic weights (denoted as w(·)) to help the search avoid stuck in the
local optimum, while increasing the weights of hard constraints to find feasible solutions, and
the weight of objective constraint to find better solutions.

Besides, scoring functions are essential in local search algorithms to guide the search
process, which typically measures the benefits of flipping a Boolean variable. In LS-PBO,
the score of flipping a variable x (denoted as score(x)) was defined as follow:

score(x) = hscore(x) + oscore(x) (1)

where hscore(x) indicates the decrease of the total penalty of falsified hard constraints caused
by flipping x, and oscore(x) indicates the decrease of the penalty of the objective constraint
caused by flipping x. In detail, the penalty of falsifying a hard constraint hc was defined as
w(hc) · max (0, b −

∑n
i=1 ai · li), and the penalty for the objective constraint oc was defined

as w(oc) ·
∑n

i=1 ci · li.
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3 Improving LS-PBO Solver with Dynamic Scoring Mechanism

As introduced in the preliminary, the score of a filliping variable x (score(x)) in LS-PBO is
presented as Equation 1. The algorithm selects the variable with the highest positive score,
indicating the biggest decrease in the penalty of hard constraints and objective constraint. A
drawback of LS-PBO is the lack of dynamic adjustments to the ratio of the soft and hard
constraints. If a feasible solution cannot be found within a certain period of time, the search
mechanism should adaptively prioritize finding feasible solutions, thereby increasing the ratio
attributed to the hard constraints. Conversely, if feasible solutions have been frequently
found recently, then it would be beneficial to increase the ratio of the soft constraints to
guide the search towards discovering better solutions.

To resolve this drawback, we introduce a new dynamic scoring function, denoted as
score∗(x), to adjust the significance of oscore(x) for every given K steps (K is a parameter),
which is defined as follows:

score∗(x) = hscore(x) + p · oscore(x) (2)

where p is a dynamic ratio initially set as 1. It would be decreased as p/inc (where inc > 1)
if no feasible solution is found during the recent K steps, to guide the search towards a
feasible solution. Otherwise, respectively, it would be increased as p · inc when a feasible
solution is found within the recent K steps, to guide the search process for a better solution.

▶ Example 1. Considering a PBO instance:

min
{x1,x2,x3}

10 · x1 + 20 · x2 + 30 · x3

subject to: 2 · x1 + 3 · x2 + 4 · x3 ≥ 5

and suppose current weights w(hc) and w(oc) are 2 and 1. For the given assignment
(x1 = 1, x2 = 0, x3 = 0), the corresponding hscore(·) and oscore(·) are as follows:

· x1 x2 x3

hscore(·) -4 6 6

oscore(·) 10 -20 -30

Consider the following two situations:
If feasible solutions are found frequently in recent period, the value of p will gradually
increase, guiding the search to lower the cost of the objective constraint. Suppose the
current value of p is 2, then score∗(x1) = 16, score∗(x2) = −34, score∗(x3) = −54. In
this case, x1 will be picked and flipped, resulting in a decrease of 10 in the cost of the
objective constraint. (even if it is not a feasible solution.)
If the algorithm has not visited feasible solutions for a period (K steps), the value of p

will gradually decrease, guiding the search to find feasible solutions. Suppose the current
value of p is 0.1. then score∗(x1) = −3, score∗(x2) = 4, score∗(x3) = 3. In this case, x2
will be picked and flipped, resulting in a feasible solution.

We denote the improved version of LS-PBO solver with dynamic scoring mechanism
as DLS-PBO.

CP 2024
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Figure 1 Architecture of the ParLS-PBO.

4 Parallel Local Search Solver for Pseudo-Boolean Optimization

In this section, we propose a parallel local search solver ParLS-PBO. The architecture
of ParLS-PBO is shown in Figure 1, which consists of two major contributions: Solution
Pool and Polarity Density Weight. We first describe the global framework of ParLS-PBO,
then we present the contributions in detail separately.

4.1 Framework of ParLS-PBO Solver

As a portfolio-based local search PBO solver, ParLS-PBO contains a master thread and
multiple worker threads. The master thread reads the input PBO instance, and then produces
different initial partial assignments via literal assume technique for worker threads; finally,
when the time limit is reached, it outputs the best solution returned from all worker threads.
In detail, supposing there are T worker threads, the master thread selects ⌈ T

2 ⌉ random
variables. Then, for each variable selected xi, it generates a positive literal xi and a negative
literal ¬xi. Therefore, it generates T (or T + 1 if T is odd) different assumed literals in total
for worker threads.

Each worker thread receives an assumed literal ℓ (either xi or ¬xi) and applies the unit
propagation [28] technique to simplify the formula. Note that a solution found by local search
for such a formula can be directly transformed to a solution for the original PBO instance, by
adding the assumed literal as the value for the corresponding variable, and adding the value
for reduced variables via unit propagation if any. Then the worker thread launches a local
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search solver to solve the PBO instance. In default, the worker thread launches DLS-PBO.
To bridge different worker threads, we propose a Solution Pool to share high-quality feasible
solutions found from different worker threads. When the search process of a worker thread
is blocked in the local optimum after flipping a certain number of variables, it attempts to
restart with a high-quality feasible solution in the solution pool. Furthermore, we introduce
the concept of Polarity Density Weight with the intuition of preference of certain polarity of
a variable if it occurs in most high-quality solutions.

4.2 Maintaining the Solution Pool
The solution pool aims to collect good feasible solutions, preferring those with more differences.
To this end, we consider a mixed quality rating function rmix(·) by measuring two terms
together: the quality in objective value, and the diversity. For a feasible solution S, the
rating function rmix(S) w.r.t. a solution pool is defined as follows:

rmix(S) = rankobj(S) · p∗ + rankdiv(S) · (1 − p∗) (3)

where rankobj(·) and rankdiv(·) represent the ranking of S in the solution pool in objective
value and diversity value. Specifically, for the objective value, the solution with the minimal
objective value is considered as the best solution, hence its rankobj(·) value is 1. While for
the diversity value, the solution with the maximum diversity value is considered the best,
thus its rankdiv(·) value is 1. p∗ is a penalty parameter within [0, 1] to adjust the significance
of the objective value term and diversity term.

The difference between two solutions is measured as the sum of the number of different
polarities, and the diversity value of a solution S w.r.t. The solution pool is measured as the
sum of differences between S and all other solutions in the solution pool. Formally,

div(S) =
∑

S′∈P
Hamming(S, S′)

When a worker thread finds a new feasible solution S, if the solution pool is not full, then
just add it. Otherwise, S replaces the worst one (the solution with the biggest rmix(·) value).

We note that the rmix(S) function in this work resembles a previous population manage-
ment strategy [7]. We focus on the ranking rather than the value, which can be seen as a
normalization.

4.3 Using the Solution Pool to Guide the Search
In this subsection, we discussed how the solution pool guides each worker, including replacing
solutions with better solutions from the solution pool when a worker being trapped, and
utilizing the variable polarity preference in the solution pool to influence the selection of
variables to flip during the search process.

4.3.1 Solution Sharing Strategy
When a worker thread fails to find a better feasible solution for a while, which means that it
may be trapped in a local optimum, it selects a feasible solution with a smaller objective
value from the solution pool and replaces the current one.

In practice, each worker thread preserves the current best feasible solution (denoted as
S∗) as well as the corresponding objective value obj∗. When the search process fails to find
a better solution after R steps, it picks a solution from the solution pool as a new starting
point.

CP 2024
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To prevent excessive overlap of search spaces among various threads, we employ a
probability-based method to select solutions in the pool, rather than directly choosing the
best solution in the pool. Specifically, let {S1, . . . , Sk} denotes the set of feasible solutions in
the solution pool with objective values not bigger than obj∗ (the set will not be empty, as it
at least contains S∗), and ∆i denotes the difference between the objective value of Si and
obj∗. Then the probability of selecting Si is ∆i/

∑k
j=1 ∆j .

4.3.2 Polarity Density Weight

Besides using the solutions in the pool to guide the search process directly when it gets stuck,
we propose a deeper guiding method, which utilizes a piece of valuable hidden information in
the solution pool – the occurrence of polarities (0 or 1) of variables. To measure the effect
of this kind of information, we propose the concept of polarity density weight for a variable
x, denoted as wpd(x), which reflects the preference of certain polarity of x appearing in
high-quality solutions.

In detail, for a variable x, wpd(x) is initialized as 1. Once a high-quality feasible solution
S is added into the solution pool, wpd(x) will add (respectively, minus) a step value β

when positive (respectively, negative) polarity of x appears in S. In fact, via this updating
mechanism, the higher (respectively, lower) value in wpd(x) indicates the higher preference of
positive (respectively, negative) polarity for x in high-quality solutions. To limit the influence
of wpd(x) and avoid possible calculation problems in negative values, we restrict wpd(x) into
an interval of [1 − ϵ, 1 + ϵ], where ϵ scales the bound. Therefore, the wpd(x) is updated as
follows:

wpd(x) =
{

max(wpd(x) − β, 1 − ϵ), if x = 0 in S

min(wpd(x) + β, 1 + ϵ), if x = 1 in S
(4)

The polarity density weight is used to enhance the scoring function of picking a variable
to flip during the search process. The resulting enhanced scoring function, denoted as
score∗∗(x), is defined as follows:

score∗∗(x)=
{

score∗(x)·wpd(x), if x =0 in Scur

score∗(x)/wpd(x), if x =1 in Scur

(5)

where Scur is the current assignment maintained by the local search process.
The multiplication of polarity density weight influences the flip of a variable x from 0 to

1, as it increases the combined score if the preference of positive polarity exists (wpd(x) > 1)
to guide the search process to realise the flip. Respectively, in reverse, the division of polarity
density weight influences the flip from 1 to 0.

▶ Example 2. Continuing with Example 1, Suppose that most of the solutions that entered
the solution pool have the assignment (x1 = 1, x2 = 1, x3 = 0), resulting in wpd(x1) =
1.1, wpd(x2) = 1.1, wpd(x3) = 0.9.

For the given assignment (x1 = 1, x2 = 0, x3 = 0) and p = 1, the corresponding score∗(·)
can be calculated as: score∗(x1) = 6, score∗(x2) = −14, score∗(x3) = −24.

Then score∗∗(x1) = 6 ÷ 1.1, score∗∗(x2) = (−14) × 1.1, score∗∗(x3) = (−24) × 0.9.
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5 Experiments

The experiments are organized as three parts. At first, we focus on comparing DLS-
PBO, ParLS-PBO with state-of-the-art solvers including commercial solvers. Secondly, we
analyze the effectiveness of the strategies to guide the search via the solution pool in ParLS-
PBO. Finally, we present the tendency in performance of ParLS-PBO with the increase
of the number of threads. Source code and detailed results are made publicly available on
GitHub5.

5.1 Benchmark
Real-World: Three real-world application problems, which are presented in the literat-
ure [24], including the Minimum-Width Confidence Band Problem [4]6 (24 instances),
the Seating Arrangements Problem [32] (21 instances), the Wireless Sensor Network
Optimization Problem [20, 21] (18 instances).
MIPLIB: All satisfiable 0-1 integer programs from the MIPLIB 2017 library and earlier
MIPLIB releases7, which contains 252 instances, provided in the literature [35].
PB16: The OPT-SMALL-INT benchmark from the most recent Pseudo-Boolean Com-
petition 20168. We filter out the duplicated instances that appear in both MIPLIB
and PB16, resulting in 1524 instances in the final. PB16 contains different problem
categories. We select those representatives (containing more than 30 instances) categories
for finer-grained experimental analysis.

5.2 Candidate Methods to Compare
In the sequential track, we compare DLS-PBO with 7 state-or-the-art sequential PBO solvers,
including 3 local search-based solvers: LS-PBO, DeciLS-PBO and NuPBO, 3 complete
non-commercial solvers: HYBRID, PBO-IHS , and SCIP and the commercial solver Gurobi
(both complete and heuristic versions).

In the parallel track, we compare ParLS-PBO with the academic solver FiberSCIP, and
the parallel version of the commercial solver Gurobi.

LS-PBO [24]: the state-of-the-art SLS algorithm for solving PBO9.
DeciLS-PBO [19]: a recent SLS algorithm based on LS-PBO10.
NuPBO [10]: a recent SLS algorithm based on LS-PBO, which established the latest
state-of-the-art local search based PBO solving11.
HYBRID [12]: a recent core-guided PBO solver building upon RoundingSAT [14]12.
PBO-IHS [35]: a recent IHS PBO solver building upon RoundingSAT13.
Gurobi [17]: one of the most powerful commercial MIP solvers. We use both its complete
and heuristic versions14.

5 https://github.com/shaowei-cai-group/ParLS-PBO.git
6 http://physionet.org/physiobank/database/mitdb/
7 https://zenodo.org/record/3870965
8 http://www.cril.univ-artois.fr/PB16/bench/PB16-used.tar
9 https://lcs.ios.ac.cn/~caisw/Resource/LS-PBO/
10 https://github.com/jiangluyu1998/DeciLS-PBO (commit number: 3dce881)
11 https://github.com/filyouzicha/NuPBO (commit number: 821d901)
12 https://zenodo.org/record/4043124 (version 2)
13 https://bitbucket.org/coreo-group/pbo-ihs-solver (version 1.1)
14 https://www.gurobi.com/solutions/gurobi-optimizer (version 10.0.0)
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SCIP [5]: one of the fastest non-commercial solvers for MIP (the latest version 8.0.1)15,
FiberSCIP [34]: a parallel non-commercial MIP solvers based on SCIP (the latest version
1.0.0)16.

We download the latest version of all candidate methods to compare from their published
links. In all experiments, we always use their default parameter settings.

5.3 Experimental Settings
DLS-PBO and ParLS-PBO are implemented in C++, and compiled with g++ (version 9.2.0)
using the option ’-O2’. All experiments are carried out on a cluster with two AMD EPYC
7763 CPUs @ 2.45Ghz of 128 physical cores and 1TB memory running the operating system
Ubuntu 20.04 LTS (64bit).

As with the previous research on PBO solvers [24, 19], we set the time limit for each run
as 300 and 3600 seconds. For each sequential randomized solver, we run 10 times for each
instance with different seeds from {0, 1, . . . , 9}, and select the median of the 10 runs as the
final result. Without making any additional claims, the number of CPU cores that can be
used for parallel solvers is set as 32.

For parameter tuning, we employed Sequential Model-based Algorithm Configuration
(SMAC) [27], conducting the tuning on 300 instances randomly selected from all the bench-
marks, with a time limit set to 300 seconds. The parameter values obtained after tuning are
listed in Table 117.

Table 1 The parameter settings of our solvers.

Parameter K R inc poolsize p∗ β ϵ

Value 566024 86295 1.15 18 0.58 0.03 0.144

Referring to the MaxSAT competition and previous research on PBO, we use 2 metrics
to evaluate the performance of each solver:

#win: the number of instances that a solver finds the best solution among all solutions
output by tested solvers (i.e., the number of winning instances).
avgsc∗ : Since 2017, in the incomplete track of recent MaxSAT Evaluations, the perform-
ance of various solvers is measured by competition scores. For an instance and a solver
given, the competition score sc is defined as (1 + costbest)/(1 + costs), where costbest

represents the objective value of the best solution found among all solvers, costs represents
the objective value of the solution found by the given solver. However, in PBO problem,
the objective value of a solution may be negative, leading to an incorrect calculation of
sc. To address this issue, we modify slightly the definition of competition score:

sc∗ =
1 + costbest +

∑
ci<0 |ci|

1 + costs +
∑

ci<0 |ci|

Adding all negative objective coefficients ensures the competition score of each instance
is normalized in [0, 1]. We use avgsc∗ to denote the average competition score of a solver.

15 https://www.scipopt.org/index.php#download (version 8.0.1)
16 https://ug.zib.de/index.php#download (version 1.0.0)
17 In fact, our solver is not sensitive to the parameter configurations. For example, a simple configuration

(K=100000, R=100000, inc=1.1, poolsize=10, β=0.1, ϵ=0.15) leads to a performance close to the one
in Table 1, with a gap of avgsc∗ less than 1%.

https://www.scipopt.org/index.php#download
https://ug.zib.de/index.php#download
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We do not use average time as a metric because our primary focus is on the quality of
the solution. If the quality of the solutions found is different, then the comparison based on
run time would be misleading.

5.4 Performance Evaluations

5.4.1 The Sequential Track

We first compare DLS-PBO with LS-PBO, and the results are shown in Table 2. DLS-PBO
significantly improves LS-PBO in terms of both #win and avgsc∗ on all the benchmarks.

Further, we evaluate DLS-PBO with other PBO solvers, as well as integer programming
solvers. The results (Table 3) indicate that NuPBO performs best for the Real-world
benchmark, while Gurobi is the best on MIPLIB and PB16 benchmarks. DLS-PBO cannot
rival these two solvers, yet it is better than other PBO solvers. We note that the emphasis
of this work is to develop an effective parallel method for PBO solvers. We choose LS-PBO
as the baseline as it is the typical local search PBO solver (NuPBO is also developed on
top of it). We simply remedy its drawback to obtain DLS-PBO, and do not perform other
modifications. NuPBO was published very recently, and we believe our parallel method can
be applied to NuPBO as well.

5.4.2 The Parallel Track

The comparative results of our parallel solver ParLS-PBO with other parallel solvers are
shown in Table 4 (We only show #win due to the space limit). ParLS-PBO gives the best
performance on all categories of the Real-World benchmark, and 3 categories of the PB16
benchmark, including Kexu, Logic Synthesis, and Prime.

In terms of the Total instances, ParLS-PBO outperforms the non-commercial solver
FiberSCIP, and is competitive with the commercial solver Gurobi. Comparing Table 3 and
Table 4, it can be found that the gap between ParLS-PBO and Gurobi (32 threads) is
decreasing compared with the gap between DLS-PBO and Gurobi (1 thread), which indicates
the effectiveness of our solver in parallel solving.

We also observe that ParLS-PBO outperforms the best sequential PBO solver NuPBO
on all benchmarks (44 vs. 32, 171 vs. 156, and 1238 vs. 1002). Although this comparison is
unfair (and thus we do not report it in the table), it indicates that by parallelization, the
performance of PBO solvers can be significantly improved.

5.5 Effectiveness Analysis

This subsection evaluates the effectiveness of the key strategies of ParLS-PBO. In Table 5,
we compare ParLS-PBO with its 2 variants:

V1: to analyze the effectiveness of the solution-pool-based sharing, we modify ParLS-PBO
by disabling the sharing mechanism and making each thread solve separately.
V2: to analyze the effectiveness of the global score mechanism, we modify ParLS-PBO by
disabling the global score mechanism and using score∗(x) directly in the local search.

As shown in Table 5, ParLS-PBO outperforms other variations, confirming the effectiveness
of the strategies.

CP 2024
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Table 2 Evaluation between DLS-PBO and LS-PBO.

Benchmark #Ins
LS-PBO DLS-PBO

#win avgsc∗ #win avgsc∗

cutoff=300s
Real-World 63 25 0.976 48 0.996

miplib 252 118 0.777 182 0.836
PB16 1524 711 0.692 1124 0.776
Total 1839 854 0.713 1354 0.792

cutoff=3600s
Real-World 63 38 0.991 35 0.988

miplib 252 121 0.81 186 0.863
PB16 1524 829 0.753 1189 0.825
Total 1839 988 0.769 1410 0.836

Table 3 Performance evaluation between DLS-PBO and sequential SOTA solvers (The results
of DeciLS-PBO are not presented due to the space limit. In fact, DeciLS-PBO is dominated by
NuPBO and DLS-PBO).

Benchmark #Ins
SCIP HYBRID PBO-IHS NuPBO Gurobi(Comp.) Gurobi(Heur.) DLS-PBO

#win #win #win #win #win #win #win

avgsc∗ avgsc∗ avgsc∗ avgsc∗ avgsc∗ avgsc∗ avgsc∗

cutoff=300s

Real-World 63
0 3 2 46 4 4 29

0.126 0.109 0.266 0.972 0.289 0.292 0.977

MIPLIB 252
88 53 81 116 152 165 101

0.614 0.572 0.741 0.854 0.838 0.849 0.803

PB16 1524
810 663 882 980 1071 1072 842

0.687 0.624 0.804 0.813 0.84 0.84 0.741
cutoff=3600s

Real-World 63
0 11 5 43 11 9 27

0.171 0.494 0.401 0.997 0.34 0.38 0.974

MIPLIB 252
113 65 96 113 171 181 106

0.675 0.697 0.789 0.859 0.893 0.895 0.831

PB16 1524
906 729 939 1012 1138 1144 940

0.734 0.715 0.814 0.822 0.86 0.862 0.797

5.6 Scalability Analysis

In order to analyze the scalability of ParLS-PBO, we choose Gurobi (complete version) with
32 threads as the comparison baseline to test the performance gap between different threads
of ParLS-PBO. We report #win for threads set to {4, 8, 16, 32} compared to baseline. As
is shown in Figure 2, in each benchmark, #win is gradually increasing, which verifies the
scalability of ParLS-PBO.
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Table 4 Performance evaluation between ParLS-PBO and parallel SOTA solvers.

Benchmark Category #ins
FiberSCIP Gurobi ParLS-PBO

Comp. Heur.
cutoff=300s

Real-World
MWCB 24 0 0 0 24
WSNO 18 0 4 4 18

SAP 21 0 0 0 21
Total 63 0 4 4 63

MIPLIB Total 252 113 190 180 129

PB16

Factor 192 186 186 186 172
Kexu 40 6 10 7 40

Logic synthesis 74 71 73 72 73
Market split 40 12 21 13 5

Mps 35 30 33 34 23
Numerical 34 13 18 21 8

Prime 156 123 128 129 131
Reduced mps 273 76 145 150 39

Total 1524 898 1147 1143 1100
cutoff=3600s

Real-World
MWCB 24 0 5 2 20
WSNO 18 0 10 10 18

SAP 21 0 0 0 21
Total 63 0 15 12 59

MIPLIB Total 252 129 184 193 140

PB16

Factor 192 186 186 186 182
Kexu 40 14 17 14 40

Logic synthesis 74 72 72 72 74
Market split 40 16 22 12 8

Mps 35 30 33 33 25
Numerical 34 13 19 25 8

Prime 156 127 130 131 132
Reduced mps 273 100 150 160 43

Total 1524 995 1198 1201 1107

6 Conclusions

We proposed two local search solvers for the PBO problem: DLS-PBO and ParLS-PBO.
DLS-PBO is an enhanced version of the LS-PBO solver, incorporating a dynamic scoring
mechanism. ParLS-PBO is a parallel solver with a solution pool collecting good solutions
from multiple threads. The solution pool guides the local search process by providing better
starting points and utilizing polarity information from high-quality solutions to improve
the scoring function. Experimental results show that our parallel solver has significantly
better performance than all sequential solvers and exhibits strong competitiveness against
the parallel versions of Gurobi.

The ideas of this work can be applied to other problems, particularly including SAT and
MaxSAT. It is also interesting to implement a distributed version of ParLS-PBO for cloud
computation.

CP 2024
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Table 5 Performance evaluation between ParLS-PBO and its variants.

Benchmark #Ins
V1 vs. ParLS-PBO V2 vs. ParLS-PBO

V1 ParLS-PBO V2 ParLS-PBO

#win avgsc∗ #win avgsc∗ #win avgsc∗ #win avgsc∗

cutoff=300s
Real-World 63 28 0.993 52 0.998 36 0.996 44 0.998

MIPLIB 252 137 0.857 199 0.868 166 0.871 185 0.870
PB16 1524 1095 0.835 1231 0.847 1168 0.841 1182 0.844

cutoff=3600s
Real-World 63 19 0.981 62 1.0 37 0.995 48 0.999

MIPLIB 252 145 0.870 203 0.897 181 0.897 180 0.893
PB16 1524 1111 0.840 1251 0.854 1191 0.852 1214 0.852

(a) Real-World. (b) MIPLIB.

(c) PB16. (d) Total.

Figure 2 Scalability Analysis (Time limit is set to 300).
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